GB2493505A - Fan assembly with two nozzle sections - Google Patents

Fan assembly with two nozzle sections Download PDF

Info

Publication number
GB2493505A
GB2493505A GB201112909A GB201112909A GB2493505A GB 2493505 A GB2493505 A GB 2493505A GB 201112909 A GB201112909 A GB 201112909A GB 201112909 A GB201112909 A GB 201112909A GB 2493505 A GB2493505 A GB 2493505A
Authority
GB
United Kingdom
Prior art keywords
air
text
gt
lt
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB201112909A
Other versions
GB201112909D0 (en
Inventor
Mark Joseph Staniforth
Jude Paul Pullen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dyson Technology Ltd
Original Assignee
Dyson Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dyson Technology Ltd filed Critical Dyson Technology Ltd
Priority to GB201112909A priority Critical patent/GB2493505A/en
Publication of GB201112909D0 publication Critical patent/GB201112909D0/en
Priority claimed from EP12733193.2A external-priority patent/EP2737216B1/en
Publication of GB2493505A publication Critical patent/GB2493505A/en
Application status is Withdrawn legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/01Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station in which secondary air is induced by injector action of the primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT GENERATING MEANS, IN GENERAL
    • F24H3/00Air heaters having heat generating means
    • F24H3/02Air heaters having heat generating means with forced circulation
    • F24H3/04Air heaters having heat generating means with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters having heat generating means with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0411Air heaters having heat generating means with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between for domestic or space-heating systems
    • F24H3/0417Air heaters having heat generating means with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between for domestic or space-heating systems portable or mobile
    • F24F2006/125
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/80Ultrasonic humidifiers

Abstract

A fan assembly 10 includes a nozzle 14 having a first section 16 having a first air inlet 28, a first air outlet 30, and a first interior passage 46 for conveying air from the first air inlet to the first air outlet. The nozzle also has a second section 18 having a second air inlet 54, a second air outlet 56, and a second interior passage 58 for conveying air from the second air inlet to the second air outlet. The sections of the nozzle define a bore through which air from outside the fan assembly is drawn by air emitted from the nozzle. The fan assembly further includes a first user-operable system for generating a first air flow through the first interior passage, and a second user-operable system for generating a second air flow through the second interior passage. The first user-operable system is selectively operable separately from the second user-operable system.

Description

A FAN ASSEMBLY

FIELD OF THE INVENTION

The present invention relates to a fan assembly.

BACKGROUND OF THE INVENTION

A conventional domestic fan typically includes a set of blades or vanes mounted for rotation about an axis, and drive apparatus for rotating the set of blades to gcneratc an air flow. The movement and circulation of the air flow creates a wind chill' or breeze and, as a result, the user experiences a cooling effect as heat is dissipated through convection and evaporation. The blades are generally located within a cage which allows an air flow to pass through the housing while preventing users from coming into contact with the rotating blades during usc of the fan.

US 2,488,467 describes a fan which does not use caged blades to project air from the fan assembly. Instead, the fan assembly comprises a base which houses a motor-driven impeller for drawing an air flow into the base, and a series of concentric, annular nozzles connected to the base and each comprising an annular outlet located at the front of the nozzle for emitting the air flow from the fan. Each nozzle extends about a bore axis to define a bore about which the nozzle extends.

Each nozzle is in the shape of an airfoil. An airfoil may be considered to have a leading edge located at the rear of the nozzle, a trailing edge located at the front of the nozzle, and a chord line extending between the leading and trailing edges. In (iS 2,488,467 the chord line of each nozzle is parallel to the bore axis of the nozzles. The air outlet is located on the chord line, and is arranged to emit the air flow in a direction extending away from the nozzle and along the chord line.

I

Another fan assembly which does not use caged blades to project air from the fan assembly is described in WO 2009/030879. This fan assembly comprises a cylindrical base which also houses a motor-driven impeller for drawing a primary air flow into the base, and a single annular nozzle connected to the base and comprising an annular mouth through which the primary air flow is emitted from the fan. The nozzle defines an opening through which air in the local environment of the fan assembly is drawn by the primary air flow emitted from the mouth, amplifying the primary aft flow. The nozzle includes a Coanda surface over which the mouth is arranged to direct the primary air flow. The Coanda surface extends symmetrically about the central axis of the opening so that the air flow generated by the fan assembly is in the form of an annular jct having a cylindrical or frusto-conical profile.

SUMMARY OF THE INVENTION

The present invention provides a fan assembly comprising: a nozzle having a first section having at least one first air inlet, at least one first air outlet, and a first interior passage for conveying air from said at least one first air inlet to said at least one first air outlet; and a second section having at least one second air inlet, at least one second air outlet, and a second interior passage, which is preferably isolated from the first interior passage, for conveying air from said at least one second air inlet to said at least one second air outlet, the sections of the nozzle defining a bore through which air from outside the fan assembly is drawn by air emitted from the nozzle; a first user-operable system for gcnerating a first air flow through the first interior passage; and a second user-operable system for generating a second air flow through the second interior passage, the first user-operable system being selectively operable separately from the second user-operable system.

The present invention can thus allow a user to vary the air flow generated by the fan assembly by actuating selectively one or both of the user-operable systems, which each generate an air flow within a respective section of the nozzle. For example, the first user-operable system may be configured to generate a relatively high speed air flow through the first section, with the air outlet(s) of the first section being arranged to maximise the entrainment of air surrounding the nozzle within the first air flow emitted from the nozzle. This can allow the fan assembly to produce an air flow which is capable of cooling rapidly a user positioned in front of the fan assembly. The noise generated by the fan assembly when producing this air flow may be relatively high, and so the second user-operable system may be configured to generate a quieter, slower air flow which, when emitted from the second section of the nozzle, producing a slower, cooling breeze over a user.

Altcrnativcly, or additionally, thc sccond user-operable system may bc arranged to change a sensorial property of the second air flow before it is emitted from the nozzle.

This property of the second air flow can include one or more of the temperature, humidity, composition and electrical charge of the second air flow. For example, where the second user-operable system is arranged to heat the second air flow, through user operation of the second user-operable system alone the fan assembly can generate a low speed, high temperature air flow which can warm a user located in close proximity of the fan assembly. When both the first and second user-operable systems are operated simultaneously so that the first and second air flows are emitted from the fan assembly, the first air flow can disperse the high temperature second air flow rapidly within a room or other environment in which the fan assembly is located, elevating the temperature of the room as a whole rather than that of the environment local to the user.

