JP6906476B2 - 非水系電解液及びそれを用いた非水系電解液電池 - Google Patents
非水系電解液及びそれを用いた非水系電解液電池 Download PDFInfo
- Publication number
- JP6906476B2 JP6906476B2 JP2018096212A JP2018096212A JP6906476B2 JP 6906476 B2 JP6906476 B2 JP 6906476B2 JP 2018096212 A JP2018096212 A JP 2018096212A JP 2018096212 A JP2018096212 A JP 2018096212A JP 6906476 B2 JP6906476 B2 JP 6906476B2
- Authority
- JP
- Japan
- Prior art keywords
- carbonate
- aqueous electrolyte
- mass
- methyl
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
- H01M4/405—Alloys based on lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/46—Alloys based on magnesium or aluminium
- H01M4/463—Aluminium based
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/387—Tin or alloys based on tin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Description
リチウムイオン二次電池の電解液としては、LiPF6、LiBF4、LiN(CF3SO2)2、LiCF3(CF2)3SO3等の電解質を、エチレンカーボネート、プロピレンカーボネート等の高誘電率溶媒と、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の低粘度溶媒との混合溶媒に溶解させた非水系電解液が代表例として挙げられる。
特許文献1、2には、非水系電解液中にイソシアネート化合物を添加し、電池のサイクル特性を向上させる試みが成されている。
特許文献4には、フルオロスルホン酸リチウム塩を添加した電解液を用いることにより、電池の高温保存特性、入出力特性やインピーダンス特性が改善されることを報告している。
(a)金属イオンを吸蔵・放出しうる正極及び負極、非水系電解液を備える非水系電解液電池であって、該非水系電解液が、電解質及び非水系溶媒とともに、フルオロスルホニル構造(−SO2F)を有する化合物、ジフルオロリン酸塩及びイソシアネート化合物からなる群より選ばれる少なくとも1種の化合物を含有し、かつ、該負極がLiと合金化可能な金属粒子と黒鉛粒子とを含有する負極活物質を有することを特徴とする非水系電解液電池。
(c)前記Liと合金化可能な金属粒子が、Si又はSi金属酸化物である、(a)又は(b)に記載の非水系電解液電池。
(e)前記Liと合金化可能な金属粒子と黒鉛粒子との合計に対する、前記Liと合金化可能な金属粒子の含有量が0.1〜25質量%である、(a)〜(d)に記載の非水系電解液電池。
(f)前記Liと合金化可能な金属粒子と黒鉛粒子との合計に対する、前記Liと合金化可能な金属粒子の含有量が0.1〜20質量%である、(a)〜(e)に記載の非水系電解液電池。
(g)前記Liと合金化可能な金属粒子と黒鉛粒子との合計に対する、前記Liと合金化可能な金属粒子の含有量が0.1〜15質量%である、(a)〜(f)に記載の非水系電解液電池。
(h)前記Liと合金化可能な金属粒子と黒鉛粒子との合計に対する、前記Liと合金化可能な金属粒子の含有量が0.1〜10質量%である、(a)〜(g)に記載の非水系電解液電池。
式(A)中、R1は、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素原子1〜10のアルキル基、アルケニル基若しくはアルキニル基であるか、又はハロゲン原子で置換されていてもよい炭素原子6〜20の芳香族炭化水素基であり、nは0〜1の整数を示す
で示される化合物である、(a)〜(h)に記載の非水系電解液電池。
(j)前記ジフルオロリン酸塩がジフルオロリン酸リチウムである、(a)〜(i)に記載の非水系電解液電池。
(k)前記イソシアネート化合物が、炭化水素系ジイソシアネート化合物、下記一般式(C):
式(C)中、R2は、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素原子1〜10のアルキル基、アルケニル基若しくはアルキニル基であるか、又はハロゲン原子で置換されていてもよい炭素原子6〜20の芳香族炭化水素基であるか、又はイソシアナト基若しくはハロゲン原子であり、nは0〜1の整数を示す
で表される化合物である、(a)〜(j)に記載の非水系電解液電池。
(l)前記フルオロスルホニル構造(−SO2F)を有する化合物、ジフルオロリン酸塩及びイソシアネート化合物からなる群より選ばれる少なくとも1種の化合物が、非水系電解液の全量に対して0.01質量%以上10.0質量%以下である、(a)〜(k)に記載の非水系電解液電池。
(n)前記炭素−炭素不飽和結合を有する環状カーボネート、フッ素原子を有する環状カーボネート、酸無水物化合物、環状スルホン酸エステル化合物及びシアノ基を有する化合物からなる群より選ばれる少なくとも1種の化合物の含有量が非水系電解液の全量に対して0.001質量%以上10質量%以下である、(m)に記載の非水系電解液電池。
本発明の非水系電解液を用いて作製された非水系電解液二次電池、及び本発明の非水系電解液二次電池が、総合的な性能のバランスが良い二次電池となる作用・原理は明確ではないが、以下のように考えられる。ただし、本発明は、以下に記述する作用・原理に限定されるものではない。
特許文献5には、負極にSiとOとを構成元素に含む材料と黒鉛材料を負極活物質に用い、電解液にハロゲン化環状カーボネートやビニレンカーボネートを用いた際の効果については明らかとされているが、特許文献1〜4に記載される、イソシアネート化合物、フルオロスルホン酸塩、フルオロリン酸塩/ジフルオロリン酸塩化合物を用いた電解液との効果については何ら明らかとされていない。
また、ここで“重量%”、“重量ppm”及び“重量部”と“質量%”、“質量ppm”及び“質量部”とは、それぞれ同義である。また、単にppmと記載した場合は、“重量ppm”のことを示す。
1−1.本発明の非水系電解液
本発明の非水系電解液は電解質及び非水系溶媒とともに、フルオロスルホニル構造(−SO2F)を有する化合物、ジフルオロリン酸塩及びイソシアネート化合物からなる群より選ばれる少なくとも1種の化合物を含有する。
フルオロスルホニル構造(−SO2F)を有する化合物は、フルオロスルホン酸塩、リチウムビス(フルオロスルホニル)イミド、一般式(A)で表される化合物等に代表される。
本発明の非水系電解液は、電解質及び非水系溶媒とともに、フルオロスルホン酸塩を含有していてもよい。
フルオロスルホン酸塩は、一般式(D)で表される。
X1(FSO3)n (D)
式中、X1は、フルオロスルホン酸塩のカウンターカチオンを示し、nはカウンターカチオンの価数を示す。
フルオロスルホン酸塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、及び、NR11R12R13R14(式中、R11〜R14は、各々独立に、水素原子又は炭素原子1〜12の有機基を表わす。)で表されるアンモニウム等が挙げられる。
フルオロスルホン酸塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、フルオロスルホン酸塩の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、非水系電解液100質量%中、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下、最も好ましくは1質量%以下の濃度で含有させる。上記範囲内であれば、非水系電解液電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態や電池の膨れを回避しやすい。
この範囲内であれば、非水系電解液電池が十分なサイクル特性の向上効果を発現しやすく、また、高温保存特性が向上し、ガス発生量が少なくなり、放電容量維持率が低下するといった事態や電池の膨れを回避しやすい。
ジフルオロリン酸塩は、一般式(E)で表される。
X2(F2PO2)m (E)
式中、X2は、フルオロリン酸塩のカウンターカチオンを示し、mはカウンターカチオンの価数を示す。
ジフルオロリン酸塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、及び、NR11R12R13R14(式中、R11〜R14は、各々独立に、水素原子又は炭素原子1〜12の有機基を表わす。)で表されるアンモニウム等が挙げられる。
ジフルオロリン酸塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、ジフルオロリン酸塩の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、非水系電解液100質量%中、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下、最も好ましくは1質量%以下の濃度で含有させる。上記範囲内であれば、非水系電解液電池が十分なサイクル特性向上効果を発現しやすい。また、上記範囲内であれば、高温保存特性が向上し、ガス発生量が少なくなり、放電容量維持率の低下や電池膨れといった事態を回避しやすい。
イソシアネート化合物としては、分子内にイソシアナト基を有している化合物であれば特にその種類は限定されない。
一般式(C)で表されるイソシアネート化合物は、−SO2−NCO構造を有する。
モノメチレンジイソシアネート、ジメチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート、1,3−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−4,4’−ジイソシアネート、ビシクロ[2.2.1]ヘプタン−2,5−ジイルビス(メチルイソシアネート)、ビシクロ[2.2.1]ヘプタン−2,6−ジイルビス(メチルイソシアネート)、ジイソシアン酸イソホロン、2,2,4−トリメチルヘキサメチレンジイソシアナート、2,4,4−トリメチルヘキサメチレンジイソシアナート等の炭化水素系ジイソシアネート化合物;
一般式(C)で表されるイソシアネート化合物;
がサイクル特性・保存特性向上の点から好ましい。
さらに、イソシアナト基を有する化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記範囲を満たした場合は、出力特性、負荷特性、低温特性、サイクル特性、高温保存特性、電池膨れ等の効果がより向上する。
本発明の非水系電解液は、フルオロスルホニル構造(−SO2F)を有する化合物、ジフルオロリン酸塩及びイソシアネート化合物からなる群より選ばれる少なくとも1種の化合物の他に、炭素−炭素不飽和結合を有する環状カーボネート、フッ素原子を有する環状カーボネート、酸無水物化合物、環状スルホン酸エステル化合物及びシアノ基を有する化合物からなる群より選ばれる少なくとも1種の化合物をさらに含有することが電池特性向上の点から好ましい。
炭素−炭素不飽和結合を有する環状カーボネート(以下、「不飽和環状カーボネート」と記載する場合がある)としては、炭素−炭素二重結合又は炭素−炭素三重結合を有する環状カーボネートであれば、特に制限はなく、任意の不飽和カーボネートを用いることができる。なお、芳香環を有する環状カーボネートも、不飽和環状カーボネートに包含されることとする。
ビニレンカーボネート類としては、
ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ジビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート等が挙げられる。
ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート、4−メチル−5−エチニルエチレンカーボネート、4−ビニル−5−エチニルエチレンカーボネート、4−アリル−5−エチニルエチレンカーボネート、フェニルエチレンカーボネート、4,5−ジフェニルエチレンカーボネート、4−フェニル−5−ビニルエチレンカーボネート、4−アリル−5−フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート等が挙げられる。
ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート、4−メチル−5−エチニルエチレンカーボネート、4−ビニル−5−エチニルエチレンカーボネートが挙げられる。
不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、80以上、250以下である。この範囲であれば、非水系電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。不飽和環状カーボネートの分子量は、より好ましくは85以上であり、また、より好ましくは150以下である。不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
フッ素原子を有する環状カーボネート化合物としては、炭素原子数2〜6のアルキレン基を有する環状カーボネートのフッ素化物、及びその誘導体が挙げられ、例えばエチレンカーボネートのフッ素化物、及びその誘導体が挙げられる。エチレンカーボネートのフッ素化物の誘導体としては、例えば、アルキル基(例えば、炭素原子数1〜4個のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられる。中でもフッ素原子を1〜8個有するエチレンカーボネート、及びその誘導体が好ましい。
モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−フルオロ−4−メチルエチレンカーボネート、4,5−ジフルオロ−4−メチルエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネート、4,4−ジフルオロ−5−メチルエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4−(ジフルオロメチル)−エチレンカーボネート、4−(トリフルオロメチル)−エチレンカーボネート、4−(フルオロメチル)−4−フルオロエチレンカーボネート、4−(フルオロメチル)−5−フルオロエチレンカーボネート、4−フルオロ−4,5−ジメチルエチレンカーボネート、4,5−ジフルオロ−4,5−ジメチルエチレンカーボネート、4,4−ジフルオロ−5,5−ジメチルエチレンカーボネート等が挙げられる。
フッ素原子を有する環状カーボネート化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
酸無水物化合物としては、カルボン酸無水物、硫酸無水物、硝酸無水物、スルホン酸無水物、リン酸無水物、亜リン酸無水物であることや、環状酸無水物、鎖状酸無水物であること等の限定を受けず、酸無水物化合物であるならば特にその構造は限定されないものとする。
無水マロン酸、無水琥珀酸、無水グルタル酸、無水アジピン酸、無水マレイン酸、無水シトラコン酸、2、3−ジメチルマレイン酸無水物、無水グルタコン酸、無水イタコン酸、無水フタル酸、無水フェニルマレイン酸、2、3−ジフェニルマレイン酸無水物、シクロヘキサン−1,2−ジカルボン酸無水物、4−シクロヘキセン−1,2−ジカルボン酸無水物、3,4,5,6−テトラヒドロフタル酸無水物、4,4‘−オキシジフタル酸無水物、5−ノルボルネン−2,3−ジカルボン酸無水物、メチル−5−ノルボルネン−2,3−ジカルボン酸無水物、フェニルコハク酸無水物、2−フェニルグルタル酸無水物、アリルコハク酸無水物、2−ブテン−11−イルコハク酸無水物、(2-メチル-2-プロペニル)コハク酸無水物、テトラフルオロ琥珀酸無水物、ジアセチル−酒石酸無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、メタクリル酸無水物、アクリル酸無水物、クロトン酸無水物、メタンスルホン酸無水物、トリフルオロメタンスルホン酸無水物、ノナフルオロブタンスルホン酸無水物、無水酢酸等が挙げられる。
無水琥珀酸、無水マレイン酸、無水シトラコン酸、無水フェニルマレイン酸、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、アリル琥珀酸無水物、無水酢酸、メタクリル酸無水物、アクリル酸無水物、メタンスルホン酸無水物が特に好ましい。
本発明の非水系電解液全体に対する酸無水物化合物の配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、非水系電解液100質量%中、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上であり、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは1質量%以下、特に好ましくは0.5質量%以下である。
1−2−4.環状スルホン酸エステル化合物
環状スルホン酸エステル化合物としては、特にその種類は限定されない。
環状スルホン酸エステルの具体例としては、例えば、
