KR101754380B1 - 반도체 장치의 제작 방법 - Google Patents

반도체 장치의 제작 방법 Download PDF

Info

Publication number
KR101754380B1
KR101754380B1 KR1020167033223A KR20167033223A KR101754380B1 KR 101754380 B1 KR101754380 B1 KR 101754380B1 KR 1020167033223 A KR1020167033223 A KR 1020167033223A KR 20167033223 A KR20167033223 A KR 20167033223A KR 101754380 B1 KR101754380 B1 KR 101754380B1
Authority
KR
South Korea
Prior art keywords
film
oxide semiconductor
insulating film
oxygen
semiconductor film
Prior art date
Application number
KR1020167033223A
Other languages
English (en)
Other versions
KR20160139058A (ko
Inventor
순페이 야마자키
Original Assignee
가부시키가이샤 한도오따이 에네루기 켄큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 한도오따이 에네루기 켄큐쇼 filed Critical 가부시키가이샤 한도오따이 에네루기 켄큐쇼
Publication of KR20160139058A publication Critical patent/KR20160139058A/ko
Application granted granted Critical
Publication of KR101754380B1 publication Critical patent/KR101754380B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0433Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a single floating gate transistor and one or more separate select transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/38Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions
    • H01L21/383Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions using diffusion into or out of a solid from or into a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/42Bombardment with radiation
    • H01L21/423Bombardment with radiation with high-energy radiation
    • H01L21/425Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • H01L21/441Deposition of conductive or insulating materials for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/465Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/469Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After-treatment of these layers
    • H01L21/4757After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/477Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • H01L27/3244
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Abstract

산화물 반도체를 이용한 반도체 장치에 안정된 전기적 특성을 부여하여, 고신뢰성화하는 것을 목적의 하나로 한다. 제 1 절연막을 형성하고, 제 1 절연막에 산소 도핑 처리를 실시하여 제 1 절연막에 산소 원자를 공급하고, 제 1 절연막상에, 소스 전극 및 드레인 전극, 및 소스 전극 및 드레인 전극과 전기적으로 접속하는 산화물 반도체막을 형성하고, 산화물 반도체막에 열처리를 실시하여 산화물 반도체막중의 수소 원자를 제거하고, 수소 원자가 제거된 산화물 반도체막상에 제 2 절연막을 형성하고, 제 2 절연막상의 산화물 반도체막과 중첩하는 영역에 게이트 전극을 형성하는 반도체 장치의 제작 방법이다.