When only the first user-operable system is operated by the user, the fan assembly can deliver a high speed, cooling air flow to a user.

Part of the second user-operable system may be located within the nozzle of the fan assembly. For example, a heating arrangement for heating the second air flow may be located within the second section of the nozzle. To minimise the size of the nozzle, each user-operable system is preferably located upstream from its respective section of the nozzle. The fan assembly preferably comprises a first air passageway for conveying the first air flow to the first section of the nozzle and a second air passageway for conveying the second air flow to the second section of the nozzle, and so each user-operable system may be at least partially located within a respective one of the air passagcways.

The fan assembly preferably comprises an air flow inlet for admitting at least the first air flow into the fan assembly. The air flow inlet may comprise a single aperture, but it is preferred that the air flow inlet comprises a plurality of apertures. These apertures may be provided by a mesh, a grille or other molded component forming part of the extemal surface of the fan assembly.

Thc first air passageway preferably extends from the air flow inlet to thc first section of the nozzle. The second air passageway may be arranged to receive air directly from the air flow inlet. Alternatively, the second air passageway may be arranged to receive air from the first air passageway. In this case, the junction between the air passageways may be located downstream or upstream from the first user-operable system. An advantage of locating the junction upstream from the first user-operable system is that the flow rate of the second air flow may be controlled to a value which is appropriate for the chosen means for changing the humidity, temperature or other parameter of the second air flow.

The nozzle is preferably mounted on a body housing the first and second user-operable systems. In this case, the air passageways are preferably located in the body, and so the user-operable systems are each preferably located within the body. The air passageways may be arranged within the body in any desired configuration depending on, inter alia, the location of the air flow inlet and the nature of the chosen means for changing the humidity or temperature of the second air flow. To reduce the size of the body, the first air passageway may be ocated adjacent the second air passageway. Each air passageway may extend vertically through the body, with the second air passageway extending vertically in front of the first air passageway.

Each user-operable system preferably comprises an impeller and a motor for driving the impeller. In this case, the first user-operable system may comprise a first impeller and a first motor for driving the first impeller to generating an air flow through the air flow inlet, and the second user-operable system may comprise a second impeller and a second motor for driving the second impeller to generate the second air flow by drawing part of the generated air flow away from the first impeller. This allows the second impeller to be driven to generate the second air flow as and when it is required by the user.

A common controller may be provided lbr controlling each motor. For example, thc controller may be configured to allow the first and second motors to be actuated separately, or to allow the second motor to be actuated if the first motor is currently actuated or if the second motor is actuated simultaneously with the first motor. The controller may be arranged to deactivate the motors separately, or to deactivate the second motor automatically if the first motor is deactivated by a user. For instance, when the second user-operable system is arranged to increase the humidity of the second air flow, the controller may be arranged to drive the second motor only when the first motor is being driven.

Preferably, theflrstairflowisemiftedataflrstairflowrateandthesecondairflowis emitted at a second air flow rate which is lower than the first air flow rate. The first air flow rate may bc a variable air flow rate, whereas the second air flow rate may be a constant air flow rate. To generate these different air flows, the first impeller may be different from the second impeller. For example, the first impeller may be a mixed flow impeller or an axial impeller, and the second impeller may be a radial impeller.

Alternatively, or additionally, the first impeller may be larger than the second impeller.

The nature of the first and second motors may be selected depending on the chosen impeller and the maximum flow rate of the relative air flow.

The air outlet(s) of the first section of the nozzle are preferably located behind the air outlet(s) of the second section of the nozzle so that the second air flow can be conveyed away from the nozzle within the first air flow. Each section of the nozzle is preferably annular. The first section is preferably located at the rear of the nozzle, and the second section is preferably located at the front of the nozzle. The two sections of the nozzle may be provided by respective components of the nozzle, which may be coimeeted together during assembly. Alternatively, the sections of the nozzle may be separated by a dividing wall or other partitioning member located between common inner and outer walls of the nozzle. The interior passage of the rear section is preferably isolated from the interior passage of the front section, but a relatively small amount of air may be bled from the rear section to the front section to urge the second air flow through the air outlet(s) of thc front section of the nozzle. As the flow rate of the first air flow is preferably greater than the flow rate of the second air flow, the volume of the first air flow path of the nozzle is preferably greater than the volume of the front section of the nozzle.

The first section of the nozzle may comprise a single continuous air outlet, which preferably extends about the bore of the nozzle, and is preferably centred on the axis of the bore. Alternatively, the first section of the nozzle may comprise a plurality of air outlets which are arranged about the bore of the nozzle. For example, the air outlets of the first section may be located on opposite sides of the bore. The air outlet(s) of the Lu-st section are preferably arranged to emit air through at least a front part of the bore.

This front part of the bore may be defined by at least the front section of the nozzle and may also be defined by part of the rear section of the nozzle. The air outlet(s) of the Lu-st section may be arranged to emit air over a surface defining this front part of the bore to maximise the volume of air which is drawn through the bore by the air emitted from the first air flow path of the nozzle.

The air outlet(s) of the second section of the nozzle may be arranged to emit the first air flow over this surface of the nozzle. Alternatively, the air outlet(s) of the second section may be located in a front end of the nozzle, and arranged to emit air away from the surfaces of the nozzle. The second section of the nozzle may comprise a single continuous air outlet, which may extend about the front end of the nozzle.

Alternatively, the second section of the nozzle may comprise a plurality of air outlets, which may be arranged about the front end of the nozzle. For example, the air outlets of the second section of the nozzle may be located on opposite sides of the front end of the nozzle. Each of the plurality of air outlets of the second section of the nozzle may comprise one or more apertures, for example, a slot, a plurality of linearly aligned slots, or a plurality of apertures.

In a preferred embodiment, the second user-operable system comprises a humidifying system which is configured to increase the humidity of the second air flow before it is emitted from the nozzlc. To provide the fan assembly with a compact appearance and with a rcduced component number, at Icast part of the humidifying system may be located beneath the nozzle. At least part of the humidifying system may also be located beneath the first impeller and the first motor. For example, a transducer for atomizing water may be located beneath the nozzle. This transducer may be controlled by a controflcr that controls the second motor.

The body may comprise a removable water tank for supplying water to the humidifying system.