1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−メチル−1,3−プロパンスルトン、2−メチル−1,3−プロパンスルトン、3−メチル−1,3−プロパンスルトン、1−プロペン−1,3−スルトン、2−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1−フルオロ−2−プロペン−1,3−スルトン、2−フルオロ−2−プロペン−1,3−スルトン、3−フルオロ−2−プロペン−1,3−スルトン、1−メチル−1−プロペン−1,3−スルトン、2−メチル−1−プロペン−1,3−スルトン、3−メチル−1−プロペン−1,3−スルトン、1−メチル−2−プロペン−1,3−スルトン、2−メチル−2−プロペン−1,3−スルトン、3−メチル−2−プロペン−1,3−スルトン、1,4−ブタンスルトン、1−フルオロ−1,4−ブタンスルトン、2−フルオロ−1,4−ブタンスルトン、3−フルオロ−1,4−ブタンスルトン、4−フルオロ−1,4−ブタンスルトン、1−メチル−1,4−ブタンスルトン、2−メチル−1,4−ブタンスルトン、3−メチル−1,4−ブタンスルトン、4−メチル−1,4−ブタンスルトン、1−ブテン−1,4−スルトン、2−ブテン−1,4−スルトン、3−ブテン−1,4−スルトン、1−フルオロ−1−ブテン−1,4−スルトン、2−フルオロ−1−ブテン−1,4−スルトン、3−フルオロ−1−ブテン−1,4−スルトン、4−フルオロ−1−ブテン−1,4−スルトン、1−フルオロ−2−ブテン−1,4−スルトン、2−フルオロ−2−ブテン−1,4−スルトン、3−フルオロ−2−ブテン−1,4−スルトン、4−フルオロ−2−ブテン−1,4−スルトン、1−フルオロ−3−ブテン−1,4−スルトン、2−フルオロ−3−ブテン−1,4−スルトン、3−フルオロ−3−ブテン−1,4−スルトン、4−フルオロ−3−ブテン−1,4−スルトン、1−メチル−1−ブテン−1,4−スルトン、2−メチル−1−ブテン−1,4−スルトン、3−メチル−1−ブテン−1,4−スルトン、4−メチル−1−ブテン−1,4−スルトン、1−メチル−2−ブテン−1,4−スルトン、2−メチル−2−ブテン−1,4−スルトン、3−メチル−2−ブテン−1,4−スルトン、4−メチル−2−ブテン−1,4−スルトン、1−メチル−3−ブテン−1,4−スルトン、2−メチル−3−ブテン−1,4−スルトン、3−メチル−3−ブテン−1,4−スルトン、4−メチル−3−ブテン−1,4−スルトン、1,5−ペンタンスルトン、1−フルオロ−1,5−ペンタンスルトン、2−フルオロ−1,5−ペンタンスルトン、3−フルオロ−1,5−ペンタンスルトン、4−フルオロ−1,5−ペンタンスルトン、5−フルオロ−1,5−ペンタンスルトン、1−メチル−1,5−ペンタンスルトン、2−メチル−1,5−ペンタンスルトン、3−メチル−1,5−ペンタンスルトン、4−メチル−1,5−ペンタンスルトン、5−メチル−1,5−ペンタンスルトン、1−ペンテン−1,5−スルトン、2−ペンテン−1,5−スルトン、3−ペンテン−1,5−スルトン、4−ペンテン−1,5−スルトン、1−フルオロ−1−ペンテン−1,5−スルトン、2−フルオロ−1−ペンテン−1,5−スルトン、3−フルオロ−1−ペンテン−1,5−スルトン、4−フルオロ−1−ペンテン−1,5−スルトン、5−フルオロ−1−ペンテン−1,5−スルトン、1−フルオロ−2−ペンテン−1,5−スルトン、2−フルオロ−2−ペンテン−1,5−スルトン、3−フルオロ−2−ペンテン−1,5−スルトン、4−フルオロ−2−ペンテン−1,5−スルトン、5−フルオロ−2−ペンテン−1,5−スルトン、1−フルオロ−3−ペンテン−1,5−スルトン、2−フルオロ−3−ペンテン−1,5−スルトン、3−フルオロ−3−ペンテン−1,5−スルトン、4−フルオロ−3−ペンテン−1,5−スルトン、5−フルオロ−3−ペンテン−1,5−スルトン、1−フルオロ−4−ペンテン−1,5−スルトン、2−フルオロ−4−ペンテン−1,5−スルトン、3−フルオロ−4−ペンテン−1,5−スルトン、4−フルオロ−4−ペンテン−1,5−スルトン、5−フルオロ−4−ペンテン−1,5−スルトン、1−メチル−1−ペンテン−1,5−スルトン、2−メチル−1−ペンテン−1,5−スルトン、3−メチル−1−ペンテン−1,5−スルトン、4−メチル−1−ペンテン−1,5−スルトン、5−メチル−1−ペンテン−1,5−スルトン、1−メチル−2−ペンテン−1,5−スルトン、2−メチル−2−ペンテン−1,5−スルトン、3−メチル−2−ペンテン−1,5−スルトン、4−メチル−2−ペンテン−1,5−スルトン、5−メチル−2−ペンテン−1,5−スルトン、1−メチル−3−ペンテン−1,5−スルトン、2−メチル−3−ペンテン−1,5−スルトン、3−メチル−3−ペンテン−1,5−スルトン、4−メチル−3−ペンテン−1,5−スルトン、5−メチル−3−ペンテン−1,5−スルトン、1−メチル−4−ペンテン−1,5−スルトン、2−メチル−4−ペンテン−1,5−スルトン、3−メチル−4−ペンテン−1,5−スルトン、4−メチル−4−ペンテン−1,5−スルトン、5−メチル−4−ペンテン−1,5−スルトン等のスルトン化合物;
メチレンスルフェート、エチレンスルフェート、プロピレンスルフェート等のスルフェート化合物;
メチレンメタンジスルホネート、エチレンメタンジスルホネート等のジスルホネート化合物;
1,2,3−オキサチアゾリジン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアゾリジン−2,2−ジオキシド、3H−1,2,3−オキサチアゾール−2,2−ジオキシド、5H−1,2,3−オキサチアゾール−2,2−ジオキシド、1,2,4−オキサチアゾリジン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアゾリジン−2,2−ジオキシド、3H−1,2,4−オキサチアゾール−2,2−ジオキシド、5H−1,2,4−オキサチアゾール−2,2−ジオキシド、1,2,5−オキサチアゾリジン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアゾリジン−2,2−ジオキシド、3H−1,2,5−オキサチアゾール−2,2−ジオキシド、5H−1,2,5−オキサチアゾール−2,2−ジオキシド、1,2,3−オキサチアジナン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,3−オキサチアジン−2,2−ジオキシド、1,2,4−オキサチアジナン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、3,6−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、3,4−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、1,2,5−オキサチアジナン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、3,6−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、3,4−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、1,2,6−オキサチアジナン−2,2−ジオキシド、6−メチル−1,2,6−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシド、3,4−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシド、5,6−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシド等の含窒素化合物;
1,2,3−オキサチアホスラン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスラン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスラン−2,2,3−トリオキシド、3−メトキシ−1,2,3−オキサチアホスラン−2,2,3−トリオキシド、1,2,4−オキサチアホスラン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアホスラン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアホスラン−2,2,4−トリオキシド、4−メトキシ−1,2,4−オキサチアホスラン−2,2,4−トリオキシド、1,2,5−オキサチアホスラン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスラン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスラン−2,2,5−トリオキシド、5−メトキシ−1,2,5−オキサチアホスラン−2,2,5−トリオキシド、1,2,3−オキサチアホスフィナン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスフィナン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスフィナン−2,2,3−トリオキシド、3−メトキシ−1,2,3−オキサチアホスフィナン−2,2,3−トリオキシド、1,2,4−オキサチアホスフィナン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアホスフィナン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアホスフィナン−2,2,3−トリオキシド、4−メチル−1,5,2,4−ジオキサチアホスフィナン−2,4−ジオキシド、4−メトキシ−1,5,2,4−ジオキサチアホスフィナン−2,4−ジオキシド、3−メトキシ−1,2,4−オキサチアホスフィナン−2,2,3−トリオキシド、1,2,5−オキサチアホスフィナン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスフィナン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスフィナン−2,2,3−トリオキシド、5−メトキシ−1,2,5−オキサチアホスフィナン−2,2,3−トリオキシド、1,2,6−オキサチアホスフィナン−2,2−ジオキシド、6−メチル−1,2,6−オキサチアホスフィナン−2,2−ジオキシド、6−メチル−1,2,6−オキサチアホスフィナン−2,2,3−トリオキシド、6−メトキシ−1,2,6−オキサチアホスフィナン−2,2,3−トリオキシド等の含リン化合物;
これらのうち、1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1,4−ブタンスルトン、メチレンメタンジスルホネート、エチレンメタンジスルホネートが保存特性向上の点から好ましく、1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトンがより好ましい。
シアノ基を有する化合物としては、分子内にシアノ基を有している化合物であれば特にその種類は限定されない。
シアノ基を有する化合物の具体例としては、例えば、
アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ラウロニトリル、2−メチルブチロニトリル、トリメチルアセトニトリル、ヘキサンニトリル、シクロペンタンカルボニトリル、シクロヘキサンカルボニトリル、アクリロニトリル、メタクリロニトリル、クロトノニトリル、3−メチルクロトノニトリル、2−メチル−2−ブテン二トリル、2−ペンテンニトリル、2−メチル−2−ペンテンニトリル、3−メチル−2−ペンテンニトリル、2−ヘキセンニトリル、フルオロアセトニトリル、ジフルオロアセトニトリル、トリフルオロアセトニトリル、2−フルオロプロピオニトリル、3−フルオロプロピオニトリル、2,2−ジフルオロプロピオニトリル、2,3−ジフルオロプロピオニトリル、3,3−ジフルオロプロピオニトリル、2,2,3−トリフルオロプロピオニトリル、3,3,3−トリフルオロプロピオニトリル、3,3’−オキシジプロピオニトリル、3,3’−チオジプロピオニトリル、1,2,3−プロパントリカルボニトリル、1,3,5−ペンタントリカルボニトリル、ペンタフルオロプロピオニトリル等のニトリル基を1つ有する化合物
マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、メチルマロノニトリル、エチルマロノニトリル、イソプロピルマロノニトリル、tert−ブチルマロノニトリル、メチルスクシノニトリル、2,2−ジメチルスクシノニトリル、2,3−ジメチルスクシノニトリル、2,3,3−トリメチルスクシノニトリル、2,2,3,3−テトラメチルスクシノニトリル、2,3−ジエチル−2,3−ジメチルスクシノニトリル、2,2−ジエチル−3,3−ジメチルスクシノニトリル、ビシクロヘキシル−1,1−ジカルボニトリル、ビシクロヘキシル−2,2−ジカルボニトリル、ビシクロヘキシル−3,3−ジカルボニトリル、2,5−ジメチル−2,5−ヘキサンジカルボニトリル、2,3−ジイソブチル−2,3−ジメチルスクシノニトリル、2,2−ジイソブチル−3,3−ジメチルスクシノニトリル、2−メチルグルタロニトリル、2,3−ジメチルグルタロニトリル、2,4−ジメチルグルタロニトリル、2,2,3,3−テトラメチルグルタロニトリル、2,2,4,4−テトラメチルグルタロニトリル、2,2,3,4−テトラメチルグルタロニトリル、2,3,3,4−テトラメチルグルタロニトリル、マレオニトリル、フマロニトリル、1,4−ジシアノペンタン、2,6−ジシアノヘプタン、2,7−ジシアノオクタン、2,8−ジシアノノナン、1,6−ジシアノデカン、1,2−ジジアノベンゼン、1,3−ジシアノベンゼン、1,4−ジシアノベンゼン、3,3’−(エチレンジオキシ)ジプロピオニトリル、3,3’−(エチレンジチオ)ジプロピオニトリル、3,9−ビス(2−シアノエチル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン等のニトリル基を2つ有する化合物;
シクロヘキサントリカルボニトリル、トリスシアノエチルアミン、トリスシアノエトキシプロパン、トリシアノエチレン、ペンタントリカルボニトリル、プロパントリカルボニトリル、ヘプタントリカルボニトリル等のシアノ基を3つ有する化合物
等が挙げられる。
<リチウム塩>
電解質としては、通常、リチウム塩が用いられる。リチウム塩としては、この用途に用いることが知られているものであれば特に制限がなく、任意のものを用いることができ、具体的には以下のものが挙げられる。
LiWOF5等のタングステン酸リチウム類;
HCO2Li、CH3CO2Li、CH2FCO2Li、CHF2CO2Li、CF3CO2Li、CF3CH2CO2Li、CF3CF2CO2Li、CF3CF2CF2CO2Li、CF3CF2CF2CF2CO2Li等のカルボン酸リチウム塩類;
FSO3Li、CH3SO3Li、CH2FSO3Li、CHF2SO3Li、CF3SO3Li、CF3CF2SO3Li、CF3CF2CF2SO3Li、CF3CF2CF2CF2SO3Li等のスルホン酸リチウム塩類;
LiC(FSO2)3、LiC(CF3SO2)3、LiC(C2F5SO2)3等のリチウムメチド塩類;
リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート等のリチウムオキサラトボレート塩類;
リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェート等のリチウムオキサラトフォスフェート塩類;
その他、LiPF4(CF3)2、LiPF4(C2F5)2、LiPF4(CF3SO2)2、LiPF4(C2F5SO2)2、LiBF3CF3、LiBF3C2F5、LiBF3C3F7、LiBF2(CF3)2、LiBF2(C2F5)2、LiBF2(CF3SO2)2、LiBF2(C2F5SO2)2等の含フッ素有機リチウム塩類;
等が挙げられる。
この場合、非水系電解液全体100質量%に対するLiBF4或いはFSO3Liの濃度は配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常、0.01質量%以上、好ましくは0.1質量%以上であり、また、通常30質量%以下、好ましくは20質量%以下である。
リチウムの総モル濃度が上記範囲内にあることにより、電解液の電気伝導率が十分となり、また、粘度上昇による電気伝導度の低下、それに起因する電池性能の低下を防ぐ。
本発明における非水溶媒について特に制限はなく、公知の有機溶媒を用いることが可能である。これらを例示すると、フッ素原子を有さない環状カーボネート、鎖状カーボネート、環状及び鎖状カルボン酸エステル、エーテル化合物、スルホン系化合物等が挙げられる。
フッ素原子を有さない環状カーボネートとしては、炭素原子2〜4のアルキレン基を有する環状カーボネートが挙げられる。
炭素原子2〜4のアルキレン基を有する、フッ素原子を有さない環状カーボネートの具体的な例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートが挙げられる。中でも、エチレンカーボネートとプロピレンカーボネートがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
フッ素原子を有さない環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、1種を単独で用いる場合の配合量は、非水溶媒100体積%中、5体積%以上、より好ましくは10体積%以上である。この範囲とすることで、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液電池の大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなる。また、95体積%以下、より好ましくは90体積%以下、さらに好ましくは85体積%以下である。この範囲とすることで、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液電池の負荷特性を良好な範囲としやすくなる。
鎖状カーボネートとしては、炭素原子3〜7の鎖状カーボネートが好ましく、炭素原子3〜7のジアルキルカーボネートがより好ましい。
鎖状カーボネートの具体例としては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、n−ブチルメチルカーボネート、イソブチルメチルカーボネート、t−ブチルメチルカーボネート、エチル−n−プロピルカーボネート、n−ブチルエチルカーボネート、イソブチルエチルカーボネート、t−ブチルエチルカーボネート等が挙げられる。
また、フッ素原子を有する鎖状カーボネート類(以下、「フッ素化鎖状カーボネート」と記載する場合がある)も好適に用いることができる。
フッ素化鎖状カーボネートとしては、フッ素化ジメチルカーボネート及びその誘導体、フッ素化エチルメチルカーボネート及びその誘導体、フッ素化ジエチルカーボネート及びその誘導体等が挙げられる。
フッ素化エチルメチルカーボネート及びその誘導体としては、2−フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2−ジフルオロエチルメチルカーボネート、2−フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート、2,2−ジフルオロエチルフルオロメチルカーボネート、2−フルオロエチルジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。
鎖状カーボネートの配合量は、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上である。このように下限を設定することにより、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液電池の大電流放電特性を良好な範囲としやすくなる。また、鎖状カーボネートは、非水溶媒100体積%中、90体積%以下、より好ましくは85体積%以下、特に好ましくは80体積%以下であることが好ましい。このように上限を設定することにより、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液電池の大電流放電特性を良好な範囲としやすくなる。
環状カルボン酸エステルとしては、炭素原子数が3〜12のものが好ましい。
具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
環状カルボン酸エステルの配合量は、通常、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上である。この範囲であれば、非水系電解液の電気伝導率を改善し、非水系電解液電池の大電流放電特性を向上させやすくなる。また、環状カルボン酸エステルの配合量は、好ましくは50体積%以下、より好ましくは40体積%以下である。このように上限を設定することにより、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。