Description

반도체 장치의 제작 방법{METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE}
반도체 장치 및 반도체 장치의 제작 방법에 관한 것이다.
또한, 본 명세서중에 있어서 반도체 장치란, 반도체 특성을 이용함으로써 기능할 수 있는 장치 전반을 가리키며, 전기 광학 장치, 반도체 회로 및 전자기기는 모두 반도체 장치다.
절연 표면을 갖는 기판상에 형성된 반도체 박막을 이용하여 트랜지스터를 구성하는 기술이 주목받고 있다. 그 트랜지스터는 집적회로(IC)나 화상 표시장치(표시장치)와 같은 전자 디바이스에 넓게 응용되고 있다. 트랜지스터에 적용 가능한 반도체 박막으로서 실리콘계 반도체 재료가 널리 알려져 있지만, 그 외의 재료로서 산화물 반도체가 주목받고 있다.
예를 들면, 트랜지스터의 활성층으로서 전자 캐리어 농도가 1018/cm3 미만인 인듐(In), 갈륨(Ga), 및 아연(Zn)을 포함한 비정질 산화물을 이용한 트랜지스터가 개시되어 있다(특허 문헌 1 참조).
일본 특개 2006-165528호 공보
그러나, 산화물 반도체는 디바이스 제작 공정에 있어서, 전자 공여체를 형성하는 수소나 물의 혼입 등이 생기면, 그 전기 전도도가 변화할 우려가 있다. 이러한 현상은, 산화물 반도체를 이용한 트랜지스터에 있어서 전기적 특성의 변동 요인이 된다.
상술한 문제를 감안하여, 산화물 반도체를 이용한 반도체 장치에 안정된 전기적 특성을 부여하여, 고신뢰성화하는 것을 목적의 하나로 한다. 적어도, 산화물 반도체막을 갖는 트랜지스터의 제작 공정에 있어서, 산소 도핑 처리를 실시한다.
산화물 반도체막을 갖는 트랜지스터의 제작 공정에 있어서, 열처리에 의한 탈수화 또는 탈수소화 처리, 및 산소 도핑 처리를 실시한다.
개시하는 발명의 일 태양은, 기판상에 제 1 절연막을 형성하고, 제 1 절연막에 산소 도핑 처리를 실시하여 제 1 절연막에 산소 원자를 공급하고, 제 1 절연막상에, 소스 전극 및 드레인 전극, 및 소스 전극 및 드레인 전극과 전기적으로 접속하는 산화물 반도체막을 형성하고, 산화물 반도체막에 열처리를 실시하여 산화물 반도체막중의 수소 원자를 제거하고, 수소 원자가 제거된 산화물 반도체막상에 제 2 절연막을 형성하고, 제 2 절연막상의 산화물 반도체막과 중첩하는 영역에 게이트 전극을 형성하는 반도체 장치의 제작 방법이다.
또한, 개시하는 발명의 일 태양은, 기판상에 성분으로서 산소 원자를 포함한 제 1 절연막을 형성하고, 제 1 절연막에 산소 도핑 처리를 실시하여 제 1 절연막에 산소 원자를 공급하고, 제 1 절연막상에, 소스 전극 및 드레인 전극, 및 소스 전극 및 드레인 전극과 전기적으로 접속하는 산화물 반도체막을 형성하고, 산화물 반도체막에 열처리를 실시하여 산화물 반도체막중의 수소 원자를 제거하고, 수소 원자가 제거된 산화물 반도체막에 산소 도핑 처리를 실시하여, 산화물 반도체막중에 산소 원자를 공급하고, 산소 원자가 공급된 산화물 반도체막상에, 성분으로서 산소 원자를 포함한 제 2 절연막을 형성하고, 제 2 절연막상의 산화물 반도체막과 중첩하는 영역에 게이트 전극을 형성하는 반도체 장치의 제작 방법이다.
또한, 개시하는 발명의 일 태양은, 기판상에 성분으로서 산소 원자를 포함한 제 1 절연막을 형성하고, 제 1 절연막에 산소 도핑 처리를 실시하여 제 1 절연막에 산소 원자를 공급하고, 제 1 절연막상에, 소스 전극 및 드레인 전극, 및 소스 전극 및 드레인 전극과 전기적으로 접속하는 산화물 반도체막을 형성하고, 산화물 반도체막에 열처리를 실시하여 산화물 반도체막중의 수소 원자를 제거하고, 수소 원자가 제거된 산화물 반도체막상에, 성분으로서 산소 원자를 포함한 제 2 절연막을 형성하고, 제 2 절연막에 산소 도핑 처리를 실시하여 제 2 절연막에 산소 원자를 공급하고, 제 2 절연막상의 산화물 반도체막과 중첩하는 영역에 게이트 전극을 형성하는 반도체 장치의 제작 방법이다.
상기에 있어서, 화학량론비의 1배를 넘어 2배까지의 비율의 산소 원자가 포함되도록, 산화물 반도체막에 산소 도핑 처리를 실시하는 경우가 있다.
또한, 상기에 있어서, 제 1 절연막 또는 제 2 절연막으로서 산화물 반도체막의 성분 원소를 포함한 절연막을 형성하는 경우가 있다. 또한, 제 1 절연막 또는 제 2 절연막으로서 산화물 반도체막의 성분 원소를 포함한 절연막과 해당 절연막의 성분 원소와는 다른 원소를 포함한 막을 형성하는 경우가 있다. 또한, 제 1 절연막 또는 제 2 절연막으로서 산화 갈륨을 포함한 절연막을 형성하는 경우가 있다. 또한, 제 1 절연막 또는 제 2 절연막으로서 산화 갈륨을 포함한 절연막과 산화 갈륨과는 다른 재료를 포함한 막을 형성하는 경우가 있다. 또한 본 명세서에 있어서, 「산화 갈륨」이라는 용어는, 특별히 언급하지 않는 한, 구성 원소로서의 산소와 갈륨을 의미하는 것이며, 산화 갈륨의 태양에 한정하는 취지로 이용하지 않는다. 예를 들면, 「산화 갈륨을 포함한 절연막」이라고 하는 경우에는, 「산소와 갈륨을 포함한 절연막」과 같이 바꾸어 읽는 것이 가능하다.
또한, 상기에 있어서, 게이트 전극을 덮도록, 질소를 함유하는 절연막을 형성하는 경우가 있다. 이와 같이, 산화물 반도체막의 상방에 수소의 함유가 없거나, 또는 극히 적은 질화 실리콘 등을 이용한 절연막을 형성하는 경우에는, 제 1 절연막, 제 2 절연막, 및 산화물 반도체막중의 적어도 하나에 첨가된 산소가 외부로 방출되는 것을 막고, 게다가 외부로부터의 수소나 물의 혼입을 막는 것이 가능하다. 이 점에 있어서, 해당 질소를 함유하는 절연막의 중요성은 높다고 말할 수 있다.
또한, 상기의 「산소 도핑」이란, 산소(적어도, 산소 라디칼, 산소 원자, 산소 이온중의 어느 것인가를 포함한다)를 벌크에 첨가하는 것을 말한다. 또한 해당 「벌크」라는 용어는, 산소를, 박막 표면뿐만 아니라 박막 내부에 첨가하는 것을 명확하게 하는 취지로 이용하고 있다. 또한, 「산소 도핑」에는, 플라즈마화한 산소를 벌크에 첨가하는 「산소 플라즈마 도핑」이 포함된다.
상기의 산소 도핑 처리에 의해, 산화물 반도체막의 막중(벌크중), 절연막의 막중(벌크중), 산화물 반도체막과 절연막의 계면중의 어느 것인가에는 적어도 화학량론비를 넘는 양의 산소가 존재한다. 산소의 양은, 바람직하게는 화학량론비의 1배를 넘어 4배까지(4배 미만), 보다 바람직하게는, 1배를 넘어 2배까지(2배 미만)이다. 여기서, 화학량론비를 넘는 산소 과잉의 산화물이란, 그것이, 예를 들면, InaGabZncSidAleMgfOg(a, b, c, d, e, f, g≥0)로 나타내어질 때, 2g>3a+3b+2c+4d+3e+2f, 를 만족하는 산화물을 말한다. 또한 산소 도핑 처리에 의해 첨가된 산소는, 산화물 반도체의 격자간에 존재하는 경우도 있다.
또한, 적어도 탈수화, 탈수소화한 후의 산화물 반도체막중의 수소보다도 첨가되는 산소의 양이 많아지도록 한다. 적어도 첨가되는 산소의 양이 수소보다 많으면 그것이 확산하여, 불안정성의 원인이 되는 수소와 반응함에 의해, 수소를 고정화(비가동 이온화)할 수가 있다. 즉, 신뢰성의 저하를 억제할 수가 있다. 또한, 산소를 과잉으로 함으로써 산소 결손에 기인하는 스레숄드 전압(Vth)의 편차를 저감함과 동시에, 스레숄드 전압의 시프트량(ΔVth)을 저감할 수가 있다.
또한, 산화물 반도체막의 막중(벌크중), 절연막의 막중(벌크중), 산화물 반도체막과 절연막의 계면중의 2개소 이상에 상술한 양의 산소가 존재하면 보다 바람직하다.
또한, 결함(산소 결손)이 없는 산화물 반도체라면, 화학량론비에 일치한 양의 산소가 포함되어 있으면 좋지만, 트랜지스터의 스레숄드 전압의 변동을 억제하는 등의 신뢰성을 확보하기 위해서는, 산화물 반도체에는, 화학량론비를 넘는 양의 산소가 포함되어 있는 것이 바람직하다. 마찬가지로 결함(산소 결손)이 없는 산화물 반도체라면, 기초막을 산소 과잉의 절연막으로 할 필요는 없지만, 트랜지스터의 스레숄드 전압의 변동을 억제하는 등의 신뢰성을 확보하기 위해서는, 산화물 반도체막에 산소 결손 상태는 생길 수 있는 것을 고려하여, 기초막을 산소 과잉의 절연막으로 하는 것이 바람직하다.
여기서, 상술한 「산소 플라즈마 도핑」처리에 의해, 벌크중에 산소가 첨가되는 모습을 나타낸다. 또한 산소를 일성분으로서 포함한 산화물 반도체막중에 산소 도핑 처리를 실시하는 경우, 일반적으로, 산소 농도의 증감을 확인하는 것은 곤란하다. 따라서, 여기에서는, 실리콘 웨이퍼를 이용하여, 산소 도핑 처리의 효과를 확인하였다.
산소 도핑 처리는, 유도 결합 플라즈마(ICP:Inductively Coupled Plasma) 방식을 이용하여 실시하였다. 그 조건은, ICP 전력 800 W, RF 바이어스 전력 300 W 또는 0 W, 압력 1.5 Pa, 산소 가스 유량 75 sccm, 기판 온도 70℃이다. 도 15에, SIMS(SIMS, Secondary Ion Mass Spectrometry) 분석에 의한 실리콘 웨이퍼의 깊이 방향의 산소 농도 프로파일을 나타낸다. 도 15에 있어서, 종축은 산소 농도를 나타내고, 횡축은 실리콘 웨이퍼 표면으로부터의 깊이를 나타낸다.
도 15로부터, RF 바이어스 전력이 0 W의 경우 및 300 W의 경우의 어느 것에 있어서도, 산소가 첨가되어 있는 것을 확인할 수 있다. 또한, RF 바이어스 300 W의 경우는, RF 바이어스 0 W의 경우와 비교하여, 산소가 보다 깊게 첨가되는 것을 확인할 수 있다.
다음으로, 산소 도핑 처리를 실시하기 전과 산소 도핑을 실시한 후의 실리콘 웨이퍼의 단면을 STEM(Scanning Transmission Electron Microscopy)으로 관찰한 결과를 도 16에 나타낸다. 도 16(A)은, 산소 도핑 처리를 실시하기 전의 STEM상이며, 도 16(B)은, 상술한 RF 바이어스 전력 300 W의 조건으로 산소 도핑 처리를 실시한 후의 STEM상이다. 도 16(B)에 나타내는 바와 같이, 산소 도핑을 실시함에 의해, 실리콘 웨이퍼에 산소고도핑 영역이 형성되어 있는 것을 확인할 수 있다.
이상과 같이, 실리콘 웨이퍼에 대하여 산소 도핑을 실시함으로써, 실리콘 웨이퍼에 산소가 첨가되는 것이 나타났다. 이 결과에 의해, 산화물 반도체막에 있어서 산소 도핑을 실시함에 의해서도, 산화물 반도체막에 산소를 당연히 첨가할 수 있는 것을 이해할 수 있다.
개시하는 발명의 일 태양인 상술한 구성의 효과는, 다음과 같이 생각하면 이해가 용이하다. 다만, 이하의 설명은, 어디까지나 하나의 고찰에 지나지 않는 것을 부기한다.
게이트 전극에 플러스의 전압을 인가하면, 산화물 반도체막의 게이트 전극측으로부터 백채널측(게이트 절연막과 반대측)으로 전계가 발생하기 때문에, 산화물 반도체막중에 존재하는 플러스의 전하를 갖는 수소이온이 백채널측으로 이동하여, 절연막과의 계면 근방에 축적한다. 축적한 수소이온으로부터 절연막중의 전하 포획 중심(수소 원자, 물, 혹은 오염물 등)에 플러스의 전하가 이동함으로써, 산화물 반도체막의 백채널 측에는 마이너스의 전하가 축적된다. 즉, 트랜지스터의 백채널 측으로 기생 채널이 발생하여, 스레숄드 전압이 마이너스 측으로 시프트하여, 트랜지스터가 노멀리온(normally on)의 경향을 나타낸다.
상기한 바와 같이, 절연막중의 수소 또는 물 등의 전하 포획 중심이 플러스의 전하를 포획하여, 절연막중에 플러스의 전하가 이동함으로써 트랜지스터의 전기적 특성이 변동하기 때문에, 트랜지스터의 전기적 특성의 변동을 억제하기 위해서는, 절연막중에 이러한 전하 포획 중심이 존재하지 않거나, 또는 수소 또는 물 등의 함유량이 적은 것이 중요하다. 따라서, 절연막의 성막에는, 성막시에 수소 함유량이 적은 스퍼터법을 이용하는 것이 바람직하다. 스퍼터법에 의해 성막된 절연막은, 그 막중에 전하 포획 중심이 존재하지 않거나, 또는 적기 때문에, CVD법 등에 의해 성막하였을 경우와 비교하여 플러스의 전하의 이동이 일어나기 어렵다. 따라서, 트랜지스터의 스레숄드 전압의 시프트를 억제하여, 트랜지스터를 노멀리 오프(normally off)로 할 수가 있다.
또한, 탑게이트형의 트랜지스터에 있어서는, 기초가 되는 절연막상에 산화물 반도체막을 형성한 후, 열처리를 실시함으로써, 산화물 반도체막에 포함되는 물 또는 수소를 제거하는 것과 동시에, 절연막중에 포함되는 물 또는 수소도 제거할 수가 있다. 따라서, 절연막중에는, 산화물 반도체막중을 이동해 온 플러스의 전하를 포획하기 위한 전하 포획 중심이 적다. 이와 같이, 산화물 반도체막으로의 탈수화 또는 탈수소화를 위한 열처리는, 산화물 반도체막에 부가하여, 산화물 반도체막의 하층에 존재하는 절연막에 대하여도 행해지기 때문에, 탑게이트형의 트랜지스터에 있어서는, 기초가 되는 절연막은 플라즈마 CVD법 등의 CVD법을 이용하여 성막되어 있어도 상관없다.
또한, 게이트 전극에 마이너스의 전압을 인가하면, 백채널측으로부터 게이트 전극측으로 전계가 발생하기 때문에, 산화물 반도체막중에 존재하는 수소이온이 게이트 절연막측으로 이동하여, 게이트 절연막과의 계면 근방에 축적한다. 또한, 이에 의해 트랜지스터의 스레숄드 전압은 마이너스측으로 시프트한다.
또한, 전압을 0으로서 방치하면, 전하 포획 중심으로부터 플러스의 전하가 해방되어 트랜지스터의 스레숄드 전압이 플러스측으로 시프트하여, 초기 상태로 돌아오거나, 또는 경우에 따라서는 초기 상태보다 플러스측으로 시프트한다. 이 현상은, 산화물 반도체막중에 이동하기 쉬운 이온이 존재하는 것을 시사하고 있어, 가장 작은 원자인 수소가 가장 이동하기 쉬운 이온이 된다고 고찰할 수가 있다.
또한, 산화물 반도체막이 광을 흡수함으로써, 광 에너지에 의해 산화물 반도체막중의 금속 원소(M)와 수소 원자(H)와의 결합(M-H결합이라고도 표기한다)이 끊어진다. 또한 파장이 400 nm 전후의 광 에너지와 금속 원소 및 수소 원자의 결합 에너지와는 대략 일치하고 있다. 산화물 반도체막중의 금속 원소와 수소 원자와의 결합이 끊어진 트랜지스터에 음의 게이트 바이어스를 가하면, 금속 원소로부터 이탈한 수소이온이 게이트 전극 측으로 끌어 당겨지기 때문에 전하의 분포가 변화하고, 트랜지스터의 스레숄드 전압은 마이너스 측으로 시프트하여, 노멀리온의 경향을 나타낸다.
또한, 트랜지스터로의 광조사와 음의 게이트 바이어스의 인가에 의해 게이트 절연막 계면으로 이동한 수소이온은, 전압의 인가를 정지하면 원래대로 돌아간다. 이것은, 산화물 반도체막중의 이온 이동의 대표적인 예로서 이해할 수 있다.
이러한, 전압 인가에 의한 전기적 특성의 변동(BT열화) 또는 광조사에 의한 전기적 특성의 변동(광열화)에의 대책은, 산화물 반도체막으로부터 수소 원자 또는 물 등의 수소 원자를 포함한 불순물을 철저하게 배제하여, 산화물 반도체막을 고순도화하는 것이 가장 중요하다. 전하 밀도가 1×1015cm-3, 즉, 단위면적 당의 전하가 1×1010cm-2의 경우, 그 전하는 트랜지스터 특성에 영향을 주지 않거나 또는 영향을 준다고 하더라도 매우 적다. 따라서, 전하 밀도는 1×1015cm-3 이하인 것이 바람직하다. 만일, 산화물 반도체막에 포함되는 수소 중에, 10%의 수소가 산화물 반도체막중을 이동하는 경우, 수소의 농도는 1×1016cm-3 이하인 것이 바람직하다. 게다가 디바이스 완성 후에 수소가 외부에서 침입하는 것을 막기 위해서, 스퍼터법에 따라서 성막한 질화 실리콘막을 패시베이션막으로서 이용하여 트랜지스터를 덮는 것이 바람직하다.
게다가 산화물 반도체막중에 포함되는 수소에 대하여, 과잉의 산소를 포함시킨(수소 원자의 수)≪(산소 라디칼의 수) 또는(산소 이온의 수)로 함으로써, 산화물 반도체막으로부터 수소 또는 물을 배제할 수가 있다. 구체적으로는, 고주파(RF)를 이용하여 산소를 플라즈마화하고, 기판 바이어스를 크게 하며, 산소 라디칼, 산소 이온을 기판상의 산화물 반도체막에 도핑 또는 첨가하여, 산화물 반도체막중에서는 잔존하는 수소보다 산소를 많게 한다. 산소의 전기 음성도는 3.0으로서 전기 음성도가 약 2.0인 산화물 반도체막중의 금속(Zn, Ga, In)보다 크기 때문에, 수소에 대하여 산소를 과잉으로 함유시킴으로써, M-H기로부터 수소를 빼앗아 OH기를 형성한다. 또한 이 OH기는, M와 결합하여 M-O-H기를 형성할 수 있다.
또한, 산화물 반도체막의 산소의 함유량이, 화학량론비보다 과잉이 되도록 산소를 도핑하는 것이 보다 바람직하다. 예를 들면, 산화물 반도체막으로서 In-Ga-Zn-O계 산화물 반도체막을 이용하는 경우, 산소의 도핑 등에 의해 산소의 비율을 화학량론비의 1배를 넘어 2배까지(2배 미만)로 하는 것이 보다 바람직하다. 예를 들면, In-Ga-Zn-O계 산화물 반도체의 단결정의 화학량론비를 In:Ga:Zn:O=1:1:1:4로 하면, 조성이 InGaZnOx로 나타내어지는 산화물 반도체 박막에 있어서, X는 4를 넘어 8 미만으로 하는 것이 보다 바람직하다. 따라서, 산화물 반도체막에 있어서 산소의 함유량은 수소의 함유량보다 커진다.
광 에너지나 BT스트레스에 의해, M-H기로부터 수소가 이탈해 열화의 원인이 되지만, 상술한 도핑에 의해 산소를 주입하는 경우, 주입된 산소가 수소이온과 결합하여 OH기가 된다. OH기는, 결합 에너지가 크기 때문에, 트랜지스터에 광 조사나 BT스트레스가 가해져도 수소이온을 방출하지 않고, 또한 수소이온보다 질량도 크기 때문에, 산화물 반도체막중을 이동하기 어렵다. 따라서, 산소의 도핑에 기인하여 형성되는 OH기는, 트랜지스터의 열화의 원인이 되지 않던지, 또는 열화의 원인을 줄일 수가 있다.
또한, 산화물 반도체막의 막두께를 크게 할수록, 트랜지스터의 스레숄드 전압이 불규칙해지는 경향이 확인되고 있다. 이것은, 산화물 반도체막중의 산소 결손이 스레숄드 전압의 변동의 한 요인이며, 막두께가 커질수록 산소 결손이 증가하기 때문이라고 추측할 수 있다. 개시하는 발명의 일 태양과 관련되는 트랜지스터에 있어서, 절연막 또는 산화물 반도체막에 산소를 도핑하는 공정은, 산화물 반도체막으로부터의 수소 또는 물의 배제뿐만 아니라, 막중의 산소 결손의 보충에 대하여도 유효하다. 따라서, 개시하는 발명의 일 태양과 관련되는 트랜지스터는, 스레숄드 전압의 편차도 억제할 수가 있다.
또한, 산화물 반도체막을 사이에 끼워서, 산화물 반도체막과 동종의 성분으로 이루어지는 금속 산화물막을 마련하는 구성도, 전기적 특성의 변동 방지에 효과적이다. 산화물 반도체막과 동종의 성분으로 이루어지는 금속 산화물막으로서, 구체적으로는, 산화물 반도체막의 구성 원소로부터 선택되는 1종 또는 복수의 금속 원소의 산화물을 포함한 막을 이용하는 것이 바람직하다. 이러한 재료는 산화물 반도체막과의 상성(相性)이 좋고, 산화물 반도체막을 사이에 끼워서 그 금속 산화물막을 마련함으로써, 산화물 반도체막과의 계면 상태를 양호하게 유지할 수가 있다. 즉, 상술한 재료를 이용한 금속 산화물막을, 산화물 반도체막과 접하는 절연막으로서 마련함으로써, 그 금속 산화물막과 산화물 반도체막과의 계면 및 그 근방으로의 수소이온의 축적을 억제 또는 방지할 수가 있다. 따라서, 산화물 반도체막을 사이에 끼워서, 예를 들면 산화 실리콘막 등의 산화물 반도체막과는 다른 성분으로 이루어지는 절연막을 마련했을 경우와 비교하여, 트랜지스터의 스레숄드 전압에 영향을 주는 산화물 반도체막 계면의 수소 농도를 충분히 저감할 수가 있다.
또한, 그 금속 산화물막으로서는, 산화 갈륨막을 이용하는 것이 바람직하다. 산화 갈륨은, 밴드갭(Eg)이 크기 때문에, 산화 갈륨막에 의해 산화물 반도체막을 사이에 끼움으로써, 산화물 반도체막과 금속 산화물막과의 계면에 있어서, 에너지 장벽이 형성되어 그 계면에 있어서 캐리어의 이동은 방해할 수 있다. 따라서, 캐리어는 산화물 반도체막으로부터 금속 산화물막으로 이동하는 일 없이, 산화물 반도체막중을 이동한다. 한편, 수소이온은, 산화물 반도체막과 금속 산화물막과의 계면을 통과하여, 금속 산화물막과 절연막과의 계면 부근에 축적한다. 만일, 절연막과의 계면 근방에 수소이온이 축적되었다고 하여도, 금속 산화물막으로서의 산화 갈륨막에는 캐리어가 흐를 수 있는 기생 채널이 형성되지 않기 때문에, 트랜지스터의 스레숄드 전압에 대한 영향을 주지 않거나, 또는 그 영향이 극히 적다. 또한 산화 갈륨과 In-Ga-Zn-O계의 재료를 접촉시켰을 경우의 에너지 장벽은, 전도대측에서 약 0.8 eV가 되고, 가전자대측에서 약 0.9 eV가 된다.
상술한 바와 같이, 개시하는 발명의 일 태양과 관련되는 트랜지스터는, 산소 도핑 처리에 의해, 산화물 반도체막에 접하는 절연막중, 산화물 반도체막중, 또는 이러한 계면 근방의 적어도 어느 하나에 산소의 함유량을 증대시키는 것을 기술 사상으로 하는 것이다.
산화물 반도체막으로서 In를 포함한 산화물 반도체 재료를 이용하는 경우, In와 산소의 결합력은 비교적 약하기 때문에, 산화물 반도체막에 접하는 절연막에 실리콘 등의 것보다 산소와의 결합력이 강한 재료가 포함되는 경우에, 열처리에 의해 산화물 반도체막중의 산소가 빠져 버려서, 산화물 반도체막의 계면 근방에 산소 결손이 형성될 우려가 있다. 그렇지만, 개시하는 발명의 일 태양과 관련되는 트랜지스터는, 산화물 반도체막과 접하는 절연막에 과잉의 산소를 공급함으로써, 산화물 반도체막으로부터의 산소의 빠짐에 의한 산소 결손의 형성을 억제할 수가 있다.
여기서, 트랜지스터의 제작 공정에 있어서 산소 도핑 처리를 실시한 다음에는, 산화물 반도체막 또는 산화물 반도체막에 접하는 절연막에 함유되는, 화학량론비보다 과잉의 산소량이 각층에서 다른 경우가 있다. 과잉의 산소량이 다른 상태에서는, 각층의 산소의 화학 퍼텐셜이 다르고, 화학 퍼텐셜의 차이는 트랜지스터의 제작 공정에 있어서의 열처리등으로, 평형 상태에 가까워지거나 또는 평형 상태가 된다고 생각된다. 따라서, 절연막으로의 산소 도핑 처리 후에는, 열처리를 실시하는 것이 보다 바람직하다. 산소 도핑 처리 후의 열처리에 의해, 절연막에 과잉으로 공급된 산소를 확산시켜, 충분한 양의 산소를 산화물 반도체막에 공급하는 것이 가능하다. 이하에서는, 평형 상태에 있어서의 산소의 분포에 대하여 검토한다.
어느 온도 T, 압력 P에서의 평형 상태란, 전계의 깁스의 자유에너지 G가 최소가 되는 상태이며, 이하의 식(1)으로 나타내어진다.
Figure 112016116073144-pat00001
식(1)에 있어서, G(1), G(2), G(3)는, 각층의 깁스의 자유에너지를 나타낸다. 또한, Na, Nb, Nc는 입자수를 나타내며, a, b, c는 입자의 종류를 나타낸다. 입자 a가 i층으로부터 j층으로 δNa(j)만큼 이동했을 경우, 깁스의 자유에너지의 변화는, 이하의 식(2)과 같이 된다.
Figure 112016116073144-pat00002
여기서, δG가 0, 즉 이하의 식(3)이 성립될 때, 계가 평형 상태가 된다.
Figure 112016116073144-pat00003
깁스의 자유에너지의 입자수 미분은, 화학 퍼텐셜에 상당하므로, 평형 상태에 있어서, 입자의 화학 퍼텐셜이 모든 층에서 동일해진다.
즉, 구체적으로는, 산화물 반도체막과 비교하여 그 산화물 반도체막과 접하는 절연막에 산소가 과잉으로 포함되어 있는 경우, 산화물 반도체막에서는 산소의 화학 퍼텐셜이 상대적으로 작고, 절연막에서는 화학 퍼텐셜이 상대적으로 큰 상태가 되어 있다.
그리고, 트랜지스터의 제작 공정에 있어서 열처리를 실시함으로써, 계 전체(여기에서는, 산화물 반도체막과 거기에 접하는 절연막)가 충분히 고온이 되어, 원자의 층내 및 층간의 확산이 일어나게 되면, 화학 퍼텐셜이 동일하게 되도록 산소의 이동이 일어난다. 즉, 절연막의 산소가 산화물 반도체막으로 이동함으로써, 절연막의 화학 퍼텐셜이 작아져, 산화물 반도체막의 화학 퍼텐셜이 커진다.
따라서, 산소 도핑 처리에 의해 산화물 반도체막에 과잉으로 공급된 산소는, 그 후의 열처리에 의해 계 내의 화학 퍼텐셜을 평형 상태로 함으로써, 확산하여, 절연막(계면을 포함한다)에 공급된다. 이 때문에, 산화물 반도체막에 과잉의 산소가 충분히 존재하는 경우에는, 산화물 반도체막에 접하는 절연막(계면을 포함한다)도 산소 과잉으로 할 수 있다.
따라서, 절연막이나 절연막과의 계면에 있어서의 산소 부족 결함을 보상하는데 충분한 양(산소 부족 결함을 보상하여도 여유가 있는 과잉의 양)의 산소를 산화물 반도체막중에 공급해 두는 것에는 큰 의의가 있다고 말할 수 있다.
열처리에 의한 탈수화 또는 탈수소화 처리, 및 절연막에 대한 산소 도핑 처리에 의해, 과잉의 산소가 포함된 산화물 반도체막을 갖는 트랜지스터는, 바이어스-열스트레스(BT) 시험 전후에도 트랜지스터의 스레숄드 전압의 변화량이 저감되어 있어, 안정된 전기적 특성을 갖는 신뢰성이 높은 트랜지스터가 실현될 수 있다.
또한, 개시하는 발명의 일 태양에 의해, 전기적 특성이 양호하여 신뢰성이 높은 트랜지스터를 갖는 여러 가지 반도체 장치를 제작할 수가 있다.
도 1은 반도체 장치의 일 형태를 설명하는 도.
도 2는 반도체 장치의 제작 방법의 일 형태를 설명하는 도.
도 3은 반도체 장치의 일 형태를 설명하는 도.
도 4는 반도체 장치의 제작 방법의 일 형태를 설명하는 도.
도 5는 반도체 장치의 제작 방법의 일 형태를 설명하는 도.
도 6은 반도체 장치의 제작 방법의 일 형태를 설명하는 도.
도7은 반도체 장치의 단면도, 표면도 및 회로도
도 8은 반도체 장치의 일 형태를 설명하는 도.
도 9는 반도체 장치의 일 형태를 설명하는 도.
도 10은 반도체 장치의 일 형태를 설명하는 도.
도 11은 반도체 장치의 일 형태를 설명하는 도.
도 12는 반도체 장치의 일 태양을 설명하는 도.
도 13은 전자기기를 나타내는 도.
도 14는 전자기기를 나타내는 도.
도 15 산소 도핑 한 실리콘 웨이퍼의 SIMS 측정 결과를 나타내는 도.
도 16은 단면 STEM상을 설명하는 도.
도 17은 플라즈마 장치의 표면도 및 단면도.
이하에서는, 본 명세서에 개시하는 발명의 실시형태에 대하여 도면을 이용하여 상세하게 설명한다. 다만, 본 명세서에 개시하는 발명은 이하의 설명에 한정되지 않고, 그 형태 및 상세를 여러 가지로 변경할 수 있다는 것은, 당업자라면 용이하게 이해된다. 또한, 본 명세서에 개시하는 발명은 이하에 나타내는 실시형태의 기재 내용에 한정하여 해석되는 것은 아니다.
또한, 본 명세서에 있어서의 「제 1」, 「제 2」, 「제 3」 등의 서수사는, 구성요소의 혼동을 피하기 위해서 붙인 것이며, 수적으로 한정하는 것이 아니라는 것을 부기한다.
(실시형태 1)
본 실시형태에서는, 반도체 장치 및 반도체 장치의 제작 방법에 대하여, 도 1 내지 도 3을 이용하여 설명한다.
<반도체 장치의 구성예>
도 1에 트랜지스터(120)의 구성예를 나타낸다. 여기서, 도 1(A)은 평면도이며, 도 1(B) 및 도 1(C)은 각각, 도 1(A)에 있어서의 A-B 단면 및 C-D 단면과 관련되는 단면도이다. 또한 도 1(A)에서는 번잡하게 되는 것을 피하기 위해, 트랜지스터(120)의 구성요소의 일부(예를 들면, 게이트 절연막(110) 등)를 생략하고 있다.
도 1에 나타내는 트랜지스터(120)는, 기판(100)상의 절연막(102), 소스 전극(104a), 드레인 전극(104b), 산화물 반도체막(108), 게이트 절연막(110), 게이트 전극(112)을 포함한다.
도 1에 나타내는 트랜지스터(120)에 있어서, 절연막(102)은, 산소 도핑 처리를 한 절연막이다. 절연막(102)에 산소 도핑 처리를 실시함으로써, 신뢰성이 높아진 트랜지스터(120)가 실현된다.
<반도체 장치의 제작 공정예>
이하, 도 2를 이용하여, 도 1에 나타내는 반도체 장치의 제작 공정의 일 예를 설명한다.
우선, 기판(100)상에 절연막(102)을 형성한다(도 2(A) 참조).
기판(100)의 재질에 큰 제한은 없지만, 적어도, 후의 열처리에 견디는 정도의 내열성을 갖고 있는 것이 필요하다. 예를 들면, 유리 기판, 세라믹 기판, 석영 기판, 사파이어 기판 등을, 기판(100)으로서 이용할 수가 있다. 또한, 실리콘이나 탄화 실리콘 등의 단결정 반도체 기판, 다결정 반도체 기판, 실리콘 게르마늄 등의 화합물 반도체 기판, SOI 기판 등을 적용하는 것도 가능하고, 이러한 기판상에 반도체소자가 마련된 것을, 기판(100)으로서 이용하여도 괜찮다.
또한, 기판(100)으로서 가요성 기판을 이용하여도 괜찮다. 가요성 기판상에 트랜지스터를 마련하는 경우, 가요성 기판상에 직접적으로 트랜지스터를 만들어도 괜찮고, 다른 기판에 트랜지스터를 형성한 후, 이를 박리하고, 가요성 기판에 전치(轉置)하여도 좋다. 또한 트랜지스터를 박리하고, 가요성 기판에 전치하기 위해서는, 상기 다른 기판과 트랜지스터와의 사이에 박리층을 형성하면 좋다.
절연막(102)은 기초로서 기능하는 절연막이다. 구체적으로는, 절연막(102)에는, 산화 실리콘, 질화 실리콘, 산화 알루미늄, 질화 알루미늄, 산화 갈륨, 이들의 혼합 재료 등을 이용하면 좋다. 또한, 절연막(102)은, 상술한 재료를 포함한 절연막의 단층 구조로 하여도 좋고, 적층 구조로 하여도 좋다.
절연막(102)의 제작 방법에 특별히 한정은 없다. 예를 들면, 플라즈마 CVD법이나 스퍼터링법 등의 성막 방법을 이용하여 절연막(102)을 제작할 수가 있다. 또한 수소나 물 등이 혼입하기 어렵다고 하는 점에서는, 스퍼터링법이 매우 적합하다.
또한, 절연막(102)에는, 후에 형성되는 산화물 반도체막과 동종의 성분으로 이루어지는 절연 재료를 이용하면 특히 바람직하다. 이러한 재료는 산화물 반도체막과의 상성이 좋고, 이를 절연막(102)에 이용함으로써, 산화물 반도체막과의 계면 상태를 양호하게 유지할 수가 있기 때문이다. 여기서, 「산화물 반도체막과 동종의 성분」이란, 산화물 반도체막의 구성 원소로부터 선택되는 1종 또는 복수의 원소를 포함하는 것을 의미한다. 예를 들면, 산화물 반도체막이 In-Ga-Zn-O계의 산화물 반도체 재료에 의해 구성되는 경우, 동종의 성분으로 이루어지는 절연 재료로서는 산화 갈륨 등이 있다.
또한, 절연막(102)을 적층 구조로 하는 경우에는, 산화물 반도체막과 동종의 성분으로 이루어지는 절연 재료로 이루어지는 막(이하, 막a)과, 막a의 성분 재료와는 다른 재료를 포함한 막(이하, 막b)의 적층 구조로 하면 더욱 좋다. 막a와 막b를 산화물 반도체막측으로부터 순서대로 적층한 구조로 함으로써, 전하는 막a와 막b의 계면에 우선적으로 포획되기(산화물 반도체막과 막a의 계면과의 비교) 때문에 산화물 반도체막의 계면에서의 전하 포획을 충분히 억제할 수가 있게 되어, 반도체 장치의 신뢰성이 향상한다.
또한, 이러한 적층 구조로서는, 산화 갈륨막과 산화 실리콘막의 적층 구조나, 산화 갈륨막과 질화 실리콘막의 적층 구조 등을 적용할 수가 있다.
다음으로, 절연막(102)에 대하여, 산소(180)에 의한 처리(산소 도핑 처리나, 산소 플라즈마 도핑 처리라고도 한다)를 실시한다(도 2(B) 참조). 산소(180)에는, 적어도, 산소 라디칼, 산소 원자, 산소 이온중의 어느 것인가가 포함되어 있다. 절연막(102)에 산소 도핑 처리를 실시함으로써, 절연막(102)중에 산소를 함유시킬 수가 있어 후에 형성되는 산화물 반도체막(108)중, 산화물 반도체막(108) 계면 근방, 또는 산화물 반도체막(108)중 및 그 계면 근방에 산소를 함유시킬 수가 있다. 이 경우, 절연막(102)중의 산소의 함유량은, 절연막(102)의 화학량론비를 넘는 정도, 바람직하게는, 화학량론비의 1배를 넘어 4배까지(1배보다 크고 4배 미만), 보다 바람직하게는, 1배를 넘어 2배까지(1배보다 크고 2배 미만)로 한다. 혹은, 산소의 함유량은, 단결정의 경우의 산소의 양을 Y로 하여, Y를 넘는 정도, 바람직하게는, Y를 넘어 4Y까지 할 수도 있다. 혹은, 산소의 함유량은, 산소 도핑 처리를 실시하지 않는 경우의 절연막중의 산소의 양 Z를 기준으로 하여, Z를 넘는 정도, 바람직하게는, Z를 넘어 4Z까지로 할 수도 있다.
예를 들면, 조성이 GaOx (x>0)로 표현되는 산화 갈륨을 이용하는 경우, 단결정의 산화 갈륨은 Ga2O3이므로, x는 1.5를 넘어 6까지(즉 Ga의 1.5배를 넘어 6배까지)가 허용된다. 또한, 예를 들면, 조성이 SiOx (x>0)로 표현되는 산화 실리콘을 이용하는 경우, SiO2(즉 O가 Si의 2배)이면, x는 2를 넘어 8까지(즉 Si의 2배를 넘어 8배까지)가 허용된다. 또한 이러한 산소 과잉 영역은, 절연막의 일부에 존재하고 있으면 좋다.
또한, 산화물 반도체막에 있어서, 산소는 주된 성분 재료의 하나다. 이 때문에, 산화물 반도체막중의 산소 농도를, SIMS(Secondary Ion Mass Spectroscopy) 등의 방법을 이용하여, 정확하게 추측하는 것은 어렵다. 즉, 산화물 반도체막에 산소가 의도적으로 첨가되었는지 아닌지를 판별하는 것은 곤란하다고 말할 수 있다.
그런데, 산소에는 17O나 18O라고 하는 동위체가 존재하고, 자연계에 있어서의 이러한 존재 비율은 각각 산소 원자 전체의 0.038%, 0.2%정도인 것이 알려져 있다. 즉, 산화물 반도체막중에 있어서의 이들 동위체의 농도는, SIMS 등의 방법에 의해 추측할 수가 있는 정도가 되기 때문에, 이들의 농도를 측정함으로써, 산화물 반도체막중의 산소 농도를 보다 정확하게 추측하는 것이 가능한 경우가 있다. 따라서, 이들의 농도를 측정함으로써, 산화물 반도체막에 의도적으로 산소가 첨가되었는지 아닌지를 판별하여도 좋다.
예를 들면, 18O의 농도를 기준으로 이용하면, 산화물 반도체막에 있어서, 산소가 첨가된 영역에 있어서의 산소의 동위체의 농도 D1(18O)와, 산소가 첨가되어 있지 않은 영역에 있어서의 산소의 동위체의 농도 D2(18O)의 사이에는, D1(18O)>D2(18O)가 성립한다고 말할 수 있다.