BRIEF DESCRIPTION OF THE INVENTION

An embodiment of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which: Figure 1 is a front view of a fan assembly; Figure 2 is a side view of the fan assembly; Figure 3 is a rear view of the fan assembly; Figure 4 is a side sectional view taken along line A-A in Figure 1; Figure 5 is a top sectional view taken along Line B-B in Figure 1; Figure 6 is a top sectional view taken along line C-C in Figure 4, with the water tank removed; Figure 7 is a close-up of area D indicated in Figure 5; and Figure 8 is a schematic illustration of a control system of the fan assembly.

DETAILED DESCRIPTION OF TUE INVENTION

Figures 1 to 3 are external views of a fan assembly 10. In overview, the fan assembly comprises a body 12 comprising a plurality of air flow inlets through which air enters the fan assembly 10, and a nozzle 14 in the form of an annular casing mounted on the body 12, and which comprises a plurality of air outlets for emifting air from the fan assembly 10.

The nozzle 14 is arranged to emit, either simultaneously or separately, two different air flows. The nozzle 14 comprises a rear section 16 and a front section 18 connected to the rear section 16. Each section 16, 18 is annular in shape, and together the sections 16, 18 define a bore 20 of the nozzle 14. The bore 20 extending centrally through the nozzle 14, so that the centre of each section 16, 18 is located on the axis X of the bore 20.

In this example, each section 16, 18 has a "racetrack" shape, in that each section 16, 18 comprises two, generally straight sections located on opposite sides of the bore 20, a curved upper section joining the upper ends of the straight sections and a curved lower section joining the lower ends of the straight sections. However, the sections 16, 18 may have any desired shape; for example the sections 16, 18 may be circular or oval.

In this embodiment, the height of the nozzle 14 is greater than the width of the nozzle, but the nozzle 14 may be configured so that the width of the nozzle 14 is greater than the height of the nozzle.

Each section 16, 18 of the nozzle 14 defines a flow path along which a respective one of the air flows passes. In this embodiment, the rear section 16 of the nozzle 14 defines a first air flow path along which a first air flow passes through the nozzle 14, and the front section 18 of the nozzle 14 defines a second air flow path along which a second air flow passes through the nozzle 14.

With reference also to Figure 4, the rear section 16 of the nozzle 14 comprises an annular outer casing section 22 connected to and extending about an annular inner casing section 24. Each casing section 22, 24 extends about the bore axis X. Each casing section may be formed from a plurality of connected parts, but in this embodiment each easing section 22, 24 is formed from a respective, single moulded part. With reference also to Figures 5 and 7, during assembly the front end of the outer easing section 22 is connected to the front end of the inner casing section 24. An annular protrusion formed on the front end of the inner casing section 24 is inserted into an annular slot located at the front end of the outer easing section 22. The easing sections 22, 24 may be connected together using an adhesive introduced to the slot.

The outer easing section 22 comprises a base 26 which is connected to an open upper end of the body 12, and which defines a first air inlet 28 of the nozzle 14. The outer casing section 22 and the inner casing section 24 together define a first air outlet 30 of the nozzle 14. The first air outlet 30 is defined by overlapping, or facing, portions of the internal surface 32 of the outer casing section 22 and the external surface 34 of the inner easing section 24. The first air outlet 30 is in the form of an annular slot, which has a relatively constant width in the range from 0.5 to 5 mm about the bore axis X. In this example the first air outlet has a width of around 1 mm. Spacers 36 may be spaced about the first air outlet 30 for urging apart the overlapping portions of the outer casing section 22 and the inner casing section 24 to control the width of the first air outlet 30.

These spacers may be integral with either of the easing sections 22, 24.

The first air outlet 30 is arranged to emit air through a front part of the bore 20 of the nozzle 14. The first air outlet 30 is shaped to direct air over an external surface of the nozzle 14. In this embodiment, the external surface of the inner casing section 24 comprises a Coanda surface 40 over which the first air outlet 30 is ananged to direct the first air flow. The Coanda surface 40 is annular, and thus is continuous about the central axis X. The external surface of the inner casing section 24 also includes a diffuser portion 42 which tapers away from the axis X in a direction extending from the first air outlet 30 to the front end 44 of the nozzle 14.

The casing scctions 22, 24 together define an annular first interior passage 46 for conveying the first air flow from the first air inlet 28 to the first air outlet 30. The first interior passage 46 is defined by the internal surface of the outer easing section 22 and the internal surface of the inner casing section 24. A tapering, annular mouth 48 of the rear section 16 of the nozzle 14 guides the first air flow to the first air outlet 30. The first air flow path through the nozzle 14 may therefore be considered to be formed from the first air inlet 28, the first interior passage 46, the mouth 48 and the first air outlet 30.

The front section 18 of the nozzle 14 comprises an annular front casing section 50 connected to an annular rear casing section 52. Each casing section 50, 52 extends about the bore axis X. Similar to the casing sections 22, 24, each casing section 50, 52 may be formed from a plurality of connected parts, but in this embodiment each casing section 50, 52 is formed from a respective, single moulded part. With reference again to Figures 5 and 7, during assembly the front end of the rear casing section 52 is connected to the rear end of the front casing section 50. Annular protrusions formed on the front end of the rear casing section 52 are inserted into slots located at the rear end of the front casing section 50, and into which an adhesive is introduced. The rear casing section 52 is connected to the front end of the inner casing section 24 of the rear section 18 of the nozzle 14, for example also using an adhesive. If so desired, the rear casing section 52 may be omitted, with the front casing section 50 being connected directly to the front end of the inner casing section 24 of the rear section 18 of the nozzle 14.

The lower end of the front casing section 50 defines a second air inlet 54 of the nozzle 14. The front casing section 50 also define a plurality of second air outlets 56 of the nozzle 14. The second air outlets 56 are formed in the front end 44 of the nozzle 14, each on a respective side of the bore 20, for example by moulding or machining. The second air outlets 56 are thus configured to emit the second air flow away from the nozzle 14. In this example, each second air outlet 56 is in the form of a slot having a relatively constant width in the range from 0.5 to 5 mm. in this example each second air outlet 56 has a width of around 1 mm. Alternatively, each second air outlet 56 may be in the form of a row of circular apertures or slots formed in the front end 44 of the nozzle 14.

The casing sections 50, 52 together define an annular second interior passage 58 for conveying the first air flow from the first air inlet 28 to the first air outlet 30. The second interior passage 58 is defined by the internal surfaces of the casing sections 50, 52. The second air flow path through the nozzle 14 may therefore be considered to be formed by the second air inlet 54, the interior passage 58 and the second air outlet 56.