鎖状カルボン酸エステルとしては、炭素原子が3〜7のものが好ましい。具体的には、
酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸イソプロピル、酢酸−n−ブチル、酢酸イソブチル、酢酸−t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、プロピオン酸−n−ブチル、プロピオン酸イソブチル、プロピオン酸−t−ブチル、酪酸メチル、酪酸エチル、酪酸−n−プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸−n−プロピル、イソ酪酸イソプロピル等が挙げられる。
鎖状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
エーテル系化合物としては、一部の水素がフッ素にて置換されていても良い炭素原子3〜10の鎖状エーテル、及び炭素原子3〜6の環状エーテルが好ましい。
炭素原子3〜10の鎖状エーテルとしては、
ジエチルエーテル、ジ(2−フルオロエチル)エーテル、ジ(2,2−ジフルオロエチル)エーテル、ジ(2,2,2−トリフルオロエチル)エーテル、エチル(2−フルオロエチル)エーテル、エチル(2,2,2−トリフルオロエチル)エーテル、エチル(1,1,2,2−テトラフルオロエチル)エーテル、(2−フルオロエチル)(2,2,2−トリフルオロエチル)エーテル、(2−フルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、(2,2,2−トリフルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、エチル−n−プロピルエーテル、エチル(3−フルオロ−n−プロピル)エーテル、エチル(3,3,3−トリフルオロ−n−プロピル)エーテル、エチル(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、エチル(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2−フルオロエチル−n−プロピルエーテル、(2−フルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2−フルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2,2,2−トリフルオロエチル−n−プロピルエーテル、(2,2,2−トリフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、1,1,2,2−テトラフルオロエチル−n−プロピルエーテル、(1,1,2,2−テトラフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−プロピルエーテル、(n−プロピル)(3−フルオロ−n−プロピル)エーテル、(n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3−フルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3,3,3−トリフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,3,3−テトラフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、メトキシ(2−フルオロエトキシ)メタン、メトキシ(2,2,2−トリフルオロエトキシ)メタンメトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジエトキシメタン、エトキシ(2−フルオロエトキシ)メタン、エトキシ(2,2,2−トリフルオロエトキシ)メタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(2−フルオロエトキシ)メタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)メタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタンジ(2,2,2−トリフルオロエトキシ)メタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(1,1,2,2−テトラフルオロエトキシ)メタン、ジメトキシエタン、メトキシエトキシエタン、メトキシ(2−フルオロエトキシ)エタン、メトキシ(2,2,2−トリフルオロエトキシ)エタン、メトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジエトキシエタン、エトキシ(2−フルオロエトキシ)エタン、エトキシ(2,2,2−トリフルオロエトキシ)エタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2−フルオロエトキシ)エタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)エタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2,2,2−トリフルオロエトキシ)エタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(1,1,2,2−テトラフルオロエトキシ)エタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル
等が挙げられる。
中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離性を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
エーテル系化合物の配合量は、通常、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上、また、好ましくは70体積%以下、より好ましくは60体積%以下、さらに好ましくは50体積%以下である。
スルホン系化合物としては、炭素原子3〜6の環状スルホン、及び炭素原子2〜6の鎖状スルホンが好ましい。1分子中のスルホニル基の数は、1又は2であることが好ましい。
モノスルホン化合物であるトリメチレンスルホン類、テトラメチレンスルホン類、ヘキサメチレンスルホン類;
ジスルホン化合物であるトリメチレンジスルホン類、テトラメチレンジスルホン類、ヘキサメチレンジスルホン類等が挙げられる。
スルホラン類としては、スルホラン及び/又はスルホラン誘導体(以下、スルホランも含めて「スルホラン類」と記載する場合がある)が好ましい。スルホラン誘導体としては、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子やアルキル基で置換されたものが好ましい。
ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、n−プロピルエチルスルホン、ジ−n−プロピルスルホン、イソプロピルメチルスルホン、イソプロピルエチルスルホン、ジイソプロピルスルホン、n−ブチルメチルスルホン、n−ブチルエチルスルホン、t−ブチルメチルスルホン、t−ブチルエチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、パーフルオロエチルメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、ジ(トリフルオロエチル)スルホン、パーフルオロジエチルスルホン、フルオロメチル−n−プロピルスルホン、ジフルオロメチル−n−プロピルスルホン、トリフルオロメチル−n−プロピルスルホン、フルオロメチルイソプロピルスルホン、ジフルオロメチルイソプロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−プロピルスルホン、トリフルオロエチルイソプロピルスルホン、ペンタフルオロエチル−n−プロピルスルホン、ペンタフルオロエチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、ペンタフルオロエチル−n−ブチルスルホン、ペンタフルオロエチル−t−ブチルスルホン等が挙げられる。
スルホン系化合物の配合量は、通常、非水溶媒100体積%中、好ましくは0.3体積%以上、より好ましくは1体積%以上、さらに好ましくは5体積%以上であり、また、好ましくは40体積%以下、より好ましくは35体積%以下、さらに好ましくは30体積%以下である。
本発明において、フッ素原子を有する環状カーボネートを非水溶媒として用いる場合は、フッ素原子を有する環状カーボネート以外の非水溶媒として、上記例示した非水溶媒の1種をフッ素原子を有する環状カーボネートと組み合わせて用いてもよく、2種以上をフッ素原子を有する環状カーボネートと組み合わせて併用しても良い。
例えば、フッ素原子を有する環状カーボネートと鎖状カーボネートの好ましい組み合わせの具体例としては、
モノフルオロエチレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。
フッ素原子を有する環状カーボネートとフッ素原子を有さない環状カーボネートと鎖状カーボネートの好ましい組み合わせの具体例としては、
モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。
モノフルオロエチレンカーボネートとエチレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート
といったモノフルオロエチレンカーボネートと非対称鎖状カーボネート類を含有するものが、サイクル特性と大電流放電特性のバランスが良いので好ましい。中でも、非対称鎖状カーボネート類がエチルメチルカーボネートであるのが好ましく、又、鎖状カーボネートのアルキル基は炭素原子1〜2が好ましい。
本発明において、フッ素原子を有する環状カーボネートを助剤として用いる場合は、フッ素原子を有する環状カーボネート以外の非水溶媒として、上記例示した非水溶媒1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
中でも、非水溶媒に占めるフッ素原子を有さない環状カーボネートと鎖状カーボネートとの合計が、好ましくは70体積%以上、より好ましくは80体積%以上、さらに好ましくは90体積%以上であり、かつ環状カーボネートと鎖状カーボネートとの合計に対するフッ素原子を有さない環状カーボネートの割合が好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上であり、また、好ましくは50体積%以下、より好ましくは35体積%以下、さらに好ましくは30体積%以下、特に好ましくは25体積%以下である。
例えば、フッ素原子を有さない環状カーボネートと鎖状カーボネートの好ましい組み合わせの具体例としては、
エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとジエチルカーボネート、エチレンカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート、プロピレンカーボネートとエチルメチルカーボネート、プロピレンカーボネートとエチルメチルカーボネートとジエチルカーボネート、プロピレンカーボネートとエチルメチルカーボネートとジメチルカーボネート等が挙げられる。
非水溶媒中にジメチルカーボネートを含有する場合は、全非水溶媒中に占めるジメチルカーボネートの割合が、好ましくは10体積%以上、より好ましくは20体積%以上、さらに好ましくは25体積%以上、特に好ましくは30体積%以上であり、また、好ましくは90体積%以下、より好ましくは80体積%以下、さらに好ましくは75体積%以下、特に好ましくは、70体積%以下となる範囲で含有させると、電池の負荷特性が向上することがある。
全非水溶媒中に占めるジメチルカーボネートのエチルメチルカーボネートに対する体積比(ジメチルカーボネート/エチルメチルカーボネート)は、電解液の電気伝導度の向上と保存後の電池特性を向上させる点で、1.1以上が好ましく、1.5以上がより好ましく、2.5以上がさらに好ましい。上記体積比(ジメチルカーボネート/エチルメチルカーボネート)は、低温での電池特性を向上の点で、40以下が好ましく、20以下がより好ましく、10以下がさらに好ましく、8以下が特に好ましい。
なお、本明細書において、非水溶媒の体積は25℃での測定値であるが、エチレンカーボネートのように25℃で固体のものは融点での測定値を用いる。
本発明の非水系電解液電池において、上記で述べた物質以外に、目的に応じて適宜助剤を用いてもよい。助剤としては、以下に示される炭素原子12以下の芳香族化合物、フッ素化不飽和環状カーボネート、三重結合を有する化合物、その他の助剤、等が挙げられる。
炭素原子12以下の芳香族化合物としては、分子内の炭素原子が12以下である化合物であれば特にその種類は限定されない。
ビフェニル、アルキルビフェニル、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;
2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物
等が挙げられる。中でも、
ビフェニル、アルキルビフェニル、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。
フッ素化環状カーボネートとして、不飽和結合とフッ素原子とを有する環状カーボネート(以下、「フッ素化不飽和環状カーボネート」と記載する場合がある)を用いることも好ましい。フッ素化不飽和環状カーボネートが有するフッ素原子の数は1以上であれば、特に制限されない。中でもフッ素原子が通常6以下、好ましくは4以下であり、1又は2のものが最も好ましい。
フッ素化ビニレンカーボネート誘導体としては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート等が挙げられる。
4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネート、4−フルオロ−4−フェニルエチレンカーボネート、4−フルオロ−5−フェニルエチレンカーボネート、4,4−ジフルオロ−5−フェニルエチレンカーボネート、4,5−ジフルオロ−4−フェニルエチレンカーボネート等が挙げられる。
4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。
フッ素化不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。分子量は、より好ましくは100以上であり、また、より好ましくは200以下である。
フッ素化不飽和環状カーボネートの配合量は、通常、非水系電解液100質量%中、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上であり、また、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下、特に好ましくは2質量%以下である。
三重結合を有する化合物としては、分子内に三重結合を1つ以上有している化合物であれば特にその種類は限定されない。
1−ペンチン、2−ペンチン、1−ヘキシン、2−ヘキシン、3−ヘキシン、1−ヘプチン、2−ヘプチン、3−ヘプチン、1−オクチン、2−オクチン、3−オクチン、4−オクチン、1−ノニン、2−ノニン、3−ノニン、4−ノニン、1−ドデシン、2−ドデシン、3−ドデシン、4−ドデシン、5−ドデシン、フェニルアセチレン、1−フェニル−1−プロピン、1−フェニル−2−プロピン、1−フェニル−1−ブチン、4−フェニル−1−ブチン、4−フェニル−1−ブチン、1−フェニル−1−ペンチン、5−フェニル−1−ペンチン、1−フェニル−1−ヘキシン、6−フェニル−1−ヘキシン、ジフェニルアセチレン、4−エチニルトルエン、ジシクロヘキシルアセチレン等の炭化水素化合物;
2−ブチン−1,4−ジオール ジメチルジカーボネート、2−ブチン−1,4−ジオール ジエチルジカーボネート、2−ブチン−1,4−ジオール ジプロピルジカーボネート、2−ブチン−1,4−ジオール ジブチルジカーボネート、2−ブチン−1,4−ジオール ジフェニルジカーボネート、2−ブチン−1,4−ジオール ジシクロヘキシルジカーボネート等のジカーボネート;
2−ブチン−1,4−ジオール ジアセテート、2−ブチン−1,4−ジオール ジプロピオネート、2−ブチン−1,4−ジオール ジブチレート、2−ブチン−1,4−ジオール ジベンゾエート、2−ブチン−1,4−ジオール ジシクロヘキサンカルボキシレート等のジカルボン酸エステル;
これらのうち、アルキニルオキシ基を有する化合物は、電解液中でより安定に負極被膜を形成するため好ましい。
2−プロピニルメチルカーボネート、ジ−2−プロピニルカーボネート、2−ブチン−1,4−ジオール ジメチルジカーボネート、酢酸2−プロピニル、2−ブチン−1,4−ジオール ジアセテート、シュウ酸メチル 2−プロピニル、シュウ酸ジ−2−プロピニル
等の化合物が保存特性向上の点から特に好ましい。
その他の助剤としては、上記助剤以外の公知の助剤を用いることができる。その他の助剤としては、
エリスリタンカーボネート、スピロ−ビス−ジメチレンカーボネート、メトキシエチル−メチルカーボネート等のカーボネート化合物;
2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ジビニル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;
エチレンサルファイト、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、ジフェニルスルホン、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド、ビニルスルホン酸メチル、ビニルスルホン酸エチル、ビニルスルホン酸アリル、ビニルスルホン酸プロパルギル、アリルスルホン酸メチル、アリルスルホン酸エチル、アリルスルホン酸アリル、アリルスルホン酸プロパルギル、1,2−ビス(ビニルスルホニロキシ)エタン
等の含硫黄化合物;
亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、メチルホスホン酸ジメチル、エチルホスホン酸ジエチル、ビニルホスホン酸ジメチル、ビニルホスホン酸ジエチル、ジエチルホスホノ酢酸エチル、ジメチルホスフィン酸メチル、ジエチルホスフィン酸エチル、トリメチルホスフィンオキシド、トリエチルホスフィンオキシド
等の含燐化合物;
フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物;
等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。
その他の助剤の配合量は、好ましくは0.1質量%以上、より好ましくは0.3質量%、以上、さらに好ましくは0.5質量%、特に好ましくは1.0質量%であり、また、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%、特に好ましくは1質量%以下である。