또한, 절연막에 첨가되는 산소(180)의 적어도 일부는, 산화물 반도체에 공급된 후, 산화물 반도체 중에서 미결합손을 갖는 것이 바람직하다. 미결합손을 가짐에 의해, 막중에 잔존할 수 있는 수소와 결합하여 수소를 고정화(비가동 이온화)할 수가 있기 때문이다.
상술한 산소(180)는, 플라즈마 발생 장치나 오존 발생 장치에 의해 발생시킬 수가 있다. 보다 구체적으로는, 예를 들면, 반도체 장치에 대하여 에칭 처리를 실시할 수가 있는 장치나, 레지스트 마스크에 대하여 애싱을 실시할 수가 있는 장치 등을 이용하여 산소(180)을 발생시켜, 절연막(102)을 처리할 수가 있다.
또한, 산소의 첨가를 보다 매우 적합하게 실시하기 위해서는, 기판에는 전기적인 바이어스를 인가해 두는 것이 바람직하다.
그 다음으로, 절연막(102)상에, 소스 전극 및 드레인 전극(이와 동일한 층에서 형성되는 배선을 포함한다)을 형성하기 위한 도전막을 형성하고, 해당 도전막을 가공하여, 소스 전극(104a) 및 드레인 전극(104b)을 형성한다(도 2(C) 참조). 또한 여기서 형성되는 소스 전극(104a)의 단부와 드레인 전극(104b)의 단부의 간격에 의해, 트랜지스터의 채널장(L)이 결정되게 된다.
소스 전극(104a) 및 드레인 전극(104b)에 이용하는 도전막으로서는, 예를 들면, Al, Cr, Cu, Ta, Ti, Mo, W로부터 선택된 원소를 포함한 금속막, 또는 상술한 원소를 성분으로 하는 금속 질화물막(질화 티탄막, 질화 몰리브덴막, 질화 텅스텐막) 등이 있다. 또한, Al, Cu 등의 금속막의 하측 또는 상측중의 한쪽 또는 양쪽에 Ti, Mo, W 등의 고융점 금속막 또는 이들의 금속 질화물막(질화 티탄막, 질화 몰리브덴막, 질화 텅스텐막)을 적층시킨 도전막을 이용하여도 좋다.
또한, 소스 전극(104a) 및 드레인 전극(104b)에 이용하는 도전막은, 도전성의 금속 산화물로 형성하여도 좋다. 도전성의 금속 산화물로서는 산화 인듐, 산화 주석, 산화 아연, 산화 인듐 산화 주석 혼합 산화물(ITO로 약기한다), 산화 인듐 산화 아연 혼합 산화물 또는 이들의 금속 산화물 재료에 산화 실리콘을 포함시킨 것을 이용할 수가 있다.
도전막의 가공은, 레지스트 마스크를 이용한 에칭에 의해 실시할 수가 있다. 해당 에칭에 이용하는 레지스트 마스크 형성시의 노광에는, 자외선이나 KrF 레이저광이나 ArF 레이저광 등을 이용하면 좋다.
또한, 채널장(L)=25 nm 미만의 노광을 실시하는 경우에는, 예를 들면, 수 nm~수 10 nm로 극히 파장이 짧은 초자외선(Extreme Ultraviolet)을 이용하여, 레지스트 마스크 형성시의 노광을 실시하면 좋다. 초자외선에 의한 노광은, 해상도가 높고 초점심도도 크다. 따라서, 후에 형성되는 트랜지스터의 채널장(L)을 미세화하는 것이 가능하고, 회로의 동작 속도를 높일 수가 있다.
또한, 이른바 다계조 마스크에 의해 형성된 레지스트 마스크를 이용하여 에칭 공정을 실시하여도 괜찮다. 다계조 마스크를 이용하여 형성된 레지스트 마스크는, 복수의 막두께를 갖는 형상이 되며, 애싱에 의해 더욱 형상을 변형시킬 수가 있기 때문에, 다른 패턴으로 가공하는 복수의 에칭 공정에 이용하는 것이 가능하다. 이 때문에, 한 장의 다계조 마스크에 의해, 적어도 2종류 이상의 다른 패턴에 대응하는 레지스트 마스크를 형성할 수가 있다. 즉, 공정의 간략화가 가능해진다.
다음으로, 절연막(102)상에, 소스 전극(104a) 및 드레인 전극(104b)과 접하는 산화물 반도체막을 형성하고, 해당 산화물 반도체막을 가공하여 섬 형상의 산화물 반도체막(106)을 형성한다(도 2(D) 참조).
산화물 반도체막은, 수소나 물 등이 혼입하기 어려운 방법으로 제작하는 것이 바람직하다. 예를 들면, 스퍼터링법 등을 이용하여 제작할 수가 있다. 또한, 산화물 반도체막의 두께는, 3 nm 이상 30 nm 이하로 하는 것이 바람직하다. 산화물 반도체막을 너무 두껍게 하면 (예를 들면, 막두께를 50 nm 이상), 트랜지스터가 노멀리온이 되어 버릴 우려가 있기 때문이다.
산화물 반도체막에 이용하는 재료로서는, 예를 들면, 인듐을 함유하는 산화물 반도체 재료나, 인듐 및 갈륨을 함유하는 산화물 반도체 재료 등이 있다.
또한, 산화물 반도체막에 이용하는 재료로서는, 4원계 금속 산화물인 In-Sn-Ga-Zn-O계의 재료나, 3원계 금속 산화물인 In-Ga-Zn-O계의 재료, InSn-Zn-O계의 재료, In-Al-Zn-O계의 재료, Sn-Ga-Zn-O계의 재료, Al-Ga-Zn-O계의 재료, Sn-Al-Zn-O계의 재료나, 2원계 금속 산화물인 In-Zn-O계의 재료, Sn-Zn-O계의 재료, Al-Zn-O계의 재료, Zn-Mg-O계의 재료, Sn-Mg-O계의 재료, In-Mg-O계의 재료, In-Ga-O계의 재료나, 1원계 금속 산화물인 In-O계의 재료, Sn-O계의 재료, Zn-O계의 재료 등이 있다. 또한, 상기의 재료에 산화 규소를 포함시켜도 괜찮다. 여기서, 예를 들면, In-Ga-Zn-O계의 재료란, 인듐(In), 갈륨(Ga), 아연(Zn)을 갖는 산화물막 이라는 의미이며, 그 조성비는 특별히 묻지 않는다. 또한, In와 Ga와 Zn 이외의 원소를 포함하고 있어도 괜찮다.
또한, 산화물 반도체막은, 화학식 InMO3(ZnO)m (m>0)로 표기되는 재료를 이용한 박막으로 할 수가 있다. 여기서, M은, Ga, Al, Mn 및 Co로부터 선택된 1종 또는 복수의 금속 원소를 나타낸다. 예를 들면, M으로서 Ga, Ga 및 Al, Ga 및 Mn, 또는 Ga 및 Co 등을 이용할 수가 있다.
본 실시형태에서는, 산화물 반도체막을, In-Ga-Zn-O계의 산화물 타겟을 이용한 스퍼터링법에 의해 형성한다.
In-Ga-Zn-O계의 산화물 타겟으로서는, 예를 들면, 조성비로서 In2O3:Ga2O3:ZnO=1:1:1[몰수비]의 산화물 타겟을 이용할 수가 있다. 또한 타겟의 재료 및 조성을 상술한 것에 한정할 필요는 없다. 예를 들면, In2O3:Ga2O3:ZnO=1:1:2[몰수비]의 조성비의 산화물 타겟을 이용할 수도 있다.
또한, 산화물 반도체로서 In-Zn-O계의 재료를 이용하는 경우, 이용하는 타겟의 조성비는, 원자수비로, In:Zn=50:1~1:2(몰수비로 환산하면 In2O3:ZnO=25:1~1:4), 바람직하게는 In:Zn=20:1~1:1(몰수비로 환산하면 In2O3:ZnO=10:1~2:1), 더욱 바람직하게는 In:Zn=1.5:1~15:1(몰수비로 환산하면 In2O3:ZnO=3:4~15:2)으로 한다. 예를 들면, In-Zn-O계 산화물 반도체의 형성에 이용하는 타겟은, 원자수비가 In:Zn:O=X:Y:Z일 때, Z>1.5X+Y로 한다.
산화물 타겟의 충전율은, 90% 이상 100% 이하, 바람직하게는 95% 이상 99.9% 이하로 한다. 충전율이 높은 금속 산화물 타겟을 이용함으로써, 성막한 산화물 반도체막은 치밀한 막으로 할 수가 있기 때문이다.
성막의 분위기는, 희가스(대표적으로는 아르곤) 분위기하, 산소 분위기하, 또는 희가스와 산소의 혼합 분위기하 등으로 하면 좋다. 또한, 산화물 반도체막으로의 수소, 물, 수산기를 갖는 화합물, 수소화물 등의 혼입을 막기 위해서, 수소, 물, 수산기를 갖는 화합물, 수소화물 등의 수소 원자를 포함한 불순물이 충분히 제거된 고순도 가스를 이용한 분위기로 하는 것이 바람직하다.
보다 구체적으로는, 예를 들면, 산화물 반도체막은 다음과 같이 형성할 수가 있다.
우선, 감압 상태로 유지된 성막실내에 기판(100)을 유지하고, 기판 온도를 100℃ 이상 600℃ 이하 바람직하게는 200℃ 이상 400℃ 이하로 한다. 기판(100)이 가열된 상태로 성막을 실시함으로써, 산화물 반도체막에 포함되는 불순물 농도를 저감할 수가 있기 때문이다. 또한, 스퍼터링에 의한 손상을 경감할 수가 있기 때문이다.
다음으로, 성막실내의 잔류 수분을 제거하면서, 수소 및 물 등의 수소 원자를 포함한 불순물이 충분히 제거된 고순도 가스를 도입하고, 상기 타겟을 이용하여 기판(100)상에 산화물 반도체막을 성막한다. 성막실내의 잔류 수분을 제거하기 위해서는, 배기 수단으로서 크라이오 펌프, 이온 펌프, 티탄 서블리메이션(sublimation) 펌프 등의 흡착형의 진공 펌프를 이용하는 것이 바람직하다. 또한, 배기 수단은, 터보 분자 펌프에 콜드 트랩을 부가한 것이라도 괜찮다. 크라이오 펌프를 이용하여 배기한 성막실은, 예를 들면, 수소 분자나, 물(H2O) 등의 수소 원자를 포함한 화합물(보다 바람직하게는 탄소 원자를 포함한 화합물도) 등이 제거되어 있기 때문에, 해당 성막실에서 성막한 산화물 반도체막에 포함되는 불순물의 농도를 저감할 수 있다.
성막 조건의 일 예로서 기판과 타겟의 사이와의 거리를 100 mm, 압력을 0.6 Pa, 직류(DC) 전원을 0.5 kW, 성막 분위기를 산소(산소 유량 비율 100%) 분위기로 할 수가 있다. 또한 펄스 직류 전원을 이용하면, 성막시의 분말상 물질(파티클, 쓰레기라고도 한다)의 발생을 경감할 수 있어 막두께 분포도 균일하게 되기 때문에 바람직하다.
산화물 반도체막의 가공은, 원하는 형상의 마스크를 산화물 반도체막상에 형성한 후, 해당 산화물 반도체막을 에칭함으로써 실시할 수가 있다. 상술한 마스크는, 포토리소그래피 등의 방법을 이용하여 형성할 수가 있다. 또는, 잉크젯법 등의 방법을 이용하여 마스크를 형성하여도 좋다.
또한, 산화물 반도체막의 에칭은, 건식 에칭이라도 습식 에칭이라도 좋다. 물론, 이들을 조합하여 이용하여도 괜찮다.
그 후, 산화물 반도체막(106)에 대하여 열처리를 실시하여, 고순도화된 산화물 반도체막(108)을 형성한다(도 2(E) 참조). 이 열처리에 의해 산화물 반도체막(106)중의 수소(물이나 수산기를 포함한다)를 제거하고, 산화물 반도체막의 구조를 정돈하여 에너지갭중의 결함 준위를 저감할 수가 있다. 상기 열처리의 온도는, 250℃ 이상 650℃ 이하, 바람직하게는 450℃ 이상 600℃ 이하, 또는 기판의 왜곡점 미만으로 한다.
열처리는, 예를 들면, 저항 발열체 등을 이용한 전기로에 피처리물을 도입하고, 질소 분위기하, 450℃, 1시간의 조건으로 실시할 수가 있다. 이 동안, 산화물 반도체막(106)은 대기에 접하지 않게 하고, 물이나 수소의 혼입이 생기지 않도록 한다.
열처리 장치는 전기로에 한정되지 않고, 가열된 가스 등의 매체로부터의 열전도, 또는 열복사에 의해, 피처리물을 가열하는 장치를 이용하여도 좋다. 예를 들면, LRTA(Lamp Rapid Thermal Anneal) 장치, GRTA(Gas Rapid Thermal Anneal) 장치 등의 RTA(Rapid Thermal Anneal) 장치를 이용할 수가 있다. LRTA 장치는, 할로겐 램프, 메탈할라이드 램프, 크세논 아크 램프, 카본 아크 램프, 고압 나트륨 램프, 고압 수은 램프 등의 램프로부터 발하는 광(전자파)의 복사에 의해, 피처리물을 가열하는 장치다. GRTA 장치는, 고온의 가스를 이용하여 열처리를 실시하는 장치다.
예를 들면, 상기 열처리로서 가열된 불활성 가스 분위기중에 피처리물을 투입하고, 몇 분간 가열한 후, 해당 불활성 가스 분위기로부터 피처리물을 취출하는 GRTA 처리를 실시하여도 괜찮다. GRTA 처리를 이용하면 단시간에서의 고온 열처리가 가능해진다. 또한, 피처리물의 내열 온도를 넘는 온도 조건이라도 적용이 가능해진다. 또한 처리중에, 불활성 가스를, 산소를 포함한 가스로 전환하여도 좋다. 산소를 포함한 분위기에서 열처리를 실시함으로써, 산소 결손에 기인하는 에너지갭중의 결함 준위를 저감할 수가 있기 때문이다.
또한, 불활성 가스 분위기로서는, 질소, 또는 희가스(헬륨, 네온, 아르곤 등)를 주성분으로 하는 분위기이며, 물, 수소 등이 포함되지 않는 분위기를 적용하는 것이 바람직하다. 예를 들면, 열처리 장치에 도입하는 질소나, 헬륨, 네온, 아르곤 등의 희가스의 순도를, 6 N(99.9999%) 이상, 바람직하게는 7 N(99.99999%) 이상(즉, 불순물 농도가 1 ppm 이하, 바람직하게는 0.1 ppm 이하)로 한다.
어쨌든, 상기 열처리에 의해 불순물을 저감하여, i형(진성 반도체) 또는 i형에 극히 가까운 산화물 반도체막을 형성함으로써, 극히 뛰어난 특성의 트랜지스터를 실현할 수가 있다.
그런데, 상술한 열처리에는 수소나 물 등을 제거하는 효과가 있기 때문에, 해당 열처리를, 탈수화 처리나, 탈수소화 처리 등이라고 부를 수도 있다. 해당 탈수화 처리나, 탈수소화 처리는, 예를 들면, 산화물 반도체막을 섬 형상으로 가공하기 전 등의 타이밍에서 실시하는 것도 가능하다. 또한, 이러한 탈수화 처리, 탈수소화 처리는, 1회에 한정하지 않고 여러 차례 실시하여도 좋다.
다음으로, 산화물 반도체막(108)과 접하고, 또한 소스 전극(104a) 및 드레인 전극(104b)을 덮는 게이트 절연막(110)을 형성한다(도 2(F) 참조).
게이트 절연막(110)은, 절연막(102)과 마찬가지로 형성할 수가 있다. 즉, 게이트 절연막(110)은, 산화 실리콘, 질화 실리콘, 산화 알루미늄, 질화 알루미늄, 산화 갈륨, 이들의 혼합 재료 등을 이용하여 형성하면 좋다. 다만, 트랜지스터의 게이트 절연막으로서 기능하는 것을 고려하여, 산화 하프늄, 산화 탄탈륨, 산화 이트륨, 하프늄 실리케이트(HfSixOy (x>0, y>0)), 질소가 첨가된 하프늄 실리케이트(HfSixOy (x>0, y>0)), 질소가 첨가된 하프늄 알루미네이트(HfAlxOy (x>0, y>0)), 등의 비유전률이 높은 재료를 채용하여도 좋다.
또한, 절연막(102)과 마찬가지로, 적층 구조를 채용하여도 좋다. 이 경우에는, 산화물 반도체막과 동종의 성분으로 이루어지는 절연 재료로 이루어지는 막(이하, 막a)과, 막a의 성분 재료와는 다른 재료를 포함한 막(이하, 막b)의 적층 구조로 하면 더욱 좋다. 막a와 막b를 산화물 반도체막측으로부터 순서대로 적층한 구조로 함으로써, 전하는 막a와 막b의 계면에 우선적으로 포획되기(산화물 반도체막과 막a의 계면과의 비교) 때문에 산화물 반도체막의 계면에서의 전하 포획을 충분히 억제할 수가 있게 되어, 반도체 장치의 신뢰성이 향상한다.
또한, 이러한 적층 구조로서는, 산화 갈륨막과 산화 실리콘막의 적층 구조나, 산화 갈륨막과 질화 실리콘막의 적층 구조 등을 적용할 수가 있다.
상술한 게이트 절연막(110)의 형성 후에는, 열처리를 실시하는 것이 바람직하다. 해당 열처리의 온도는, 250℃ 이상 700℃ 이하, 바람직하게는 450℃ 이상 600℃ 이하, 또는 기판의 왜곡점 미만으로 한다.
상기 열처리는, 질소, 산소, 초건조공기(CRDS(캐비티 링 다운 레이저 분광법) 방식의 노점계를 이용하여 측정했을 경우의 수분량이 20 ppm(노점 환산으로 -55℃) 이하, 바람직하게는 1 ppm 이하, 바람직하게는 10 ppb 이하의 공기), 또는 희가스(아르곤, 헬륨 등)의 분위기하에서 실시하면 좋지만, 상기 질소, 산소, 초건조공기, 또는 희가스 등의 분위기에는, 물, 수소 등이 포함되지 않는 것이 바람직하다. 또한, 열처리 장치에 도입하는 질소, 산소, 또는 희가스의 순도는, 6 N(99.9999%) 이상(즉 불순물 농도를 1 ppm 이하)으로 하는 것이 바람직하고, 7 N(99.99999%) 이상(즉 불순물 농도를 0.1 ppm 이하)으로 하면, 보다 바람직하다.
본 실시형태와 관련되는 상기의 열처리에 있어서는, 산화물 반도체막(108)과 게이트 절연막(110)이 접한 상태로 가열된다. 따라서, 상술한 탈수화(또는 탈수소화) 처리에 의해 감소해 버릴 가능성이 있는 산소를, 산화물 반도체막(108)에 공급하는 것도 가능하다. 이런 의미에서, 해당 열처리를, 가산화(가산소화)라고 부를 수도 있다.
또한, 가산화를 목적으로 하는 열처리의 타이밍은, 산화물 반도체막(108)의 형성 후라면 특별히 한정되지 않는다. 예를 들면, 게이트 전극의 형성 후에 가산화를 목적으로 하는 열처리를 실시하여도 좋다. 또는, 탈수화 등을 목적으로 하는 열처리에 이어서 가산화를 목적으로 하는 열처리를 실시하여도 좋고, 탈수화 등을 목적으로 하는 열처리에 가산화를 목적으로 하는 열처리를 겸하게 하여도 좋고, 가산화를 목적으로 하는 열처리에 탈수화 등을 목적으로 하는 열처리를 겸하게 하여도 좋다.
상술한 바와 같이, 탈수화 등을 목적으로 하는 열처리와 산소 도핑 처리 또는 가산화를 목적으로 하는 열처리를 적용함으로써, 산화물 반도체막(108)을 불순물이 최대한 포함되지 않게 고순도화할 수가 있다. 고순도화된 산화물 반도체막(108)에서는 도너에 유래하는 캐리어가 극히 적다(제로에 가깝다).
그 후, 게이트 전극(112)을 형성한다(도 2(G) 참조). 게이트 전극(112)은, 몰리브덴, 티탄, 탄탈륨, 텅스텐, 알루미늄, 동, 네오디뮴, 스칸듐 등의 금속재료 또는 이들을 주성분으로 하는 합금 재료를 이용하여 형성할 수가 있다. 또한 게이트 전극(112)은, 단층 구조로 하여도 좋고, 적층 구조로 하여도 좋다.
또한, 게이트 전극(112)의 형성 후에는, 절연막을 형성하여도 좋다. 해당 절연막은, 예를 들면, 산화 실리콘, 질화 실리콘, 산화 알루미늄, 질화 알루미늄, 산화 갈륨, 이들의 혼합 재료 등을 이용하여 형성할 수가 있다. 특히, 절연막으로서 질화 실리콘막을 이용하는 경우에는, 첨가된 산소의 외부로의 방출을 막을 수가 있음과 동시에, 산화물 반도체막(108)으로의 외부로부터의 수소 등의 혼입을 효과적으로 억제할 수가 있기 때문에 매우 적합하다. 또한, 소스 전극(104a)이나 드레인 전극(104b), 게이트 전극(112) 등과 접속되는 배선을 형성하여도 좋다.
이상의 공정으로 트랜지스터(120)가 형성된다.
또한, 상술한 설명은, 절연막(102)의 표면 전체에 대하여 산소 도핑 처리를 실시하는 예에 대한 것이지만, 개시하는 발명의 일 태양은 이에 한정되지 않는다. 예를 들면, 소스 전극(104a) 및 드레인 전극(104b)을 형성한 후에 산소 도핑 처리를 실시하여도 좋다. 이 경우에는, 절연막(102)중에, 산소 농도가 높은 영역과 산소 농도가 낮은 영역이 형성되게 된다.
<반도체 장치의 변형예>
도 3(A) 내지 도 3(D)에는, 도 1에 나타내는 트랜지스터(120)의 변형예로서 트랜지스터(130), 트랜지스터(140), 트랜지스터(150), 및 트랜지스터(160)의 단면도를 나타낸다.
도 3(A)에 나타내는 트랜지스터(130)는, 절연막(102), 소스 전극(104a), 드레인 전극(104b), 산화물 반도체막(108), 게이트 절연막(110), 게이트 전극(112)을 포함하는 점에서, 트랜지스터(120)와 공통되고 있다. 트랜지스터(130)와 트랜지스터(120)의 차이는, 상술한 구성요소를 덮는 절연막(114)의 유무이다. 즉, 트랜지스터(130)는, 절연막(114)을 갖고 있다. 그 외의 구성요소에 대해서는 도 1의 트랜지스터(120)와 동일하기 때문에, 자세한 것은, 도 1에 관한 기재를 참조할 수가 있다.
절연막(114)은, 도 2(G)에 대하여 설명한 것처럼, 산화 실리콘, 질화 실리콘, 산화 알루미늄, 질화 알루미늄, 산화 갈륨, 이들의 혼합 재료 등을 이용하여 형성할 수가 있다. 특히, 절연막으로서 질화 실리콘막을 이용하는 경우에는, 첨가된 산소의 외부로의 방출을 막을 수가 있음과 동시에, 산화물 반도체막(108)으로의 외부로부터의 수소 등의 혼입을 효과적으로 억제할 수가 있기 때문에 매우 적합하다.
도 3(B)에 나타내는 트랜지스터(140)는, 상술한 각 구성요소를 포함하는 점에서, 도 1에 나타내는 트랜지스터(120)와 공통되고 있다. 트랜지스터(140)와 트랜지스터(120)의 차이는, 소스 전극(104a) 및 드레인 전극(104b)과, 산화물 반도체막(108)의 적층 순서이다. 즉, 트랜지스터(120)에서는, 소스 전극(104a) 및 드레인 전극(104b)이 먼저 형성되는데 반하여, 트랜지스터(140)에서는, 산화물 반도체막(108)이 먼저 형성된다. 그 외의 구성요소에 대해서는, 도 1과 같다. 또한 트랜지스터(130)처럼, 절연막(114)을 갖는 구성으로 하여도 좋다.
도 3(C)에 나타내는 트랜지스터(150)는, 상술한 각 구성요소를 포함하는 점에서, 도 1에 나타내는 트랜지스터(120)와 공통되고 있다. 트랜지스터(150)와 트랜지스터(120)의 차이는, 기판(100)측의 절연막에 있다. 즉, 트랜지스터(150)에서는, 절연막(102a)과 절연막(102b)의 적층 구조를 구비하고 있다. 그 외의 구성요소에 대해서는, 도 3(B)과 같다.
이와 같이, 절연막(102a)과 절연막(102b)의 적층 구조로 함에 의해, 전하는 절연막(102a)과 절연막(102b)의 계면에 우선적으로 포획되기 때문에, 산화물 반도체막(108)의 계면에서의 전하 포획을 충분히 억제할 수가 있게 되어, 반도체 장치의 신뢰성이 향상한다.
또한, 절연막(102b)은 산화물 반도체막(108)과 동종의 성분으로 이루어지는 절연 재료로 이루어지는 막으로 하고, 절연막(102a)은 절연막(102b)의 성분 재료와는 다른 재료를 포함한 막으로 하는 것이 바람직하다. 예를 들면, 산화물 반도체막(108)이 In-Ga-Zn-O계의 산화물 반도체 재료에 의해 구성되는 경우, 동종의 성분으로 이루어지는 절연 재료로서는 산화 갈륨 등이 있다. 이 경우, 산화 갈륨막과 산화 실리콘막의 적층 구조나, 산화 갈륨막과 질화 실리콘막의 적층 구조 등을 적용할 수가 있다.
도 3(D)에 나타내는 트랜지스터(160)는, 상술한 각 구성요소를 포함하는 점에서, 도 1에 나타내는 트랜지스터(120)와 공통되고 있다. 트랜지스터(160)와 트랜지스터(120)의 차이는, 기판(100)측의 절연막 및 게이트 절연막에 있다. 즉, 트랜지스터(160)에서는, 절연막(102a)과 절연막(102b)의 적층 구조를 구비하고, 또한 게이트 절연막(110a)과 게이트 절연막(110b)을 구비하고 있다. 그 외의 구성요소에 대해서는, 도 1과 같다.
이와 같이, 절연막(102a)과 절연막(102b)의 적층 구조로 하고, 게이트 절연막(110a)과 게이트 절연막(110b)의 적층 구조로 함에 의해, 전하는 절연막(102a)과 절연막(102b)이나, 게이트 절연막(110a)과 게이트 절연막(110b)의 계면에 우선적으로 포획되기 때문에, 산화물 반도체막(108)의 계면에서의 전하 포획을 충분히 억제할 수가 있게 되어, 반도체 장치의 신뢰성이 향상한다.
또한, 절연막(102b)이나 게이트 절연막(110a)(즉, 산화물 반도체막(108)과 접하는 절연막)은 산화물 반도체막(108)과 동종의 성분으로 이루어지는 절연 재료로 이루어지는 막으로 하고, 절연막(102a)이나 게이트 절연막(110b)은, 절연막(102b)이나 게이트 절연막(110a)의 성분 재료와는 다른 재료를 포함한 막으로 하는 것이 바람직하다. 예를 들면, 산화물 반도체막(108)이 In-Ga-Zn-O계의 산화물 반도체 재료에 의해 구성되는 경우, 동종의 성분으로 이루어지는 절연 재료로서는 산화 갈륨 등이 있다. 이 경우, 산화 갈륨막과 산화 실리콘막의 적층 구조나, 산화 갈륨막과 질화 실리콘막의 적층 구조 등을 적용할 수가 있다.
본 실시형태와 관련되는 트랜지스터는, 열처리에 의해, 수소, 물, 수산기 또는 수소화물(수소화합물이라고도 한다) 등의 수소 원자를 포함한 불순물을 산화물 반도체로부터 배제하고, 또한 불순물의 배제 공정에서 감소할 우려가 있는 산소를 공급함으로써, 고순도화 및 I형(진성)화를 꾀한 산화물 반도체막을 이용하고 있다. 이와 같이 고순도화된 산화물 반도체막을 포함한 트랜지스터는, 스레숄드 전압 등의 전기적 특성 변동이 억제되어 있어 전기적으로 안정하다.
또한, 산화물 반도체막으로서 In를 포함한 산화물 반도체 재료를 이용하는 경우, In와 산소의 결합력은 비교적 약하기 때문에, 산화물 반도체막에 접하는 절연막에 실리콘 등의 것보다 산소와의 결합력이 강한 재료가 포함되는 경우에, 열처리에 의해 산화물 반도체막중의 산소가 빠져 버려서, 산화물 반도체막의 계면 근방에 산소 결손이 형성될 우려가 있다. 그렇지만, 개시하는 발명의 일 태양과 관련되는 트랜지스터는, 산화물 반도체막과 접하는 절연막에 과잉의 산소를 공급함으로써, 산화물 반도체막으로부터의 산소의 빠짐에 의한 산소 결손의 형성을 억제할 수가 있다.
특히, 산소 도핑 처리에 의해 산화물 반도체막중의 산소의 함유량을 증대시킴으로써, 전기적 바이어스 스트레스나 열스트레스에 기인하는 열화를 억제하여, 광에 의한 열화를 저감할 수가 있다.
이와 같이, 개시하는 발명의 일 태양에 의해, 신뢰성이 뛰어난 트랜지스터를 제공하는 것이 가능하다.
이상, 본 실시형태에 나타내는 구성, 방법 등은, 다른 실시형태에 나타내는 구성, 방법 등과 적절히 조합하여 이용할 수가 있다.
(실시형태 2)
본 실시형태에서는, 반도체 장치의 제작 방법의 다른 예에 대하여, 도 4 및 도 5를 이용하여 설명한다.
<반도체 장치의 구성예>
본 실시형태의 제작 방법으로 제작되는 반도체 장치의 구성은, 앞의 실시형태의 트랜지스터(120)와 같다. 즉, 기판(100)상의 절연막(102), 소스 전극(104a), 드레인 전극(104b), 산화물 반도체막(108), 게이트 절연막(110), 게이트 전극(112)을 포함한다(도 1 참조).
앞의 실시형태에서도 설명한 것처럼, 트랜지스터(120)에 있어서, 절연막(102)은, 산소 도핑 처리를 한 절연막이다. 게다가 본 실시형태에서는, 산화물 반도체막(108) 및 게이트 절연막(110)에 대해서도 산소 도핑 처리를 하고 있다. 이러한 산소 도핑 처리에 의해, 더욱 신뢰성이 높아진 트랜지스터(120)가 실현된다. 또한 앞의 실시형태와 마찬가지로, 구성을 변경한 트랜지스터를 제작할 수도 있다(도 3(A) 내지 도 3(D) 참조).
<반도체 장치의 제작 공정예>
이하, 도 4 및 도 5를 이용하여, 상술한 반도체 장치의 제작 공정의 일 예를 설명한다.
우선, 기판(100)상에 절연막(102)을 형성한다(도 4(A) 참조).
기판(100)의 재질에 큰 제한은 없지만, 적어도, 후의 열처리에 견디는 정도의 내열성을 갖고 있는 것이 필요하다. 예를 들면, 유리 기판, 세라믹 기판, 석영 기판, 사파이어 기판 등을, 기판(100)으로서 이용할 수가 있다. 또한, 실리콘이나 탄화 실리콘 등의 단결정 반도체 기판, 다결정 반도체 기판, 실리콘 게르마늄 등의 화합물 반도체 기판, SOI 기판 등을 적용하는 것도 가능하고, 이러한 기판상에 반도체소자가 마련된 것을, 기판(100)으로서 이용하여도 괜찮다.
또한, 기판(100)으로서 가요성 기판을 이용하여도 괜찮다. 가요성 기판상에 트랜지스터를 마련하는 경우, 가요성 기판상에 직접적으로 트랜지스터를 만들어도 괜찮고, 다른 기판에 트랜지스터를 형성한 후, 이를 박리하고, 가요성 기판에 전치하여도 좋다. 또한 트랜지스터를 박리하고, 가요성 기판에 전치하기 위해서는, 상기 다른 기판과 트랜지스터와의 사이에 박리층을 형성하면 좋다.
절연막(102)은 기초로서 기능하는 절연막이다. 구체적으로는, 절연막(102)에는, 산화 실리콘, 질화 실리콘, 산화 알루미늄, 질화 알루미늄, 산화 갈륨, 이들의 혼합 재료 등을 이용하면 좋다. 또한, 절연막(102)은, 상술한 재료를 포함한 절연막의 단층 구조로 하여도 좋고, 적층 구조로 하여도 좋다.
절연막(102)의 제작 방법에 특별히 한정은 없다. 예를 들면, 플라즈마 CVD법이나 스퍼터링법 등의 성막 방법을 이용하여 절연막(102)을 제작할 수가 있다. 또한 수소나 물 등이 혼입하기 어렵다고 하는 점에서는, 스퍼터링법이 매우 적합하다.
또한, 절연막(102)에는, 후에 형성되는 산화물 반도체막과 동종의 성분으로 이루어지는 절연 재료를 이용하면 특히 바람직하다. 이러한 재료는 산화물 반도체막과의 상성이 좋고, 이를 절연막(102)에 이용함으로써, 산화물 반도체막과의 계면 상태를 양호하게 유지할 수가 있기 때문이다. 여기서, 「산화물 반도체막과 동종의 성분」이란, 산화물 반도체막의 구성 원소로부터 선택되는 1종 또는 복수의 원소를 포함하는 것을 의미한다. 예를 들면, 산화물 반도체막이 In-Ga-Zn-O계의 산화물 반도체 재료에 의해 구성되는 경우, 동종의 성분으로 이루어지는 절연 재료로서는 산화 갈륨 등이 있다.
또한, 절연막(102)을 적층 구조로 하는 경우에는, 산화물 반도체막과 동종의 성분으로 이루어지는 절연 재료로 이루어지는 막(이하, 막a)과, 막a의 성분 재료와는 다른 재료를 포함한 막(이하, 막b)의 적층 구조로 하면 더욱 좋다. 막a와 막b를 산화물 반도체막측으로부터 순서대로 적층한 구조로 함으로써, 전하는 막a와 막b의 계면에 우선적으로 포획되기(산화물 반도체막과 막a의 계면과의 비교) 때문에 산화물 반도체막의 계면에서의 전하 포획을 충분히 억제할 수가 있게 되어, 반도체 장치의 신뢰성이 향상한다.
또한, 이러한 적층 구조로서는, 산화 갈륨막과 산화 실리콘막의 적층 구조나, 산화 갈륨막과 질화 실리콘막의 적층 구조 등을 적용할 수가 있다.
다음으로, 절연막(102)에 대하여, 산소(180a)에 의한 처리(산소 도핑 처리나, 산소 플라즈마 도핑 처리라고도 한다)를 실시한다(도 4(B) 참조). 산소(180a)에는, 적어도, 산소 라디칼, 산소 원자, 산소 이온중의 어느 것인가가 포함되어 있다. 절연막(102)에 산소 도핑 처리를 실시함으로써, 절연막(102)중에 산소를 함유시킬 수가 있어 후에 형성되는 산화물 반도체막(108)중, 산화물 반도체막(108) 계면 근방, 또는 산화물 반도체막(108)중 및 그 계면 근방에 산소를 함유시킬 수가 있다. 이 경우, 절연막(102)중의 산소의 함유량은, 절연막(102)의 화학량론비를 넘는 정도, 바람직하게는, 화학량론비의 1배를 넘어 4배까지(1배보다 크고 4배 미만), 보다 바람직하게는, 1배를 넘어 2배까지(1배보다 크고 2배 미만)로 한다. 혹은, 산소의 함유량은, 단결정의 경우의 산소의 양을 Y로 하여, Y를 넘는 정도, 바람직하게는, Y를 넘어 4Y까지 할 수도 있다. 혹은, 산소의 함유량은, 산소 도핑 처리를 실시하지 않는 경우의 절연막중의 산소의 양 Z를 기준으로 하여, Z를 넘는 정도, 바람직하게는, Z를 넘어 4Z까지로 할 수도 있다.
예를 들면, 조성이 GaOx (x>0)로 표현되는 산화 갈륨을 이용하는 경우, 단결정의 산화 갈륨은 Ga2O3이므로, x는 1.5를 넘어 6까지(즉 Ga의 1.5배를 넘어 6배까지)가 허용된다. 또한 이러한 산소 과잉 영역은, 절연막의 일부에 존재하고 있으면 좋다. 또한, 예를 들면, 조성이 SiOx (x>0)로 표현되는 산화 실리콘을 이용하는 경우, SiO2(즉 O가 Si의 2배)이면, x는 2를 넘어 8까지(즉 Si의 2배를 넘어 8배까지)가 허용된다. 또한 이러한 산소 과잉 영역은, 절연막의 일부(계면을 포함한다)에 존재하고 있으면 좋다.
또한, 절연막에 첨가되는 산소(180a)의 적어도 일부는, 산화물 반도체에 공급된 후, 산화물 반도체 중에서 미결합손을 갖는 것이 바람직하다. 미결합손을 가짐에 의해, 막중에 잔존할 수 있는 수소와 결합하여 수소를 고정화(비가동 이온화)할 수가 있기 때문이다.
상술한 산소(180a)는, 플라즈마 발생 장치나 오존 발생 장치에 의해 발생시킬 수가 있다. 보다 구체적으로는, 예를 들면, 반도체 장치에 대하여 에칭 처리를 실시할 수가 있는 장치나, 레지스트 마스크에 대하여 애싱을 실시할 수가 있는 장치 등을 이용하여 산소(180a)를 발생시켜, 절연막(102)을 처리할 수가 있다.
또한, 산소의 첨가를 보다 매우 적합하게 실시하기 위해서는, 기판에는 전기적인 바이어스를 인가해 두는 것이 바람직하다.
그 다음으로, 절연막(102)상에, 소스 전극 및 드레인 전극(이와 동일한 층에서 형성되는 배선을 포함한다)을 형성하기 위한 도전막을 형성하고, 해당 도전막을 가공하여, 소스 전극(104a) 및 드레인 전극(104b)을 형성한다(도 4(C) 참조). 또한 여기서 형성되는 소스 전극(104a)의 단부와 드레인 전극(104b)의 단부의 간격에 의해, 트랜지스터의 채널장(L)이 결정되게 된다.
소스 전극(104a) 및 드레인 전극(104b)에 이용하는 도전막으로서는, 예를 들면, Al, Cr, Cu, Ta, Ti, Mo, W로부터 선택된 원소를 포함한 금속막, 또는 상술한 원소를 성분으로 하는 금속 질화물막(질화 티탄막, 질화 몰리브덴막, 질화 텅스텐막) 등이 있다. 또한, Al, Cu 등의 금속막의 하측 또는 상측중의 한쪽 또는 양쪽에 Ti, Mo, W 등의 고융점 금속막 또는 이들의 금속 질화물막(질화 티탄막, 질화 몰리브덴막, 질화 텅스텐막)을 적층시킨 도전막을 이용하여도 좋다.
또한, 소스 전극(104a) 및 드레인 전극(104b)에 이용하는 도전막은, 도전성의 금속 산화물로 형성하여도 좋다. 도전성의 금속 산화물로서는 산화 인듐, 산화 주석, 산화 아연, 산화 인듐 산화 주석 혼합 산화물(ITO로 약기한다), 산화 인듐 산화 아연 혼합 산화물 또는 이들의 금속 산화물 재료에 산화 실리콘을 포함시킨 것을 이용할 수가 있다.
도전막의 가공은, 레지스트 마스크를 이용한 에칭에 의해 실시할 수가 있다. 해당 에칭에 이용하는 레지스트 마스크 형성시의 노광에는, 자외선이나 KrF 레이저광이나 ArF 레이저광 등을 이용하면 좋다.
또한, 채널장(L)=25 nm 미만의 노광을 실시하는 경우에는, 예를 들면, 수 nm~수 10 nm로 극히 파장이 짧은 초자외선(Extreme Ultraviolet)을 이용하여, 레지스트 마스크 형성시의 노광을 실시하면 좋다. 초자외선에 의한 노광은, 해상도가 높고 초점심도도 크다. 따라서, 후에 형성되는 트랜지스터의 채널장(L)을 미세화하는 것이 가능하고, 회로의 동작 속도를 높일 수가 있다.