The body 12 is generally cylindrical in shape. With reference to Figures 1 to 4, the body 12 comprises a fir st air passageway 70 for conveying the first air flow to the first air flow path through the nozzle 14, and a second air passageway 72 for conveying the second air flow to the second air flow path through the nozzle 14. Air is admitted into the body 12 by an air flow inlet 74. In this cmbodimcnt, the air flow inlet 74 compriscs a plurality of apertures formcd in a casing section of the body 12. Alternatively, the air flow inlet 74 may comprise one or more grilles or meshes mounted within windows formed in the casing section. The casing section of the body 12 comprises a generally cylindrical base 76 which has the same diameter as the body 12, and a tubular rear section 78 which is integral with the base 76 and has a curved outer surface which provides part of the outer surface of the rear of the body 12. The air flow inlet 74 is formed in the curved outer surface of the rear section 78 of the casing section. The base 26 of the rear section 16 of the nozzle 14 is mounted on an open upper end of the rear section 78 of the casing section.

The base 76 of the casing section may comprise a user interface of the fan assembly 10.

The user interface is illustrated schematically in Figure 8, and described in more detail below. A mains power cable (not shown) for supplying electrical power to the fan S assembly 10 extends thmugh an aperture 80 formed in the base 76.

The first air passageway 70 passes through the rear section 78 of the casing section, and houses a first user-operable system for generating a first air flow through the first air passageway 70. This first user-operable system comprises a first impeller 82, which in this embodiment is in the form of a mixed flow impeller. The first impeller 82 is connected to a rotary shaft extending outwardly fium a first motor 84 for driving the first impeller 82. In this embodiment, the first motor 84 is a DC brushless motor having a speed which is variable by a control circuit in response to a speed selection by a user.

The maximum speed of the first motor 84 is preferably in the range fmm 5,000 to 10,000 rpm. The first motor 84 is housed within a motor bucket comprising an upper portion 86 connected to a lower portion 8%. The upper portion 8% of the motor bucket comprises a diffuser 90 in the form of a stationary disc having spiral blades. An annular Ibam silencing member may also be located within the motor bucket. The diffuser 90 is located directly beneath the first air inlet 28 of the nozzle 14.

The motor bucket is located within, and mounted on, a generally frusto-conical impeller housing 92. The impeller housing 92 is, in turn, mounted on a plurality of angularly spaced supports 94, in this example three supports, located within and connected to the rear section 78 of the body 12. Pa annular inlet member 96 is connected to the bottom of the impeller housing 92 for guiding the air flow into the impeller housing 92.

A flexible sealing member 98 is mounted on the impeller housing 92. The flexible sealing member prevents air from passing around the outer surface of the impeller housing to the inlet member 96. The sealing member 98 preferably co"pscs an annular lip seal, preferably formed from rubber. The sealing member 98 further comprises a guide portion!br guiding an electrical cable 100 to the first motor 84.

The second air passageway 72 is arranged to receive air from the first air passageway 70. Thc second air passageway 72 is located adjacent to the first air passageway 70, and extends upwardly alongside the first air passageway 70 towards the nozzle 14. The second air passageway 72 comprises an air inlet 102 located at the lower end of the rear section 78 of the casing section. The air inlet 102 is located opposite the air flow inlet 74 of the body 12. A second user-operable system is provided for generating a second air flow through the second air passageway 72. This second user-operable system comprises a second impeller 104 and a second motor 106 for driving the second impeller 104. In this embodiment, the second impeller 104 is in the form of a radial flow impeller, and the second motor 106 is in the form of a DC motor. The second motor 106 has a fixed rotational speed, and may be activated by the same control circuit used to activate the first motor 84. The second user-operable system is preferably configured to generate a second air flow which has an air flow rate which is lower than the minimum air flow rate of the first air flow. For example, the flow rate of the second air flow is preferably in the range from 1 to 5 litres per second, whereas the minimum flow rate of the first air flow is preferably in the range from 10 to 20 litres per second.

The second impeller 104 and the second motor 106 are mounted on a lower internal wall 108 of the body 12. As illustrated in Figure 4, the second impeller 104 and the second motor 106 may be located upstream from the air inlet 102, and so arranged to direct the second air flow through the air inlet 102 and into the second air passageway 72. However, the second impeller 104 and the second motor 106 maybe located within the second air passageway 72. The air inlet 1 02 may be arranged to receive the second air flow directly from the air flow inlet 74 of the body 12; for example the air inlet 102 may abut the intemal surface of the air flow inlet 74.

The body 12 of the fan assembly 10 comprises a centra' duct 110 for receiving the second air flow from the air inlet 102, and for conveying the second air flow to the second air inlet 54 of the nozzle 14. In this embodiment, the second user-operable system comprises humidifying apparatus for increasing the humidity of the second air flow before it enters the nozzle 14, and which it housed within the body 12 of the fan assembly 10. The humidi'ing apparatus comprises a water tank 112 removably mountable on the lower wall 108. As illustrated in Figures 1 to 3, the water tank 112 has an outer convex wall 114 which provides part of the outer cylindrical surface of the body 12, and an inner concave wall 11 6 which extends about the duct 110. The water tank 112 preferably has a capacity in thc range from 2 to 4 litres. The upper surface of the water tank 112 is shaped to define a handle 118 to enable a user to lift the water tank 112 from the lower wall 108 using one hand.

Thc water tank 112 has a lower surface to which a spout 120 is removably connected, for example through co-operating threaded connections. In this example the water tank 112 is filled by removing the water tank 112 from the lower wall 108 and inverting the water tank 112 so that the spout 120 is projecting upwardly. The spout 120 is then unscrewed from the water tank 112 and water is introduced into the water tank 112 through an aperture exposed when the spout 120 is disconnected from the water tank 112. Once the water tank 112 has been filled, the user reconnects the spout 120 to the water tank 112, re-inverts the water tank 112 and replaces the water tank 112 on the lower wall 108. A spring-loaded valve 122 is located within the spout 120 for preventing leakage of water through a water outlet 124 of the spout 120 when the water tank 112 is re-inverted. The valve 122 is biased towards a position in which a skirt 126 of the valve 122 engages the upper surface of the spout 120 to prevent water entering thc spout 120 from the water tank 112.