具体的には、リチウム塩や溶媒、助剤等の非水系電解液の構成要素を別途合成し、実質的に単離されたものから非水系電解液を調整し、下記に記載する方法にて別途組み立てた電池内に注液して得た非水系電解液電池内の非水系電解液である場合や、本発明の非水系電解液の構成要素を個別に電池内に入れておき、電池内にて混合させることにより本発明の非水系電解液と同じ組成を得る場合、更には、本発明の非水系電解液を構成する化合物を該非水系電解液電池内で発生させて、本発明の非水系電解液と同じ組成を得る場合も含まれるものとする。
本発明の非水系電解液電池は、非水系電解液電池の中でも二次電池用、例えばリチウム二次電池用の電解液として用いるのに好適である。以下、本発明の非水系電解液を用いた非水系電解液電池について説明する。
本発明の非水系電解液電池は、公知の構造を採ることができ、典型的には、イオン(例えば、リチウムイオン)を吸蔵・放出可能な負極及び正極と、上記の本発明の非水系電解液とを備える。
以下に負極に使用される負極活物質について述べる。負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
負極活物質としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。
炭素質材料としては、(1)天然黒鉛、(2)人造黒鉛、(3)非晶質炭素、(4)炭素被覆黒鉛、(5)黒鉛被覆黒鉛、(6)樹脂被覆黒鉛等が挙げられる。
球形化処理に用いる装置としては、例えば、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し粒子に与える装置を用いることができる。
具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された炭素材に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、球形化処理を行なう装置が好ましい。また、炭素材を循環させることによって機械的作用を繰り返して与える機構を有するものであるのが好ましい。
(4)炭素被覆黒鉛としては、天然黒鉛及び/又は人造黒鉛と、タール、ピッチや樹脂等の有機化合物である炭素前駆体を混合し、400〜2300℃の範囲で1回以上熱処理し得られる天然黒鉛及び/又は人造黒鉛を核黒鉛とし、非晶質炭素が核黒鉛を被覆している炭素黒鉛複合体が挙げられる。複合の形態は、表面全体又は一部を被覆しても、複数の一次粒子を前記炭素前駆体起源の炭素をバインダーとして複合させたものであってもよい。また、天然黒鉛及び/又は人造黒鉛にベンゼン、トルエン、メタン、プロパン、芳香族系の揮発分等の炭化水素系ガス等を高温で反応させ、黒鉛表面に炭素を堆積(CVD)させることでも炭素黒鉛複合体を得ることもできる。
(6)樹脂被覆黒鉛としては、天然黒鉛及び/又は人造黒鉛と、樹脂等を混合、400℃未満の温度で乾燥し得られる天然黒鉛及び/又は人造黒鉛を核黒鉛とし、樹脂等が核黒鉛を被覆している樹脂被覆黒鉛が挙げられる。
上記(2)〜(5)に用いられるタール、ピッチや樹脂等の有機化合物としては、石炭系重質油、直流系重質油、分解系石油重質油、芳香族炭化水素、N環化合物、S環化合物、ポリフェニレン、有機合成高分子、天然高分子、熱可塑性樹脂及び熱硬化性樹脂からなる群より選ばれた炭化可能な有機化合物等が挙げられる。また、原料有機化合物は混合時の粘度を調整するため、低分子有機溶媒に溶解させて用いても良い。
負極活物質として用いられる合金系材料としては、リチウムを吸蔵・放出可能であれば、リチウム単体、リチウム合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の化合物のいずれであってもよく、特に制限されない。リチウム合金を形成する単体金属及び合金としては、13族及び14族の金属・半金属元素(即ち炭素を除く)を含む材料であることが好ましく、より好ましくはアルミニウム、ケイ素及びスズの単体金属及びこれら原子を含む合金又は化合物である。これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
負極活物質として炭素質材料を用いる場合、以下の物性を有するものであることが望ましい。
(X線パラメータ)
炭素質材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、通常0.335nm以上であり、また、通常0.360nm以下であり、0.350nm以下が好ましく、0.345nm以下がさらに好ましい。また、学振法によるX線回折で求めた炭素質材料の結晶子サイズ(Lc)は、1.0nm以上であることが好ましく、中でも1.5nm以上であることがさらに好ましい。
炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)であり、通常1μm以上であり、3μm以上が好ましく、5μm以上がさらに好ましく、7μm以上が特に好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましく、25μm以下が特に好ましい。
体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(例えば、堀場製作所社製LA−700)を用いて行なう。該測定で求められるメジアン径を、本発明の炭素質材料の体積基準平均粒径と定義する。
炭素質材料のラマンR値は、レーザーラマンスペクトル法を用いて測定した値であり、通常0.01以上であり、0.03以上が好ましく、0.1以上がさらに好ましく、また、通常1.5以下であり、1.2以下が好ましく、1以下がさらに好ましく、0.5以下が特に好ましい。
一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
・レーザー波長 :Arイオンレーザー514.5nm(半導体レーザー532nm)
・測定範囲 :1100cm−1〜1730cm−1
・ラマンR値 :バックグラウンド処理、
・スムージング処理 :単純平均、コンボリューション5ポイント
炭素質材料のBET比表面積は、BET法を用いて測定した比表面積の値であり、通常0.1m2・g−1以上であり、0.7m2・g−1以上が好ましく、1.0m2・g−1以上がさらに好ましく、1.5m2・g−1以上が特に好ましく、また、通常100m2・g−1以下であり、25m2・g−1以下が好ましく、15m2・g−1以下がさらに好ましく、10m2・g−1以下が特に好ましい。
BET法による比表面積の測定は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。
炭素質材料の球形の程度として円形度を測定した場合、以下の範囲に収まることが好ましい。なお、円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
炭素質材料の粒径が3〜40μmの範囲にある粒子の円形度は1に近いほど望ましく、また、0.1以上が好ましく、中でも0.5以上が好ましく、0.8以上がより好ましく、0.85以上がさらに好ましく、0.9以上が特に好ましい。高電流密度充放電特性は、円形度が大きいほど向上する。従って、円形度が上記範囲を下回ると、負極活物質の充填性が低下し、粒子間の抵抗が増大して、短時間高電流密度充放電特性が低下する場合がある。
炭素質材料のタップ密度は、通常0.1g・cm−3以上であり、0.5g・cm−3以上が好ましく、0.7g・cm−3以上がさらに好ましく、1g・cm−3以上が特に好ましく、また、2g・cm−3以下が好ましく、1.8g・cm−3以下がさらに好ましく、1.6g・cm−3以下が特に好ましい。タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、高容量の電池を得ることができない場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい場合がある。
炭素質材料の配向比は、通常0.005以上であり、0.01以上が好ましく、0.015以上がさらに好ましく、また、通常0.67以下である。配向比が、上記範囲を下回ると、高密度充放電特性が低下する場合がある。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
配向比は、試料を加圧成型してからX線回折により測定する。試料0.47gを直径17mmの成型機に充填し58.8MN・m−2で圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表わされる比を算出する。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :
発散スリット=0.5度
受光スリット=0.15mm
散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
炭素質材料のアスペクト比は、通常1以上、また、通常10以下であり、8以下が好ましく、5以下がさらに好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、炭素質材料のアスペクト比の理論下限値である。
本発明の負極活物質は、炭素質物又は黒鉛質物で被覆されていでもよい。この中でも非晶質炭素質物で被覆されていることがリチウムイオンの受入性の点から好ましく、この被覆率は、通常0.5%以上30%以下、好ましくは1%以上25%以下、より好ましくは、2%以上20%以下である。この含有率が大きすぎると負極活物質の非晶質炭素部分が多くなり、電池を組んだ際の可逆容量が小さくなる傾向がある。含有率が小さすぎると、核となる黒鉛粒子に対して非晶質炭素部位が均一にコートされないとともに強固な造粒がなされず、焼成後に粉砕した際、粒径が小さくなりすぎる傾向がある。
なお、最終的に得られる負極活物質の有機化合物由来の炭化物の含有率(被覆率)は、負極活物質の量と、有機化合物の量及びJIS K 2270に準拠したミクロ法により測定される残炭率により、下記式で算出することができる。
式:有機化合物由来の炭化物の被覆率(%)=(有機化合物の質量×残炭率×100)/{負極活物質の質量+(有機化合物の質量×残炭率)}
負極活物質の内部間隙率は通常1%以上、好ましくは3%以上、より好ましく5%以上、更に好ましくは7%以上である。また通常50%未満、好ましくは40%以下、より好ましくは30%以下、更に好ましくは20%以下である。この内部間隙率が小さすぎると粒子内の液量が少なくなり、充放電特性が悪化する傾向があり、内部間隙率が大きすぎると、電極にした場合に粒子間間隙が少なく、電解液の拡散が不十分になる傾向がある。また、この空隙には、非晶質炭素や黒鉛質物、樹脂等、Liと合金化可能な金属粒子の膨張、収縮を緩衝するような物質が、空隙中に存在又は空隙がこられにより満たされていてもよい。
金属粒子が、Liと合金化可能な金属粒子であることを確認するための手法としては、X線回折による金属粒子相の同定、電子顕微鏡による粒子構造の観察及び元素分析、蛍光X線による元素分析等が挙げられる。
Liと合金化可能な金属粒子は、従来公知のいずれのものも使用可能であるが、容量とサイクル寿命の点から、金属粒子は、例えば、Fe、Co、Sb、Bi、Pb、Ni、Ag、Si、Sn、Al、Zr、Cr、P、S、V、Mn、Nb、Mo、Cu、Zn、Ge、In、Ti等からなる群から選ばれる金属又はその化合物であることが好ましい。また、2種以上の金属からなる合金を使用しても良く、金属粒子が、2種以上の金属元素により形成された合金粒子であってもよい。これらの中でも、Si、Sn、As、Sb、Al、Zn及びWからなる群から選ばれる金属又はその金属化合物が好ましい。
金属化合物として、金属酸化物、金属窒化物、金属炭化物等が挙げられる。また、2種以上の金属からなる合金を使用しても良い。
Si金属酸化物は、具体的には、SiOxと表されるものであり、xは0≦x<2であり、より好ましくは、0.2以上、1.8以下、更に好ましくは、0.4以上、1.6以下、特に好ましくは、0.6以上、1,4以下であり、X=0がとりわけ好ましい。この範囲であれば、高容量であると同時に、Liと酸素との結合による不可逆容量を低減させることが可能となる。
Liと合金化可能な金属粒子の平均粒子径(d50)は、サイクル寿命の観点から、通常0.01μm以上、好ましくは0.05μm以上、より好ましくは0.1μm以上、更に好ましくは0.3μm以上であり、通常10μm以下、好ましくは9μm以下、より好ましくは8μm以下である。平均粒子径(d50)が前記範囲内であると、充放電に伴う体積膨張が低減され、充放電容量を維持しつつ、良好なサイクル特性の得ることができる。
平均粒子径(d50)は、レーザー回折・散乱式粒度分布測定方法等で求められる。
Liと合金化可能な金属粒子のBET法により比表面積は通常0.5〜60m2/g、1〜40m2/gであることが好ましい。Liと合金化可能な金属粒子のBET法による比表面積が前記範囲内であると、電池の充放電効率及び放電容量が高く、高速充放電においてリチウムの出し入れが速く、レート特性に優れるので好ましい。
Liと合金化可能な金属粒子の含有酸素量は、特に制限はないが、通常0.01〜8質量%、0.05〜5質量%であることが好ましい。粒子内の酸素分布状態は、表面近傍に存在、粒子内部に存在、粒子内一様に存在していてもかまわないが、特に表面近傍に存在していることが好ましい。Liと合金化可能な金属粒子の含有酸素量が前記範囲内であると、SiとOの強い結合により、充放電に伴う体積膨張が抑制され、サイクル特性に優れるので好ましい。
本発明でいうLiと合金化可能な金属粒子と黒鉛粒子を含有する負極活物質とは、Liと合金化可能な金属粒子と黒鉛粒子が互いに独立した粒子の状態で混合されている混合物でもよいし、Liと合金化可能な金属粒子が黒鉛粒子の表面又は内部に存在している複合体でもよい。本明細書において、複合体(複合粒子ともいう)とは、特に、Liと合金化可能な金属粒子及び炭素質物が含まれている粒子であれば特に制限はないが、好ましくは、Liと合金化可能な金属粒子及び炭素質物が物理的及び/又は化学的な結合によって一体化した粒子である。より好ましい形態としては、Liと合金化可能な金属粒子及び炭素質物が、少なくとも複合粒子表面及びバルク内部の何れにも存在する程度に各々の固体成分が粒子内で分散して存在している状態にあり、それらを物理的及び/又は化学的な結合によって一体化させるために、炭素質物が存在しているような形態である。更に具体的な好ましい形態は、Liと合金化可能な金属粒子と黒鉛粒子から少なくとも構成される複合材であって、黒鉛粒子、好ましくは、天然黒鉛が曲面を有する折り畳まれた構造を持つ粒子内に、該曲面を有する折り畳まれた構造内の間隙にLiと合金化可能な金属粒子が存在していることを特徴とする負極活物質である。また、間隙は空隙であってもよいし、非晶質炭素や黒鉛質物、樹脂等、Liと合金化可能な金属粒子の膨張、収縮を緩衝するような物質が、間隙中に存在していてもよい。
Liと合金化可能な金属粒子と黒鉛粒子の合計に対するLiと合金化可能な金属粒子の含有割合は、通常0.1質量%以上、好ましくは1質量%以上、より好ましくは、2質量%以上、更に好ましくは3質量%以上、特に好ましくは5質量%以上である。また、通常99質量%以下、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下、より更に好ましくは25質量%以下、より更に好ましくは20質量%以下、特に好ましくは15%以下、最も好ましくは10質量%以下である。この範囲であると、十分な容量を得ることが可能となる点で好ましい。
負極集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚過ぎると、電池全体の容量が低下し過ぎることがあり、逆に薄過ぎると取り扱いが困難になることがある。
負極材中における負極活物質の含有量は、通常70質量%以上、特に75質量%以上、また、通常97質量%以下、特に95質量%以下であることが好ましい。負極活物質の含有量が少な過ぎると、得られる負極を用いた二次電池の容量が不足する傾向があり、多過ぎると相対的に導電剤の含有量が不足することにより、負極としての電気伝導性を確保しづらい傾向にある。なお、二以上の負極活物質を併用する場合には、負極活物質の合計量が上記範囲を満たすようにすればよい。
電極の製造は、本発明の効果を著しく損なわない限り、公知のいずれの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
また、合金系材料を用いる場合には、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法も用いられる。
負極活物質を電極化した際の電極構造は特に制限されないが、集電体上に存在している負極活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がさらに好ましく、1.3g・cm−3以上が特に好ましく、また、2.2g・cm−3以下が好ましく、2.1g・cm−3以下がより好ましく、2.0g・cm−3以下がさらに好ましく、1.9g・cm−3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
<正極活物質>
以下に正極に使用される正極活物質(リチウム遷移金属系化合物)について述べる。
〈リチウム遷移金属系化合物〉
リチウム遷移金属系化合物とは、Liイオンを脱離、挿入することが可能な構造を有する化合物であり、例えば、硫化物やリン酸塩化合物、リチウム遷移金属複合酸化物等が挙げられる。硫化物としては、TiS2やMoS2等の二次元層状構造をもつ化合物や、一般式MexMo6S8(MeはPb,Ag,Cuをはじめとする各種遷移金属)で表される強固な三次元骨格構造を有するシュブレル化合物等が挙げられる。リン酸塩化合物としては、オリビン構造に属するものが挙げられ、一般的にはLiMePO4(Meは少なくとも1種以上の遷移金属)で表され、具体的にはLiFePO4、LiCoPO4、LiNiPO4、LiMnPO4等が挙げられる。リチウム遷移金属複合酸化物としては、三次元的拡散が可能なスピネル構造や、リチウムイオンの二次元的拡散を可能にする層状構造に属するものが挙げられる。スピネル構造を有するものは、一般的にLiMe2O4(Meは少なくとも1種以上の遷移金属)と表され、具体的にはLiMn2O4、LiCoMnO4、LiNi0.5Mn1.5O4、LiCoVO4等が挙げられる。層状構造を有するものは、一般的にLiMeO2(Meは少なくとも1種以上の遷移金属)と表される。具体的にはLiCoO2、LiNiO2、LiNi1−xCoxO2、LiNi1−x−yCoxMnyO2、LiNi0.5Mn0.5O2、Li1.2Cr0.4Mn0.4O2、Li1.2Cr0.4Ti0.4O2、LiMnO2等が挙げられる。
また、リチウム含有遷移金属化合物は、例えば、下記組成式(F)又は(G)で示されるリチウム遷移金属系化合物であることが挙げられる。
1)下記組成式(F)で示されるリチウム遷移金属系化合物である場合
Li1+xMO2 …(F)
ただし、xは通常0以上、0.5以下である。Mは、Ni及びMn、或いは、Ni、Mn及びCoから構成される元素であり、Mn/Niモル比は通常0.1以上、5以下である。Ni/Mモル比は通常0以上、0.5以下である。Co/Mモル比は通常0以上、0.5以下である。なお、xで表されるLiのリッチ分は、遷移金属サイトMに置換している場合もある。
さらに、組成式(F)で示されるリチウム遷移金属系化合物は、以下一般式(F’)のとおり、213層と呼ばれるLi2MO3との固溶体であってもよい。
αLi2MO3・(1−α)LiM’O2・・・(F’)
一般式中、αは、0<α<1を満たす数である。