또한, 이른바 다계조 마스크에 의해 형성된 레지스트 마스크를 이용하여 에칭 공정을 실시하여도 괜찮다. 다계조 마스크를 이용하여 형성된 레지스트 마스크는, 복수의 막두께를 갖는 형상이 되며, 애싱에 의해 더욱 형상을 변형시킬 수가 있기 때문에, 다른 패턴으로 가공하는 복수의 에칭 공정에 이용하는 것이 가능하다. 이 때문에, 한 장의 다계조 마스크에 의해, 적어도 2종류 이상의 다른 패턴에 대응하는 레지스트 마스크를 형성할 수가 있다. 즉, 공정의 간략화가 가능해진다.
다음으로, 절연막(102)상에, 소스 전극(104a) 및 드레인 전극(104b)과 접하는 산화물 반도체막을 형성하고, 해당 산화물 반도체막을 가공하여 섬 형상의 산화물 반도체막(106)을 형성한다(도 4(D) 참조).
산화물 반도체막은, 수소나 물 등이 혼입하기 어려운 방법으로 제작하는 것이 바람직하다. 예를 들면, 스퍼터링법 등을 이용하여 제작할 수가 있다. 또한, 산화물 반도체막의 두께는, 3 nm 이상 30 nm 이하로 하는 것이 바람직하다. 산화물 반도체막을 너무 두껍게 하면 (예를 들면, 막두께를 50 nm 이상), 트랜지스터가 노멀리온이 되어 버릴 우려가 있기 때문이다.
산화물 반도체막에 이용하는 재료로서는, 4원계 금속 산화물인 In-Sn-Ga-Zn-O계의 재료나, 3원계 금속 산화물인 In-Ga-Zn-O계의 재료, In-Sn-Zn-O계의 재료, In-Al-Zn-O계의 재료, Sn-Ga-Zn-O계의 재료, Al-Ga-Zn-O계의 재료, Sn-Al-Zn-O계의 재료나, 2원계 금속 산화물인 In-Zn-O계의 재료, Sn-Zn-O계의 재료, Al-Zn-O계의 재료, Zn-Mg-O계의 재료, Sn-Mg-O계의 재료, In-Mg-O계의 재료, In-Ga-O계의 재료나, 단원계 금속 산화물인 In-O계의 재료, Sn-O계의 재료, Zn-O계의 재료 등이 있다. 또한, 상기의 재료에 산화 규소를 포함시켜도 괜찮다. 여기서, 예를 들면, In-Ga-Zn-O계의 재료란, 인듐(In), 갈륨(Ga), 아연(Zn)을 갖는 산화물막 이라는 의미이며, 그 조성비는 특별히 묻지 않는다. 또한, In와 Ga와 Zn 이외의 원소를 포함하고 있어도 괜찮다.
또한, 산화물 반도체막은, 화학식 InMO3(ZnO)m (m>0, 자연수가 아니다)로 표기되는 재료를 이용한 박막으로 할 수가 있다. 여기서, M은, Ga, Al, Mn 및 Co로부터 선택된 1종 또는 복수의 금속 원소를 나타낸다. 예를 들면, M으로서 Ga, Ga 및 Al, Ga 및 Mn, 또는 Ga 및 Co 등을 이용할 수가 있다.
본 실시형태에서는, 산화물 반도체막을, In-Ga-Zn-O계의 산화물 타겟을 이용한 스퍼터링법에 의해 형성한다.
In-Ga-Zn-O계의 산화물 타겟으로서는, 예를 들면, 조성비로서 In2O3:Ga2O3:ZnO=1:1:1[몰수비]의 산화물 타겟을 이용할 수가 있다. 또한 타겟의 재료 및 조성을 상술한 것에 한정할 필요는 없다. 예를 들면, In2O3:Ga2O3:ZnO=1:1:2[몰수비]의 조성비의 산화물 타겟을 이용할 수도 있다.
산화물 타겟의 충전율은, 90% 이상 100% 이하, 바람직하게는 95% 이상 99.9% 이하로 한다. 충전율이 높은 금속 산화물 타겟을 이용함으로써, 성막한 산화물 반도체막은 치밀한 막으로 할 수가 있기 때문이다.
성막의 분위기는, 희가스(대표적으로는 아르곤) 분위기하, 산소 분위기하, 또는 희가스와 산소의 혼합 분위기하 등으로 하면 좋다. 또한, 산화물 반도체막으로의 수소, 물, 수산기를 갖는 화합물, 수소화물 등의 혼입을 막기 위해서, 수소, 물, 수산기를 갖는 화합물, 수소화물 등의 수소 원자를 포함한 불순물이 충분히 제거된 고순도 가스를 이용한 분위기로 하는 것이 바람직하다.
또한, 산화물 반도체막의 성막 시에, 절연막(102)중의 산소가 산화물 반도체막에 공급되는 일이 있다. 이와 같이, 절연막(102)에 산소를 첨가해 둠으로써, 산소가 충분히 첨가된 산화물 반도체막을 제작하는 것이 가능하다.
보다 구체적으로는, 예를 들면, 산화물 반도체막은 다음과 같이 형성할 수가 있다.
우선, 감압 상태로 유지된 성막실내에 기판(100)을 유지하고, 기판 온도를 100℃ 이상 600℃ 이하 바람직하게는 200℃ 이상 400℃ 이하로 한다. 기판(100)이 가열된 상태로 성막을 실시함으로써, 산화물 반도체막에 포함되는 불순물 농도를 저감할 수가 있기 때문이다. 또한, 스퍼터링에 의한 손상을 경감할 수가 있기 때문이다.
다음으로, 성막실내의 잔류 수분을 제거하면서, 수소 및 물 등의 수소 원자를 포함한 불순물이 충분히 제거된 고순도 가스를 도입하고, 상기 타겟을 이용하여 기판(100)상에 산화물 반도체막을 성막한다. 성막실내의 잔류 수분을 제거하기 위해서는, 배기 수단으로서 크라이오 펌프, 이온 펌프, 티탄 서블리메이션(sublimation) 펌프 등의 흡착형의 진공 펌프를 이용하는 것이 바람직하다. 또한, 배기 수단은, 터보 분자 펌프에 콜드 트랩을 부가한 것이라도 괜찮다. 크라이오 펌프를 이용하여 배기한 성막실은, 예를 들면, 수소 분자나, 물(H2O) 등의 수소 원자를 포함한 화합물(보다 바람직하게는 탄소 원자를 포함한 화합물도) 등이 제거되어 있기 때문에, 해당 성막실에서 성막한 산화물 반도체막에 포함되는 불순물의 농도를 저감할 수 있다.
성막 조건의 일 예로서 기판과 타겟의 사이와의 거리를 100 mm, 압력을 0.6 Pa, 직류(DC) 전원을 0.5 kW, 성막 분위기를 산소(산소 유량 비율 100%) 분위기로 할 수가 있다. 또한 펄스 직류 전원을 이용하면, 성막시의 분말상 물질(파티클, 쓰레기라고도 한다)의 발생을 경감할 수 있어 막두께 분포도 균일하게 되기 때문에 바람직하다.
산화물 반도체막의 가공은, 원하는 형상의 마스크를 산화물 반도체막상에 형성한 후, 해당 산화물 반도체막을 에칭함으로써 실시할 수가 있다. 상술한 마스크는, 포토리소그래피 등의 방법을 이용하여 형성할 수가 있다. 또는, 잉크젯법 등의 방법을 이용하여 마스크를 형성하여도 좋다.
또한, 산화물 반도체막의 에칭은, 건식 에칭이라도 습식 에칭이라도 좋다. 물론, 이들을 조합하여 이용하여도 괜찮다.
그 후, 산화물 반도체막(106)에 대하여 열처리를 실시하여, 고순도화된 산화물 반도체막(108)을 형성한다(도 4(E) 참조). 이 열처리에 의해 산화물 반도체막(106)중의, 수소(물이나 수산기를 포함한다)를 제거하고, 산화물 반도체막의 구조를 정돈하여 에너지갭중의 결함 준위를 저감할 수가 있다. 또한, 이 열처리에 의해, 절연막(102)중의 산소가 산화물 반도체막에 공급되는 일이 있다. 상기 열처리의 온도는, 250℃ 이상 650℃ 이하, 바람직하게는 450℃ 이상 600℃ 이하, 또는 기판의 왜곡점 미만으로 한다.
열처리는, 예를 들면, 저항 발열체 등을 이용한 전기로에 피처리물을 도입하고, 질소 분위기하, 450℃, 1시간의 조건으로 실시할 수가 있다. 이 동안, 산화물 반도체막(106)은 대기에 접하지 않게 하고, 물이나 수소의 혼입이 생기지 않도록 한다.
열처리 장치는 전기로에 한정되지 않고, 가열된 가스 등의 매체로부터의 열전도, 또는 열복사에 의해, 피처리물을 가열하는 장치를 이용하여도 좋다. 예를 들면, GRTA(Gas Rapid Thermal Anneal) 장치, LRTA(Lamp Rapid Thermal Anneal) 장치 등의 RTA(Rapid Thermal Anneal) 장치를 이용할 수가 있다. LRTA 장치는, 할로겐 램프, 메탈할라이드 램프, 크세논 아크 램프, 카본 아크 램프, 고압 나트륨 램프, 고압 수은 램프 등의 램프로부터 발하는 광(전자파)의 복사에 의해, 피처리물을 가열하는 장치다. GRTA 장치는, 고온의 가스를 이용하여 열처리를 실시하는 장치다.
예를 들면, 상기 열처리로서 가열된 불활성 가스 분위기중에 피처리물을 투입하고, 몇 분간 가열한 후, 해당 불활성 가스 분위기로부터 피처리물을 취출하는 GRTA 처리를 실시하여도 괜찮다. GRTA 처리를 이용하면 단시간에서의 고온 열처리가 가능해진다. 또한, 피처리물의 내열 온도를 넘는 온도 조건이라도 적용이 가능해진다. 또한 처리중에, 불활성 가스를, 산소를 포함한 가스로 전환하여도 좋다. 산소를 포함한 분위기에서 열처리를 실시함으로써, 산소 결손에 기인하는 에너지갭중의 결함 준위를 저감할 수가 있기 때문이다.
또한, 불활성 가스 분위기로서는, 질소, 또는 희가스(헬륨, 네온, 아르곤 등)를 주성분으로 하는 분위기이며, 물, 수소 등이 포함되지 않는 분위기를 적용하는 것이 바람직하다. 예를 들면, 열처리 장치에 도입하는 질소나, 헬륨, 네온, 아르곤 등의 희가스의 순도를, 6 N(99.9999%) 이상, 바람직하게는 7 N(99.99999%) 이상(즉, 불순물 농도가 1 ppm 이하, 바람직하게는 0.1 ppm 이하)로 한다.
어쨌든, 상기 열처리에 의해 불순물을 저감하여, i형(진성 반도체) 또는 i형에 극히 가까운 산화물 반도체막을 형성함으로써, 극히 뛰어난 특성의 트랜지스터를 실현할 수가 있다.
그런데, 상술한 열처리에는 수소나 물 등을 제거하는 효과가 있기 때문에, 해당 열처리를, 탈수화 처리나, 탈수소화 처리 등이라고 부를 수도 있다. 해당 탈수화 처리나, 탈수소화 처리는, 예를 들면, 산화물 반도체막을 섬 형상으로 가공하기 전 등의 타이밍에서 실시하는 것도 가능하다. 또한, 이러한 탈수화 처리, 탈수소화 처리는, 1회에 한정하지 않고 여러 차례 실시하여도 좋다.
다음으로, 산화물 반도체막(108)에 대하여, 산소(180b)에 의한 처리를 실시한다(도 4(F) 참조). 산소(180b)에는, 적어도, 산소 라디칼, 산소 원자, 산소 이온중의 어느 것인가가 포함되어 있다. 산화물 반도체막(108)에 산소 도핑 처리를 실시함으로써, 산화물 반도체막(108)중, 산화물 반도체막(108) 계면 근방, 또는 산화물 반도체막(108)중 및 그 계면 근방에 산소를 함유시킬 수가 있다. 이 경우, 산소의 함유량은, 산화물 반도체막(108)의 화학량론비를 넘는 정도, 바람직하게는, 화학량론비의 1배를 넘어 2배까지(1배보다 크고 2배 미만)로 한다. 혹은, 산소의 함유량은, 단결정의 경우의 산소의 양을 Y로 하여, Y를 넘는 정도, 바람직하게는, Y를 넘어 2Y까지 할 수도 있다. 혹은, 산소의 함유량은, 산소 도핑 처리를 실시하지 않는 경우의 산화물 반도체막중의 산소의 양 Z를 기준으로 하여, Z를 넘는 정도, 바람직하게는, Z를 넘어 2Z까지로 할 수도 있다. 또한 상술한 바람직한 범위에 상한이 존재하는 것은, 산소의 함유량을 너무 많이 하면, 수소흡장합금(수소저장합금)과 같이, 오히려 산화물 반도체막(108)이 수소를 취입해 버릴 우려가 있기 때문이다.
결정 구조가 InGaO3(ZnO)m (m>0)로 표현되는 재료의 경우, 예를 들면, M=1(InGaZnO4)의 결정 구조를 기준으로 하면, InGaZnOx에 있어서 x는 4를 넘어 8까지, 또한 m=2(InGaZn2O5)의 결정 구조를 기준으로 하면, InGaZn2Ox에 있어서 x는 5를 넘어 10까지가 허용된다. 또한 이러한 산소 과잉 영역은, 산화물 반도체의 일부에 존재하고 있으면 좋다.
또한, 산화물 반도체막에 첨가되는 산소(180b)의 적어도 일부는, 산화물 반도체 중에서 미결합손을 갖는 것이 바람직하다. 미결합손을 가짐에 의해, 막중에 잔존할 수 있는 수소와 결합하여 수소를 고정화(비가동 이온화)할 수가 있기 때문이다.
상술한 산소(180b)는, 플라즈마 발생 장치나 오존 발생 장치에 의해 발생시킬 수가 있다. 보다 구체적으로는, 예를 들면, 반도체 장치에 대하여 에칭 처리를 실시할 수가 있는 장치나, 레지스트 마스크에 대하여 애싱을 실시할 수가 있는 장치 등을 이용하여 산소(180b)를 발생시켜, 산화물 반도체막(108)을 처리할 수가 있다.
또한, 산소의 첨가를 보다 매우 적합하게 실시하기 위해서는, 기판에는 전기적인 바이어스를 인가해 두는 것이 바람직하다.
또한, 산소 도핑 처리를 실시한 산화물 반도체막(108)에 열처리(온도 150℃~470℃)를 실시하여도 괜찮다. 해당 열처리에 의해, 수소와 산화물 반도체 재료와의 반응에 의해 생성된 물, 수산기(OH) 등을 산화물 반도체막으로부터 제거할 수가 있다. 열처리는, 물, 수소 등이 충분히 저감된 질소, 산소, 초건조공기(수분량이 20 ppm 이하, 바람직하게는 1 ppm 이하, 바람직하게는 10 ppb 이하의 공기), 희가스(아르곤, 헬륨 등) 등의 분위기하에서 실시하면 좋다. 또한, 산소 도핑 처리와 열처리를 반복하여 실시하여도 좋다. 해당 처리를 반복하여 실시함으로써, 트랜지스터의 신뢰성을 더욱 높일 수가 있다. 또한 반복의 회수는 적절히 설정할 수가 있다.
다음으로, 산화물 반도체막(108)의 일부와 접하고, 또한 소스 전극(104a) 및 드레인 전극(104b)을 덮는 게이트 절연막(110)을 형성한다(도 5(A) 참조).
게이트 절연막(110)은, 절연막(102)과 마찬가지로 형성할 수가 있다. 즉, 게이트 절연막(110)은, 산화 실리콘, 질화 실리콘, 산화 알루미늄, 질화 알루미늄, 산화 갈륨, 이들의 혼합 재료 등을 이용하여 형성하면 좋다. 다만, 트랜지스터의 게이트 절연막으로서 기능하는 것을 고려하여, 산화 하프늄, 산화 탄탈륨, 산화 이트륨, 하프늄 실리케이트(HfSixOy (x>0, y>0)), 질소가 첨가된 하프늄 실리케이트(HfSixOy (x>0, y>0)), 질소가 첨가된 하프늄 알루미네이트(HfAlxOy (x>0, y>0)), 등의 비유전률이 높은 재료를 채용하여도 좋다.
또한, 절연막(102)과 마찬가지로, 적층 구조를 채용하여도 좋다. 이 경우에는, 산화물 반도체막과 동종의 성분으로 이루어지는 절연 재료로 이루어지는 막(이하, 막a)과, 막a의 성분 재료와는 다른 재료를 포함한 막(이하, 막b)의 적층 구조로 하면 더욱 좋다. 막a와 막b를 산화물 반도체막측으로부터 순서대로 적층한 구조로 함으로써, 전하는 막a와 막b의 계면에 우선적으로 포획되기(산화물 반도체막과 막a의 계면과의 비교) 때문에 산화물 반도체막의 계면에서의 전하 포획을 충분히 억제할 수가 있게 되어, 반도체 장치의 신뢰성이 향상한다.
또한, 이러한 적층 구조로서는, 산화 갈륨막과 산화 실리콘막의 적층 구조나, 산화 갈륨막과 질화 실리콘막의 적층 구조 등을 적용할 수가 있다.
상술한 게이트 절연막(110)의 형성 후에는, 열처리를 실시하는 것이 바람직하다. 해당 열처리의 온도는, 250℃ 이상 700℃ 이하, 바람직하게는 450℃ 이상 600℃ 이하, 또는 기판의 왜곡점 미만으로 한다.
상기 열처리는, 질소, 산소, 초건조공기(물의 함유량이 20 ppm 이하, 바람직하게는 1 ppm 이하, 바람직하게는 10 ppb 이하의 공기), 또는 희가스(아르곤, 헬륨 등)의 분위기하에서 실시하면 좋지만, 상기 질소, 산소, 초건조공기, 또는 희가스 등의 분위기에는, 물, 수소 등이 포함되지 않는 것이 바람직하다. 또한, 열처리 장치에 도입하는 질소, 산소, 또는 희가스의 순도는, 6 N(99.9999%) 이상(즉 불순물 농도를 1 ppm 이하)으로 하는 것이 바람직하고, 7 N(99.99999%) 이상(즉 불순물 농도를 0.1 ppm 이하)으로 하면, 보다 바람직하다.
본 실시형태와 관련되는 상기 열처리에 있어서는, 산화물 반도체막(108)과 절연막(102)나 게이트 절연막(110)이 접한 상태로 가열된다. 따라서, 상술한 탈수화(또는 탈수소화) 처리에 의해 감소해 버릴 가능성이 있는 산소를, 절연막(102) 등으로부터 산화물 반도체막(108)으로 공급하는 것도 가능하다. 이런 의미에서, 해당 열처리를, 가산화(가산소화)라고 부를 수도 있다.
또한, 가산화를 목적으로 하는 열처리의 타이밍은, 산화물 반도체막(108)의 형성 후라면 특별히 한정되지 않는다. 예를 들면, 게이트 전극의 형성 후에 가산화를 목적으로 하는 열처리를 실시하여도 좋다. 또는, 탈수화 등을 목적으로 하는 열처리에 이어서 가산화를 목적으로 하는 열처리를 실시하여도 좋고, 탈수화 등을 목적으로 하는 열처리에 가산화를 목적으로 하는 열처리를 겸하게 하여도 좋고, 가산화를 목적으로 하는 열처리에 탈수화 등을 목적으로 하는 열처리를 겸하게 하여도 좋다.
상술한 바와 같이, 탈수화 등을 목적으로 하는 열처리와 산소 도핑 처리 또는 가산화를 목적으로 하는 열처리를 적용함으로써, 산화물 반도체막(108)을 불순물이 최대한 포함되지 않게 고순도화할 수가 있다. 고순도화된 산화물 반도체막(108)중에는 도너에 유래하는 캐리어가 극히 적다(제로에 가깝다).
다음으로, 게이트 절연막(110)에 대하여, 산소(180c)에 의한 처리를 실시한다(도 5(B) 참조). 산소(180c)에는, 적어도, 산소 라디칼, 산소 원자, 산소 이온중의 어느 것인가가 포함되어 있다. 게이트 절연막(110)에 산소 도핑 처리를 실시함으로써, 게이트 절연막(110)중, 산화물 반도체막(108)중, 산화물 반도체막(108) 계면 근방, 또는 산화물 반도체막(108)중 및 그 계면 근방에 산소를 함유시킬 수가 있다. 이 경우, 게이트 절연막(110)중의 산소의 함유량은, 게이트 절연막(110)의 화학량론비를 넘는 정도, 바람직하게는, 화학량론비의 1배를 넘어 4배까지(1배보다 크고 4배 미만), 보다 바람직하게는, 1배를 넘어 2배까지(1배보다 크고 2배 미만)로 한다. 혹은, 산소의 함유량은, 단결정의 경우의 산소의 양을 Y로 하여, Y를 넘는 정도, 바람직하게는, Y를 넘어 4Y까지 할 수도 있다. 혹은, 산소의 함유량은, 산소 도핑 처리를 실시하지 않는 경우의 게이트 절연막(110)중의 산소의 양 Z를 기준으로 하여, Z를 넘는 정도, 바람직하게는, Z를 넘어 4Z까지로 할 수도 있다.
예를 들면, 조성이 GaOx (x>0)로 표현되는 산화 갈륨을 이용하는 경우, 단결정의 산화 갈륨은 Ga2O3이므로, x는 1.5를 넘어 6까지(즉 Ga의 1.5배를 넘어 6배까지)가 허용된다. 또한, 예를 들면, 조성이 SiOx (x>0)로 표현되는 산화 실리콘을 이용하는 경우, SiO2(즉 O가 Si의 2배)이면, x는 2를 넘어 8까지(즉 Si의 2배를 넘어 8배까지)가 허용된다. 또한 이러한 산소 과잉 영역은, 절연막의 일부(계면을 포함한다)에 존재하고 있으면 좋다.
또한, 절연막에 첨가되는 산소(180c)의 적어도 일부는, 산화물 반도체에 공급된 후, 산화물 반도체 중에서 미결합손을 갖는 것이 바람직하다. 미결합손을 가짐에 의해, 막중에 잔존할 수 있는 수소와 결합하여 수소를 고정화(비가동 이온화)할 수가 있기 때문이다.
상술한 산소(180c)는, 플라즈마 발생 장치나 오존 발생 장치에 의해 발생시킬 수가 있다. 보다 구체적으로는, 예를 들면, 반도체 장치에 대하여 에칭 처리를 실시할 수가 있는 장치나, 레지스트 마스크에 대하여 애싱을 실시할 수가 있는 장치 등을 이용하여 산소(180c)를 발생시켜, 게이트 절연막(110)을 처리할 수가 있다.
또한, 산소의 첨가를 보다 매우 적합하게 실시하기 위해서는, 기판에는 전기적인 바이어스를 인가해 두는 것이 바람직하다.
또한, 상술한 산소 도핑 처리의 뒤에는, 열처리를 실시하여도 좋다. 이 열처리에 의해, 충분한 양의 산소를 산화물 반도체막에 공급하는 것이 가능하다. 해당 효과를 얻기 위한 열처리의 타이밍은, 상술한 산소 도핑 처리 후라면 언제라도 상관없다. 또한, 산소 도핑 처리와 열처리를 반복하여 실시하여도 좋다. 해당 처리를 반복하여 실시함으로써, 트랜지스터의 신뢰성을 더욱 높일 수가 있다. 또한 반복의 회수는 적절히 설정할 수가 있다.
그 후, 게이트 전극(112)을 형성한다(도 5(C) 참조). 게이트 전극(112)은, 몰리브덴, 티탄, 탄탈륨, 텅스텐, 알루미늄, 동, 네오디뮴, 스칸듐 등의 금속재료 또는 이들을 주성분으로 하는 합금 재료를 이용하여 형성할 수가 있다. 또한 게이트 전극(112)은, 단층 구조로 하여도 좋고, 적층 구조로 하여도 좋다.
또한, 게이트 전극(112)의 형성 후에는, 절연막을 형성하여도 좋다. 해당 절연막은, 예를 들면, 산화 실리콘, 질화 실리콘, 산화 알루미늄, 질화 알루미늄, 산화 갈륨, 이들의 혼합 재료 등을 이용하여 형성할 수가 있다. 특히, 절연막으로서 질화 실리콘막을 이용하는 경우에는, 첨가된 산소의 외부로의 방출을 막을 수가 있음과 동시에, 산화물 반도체막(108)으로의 외부로부터의 수소 등의 혼입을 효과적으로 억제할 수가 있기 때문에 매우 적합하다. 또한, 소스 전극(104a)이나 드레인 전극(104b), 게이트 전극(112) 등과 접속되는 배선을 형성하여도 좋다.
이상의 공정으로 트랜지스터(120)가 형성된다.
또한, 상술한 설명은, 절연막(102), 산화물 반도체막(108), 및 게이트 절연막(110)의 모두에 산소 도핑 처리를 적용하는 예에 대한 것이지만, 개시하는 발명의 일 태양은 이에 한정되지 않는다. 예를 들면, 절연막(102) 및 산화물 반도체막(108)에 산소 도핑 처리를 적용하여도 좋고, 절연막(102) 및 게이트 절연막(110)에 산소 도핑 처리를 적용하여도 좋다.
본 실시형태와 관련되는 트랜지스터는, 열처리에 의해, 수소, 물, 수산기 또는 수소화물(수소화합물이라고도 한다) 등의 수소 원자를 포함한 불순물을 산화물 반도체로부터 배제하고, 또한 불순물의 배제 공정에서 감소할 우려가 있는 산소를 공급함으로써, 고순도화 및 i형(진성)화를 꾀한 산화물 반도체막을 이용하고 있다. 이와 같이 고순도화된 산화물 반도체막을 포함한 트랜지스터는, 스레숄드 전압 등의 전기적 특성 변동이 억제되어 있어 전기적으로 안정하다.
또한, 산화물 반도체막으로서 In를 포함한 산화물 반도체 재료를 이용하는 경우, In와 산소의 결합력은 비교적 약하기 때문에, 산화물 반도체막에 접하는 절연막에 실리콘 등의 것보다 산소와의 결합력이 강한 재료가 포함되는 경우에, 열처리에 의해 산화물 반도체막중의 산소가 빠져 버려서, 산화물 반도체막의 계면 근방에 산소 결손이 형성될 우려가 있다. 그렇지만, 개시하는 발명의 일 태양과 관련되는 트랜지스터는, 산화물 반도체막과 접하는 절연막에 과잉의 산소를 공급함으로써, 산화물 반도체막으로부터의 산소의 빠짐에 의한 산소 결손의 형성을 억제할 수가 있다.
특히, 산소 도핑 처리에 의해 산화물 반도체막중의 산소의 함유량을 증대시킴으로써, 전기적 바이어스 스트레스나 열스트레스에 기인하는 열화를 억제하여, 광에 의한 열화를 저감할 수가 있다.
이와 같이, 개시하는 발명의 일 태양에 의해, 신뢰성이 뛰어난 트랜지스터를 제공하는 것이 가능하다.
이상, 본 실시형태에 나타내는 구성, 방법 등은, 다른 실시형태에 나타내는 구성, 방법 등과 적절히 조합하여 이용할 수가 있다.
(실시형태 3)
본 실시형태에서는, 반도체 장치의 제작 방법의 다른 예에 대하여, 도 6을 이용하여 설명한다.
<반도체 장치의 구성예>
본 실시형태의 제작 방법으로 제작되는 반도체 장치의 구성은, 앞의 실시형태의 트랜지스터(120)와 같다. 즉, 기판(100)상의 절연막(102), 소스 전극(104a), 드레인 전극(104b), 산화물 반도체막(108), 게이트 절연막(110), 게이트 전극(112)을 포함한다(도 1 참조).
앞의 실시형태에서도 설명한 것처럼, 트랜지스터(120)에 있어서, 절연막(102)은, 산소 도핑 처리를 한 절연막이다. 또한, 본 실시형태에서는, 산화물 반도체막(108) 및 게이트 절연막(110)에 대해서도 산소 도핑 처리를 하고 있다. 이러한 산소 도핑 처리에 의해, 더욱 신뢰성이 높아진 트랜지스터(120)가 실현된다. 게다가 본 실시형태에 있어서의 절연막(102)에 대한 산소 도핑 처리는, 소스 전극(104a) 및 드레인 전극(104b)의 형성에 이용하는 마스크(103a) 및 마스크(103b)의 제거의 공정을 겸하고 있다. 이러한 프로세스를 채용함으로써, 공정의 간략화에 의한 제조비용의 저감을 꾀할 수가 있다. 또한 앞의 실시형태와 마찬가지로, 구성을 변경한 트랜지스터를 제작할 수도 있다(도 3(A) 내지 도 3(D) 참조).
<반도체 장치의 제작 공정예>
이하, 도 6을 이용하여, 상술한 반도체 장치의 제작 공정의 일 예를 설명한다. 또한 제작 공정의 기본적인 내용은 앞의 실시형태와 같기 때문에, 이하에서는 차이점에 대하여 설명하는데 그친다.
우선, 기판(100)상에 절연막(102)을 형성한다(도 6(A) 참조). 자세한 것은, 도 4(A)에 관한 기재를 참조하면 좋다.
그 다음으로, 절연막(102)상에, 소스 전극 및 드레인 전극(이와 동일한 층에서 형성되는 배선을 포함한다)을 형성하기 위한 도전막을 형성하고, 해당 도전막을, 마스크(103a) 및 마스크(103b)를 이용하여 가공하여, 소스 전극(104a) 및 드레인 전극(104b)을 형성한다. 그리고, 절연막(102)에 대하여, 산소(180a)에 의한 처리(산소 도핑 처리나, 산소 플라즈마 도핑 처리라고도 한다)를 실시한다(도 6(B) 참조). 소스 전극(104a) 및 드레인 전극(104b)을 형성하기 위한 공정의 자세한 것은, 도 4(C)에 관한 기재를 참조하면 좋다. 여기서, 상술한 산소 도핑 처리는, 마스크(103a) 및 마스크(103b)의 제거 공정을 겸하는 것이다.
산소(180a)에는, 적어도, 산소 라디칼, 산소 원자, 산소 이온중의 어느 것인가가 포함되어 있다. 절연막(102)에 산소 도핑 처리를 실시함으로써, 절연막(102)중에 산소를 함유시킬 수가 있어 후에 형성되는 산화물 반도체막(108)중, 산화물 반도체막(108) 계면 근방, 또는 산화물 반도체막(108)중 및 그 계면 근방에 산소를 함유시킬 수가 있다. 이 경우, 절연막(102)중의 산소의 함유량은, 절연막(102)의 화학량론비를 넘는 정도, 바람직하게는, 화학량론비의 1배를 넘어 4배까지(1배보다 크고 4배 미만), 보다 바람직하게는, 1배를 넘어 2배까지(1배보다 크고 2배 미만)로 한다. 혹은, 산소의 함유량은, 단결정의 경우의 산소의 양을 Y로 하여, Y를 넘는 정도, 바람직하게는, Y를 넘어 4Y까지 할 수도 있다. 혹은, 산소의 함유량은, 산소 도핑 처리를 실시하지 않는 경우의 절연막중의 산소의 양 Z를 기준으로 하여, Z를 넘는 정도, 바람직하게는, Z를 넘어 4Z까지로 할 수도 있다.
예를 들면, 조성이 GaOx (x>0)로 표현되는 산화 갈륨을 이용하는 경우, 단결정의 산화 갈륨은 Ga2O3이므로, x는 1.5를 넘어 6까지(즉 Ga의 1.5배를 넘어 6배까지)가 허용된다. 또한, 예를 들면, 조성이 SiOx (x>0)로 표현되는 산화 실리콘을 이용하는 경우, SiO2(즉 O가 Si의 2배)이면, x는 2를 넘어 8까지(즉 Si의 2배를 넘어 8배까지)가 허용된다. 또한 이러한 산소 과잉 영역은, 절연막의 일부(계면을 포함한다)에 존재하고 있으면 좋다.
또한, 절연막에 첨가되는 산소(180a)의 적어도 일부는, 산화물 반도체에 공급된 후, 산화물 반도체 중에서 미결합손을 갖는 것이 바람직하다. 미결합손을 가짐에 의해, 막중에 잔존할 수 있는 수소와 결합하여 수소를 고정화(비가동 이온화)할 수가 있기 때문이다.
상술한 산소(180a)는, 플라즈마 발생 장치나 오존 발생 장치에 의해 발생시킬 수가 있다. 보다 구체적으로는, 예를 들면, 레지스트 마스크에 대하여 애싱을 실시할 수가 있는 장치 등을 이용하여 산소(180a)를 발생시켜, 절연막(102)을 처리할 수가 있다.
해당 산소 도핑 처리에 의해 마스크(103a) 및 마스크(103b)가 제거된다. 다만, 통상의 마스크 제거 공정과는 달리, 해당 공정은 산소의 첨가를 목적으로 하는 것이기 때문에, 기판에는 강한 바이어스를 인가해 두는 것이 바람직하다.
또한, 해당 산소 도핑 처리에 의해, 절연막(102)중에는, 산소가 고농도로 존재하는 영역과 산소가 저농도로 존재하는 영역이 형성된다. 구체적으로는, 절연막(102)의, 소스 전극(104a) 및 드레인 전극(104b)에 덮이지 않은 영역이, 산소가 고농도로 존재하는 영역이 되고, 소스 전극(104a) 및 드레인 전극(104b)에 덮여 있는 영역이, 산소가 저농도로 존재하는 영역이 된다.
다음으로, 절연막(102)상에, 소스 전극(104a) 및 드레인 전극(104b)과 접하는 산화물 반도체막을 형성하고, 해당 산화물 반도체막을 가공하여 섬 형상의 산화물 반도체막을 형성한다. 그 후, 섬 형상의 산화물 반도체막에 있어서 열처리를 실시하여, 고순도화된 산화물 반도체막(108)을 형성한다(도 6(C) 참조). 해당 공정의 자세한 것은, 도 4(D) 및 도 4(E)에 관한 기재를 참조하면 좋다.
다음으로, 산화물 반도체막(108)에 대하여, 산소(180b)에 의한 처리를 실시한다(도 6(D) 참조). 자세한 것은, 도 4(F)에 관한 기재를 참조하면 좋다.
다음으로, 산화물 반도체막(108)의 일부와 접하고, 또한 소스 전극(104a) 및 드레인 전극(104b)을 덮는 게이트 절연막(110)을 형성한다. 그리고, 그 후, 게이트 절연막(110)에 대하여, 산소(180c)에 의한 처리를 실시한다(도 6(E) 참조). 자세한 것은, 도 5(A) 및 도 5(B)에 관한 기재를 참조하면 좋다.
그 후, 게이트 전극(112)을 형성한다(도 6(F) 참조). 자세한 것은, 도 5(C)에 관한 기재를 참조하면 좋다.
또한, 게이트 전극(112)의 형성 후에는, 절연막을 형성하여도 좋다. 해당 절연막은, 예를 들면, 산화 실리콘, 질화 실리콘, 산화 알루미늄, 질화 알루미늄, 산화 갈륨, 이들의 혼합 재료 등을 이용하여 형성할 수가 있다. 특히, 절연막으로서 질화 실리콘을 이용하는 경우에는, 첨가된 산소의 외부로의 방출을 막을 수가 있음과 동시에, 산화물 반도체막(108)으로의 외부로부터의 수소 등의 혼입을 효과적으로 억제할 수가 있기 때문에 매우 적합하다. 또한, 소스 전극(104a)이나 드레인 전극(104b), 게이트 전극(112) 등과 접속되는 배선을 형성하여도 좋다.
이상의 공정으로 트랜지스터(120)가 형성된다.
또한, 상술한 설명은, 절연막(102), 산화물 반도체막(108), 및 게이트 절연막(110)의 모두에 산소 도핑 처리를 적용하는 예에 대한 것이지만, 개시하는 발명의 일 태양은 이에 한정되지 않는다. 예를 들면, 절연막(102) 및 산화물 반도체막(108)에 산소 도핑 처리를 적용하여도 좋다.
본 실시형태와 관련되는 트랜지스터는, 열처리에 의해, 수소, 물, 수산기 또는 수소화물(수소화합물이라고도 한다) 등의 수소 원자를 포함한 불순물을 산화물 반도체로부터 배제하고, 또한 불순물의 배제 공정에서 감소할 우려가 있는 산소를 공급함으로써, 고순도화 및 i형(진성)화를 꾀한 산화물 반도체막을 이용하고 있다. 이와 같이 고순도화된 산화물 반도체막을 포함한 트랜지스터는, 스레숄드 전압 등의 전기적 특성 변동이 억제되어 있어 전기적으로 안정하다.
또한, 산화물 반도체막으로서 In를 포함한 산화물 반도체 재료를 이용하는 경우, In와 산소의 결합력은 비교적 약하기 때문에, 산화물 반도체막에 접하는 절연막에 실리콘 등의 것보다 산소와의 결합력이 강한 재료가 포함되는 경우에, 열처리에 의해 산화물 반도체막중의 산소가 빠져 버려서, 산화물 반도체막의 계면 근방에 산소 결손이 형성될 우려가 있다. 그렇지만, 개시하는 발명의 일 태양과 관련되는 트랜지스터는, 산화물 반도체막과 접하는 절연막에 과잉의 산소를 공급함으로써, 산화물 반도체막으로부터의 산소의 빠짐에 의한 산소 결손의 형성을 억제할 수가 있다.
특히, 산소 도핑 처리에 의해 산화물 반도체막중의 산소의 함유량을 증대시킴으로써, 전기적 바이어스 스트레스나 열스트레스에 기인하는 열화를 억제하여, 광에 의한 열화를 저감할 수가 있다.
게다가 본 실시형태와 관련되는 제작 방법에서는, 공정이 간략화되고 있기 때문에 제조와 관련되는 비용을 억제할 수가 있다.
이와 같이, 개시하는 발명의 일 태양에 의해, 제조비용을 낮게 억제하면서, 신뢰성이 뛰어난 트랜지스터를 제공하는 것이 가능하다.
이상, 본 실시형태에 나타내는 구성, 방법 등은, 다른 실시형태에 나타내는 구성, 방법 등과 적절히 조합하여 이용할 수가 있다.
(실시형태 4)
본 실시형태에서는, 산소 도핑 처리에 이용할 수가 있는 플라즈마 장치(애싱 장치라고도 부른다)의 예를 설명한다. 또한 이 장치는, 예를 들면 제 5세대 이후의 대형의 유리 기판 등에 대응할 수가 있는 점에서, 이온 주입 장치 등보다 공업적으로 적합하다.
도 17(A)은, 단일 웨이퍼 멀티챔버 설비의 표면도의 일 예를 나타낸다. 도 17(B)은, 산소 플라즈마 도핑을 실시하는 플라즈마 장치(애싱 장치라고도 부른다)의 단면도의 일 예를 나타낸다.
도 17(A)에 나타내는 단일 웨이퍼 멀티챔버 설비는, 도 17(B)에 나타내는 플라즈마 장치(10)를 3개 가지며, 피처리 기판을 수용하는 카셋트 포트(14)를 3개 갖는 기판 공급실(11)이나, 로드 록크실(12)나, 반송실(13) 등을 갖고 있다. 기판 공급실에 공급된 기판은, 로드 록크실(12)과 반송실(13)을 통하여 플라즈마 장치(10)내의 진공 챔버(15)에 반송되어 산소 플라즈마 도핑이 실시된다. 산소 플라즈마 도핑이 종료된 기판은, 플라즈마 장치(10)로부터 로드 록크실(12)과 반송실(13)을 통하여 기판 공급실(11)에 반송된다. 또한 기판 공급실(11) 및 반송실(13)에는, 피처리 기판을 반송하기 위한 반송 로보트가 각각 배치되어 있다.
도 17(B)을 참조하면, 플라즈마 장치(10)는, 진공 챔버(15)를 구비하고 있다. 진공 챔버(15)의 상부에는, 복수의 가스 송풍구와 플라즈마 발생원인 ICP 코일(16)(유도 결합 플라즈마 코일)이 배치되어 있다.
가스 송풍구는, 플라즈마 장치(10)의 표면으로부터 보아서 중앙 부분에 12개 배치되어 있다. 각각의 가스 송풍구는, 산소 가스를 공급하기 위한 가스 공급원과 가스 유로(17)를 통하여 접속되어 있으며, 가스 공급원은, 매스 플로우 콘트롤러 등을 구비하여, 원하는 유량(0보다 많고 1000 sccm 이하)으로 가스 유로(17)에 대하여 산소 가스를 공급할 수가 있다. 가스 공급원으로부터 공급되는 산소 가스는, 가스 유로(17)로부터 12개의 가스 송풍구를 통하여 진공 챔버(15)내에 공급된다.