The lower wall 108 comprises a recessed portion 130 which defines a water reservoir 132 for receiving water from the water tank 104. A pin 134 extending upwardly from the recessed portion 130 of the lower wall 108 protrudes into the spout 120 when the water tank 112 is located on the lower wall 108. The pin 134 pushes the valve 122 upwardly to open the spout 120, thereby allowing water to pass under gravity into the water reservoir 132 from the water tank 112. This results in the water reservoir 132 becoming filled with water to a level which is substantially co-planar with the upper surface of the pin 134. A magnetic level sensor 135 is located within the water reservoir 132 for detecting the level of water within the water reservoir 132.

The recessed portion 130 of the lower wall 108 comprises an aperture 136 each for exposing the surface of a respective piezoelectric transducer 138 located beneath the lower wall 108 for atomising water stored in the water reservoir 132. An annular mctallic heat sink 140 is located between the lower wall 128 and the transducer 138 for transferring heat from the transducer 138 to a second heat sink 142. The second heat sink 142 is located adjacent a second set of apertures 144 formed in the outer surface of the casing section of the body l2so that heat can be conveyed from the second hcat sink 142 through the apertures 144. An annular sealing membcr 146 forms a water-tight seal between the transducer 138 and the heat sink 140. A drive circuit is located beneath the lower wall 128 for actuating ultrasonic vibration of the transducer 138 to atomise water within the water reservoir 132.

An inlet duct 148 is located to one side of the water reservoir 132. The inlet duct 148 is arranged to convey the second air flow into the second air passageway 72 at a level which is above the maximum level for water stored in the water reservoir 132 so that thc air flow emitted from the inlet duct 148 passes over the surface of the water located in the water reservoir 132 before entering the duct 112 of the water tank 102.

A user interface for controlling the operation of the fan assembly is located on the sidc wall of the casing section of thc body 12. Figure 8 illustrates schematically a control system for the fan assembly 10, which includes this user interface and other electrical components of the fan assembly 10. In this example, the user interface comprises a plurality of user-operable buttons 160a, 160b, 160c, 160d and a display 162. The first button I 60a is used to activate and deactivate the first motor 84, and the second button lôOb is used to set the speed of the first motor 84, and thus the rotational speed of the first impeller 82. The third button 160c is used to activate and deactivate the second motor 106. The fourth button 160d is used to set a desired level for the relative humidity of the environment in which the fan assembly 10 is located, such as a room, office or other domestic environment. For example, the desired relative humidity level may be selected within a range from 30 to 80% at 20°C through repeated pressing of the fourth button 1 GOd. A display 162 provides an indication of the currently selected relative humidity level.

The user interface further comprises a user interface circuit 164 which outputs control signals to a drive circuit 166 upon depression of one of the buttons, and which receives control signals output by the drive circuit 166. The user interface may also comprise one or more LEDs for providing a visual alert depending on a status of the humidif\jing apparatus. For example, a first LED I 68a may be illuminated by the drive circuit 166 indicating that the water tank 112 has become depleted, as indicated by a signal received by the drive circuit 166 from the level sensor 135.

A humidity sensor 170 is also provided for detecting the relative humidity of air in the external environment, and for supplying a signal indicative of the detected relative humidity to the drive circuit 166. In this example the humidity sensor 170 may be located immediately behind the air flow inlet 74 to detect the relative humidity of the air flow drawn into the fan assembly 10. The user interface may comprise a second LED I 68b which is illuminated by the drive circuit 166 when an output from the humidity sensor 170 indicates that the relative humidity of the air flow entering the fan assembly is at or above the desired relative humidity level set by the user.

To operate the fan assembly 10, the user depresses the first button 160a, in response to which the drive circuit 166 activates the first motor 84 to rotate the first impeller 82.

The rotation of the first impeller 82 causes air to be drawn into the body 12 through the air flow inlet 74. An air flow passes through the first air passageway 70 to the first air inlet 28 of the nozzle 14, and enters the first interior passage 46 within the rear section 16 of the nozzle 14. At the base of the first interior passage 46, the air flow is divided into two air streams which pass in opposite directions around the bore 20 of the nozzle 14. As the air streams pass through the first interior passage 46, air enters the mouth 48 of the nozzle 14. The air flow into the mouth 48 is preferably substantially even about the bore 20 of the nozzle 14. The mouth 48 guides the air flow towards the first air outlet 30 of the nozzle 14, from where it is emitted from the fan assembly 10.

The air flow emitted from the first air outlet 30 is directed over the Coanda surface 40 of the nozzle 14, causing a secondary air flow to be generated by the entrainment of air from the external environment, specifically from the region around the first air outlet 30 and from around the rear of the nozzle 14. This secondary air flow passes through the bore 20 of the nozzle 14, where it combines with the air flow emitted from the nozzle 14.

When the first motor 84 is operating, the user may increase the humidity of the air flow emitted from the fan assembly 14 by depressing the third button 160c. In response to this, the drive circuit 166 activates the second motor 106 to rotate the second impeller 104. As a result, air is drawn from the first air passageway 70 by the rotating second impeller 104 to create a second air flow within the second air passageway 72. The air flow rate of the second air flow generated by the rotating second impeller 104 is lower than that generated by the rotating first impeller 82 so that a first air flow continues to pass through the first air passageway 70 to the first air inlet 28 of the nozzle 14.

Simultaneous with the actuation of the second motor 106, the drive circuit 166 actuates the vibration of the transducer 138, preferably at a frequency in the range from I to 2 MHz, to atomise water present within the water reservoir 132. This creates airborne water droplets above the water located within the water reservoir 132. As water within the water reservoir 132 is atomised, the water reservoir 132 is constantly replenished with water from the water tank 112, so that the level of water within the water reservoir 132 remains substantially constant while the level of water within the water tank 112 gradually falls.

With rotation of the second impeller 104, the second air flow passes through the inlet duct 148 and is emitted directly over the water located in the water reservoir 132, causing airborne water droplets to become entrained within the second air flow. The -now moist -second air flow passes upwardly through the central duct 110 second air passageway 72 to the second air inlet 54 of the nozzle 14, and enters the second interior passage 58 within the front section 18 of the nozzle 14. At the base of the second interior passage 58, the second air flow is divided into two air streams which pass in opposite directions around the bore 20 of the nozzle 14. As the air streams pass through the second interior passage 58, each air stream is emitted from a respective one of the second air outlets 58 located in the front end 44 of the nozzle 14. The emitted second air flow is conveyed away from the fan assembly 10 within the air flow generated through the emission of the first air flow from the nozzle 14, thereby enabling a humid air current to be experienced rapidly at a distance of several metres from the fan asscmbly 10.