M’は、平均酸化数が3+である少なくとも1種の金属元素であり、好ましくは、V、Mn、Fe、Co及びNiからなる群より選択される少なくとも1種の金属元素であり、より好ましくは、Mn、Co及びNiからなる群より選択される少なくとも1種の金属元素である。
Li[LiaMbMn2−b−a]O4+δ・・・(G)
ただし、Mは、Ni、Cr、Fe、Co、Cu、Zr、Al及びMgから選ばれる遷移金属のうちの少なくとも1種から構成される元素である。
bの値は通常0.4以上、0.6以下である。
bの値がこの範囲であれば、リチウム遷移金属系化合物における単位質量当たりのエネルギー密度が高い。
さらに、δの値は通常±0.5の範囲である。
δの値がこの範囲であれば、結晶構造としての安定性が高く、このリチウム遷移金属系化合物を用いて作製した電極を有する電池のサイクル特性や高温保存が良好である。
上記リチウム遷移金属系化合物の組成式のa,bを求めるには、各遷移金属とリチウムを誘導結合プラズマ発光分光分析装置(ICP−AES)で分析して、Li/Ni/Mnの比を求める事で計算される。
また、上記リチウム遷移金属系化合物は、フッ素置換されていてもよく、LiMn2O4−xF2xと表記される。
上記の組成のリチウム遷移金属系化合物の具体例としては、例えば、Li1+xNi0.5Mn0.5O2、Li1+xNi0.85Co0.10Al0.05O2、Li1+xNi0.33Mn0.33Co0.33O2、Li1+xNi0.45Mn0.45Co0.1O2、Li1+xMn1.8Al0.2O4、Li1+xMn1.5Ni0.5O4等が挙げられる。これらのリチウム遷移金属系化合物は、1種を単独で用いてもよく、二種以上をブレンドして用いても良い。
また、リチウム遷移金属系化合物は、異元素が導入されてもよい。異元素としては、B,Na,Mg,Al,K,Ca,Ti,V,Cr,Fe,Cu,Zn,Sr,Y,Zr,Nb,Ru,Rh,Pd,Ag,In,Sb,Te,Ba,Ta,Mo,W,Re,Os,Ir,Pt,Au,Pb,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Bi,N,F,S,Cl,Br,I,As,Ge,P,Pb,Sb,Si及びSnの何れか1種以上の中から選択される。これらの異元素は、リチウム遷移金属系化合物の結晶構造内に取り込まれていてもよく、あるいは、リチウム遷移金属系化合物の結晶構造内に取り込まれず、その粒子表面や結晶粒界等に単体もしくは化合物として偏在していてもよい。
リチウム二次電池用正極は、上述のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体及び結着剤を含有する正極活物質層を集電体上に形成してなるものである。
正極活物質層は、通常、正極材料と結着剤と更に必要に応じて用いられる導電材及び増粘剤等を、乾式で混合してシート状にしたものを正極集電体に圧着するか、或いはこれらの材料を液体媒体中に溶解又は分散させてスラリー状にして、正極集電体に塗布、乾燥することにより作成される。
正極活物質層の製造に用いる結着剤としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して安定な材料であれば良いが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子、SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子、スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレンスチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子、シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子、アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
正極活物質層には、通常、導電性を高めるために導電材を含有させる。その種類に特に制限はないが、具体例としては、銅、ニッケル等の金属材料や、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素材料等を挙げることができる。なお、これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。正極活物質層中の導電材の割合は、通常0.01質量%以上、50質量%以下である。導電材の割合が低すぎると導電性が不十分になることがあり、逆に高すぎると電池容量が低下することがある。
また、正極活物質層の厚さは、通常10〜200μm程度である。
なお、塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ローラープレス等により圧密化することが好ましい。
かくして、リチウム二次電池用正極が調製できる。
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、本発明の非水系電解液は、通常はこのセパレータに含浸させて用いる。
セパレータの材料や形状については特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、本発明の非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状もしくは繊維形状のものが用いられる。
<電極群>
電極群は、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等を使用することができる。上記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
本発明の非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体(外装ケース)内に収納して構成される。この外装体に制限は無く、本発明の効果を著しく損なわない限り公知のものを任意に採用することができる。
外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に限定されるものではない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金、ニッケル、チタン等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
本実施例に使用した化合物の略号を以下に示す。
フルオロスルホン酸リチウム;FSLi
ジフルオロリン酸リチウム;DFPLi
ヘキサメチレンジイソシアネート;HMDI
1,3−ビス(イソシアナトメチル)シクロヘキサン;BIMCH
リチウムビス(フルオロスルホニル)イミド;LiFSI
p−トルエンスルホニルイソシアネート;TSI
ジイソシアナトスルホン;DIS
フルオロスルホニルメタン;FSO2Me
エチルイソシアネート;EtNCO
イソプロピルイソシアネート;iso−PrNCO
tert−ブチルイソシアネート;tert−BuNCO
フルオロスルホン酸メチル;FSO3Me
ベンゼンスルホニルフルオリド;FSO2Ph
ベンジルスルホニルフルオリド;FSO2CH2Ph
1,3−プロパンスルトン:PS
無水マレイン酸:MAL
ビニレンカーボネート:VC
ビニルエチレンカーボネート:VEC
[正極の作製]
正極活物質としてリチウム・ニッケル・コバルト・マンガン複合酸化物(NMC)85質量%と、導電材としてアセチレンブラック10質量%と、結着材としてポリフッ化ビニリデン(PVdF)5質量%とを、N−メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。これを厚さ21μmのアルミニウム箔の両面に均一に塗布、乾燥した後、プレスして正極とした。
平均粒子径0.2μmのSi微粒子50gを平均粒径35μmの鱗片状黒鉛2000g中に分散させ、ハイブリダイゼーションシステム(奈良機械製作所製)に投入し、ローター回転数7000rpm、180秒装置内を循環又は滞留させて処理し、Siと黒鉛粒子の複合体を得た。得られた複合体を、焼成後の被覆率が7.5%になるように炭素質物となる有機化合物としてコールタールピッチを混合し、2軸混練機により混練・分散させた。得られた分散物を、焼成炉に導入し、窒素雰囲気下1000℃、3時間焼成した。得られた焼成物は、更にハンマーミルで粉砕後、篩(45μm)を実施し、負極活物質を作製した。前記測定法で測定した、ケイ素元素の含有量(Si含有量)、平均粒径d50、タップ密度、比表面積はそれぞれ、2.0質量%、20μm、1.0g/cm3、7.2m2/gであった。
上記と同様の方法によって、表1に表される種々のSi含有量の負極活物質1〜4を作製した。Si含有量は、Si微粒子と黒鉛粒子との合計(100質量%)に対するSi微粒子の分析結果による質量濃度(質量%)である。他の実施例において、Si含有量が、それぞれ2.0wt%、7.3wt%、12.5wt%、17.4wt%と表示されているものは、下記の表1の負極活物質1、2、3、4をそれぞれ使用したものである。
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)、フルオロエチレンカーボネート(MFEC)、エチルメチルカーボネート(EMC)とジエチルカーボネート(DEC)との混合物(体積容量比2:1:4:3)に、十分に乾燥させたLiPF6を1.2モル/L(非水系電解液中の濃度として)溶解させた(これを基準電解液1と呼ぶ)。基準電解液1全体に対して、下記表2に記載の割合で化合物(添加剤)を加えて電解液を調製した。ただし、比較例1−1は基準電解液1そのものである。
上記の正極、負極、及びポリオレフィン製セパレータを、負極、セパレータ、正極の順に積層した。こうして得られた電池要素をアルミニウムラミネートフィルムで包み込み、後述する電解液を注入した後で真空封止し、シート状の非水系電解液二次電池を作製した。
[高温サイクル試験]
25℃の恒温槽中、ラミネート型セルの非水系電解液二次電池を0.05Cに相当する電流で4.0Vまで定電流充電した後(以下適宜、「CC充電」という)、0.05Cで2.75Vまで定電流放電(以下適宜、「CC放電」という)を行った。その後、0.2Cで4.1Vまで定電流―定電圧充電し(以下適宜「CC−CV充電」という)(0.05Cカット)、0.2Cで2.75VまでCC放電した。続いて0.2Cで4.2VまでCC−CVした後、0.2Cで2.75Vまで放電する操作を2回繰り返し、コンディショニングを行った。ここで、1Cとは電池の基準容量を1時間で放電する電流値を表し、例えば、0.2Cとはその1/5の電流値を表す。
100サイクル目の容量維持率
=100サイクル目の容量/1サイクル目の容量×100
さらに、比較例1−1の基準電解液1そのものを用いた非水系電解液二次電池の100サイクル目の容量維持率を100とし、これに対する、実施例1−1〜1−7の所定のSi含有量の負極活物質を有する各電池の100サイクル目の容量維持率の数値を求めた。表2に、これらの数値を示す。
表中、化合物(添加剤)の「%」は、非水系電解液100質量%中の化合物(添加剤)の質量%である。
[非水系電解液の調製]
乾燥アルゴン雰囲気下、モノフルオロエチレンカーボネートとエチルメチルカーボネート(EMC)との混合物(体積容量比2:8)に、十分に乾燥させたLiPF6を1モル/L(非水系電解液中の濃度として)溶解させた(これを基準電解液1’「と呼ぶ)。基準電解液1’全体に対して、下記表2に記載の割合で化合物を加えて電解液を調製した。ただし、比較例1−1についてSi含有量100質量%と表示するものは基準電解液1’そのものを使用した例である。
正極活物質としてリチウム・ニッケル・コバルト・マンガン複合酸化物(NMC)85質量%と、導電材としてアセチレンブラック10質量%と、結着材としてポリフッ化ビニリデン(PVdF)5質量%とを、N−メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。これを厚さ21μmのアルミニウム箔の両面に均一に塗布、乾燥した後、プレスして正極とした。
負極活物質としてケイ素粉末、導電剤として黒鉛粉末、及びバインダーを混合し、これらにN−メチルピロリドン溶液を加え、ディスパーザーで混合してスラリー状とした。得られたスラリーを、負極集電体である厚さ20μmの銅箔上に均一に塗布して負極とし、活物質が幅30mm、長さ40mmとなるように切り出して負極とした。なお、この負極は摂氏60度で12時間減圧乾燥して用いた。
上記の正極、負極、及びポリオレフィン製セパレータを、負極、セパレータ、正極の順に積層した。こうして得られた電池要素をアルミニウムラミネートフィルムで包み込み、後述する電解液を注入した後で真空封止し、シート状の非水系電解液二次電池を作製した。
[高温サイクル試験]
25℃の恒温槽中、コイン型セルの非水系電解液二次電池を0.05Cに相当する電流で4時間定電流充電した後(以下適宜、「CC充電」という)、0.2Cで4.0Vまで定電流−定電圧充電(以下適宜、「CC−CV充電」という)を行った。その後、0.2Cで2.75Vまで放電した。続いて0.2Cで4.0VまでCC−CVした後、0.2Cで2.75Vまで放電し、非水系電解液二次電池を安定させた。その後、0.2Cで4.2VまでCC−CV充電を行った後、0.2Cで2.75Vまで放電させ初期のコンディショニングを行った。
200サイクル目の容量維持率
=200サイクル目の容量/1サイクル目の容量×100
さらに、比較例1−1の基準電解液1又は基準電解液1’そのものを用いた非水系電解液二次電池の200サイクル目の容量維持率を100とし、これに対する、実施例1−1〜1−7の所定のSi含有量の負極活物質を有する各電池の200サイクル目の容量維持率の数値を求めた。表3に、これらの数値を示す。
表中、化合物(添加剤)の「%」は、非水系電解液100質量%中の化合物(添加剤)の質量%である。
[正極・負極の作製]
実施例1で作製した、正極・負極活物質を使用した。
乾燥アルゴン雰囲気下、ECとDECとの混合物(体積容量比3:7)に、十分に乾燥させたLiPF6を1.0モル/L(非水系電解液中の濃度として)溶解させ、さらに、ビニレンカーボネート(VC)とフルオロエチレンカーボネートをそれぞれ2.0質量%添加した(これを基準電解液2と呼ぶ)。基準電解液2全体に対して、下記表4に記載の割合で化合物を加えて電解液を調製した。ただし、比較例2−1は基準電解液2そのものである。
[高温サイクル試験]
25℃の恒温槽中、ラミネート型セルの非水系電解液二次電池を0.05Cに相当する電流で4.0Vまで定電流−定電圧充電を行った。その後、0.05Cで2.5Vまで放電した。続いて0.2Cで4.0VまでCC−CVした後、0.2Cで2.5Vまで放電し、非水系電解液二次電池を安定させた。その後、0.2Cで4.2VまでCC−CV充電を行った後、0.2Cで2.5Vまで放電させ初期のコンディショニングを行った。
100サイクル目の容量維持率
=100サイクル目の容量/1サイクル目の容量×100
さらに、比較例2−1の基準電解液2そのものを用いた非水系電解液二次電池の100サイクル目の容量維持率を100とし、これに対する、実施例2−1〜2−14の所定のSi含有量の負極活物質を有する各電池の100サイクル目の容量維持率の数値を求めた。表4に、これらの数値を示す。
表中、化合物(添加剤)の「%」は、非水系電解液100質量%中の化合物(添加剤)の質量%である。
[正極・負極の作製]
実施例1で作製した、正極・負極活物質を使用した。
電解液は基準電解液1を使用した。基準電解液1全体に対して、下記表5に記載の割合で化合物を加えて電解液を調製した。ただし、比較例3−1は基準電解液1そのものである。
[非水系電解液電池(ラミネート型)の製造]
実施例1と同様にして、シート状の非水系電解液二次電池を製造した。
正極活物質としてコバルト酸リチウム(LiCoO2)94質量%と、導電材としてアセチレンブラック3質量%と、結着材としてポリフッ化ビニリデン(PVdF)3質量%とを、N−メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。これを厚さ21μmのアルミニウム箔の両面に均一に塗布、乾燥した後、プレスして正極とした。
[電池膨れ]
実施例1と同様の条件で初期コンディショニングを行った電池の厚みを測定したのち、実施例2と同様にして、高温サイクル試験(200サイクル)を行った。その後、初期コンディショニング後と同様に電池の厚み変化を測定し、サイクルに伴う電池の電極厚み変化を「電池膨れ」とした。評価を行った電池はサイクル中に発生したガスをセル内のガス貯めに貯めることができる。そのため、記載した「電極膨れ」とは、発生したガスによる膨れではなく、サイクルに伴う電極の厚み変化による膨れであることがわかる。
[正極・負極の作製]
実施例1で作製した、正極・負極活物質を使用した。
電解液は基準電解液2を使用した。基準電解液2全体に対して、下記表6に記載の割合で化合物を加えて電解液を調製した。ただし、比較例4−1は基準電解液2そのものである。
[電池膨れ]
実施例2と同様の条件で初期コンディショニングを行った電池の厚みを測定したのち、実施例2と同様にして、高温サイクル試験(200サイクル)を行った。その後、初期コンディショニング後と同様に電池の厚み変化を測定し、サイクルに伴う電池の電極厚み変化を「電池膨れ」とした。表6中の数値は、比較例4−1の基準電解液2そのものを用いた非水系電解液二次電池の高温サイクル試験(200サイクル)後の「電池膨れ」を100とし、比較例4−1の「電池膨れ」100に対する、実施例4−1〜4−14の所定のSi含有量の負極活物質を有する各電池の「電池膨れ」の数値である。表6中、化合物(添加剤)の「%」は、非水系電解液100質量%中の化合物(添加剤)の質量%を示す。
[正極の作製]
正極活物質としてコバルト酸リチウム(LiCoO2)97質量%と、導電材としてアセチレンブラック1.5質量%と、結着材としてポリフッ化ビニリデン(PVdF)1.5質量%とを、N−メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。これを厚さ21μmのアルミニウム箔の両面に均一に塗布、乾燥した後、プレスして正極とした。
負極活物質(黒鉛:SiO=95:5;質量比)を97.5質量部、増粘剤、バインダーとしてそれぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)1質量部、及び、スチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)1.5質量部を加え、ディスパーザーで混合してスラリー化した。このスラリーを厚さ10μmの銅箔の片面に均一に塗布、乾燥した後、プレスして負極とした。
電解液は基準電解液1を使用した。基準電解液1全体に対して、下記表7に記載の割合で化合物を加えて電解液を調製した。ただし、比較例5−1は基準電解液1そのものである。
上記の正極、負極、及びポリオレフィン製セパレータを、負極、セパレータ、正極、セパレータ、負極の順に積層した。こうして得られた電池要素をアルミニウムラミネートフィルムで包み込み、後述する電解液を注入した後で真空封止し、シート状の非水系電解液二次電池を作製した。
[高温サイクル試験]
25℃の恒温槽中、ラミネート型セルの非水系電解液二次電池を0.05Cに相当する電流で10時間定電流充電した後、0.2Cで2.75Vまで放電した。0.2Cで4.1VまでCC−CV充電を行い、0.2Cで2.75Vまで放電し、非水系電解液二次電池を安定させた。さらに、0.2Cで4.2VまでCC−CV充電を行った後、0.2Cで2.75Vまで放電し、初期コンディショニングを行った。その後、電池の厚みを測定したのち、0.5Cで4.2VまでCCCV充電した後、0.5Cの定電流で2.5Vまで放電する過程を1サイクルとして、45℃の恒温槽内で高温サイクル試験(200サイクル)を行った。