ICP 코일(16)은, 복수개의 띠형상의 도체를 나선 형상으로 배치하여 이루어진다. 각 도체의 일단은, 임피던스 조정을 위한 매칭 회로를 통하여 제 1 고주파 전원(18)(13.56 MHz)에 전기적으로 접속되고, 타단은 접지되어 있다.
진공 챔버의 하부에는, 하부 전극으로서 기능하는 기판 스테이지(19)가 배치되어 있다. 기판 스테이지(19)에 마련된 정전 척(electrostatic chuck) 등에 의해, 기판 스테이지상에 피처리 기판(20)이 착탈 가능하게 유지된다. 기판 스테이지(19)에는, 가열 기구로서 히터, 냉각 기구로서 He가스 유로를 구비하고 있다. 기판 스테이지는, 기판 바이어스 전압 인가용의 제 2 고주파 전원(21)(3.2 MHz)에 접속되어 있다.
또한, 진공 챔버(15)에는 배기구가 마련되며, 자동 압력 제어 밸브(22)(automatic pressure control valve, APC라고도 부른다)가 구비되어 있다. APC는 터보 분자 펌프(23)에 접속되며, 게다가 터보 분자 펌프(23)를 통하여 드라이 펌프(24)에 접속된다. APC는 진공 챔버내의 압력 제어를 실시하며, 터보 분자 펌프(23) 및 드라이 펌프(24)는 진공 챔버(15)내를 감압한다.
다음으로, 도 17(B)에 나타내는 진공 챔버(15)내에 플라즈마를 발생시켜, 피처리 기판(20)에 마련되어 있는 산화물 반도체막, 기초 절연막 또는 게이트 절연막에 산소 플라즈마 도핑을 실시하는 일 예를 나타낸다.
우선, 터보 분자 펌프(23) 및 드라이 펌프(24) 등을 작동시켜, 진공 챔버(15)내를 원하는 압력으로 유지한 후, 피처리 기판(20)을 진공 챔버(15)내의 기판 스테이지에 설치한다. 또한 기판 스테이지에 유지하는 피처리 기판(20)에는 적어도 산화물 반도체막 또는 기초 절연막을 구비하는 것으로 한다. 본 실시형태에서는, 진공 챔버(15)내의 압력을 1.33 Pa 로 유지한다. 또한 산소 가스를 가스 송풍구로부터 진공 챔버(15)내에 공급하는 유량을 250 sccm로 설정한다.
그 다음으로, 제 1 고주파 전원(18)으로부터 ICP 코일(16)에 고주파 전력을 인가하여, 플라즈마를 발생시킨다. 그리고, 플라즈마를 발생시킨 상태를 일정시간(30초 이상 600초 이하) 유지한다. 또한 ICP 코일(16)에 인가하는 고주파 전력은, 1 kW 이상 10 kW 이하로 한다. 본 실시형태에서는, 6000 W로 한다. 이 때, 제 2 고주파 전원(21)으로부터 기판 스테이지에 기판 바이어스 전압을 인가하여도 괜찮다. 본 실시형태에서는 기판 바이어스 전압 인가에 이용하는 전력을 1000 W로 한다.
본 실시형태에서는, 플라즈마를 발생시킨 상태를 60초 유지한 후, 피처리 기판(20)을 진공 챔버(15)로부터 반출한다. 이렇게 하여, 피처리 기판(20)에 마련되어 있는 산화물 반도체막, 기초 절연막 또는 게이트 절연막에 산소 플라즈마 도핑을 실시할 수가 있다.
이상, 본 실시형태에 나타내는 구성, 방법 등은, 다른 실시형태에 나타내는 구성, 방법 등과 적절히 조합하여 이용할 수가 있다.
(실시형태 5)
본 실시형태에서는, 반도체 장치의 일 예로서 기억 매체(메모리 소자)를 나타낸다. 본 실시형태에서는, 실시형태 1~3 등에서 나타내는 산화물 반도체를 이용한 트랜지스터와, 산화물 반도체 이외의 재료를 이용한 트랜지스터를 동일 기판상에 형성한다.
도 7은, 반도체 장치의 구성의 일 예이다. 도 7(A)에는, 반도체 장치의 단면을, 도 7(B)에는, 반도체 장치의 평면을 각각 나타낸다. 여기서, 도 7(A)은, 도 7(B)의 C1-C2 및 D1-D2에 있어서의 단면에 상당한다. 또한, 도 7(C)에는, 상기 반도체 장치를 메모리 소자로서 이용하는 경우의 회로도의 일 예를 나타낸다. 도 7(A) 및 도 7(B)에 나타나는 반도체 장치는, 하부에 제 1 반도체 재료를 이용한 트랜지스터(240)를 가지며, 상부에 실시형태 1에서 나타낸 트랜지스터(120)를 갖는다. 또한 트랜지스터(120)는, 제 2 반도체 재료로서 산화물 반도체를 이용하고 있다. 본 실시형태에서는, 제 1 반도체 재료를 산화물 반도체 이외의 반도체 재료로 한다. 산화물 반도체 이외의 반도체 재료로서는, 예를 들면, 실리콘, 게르마늄, 실리콘 게르마늄, 탄화 실리콘, 또는 갈륨 비소 등을 이용할 수가 있으며, 단결정 반도체를 이용하는 것이 바람직하다. 그 밖에, 유기 반도체 재료 등을 이용하여도 괜찮다. 이러한 반도체 재료를 이용한 트랜지스터는, 고속 동작이 용이하다. 한편, 산화물 반도체를 이용한 트랜지스터는, 그 특성에 의해 장시간의 전하 유지를 가능하게 한다.
또한, 본 실시형태에 있어서는, 트랜지스터(120)를 이용하여 기억 매체를 구성하는 예를 나타내지만, 트랜지스터(120)에 대신하여, 실시형태 1 또는 2에서 나타낸 트랜지스터(130) 내지 트랜지스터(160) 등을 적용 가능하다는 것은 말할 필요도 없다.
도 7에 있어서의 트랜지스터(240)는, 반도체 재료(예를 들면, 실리콘 등)를 포함한 기판(200)에 마련된 채널 형성 영역(216)과, 채널 형성 영역(216)을 사이에 두도록 마련된 불순물 영역(220)과, 불순물 영역(220)에 접하는 금속 화합물 영역(224)과, 채널 형성 영역(216)상에 마련된 게이트 절연막(208)과, 게이트 절연막(208)상에 마련된 게이트 전극(210)을 갖는다.
반도체 재료를 포함한 기판(200)은, 실리콘이나 탄화 실리콘 등의 단결정 반도체 기판, 다결정 반도체 기판, 실리콘 게르마늄 등의 화합물 반도체 기판, SOI 기판 등을 적용할 수가 있다. 또한 일반적으로 「SOI 기판」은, 절연 표면상에 실리콘 반도체막이 마련된 구성의 기판을 말하지만, 본 명세서 등에 있어서는, 절연 표면상에 실리콘 이외의 재료로 이루어지는 반도체막이 마련된 구성의 기판도 포함한다. 즉, 「SOI 기판」이 갖는 반도체막은, 실리콘 반도체막에 한정되지 않는다. 또한, SOI 기판에는, 유리 기판 등의 절연 기판상에 절연막을 통하여 반도체막이 마련된 구성의 것이 포함되는 것으로 한다.
기판(200)상에는 트랜지스터(240)를 둘러싸도록 소자분리 절연막(206)이 마련되어 있고, 트랜지스터(240)를 덮도록 절연막(228) 및 절연막(230)이 마련되어 있다. 또한 고집적화를 실현하기 위해서는, 도 7(A)에 나타내는 바와 같이 트랜지스터(240)가 사이드월 절연막을 갖지 않는 구성으로 하는 것이 바람직하다. 한편, 트랜지스터(240)의 특성을 중시하는 경우에는, 게이트 전극(210)의 측면에 사이드월 절연막을 마련하여, 불순물 농도가 다른 영역을 포함한 불순물 영역(220)을 마련하여도 좋다.
트랜지스터(240)는 실리콘, 게르마늄, 실리콘 게르마늄, 탄화 실리콘, 또는 갈륨 비소 등을 이용하여 제작할 수가 있다. 이러한 트랜지스터(240)는, 고속 동작이 가능하다라고 하는 특징을 갖는다. 이 때문에, 해당 트랜지스터를 읽기용의 트랜지스터로서 이용함으로써, 정보의 읽기를 고속으로 실시할 수가 있다.
트랜지스터(240)를 형성한 후, 트랜지스터(120) 및 용량 소자(164)의 형성전의 처리로서 절연막(228)이나 절연막(230)에 CMP 처리를 실시하여, 게이트 전극(210)의 표면을 노출시킨다. 게이트 전극(210)의 표면을 노출시키는 처리로서는, CMP 처리 외에 에칭 처리 등을 적용하는 것도 가능하지만, 트랜지스터(120)의 특성을 향상시키기 위해서, 절연막(228)이나 절연막(230)의 표면은 가능한 한 평탄하게 해 두는 것이 바람직하다.
다음으로, 게이트 전극(210), 절연막(228), 절연막(230) 등의 위에 도전막을 형성하고, 그 도전막을 선택적으로 에칭하여, 소스 전극(104a), 드레인 전극(104b)을 형성한다.
도전막은, 스퍼터법을 비롯한 PVD법이나, 플라즈마 CVD법 등의 CVD법을 이용하여 형성할 수가 있다. 또한, 도전막의 재료로서는, Al, Cr, Cu, Ta, Ti, Mo, W 으로부터 선택된 원소나, 상술한 원소를 성분으로 하는 합금 등을 이용할 수가 있다. Mn, Mg, Zr, Be, Nd, Sc중의 어느 것, 또는 이들을 복수 조합한 재료를 이용하여도 괜찮다.
도전막은, 단층 구조라도 좋고, 2층 이상의 적층 구조로 하여도 좋다. 예를 들면, 티탄막이나 질화 티탄막의 단층 구조, 실리콘을 포함한 알루미늄막의 단층 구조, 알루미늄막상에 티탄막이 적층된 2층 구조, 질화 티탄막상에 티탄막이 적층된 2층 구조, 티탄막과 알루미늄막과 티탄막이 적층된 3층 구조 등을 들 수 있다. 또한 도전막을, 티탄막이나 질화 티탄막의 단층 구조로 하는 경우에는, 테이퍼 형상을 갖는 소스 전극(104a), 및 드레인 전극(104b)으로의 가공이 용이하다라는 메리트가 있다.
상부의 트랜지스터(120)의 채널장(L)은, 소스 전극(104a), 및 드레인 전극(104b)의 하단부의 간격에 의해 결정된다. 또한 채널장(L)이 25 nm 미만인 트랜지스터를 형성하는 경우에 이용하는 마스크 형성의 노광을 실시할 때에는, 수 nm~수 10 nm와 파장의 짧은 초자외선을 이용하는 것이 바람직하다.
다음으로, 소스 전극(104a), 및 드레인 전극(104b)을 덮도록 산화물 반도체막을 형성한 후, 해당 산화물 반도체막을 선택적으로 에칭하여 산화물 반도체막(108)을 형성한다. 산화물 반도체막은, 실시형태 1에 나타내는 재료 및 형성 프로세스를 이용한다.
다음으로, 산화물 반도체막(108)에 접하는 게이트 절연막(110)을 형성한다. 게이트 절연막(110)은, 실시형태 1에 나타내는 재료 및 형성 프로세스를 이용한다.
다음으로, 게이트 절연막(110)상에 있어서 산화물 반도체막(108)과 중첩하는 영역에 게이트 전극(112a)을 형성하고, 소스 전극(104a)과 중첩하는 영역에 전극(112b)을 형성한다.
게이트 절연막(110)의 형성 후에는, 불활성 가스 분위기하, 또는 산소 분위기하에서 열처리(가산화 등이라고도 부른다)를 실시하는 것이 바람직하다. 열처리의 온도는, 200℃ 이상 450℃ 이하, 바람직하게는 250℃ 이상 350℃ 이하다. 예를 들면, 질소 분위기하에서 250℃, 1시간의 열처리를 실시하면 좋다. 열처리를 실시함에 의해, 트랜지스터의 전기적 특성의 편차를 경감할 수가 있다.
또한, 가산화를 목적으로 하는 열처리의 타이밍은 이에 한정되지 않는다. 예를 들면, 게이트 전극의 형성 후에 가산화를 목적으로 하는 열처리를 실시하여도 좋다. 또한, 탈수화 등을 목적으로 하는 열처리에 이어서 가산화를 목적으로 하는 열처리를 실시하여도 좋고, 탈수화 등을 목적으로 하는 열처리에 가산화를 목적으로 하는 열처리를 겸하게 하여도 좋고, 가산화를 목적으로 하는 열처리에 탈수화 등을 목적으로 하는 열처리를 겸하게 하여도 좋다.
상술한 바와 같이, 탈수화 등을 목적으로 하는 열처리와 산소 도핑 처리 또는 가산화를 목적으로 하는 열처리를 적용함으로써, 산화물 반도체막(108)을 불순물이 최대한 포함되지 않게 고순도화할 수가 있다.
게이트 전극(112a) 및 전극(112b)은, 게이트 절연막(110)상에 도전막을 형성한 후에, 해당 도전막을 선택적으로 에칭함으로써 형성할 수가 있다.
다음으로, 게이트 절연막(110), 게이트 전극(112a), 및 전극(112b)상에, 절연막(151) 및 절연막(152)을 형성한다. 절연막(151) 및 절연막(152)은, 스퍼터법이나 CVD법 등을 이용하여 형성할 수가 있다. 또한, 산화 실리콘, 산화 질화 실리콘, 질화 실리콘, 산화 하프늄, 산화 알루미늄, 산화 갈륨 등의 무기 절연 재료를 포함한 재료를 이용하여 형성할 수가 있다.
다음으로, 게이트 절연막(110), 절연막(151), 및 절연막(152)에, 드레인 전극(104b)에까지 달하는 개구를 형성한다. 해당 개구의 형성은, 마스크 등을 이용한 선택적인 에칭에 의해 행해진다.
그 후, 상기 개구에 전극(154)을 형성하고, 절연막(152)상에 전극(154)에 접하는 배선(156)을 형성한다.
전극(154)은, 예를 들면, 개구를 포함한 영역에 PVD법이나 CVD법 등을 이용하여 도전막을 형성한 후, 에칭 처리나 CMP라고 하는 방법을 이용하여, 상기 도전막의 일부를 제거함에 의해 형성할 수가 있다.
배선(156)은, 스퍼터법을 비롯한 PVD법이나, 플라즈마 CVD법 등의 CVD법을 이용하여 도전막을 형성한 후, 해당 도전막을 패터닝함으로써 형성된다. 또한, 도전막의 재료로서는, Al, Cr, Cu, Ta, Ti, Mo, W로부터 선택된 원소나, 상술한 원소를 성분으로 하는 합금 등을 이용할 수가 있다. Mn, Mg, Zr, Be, Nd, Sc중의 어느 것, 또는 이들을 복수 조합한 재료를 이용하여도 괜찮다. 자세한 것은, 소스 전극(104a) 또는 드레인 전극(104b) 등과 같다.
이상에 의해, 고순도화된 산화물 반도체막(108)을 이용한 트랜지스터(120), 및 용량 소자(164)가 완성된다. 용량 소자(164)는, 소스 전극(104a), 산화물 반도체막(108), 게이트 절연막(110), 및 전극(112b)으로 구성된다.
또한, 도 7의 용량 소자(164)에서는, 산화물 반도체막(108)과 게이트 절연막(110)을 적층시킴으로써, 소스 전극(104a)과 전극(112b)의 사이의 절연성을 충분히 확보할 수가 있다. 물론, 충분한 용량을 확보하기 위해서, 산화물 반도체막(108)을 갖지 않는 구성의 용량 소자(164)를 채용하여도 좋다. 게다가 용량이 불필요한 경우는, 용량 소자(164)를 마련하지 않는 구성으로 하는 것도 가능하다.
도 7(C)에는, 상기 반도체 장치를 메모리 소자로서 이용하는 경우의 회로도의 일 예를 나타낸다. 도 7(C)에 있어서, 트랜지스터(120)의 소스 전극 또는 드레인 전극의 한쪽과, 용량 소자(164)의 전극의 한쪽과, 트랜지스터(240)의 게이트 전극은 전기적으로 접속되어 있다. 또한, 제 1 배선(1st Line:소스선이라고도 부른다)과 트랜지스터(240)의 소스 전극은 전기적으로 접속되며, 제 2 배선(2nd Line:비트선이라고도 부른다)과 트랜지스터(240)의 드레인 전극은 전기적으로 접속되어 있다. 또한, 제 3 배선(3rd Line:제 1 신호선이라고도 부른다)과 트랜지스터(120)의 소스 전극 또는 드레인 전극의 다른쪽은 전기적으로 접속되며, 제 4 배선(4th Line:제 2 신호선이라고도 부른다)과 트랜지스터(120)의 게이트 전극은 전기적으로 접속되어 있다. 그리고, 제 5 배선(5th Line:word line라고도 부른다)과 용량 소자(164)의 전극의 다른쪽은 전기적으로 접속되어 있다.
산화물 반도체를 이용한 트랜지스터(120)는, 오프 전류가 극히 작다고 하는 특징을 갖고 있기 때문에, 트랜지스터(120)를 오프 상태로 함으로써, 트랜지스터(120)의 소스 전극 또는 드레인 전극의 한쪽과, 용량 소자(164)의 전극의 한쪽과, 트랜지스터(240)의 게이트 전극이 전기적으로 접속된 노드(이하, 노드(FG))의 전위를 극히 장시간에 걸쳐서 유지하는 것이 가능하다. 그리고, 용량 소자(164)를 가짐에 의해, 노드(FG)에 주어진 전하의 유지가 용이하게 되며, 또한 유지된 정보의 읽기가 용이하게 된다.
반도체 장치에 정보를 기억시키는 경우(쓰기)는, 우선, 제 4 배선의 전위를, 트랜지스터(120)가 온 상태가 되는 전위로 하여, 트랜지스터(120)를 온 상태로 한다. 이에 의해, 제 3 배선의 전위가, 노드(FG)에 공급되어 노드(FG)에 소정량의 전하가 축적된다. 여기에서는, 서로 다른 2개의 전위 레벨을 주는 전하(이하, 로우(Low) 레벨 전하, 하이(High) 레벨 전하라고 한다)중의 어느 것이 주어지는 것으로 한다. 그 후, 제 4 배선의 전위를, 트랜지스터(120)가 오프 상태가 되는 전위로 하여, 트랜지스터(120)를 오프 상태로 함에 의해, 노드(FG)가 부유 상태가 되기 때문에, 노드(FG)에는 소정의 전하가 유지된 채의 상태가 된다. 이상과 같이, 노드(FG)에 소정량의 전하를 축적 및 유지시킴으로써, 메모리 셀에 정보를 기억시킬 수가 있다.
트랜지스터(120)의 오프 전류는 극히 작기 때문에, 노드(FG)에 공급된 전하는 장시간에 걸쳐서 유지된다. 따라서, 리프레시 동작이 불필요하게 되던지, 또는 리프레시 동작의 빈도를 극히 낮게 하는 것이 가능해져서, 소비 전력을 충분히 저감할 수가 있다. 또한, 전력의 공급이 없는 경우라도, 장기에 걸쳐 기억 내용을 유지하는 것이 가능하다.
기억된 정보를 읽어내는 경우(읽기)는, 제 1 배선에 소정의 전위(정전위)를 준 상태에서, 제 5 배선에 적절한 전위(읽기 전위)를 주면, 노드(FG)에 유지된 전하량에 따라서, 트랜지스터(240)는 다른 상태를 취한다. 일반적으로, 트랜지스터(240)를 n채널형으로 하면, 노드(FG)에 High 레벨 전하가 유지되고 있는 경우의 트랜지스터(240)의 겉보기 스레숄드(Vth_H)는, 노드(FG)에 Low 레벨 전하가 유지되고 있는 경우의 트랜지스터(240)의 겉보기 스레숄드(Vth_L)보다 낮아지기 때문이다. 여기서, 겉보기 스레숄드란, 트랜지스터(240)를 「온 상태」로 하기 위해서 필요한 제 5 배선의 전위를 말하는 것으로 한다. 따라서, 제 5 배선의 전위를 Vth_H와 Vth_L의 중간의 전위 V0로 함에 의해, 노드(FG)에 유지된 전하를 판별할 수 있다. 예를 들면, 쓰기에 있어서, High 레벨 전하가 주어져 있었을 경우에는, 제 5 배선의 전위가 V0(>Vth_H)가 되면, 트랜지스터(240)는 「온 상태」로 된다. Low 레벨 전하가 주어져 있었을 경우에는, 제 5 배선의 전위가 V0(<Vth_L)가 되어도, 트랜지스터(240)는 「오프 상태」인 상태다. 이 때문에, 제 5 배선의 전위를 제어하여, 트랜지스터(240)의 온 상태 또는 오프 상태를 읽어냄(제 2 배선의 전위를 읽어냄)으로써, 기억된 정보를 읽어낼 수가 있다.
또한, 기억시킨 정보를 고쳐 쓰는 경우에 있어서는, 상기 쓰기에 의해 소정량의 전하를 유지한 노드(FG)에, 새로운 전위를 공급함으로써, 노드(FG)에 새로운 정보와 관련되는 전하를 유지시킨다. 구체적으로는, 제 4 배선의 전위를, 트랜지스터(120)가 온 상태가 되는 전위로 하여, 트랜지스터(120)를 온 상태로 한다. 이에 의해, 제 3 배선의 전위(새로운 정보와 관련되는 전위)가 노드(FG)에 공급되어 노드(FG)에 소정량의 전하가 축적된다. 그 후, 제 4 배선의 전위를 트랜지스터(120)가 오프 상태가 되는 전위로 하여, 트랜지스터(120)를 오프 상태로 함에 의해, 노드(FG)에는, 새로운 정보와 관련되는 전하가 유지된 상태가 된다. 즉, 노드(FG)에 제 1 쓰기에 의해 소정량의 전하가 유지된 상태에서, 제 1 쓰기과 동일한 동작(제 2 쓰기)을 실시함으로써, 기억시킨 정보를 덮어쓰기하는 것이 가능하다.
본 실시형태에서 나타내는 트랜지스터(120)는, 고순도화되어 진성화된 산화물 반도체막(108)을 이용함으로써, 트랜지스터(120)의 오프 전류를 충분히 저감할 수가 있다. 또한, 산화물 반도체막(108)을 산소 과잉의 층으로 함으로써, 트랜지스터(120)의 전기적 특성 변동이 억제되어 있어 전기적으로 안정한 트랜지스터로 할 수가 있다. 그리고, 이러한 트랜지스터를 이용함으로써, 극히 장기에 걸쳐 기억 내용을 유지하는 것이 가능하여, 신뢰성이 높은 반도체 장치를 얻을 수 있다.
또한, 본 실시형태에 있어서 나타내는 반도체 장치에서는, 트랜지스터(240)와 트랜지스터(120)를 중첩시킴으로써, 집적도가 충분히 높혀진 반도체 장치가 실현된다.
이상, 본 실시형태에 나타내는 구성, 방법 등은, 다른 실시형태에 나타내는 구성, 방법 등과 적절히 조합하여 이용할 수가 있다.
(실시형태 6)
실시형태 1~3에서 예시한 트랜지스터를 이용하여 표시 기능을 갖는 반도체 장치(표시장치라고도 한다)를 제작할 수가 있다. 또한, 트랜지스터를 포함한 구동 회로의 일부 또는 전체를, 화소부와 동일 기판상에 일체로 형성하여 시스템온 패널을 형성할 수가 있다.
도 8(A)에 있어서, 제 1 기판(4001)상에 마련된 화소부(4002)를 둘러싸도록 하여, 시일재(4005)가 마련되며, 제 2 기판(4006)에 의해 봉지되어 있다. 도 8(A)에 있어서는, 제 1 기판(4001)상의 시일재(4005)에 의해 둘러싸여 있는 영역과는 다른 영역에, 별도로 준비된 기판상에 단결정 반도체막 또는 다결정 반도체막으로 형성된 주사선 구동 회로(4004), 신호선 구동 회로(4003)가 실장되어 있다. 또한 별도로 형성된 신호선 구동 회로(4003)와, 주사선 구동 회로(4004) 또는 화소부(4002)에 주어지는 각종 신호 및 전위는, FPC(Flexible printed circuit)(4018a, 4018b)로부터 공급되고 있다.
도 8(B)(C)에 있어서, 제 1 기판(4001)상에 마련된 화소부(4002)와 주사선 구동 회로(4004)를 둘러싸도록 하여, 시일재(4005)가 마련되어 있다. 또한 화소부(4002)와 주사선 구동 회로(4004) 위에 제 2 기판(4006)이 마련되어 있다. 따라서 화소부(4002)와 주사선 구동 회로(4004)는, 제 1 기판(4001)과 시일재(4005)와 제 2 기판(4006)에 의해, 표시 소자와 함께 봉지되어 있다. 도 8(B)(C)에 있어서는, 제 1 기판(4001)상의 시일재(4005)에 의해 둘러싸여 있는 영역과는 다른 영역에, 별도로 준비된 기판상에 단결정 반도체막 또는 다결정 반도체막으로 형성된 신호선 구동 회로(4003)가 실장되어 있다. 도 8(B)(C)에 있어서는, 별도로 형성된 신호선 구동 회로(4003)와, 주사선 구동 회로(4004) 또는 화소부(4002)에 주어지는 각종 신호 및 전위는, FPC(4018)로부터 공급되고 있다.
또한, 실시형태는, 도 8(A) 내지 (C)에서 도시한 구성에 한정되지 않는다. 신호선 구동 회로의 일부 또는 주사선 구동 회로의 일부만을 별도로 형성하여 실장하여도 좋다.
또한, 별도로 형성한 구동 회로의 접속 방법은, 특별히 한정되는 것은 아니고, COG(Chip On Glass) 방법, 와이어 본딩 방법, 혹은 TAB(Tape Automated Bonding) 방법 등을 이용할 수가 있다. 도 8(A)은, COG 방법에 의해 신호선 구동 회로(4003), 주사선 구동 회로(4004)를 실장하는 예이며, 도 8(B)은, COG 방법에 의해 신호선 구동 회로(4003)를 실장하는 예이며, 도 8(C)은, TAB 방법에 의해 신호선 구동 회로(4003)를 실장하는 예이다.
또한, 표시장치는, 표시 소자가 봉지된 상태에 있는 패널과, 그 패널에 콘트롤러를 포함한 IC 등을 실장한 상태에 있는 모듈을 포함한다.
또한, 본 명세서중에 있어서의 표시장치란, 화상 표시 디바이스, 표시 디바이스, 혹은 광원(조명 장치 포함한다)을 나타낸다. 또한, 커넥터, 예를 들면 FPC 혹은 TAB 테이프 혹은 TCP가 장착된 모듈, TAB 테이프나 TCP의 끝에 프린트 배선판이 마련된 모듈, 또는 표시 소자에 COG 방식에 의해 IC(집적회로)가 직접 실장된 모듈도 모두 표시장치에 포함하는 것으로 한다.
또한 제 1 기판상에 마련된 화소부 및 주사선 구동 회로는, 트랜지스터를 복수 갖고 있으며, 실시형태 1~3에서 예시한 트랜지스터를 적용할 수가 있다.
표시장치에 마련되는 표시 소자로서는 액정 소자(액정 표시 소자라고도 한다), 발광소자(발광 표시 소자라고도 한다)를 이용할 수가 있다. 발광소자는, 전류 또는 전압에 의해 휘도가 제어되는 소자를 그 범주에 포함하고 있으며, 구체적으로는 무기 EL(Electro Luminescence) 소자, 유기 EL소자 등이 포함된다. 또한, 전자 잉크 등, 전기적 작용에 의해 콘트라스트가 변화하는 표시 매체도 적용할 수가 있다.
반도체 장치의 일 형태에 대하여, 도 9 내지 도 11을 이용하여 설명한다. 도 9 내지 도 11은, 도 8(B)의 M-N에 있어서의 단면도에 상당한다.
도 9 내지 도 11에서 나타내는 바와 같이, 반도체 장치는 접속 단자 전극(4015) 및 단자 전극(4016)을 갖고 있으며, 접속 단자 전극(4015) 및 단자 전극(4016)은 FPC(4018)가 갖는 단자와 이방성 도전막(4019)을 통하여 전기적으로 접속되어 있다.
접속 단자 전극(4015)은, 제 1 전극층(4030)과 동일한 도전막으로부터 형성되며, 단자 전극(4016)은, 트랜지스터(4010, 4011)의 소스 전극 및 드레인 전극과 동일한 도전막으로 형성되어 있다.
또한 제 1 기판(4001)상에 마련된 화소부(4002)와 주사선 구동 회로(4004)는, 트랜지스터를 복수 갖고 있으며, 도 9 내지 도 11에서는, 화소부(4002)에 포함되는 트랜지스터(4010)와 주사선 구동 회로(4004)에 포함되는 트랜지스터(4011)를 예시하고 있다. 도 10 및 도 11에서는, 트랜지스터(4010, 4011)상에, 절연층(4021)이 마련되어 있다.
본 실시형태에서는, 트랜지스터(4010), 트랜지스터(4011)로서, 실시형태 1 내지 3중의 어딘가에 나타낸 트랜지스터를 적용할 수가 있다. 트랜지스터(4010), 트랜지스터(4011)는, 전기적 특성 변동이 억제되어 있어 전기적으로 안정하다. 따라서, 도 9 내지 도 11에서 나타내는 본 실시형태의 반도체 장치로서 신뢰성이 높은 반도체 장치를 제공할 수가 있다.
화소부(4002)에 마련된 트랜지스터(4010)는 표시 소자와 전기적으로 접속하여 표시 패널을 구성한다. 표시 소자는 표시를 실시할 수가 있으면 특별히 한정되지 않고, 여러 가지 표시 소자를 이용할 수가 있다.
도 9에 표시 소자로서 액정 소자를 이용한 액정표시장치의 예를 나타낸다. 도 9에 있어서, 표시 소자인 액정 소자(4013)는, 제 1 전극층(4030), 제 2 전극층(4031), 및 액정층(4008)을 포함한다. 또한 액정층(4008)을 가운데 끼우도록 배향막으로서 기능하는 절연막(4032), 절연막(4033)이 마련되어 있다. 제 2 전극층(4031)은 제 2 기판(4006)측에 마련되며, 제 1 전극층(4030)과 제 2 전극층(4031)은 액정층(4008)을 통하여 적층하는 구성으로 되어 있다. 또한 도 8(B)에 나타내는 표시장치에 있어서, 표시 소자로서 액정 소자를 이용했을 경우의 M-N에 있어서의 단면이, 도 9에 상당한다.
또한 4035는 절연막을 선택적으로 에칭함으로써 얻을 수 있는 기둥 형상의 스페이서이며, 액정층(4008)의 막두께(셀 갭)를 제어하기 위해서 마련되어 있다. 또한 스페이서의 형상은, 기둥 형상에 한정되는 것은 아니고, 예를 들면, 구형상의 스페이서를 이용하고 있어도 좋다.
표시 소자로서 액정 소자를 이용하는 경우, 서모트로픽 액정, 저분자 액정, 고분자 액정, 고분자 분산형 액정, 강유전성 액정, 반강유전성 액정 등을 이용할 수가 있다. 이러한 액정 재료는, 조건에 따라서, 콜레스테릭상, 스멕틱상(smectic phase), 큐빅상, 키랄네마틱, 등방상 등을 나타낸다.
또한, 배향막을 이용하지 않는 블루상을 나타내는 액정을 이용하여도 괜찮다. 블루상은 액정상의 하나로서, 콜레스테릭 액정을 온도상승해 가면, 콜레스테릭상으로부터 등방상으로 전이하기 직전에 발현하는 상이다. 블루상은 좁은 온도 범위에서 밖에 발현하지 않기 때문에, 온도 범위를 개선하기 위해서 5 중량% 이상의 키랄제를 혼합시킨 액정 조성물을 액정층에 이용한다. 블루상을 나타내는 액정과 키랄제를 포함한 액정 조성물은, 응답 속도가 1 msec 이하로 짧고, 광학적 등방성이기 때문에 배향 처리가 불필요하고, 시야각 의존성이 작다. 또한 배향막을 마련하지 않아도 좋기 때문에 러빙 처리도 불필요해지기 때문에, 러빙 처리에 의해 발생되는 정전 파괴를 방지할 수가 있어 제작 공정 중의 액정표시장치의 불량이나 파손을 경감할 수가 있다. 따라서 액정표시장치의 생산성을 향상시키는 것이 가능해진다.
또한, 액정 재료의 고유 저항율은, 1×109Ω·cm 이상이며, 바람직하게는 1×1011Ω·cm 이상이며, 더욱 바람직하게는 1×1012Ω·cm 이상이다. 또한 본 명세서에 있어서의 고유 저항율의 값은, 20℃에서 측정한 값으로 한다.
액정표시장치에 마련되는 보유 용량의 크기는, 화소부에 배치되는 트랜지스터의 리크 전류 등을 고려하여, 소정의 기간 중에 전하를 유지할 수 있도록 설정된다. 고순도의 산화물 반도체막을 갖는 트랜지스터를 이용함으로써, 각 화소에 있어서의 액정 용량에 대하여 1/3 이하, 바람직하게는 1/5 이하의 용량의 크기를 갖는 보유 용량을 마련하면 충분하다.
본 실시형태에서 이용하는 고순도화된 산화물 반도체막을 이용한 트랜지스터는, 오프 상태에 있어서의 전류치(오프 전류치)를 낮게 할 수가 있다. 따라서, 화상 신호 등의 전기신호의 유지 시간을 길게 할 수가 있어 전원 온 상태에서는 쓰기 간격도 길게 설정할 수 있다. 따라서, 리프레시 동작의 빈도를 줄일 수가 있기 때문에, 소비 전력을 억제하는 효과를 나타낸다.
또한, 본 실시형태에서 이용하는 고순도화된 산화물 반도체막을 이용한 트랜지스터는, 비교적 높은 전계 효과 이동도를 얻을 수 있기 때문에, 고속 구동이 가능하다. 따라서, 액정표시장치의 화소부에 상기 트랜지스터를 이용함으로써, 고화질의 화상을 제공할 수가 있다. 또한, 상기 트랜지스터는, 동일 기판상에 구동 회로부 또는 화소부로 구별해서 만들어서 제작할 수가 있기 때문에, 액정표시장치의 부품 점수를 삭감할 수가 있다.
액정표시장치에는, TN(Twisted Nematic) 모드, IPS(In-Plane-Switching) 모드, FFS(Fringe Field Switching) 모드, ASM(Axially Symmetric aligned Micro-cell) 모드, OCB(Optical Compensated Birefringence) 모드, FLC(Ferroelectric Liquid Crystal) 모드, AFLC(AntiFerroelectric Liquid Crystal) 모드 등을 이용할 수가 있다.
또한, 노멀리블랙형의 액정표시장치, 예를 들면 수직 배향(VA) 모드를 채용한 투과형의 액정표시장치로 하여도 좋다. 여기서, 수직 배향 모드란, 액정 표시 패널의 액정 분자의 배열을 제어하는 방식의 일종이며, 전압이 인가되어 있지 않을 때에 패널면에 대하여 액정 분자가 수직 방향을 향하는 방식이다. 수직 배향 모드로서는, 몇가지 들 수 있지만, 예를 들면, MVA(Multi-Domain Vertical Alignment) 모드, PVA(Patterned Vertical Alignment) 모드, ASV 모드 등을 이용할 수가 있다. 또한, 화소(픽셀)를 몇 개의 영역(서브 픽셀)으로 나누고, 각각 다른 방향으로 분자를 쓰러뜨리도록 설계되어 있는 멀티 도메인화 혹은 멀티 도메인 설계라고 하는 방법을 이용할 수가 있다.
또한, 표시장치에 있어서, 블랙 매트릭스(차광층), 편광 부재, 위상차 부재, 반사 방지 부재 등의 광학 부재(광학 기판) 등은 적절히 마련한다. 예를 들면, 편광 기판 및 위상차이 기판에 의한 원 편광을 이용하여도 괜찮다. 또한, 광원으로서 백라이트, 사이드라이트 등을 이용하여도 괜찮다.
또한, 백라이트로서 복수의 발광 다이오드(LED)를 이용하여, 시간 분할 표시 방식(필드 시퀀셜 구동 방식)을 실시하는 것도 가능하다. 필드 시퀀셜 구동 방식을 적용함으로써, 칼라 필터를 이용하는 일 없이, 칼라 표시를 실시할 수가 있다.
또한, 화소부에 있어서의 표시 방식은, 프로그래시브 방식이나 인터레이스 방식 등을 이용할 수가 있다. 또한, 칼라 표시할 때에 화소로 제어하는 색요소로서는, RGB(R는 빨강, G는 초록, B는 파랑을 나타낸다)의 삼색에 한정되지 않는다. 예를 들면, RGBW(W는 흰색을 나타낸다), 또는 RGB에, 옐로우, 시안, 마젠타 등을 한 색 이상 추가한 것이 있다. 또한 색요소의 도트마다 그 표시 영역의 크기가 차이가 나도 괜찮다. 다만, 본 발명은 칼라 표시의 표시장치에 한정되는 것은 아니고, 흑백 표시의 표시장치에 적용할 수도 있다.
또한, 표시장치에 포함되는 표시 소자로서 전계 발광을 이용하는 발광소자를 적용할 수가 있다. 전계 발광을 이용하는 발광소자는, 발광재료가 유기 화합물인지, 무기 화합물인지에 따라서 구별되며, 일반적으로, 전자는 유기 EL소자, 후자는 무기 EL소자로 불리고 있다.
유기 EL소자는, 발광소자에게 전압을 인가함에 의해, 한 쌍의 전극으로부터 전자 및 정공이 각각 발광성의 유기 화합물을 포함하는 층에 주입되어 전류가 흐른다. 그리고, 그들 캐리어(전자 및 정공)가 재결합함에 의해, 발광성의 유기 화합물이 여기 상태를 형성하고, 그 여기 상태가 기저 상태로 돌아올 때에 발광한다. 이러한 메카니즘으로부터, 이러한 발광소자는, 전류 여기형의 발광소자로 불린다.
무기 EL소자는, 그 소자 구성에 따라서, 분산형 무기 EL소자와 박막형 무기 EL소자로 분류된다. 분산형 무기 EL소자는, 발광재료의 입자를 바인더중에 분산시킨 발광층을 갖는 것이며, 발광 메카니즘은 도너 준위와 억셉터 준위를 이용하는 도너-억셉터 재결합형 발광이다. 박막형 무기 EL소자는, 발광층을 유전체층으로 사이에 끼워 넣고, 게다가 이를 전극으로 사이에 끼운 구조이며, 발광 메카니즘은 금속 이온의 내각 전자 천이를 이용하는 국재형(局在型) 발광이다. 또한 여기에서는, 발광소자로서 유기 EL소자를 이용하여 설명한다.
발광소자는 발광을 취출하기 위해서 적어도 한 쌍의 전극중의 한쪽이 투명하면 좋다. 그리고, 기판상에 트랜지스터 및 발광소자를 형성하고, 기판과는 반대측의 면으로부터 발광을 취출하는 표면 사출이나, 기판측의 면으로부터 발광을 취출하는 하면 사출이나, 기판측 및 기판과는 반대측의 면으로부터 발광을 취출하는 양면 사출 구조의 발광소자가 있으며, 어느 사출 구조의 발광소자라도 적용할 수가 있다.