Provided that the third button 160c has not been subsequently depressed, the moist air flow is emitted from the front section 1 8 of the nozzle until the relative humidity of the air flow entering the fan assembly, as detected by the humidity sensor 170, is 1% at 20°C higher than the relative humidity level selected by the user using the fourth button 160d. The emission of the moistened air flow from the front section 18 of the nozzle 14 is then terminated by the drive circuit 166, through terminating the supply of actuating signals to the transducer 138. Optionally, the second motor 106 may also be stopped so that no second air flow is emitted from the front section 18 of the nozzle 14. However, when the humidity sensor 170 is located in close proximity to the second motor 106 it is preferred that the second motor 106 is operated continually to avoid undesirable temperature fluctuation in the local environment of the humidity sensor 170. When the humidity sensor 170 is located outside the fan assembly 10, for example, the second motor 106 may also be stopped when the relative humidity of the air of the environment local to the humidity sensor 170 is I % at 20°C higher than the relative humidity level selected by the user.

As a result of the termination of the emission of a moist air flow from the fan assembly 10, the relative humidity detected by the humidity sensor 170 will begin to fall. Once the relative humidity of the air of the environment local to the humidity sensor 170 has fallen to 1% at 20°C below the relative humidity level selected by the user, the drive circuit 166 outputs actuating signals to the transducer 138 to re-start the emission of a moist air flow from the front section 18 of the nozzle 14. As before, the moist air flow is emitted from the front section 18 of the nozzle 14 until the relative humidity detected by the humidity sensor 170 is 1% at 20°C higher than the relative humidity level selected by the user, at which point the actuation of the transducer 138 is terminated.

This actuation sequence of the transducer 138 for maintaining the detected humidity level around the level selected by the user continues until one of the buttons 160a, 160c is depressed or until a signal is received from the level sensor 135 indicating that thc lcvcl of water within the water reservoir 132 has fallen by the minimum level.. If the button 160a is depressed, the drive circuit 166 deactivates both motors 84, 106 to switch off the fan assembly 10.

Claims (1)

  1. <claim-text>CLAIMS1. A fan assembly comprising: a nozzle having a first section having at least one first air inlet, at least one first air outlet, and a first interior passage for conveying air from said at least one first air inlet to said at least one first air outlet; and a second section having at least one second air inlet, at least one second air outlet, and a second interior passage for conveying air from said at least one second air inlet to said at least one second air outlet, the sections of the nozzle defining a bore through which air from outside the fan assembly is drawn by air emitted from the nozzle; a first user-operable system for generating a first air flow through the first interior passage; and a second user-operable system for generating a second air flow through the second interior passage, the first user-operable system being selectively operable separately from the second user-operable system.</claim-text> <claim-text>2. A fan assembly as claimed in claim 1, wherein each section of the nozzle is annular in shape.</claim-text> <claim-text>3. A fan assembly as claimed in claim I or claim 2, wherein the first section is located at the rear of the nozzle, and the second section is located at the front of the nozzle.</claim-text> <claim-text>4. A fan assembly as claimed in any preceding claim, wherein said at least one first air outlet is located behind said at least one second air outlet.</claim-text> <claim-text>5. A fan assembly as claimed in any preceding claim, wherein said at least one first air outlet comprises an air outlet which extends about the bore of the nozzle.</claim-text> <claim-text>6. A fan assembly as claimed in claim 5, wherein said air outlet is continuous.</claim-text> <claim-text>7. A fan assembly as claimed in any preceding claim, wherein said at Least one first air outlet is arranged to emit the first air flow through at least a front part of the bore.</claim-text> <claim-text>8. A fin assembly as claimed in claim 7, wherein said at least one first air outlet is arrangcd to emit the first air flow over a surface defining the front part of the bore.</claim-text> <claim-text>9. A fin assembly as claimed in any preceding claim, wherein said at least one second air outlet is located in a front end of the nozzle.</claim-text> <claim-text>10. A fin assembly as claimed in claim 9, wherein said at least one second air outlet comprises a plurality of air outlets located about the bore.</claim-text> <claim-text>11. A fan assembly as claimed in claim 10, whercin each of the plurality of air outlets comprises one or more apertures.</claim-text> <claim-text>12. A fan assembly as claimed in any preceding claim, comprising a first air passageway fin conveying the first air flow to the first section of the nozzle, and a second air passageway fin conveying the second air flow to the second section of the nozzle.</claim-text> <claim-text>13. A fan assembly as claimed in claim 12, comprising an air flow inlet for admitting at least the first air flow into the fan assembly.</claim-text> <claim-text>14. A fin assembly as claimed in claim 13, wherein the air flow inlet comprises a plurality of apertures.</claim-text> <claim-text>15. A fin assembly as claimed in any of claims 12 to 14, wherein the second air passageway is arranged to receive air fivm the first air passageway.</claim-text> <claim-text>16. A fan assembly as claimed in claim 15, wherein the second air passageway is arranged to receive air from the first air passageway upstream from the first user-operable system.</claim-text> <claim-text>17. A fan assembly as claimed in any preceding claim, wherein the nozzle is mountcd on a body housing the first and second user-operable systems.</claim-text> <claim-text>18. A fan assembly as claimed in claim 17 when dependent from claim 12, wherein the air passageways arc located in the body.</claim-text> <claim-text>19. A fan assembly as claimed in any preceding claim, wherein each user-operable system comprises an impeller and a motor for driving the impeller.</claim-text>
GB201112909A 2011-07-27 2011-07-27 Fan assembly with two nozzle sections Withdrawn GB2493505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB201112909A GB2493505A (en) 2011-07-27 2011-07-27 Fan assembly with two nozzle sections