200サイクル目の容量維持率
=200サイクル目の容量/1サイクル目の容量×100
さらに、比較例5−1の基準電解液1そのものを用いた非水系電解液二次電池の200サイクル目の容量維持率を100とし、これに対する、実施例5−1〜5−5の所定のSi含有量の負極活物質を有する各電池の200サイクル目の容量維持率の数値を求めた。表7に、これらの数値を示す。表中、化合物(添加剤)の「%」は、非水系電解液100質量%中の化合物(添加剤)の質量%である。
初期コンディショニング後と同様に200サイクル後の電池の厚み変化を測定し、サイクルに伴う電池の電極厚み変化を「電池膨れ」とした。表7中の数値は、比較例5−1の基準電解液1そのものを用いた非水系電解液二次電池の高温サイクル試験(200サイクル)後の「電池膨れ」を100とし、これに対する、実施例5−1〜5−5の所定のSi含有量の負極活物質を有する各電池の「電池膨れ」の数値である。
本発明で規定する添加剤のみを添加した非水系電解液二次電池(比較例5−2〜5−5)は、容量維持率の点で、いずれも実施例5−1〜5−5の電池に劣り、電池膨れの改善も及ばず、比較例5−2ではむしろ悪化していることがわかる。
本発明の非水系電解液及び非水系電解液二次電池の用途は特に限定されず、公知の各種の用途に用いることが可能である。その用途の具体例としては、ラップトップコンピュータ、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンタ、携帯オーディオプレーヤー、小型ビデオカメラ、液晶テレビ、ハンディクリーナー、トランシーバ、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ等を挙げることができる。
Claims (5)
- 金属イオンを吸蔵・放出しうる正極及び負極、非水系電解液を備える非水系電解液電池であって、該非水系電解液が電解質及び非水系溶媒とともに、
フルオロスルホン酸リチウムを含有し、かつ、
該負極がSi又はSi金属酸化物と黒鉛粒子とを含有する負極活物質を有することを特徴とする非水系電解液電池であって、
前記Si又はSi金属酸化物と黒鉛粒子との合計に対する、前記Si又はSi金属酸化物の含有量が0.1〜25質量%であり、
前記フルオロスルホン酸リチウムの含有量が、非水系電解液の全量に対して0.01質量%以上10.0質量%以下である、非水系電解液電池。 - 前記Si又はSi金属酸化物と黒鉛粒子とを含有する負極活物質が、Si又はSi金属酸化物と黒鉛粒子の複合体である、請求項1に記載の非水系電解液電池。
- 前記Si又はSi金属酸化物と黒鉛粒子との合計に対する、前記Si又はSi金属酸化物の含有量が0.1〜10質量%である、請求項1又は2に記載の非水系電解液電池。
- 前記非水系電解液が、炭素−炭素不飽和結合を有する環状カーボネート、フッ素原子を有する環状カーボネート、酸無水物化合物、環状スルホン酸エステル化合物及びシアノ基を有する化合物からなる群より選ばれる少なくとも1種の化合物を含有する、請求項1〜3のいずれか一項に記載の非水系電解液電池。
- 前記炭素−炭素不飽和結合を有する環状カーボネート、フッ素原子を有する環状カーボネート、酸無水物化合物、環状スルホン酸エステル化合物及びシアノ基を有する化合物からなる群より選ばれる少なくとも1種の化合物の含有量が非水系電解液の全量に対して0.001質量%以上10重量%以下である、請求項4に記載の非水系電解液電池。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013067188 | 2013-03-27 | ||
JP2013067188 | 2013-03-27 | ||
JP2015508740A JP6344381B2 (ja) | 2013-03-27 | 2014-03-27 | 非水系電解液及びそれを用いた非水系電解液電池 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015508740A Division JP6344381B2 (ja) | 2013-03-27 | 2014-03-27 | 非水系電解液及びそれを用いた非水系電解液電池 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019189247A Division JP2020009784A (ja) | 2013-03-27 | 2019-10-16 | 非水系電解液及びそれを用いた非水系電解液電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018125313A JP2018125313A (ja) | 2018-08-09 |
JP6906476B2 true JP6906476B2 (ja) | 2021-07-21 |
Family
ID=51624547
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015508740A Active JP6344381B2 (ja) | 2013-03-27 | 2014-03-27 | 非水系電解液及びそれを用いた非水系電解液電池 |
JP2018096212A Active JP6906476B2 (ja) | 2013-03-27 | 2018-05-18 | 非水系電解液及びそれを用いた非水系電解液電池 |
JP2019189247A Pending JP2020009784A (ja) | 2013-03-27 | 2019-10-16 | 非水系電解液及びそれを用いた非水系電解液電池 |
JP2021070894A Pending JP2021106174A (ja) | 2013-03-27 | 2021-04-20 | 非水系電解液及びそれを用いた非水系電解液電池 |
JP2022082277A Pending JP2022103379A (ja) | 2013-03-27 | 2022-05-19 | 非水系電解液及びそれを用いた非水系電解液電池 |
JP2024088604A Pending JP2024113006A (ja) | 2013-03-27 | 2024-05-31 | 非水系電解液及びそれを用いた非水系電解液電池 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015508740A Active JP6344381B2 (ja) | 2013-03-27 | 2014-03-27 | 非水系電解液及びそれを用いた非水系電解液電池 |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019189247A Pending JP2020009784A (ja) | 2013-03-27 | 2019-10-16 | 非水系電解液及びそれを用いた非水系電解液電池 |
JP2021070894A Pending JP2021106174A (ja) | 2013-03-27 | 2021-04-20 | 非水系電解液及びそれを用いた非水系電解液電池 |
JP2022082277A Pending JP2022103379A (ja) | 2013-03-27 | 2022-05-19 | 非水系電解液及びそれを用いた非水系電解液電池 |
JP2024088604A Pending JP2024113006A (ja) | 2013-03-27 | 2024-05-31 | 非水系電解液及びそれを用いた非水系電解液電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9947965B2 (ja) |
JP (6) | JP6344381B2 (ja) |
KR (2) | KR102366343B1 (ja) |
CN (2) | CN105074994B (ja) |
WO (1) | WO2014157591A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022103379A (ja) * | 2013-03-27 | 2022-07-07 | 三菱ケミカル株式会社 | 非水系電解液及びそれを用いた非水系電解液電池 |
Families Citing this family (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11456484B2 (en) | 2017-12-07 | 2022-09-27 | Enevate Corporation | Silicon-based energy storage devices with linear carbonate containing electrolyte additives |
US10957898B2 (en) | 2018-12-21 | 2021-03-23 | Enevate Corporation | Silicon-based energy storage devices with anhydride containing electrolyte additives |
US11075408B2 (en) | 2017-12-07 | 2021-07-27 | Enevate Corporation | Silicon-based energy storage devices with fluorinated polymer containing electrolyte additives |
US10811727B2 (en) | 2017-12-07 | 2020-10-20 | Enevate Corporation | Silicon-based energy storage devices with ether containing electrolyte additives |
KR20140134953A (ko) * | 2013-05-15 | 2014-11-25 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지 |
JP6542882B2 (ja) * | 2014-10-02 | 2019-07-10 | エルジー・ケム・リミテッド | リチウム二次電池用電解液添加剤、前記電解液添加剤を含む非水性電解液及びリチウム二次電池 |
JP2016081610A (ja) * | 2014-10-10 | 2016-05-16 | トヨタ自動車株式会社 | 非水電解液二次電池及び車両 |
US10164251B2 (en) * | 2014-12-23 | 2018-12-25 | Samsung Sdi Co., Ltd. | Negative active material and lithium battery including negative active material |
JP6007994B2 (ja) * | 2015-01-23 | 2016-10-19 | セントラル硝子株式会社 | 非水電解液二次電池用電解液及びそれを用いた非水電解液二次電池 |
EP3246982B1 (en) | 2015-01-23 | 2020-03-18 | Central Glass Co., Ltd. | Electrolyte solution for nonaqueous electrolyte solution cell and nonaqueous electrolyte solution cell |
JP6665396B2 (ja) * | 2015-02-19 | 2020-03-13 | セントラル硝子株式会社 | 非水電解液電池用電解液、及びこれを用いた非水電解液電池 |
CN107431184A (zh) * | 2015-03-24 | 2017-12-01 | 日本电气株式会社 | 锂离子二次电池用负极和二次电池 |
JP2016186915A (ja) * | 2015-03-27 | 2016-10-27 | 三菱化学株式会社 | 非水系電解液及びそれを用いた非水系電解液二次電池 |
KR102562683B1 (ko) * | 2015-06-01 | 2023-08-03 | 삼성에스디아이 주식회사 | 리튬 전지용 전해질 첨가제, 및 이를 포함하는 리튬 전지용 전해질 및 리튬 전지 |
JP6646522B2 (ja) * | 2016-05-25 | 2020-02-14 | 株式会社日本触媒 | 非水電解液二次電池 |
WO2016204278A1 (ja) * | 2015-06-19 | 2016-12-22 | 株式会社日本触媒 | 非水電解液およびそれを用いた非水電解液二次電池 |
JP6582605B2 (ja) | 2015-06-24 | 2019-10-02 | 三洋電機株式会社 | 非水電解質二次電池及びその製造方法 |
US10622678B2 (en) * | 2015-07-15 | 2020-04-14 | Nec Corporation | Lithium ion secondary battery |
JP6872705B2 (ja) | 2015-07-23 | 2021-05-19 | パナソニックIpマネジメント株式会社 | 正極活物質、および、電池 |
CN105140565A (zh) * | 2015-08-03 | 2015-12-09 | 深圳新宙邦科技股份有限公司 | 一种高电压锂离子电池用非水电解液及锂离子电池 |
EP3333942A4 (en) * | 2015-08-04 | 2019-01-30 | Mitsui Chemicals, Inc. | NEGATIVE ELECTRODE FOR A LITHIUM ION SECONDARY BATTERY, LITHIUM ION SECONDARY BATTERY THEREWITH AND METHOD FOR PRODUCING A NEGATIVE ELECTRODE FOR A LITHIUM ION SECONDARY BATTERY |
WO2017047017A1 (ja) | 2015-09-16 | 2017-03-23 | パナソニックIpマネジメント株式会社 | 正極活物質、および、電池 |
JP6793355B2 (ja) | 2015-09-16 | 2020-12-02 | パナソニックIpマネジメント株式会社 | 電池 |
JP6846628B2 (ja) | 2015-09-16 | 2021-03-24 | パナソニックIpマネジメント株式会社 | 正極活物質、および、電池 |
CN107408737B (zh) | 2015-09-16 | 2021-03-23 | 松下知识产权经营株式会社 | 电池 |
JP6846627B2 (ja) | 2015-09-16 | 2021-03-24 | パナソニックIpマネジメント株式会社 | 正極活物質、および、電池 |
JP6861399B2 (ja) | 2015-09-16 | 2021-04-21 | パナソニックIpマネジメント株式会社 | 電池 |
WO2017047018A1 (ja) * | 2015-09-16 | 2017-03-23 | パナソニックIpマネジメント株式会社 | 電池 |
WO2017047023A1 (ja) | 2015-09-16 | 2017-03-23 | パナソニックIpマネジメント株式会社 | 電池 |
KR102019838B1 (ko) * | 2015-09-30 | 2019-09-10 | 주식회사 엘지화학 | 비수성 전해액을 포함하는 리튬 이차 전지 |
US20170117589A1 (en) * | 2015-10-27 | 2017-04-27 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device electronic device |
JP7061065B2 (ja) * | 2015-11-13 | 2022-04-27 | シオン・パワー・コーポレーション | 電気化学電池用の添加剤 |
KR101921533B1 (ko) * | 2015-11-25 | 2018-11-23 | 솔브레인 주식회사 | 전해질 및 이를 포함하는 리튬 이차 전지 |
US20200266489A1 (en) | 2015-12-17 | 2020-08-20 | Basf Se | Cyanoalkyl sulfonylfluorides for electrolyte compositions for high energy lithium-ion batteries |
CN105609877A (zh) * | 2016-02-03 | 2016-05-25 | 东莞市凯欣电池材料有限公司 | 一种高电压锂离子电池电解液及一种高电压锂离子电池 |
TWI633692B (zh) * | 2016-03-31 | 2018-08-21 | 烏明克公司 | 供汽車應用的鋰離子電池組 |
US11929461B2 (en) | 2016-04-12 | 2024-03-12 | Daikin Industries, Ltd. | Electrolytic solution, electrochemical device, lithium-ion secondary cell and module |
WO2017204213A1 (ja) * | 2016-05-26 | 2017-11-30 | 日本電気株式会社 | リチウムイオン二次電池 |
WO2017209762A1 (en) * | 2016-06-03 | 2017-12-07 | E. I. Du Pont De Nemours And Company | Nonaqueous electrolyte compositions comprising fluorinated sulfones |
CN106025175B (zh) * | 2016-06-15 | 2020-07-24 | 中国科学院宁波材料技术与工程研究所 | 一种电池浆料、电池极片及其制备方法 |
CN107565135A (zh) * | 2016-06-30 | 2018-01-09 | 江苏国泰超威新材料有限公司 | 一种氟代磷酸盐在制备锂离子电池电极中的应用、锂离子电池电极、其制备方法和应用 |
CN108075187B (zh) * | 2016-11-10 | 2020-09-11 | 宁德时代新能源科技股份有限公司 | 电解液及二次电池 |
JP6952251B2 (ja) | 2016-11-15 | 2021-10-20 | パナソニックIpマネジメント株式会社 | 電池用正極活物質、および、電池 |
JP6979586B2 (ja) | 2016-11-15 | 2021-12-15 | パナソニックIpマネジメント株式会社 | 電池用正極活物質、および、電池用正極活物質を用いた電池 |
EP3547433A4 (en) * | 2016-11-25 | 2020-11-18 | Shenzhen Capchem Technology Co., Ltd. | WATER-FREE ELECTROLYTE FOR LITHIUM-ION BATTERY AND LITHIUM-ION BATTERY |
US10923770B2 (en) * | 2016-12-02 | 2021-02-16 | Nec Corporation | Lithium ion secondary battery |