도 10에 표시 소자로서 발광소자를 이용한 발광 장치의 예를 나타낸다. 표시 소자인 발광소자(4513)는, 화소부(4002)에 마련된 트랜지스터(4010)와 전기적으로 접속되어 있다. 또한 발광소자(4513)의 구성은, 제 1 전극층(4030), 전계 발광층(4511), 제 2 전극층(4031)의 적층 구조이지만, 도시한 구성에 한정되지 않는다. 발광소자(4513)로부터 취출하는 광의 방향 등에 맞추어, 발광소자(4513)의 구성은 적절히 바꿀 수가 있다. 또한 도 8(B)에 나타내는 표시장치에 있어서, 표시 소자로서 발광소자를 고용했을 경우의 MN에 있어서의 단면이, 도 10에 상당한다.
격벽(4510)은, 유기 절연 재료, 또는 무기 절연 재료를 이용하여 형성한다. 특히 감광성의 수지 재료를 이용하며, 제 1 전극층(4030)상에 개구부를 형성하고, 그 개구부의 측벽이 연속한 곡률을 가지고 형성되는 경사면이 되도록 형성하는 것이 바람직하다.
전계 발광층(4511)은, 단수의 층으로 구성되어 있어도, 복수의 층이 적층되도록 구성되어 있어도 어느 쪽이라도 좋다.
발광소자(4513)에 산소, 수소, 수분, 이산화탄소 등이 침입하지 않도록, 제 2 전극층(4031) 및 격벽(4510)상에 보호막을 형성하여도 좋다. 보호막으로서는, 질화 실리콘막, 질화 산화 실리콘막, DLC막 등을 형성할 수가 있다. 또한, 제 1 기판(4001), 제 2 기판(4006), 및 시일재(4005)에 의해 봉지된 공간에는 충전재(4514)가 마련되어 밀봉되어 있다. 이와 같이 외기에 노출되지 않게 기밀성이 높고, 탈가스가 적은 보호 필름(부착 필름, 자외선 경화 수지 필름 등)이나 커버재로 패키징(봉입)하는 것이 바람직하다.
충전재(4514)로서는 질소나 아르곤 등의 불활성인 기체 외에, 자외선 경화 수지 또는 열경화 수지를 이용할 수가 있으며, PVC(폴리비닐 클로라이드), 아크릴, 폴리이미드, 에폭시 수지, 실리콘 수지, PVB(폴리비닐부티랄) 또는 EVA(에틸렌 비닐 아세테이트)를 이용할 수가 있다. 예를 들면 충전재로서 질소를 이용하면 좋다.
또한, 필요하면, 발광소자의 사출면에 편광판, 또는 원편광판(타원 편광판을 포함한다), 위상차판(λ/4판, λ/2판), 칼라 필터 등의 광학 필름을 적절히 마련하여도 좋다. 또한, 편광판 또는 원편광판에 반사 방지막을 마련하여도 좋다. 예를 들면, 표면의 요철에 의해 반사광을 확산하고, 빛 반사를 저감할 수 있는 안티글레어 처리를 실시할 수가 있다.
또한, 표시장치로서 전자 잉크를 구동시키는 전자 페이퍼를 제공하는 것도 가능하다. 전자 페이퍼는, 전기 영동 표시장치(전기 영동 디스플레이)도 불리고 있어 종이와 같은 읽기 쉬움, 다른 표시장치에 비해 저소비 전력, 얇고 가벼운 형상으로 하는 것이 가능하다는 이점을 갖고 있다.
전기 영동 표시장치는, 여러 가지 형태가 생각될 수 있지만, 플러스의 전하를 갖는 제 1 입자와, 마이너스의 전하를 갖는 제 2 입자를 포함한 마이크로 캡슐이 용매 또는 용질에 복수 분산된 것이며, 마이크로 캡슐에 전계를 인가함으로써, 마이크로 캡슐중의 입자를 서로 반대 방향으로 이동시켜 한쪽측으로 집합한 입자의 색만을 표시하는 것이다. 또한 제 1 입자 또는 제 2 입자는 염료를 포함하며, 전계가 없는 경우에 이동하지 않는 것이다. 또한, 제 1 입자의 색과 제 2 입자의 색은 서로 다른 것(무색을 포함한다)으로 한다.
이와 같이, 전기 영동 표시장치는, 유전상수가 높은 물질이 높은 전계 영역으로 이동하는, 이른바 유전영동적 효과를 이용한 디스플레이다.
상기 마이크로 캡슐을 용매중에 분산시킨 것 이 전자 잉크로 불리는 것이며, 이 전자 잉크는 유리, 플라스틱, 옷감, 종이 등의 표면에 인쇄할 수가 있다. 또한, 칼라 필터나 색소를 갖는 입자를 이용함에 의해 칼라 표시도 가능하다.
또한, 마이크로 캡슐중의 제 1 입자 및 제 2 입자는, 도전체 재료, 절연체 재료, 반도체 재료, 자성 재료, 액정 재료, 강유전성 재료, 일렉트로루미네슨트 재료, 일렉트로크로믹 재료, 자기영동재료로부터 선택된 1종의 재료, 또는 이들의 복합재료를 이용하면 좋다.
또한, 전자 페이퍼로서, 트위스트볼 표시 방식을 이용하는 표시장치도 적용할 수가 있다. 트위스트볼 표시 방식이란, 흰색과 흑색으로 구별하여 칠해진 구형 입자를 표시 소자에 이용하는 전극층인 제 1 전극층 및 제 2 전극층의 사이에 배치하여, 제 1 전극층 및 제 2 전극층에 전위차를 발생시킨 구형 입자의 방향을 제어함에 의해 표시를 실시하는 방법이다.
도 11에, 반도체 장치의 일 형태로서 액티브 매트릭스형의 전자 페이퍼를 나타낸다. 도 11의 전자 페이퍼는, 트위스트볼 표시 방식을 이용한 표시장치의 예이다.
트랜지스터(4010)와 접속하는 제 1 전극층(4030)과, 제 2 기판(4006)에 마련된 제 2 전극층(4031)의 사이에는 흑색 영역(4615a) 및 백색 영역(4615b)을 가지며, 주위에 액체로 채워져 있는 캐비티(4612)를 포함한 구형 입자(4613)가 마련되어 있으며, 구형 입자(4613)의 주위는 수지 등의 충전재(4614)로 충전되어 있다. 제 2 전극층(4031)이 공통 전극(대향 전극)에 상당한다. 제 2 전극층(4031)은 공통 전위선과 전기적으로 접속된다.
또한, 도 9 내지 도 11에 있어서, 제 1 기판(4001), 제 2 기판(4006)으로서는, 유리 기판 외에, 가요성을 갖는 기판도 이용할 수가 있으며, 예를 들면 투광성을 갖는 플라스틱 기판 등을 이용할 수가 있다. 플라스틱으로서는, FRP(Fiberglass-Reinforced Plastics) 판, PVF(폴리비닐 플루오라이드) 필름, 폴리에스테르 필름 또는 아크릴 수지 필름을 이용할 수가 있다. 또한, 알루미늄 호일을 PVF 필름이나 폴리에스테르 필름으로 사이에 끼운 구조의 시트를 이용할 수도 있다.
절연층(4021)은, 무기 절연 재료 또는 유기 절연 재료를 이용하여 형성할 수가 있다. 또한 아크릴 수지, 폴리이미드, 벤조시클로부텐계 수지, 폴리아미드, 에폭시 수지 등의, 내열성을 갖는 유기 절연 재료를 이용하면, 평탄화 절연막으로서 매우 적합하다. 또한 상기 유기 절연 재료 외에, 저유전율 재료(low-k재료), 실록산계 수지, PSG(인 유리), BPSG(인 붕소 유리) 등을 이용할 수가 있다. 또한 이러한 재료로 형성되는 절연막을 복수 적층시킴으로써, 절연층을 형성하여도 좋다.
절연층(4021)의 형성법은, 특별히 한정되지 않고, 그 재료에 따라서, 스퍼터링법, 스핀 코트법, 딥핑법, 스프레이 도포, 액적 토출법(잉크젯법), 스크린 인쇄, 옵셋 인쇄, 롤 코팅, 커텐 코팅, 나이프 코팅 등을 이용할 수가 있다.
표시장치는 광원 또는 표시 소자로부터의 광을 투과시켜 표시를 실시한다. 따라서 광이 투과하는 화소부에 마련되는 기판, 절연막, 도전막 등의 박막은 모두 가시광선의 파장 영역의 광에 대하여 투광성으로 한다.
표시 소자에 전압을 인가하는 제 1 전극층 및 제 2 전극층(화소 전극층, 공통 전극층, 대향 전극층 등이라고도 한다)에 있어서는, 취출하는 광의 방향, 전극층이 마련되는 장소, 및 전극층의 패턴 구조에 따라서 투광성, 반사성을 선택하면 좋다.
제 1 전극층(4030), 제 2 전극층(4031)은, 산화 텅스텐을 포함한 인듐 산화물, 산화 텅스텐을 포함한 인듐 아연 산화물, 산화 티탄을 포함한 인듐 산화물, 산화 티탄을 포함한 인듐주석 산화물, 인듐주석 산화물(이하, ITO로 나타낸다), 인듐 아연 산화물, 산화 규소를 첨가한 인듐주석 산화물 등의 투광성을 갖는 도전성 재료를 이용할 수가 있다.
또한, 제 1 전극층(4030), 제 2 전극층(4031)은 텅스텐(W), 몰리브덴(Mo), 지르코늄(Zr), 하프늄(Hf), 바나듐(V), 니오브(Nb), 탄탈륨(Ta), 크롬(Cr), 코발트(Co), 니켈(Ni), 티탄(Ti), 백금(Pt), 알루미늄(Al), 동(Cu), 은(Ag) 등의 금속, 또는 그 합금, 혹은 그 질화물로부터 1종 또는 복수종을 이용하여 형성할 수가 있다.
또한, 트랜지스터는 정전기 등에 의해 파괴되기 쉽기 때문에, 구동 회로 보호용의 보호 회로를 마련하는 것이 바람직하다. 보호 회로는, 비선형 소자를 이용하여 구성하는 것이 바람직하다.
이상과 같이, 실시형태 1~3에서 예시한 트랜지스터를 적용함으로써, 신뢰성이 높은 반도체 장치를 제공할 수가 있다.
본 실시형태는, 다른 실시형태에 기재한 구성과 적절히 조합하여 실시하는 것이 가능하다.
(실시형태 7)
실시형태 1 내지 3중의 어딘가에 일 예를 나타낸 트랜지스터를 이용하여, 대상물의 정보를 읽어내는 이미지 센서 기능을 갖는 반도체 장치를 제작할 수가 있다.
도 12(A)에, 이미지 센서 기능을 갖는 반도체 장치의 일 예를 나타낸다. 도 12(A)는 포토센서의 등가 회로이며, 도 12(B)는 포토센서의 일부를 나타내는 단면도이다.
포토다이오드(602)는, 한쪽의 전극이 포토다이오드 리셋트 신호선(658)에, 다른쪽의 전극이 트랜지스터(640)의 게이트에 전기적으로 접속되어 있다. 트랜지스터(640)는, 소스 또는 드레인의 한쪽이 포토센서 기준 신호선(672)에, 소스 또는 드레인의 다른쪽이 트랜지스터(656)의 소스 또는 드레인의 한쪽에 전기적으로 접속되어 있다. 트랜지스터(656)는, 게이트가 게이트 신호선(659)에, 소스 또는 드레인의 다른 쪽이 포토센서 출력 신호선(671)에 전기적으로 접속되어 있다.
또한, 본 명세서에 있어서의 회로도에 있어서, 산화물 반도체막을 이용하는 트랜지스터라고 명확하게 판명할 수 있도록, 산화물 반도체막을 이용하는 트랜지스터의 기호에는 「OS」라고 기재하고 있다. 도 12(A)에 있어서, 트랜지스터(640), 트랜지스터(656)는 산화물 반도체막을 이용하는 트랜지스터다.
도 12(B)는, 포토센서에 있어서의 포토다이오드(602) 및 트랜지스터(640)에 나타내는 단면도이며, 절연 표면을 갖는 기판(601)(TFT 기판) 상에, 센서로서 기능하는 포토다이오드(602) 및 트랜지스터(640)가 마련되어 있다. 포토다이오드(602), 트랜지스터(640) 위에는 접착층(608)을 이용하여 기판(613)이 마련되어 있다. 또한, 트랜지스터(640)상에는 절연막(631), 제 1 층간 절연층(633), 제 2 층간 절연층(634)이 마련되어 있다.
또한, 트랜지스터(640)의 게이트 전극(645a)과 전기적으로 접속되도록, 그 게이트 전극(645a)과 같은 층에 전극층(645b)이 마련되어 있다. 전극층(645b)은, 절연막(631) 및 제 1 층간 절연층(633)에 마련된 개구를 통하여, 전극층(641a)과 전기적으로 접속되어 있다. 전극층(641a)은, 제 2 층간 절연층(634)에 형성된 전극층(642)과 전기적으로 접속되고, 전극층(642)은 전극층(641a)을 통하여 게이트 전극(645a)과 전기적으로 접속되어 있기 때문에, 포토다이오드(602)는 트랜지스터(640)와 전기적으로 접속되어 있다.
포토다이오드(602)는, 제 1 층간 절연층(633)상에 마련되며, 제 1 층간 절연층(633)상에 형성한 전극층(641b)과 제 2 층간 절연층(634)상에 마련된 전극층(642)의 사이에, 제 1 층간 절연층(633)측으로부터 순서대로 제 1 반도체층(606a), 제 2 반도체층(606b), 및 제 3 반도체층(606c)를 적층한 구조를 갖고 있다.
본 실시형태에서는, 트랜지스터(640)로서, 실시형태 1, 2, 또는 3중의 어딘가에 나타낸 트랜지스터를 적용할 수가 있다. 트랜지스터(640), 트랜지스터(656)는, 전기적 특성 변동이 억제되어 있어 전기적으로 안정하기 때문에, 도 12에서 나타내는 본 실시형태의 반도체 장치로서 신뢰성이 높은 반도체 장치를 제공할 수가 있다.
여기에서는, 제 1 반도체층(606a)으로서 p형의 도전형을 갖는 반도체층과, 제 2 반도체층(606b)으로서 고저항인 반도체층(I형 반도체층), 제 3 반도체층(606c)으로서 n형의 도전형을 갖는 반도체층을 적층하는 pin형의 포토다이오드를 예시하고 있다.
제 1 반도체층(606a)은 p형 반도체층이며, p형을 부여하는 불순물 원소를 포함한 아몰퍼스 실리콘막에 의해 형성할 수가 있다. 제 1 반도체층(606a)의 형성에는 13족의 불순물 원소(예를 들면 붕소(B))를 포함한 반도체 재료 가스를 이용하여, 플라즈마 CVD법에 의해 형성한다. 반도체 재료 가스로서는 실란(SiH4)을 이용하면 좋다. 또는, Si2H6, SiH2Cl2, SiHCl3, SiCl4, SiF4 등을 이용하여도 괜찮다. 또한, 불순물 원소를 포함하지 않는 아몰퍼스 실리콘막을 형성한 후에, 확산법이나 이온 주입법을 이용하여 그 아몰퍼스 실리콘막에 불순물 원소를 도입하여도 괜찮다. 이온 주입법 등에 의해 불순물 원소를 도입한 후에 가열 등을 실시함으로써, 불순물 원소를 확산시키면 좋다. 이 경우에 아몰퍼스 실리콘막을 형성하는 방법으로서는, LPCVD법, 기상 성장법, 또는 스퍼터링법 등을 이용하면 좋다. 제 1 반도체층(606a)의 막두께는 10 nm 이상 50 nm 이하가 되도록 형성하는 것이 바람직하다.
제 2 반도체층(606b)은, i형 반도체층(진성 반도체층)이며, 아몰퍼스 실리콘막에 의해 형성한다. 제 2 반도체층(606b)의 형성에는, 반도체 재료 가스를 이용하여, 아몰퍼스 실리콘막을 플라즈마 CVD법에 의해 형성한다. 반도체 재료 가스로서는, 실란(SiH4)을 이용하면 좋다. 또는, Si2H6, SiH2Cl2, SiHCl3, SiCl4, SiF4 등을 이용하여도 괜찮다. 제 2 반도체층(606b)의 형성은, LPCVD법, 기상 성장법, 스퍼터링법 등에 의해 실시하여도 좋다. 제 2 반도체층(606b)의 막두께는 200 nm 이상 1000 nm 이하가 되도록 형성하는 것이 바람직하다.
제 3 반도체층(606c)은, n형 반도체층이며, n형을 부여하는 불순물 원소를 포함한 아몰퍼스 실리콘막에 의해 형성한다. 제 3 반도체층(606c)의 형성에는, 15족의 불순물 원소(예를 들면 인(P))을 포함한 반도체 재료 가스를 이용하여, 플라즈마 CVD법에 의해 형성한다. 반도체 재료 가스로서는 실란(SiH4)을 이용하면 좋다. 또는, Si2H6, SiH2Cl2, SiHCl3, SiCl4, SiF4 등을 이용하여도 괜찮다. 또한, 불순물 원소를 포함하지 않는 아몰퍼스 실리콘막을 형성한 후에, 확산법이나 이온 주입법을 이용하여 그 아몰퍼스 실리콘막에 불순물 원소를 도입하여도 괜찮다. 이온 주입법 등에 의해 불순물 원소를 도입한 후에 가열 등을 실시함으로써, 불순물 원소를 확산시키면 좋다. 이 경우에 아몰퍼스 실리콘막을 형성하는 방법으로서는, LPCVD법, 기상 성장법, 또는 스퍼터링법 등을 이용하면 좋다. 제 3 반도체층(606c)의 막두께는 20 nm 이상 200 nm 이하가 되도록 형성하는 것이 바람직하다.
또한, 제 1 반도체층(606a), 제 2 반도체층(606b), 및 제 3 반도체층(606c)은, 아몰퍼스 반도체는 아니고, 다결정 반도체를 이용하여 형성하여도 좋고, 미결정 반도체(세미 아몰퍼스 반도체(Semi Amorphous Semiconductor:SAS)를 이용하여 형성하여도 좋다.
미결정 반도체는, 깁스의 자유에너지를 고려하면 비정질과 단결정의 중간적인 준안정 상태에 속하는 것이다. 즉, 열역학적으로 안정한 제 3 상태를 갖는 반도체이며, 단거리 질서를 가져 격자 왜곡을 갖는다. 기둥 형상 또는 침상 결정이 기판 표면에 대하여 법선 방향으로 성장되어 있다. 미결정 반도체의 대표예인 미결정 실리콘은, 그 라만 스펙트럼이 단결정 실리콘을 나타내는 520 cm-1보다 저파수 측으로 시프트해 있다. 즉, 단결정 실리콘을 나타내는 520 cm- 1와 아몰퍼스 실리콘을 나타내는 480 cm-1의 사이에 미결정 실리콘의 라만 스펙트럼의 피크가 있다. 또한, 댕글링 본드를 종단하기 위해 수소 또는 할로겐을 적어도 1 원자% 또는 그 이상 포함시키고 있다. 게다가 헬륨, 아르곤, 크립톤, 네온 등의 희가스 원소를 포함시켜서 격자 왜곡을 더욱 조장시킴으로써, 안정성이 증가하여 양호한 미결정 반도체막을 얻을 수 있다.
이 미결정 반도체막은, 주파수가 수십 MHz~수백 MHz의 고주파 플라즈마 CVD법, 또는 주파수가 1 GHz 이상의 마이크로파 플라즈마 CVD 장치에 의해 형성할 수가 있다. 대표적으로는, SiH4, Si2H6, SiH2Cl2, SiHCl3, SiCl4, SiF4 등을 수소로 희석하여 형성할 수가 있다. 또한, 수소화 규소 및 수소에 부가하여 헬륨, 아르곤, 크립톤, 네온으로부터 선택된 1종 또는 복수종의 희가스 원소로 희석하여 미결정 반도체막을 형성할 수가 있다. 이러한 때의 수소화 규소에 대하여 수소의 유량비를 5배 이상 200배 이하, 바람직하게는 50배 이상 150배 이하, 더욱 바람직하게는 100배로 한다. 또한, 실리콘을 포함한 기체중에, CH4, C2H6 등의 탄화수소 기체, GeH4, GeF4 등의 게르마늄화 기체, F2 등을 혼입시켜도 괜찮다.
또한, 광전 효과로 발생한 정공의 이동도는 전자의 이동도에 비해 작기 때문에, pin형의 포토다이오드는 p형의 반도체층측을 수광면으로 하는 것이 좋은 특성을 나타낸다. 여기에서는, pin형의 포토다이오드가 형성되어 있는 기판(601)의 면으로부터 포토다이오드(602)가 받는 광(622)을 전기신호로 변환하는 예를 나타낸다. 또한, 수광면으로 한 반도체층측과는 반대의 도전형을 갖는 반도체층 측에서의 광은 외란광이 되기 때문에, 전극층(642)은 차광성을 갖는 도전막을 이용하면 좋다. 또한, n형의 반도체층측을 수광면으로서 이용할 수도 있다.
제 1 층간 절연층(633), 제 2 층간 절연층(634)으로서는, 표면 요철을 저감하기 위해 평탄화 절연막으로서 기능하는 절연층이 바람직하다. 제 1 층간 절연층(633), 제 2 층간 절연층(634)으로서는, 예를 들면 폴리이미드, 아크릴 수지, 벤조시클로부텐계 수지, 폴리아미드, 에폭시 수지 등의 유기 절연 재료를 이용할 수가 있다. 또한 상기 유기 절연 재료 외에, 저유전율 재료(low-k재료), 실록산계 수지, PSG(인 유리), BPSG(인 붕소 유리) 등의 단층, 또는 적층을 이용할 수가 있다.
절연막(631), 제 1 층간 절연층(633), 제 2 층간 절연층(634)으로서는 절연성 재료를 이용하며, 그 재료에 따라서, 스퍼터링법, 스핀 코트법, 딥핑법, 스프레이 도포, 액적 토출법(잉크젯법), 스크린 인쇄, 옵셋 인쇄, 롤 코팅, 커텐 코팅, 나이프 코팅 등을 이용하여 형성할 수가 있다.
포토다이오드(602)에 입사하는 광(622)을 검출함으로써, 피검출물의 정보를 읽어낼 수가 있다. 또한 피검출물의 정보를 읽어낼 때에 백라이트 등의 광원을 이용할 수가 있다.
트랜지스터(640)로서, 실시형태 1, 2, 또는 3에서 일 예를 나타낸 트랜지스터를 이용할 수가 있다. 수소, 수분, 수산기 또는 수소화물(수소화합물이라고도 한다) 등의 불순물을 의도적으로 배제함으로써 고순도화되며, 또한 산소 도핑 처리에 의해 산소를 과잉으로 함유하는 산화물 반도체막을 포함한 트랜지스터는, 트랜지스터의 전기적 특성 변동이 억제되어 있어 전기적으로 안정하다. 따라서, 신뢰성이 높은 반도체 장치를 제공할 수가 있다.
이상, 본 실시형태에 나타내는 구성, 방법 등은, 다른 실시형태에 나타내는 구성, 방법 등과 적절히 조합하여 이용할 수가 있다.
(실시형태 8)
본 명세서에 개시하는 반도체 장치는, 다양한 전자기기(오락기도 포함한다)에 적용할 수가 있다. 전자기기로서는, 예를 들면, 텔레비전 장치(텔레비전, 또는 텔레비전 수신기라고도 한다), 컴퓨터용 등의 모니터, 디지털 카메라, 디지털 비디오 카메라 등의 카메라, 디지털 포토 프레임, 휴대전화기(휴대전화, 휴대전화 장치라고도 한다), 휴대형 게임기, 휴대 정보 단말, 음향 재생장치, 파칭코기 등의 대형 게임기 등을 들 수 있다. 상기 실시형태로 설명한 액정표시장치를 구비하는 전자기기의 예에 대하여 설명한다.
도 13(A)은 전자 서적(E-book라고도 한다)이며, 케이스(9630), 표시부(9631), 조작키(9632), 태양전지(9633), 충방전 제어 회로(9634)를 가질 수가 있다. 도 13(A)에 나타낸 전자 서적은, 여러 가지 정보(정지화면, 동영상, 텍스트 화상 등)를 표시하는 기능, 캘린더, 일자 또는 시각 등을 표시부에 표시하는 기능, 표시부에 표시한 정보를 조작 또는 편집하는 기능, 여러 가지 소프트웨어(프로그램)에 의해 처리를 제어하는 기능, 등을 가질 수가 있다. 또한 도 13(A)에서는 충방전 제어 회로(9634)의 일 예로서 배터리(9635), DCDC 컨버터(이하, 컨버터라고 약기)(9636)를 갖는 구성에 대하여 나타내고 있다. 앞의 실시형태에서 나타낸 반도체 장치를 표시부(9631)에 적용함에 의해, 신뢰성이 높은 전자 서적으로 할 수가 있다.
도 13(A)에 나타내는 구성으로 함에 의해, 표시부(9631)로서 반투과형, 또는 반사형의 액정표시장치를 이용하는 경우, 비교적 밝은 상황하에서의 사용도 예상되어 태양전지(9633)에 의한 발전, 및 배터리(9635)에서의 충전을 효율적으로 실시할 수가 있어 매우 적합하다. 또한 태양전지(9633)는, 케이스(9630)의 빈 공간(표면이나 이면)에 적절히 마련할 수가 있기 때문에, 효율적인 배터리(9635)의 충전을 실시하는 구성으로 할 수가 있기 때문에 매우 적합하다. 또한 배터리(9635)로서는, 리튬 이온 배터리를 이용하면, 소형화를 꾀할 수 있는 등의 이점이 있다.
또한 도 13(A)에 나타내는 충방전 제어 회로(9634)의 구성, 및 동작에 대하여 도 13(B)에 블럭도를 나타내 설명한다. 도 13(B)에는, 태양전지(9633), 배터리(9635), 컨버터(9636), 컨버터(9637), 스위치(SW1 내지 SW3), 표시부(9631)에 대하여 나타내고 있으며, 배터리(9635), 컨버터(9636), 컨버터(9637), 스위치(SW1 내지 SW3)가 충방전 제어 회로(9634)에 대응하는 개소가 된다.
우선 외광에 의해 태양전지(9633)에 의해 발전이 되는 경우의 동작의 예에 대하여 설명한다. 태양전지로 발전한 전력은, 배터리(9635)를 충전하기 위한 전압이 되도록 컨버터(9636)에서 승압 또는 강압이 이루어진다. 그리고, 표시부(9631)의 동작에 태양전지(9633)로부터의 전력이 이용되려면 스위치(SW1)를 온으로 하여, 컨버터(9637)와 표시부(9631)에 필요한 전압으로 승압 또는 강압을 하게 된다. 또한, 표시부(9631)에서의 표시를 실시하지 않는 때는, SW1를 오프로 하고, SW2를 온으로 하여 배터리(9635)의 충전을 실시하는 구성으로 하면 좋다.
그 다음에 외광에 의해 태양전지(9633)에 의해 발전이 되지 않는 경우의 동작의 예에 대하여 설명한다. 배터리(9635)에 축전된 전력은, 스위치(SW3)를 온으로 함으로써 컨버터(9637)에 의해 승압 또는 강압이 이루어진다. 그리고, 표시부(9631)의 동작에 배터리(9635)로부터의 전력이 이용되게 된다.
또한 태양전지(9633)에 대해서는, 충전 수단의 일 예로서 나타내었지만, 다른 수단에 의한 배터리(9635)의 충전을 실시하는 구성이라도 괜찮다. 또한 다른 충전 수단을 조합하여 실시하는 구성으로 하여도 좋다.
도 14(A)는 노트형의 퍼스널 컴퓨터이며, 본체(3001), 케이스(3002), 표시부(3003), 키보드(3004) 등에 의해 구성되어 있다. 앞의 실시형태에서 나타낸 반도체 장치를 표시부(3003)에 적용함에 의해, 신뢰성이 높은 노트형의 퍼스널 컴퓨터로 할 수가 있다.
도 14(B)는 휴대 정보 단말(PDA)이며, 본체(3021)에는 표시부(3023)와, 외부 인터페이스(3025)와, 조작 버튼(3024) 등이 마련되어 있다. 또한 조작용의 부속품으로서 스타일러스(3022)가 있다. 앞의 실시형태에서 나타낸 반도체 장치를 표시부(3023)에 적용함에 의해, 보다 신뢰성이 높은 휴대 정보 단말(PDA)로 할 수가 있다.
도 14(C)는 전자 서적의 일 예를 나타내고 있다. 예를 들면, 전자 서적(2700)은, 케이스(2701) 및 케이스(2703)의 2개의 케이스로 구성되어 있다. 케이스(2701) 및 케이스(2703)는, 축부(2711)에 의해 일체로 되어 있어 그 축부(2711)를 축으로 하여 개폐 동작을 실시할 수가 있다. 이러한 구성에 의해, 종이 서적과 같은 동작을 실시하는 것이 가능해진다.
케이스(2701)에는 표시부(2705)가 설치되며, 케이스(2703)에는 표시부(2707)가 설치되어 있다. 표시부(2705) 및 표시부(2707)는, 연속 화면을 표시하는 구성으로 하여도 좋고, 다른 화면을 표시하는 구성으로 하여도 좋다. 다른 화면을 표시하는 구성으로 함으로써, 예를 들면 우측의 표시부(도 14(C)에서는 표시부(2705))에 문장을 표시하고, 좌측의 표시부(도 14(C)에서는 표시부(2707))에 화상을 표시할 수가 있다. 앞의 실시형태에서 나타낸 반도체 장치를 표시부(2705), 표시부(2707)에 적용함에 의해, 신뢰성이 높은 전자 서적(2700)으로 할 수가 있다.
또한, 도 14(C)에서는, 케이스(2701)에 조작부 등을 구비한 예를 나타내고 있다. 예를 들면, 케이스(2701)에 있어서, 전원 스위치(2721), 조작키(2723), 스피커(2725) 등을 구비하고 있다. 조작키(2723)에 의해, 페이지를 넘길 수가 있다. 또한 케이스의 표시부와 동일면에 키보드나 포인팅 디바이스 등을 구비하는 구성으로 하여도 좋다. 또한, 케이스의 이면이나 측면에, 외부 접속용 단자(이어폰 단자, USB 단자 등), 기록 매체 삽입부 등을 구비하는 구성으로 하여도 좋다. 게다가 전자 서적(2700)은, 전자 사전으로서의 기능을 갖게 한 구성으로 하여도 좋다.
또한, 전자 서적(2700)은, 무선으로 정보를 송수신할 수 있는 구성으로 하여도 좋다. 무선에 의해, 전자 서적 서버로부터, 원하는 서적 데이터 등을 구입하여, 다운로드하는 구성으로 하는 것도 가능하다.
도 14(D)는 휴대전화이며, 케이스(2800) 및 케이스(2801)의 2개의 케이스로 구성되어 있다. 케이스(2801)에는, 표시 패널(2802), 스피커(2803), 마이크로폰(2804), 포인팅 디바이스(2806), 카메라용 렌즈(2807), 외부 접속 단자(2808) 등을 구비하고 있다. 또한, 케이스(2800)에는, 휴대전화의 충전을 실시하는 태양전지 셀(2810), 외부 메모리 슬롯(2811) 등을 구비하고 있다. 또한, 안테나는 케이스(2801) 내부에 내장되어 있다. 앞의 실시형태에서 나타낸 반도체 장치를 표시 패널(2802)에 적용함에 의해, 신뢰성이 높은 휴대전화로 할 수가 있다.
또한, 표시 패널(2802)은 터치 패널을 구비하고 있으며, 도 14(D)에는 영상 표시되어 있는 복수의 조작키(2805)를 점선으로 나타내고 있다. 또한 태양전지 셀(2810)에서 출력되는 전압을 각 회로에 필요한 전압으로 승압하기 위한 승압 회로도 실장하고 있다.
표시 패널(2802)은, 사용 형태에 따라서 표시의 방향이 적절히 변화한다. 또한, 표시 패널(2802)과 동일면상에 카메라용 렌즈(2807)를 구비하고 있기 때문에, 화상 전화가 가능하다. 스피커(2803) 및 마이크로폰(2804)은 음성 통화에 한정하지 않고, 화상 전화, 녹음, 재생 등이 가능하다. 게다가 케이스(2800)와 케이스(2801)는, 슬라이드하여, 도 14(D)와 같이 전개하고 있는 상태로부터 서로 겹친 상태로 할 수가 있어 휴대폰에 적절한 소형화가 가능하다.
외부 접속 단자(2808)는 AC어댑터 및 USB 케이블 등의 각종 케이블과 접속 가능하고, 충전 및 퍼스널 컴퓨터 등과의 데이터 통신이 가능하다. 또한, 외부 메모리 슬롯(2811)에 기록 매체를 삽입하여, 보다 대량의 데이터 보존 및 이동에 대응할 수 있다.
또한, 상기 기능에 부가하여, 적외선 통신 기능, TV 수신 기능 등을 구비한 것이라도 괜찮다.
도 14(E)는 디지털 비디오 카메라이며, 본체(3051), 표시부(A)(3057), 접안부(3053), 조작 스위치(3054), 표시부(B)(3055), 배터리(3056) 등에 의해 구성되어 있다. 상기 실시형태중의 어딘가에 나타낸 반도체 장치를 표시부(A)(3057), 표시부(B)(3055)에 적용함에 의해, 신뢰성이 높은 디지털 비디오 카메라로 할 수가 있다.
도 14(F)는 텔레비전 장치의 일 예를 나타내고 있다. 텔레비전 장치(9600)는, 케이스(9601)에 표시부(9603)가 설치되어 있다. 표시부(9603)에 의해, 영상을 표시하는 것이 가능하다. 또한, 여기에서는, 스탠드(9605)에 의해 케이스(9601)를 지지한 구성을 나타내고 있다. 앞의 실시형태에서 나타낸 반도체 장치를 표시부(9603)에 적용함에 의해, 신뢰성이 높은 텔레비전 장치(9600)로 할 수가 있다.
텔레비전 장치(9600)의 조작은, 케이스(9601)가 구비하는 조작 스위치나, 별체의 리모콘 조작기에 의해 실시할 수가 있다. 또한, 리모콘 조작기에, 해당 리모콘 조작기로부터 출력하는 정보를 표시하는 표시부를 마련하는 구성으로 하여도 좋다.
또한, 텔레비전 장치(9600)는, 수신기나 모뎀 등을 구비한 구성으로 한다. 수신기에 의해 일반의 텔레비전 방송의 수신을 실시할 수가 있으며, 게다가 모뎀을 통하여 유선 또는 무선에 의한 통신 네트워크에 접속함에 의해, 일방향(송신자로부터 수신자) 또는 양방향(송신자와 수신자 사이, 혹은 수신자 사이끼리 등)의 정보통신을 실시하는 것도 가능하다.
이상, 본 실시형태에 나타내는 구성, 방법 등은, 다른 실시형태에 나타내는 구성, 방법 등과 적절히 조합하여 이용할 수가 있다.
본 출원은 전문이 참조로서 본 명세서에 통합되고, 2010년 4월 23일 일본 특허청에 출원된, 일련 번호가 2010-100241인 일본 특허 출원에 기초한다.
10 : 플라즈마 장치 11 : 기판 공급실
12 : 로드 록크실 13 : 반송실
14 : 카셋트 포트 15 : 진공 챔버
16 : ICP 코일 17 : 가스 유로
18 : 고주파 전원 19 : 기판 스테이지
20 : 피처리 기판 21 : 고주파 전원
22 : 자동 압력 제어 밸브 23 : 터보 분자 펌프
24 : 드라이 펌프 100 : 기판
102 : 절연막 102a : 절연막
102b : 절연막 103a : 마스크
103b : 마스크 104a : 소스 전극
104b : 드레인 전극 106 : 산화물 반도체막
108 : 산화물 반도체막 110 : 게이트 절연막
110a : 게이트 절연막 110b : 게이트 절연막
112 : 게이트 전극 112a : 게이트 전극
112b : 전극 114 : 절연막
120 : 트랜지스터 130 : 트랜지스터
140 : 트랜지스터 150 : 트랜지스터
151 : 절연막 152 : 절연막
154 : 전극 156 : 배선
160 : 트랜지스터 164 : 용량 소자
180 : 산소 180a : 산소
180b : 산소 180c : 산소
200 : 기판 206 : 소자분리 절연막
208 : 게이트 절연막 210 : 게이트 전극
216 : 채널 형성 영역 220 : 불순물 영역
224 : 금속 화합물 영역 228 : 절연막
230 : 절연막 240 : 트랜지스터
601 : 기판 602 : 포토다이오드
606a : 반도체층 606b : 반도체층
606c : 반도체층 608 : 접착층
613 : 기판 631 : 절연막
633 : 층간 절연층 634 : 층간 절연층
640 : 트랜지스터 641 : 전극층
641a : 전극층 641b : 전극층
642 : 전극층 645 : 게이트 전극
645a : 게이트 전극 645b : 전극층
656 : 트랜지스터 658 : 포토다이오드 리셋트 신호선
659 : 게이트 신호선 671 : 포토센서 출력 신호선
672 : 포토센서 기준 신호선 2700 : 전자 서적
2701 : 케이스 2703 : 케이스
2705 : 표시부 2707 : 표시부
2711 : 축부 2721 : 전원 스위치
2723 : 조작키 2725 : 스피커
2800 : 케이스 2801 : 케이스
2802 : 표시 패널 2803 : 스피커
2804 : 마이크로폰 2805 : 조작키
2806 : 포인팅 디바이스 2807 : 카메라용 렌즈
2808 : 외부 접속 단자 2810 : 태양전지 셀
2811 : 외부 메모리 슬롯 3001 : 본체
3002 : 케이스 3003 : 표시부
3004 : 키보드 3021 : 본체
3022 : 스타일러스 3023 : 표시부
3024 : 조작 버튼 3025 : 외부 인터페이스
3051 : 본체 3053 : 접안부
3054 : 조작 스위치 3055 : 표시부(B)
3056 : 배터리 3057 : 표시부(A)
4001 : 기판 4002 : 화소부
4003 : 신호선 구동 회로 4004 : 주사선 구동 회로
4005 : 시일재 4006 : 기판
4008 : 액정층 4010 : 트랜지스터
4011 : 트랜지스터 4013 : 액정 소자
4015 : 접속 단자 전극 4016 : 단자 전극
4018 : FPC 4018a : FPC
4018b : FPC 4019 : 이방성 도전막
4021 : 절연층 4030 : 전극층
4031 : 전극층 4032 : 절연막
4033 : 절연막 4510 : 격벽
4511 : 전계 발광층 4513 : 발광소자
4514 : 충전재 4612 : 캐비티
4613 : 구형 입자 4614 : 충전재
4615a : 흑색 영역 4615b : 백색 영역
9600 : 텔레비전 장치 9601 : 케이스
9603 : 표시부 9605 : 스탠드
9630 : 케이스 9631 : 표시부
9632 : 조작키 9633 : 태양전지
9634 : 충방전 제어 회로 9635 : 배터리
9636 : 컨버터 9637 : 컨버터