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
GB201112909A GB2493505A (en) 2011-07-27 2011-07-27 Fan assembly with two nozzle sections
EP12733193.2A EP2737216B1 (en) 2011-07-27 2012-06-26 A fan assembly
CA2842869A CA2842869C (en) 2011-07-27 2012-06-26 A fan assembly
KR1020147003137A KR101595869B1 (en) 2011-07-27 2012-06-26 A fan assembly
BR112014001474A BR112014001474A2 (en) 2011-07-27 2012-06-26 fan assembly
PCT/GB2012/051490 WO2013014419A2 (en) 2011-07-27 2012-06-26 A fan assembly
RU2014107462/06A RU2576735C2 (en) 2011-07-27 2012-06-26 Fan assembly
AU2012288597A AU2012288597B2 (en) 2011-07-27 2012-06-26 A fan assembly
MYPI2014700142A MY165065A (en) 2011-07-27 2012-06-26 A fan assembly
US13/559,146 US9458853B2 (en) 2011-07-27 2012-07-26 Fan assembly
CN201210265606.9A CN102900655B (en) 2011-07-27 2012-07-27 Fan assembly
CN2012203707773U CN202746301U (en) 2011-07-27 2012-07-27 Fan assembly
JP2012167518A JP5433743B2 (en) 2011-07-27 2012-07-27 Fan assembly

Publications (2)

Publication Number Publication Date
GB201112909D0 GB201112909D0 (en) 2011-09-14
GB2493505A true GB2493505A (en) 2013-02-13

Family

ID=44676248

Family Applications (1)

Application Number Title Priority Date Filing Date
GB201112909A Withdrawn GB2493505A (en) 2011-07-27 2011-07-27 Fan assembly with two nozzle sections

Country Status (1)

Country Link
GB (1) GB2493505A (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8734094B2 (en) 2010-08-06 2014-05-27 Dyson Technology Limited Fan assembly
US8764412B2 (en) 2007-09-04 2014-07-01 Dyson Technology Limited Fan
US8784071B2 (en) 2009-03-04 2014-07-22 Dyson Technology Limited Fan assembly
US8783663B2 (en) 2009-03-04 2014-07-22 Dyson Technology Limited Humidifying apparatus
GB2510196A (en) * 2013-01-29 2014-07-30 Dyson Technology Ltd Fan assembly
CN103994055A (en) * 2013-02-15 2014-08-20 任文华 Fan
CN104047908A (en) * 2013-03-11 2014-09-17 戴森技术有限公司 Fan assembly
US8873940B2 (en) 2010-08-06 2014-10-28 Dyson Technology Limited Fan assembly
US8967980B2 (en) 2010-10-18 2015-03-03 Dyson Technology Limited Fan assembly
US8967979B2 (en) 2010-10-18 2015-03-03 Dyson Technology Limited Fan assembly
US9004878B2 (en) 2009-11-06 2015-04-14 Dyson Technology Limited Fan having a magnetically attached remote control
US9011116B2 (en) 2010-05-27 2015-04-21 Dyson Technology Limited Device for blowing air by means of a nozzle assembly
USD728092S1 (en) 2013-08-01 2015-04-28 Dyson Technology Limited Fan
USD728769S1 (en) 2013-08-01 2015-05-05 Dyson Technology Limited Fan
USD728770S1 (en) 2013-08-01 2015-05-05 Dyson Technology Limited Fan
USD729374S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729372S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729375S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729376S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729373S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729925S1 (en) 2013-03-07 2015-05-19 Dyson Technology Limited Fan
US9127689B2 (en) 2009-03-04 2015-09-08 Dyson Technology Limited Fan assembly
US9127855B2 (en) 2011-07-27 2015-09-08 Dyson Technology Limited Fan assembly
US9151299B2 (en) 2012-02-06 2015-10-06 Dyson Technology Limited Fan
USD746425S1 (en) 2013-01-18 2015-12-29 Dyson Technology Limited Humidifier
USD746966S1 (en) 2013-01-18 2016-01-05 Dyson Technology Limited Humidifier
USD747450S1 (en) 2013-01-18 2016-01-12 Dyson Technology Limited Humidifier
US9249809B2 (en) 2012-02-06 2016-02-02 Dyson Technology Limited Fan
USD749231S1 (en) 2013-01-18 2016-02-09 Dyson Technology Limited Humidifier
US9283573B2 (en) 2012-02-06 2016-03-15 Dyson Technology Limited Fan assembly
US9366449B2 (en) 2012-03-06 2016-06-14 Dyson Technology Limited Humidifying apparatus
US9410711B2 (en) 2013-09-26 2016-08-09 Dyson Technology Limited Fan assembly
US9458853B2 (en) 2011-07-27 2016-10-04 Dyson Technology Limited Fan assembly
US9599356B2 (en) 2014-07-29 2017-03-21 Dyson Technology Limited Humidifying apparatus
US9745981B2 (en) 2011-11-11 2017-08-29 Dyson Technology Limited Fan assembly
US9752789B2 (en) 2012-03-06 2017-09-05 Dyson Technology Limited Humidifying apparatus
US9797613B2 (en) 2012-03-06 2017-10-24 Dyson Technology Limited Humidifying apparatus
US9797612B2 (en) 2013-01-29 2017-10-24 Dyson Technology Limited Fan assembly
US9822778B2 (en) 2012-04-19 2017-11-21 Dyson Technology Limited Fan assembly
US9903602B2 (en) 2014-07-29 2018-02-27 Dyson Technology Limited Humidifying apparatus
US9926804B2 (en) 2010-11-02 2018-03-27 Dyson Technology Limited Fan assembly
US9927136B2 (en) 2012-03-06 2018-03-27 Dyson Technology Limited Fan assembly
US9982677B2 (en) 2014-07-29 2018-05-29 Dyson Technology Limited Fan assembly
US10094392B2 (en) 2011-11-24 2018-10-09 Dyson Technology Limited Fan assembly
US10100836B2 (en) 2010-10-13 2018-10-16 Dyson Technology Limited Fan assembly
US10145583B2 (en) 2012-04-04 2018-12-04 Dyson Technology Limited Heating apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2488467A (en) * 1947-09-12 1949-11-15 Lisio Salvatore De Motor-driven fan
CN101749288A (en) * 2009-12-23 2010-06-23 李增珍;孙敬文 Airflow generating method and device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2488467A (en) * 1947-09-12 1949-11-15 Lisio Salvatore De Motor-driven fan
CN101749288A (en) * 2009-12-23 2010-06-23 李增珍;孙敬文 Airflow generating method and device