JP6964246B2 (ja) | 2016-12-02 | 2021-11-10 | パナソニックIpマネジメント株式会社 | 正極活物質、および、正極活物質を用いた電池 |
CN108258308B (zh) * | 2016-12-29 | 2020-04-21 | 深圳新宙邦科技股份有限公司 | 锂离子电池非水电解液及锂离子电池 |
JP6952247B2 (ja) | 2017-01-19 | 2021-10-20 | パナソニックIpマネジメント株式会社 | 正極活物質、および、電池 |
JP7065341B2 (ja) | 2017-01-19 | 2022-05-12 | パナソニックIpマネジメント株式会社 | 正極活物質、および、電池 |
KR102103898B1 (ko) * | 2017-01-23 | 2020-04-24 | 주식회사 엘지화학 | 비수전해액용 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지 |
JP6874860B2 (ja) * | 2017-01-27 | 2021-05-19 | 日本電気株式会社 | シリコーンボールを含む電極及びそれを含むリチウムイオン電池 |
CN110383557B (zh) * | 2017-03-30 | 2022-03-08 | 松下知识产权经营株式会社 | 非水电解液和非水电解液二次电池 |
JP7098276B2 (ja) * | 2017-03-30 | 2022-07-11 | 三井化学株式会社 | 電池用非水電解液及びリチウム二次電池 |
CN107146911A (zh) * | 2017-04-10 | 2017-09-08 | 珠海市赛纬电子材料股份有限公司 | 锂离子电池、非水锂离子电池电解液和氟代磺酸酐在制备非水锂离子电池电解液中的应用 |
US11581581B2 (en) | 2017-05-19 | 2023-02-14 | Nec Corporation | Lithium ion secondary battery |
EP3656014B1 (en) * | 2017-07-20 | 2021-06-16 | Basf Se | Heterocyclic additives bearing sulfonyl fluoride groups for electrolyte compositions of lithium batteries |
KR102383073B1 (ko) | 2017-07-21 | 2022-04-04 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 |
EP3641043A4 (en) * | 2017-08-07 | 2021-03-03 | Daikin Industries, Ltd. | ELECTROLYTE SOLUTION, ELECTROCHEMICAL DEVICE, LITHIUM-ION SECONDARY BATTERY AND MODULE |
CN107481859A (zh) * | 2017-08-11 | 2017-12-15 | 惠州市宙邦化工有限公司 | 铝电解电容器用电解液及铝电解电容器 |
JP7020818B2 (ja) * | 2017-08-23 | 2022-02-16 | 旭化成株式会社 | 非水系電解液及び非水系二次電池 |
WO2019039903A2 (ko) * | 2017-08-24 | 2019-02-28 | 주식회사 엘지화학 | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 |
JP6883263B2 (ja) * | 2017-09-11 | 2021-06-09 | トヨタ自動車株式会社 | 非水電解液二次電池 |
CN107706455A (zh) * | 2017-09-20 | 2018-02-16 | 惠州亿纬锂能股份有限公司 | 一种兼顾高低温性能的高电压倍率电解液及使用该电解液的锂离子电池 |
CN111344891B (zh) | 2017-11-10 | 2023-05-02 | 三菱化学株式会社 | 非水电解液及使用该非水电解液的能量设备 |
WO2019113528A1 (en) * | 2017-12-07 | 2019-06-13 | Enevate Corporation | Silicon-based energy storage devices with carboxylic ether, carboxylic acid based salt, or acrylate electrolyte containing electrolyte additives |
WO2019113532A1 (en) | 2017-12-07 | 2019-06-13 | Enevate Corporation | Silicon-based energy storage devices with fluorinated cyclic compound containing electrolyte additives |
CN108091933B (zh) * | 2017-12-12 | 2019-11-12 | 石家庄圣泰化工有限公司 | 氟磺酸酯类化合物于电池电解液中的应用 |
CN109912464A (zh) * | 2017-12-12 | 2019-06-21 | 石家庄圣泰化工有限公司 | 氟磺酸酯类化合物的制备方法 |
CN118412540A (zh) * | 2018-01-25 | 2024-07-30 | 三井化学株式会社 | 电池用非水电解液及锂二次电池 |
JP6994157B2 (ja) * | 2018-02-09 | 2022-01-14 | トヨタ自動車株式会社 | 非水電解液二次電池および電池組立体 |
JP6944394B2 (ja) * | 2018-02-21 | 2021-10-06 | 三菱ケミカル株式会社 | 非水系電解液電池 |
JP7301557B2 (ja) * | 2018-03-16 | 2023-07-03 | 三菱ケミカル株式会社 | 非水系電解液及びそれを用いたエネルギーデバイス |
TWI659558B (zh) * | 2018-03-20 | 2019-05-11 | 中原大學 | 一種二次電池用負極材料的製造方法 |
JP6977646B2 (ja) * | 2018-03-27 | 2021-12-08 | トヨタ自動車株式会社 | 電解液およびリチウムイオン電池 |
EP3761435B1 (en) * | 2018-03-27 | 2022-09-28 | Daikin Industries, Ltd. | Electrolyte solution, electrochemical device, lithium-ion secondary battery, module and compound |
US20190372186A1 (en) * | 2018-05-30 | 2019-12-05 | GM Global Technology Operations LLC | Sulfone electrolytes for capacitor-assisted batteries |
KR20200005369A (ko) * | 2018-07-06 | 2020-01-15 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지 |
CN112470320A (zh) * | 2018-07-26 | 2021-03-09 | 三井化学株式会社 | 电池用非水电解液及锂二次电池 |
US12027666B2 (en) * | 2018-07-31 | 2024-07-02 | Nippon Shokubai Co., Ltd. | Electrolyte composition, electrolyte film, and method of manufacturing electrolyte film |
CN109167096A (zh) * | 2018-09-05 | 2019-01-08 | 合肥国轩高科动力能源有限公司 | 电池电解液及其制备方法、锂硫二次电池 |
KR102697789B1 (ko) | 2018-10-11 | 2024-08-23 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 |
KR102296128B1 (ko) * | 2018-10-23 | 2021-08-31 | 삼성에스디아이 주식회사 | 이소시아네이트계 화합물을 포함하는 리튬이차전지 |
KR102434070B1 (ko) * | 2018-11-09 | 2022-08-22 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지 |
WO2020096411A1 (ko) | 2018-11-09 | 2020-05-14 | 주식회사 엘지화학 | 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지 |
CN109638354B (zh) * | 2018-12-04 | 2021-04-09 | 南通新宙邦电子材料有限公司 | 一种锂离子电池电解液及锂离子电池 |
EP3893292A4 (en) * | 2018-12-06 | 2022-02-23 | Mitsubishi Chemical Corporation | SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE SOLUTION |
US11165099B2 (en) | 2018-12-21 | 2021-11-02 | Enevate Corporation | Silicon-based energy storage devices with cyclic organosilicon containing electrolyte additives |
FR3093379B1 (fr) * | 2019-03-01 | 2022-09-30 | Accumulateurs Fixes | Composition d’électrolyte pour élément électrochimique lithium-ion |
CN109830751A (zh) * | 2019-03-08 | 2019-05-31 | 上海氟帝新材料科技有限公司 | 一种电解液功能添加剂、电池电解液及该电池 |
CN113994447A (zh) * | 2019-03-29 | 2022-01-28 | 株式会社杰士汤浅国际 | 蓄电元件用非水电解质、非水电解质蓄电元件和非水电解质蓄电元件的制造方法 |
CN109980282B (zh) * | 2019-04-09 | 2021-01-15 | 杉杉新材料(衢州)有限公司 | 一种耐低温锂离子电池非水电解液及锂离子电池 |
CN111834669B (zh) * | 2019-04-15 | 2022-03-15 | 比亚迪股份有限公司 | 锂离子电池电解液以及锂离子电池 |
US20200388885A1 (en) * | 2019-06-05 | 2020-12-10 | Enevate Corporation | Silicon-based energy storage devices with lipo2f2 salt-containing electrolyte formulations |
US11398641B2 (en) | 2019-06-05 | 2022-07-26 | Enevate Corporation | Silicon-based energy storage devices with silicon containing electrolyte additives |
CN112234252A (zh) * | 2019-07-15 | 2021-01-15 | 杉杉新材料(衢州)有限公司 | 一种高电压用宽温型锂离子电池非水电解液及锂离子电池 |
JP7290089B2 (ja) * | 2019-09-10 | 2023-06-13 | トヨタ自動車株式会社 | 非水電解液二次電池 |
CN110931872B (zh) * | 2019-12-11 | 2022-07-08 | 多氟多新能源科技有限公司 | 一种锂离子电池电解液添加剂及锂离子电池电解液 |
CN117059876A (zh) * | 2019-12-25 | 2023-11-14 | 宁德新能源科技有限公司 | 电化学装置及包含其的电子装置 |
KR102571751B1 (ko) * | 2020-03-24 | 2023-08-25 | 삼성에스디아이 주식회사 | 리튬 이차 전지의 전해질용 첨가제, 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 |
CN111370766A (zh) * | 2020-03-24 | 2020-07-03 | 青岛滨海学院 | 一种含-s-f基团化合物的电解液及其电化学装置 |
US20210408551A1 (en) * | 2020-06-26 | 2021-12-30 | Samsung Sdi Co., Ltd. | Negative electrode for rechargeable lithium battery and rechargeable lithium battery including same |
CN111883833B (zh) * | 2020-07-24 | 2023-09-12 | 香河昆仑新能源材料股份有限公司 | 一种锂离子电池非水电解液、以及包含其的锂离子电池 |
CN111978183B (zh) * | 2020-08-17 | 2023-06-20 | 常德市大度新材料有限公司 | 一种二氟磷酸盐及其制备方法和其在非水电解液中的应用 |
CN112382792A (zh) * | 2020-10-31 | 2021-02-19 | 华南理工大学 | 一种用于锂金属/锂离子/锂硫电池的含氟醚类电解液共溶剂及电解液与锂二次电池 |
CN112349961B (zh) * | 2020-11-12 | 2021-09-24 | 宁德新能源科技有限公司 | 电解液及包含其的电化学装置和电子设备 |
JP7167117B2 (ja) * | 2020-12-07 | 2022-11-08 | プライムプラネットエナジー&ソリューションズ株式会社 | 非水電解質二次電池 |
CN112563511B (zh) * | 2020-12-10 | 2022-03-04 | 深圳中科瑞能实业有限公司 | 一种含铝负极材料、负极极片及锂离子二次电池 |
KR20220105889A (ko) * | 2021-01-21 | 2022-07-28 | 삼성에스디아이 주식회사 | 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지 |
KR20220107574A (ko) * | 2021-01-25 | 2022-08-02 | 삼성에스디아이 주식회사 | 리튬 전지용 전해질 및 이를 포함하는 리튬 전지 |
CN112786966A (zh) * | 2021-03-01 | 2021-05-11 | 远景动力技术(江苏)有限公司 | 一种电解液和锂离子电池 |
CN113437363B (zh) * | 2021-06-17 | 2022-07-12 | 珠海市赛纬电子材料股份有限公司 | 非水电解液及其二次电池 |
KR20230036357A (ko) * | 2021-09-07 | 2023-03-14 | 삼성에스디아이 주식회사 | 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지 |
WO2023063317A1 (ja) * | 2021-10-12 | 2023-04-20 | セントラル硝子株式会社 | 非水電解液、非水電解液電池、及び化合物 |
CN118160124A (zh) * | 2021-10-25 | 2024-06-07 | 学校法人东京理科大学 | 钾离子电池用电解液添加剂、钾离子电池用电解液、钾离子电池、钾离子电容器用电解液添加剂、钾离子电容器用电解液、钾离子电容器及负极 |
WO2023074216A1 (ja) * | 2021-10-27 | 2023-05-04 | 三菱ケミカル株式会社 | 粒子及びその製造方法と、二次電池及びその製造方法 |
CN114069049B (zh) * | 2021-11-24 | 2022-10-25 | 中节能万润股份有限公司 | 一种含有磺酰胺结构基团的异氰酸酯类电解液添加剂及其应用 |
CN114105882B (zh) | 2021-11-24 | 2022-11-15 | 中节能万润股份有限公司 | 一种基于咪唑结构基团的异氰酸酯类的电解液添加剂及其应用 |
KR102703000B1 (ko) * | 2022-04-01 | 2024-09-06 | 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 | 2차전지, 배터리 모듈, 배터리 팩 및 전기장치 |
WO2023220863A1 (zh) * | 2022-05-16 | 2023-11-23 | 宁德时代新能源科技股份有限公司 | 一种二次电池及其电池模块、电池包和用电装置 |
CN114927760B (zh) * | 2022-05-30 | 2024-07-26 | 深圳澳睿新能源科技有限公司 | 含氰基脂肪胺类化合物非水电解液、锂离子电池及其应用 |
CN115367775B (zh) * | 2022-08-18 | 2024-05-14 | 上海如鲲新材料股份有限公司 | 一种采用氟磺酸酯制备氟磺酸盐的方法 |
WO2024096450A1 (ko) * | 2022-11-02 | 2024-05-10 | 솔브레인 주식회사 | 전해액 첨가제, 이를 포함하는 전지용 전해액 및 이를 포함하는 이차전지 |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3439085B2 (ja) | 1997-08-21 | 2003-08-25 | 三洋電機株式会社 | 非水系電解液二次電池 |
JP4448275B2 (ja) | 2001-05-11 | 2010-04-07 | 三星エスディアイ株式会社 | リチウム二次電池用電解液及びこれを含むリチウム二次電池 |
JP3897709B2 (ja) * | 2002-02-07 | 2007-03-28 | 日立マクセル株式会社 | 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池 |
JP4965790B2 (ja) * | 2002-10-28 | 2012-07-04 | 株式会社Gsユアサ | 非水電解質二次電池 |
KR101107041B1 (ko) | 2002-05-08 | 2012-01-25 | 가부시키가이샤 지에스 유아사 | 비수전해질 2차전지 |
JP4201526B2 (ja) * | 2002-05-14 | 2008-12-24 | 三洋電機株式会社 | 非水電解質二次電池 |
CA2411695A1 (fr) * | 2002-11-13 | 2004-05-13 | Hydro-Quebec | Electrode recouverte d'un film obtenu a partir d'une solution aqueuse comportant un liant soluble dans l'eau, son procede de fabrication et ses utilisations |