Claims (11)

  1. 반도체 장치의 제작 방법에 있어서,
    기판 위에 제 1 절연막을 형성하는 단계;
    상기 제 1 절연막에 제 1 산소 도핑 처리를 실시하여, 상기 제 1 절연막에 산소 원자를 공급하는 단계;
    상기 제 1 절연막 위에 소스 전극 및 드레인 전극, 그리고 상기 소스 전극 및 드레인 전극과 전기적으로 접속하는 산화물 반도체막을 형성하는 단계;
    수소 및 물이 포함되지 않은 분위기에서 상기 산화물 반도체막에 열처리를 실시하는 단계;
    상기 산화물 반도체막 위에 제 2 절연막을 형성하는 단계; 및
    상기 제 2 절연막 위의 상기 산화물 반도체막과 중첩되는 영역에 게이트 전극을 형성하는 단계를 포함하는, 반도체 장치의 제작 방법.
  2. 반도체 장치의 제작 방법에 있어서,
    기판 위에 산소 원자를 포함하는 제 1 절연막을 형성하는 단계;
    상기 제 1 절연막에 제 1 산소 도핑 처리를 실시하여, 상기 제 1 절연막에 산소 원자를 공급하는 단계;
    상기 제 1 절연막 위에 소스 전극 및 드레인 전극, 그리고 상기 소스 전극 및 드레인 전극과 전기적으로 접속하는 산화물 반도체막을 형성하는 단계;
    수소 및 물이 포함되지 않은 분위기에서 상기 산화물 반도체막에 열처리를 실시하는 단계;
    상기 산화물 반도체막에 제 2 산소 도핑 처리를 실시하여, 상기 산화물 반도체막 내에 산소 원자를 공급하는 단계;
    상기 산화물 반도체막 위에 산소 원자를 포함하는 제 2 절연막을 형성하는 단계;
    상기 제 2 절연막 위의 상기 산화물 반도체막과 중첩되는 영역에 게이트 전극을 형성하는 단계; 및
    상기 제 2 산소 도핑 처리 후, 상기 게이트 전극을 형성하기 전 또는 형성한 후에 수소 및 물이 포함되지 않은 분위기에서 열처리를 실시하는 단계를 포함하는, 반도체 장치의 제작 방법.
  3. 반도체 장치의 제작 방법에 있어서,
    기판 위에 산소 원자를 포함하는 제 1 절연막을 형성하는 단계;
    상기 제 1 절연막에 제 1 산소 도핑 처리를 실시하여, 상기 제 1 절연막에 산소 원자를 공급하는 단계;
    상기 제 1 절연막 위에 소스 전극 및 드레인 전극, 그리고 상기 소스 전극 및 드레인 전극과 전기적으로 접속하는 산화물 반도체막을 형성하는 단계;
    수소 및 물이 포함되지 않은 분위기에서 상기 산화물 반도체막에 열처리를 실시하는 단계;
    상기 산화물 반도체막 위에 산소 원자를 포함하는 제 2 절연막을 형성하는 단계;
    상기 제 2 절연막에 제 2 산소 도핑 처리를 실시하여, 상기 제 2 절연막에 산소 원자를 공급하는 단계;
    상기 제 2 절연막 위의 상기 산화물 반도체막과 중첩되는 영역에 게이트 전극을 형성하는 단계; 및
    상기 제 2 산소 도핑 처리 후, 상기 게이트 전극을 형성하기 전 또는 형성한 후에 수소 및 물이 포함되지 않은 분위기에서 열처리를 실시하는 단계를 포함하는, 반도체 장치의 제작 방법.
  4. 제 2 항에 있어서,
    상기 산화물 반도체막의 화학량론비의 1배 초과 2배 미만의 비율의 산소 원자가 상기 산화물 반도체막에 포함되도록, 상기 제 2 산소 도핑 처리를 실시하는, 반도체 장치의 제작 방법.
  5. 제 3 항에 있어서,
    상기 제 2 절연막의 화학량론비의 1배 초과 2배 미만의 비율의 산소 원자가 상기 제 2 절연막에 포함되도록, 상기 제 2 산소 도핑 처리를 실시하는, 반도체 장치의 제작 방법.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 제 1 절연막의 화학량론비의 1배 초과 2배 미만의 비율의 산소 원자가 상기 제 1 절연막에 포함되도록, 상기 제 1 산소 도핑 처리를 실시하는, 반도체 장치의 제작 방법.
  7. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 제 1 절연막 및 상기 제 2 절연막 중 적어도 하나를 상기 산화물 반도체막의 성분 원소를 포함하는 절연막으로 형성하는, 반도체 장치의 제작 방법.
  8. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 제 1 절연막 및 상기 제 2 절연막 중 적어도 하나를 상기 산화물 반도체막측으로부터, 상기 산화물 반도체막의 성분 원소를 포함하는 절연막 및 상기 산화물 반도체막의 성분 원소와는 다른 원소를 포함하는 절연막으로 형성하는, 반도체 장치의 제작 방법.
  9. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 제 1 절연막 및 상기 제 2 절연막 중 적어도 하나를 산화 갈륨을 포함하는 절연막으로 형성하는, 반도체 장치의 제작 방법.
  10. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 제 1 절연막 및 상기 제 2 절연막 중 적어도 하나를 상기 산화물 반도체막측으로부터, 산화 갈륨을 포함하는 절연막 및 산화 갈륨과는 다른 재료를 포함하는 막으로 형성하는, 반도체 장치의 제작 방법.
  11. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 게이트 전극을 덮도록, 질소를 함유하는 절연막을 형성하는, 반도체 장치의 제작 방법.
KR1020167033223A 2010-04-23 2011-03-30 반도체 장치의 제작 방법 KR101754380B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2010-100241 2010-04-23
JP2010100241 2010-04-23
PCT/JP2011/058659 WO2011132529A1 (en) 2010-04-23 2011-03-30 Method for manufacturing semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020127030007A Division KR101689378B1 (ko) 2010-04-23 2011-03-30 반도체 장치의 제작 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020177017869A Division KR101854421B1 (ko) 2010-04-23 2011-03-30 반도체 장치의 제작 방법

Publications (2)

Publication Number Publication Date
KR20160139058A KR20160139058A (ko) 2016-12-06
KR101754380B1 true KR101754380B1 (ko) 2017-07-05

Family

ID=44816147

Family Applications (5)

Application Number Title Priority Date Filing Date
KR1020137017859A KR101332374B1 (ko) 2010-04-23 2011-03-30 반도체 장치의 제작 방법
KR1020127030007A KR101689378B1 (ko) 2010-04-23 2011-03-30 반도체 장치의 제작 방법
KR1020187011465A KR101974927B1 (ko) 2010-04-23 2011-03-30 반도체 장치의 제작 방법
KR1020167033223A KR101754380B1 (ko) 2010-04-23 2011-03-30 반도체 장치의 제작 방법
KR1020177017869A KR101854421B1 (ko) 2010-04-23 2011-03-30 반도체 장치의 제작 방법

Family Applications Before (3)

Application Number Title Priority Date Filing Date
KR1020137017859A KR101332374B1 (ko) 2010-04-23 2011-03-30 반도체 장치의 제작 방법
KR1020127030007A KR101689378B1 (ko) 2010-04-23 2011-03-30 반도체 장치의 제작 방법
KR1020187011465A KR101974927B1 (ko) 2010-04-23 2011-03-30 반도체 장치의 제작 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020177017869A KR101854421B1 (ko) 2010-04-23 2011-03-30 반도체 장치의 제작 방법

Country Status (7)

Country Link
US (5) US8530289B2 (ko)
JP (6) JP5798364B2 (ko)
KR (5) KR101332374B1 (ko)
CN (4) CN102859703B (ko)
DE (2) DE112011101395B4 (ko)
TW (3) TWI629714B (ko)
WO (1) WO2011132529A1 (ko)

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5111867B2 (ja) 2007-01-16 2013-01-09 株式会社ジャパンディスプレイイースト 表示装置
KR102503687B1 (ko) 2009-07-03 2023-02-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
WO2011132548A1 (en) 2010-04-23 2011-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR20130055607A (ko) 2010-04-23 2013-05-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
KR101332374B1 (ko) * 2010-04-23 2013-11-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
KR101324760B1 (ko) 2010-04-23 2013-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
WO2011132591A1 (en) 2010-04-23 2011-10-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR102390961B1 (ko) 2010-04-23 2022-04-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
KR101806271B1 (ko) 2010-05-14 2017-12-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
US9496405B2 (en) 2010-05-20 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device including step of adding cation to oxide semiconductor layer
US8629438B2 (en) 2010-05-21 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN102906882B (zh) 2010-05-21 2015-11-25 株式会社半导体能源研究所 半导体装置及其制造方法
WO2011145467A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101350751B1 (ko) 2010-07-01 2014-01-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치의 구동 방법
CN105931967B (zh) 2011-04-27 2019-05-03 株式会社半导体能源研究所 半导体装置的制造方法
US8709922B2 (en) 2011-05-06 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8643008B2 (en) 2011-07-22 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9431545B2 (en) 2011-09-23 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102108572B1 (ko) 2011-09-26 2020-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
US8637864B2 (en) 2011-10-13 2014-01-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP5912394B2 (ja) 2011-10-13 2016-04-27 株式会社半導体エネルギー研究所 半導体装置
US8951899B2 (en) 2011-11-25 2015-02-10 Semiconductor Energy Laboratory Method for manufacturing semiconductor device
JP6125211B2 (ja) * 2011-11-25 2017-05-10 株式会社半導体エネルギー研究所 半導体装置の作製方法
US20130137232A1 (en) 2011-11-30 2013-05-30 Semiconductor Energy Laboratory Co., Ltd. Method for forming oxide semiconductor film and method for manufacturing semiconductor device
US8748240B2 (en) * 2011-12-22 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP6053490B2 (ja) 2011-12-23 2016-12-27 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR102097171B1 (ko) * 2012-01-20 2020-04-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP6080563B2 (ja) * 2012-01-23 2017-02-15 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR102225396B1 (ko) 2012-01-25 2021-03-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
JP6091905B2 (ja) * 2012-01-26 2017-03-08 株式会社半導体エネルギー研究所 半導体装置
US8956912B2 (en) 2012-01-26 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
TWI562361B (en) * 2012-02-02 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device
US8916424B2 (en) 2012-02-07 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP6148024B2 (ja) * 2012-02-09 2017-06-14 株式会社半導体エネルギー研究所 半導体装置
US20130221345A1 (en) 2012-02-28 2013-08-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8999773B2 (en) 2012-04-05 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Processing method of stacked-layer film and manufacturing method of semiconductor device
US9276121B2 (en) 2012-04-12 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9006024B2 (en) 2012-04-25 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8860023B2 (en) * 2012-05-01 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN102790062B (zh) * 2012-07-26 2016-01-27 北京京东方光电科技有限公司 一种传感器的制造方法
CN102790068B (zh) * 2012-07-26 2014-10-22 北京京东方光电科技有限公司 一种传感器的制造方法
US9018624B2 (en) 2012-09-13 2015-04-28 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic appliance
TWI627750B (zh) * 2012-09-24 2018-06-21 半導體能源研究所股份有限公司 半導體裝置
JP6059501B2 (ja) 2012-10-17 2017-01-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2014082388A (ja) 2012-10-17 2014-05-08 Semiconductor Energy Lab Co Ltd 半導体装置
JP6021586B2 (ja) 2012-10-17 2016-11-09 株式会社半導体エネルギー研究所 半導体装置
US9166021B2 (en) 2012-10-17 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102220279B1 (ko) 2012-10-19 2021-02-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막을 포함하는 다층막 및 반도체 장치의 제작 방법
JP6204145B2 (ja) 2012-10-23 2017-09-27 株式会社半導体エネルギー研究所 半導体装置
WO2014065343A1 (en) 2012-10-24 2014-05-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9349593B2 (en) 2012-12-03 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2014103901A1 (en) 2012-12-25 2014-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2014104265A1 (en) 2012-12-28 2014-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI614813B (zh) 2013-01-21 2018-02-11 半導體能源研究所股份有限公司 半導體裝置的製造方法
TWI593025B (zh) * 2013-01-30 2017-07-21 半導體能源研究所股份有限公司 氧化物半導體層的處理方法
KR102153110B1 (ko) 2013-03-06 2020-09-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체막 및 반도체 장치
JP5920275B2 (ja) * 2013-04-08 2016-05-18 株式会社デンソー 炭化珪素半導体装置およびその製造方法
TWI644434B (zh) 2013-04-29 2018-12-11 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
JP6345023B2 (ja) 2013-08-07 2018-06-20 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
KR102232133B1 (ko) 2013-08-22 2021-03-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP6440457B2 (ja) 2013-11-07 2018-12-19 株式会社半導体エネルギー研究所 半導体装置
TWI721409B (zh) 2013-12-19 2021-03-11 日商半導體能源研究所股份有限公司 半導體裝置
US20150177311A1 (en) * 2013-12-19 2015-06-25 Intermolecular, Inc. Methods and Systems for Evaluating IGZO with Respect to NBIS
JP6444714B2 (ja) 2013-12-20 2018-12-26 株式会社半導体エネルギー研究所 半導体装置の作製方法
US9472678B2 (en) 2013-12-27 2016-10-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9318618B2 (en) 2013-12-27 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN103730373B (zh) * 2013-12-31 2016-09-07 京东方科技集团股份有限公司 一种半导体器件的制备方法及半导体器件
US9373742B2 (en) 2014-03-06 2016-06-21 The Regents Of The University Of Michigan Plasma-assisted techniques for fabricating semiconductor devices
JP6559444B2 (ja) 2014-03-14 2019-08-14 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP6509596B2 (ja) 2014-03-18 2019-05-08 株式会社半導体エネルギー研究所 半導体装置
KR20160144492A (ko) 2014-04-18 2016-12-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 전자 장치
TWI669761B (zh) 2014-05-30 2019-08-21 日商半導體能源研究所股份有限公司 半導體裝置、包括該半導體裝置的顯示裝置
KR20150146409A (ko) 2014-06-20 2015-12-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 표시 장치, 입출력 장치, 및 전자 기기
WO2016009310A1 (en) * 2014-07-15 2016-01-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and display device including the semiconductor device
US10032888B2 (en) 2014-08-22 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing semiconductor device, and electronic appliance having semiconductor device
US9722091B2 (en) 2014-09-12 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR20230058538A (ko) 2014-11-28 2023-05-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 모듈, 및 전자 기기
KR101562932B1 (ko) 2014-11-28 2015-10-26 연세대학교 산학협력단 산화물 반도체 소자 및 이의 제조 방법
JP6647846B2 (ja) 2014-12-08 2020-02-14 株式会社半導体エネルギー研究所 半導体装置
JP6398000B2 (ja) 2014-12-16 2018-09-26 エルジー ディスプレイ カンパニー リミテッド 薄膜トランジスタアレイ基板
JP6698549B2 (ja) * 2014-12-18 2020-05-27 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP6436531B2 (ja) * 2015-01-30 2018-12-12 住友電工デバイス・イノベーション株式会社 半導体装置の製造方法
US9685560B2 (en) 2015-03-02 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Transistor, method for manufacturing transistor, semiconductor device, and electronic device
KR102549926B1 (ko) 2015-05-04 2023-06-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 반도체 장치의 제작 방법, 및 전자기기
JP6448784B2 (ja) * 2015-06-04 2019-01-09 シャープ株式会社 アクティブマトリクス基板
JP6907512B2 (ja) * 2015-12-15 2021-07-21 株式会社リコー 電界効果型トランジスタの製造方法
US10043917B2 (en) 2016-03-03 2018-08-07 United Microelectronics Corp. Oxide semiconductor device and method of manufacturing the same
US10062626B2 (en) 2016-07-26 2018-08-28 Amkor Technology, Inc. Semiconductor device and manufacturing method thereof
US10957801B2 (en) 2017-02-07 2021-03-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
CN107526226B (zh) * 2017-07-25 2020-07-03 江苏繁华玻璃股份有限公司 一种组合型调光玻璃复合窗及其制备方法
KR20210027635A (ko) 2019-08-29 2021-03-11 삼성전자주식회사 반도체 장치 및 이의 제조 방법
CN110828379A (zh) * 2019-10-15 2020-02-21 深圳大学 一种薄膜晶体管的制造方法、薄膜晶体管及显示面板
US11669709B2 (en) * 2020-03-02 2023-06-06 Avery Dennison Retail Information Services Llc Controlled energy adsorption by self-limiting heating for curing processes
US11923459B2 (en) * 2020-06-23 2024-03-05 Taiwan Semiconductor Manufacturing Company Limited Transistor including hydrogen diffusion barrier film and methods of forming same
CN114597276B (zh) * 2022-03-08 2023-01-31 晟高发新能源发展(江苏)有限公司 一种晶体硅太阳能电池组件制造加工设备及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070108446A1 (en) 2005-11-15 2007-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2010062548A (ja) 2008-08-08 2010-03-18 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法

Family Cites Families (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JP2721157B2 (ja) 1987-03-26 1998-03-04 株式会社東芝 半導体装置
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH03278466A (ja) 1990-03-27 1991-12-10 Toshiba Corp 薄膜トランジスタおよびその製造方法
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
EP0820644B1 (en) 1995-08-03 2005-08-24 Koninklijke Philips Electronics N.V. Semiconductor device provided with transparent switching element
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JPH10313114A (ja) 1997-05-14 1998-11-24 Nec Corp 半導体装置の製造方法
JPH10335325A (ja) 1997-05-29 1998-12-18 Seiko Epson Corp 酸化硅素膜形成方法
US6271542B1 (en) * 1997-12-08 2001-08-07 International Business Machines Corporation Merged logic and memory combining thin film and bulk Si transistors
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP4581159B2 (ja) 1998-10-08 2010-11-17 ソニー株式会社 半導体装置およびその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
US6607948B1 (en) 1998-12-24 2003-08-19 Kabushiki Kaisha Toshiba Method of manufacturing a substrate using an SiGe layer
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP4462775B2 (ja) 2001-03-02 2010-05-12 Nec液晶テクノロジー株式会社 パターン形成方法及びそれを用いた液晶表示装置の製造方法
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
WO2003040441A1 (en) 2001-11-05 2003-05-15 Japan Science And Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
TWI281690B (en) 2003-05-09 2007-05-21 Toshiba Corp Pattern forming method, and manufacturing method for semiconductor using the same
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
CN1998087B (zh) 2004-03-12 2014-12-31 独立行政法人科学技术振兴机构 非晶形氧化物和薄膜晶体管
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
JP5126729B2 (ja) 2004-11-10 2013-01-23 キヤノン株式会社 画像表示装置
US7829444B2 (en) * 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7868326B2 (en) 2004-11-10 2011-01-11 Canon Kabushiki Kaisha Field effect transistor
JP5138163B2 (ja) * 2004-11-10 2013-02-06 キヤノン株式会社 電界効果型トランジスタ
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
WO2006051994A2 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Light-emitting device
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
RU2399989C2 (ru) 2004-11-10 2010-09-20 Кэнон Кабусики Кайся Аморфный оксид и полевой транзистор с его использованием
JP5126730B2 (ja) * 2004-11-10 2013-01-23 キヤノン株式会社 電界効果型トランジスタの製造方法
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI412138B (zh) 2005-01-28 2013-10-11 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI569441B (zh) 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4958253B2 (ja) * 2005-09-02 2012-06-20 財団法人高知県産業振興センター 薄膜トランジスタ
JP2007073561A (ja) 2005-09-02 2007-03-22 Kochi Prefecture Sangyo Shinko Center 薄膜トランジスタ
JP2007073558A (ja) * 2005-09-02 2007-03-22 Kochi Prefecture Sangyo Shinko Center 薄膜トランジスタの製法
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP4981283B2 (ja) * 2005-09-06 2012-07-18 キヤノン株式会社 アモルファス酸化物層を用いた薄膜トランジスタ
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP5064747B2 (ja) * 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
EP1995787A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method therof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
JP5177954B2 (ja) 2006-01-30 2013-04-10 キヤノン株式会社 電界効果型トランジスタ
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
JP5016831B2 (ja) 2006-03-17 2012-09-05 キヤノン株式会社 酸化物半導体薄膜トランジスタを用いた発光素子及びこれを用いた画像表示装置
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
KR101315282B1 (ko) 2006-04-27 2013-10-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 이를 사용한 전자기기
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
KR101432766B1 (ko) * 2006-05-26 2014-08-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작방법
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
TWI307171B (en) 2006-07-03 2009-03-01 Au Optronics Corp Method for manufacturing bottom substrate of liquid crystal display device
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) * 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP5127183B2 (ja) * 2006-08-23 2013-01-23 キヤノン株式会社 アモルファス酸化物半導体膜を用いた薄膜トランジスタの製造方法
JP5128792B2 (ja) * 2006-08-31 2013-01-23 財団法人高知県産業振興センター 薄膜トランジスタの製法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
WO2008047845A1 (fr) * 2006-10-17 2008-04-24 The Furukawa Electric Co., Ltd. Transistor à semi-conducteur de composé de nitrure et son procédé de fabrication
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR101312259B1 (ko) * 2007-02-09 2013-09-25 삼성전자주식회사 박막 트랜지스터 및 그 제조방법
JP5121254B2 (ja) 2007-02-28 2013-01-16 キヤノン株式会社 薄膜トランジスタおよび表示装置
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
JP4727684B2 (ja) 2007-03-27 2011-07-20 富士フイルム株式会社 薄膜電界効果型トランジスタおよびそれを用いた表示装置
JP5197058B2 (ja) * 2007-04-09 2013-05-15 キヤノン株式会社 発光装置とその作製方法
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP2009031750A (ja) * 2007-06-28 2009-02-12 Fujifilm Corp 有機el表示装置およびその製造方法
JP5248063B2 (ja) 2007-08-30 2013-07-31 株式会社日立ハイテクノロジーズ 半導体素子加工方法
US8232598B2 (en) 2007-09-20 2012-07-31 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
KR101270174B1 (ko) * 2007-12-03 2013-05-31 삼성전자주식회사 산화물 반도체 박막 트랜지스터의 제조방법
JP5213422B2 (ja) * 2007-12-04 2013-06-19 キヤノン株式会社 絶縁層を有する酸化物半導体素子およびそれを用いた表示装置
US8202365B2 (en) 2007-12-17 2012-06-19 Fujifilm Corporation Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film
US8586979B2 (en) * 2008-02-01 2013-11-19 Samsung Electronics Co., Ltd. Oxide semiconductor transistor and method of manufacturing the same
US7858495B2 (en) 2008-02-04 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
JP2009224737A (ja) * 2008-03-19 2009-10-01 Fujifilm Corp 酸化ガリウムを主成分とする金属酸化物からなる絶縁膜およびその製造方法
JP4555358B2 (ja) 2008-03-24 2010-09-29 富士フイルム株式会社 薄膜電界効果型トランジスタおよび表示装置
KR100941850B1 (ko) 2008-04-03 2010-02-11 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
JP5305730B2 (ja) * 2008-05-12 2013-10-02 キヤノン株式会社 半導体素子の製造方法ならびにその製造装置
JP5430248B2 (ja) 2008-06-24 2014-02-26 富士フイルム株式会社 薄膜電界効果型トランジスタおよび表示装置
KR100963026B1 (ko) 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
KR100963027B1 (ko) 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
JP2010021170A (ja) 2008-07-08 2010-01-28 Hitachi Ltd 半導体装置およびその製造方法
KR100963104B1 (ko) 2008-07-08 2010-06-14 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
JP5345456B2 (ja) 2008-08-14 2013-11-20 富士フイルム株式会社 薄膜電界効果型トランジスタ
KR20100023151A (ko) 2008-08-21 2010-03-04 삼성모바일디스플레이주식회사 박막 트랜지스터 및 그 제조방법
JP5501586B2 (ja) 2008-08-22 2014-05-21 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US9082857B2 (en) * 2008-09-01 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an oxide semiconductor layer
JP5537787B2 (ja) * 2008-09-01 2014-07-02 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5627071B2 (ja) 2008-09-01 2014-11-19 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2010062276A (ja) 2008-09-03 2010-03-18 Brother Ind Ltd 酸化物薄膜トランジスタ、及びその製造方法
JP5339825B2 (ja) 2008-09-09 2013-11-13 富士フイルム株式会社 薄膜電界効果型トランジスタおよびそれを用いた表示装置
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
KR101490148B1 (ko) * 2008-09-19 2015-02-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
JP2010087300A (ja) 2008-09-30 2010-04-15 Toshiba Corp 半導体装置の製造方法
KR101623958B1 (ko) 2008-10-01 2016-05-25 삼성전자주식회사 인버터 및 그의 동작방법과 인버터를 포함하는 논리회로
CN101714546B (zh) * 2008-10-03 2014-05-14 株式会社半导体能源研究所 显示装置及其制造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
JP5431707B2 (ja) 2008-10-27 2014-03-05 中特建機株式会社 シャーシ上下荷台式トレーラ
CN101478005B (zh) * 2009-02-13 2010-06-09 北京大学深圳研究生院 一种金属氧化物薄膜晶体管及其制作方法
JP5066122B2 (ja) 2009-03-23 2012-11-07 株式会社東芝 パターン形成方法
KR102503687B1 (ko) 2009-07-03 2023-02-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
WO2011048959A1 (en) 2009-10-21 2011-04-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2011138934A (ja) 2009-12-28 2011-07-14 Sony Corp 薄膜トランジスタ、表示装置および電子機器
KR101969291B1 (ko) 2010-02-26 2019-04-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2011108381A1 (en) 2010-03-05 2011-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011118741A1 (en) 2010-03-26 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
CN105304502B (zh) 2010-03-26 2018-07-03 株式会社半导体能源研究所 半导体装置的制造方法
DE112011101069B4 (de) 2010-03-26 2018-05-03 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung und Verfahren zur Herstellung der Halbleitervorrichtung
JP5731244B2 (ja) 2010-03-26 2015-06-10 株式会社半導体エネルギー研究所 半導体装置の作製方法
US9190522B2 (en) 2010-04-02 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor
US9147768B2 (en) 2010-04-02 2015-09-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor and a metal oxide film
US8884282B2 (en) 2010-04-02 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9196739B2 (en) 2010-04-02 2015-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor film and metal oxide film
KR20220119771A (ko) 2010-04-02 2022-08-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101391964B1 (ko) 2010-04-02 2014-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2011125806A1 (en) 2010-04-09 2011-10-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
WO2011132548A1 (en) 2010-04-23 2011-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101324760B1 (ko) 2010-04-23 2013-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
KR102390961B1 (ko) 2010-04-23 2022-04-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
WO2011132591A1 (en) 2010-04-23 2011-10-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR20130055607A (ko) 2010-04-23 2013-05-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
KR101332374B1 (ko) * 2010-04-23 2013-11-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
WO2011135987A1 (en) 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101806271B1 (ko) 2010-05-14 2017-12-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070108446A1 (en) 2005-11-15 2007-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2010062548A (ja) 2008-08-08 2010-03-18 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法

Also Published As

Publication number Publication date
JP2011243974A (ja) 2011-12-01
CN103500709B (zh) 2015-09-23
JP5750174B2 (ja) 2015-07-15
JP2017055136A (ja) 2017-03-16
KR20160139058A (ko) 2016-12-06
TW201628069A (zh) 2016-08-01
DE112011101395T5 (de) 2013-01-31
TWI539498B (zh) 2016-06-21
US9245983B2 (en) 2016-01-26
JP2014135496A (ja) 2014-07-24
CN105321961B (zh) 2018-10-02
JP5634634B2 (ja) 2014-12-03
US20150072472A1 (en) 2015-03-12
CN102859703A (zh) 2013-01-02
KR20180043856A (ko) 2018-04-30
CN103500709A (zh) 2014-01-08
US8669148B2 (en) 2014-03-11
CN104851810A (zh) 2015-08-19
KR20130085063A (ko) 2013-07-26
US8895377B2 (en) 2014-11-25
US20130330877A1 (en) 2013-12-12
DE112011106082B3 (de) 2019-05-16
JP2013009000A (ja) 2013-01-10
DE112011101395B4 (de) 2014-10-16
JP2014199931A (ja) 2014-10-23
TW201201259A (en) 2012-01-01
KR101854421B1 (ko) 2018-05-03
US9099499B2 (en) 2015-08-04
KR101689378B1 (ko) 2016-12-26
KR20170080716A (ko) 2017-07-10
US20110263084A1 (en) 2011-10-27
US8530289B2 (en) 2013-09-10
TWI419209B (zh) 2013-12-11
TW201403689A (zh) 2014-01-16
CN105321961A (zh) 2016-02-10
US20140170809A1 (en) 2014-06-19
JP5128001B2 (ja) 2013-01-23
WO2011132529A1 (en) 2011-10-27
CN104851810B (zh) 2018-08-28
KR101332374B1 (ko) 2013-11-22
JP2016015500A (ja) 2016-01-28
JP5798364B2 (ja) 2015-10-21
CN102859703B (zh) 2015-12-02
KR101974927B1 (ko) 2019-05-03
JP6306674B2 (ja) 2018-04-04
TWI629714B (zh) 2018-07-11
KR20130094195A (ko) 2013-08-23
US20150287813A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
KR101754380B1 (ko) 반도체 장치의 제작 방법
KR101540039B1 (ko) 반도체 장치의 제작 방법
KR101806271B1 (ko) 반도체 장치의 제작 방법
JP6342053B2 (ja) 半導体装置の作製方法
KR101826831B1 (ko) 반도체 장치의 제작 방법
KR101877377B1 (ko) 반도체 장치의 제작 방법
KR101748404B1 (ko) 반도체 장치 및 반도체 장치의 제작 방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right