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8764412B2 (en) 2007-09-04 2014-07-01 Dyson Technology Limited Fan
US8784071B2 (en) 2009-03-04 2014-07-22 Dyson Technology Limited Fan assembly
US8783663B2 (en) 2009-03-04 2014-07-22 Dyson Technology Limited Humidifying apparatus
US9127689B2 (en) 2009-03-04 2015-09-08 Dyson Technology Limited Fan assembly
US10221860B2 (en) 2009-03-04 2019-03-05 Dyson Technology Limited Fan assembly
US9004878B2 (en) 2009-11-06 2015-04-14 Dyson Technology Limited Fan having a magnetically attached remote control
US9011116B2 (en) 2010-05-27 2015-04-21 Dyson Technology Limited Device for blowing air by means of a nozzle assembly
US8734094B2 (en) 2010-08-06 2014-05-27 Dyson Technology Limited Fan assembly
US8873940B2 (en) 2010-08-06 2014-10-28 Dyson Technology Limited Fan assembly
US10100836B2 (en) 2010-10-13 2018-10-16 Dyson Technology Limited Fan assembly
US8967979B2 (en) 2010-10-18 2015-03-03 Dyson Technology Limited Fan assembly
US8967980B2 (en) 2010-10-18 2015-03-03 Dyson Technology Limited Fan assembly
US9926804B2 (en) 2010-11-02 2018-03-27 Dyson Technology Limited Fan assembly
US9335064B2 (en) 2011-07-27 2016-05-10 Dyson Technology Limited Fan assembly
US10094581B2 (en) 2011-07-27 2018-10-09 Dyson Technology Limited Fan assembly
US9458853B2 (en) 2011-07-27 2016-10-04 Dyson Technology Limited Fan assembly
US9291361B2 (en) 2011-07-27 2016-03-22 Dyson Technology Limited Fan assembly
US9127855B2 (en) 2011-07-27 2015-09-08 Dyson Technology Limited Fan assembly
US9745981B2 (en) 2011-11-11 2017-08-29 Dyson Technology Limited Fan assembly
US10094392B2 (en) 2011-11-24 2018-10-09 Dyson Technology Limited Fan assembly
US9249809B2 (en) 2012-02-06 2016-02-02 Dyson Technology Limited Fan
US9151299B2 (en) 2012-02-06 2015-10-06 Dyson Technology Limited Fan
US9283573B2 (en) 2012-02-06 2016-03-15 Dyson Technology Limited Fan assembly
US9366449B2 (en) 2012-03-06 2016-06-14 Dyson Technology Limited Humidifying apparatus
US9797613B2 (en) 2012-03-06 2017-10-24 Dyson Technology Limited Humidifying apparatus
GB2500010B (en) * 2012-03-06 2016-08-24 Dyson Technology Ltd A humidifying apparatus
RU2612559C2 (en) * 2012-03-06 2017-03-09 Дайсон Текнолоджи Лимитед Moisturizing installation
US9927136B2 (en) 2012-03-06 2018-03-27 Dyson Technology Limited Fan assembly
US9752789B2 (en) 2012-03-06 2017-09-05 Dyson Technology Limited Humidifying apparatus
US10145583B2 (en) 2012-04-04 2018-12-04 Dyson Technology Limited Heating apparatus
US9822778B2 (en) 2012-04-19 2017-11-21 Dyson Technology Limited Fan assembly
USD749231S1 (en) 2013-01-18 2016-02-09 Dyson Technology Limited Humidifier
USD746966S1 (en) 2013-01-18 2016-01-05 Dyson Technology Limited Humidifier
USD746425S1 (en) 2013-01-18 2015-12-29 Dyson Technology Limited Humidifier
USD747450S1 (en) 2013-01-18 2016-01-12 Dyson Technology Limited Humidifier
US9797612B2 (en) 2013-01-29 2017-10-24 Dyson Technology Limited Fan assembly
GB2510196B (en) * 2013-01-29 2016-07-27 Dyson Technology Ltd A fan assembly
GB2510196A (en) * 2013-01-29 2014-07-30 Dyson Technology Ltd Fan assembly
CN103994055A (en) * 2013-02-15 2014-08-20 任文华 Fan
USD729374S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729373S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729372S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729376S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729375S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729925S1 (en) 2013-03-07 2015-05-19 Dyson Technology Limited Fan
AU2014229860B2 (en) * 2013-03-11 2017-08-17 Dyson Technology Limited A fan assembly
CN104047908B (en) * 2013-03-11 2017-01-11 戴森技术有限公司 Fan assembly
CN104047908A (en) * 2013-03-11 2014-09-17 戴森技术有限公司 Fan assembly
WO2014140518A1 (en) * 2013-03-11 2014-09-18 Dyson Technology Limited A fan assembly
RU2659947C2 (en) * 2013-03-11 2018-07-04 Дайсон Текнолоджи Лимитед Fan assembly
USD728770S1 (en) 2013-08-01 2015-05-05 Dyson Technology Limited Fan
USD728769S1 (en) 2013-08-01 2015-05-05 Dyson Technology Limited Fan
USD728092S1 (en) 2013-08-01 2015-04-28 Dyson Technology Limited Fan
US9410711B2 (en) 2013-09-26 2016-08-09 Dyson Technology Limited Fan assembly
US9599356B2 (en) 2014-07-29 2017-03-21 Dyson Technology Limited Humidifying apparatus
US9903602B2 (en) 2014-07-29 2018-02-27 Dyson Technology Limited Humidifying apparatus
US9982677B2 (en) 2014-07-29 2018-05-29 Dyson Technology Limited Fan assembly

Also Published As

Publication number Publication date
GB201112909D0 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
CA2746547C (en) A fan
US8784071B2 (en) Fan assembly
US9127689B2 (en) Fan assembly
RU2672433C2 (en) Fan assembly
JP5156783B2 (en) Blower
AU2010101301B4 (en) A fan assembly
EP2627908B1 (en) A fan assembly
RU2612559C2 (en) Moisturizing installation
JP5138717B2 (en) Blower assembly
JP4773570B2 (en) Fan assembly
RU2612560C2 (en) Moisturizing installation
JP4756286B2 (en) Blower
KR101248538B1 (en) A fan assembly
EP2518325B1 (en) A fan
CN104047908B (en) Fan assembly
KR101311397B1 (en) A fan assembly
KR101370267B1 (en) A fan assembly
CN102465932B (en) Fan assembly
KR101699293B1 (en) A fan assembly
US8197226B2 (en) Fan assembly
JP5567175B2 (en) Humidifying device
CN202646179U (en) Fan assembly
RU2566843C1 (en) Assembled fan
JP5572732B2 (en) Humidifying device
JP5702419B2 (en) Humidifying device

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)