JP2005259641A (ja) | 2004-03-15 | 2005-09-22 | Mitsubishi Heavy Ind Ltd | リチウム二次電池用の電解液、電極、リチウム二次電池およびそれらの製造方法 |
KR20060001719A (ko) * | 2004-06-30 | 2006-01-06 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극활물질, 그의 제조방법 및 이를포함하는 리튬 이차 전지 |
JP5390736B2 (ja) | 2004-12-07 | 2014-01-15 | 富山薬品工業株式会社 | 電気化学デバイス用非水電解液 |
US20080062616A1 (en) * | 2004-12-24 | 2008-03-13 | Hiroaki Matsuda | Composite Electrode Active Material for Non-Aqueous Electrolyte Secondary Battery or Non-Aqueous Electrolyte Electrochemical Capacitor and Method for Producing the Same |
JP5156195B2 (ja) * | 2006-03-28 | 2013-03-06 | Jfeケミカル株式会社 | リチウムイオン二次電池用負極材料およびその製造方法、リチウムイオン二次電池用負極、ならびにリチウムイオン二次電池 |
JP2008166271A (ja) * | 2006-12-06 | 2008-07-17 | Mitsubishi Chemicals Corp | 非水系電解液および非水系電解液二次電池 |
JP5628469B2 (ja) * | 2007-04-26 | 2014-11-19 | 三菱化学株式会社 | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 |
JP2008277231A (ja) * | 2007-04-06 | 2008-11-13 | Hitachi Chem Co Ltd | リチウム二次電池用負極材料、その製造方法及びそれを用いたリチウム二次電池負極、リチウム二次電池 |
JP5217400B2 (ja) * | 2007-06-28 | 2013-06-19 | 三菱化学株式会社 | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 |
JP5593592B2 (ja) * | 2007-06-28 | 2014-09-24 | 三菱化学株式会社 | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 |
WO2009035054A1 (ja) * | 2007-09-12 | 2009-03-19 | Mitsubishi Chemical Corporation | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 |
WO2010021236A1 (ja) * | 2008-08-20 | 2010-02-25 | 三洋電機株式会社 | 非水電解質二次電池 |
US8992801B2 (en) * | 2009-04-03 | 2015-03-31 | Basf Se | Electroactive material, and use thereof in anodes for lithium-ion cells |
WO2011027503A1 (ja) * | 2009-09-01 | 2011-03-10 | 日立ビークルエナジー株式会社 | 非水電解質二次電池 |
KR101117699B1 (ko) * | 2009-11-19 | 2012-02-24 | 삼성에스디아이 주식회사 | 리튬 전지용 전해액 및 이를 포함한 리튬 전지 |
JP2011113863A (ja) * | 2009-11-27 | 2011-06-09 | Hitachi Maxell Ltd | 非水二次電池 |
JP2011119183A (ja) * | 2009-12-07 | 2011-06-16 | Sony Corp | 二次電池、二次電池用電解液、電動工具、電気自動車および電力貯蔵システム |
KR20120101042A (ko) * | 2009-12-07 | 2012-09-12 | 소니 주식회사 | 이차 전지, 전해액, 전지 팩, 전자 기기 및 전동 차량 |
JP2011150958A (ja) * | 2010-01-25 | 2011-08-04 | Sony Corp | 非水電解質および非水電解質電池 |
EP2958181B1 (en) * | 2010-02-12 | 2017-06-14 | Mitsubishi Chemical Corporation | Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery |
JPWO2011105126A1 (ja) * | 2010-02-24 | 2013-06-20 | 日立マクセル株式会社 | 正極材料、その製造方法、非水二次電池用正極および非水二次電池 |
JP4868556B2 (ja) | 2010-04-23 | 2012-02-01 | 日立マクセルエナジー株式会社 | リチウム二次電池 |
JP5441221B2 (ja) * | 2010-05-10 | 2014-03-12 | 三洋電機株式会社 | 非水電解質二次電池及び非水電解質二次電池用非水電解液 |
WO2011142276A1 (ja) * | 2010-05-10 | 2011-11-17 | 三洋電機株式会社 | 非水電解質二次電池及び非水電解質二次電池用非水電解液 |
US9876221B2 (en) | 2010-05-14 | 2018-01-23 | Samsung Sdi Co., Ltd. | Negative active material for rechargeable lithium battery and rechargeable lithium battery including same |
KR102183171B1 (ko) * | 2010-08-03 | 2020-11-25 | 맥셀 홀딩스 가부시키가이샤 | 비수 이차 전지용 부극 및 비수 이차 전지 |
JP5799500B2 (ja) * | 2010-12-10 | 2015-10-28 | 日立化成株式会社 | リチウムイオン二次電池用負極、およびリチウムイオン二次電池 |
EP2672560B1 (en) | 2011-01-31 | 2019-10-02 | Mitsubishi Chemical Corporation | Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same |
EP3758124A1 (en) | 2011-02-10 | 2020-12-30 | Mitsubishi Chemical Corporation | Non-aqueous electrolyte secondary battery |
JP5962040B2 (ja) * | 2011-02-10 | 2016-08-03 | 三菱化学株式会社 | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 |
KR101929599B1 (ko) | 2011-02-10 | 2018-12-14 | 미쯔비시 케미컬 주식회사 | 2 차 전지용 비수계 전해액 및 그것을 사용한 비수계 전해액 2 차 전지 |
CN113387375A (zh) | 2011-04-11 | 2021-09-14 | 三菱化学株式会社 | 氟磺酸锂的制造方法、氟磺酸锂、非水电解液、以及非水电解质二次电池 |
JP5987431B2 (ja) * | 2011-04-13 | 2016-09-07 | 三菱化学株式会社 | フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池 |
JP6065367B2 (ja) | 2011-06-07 | 2017-01-25 | ソニー株式会社 | 非水電解質電池、電池パック、電子機器、電動車両、蓄電装置および電力システム |
JP2013030465A (ja) * | 2011-06-24 | 2013-02-07 | Central Glass Co Ltd | 非水電解液電池用電解液及び非水電解液電池 |
WO2013018486A1 (ja) * | 2011-07-29 | 2013-02-07 | 三洋電機株式会社 | 非水電解質二次電池用活物質及びその製造方法並びにそれを用いた負極 |
JP5523506B2 (ja) * | 2012-06-04 | 2014-06-18 | 日立マクセル株式会社 | リチウムイオン二次電池の製造方法 |
JP2012169300A (ja) * | 2012-06-06 | 2012-09-06 | Hitachi Maxell Energy Ltd | 非水二次電池 |
WO2014003165A1 (ja) * | 2012-06-29 | 2014-01-03 | 三菱化学株式会社 | 非水系電解液及びそれを用いた非水系電解液電池 |
KR102366343B1 (ko) * | 2013-03-27 | 2022-02-23 | 미쯔비시 케미컬 주식회사 | 비수계 전해액 및 그것을 사용한 비수계 전해액 전지 |
-
2014
- 2014-03-27 KR KR1020207034573A patent/KR102366343B1/ko active IP Right Grant
- 2014-03-27 KR KR1020157025848A patent/KR102188818B1/ko active IP Right Grant
- 2014-03-27 CN CN201480016615.1A patent/CN105074994B/zh active Active
- 2014-03-27 CN CN201811060651.4A patent/CN109301162A/zh active Pending
- 2014-03-27 WO PCT/JP2014/059048 patent/WO2014157591A1/ja active Application Filing
- 2014-03-27 JP JP2015508740A patent/JP6344381B2/ja active Active
-
2015
- 2015-09-25 US US14/866,009 patent/US9947965B2/en active Active
-
2018
- 2018-05-18 JP JP2018096212A patent/JP6906476B2/ja active Active
-
2019
- 2019-10-16 JP JP2019189247A patent/JP2020009784A/ja active Pending
-
2021
- 2021-04-20 JP JP2021070894A patent/JP2021106174A/ja active Pending
-
2022
- 2022-05-19 JP JP2022082277A patent/JP2022103379A/ja active Pending
-
2024
- 2024-05-31 JP JP2024088604A patent/JP2024113006A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022103379A (ja) * | 2013-03-27 | 2022-07-07 | 三菱ケミカル株式会社 | 非水系電解液及びそれを用いた非水系電解液電池 |
Also Published As
Publication number | Publication date |
---|---|
CN105074994A (zh) | 2015-11-18 |
JP2022103379A (ja) | 2022-07-07 |
JP6344381B2 (ja) | 2018-06-20 |
US20160013517A1 (en) | 2016-01-14 |
JP2024113006A (ja) | 2024-08-21 |
KR102188818B1 (ko) | 2020-12-09 |
WO2014157591A1 (ja) | 2014-10-02 |
JP2018125313A (ja) | 2018-08-09 |
CN109301162A (zh) | 2019-02-01 |
CN105074994B (zh) | 2018-10-19 |
US9947965B2 (en) | 2018-04-17 |
JP2020009784A (ja) | 2020-01-16 |
KR20150135278A (ko) | 2015-12-02 |
JP2021106174A (ja) | 2021-07-26 |
JPWO2014157591A1 (ja) | 2017-02-16 |
KR102366343B1 (ko) | 2022-02-23 |
KR20200138438A (ko) | 2020-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6906476B2 (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
JP6926293B2 (ja) | 非水系電解液及びそれを用いた非水系電解液二次電池 | |
JP6624243B2 (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
JP6263910B2 (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
JP2013206708A (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
JP2020021747A (ja) | 非水系電解液及びそれを用いた非水系電解液二次電池 | |
JP5903931B2 (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
JP6589718B2 (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
JP6638251B2 (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
JP6500541B2 (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
JP6167729B2 (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
JP6201363B2 (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
JP6756250B2 (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
JP7062112B2 (ja) | 非水系電解液及びそれを用いた非水系電解液二次電池 | |
JP6657658B2 (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
JP6759847B2 (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
JP6729167B2 (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
JP6601262B2 (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
JP6658079B2 (ja) | 非水系電解液及びそれを用いた非水系電解液二次電池 | |
JP6668878B2 (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
JP2020143060A (ja) | 非水系電解液及びそれを用いた非水系電解液電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180518 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190305 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190405 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190716 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191016 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20191016 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20191024 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20191029 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20191108 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20191112 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20200728 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20201125 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20201222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210215 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20210518 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20210525 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20210622 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20210622 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210629 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6906476 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |