JP2013206708A - 非水系電解液及びそれを用いた非水系電解液電池 - Google Patents

非水系電解液及びそれを用いた非水系電解液電池 Download PDF

Info

Publication number
JP2013206708A
JP2013206708A JP2012074403A JP2012074403A JP2013206708A JP 2013206708 A JP2013206708 A JP 2013206708A JP 2012074403 A JP2012074403 A JP 2012074403A JP 2012074403 A JP2012074403 A JP 2012074403A JP 2013206708 A JP2013206708 A JP 2013206708A
Authority
JP
Japan
Prior art keywords
carbonate
propynyl
acid
compound
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012074403A
Other languages
English (en)
Other versions
JP6019663B2 (ja
Inventor
Shuhei Sawa
脩平 澤
Minoru Kotado
稔 古田土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012074403A priority Critical patent/JP6019663B2/ja
Publication of JP2013206708A publication Critical patent/JP2013206708A/ja
Application granted granted Critical
Publication of JP6019663B2 publication Critical patent/JP6019663B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

【課題】リチウム非水系電解液二次電池に関して、耐久性能と容量、抵抗、出力特性などの性能につき、総合的な性能のバランスのよい電池を提供する。
【解決手段】金属イオンを吸蔵・放出しうる正極及び負極を備える非水系電解液電池用の非水系電解液であって、該非水系電解液が電解質及び非系水溶媒とともに、
(A)下記式(1)で示される化合物、ならびに
(B)塩素原子を有する化合物を非水系電解液中に0.2質量ppm以上500質量ppm未満
を含有することを特徴とする非水系電解液。
Figure 2013206708

(式(1)中、R、Rは各々独立に、水素原子、ハロゲン原子、または置換基を有してもよい有機基であり、それぞれ同一であっても異なっていてもよい。)
【選択図】 なし

Description

本発明は、非水系電解液及びそれを用いた非水系電解液電池に関するものである。
携帯電話機、ノート型パーソナルコンピュータ等の携帯用電子機器の急速な進歩に伴い、その主電源やバックアップ電源に用いられる電池に対する高容量化への要求が高くなっており、ニッケル・カドミウム電池やニッケル・水素電池に比べてエネルギー密度の高いリチウムイオン二次電池等の非水系電解液電池が注目されている。
リチウムイオン二次電池の電解液としては、LiPF、LiBF、LiN(CFSO、LiCF(CFSO等の電解質を、エチレンカーボネート、プロピレンカーボネート等の高誘電率溶媒と、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の低粘度溶媒との混合溶媒に溶解させた非水系電解液が代表例として挙げられる。
また、リチウムイオン二次電池の負極活物質としては主にリチウムイオンを吸蔵・放出することができる炭素質材料が用いられており、天然黒鉛、人造黒鉛、非晶質炭素等が代表例として挙げられる。更に高容量化を目指してシリコンやスズ等を用いた金属又は合金系の負極も知られている。正極活物質としては主にリチウムイオンを吸蔵・放出することができる遷移金属複合酸化物が用いられており、遷移金属の代表例としてはコバルト、ニッケル、マンガン、鉄等が挙げられる。
このようなリチウムイオン二次電池は、活性の高い正極と負極を使用しているため、電極と電解液との副反応により、充放電容量が低下することが知られており、電池特性を改良するために、非水溶媒や電解質について種々の検討がなされている。
特許文献1には、アルキン誘導体を含有する非水系電解液を用いることにより、アルキン誘導体が炭素負極表面で分解することで不働態被膜が形成される。また、その分解物が正極上で酸化分解することで、電解液の酸化分解を抑制する。これにより充放電サイクル寿命を向上させることが提案されている。
また、特許文献2には、アルキニル基を特定の基を介して結合した特定の構造を有するアルキニル化合物を非水電解液に添加することにより、低温及び高温でのサイクル特性、及び高温充電保存後の負荷特性を向上しうることが提案されている。
また、特許文献3には、特定の化合物と、炭素−炭素不飽和結合を有するシュウ酸エステルやスルホン酸エステルとを組合せて用いることで、サイクル特性、保存特性および負荷特性を得ることができる提案がされている。
また、特許文献4には、炭素−炭素多重結合の隣の炭素原子にハロゲン原子が結合した化合物を含有する非水系電解液を用いることにより、電極表面に保護皮膜が形成され、これにより高温保存時の膨張を抑制し、さらに充放電サイクル寿命を向上させることが提案されている。
特開2000−195545号公報 WO2011/096450公報 特開2011−238373号公報 特開2009−181846号公報
しかしながら、近年のリチウム非水系電解液二次電池の特性改善への要求はますます高まっており、高温保存特性、エネルギー密度、出力性能、寿命、高速充放電特性、低温特性等の全ての性能を高いレベルで併せ持つことが求められているが、未だ達成されていない。高温保存特性をはじめとする耐久性能と容量、抵抗、出力特性などの性能がトレードオフの関係になっており、総合的な性能のバランスが悪いという問題があった。
本発明は、上述の課題に鑑みてなされたものである。即ち、リチウム非水系電解液二次電池に関して、耐久性能と容量、抵抗、出力特性などの性能につき、総合的な性能のバランスのよい電池を提供することを目的とする。
本発明者らは、上記目的を達成するために種々の検討を重ねた結果、分子内に少なくとも1つの三重結合を有する化合物とある特定量の少なくとも1種のハロゲン原子を有する化合物を非水系電解液中に含有させる、または、ある特定量の少なくとも1種のハロゲン原子を有する化合物を含む分子内に少なくとも1つの三重結合を有する化合物を非水系電解液中に含有させることによって、上記課題を解決できることを見出し、後述する本発明の完成に至った。
本発明の要旨は、以下に示す通りである。
(i)金属イオンを吸蔵・放出しうる正極及び負極を備える非水系電解液電池用の非水系電解液であって、該非水系電解液が電解質及び非系水溶媒とともに、
(A)下記式(1)で示される化合物、ならびに
(B)塩素原子を有する化合物を非水系電解液中に0.2質量ppm以上500質量ppm未満
を含有することを特徴とする非水系電解液。
Figure 2013206708
(式(1)中、R、Rは各々独立に、水素原子、ハロゲン原子、または置換基を有してもよい有機基であり、それぞれ同一であっても異なっていてもよい。)
(ii)金属イオンを吸蔵・放出しうる正極及び負極を備える非水系電解液電池用の非水系電解液であって、塩素原子を有する化合物を20質量ppm以上5質量%以下含む下記式(1)で示される化合物を含有することを特徴とする非水系電解液。
Figure 2013206708
(式(1)中、R、Rは各々独立に、水素原子、ハロゲン原子、または置換基を有してもよい有機基であり、それぞれ同一であっても異なっていてもよい。)
(iii)前記塩素原子を有する化合物が、下記一般式(2)で示される化合物を含むことを特徴とする(i)または(ii)に記載の非水系電解液。
Figure 2013206708
(式(2)中、R、Rは各々独立に、水素原子、ハロゲン原子、または置換基を有してもよい有機基であり、それぞれ同一であっても異なっていてもよい。)
(iv)前記式(1)中、R若しくはRのいずれか一方、または両方がS=O基を1つ以上含む有機基であることを特徴とする(i)乃至(iii)のいずれか1つに記載の非水系電解液。
(v)前記式(2)中、Rが水素原子であることを特徴とする(i)乃至(iv)のいずれか1つに記載の非水系電解液。
(vi)前記式(2)中、Rが置換基を有していてもよいメチレン基であることを特徴とする(i)乃至(v)のいずれか1つに記載の非水系電解液。
(vii)前記一般式(1)で示される化合物を非水系電解液中に0.01質量%以上5質量%以下含有することを特徴とする(i)乃至(vi)のいずれか1つに記載の非水系電解液。
(viii)フッ素原子を有する環状カーボネート、炭素−炭素不飽和結合を有する環状カーボネート、モノフルオロリン酸塩、ジフルオロリン酸塩、イソシアネート化合物、環状スルホン酸エステルおよびニトリル化合物よりなる群から選ばれる少なくとも1種の化合物を更に含有することを特徴とする(i)乃至(vii)のいずれか1つに記載の非水系電解液。
(ix)フッ素原子を有する環状カーボネートが、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネートよりなる群から選ばれる少なくとも1種の化合物であり、炭素−炭素不飽和結合を有する環状カーボネートが、ビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネートであり、イソシアネート化合物が少なくとも2つのイソシアネート基を有する化合物であり、ニトリル化合物が少なくとも2つのイソシアネート基を有する化合物であることを特徴とする(viii)に記載の非水系電解液。
(x)リチウムイオンを吸蔵・放出可能な負極及び正極、並びに非水系電解液を含む非水系電解液二次電池であって、該非水系電解液が(i)乃至(ix)のいずれか1つに記載の非水系電解液であることを特徴とする非水系電解液二次電池。
本発明によれば、リチウム非水系電解液二次電池に関して、耐久性能と容量、抵抗、出力特性などの性能につき、総合的な性能のバランスのよい電池を提供することができる。本発明の非水系電解液を用いて作製された非水系電解液二次電池、及び本発明の非水系電解液二次電池が、電池特性を向上させる作用・原理は明確ではないが、以下のように考えられる。ただし、本発明は、以下に記述する作用・原理に限定されるものではない。
通常、特許文献1〜3に記載されているアルキン化合物のみを非水系電解液に含有させると、負極上で生成する分解物が正極上で作用するが、そのとき正極上において副反応も同時に進行する。その結果、電極上にリチウム伝導性の低い堆積物が生じてしまい、高速充放電特性の効率が低下する。よって、この正極上での副反応をできるだけ抑制させるために、分解物が正極に回りこまないようにさせることが課題である。
また、特許文献4に記載されている炭素−炭素多重結合の隣の炭素原子にハロゲン原子が結合した化合物を単独で非水系電解液に含有させると、電極表面でハロゲン化リチウムが生じるため、電極界面の抵抗が増加しやすい。さらに特許文献2に記載されている添加剤と併用して非水系電解液に含有させると、電極表面の保護皮膜の重合度高くなり、充放
電時に過電圧が高くなることで、電池特性が低下する。よって、これらの問題点を解決することが課題である。
そのような課題に対し、本発明では、式(1)で示される化合物(以下、適宜、分子内に少なくとも1つの三重結合を有する化合物と称する場合がある。)とある特定量の少なくとも1種のハロゲン原子を有する化合物を非水系電解液中に含有させる、または、ある特定量の少なくとも1種のハロゲン原子を有する化合物を含む分子内に少なくとも1つの三重結合を有する化合物を非水系電解液中に含有させることによって、上記課題を解決できることを見出した。
少なくとも1種のハロゲン原子を有する化合物は、負極上で還元され、脱ハロゲンアニオン反応によりラジカルを生成する。このラジカルが、少なくとも1つの三重結合を有する化合物と反応することで、リチウム伝導性の高い適度な分子量の重合皮膜を形成する。さらに、この皮膜形成反応は効率よく進行するため、少なくとも1つの三重結合を有する化合物の分解物が生成しにくくなる。よって、正極に分解物が回りこむ寄与が減少し、上述の特許文献1〜3の課題が解決される。
一方、少なくとも1つの三重結合を有する化合物の代わりに特許文献4に主に記載されている二重結合を有する化合物を用いると、重合反応が断続的に進行し、重合度が大幅に増加してしまう。
さらに本発明では、少なくとも1種のハロゲン原子を有する化合物が重合の基点となれば良いため、最適添加量が存在する。特許文献4に記載されている範囲内で添加すると、電極表面でハロゲン化リチウムが多量に生じるため、電極界面の抵抗が増加してしまい不適である。本発明では、少なくとも1種のハロゲン原子を有する化合物の添加量をある特定した範囲に限定することで、上述の課題が解決される。
3−クロロ−1−プロピンの添加量と初期1Cレート特性 3−クロロ−1−プロピンの添加量と保存後電圧
以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。
また、ここで“重量%”、“重量ppm”および“重量部”と“質量%”、“質量ppm”および“質量部”とは、それぞれ同義である。また、単にppmと記載した場合は、“質量ppm”のことを示す。
1.非水系電解液
1−1.式(1)で示される化合物
Figure 2013206708
式(1)中、R、Rは各々独立に、水素原子、ハロゲン原子、または置換基を有してもよい有機基であり、それぞれ同一であっても異なっていてもよい。
ここで、有機基とは、炭素原子、水素原子、窒素原子、酸素原子およびハロゲン原子からなる群から選ばれる原子で構成された官能基のことを表す。具体例としては、アルキル
基、アルケニル基、アルキニル基、アリール基、アルコキシ基、シアノ基、イソシアナト基、エーテル基、カーボネート基、カルボニル基、スルホニル基、ホスホリル基などが挙げられる。
また、置換基の具体例としては、ハロゲン原子で置換されていてもよいアルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、シアノ基、イソシアナト基、エーテル基、カーボネート基、カルボニル基、カルボキシル基、スルホニル基およびホスホリル基などが挙げられる。
前記式(1)中、R若しくはRのいずれか一方、または両方がS=O基を1つ以上含む有機基であることが好ましい。S=O基を有することで正極に作用しやすくなり、分子内に少なくとも1つの三重結合を有する化合物の分解物が引き起こす正極上での副反応が抑制される。
前記式(1)で示される化合物の分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは100以上、より好ましくは130以上、さらに好ましくは145以上であり、500以下、好ましくは300以下、さらに好ましくは270以下である。この範囲であれば、非水系電解液に対する(1)で示される化合物の溶解性を確保しやすく、本発明の効果が発現されやすい。
式(1)で示される化合物の具体例としては、例えば、以下の化合物が挙げられる。
1−ペンチン、2−ペンチン、1−ヘキシン、2−ヘキシン、3−ヘキシン、1−ヘプチン、2−ヘプチン、3−ヘプチン、1−オクチン、2−オクチン、3−オクチン、4−オクチン、1−ノニン、2−ノニン、3−ノニン、4−ノニン、1−ドデシン、2−ドデシン、3−ドデシン、4−ドデシン、5−ドデシン、フェニルアセチレン、1−フェニル−1−プロピン、1−フェニル−2−プロピン、1−フェニル−1−ブチン、4−フェニル−1−ブチン、4−フェニル−1−ブチン、1−フェニル−1−ペンチン、5−フェニル−1−ペンチン、1−フェニル−1−ヘキシン、6−フェニル−1−ヘキシン、ジフェニルアセチレン、4−エチニルトルエン、ジシクロヘキシルアセチレン等の炭化水素化合物;2−プロピニルメチルカーボネート、2−プロピニルエチルカーボネート、2−プロピニルプロピルカーボネート、2−プロピニルブチルカーボネート、2−プロピニルフェニルカーボネート、2−プロピニルシクロヘキシルカーボネート、ジ−2−プロピニルカーボネート、1−メチル−2−プロピニルメチルカーボネート、1、1−ジメチル−2−プロピニルメチルカーボネート、2−ブチニルメチルカーボネート、3−ブチニルメチルカーボネート、2−ペンチニルメチルカーボネート、3−ペンチニルメチルカーボネート、4−ペンチニルメチルカーボネート、等のモノカーボネート;2−ブチン−1,4−ジオール ジメチルジカーボネート、2−ブチン−1,4−ジオール ジエチルジカーボネート、2−ブチン−1,4−ジオール ジプロピルジカーボネート、2−ブチン−1,4−ジオール ジブチルジカーボネート、2−ブチン−1,4−ジオール ジフェニルジカ
ーボネート、2−ブチン−1,4−ジオール ジシクロヘキシルジカーボネート等のジカーボネート;
酢酸−2−プロピニル、プロピオン酸−2−プロピニル、酪酸−2−プロピニル、安息香酸−2−プロピニル、シクロヘキシルカルボン酸−2−プロピニル、酢酸−1、1−ジメチル−2−プロピニル、プロピオン酸−1、1−ジメチル−2−プロピニル、酪酸−1、1−ジメチル−2−プロピニル、安息香酸−1、1−ジメチル−2−プロピニル、シクロヘキシルカルボン酸−1、1−ジメチル−2−プロピニル、酢酸−2−ブチニル、酢酸−3−ブチニル、酢酸−2−ペンチニル、酢酸−3−ペンチニル、酢酸−4−ペンチニル、2−プロピン酸メチル、2−プロピン酸エチル、2−プロピン酸プロピル、2−プロピン酸ビニル、2−プロピン酸−2−プロペニル、2−プロピン酸−2−ブテニル、2−プロピン酸−3−ブテニル、2−ブチン酸メチル、2−ブチン酸エチル、2−ブチン酸プロ
ピル、2−ブチン酸ビニル、2−ブチン酸−2−プロペニル、2−ブチン酸−2−ブテニル、2−ブチン酸−3−ブテニル、3−ブチン酸メチル、3−ブチン酸エチル、3−ブチン酸プロピル、3−ブチン酸ビニル、3−ブチン酸−2−プロペニル、3−ブチン酸−2−ブテニル、3−ブチン酸−3−ブテニル、2−ペンチン酸メチル、2−ペンチン酸エチル、2−ペンチン酸プロピル、2−ペンチン酸ビニル、2−ペンチン酸−2−プロペニル、2−ペンチン酸−2−ブテニル、2−ペンチン酸−3−ブテニル、3−ペンチン酸メチル、3−ペンチン酸エチル、3−ペンチン酸プロピル、3−ペンチン酸ビニル、3−ペンチン酸−2−プロペニル、3−ペンチン酸−2−ブテニル、3−ペンチン酸−3−ブテニル、4−ペンチン酸メチル、4−ペンチン酸エチル、4−ペンチン酸プロピル、4−ペンチン酸ビニル、4−ペンチン酸−2−プロペニル、4−ペンチン酸−2−ブテニル、4−ペンチン酸−3−ブテニル、2−(メタンスルホニルオキシ)プロピオン酸−2−プロピニル、2−(メタンスルホニルオキシ)プロピオン酸−3−ブチニル、メタンスルホニルオキシ酢酸−2−プロピニル、メタンスルホニルオキシ酢酸−3−ブチニル等のモノカルボン酸エステル;2−ブチン−1,4−ジオール ジアセテート、2−ブチン−1,4−ジオール ジプロピオネート、2−ブチン−1,4−ジオール ジブチレート、2−ブチン−1,4−ジオール ジベンゾエート、2−ブチン−1,4−ジオール ジシクロヘキサンカルボキシレート等のジカルボン酸エステル;
シュウ酸メチル−2−プロピニル、シュウ酸エチル−2−プロピニル、シュウ酸プロピル−2−プロピニル、シュウ酸−2−プロピニル(ビニル)、シュウ酸アリル−2−プロピニル、シュウ酸ジ−2−プロピニル、シュウ酸−2−ブチニル メチル、シュウ酸−2−ブチニル(エチル)、シュウ酸−2−ブチニル(プロピル)、シュウ酸−2−ブチニル(ビニル)、シュウ酸アリル−2−ブチニル、シュウ酸ジ−2−ブチニル、シュウ酸−3−ブチニル(メチル)、シュウ酸−3−ブチニル(エチル)、シュウ酸−3−ブチニル(プロピル)、シュウ酸−3−ブチニル(ビニル)、シュウ酸アリル−3−ブチニル、シュウ酸ジ−3−ブチニル等のシュウ酸ジエステル;メチル−2−プロピニルスルホン、エチル−2−プロピニルスルホン、プロピル−2−プロピニルスルホン、2−プロピニルビニルスルホン、2−プロペニル−2−プロピニルスルホン、ジ−2−プロピニルスルホン、3−ブテニル−2−プロピニルスルホン、3−ブテニル−2−プロピニルスルホン、1,1−ジメチル−2−プロピニルビニルスルホン、1,1−ジメチル−2−プロピニル−2−プロペニルスルホン等のスルホン化合物;
メタンスルホン酸−2−プロピニル、エタンスルホン酸−2−プロピニル、プロパンスルホン酸−2−プロピニル、p−トルエンスルホン酸−2−プロピニル、シクロヘキシルスルホン酸−2−プロピニル、ビニルスルホン酸−2−プロピニル、2−プロペニルスルホン酸−2−プロピニル、2−プロピニルスルホン酸メチル、2−プロピニルスルホン酸エチル、2−プロピニルスルホン酸ブチル、2−プロピニルスルホン酸−2−プロペニル、2−プロピニルスルホン酸−2−プロピニル、メタンスルホン酸−1、1−ジメチル−2−プロピニル、エタンスルホン酸−1、1−ジメチル−2−プロピニル、プロパンスルホン酸−1、1−ジメチル−2−プロピニル、p−トルエンスルホン酸−1、1−ジメチル−2−プロピニル、シクロヘキシルスルホン酸−1、1−ジメチル−2−プロピニル、ビニルスルホン酸−1、1−ジメチル−2−プロピニル、2−プロペニルスルホン酸−1、1−ジメチル−2−プロピニル、メタンスルホン酸−2−ペンチニル、メタンスルホン酸−3−ペンチニル、メタンスルホン酸−4−ペンチニル、ビニルスルホン酸−2−ブチニル、ビニルスルホン酸−3−ブチニル、ビニルスルホン酸−2−ペンチニル、ビニルスルホン酸−3−ペンチニル、ビニルスルホン酸−4−ペンチニル、2−プロペニルスルホン酸−2−ブチニル、2−プロペニルスルホン酸−3−ブチニル、2−プロペニルスルホン酸−2−ペンチニル、2−プロペニルスルホン酸−3−ペンチニル、2−プロペニルスルホン酸−4−ペンチニル、2−プロピニルスルホン酸−2−ブチニル、2−プロピニルスルホン酸−3−ブチニル、2−プロピニルスルホン酸−2−ペンチニル、2−プロピニ
ルスルホン酸−3−ペンチニル、2−プロピニルスルホン酸−4−ペンチニル、2−オキソエタンスルホン酸−2−プロピニル、3−オキソプロパンスルホン酸−2−プロピニル、4−オキソブタンスルホン酸−2−プロピニル、5−オキソペンタンスルホン酸−2−プロピニル、6−オキソヘキサンスルホン酸−2−プロピニル、7−オキソヘプタンスルホン酸−2−プロピニル、3−オキソプロポキシメタンスルホン酸−2−プロピニル、2−オキソプロパンスルホン酸−2−プロピニル、3−オキソブタンスルホン酸−2−プロピニル、4−オキソペンタンスルホン酸−2−プロピニル、5−オキソヘキサンスルホン酸−2−プロピニル、6−オキソヘプタンスルホン酸−2−プロピニル、7−オキソオクタンスルホン酸−2−プロピニル、2−オキソブタンスルホン酸−2−プロピニル、3−オキソペンタンスルホン酸−2−プロピニル、4−オキソヘキサンスルホン酸−2−プロピニル、5−オキソヘプタンスルホン酸−2−プロピニル、6−オキソオクタンスルホン酸−2−プロピニル、7−オキソノナンスルホン酸−2−プロピニル、2−(3−オキソブトキシ)エタンスルホン酸−2−プロピニル、メタンスルホニルメタンスルホン酸−2−プロピニル、2−(メタンスルホニル)エタンスルホン酸−2−プロピニル、3−(メタンスルホニル)プロパンスルホン酸−2−プロピニル、4−(メタンスルホニル)ブタンスルホン酸−2−プロピニル、5−(メタンスルホニル)ペンタンスルホン酸−2−プロピニル、6−(メタンスルホニル)ヘキサンスルホン酸−2−プロピニル、エタンスルホニルメタンスルホン酸−2−プロピニル、2−(エタンスルホニル)エタンスルホン酸−2−プロピニル、3−(エタンスルホニル)プロパンスルホン酸−2−プロピニル、4−(エタンスルホニル)ブタンスルホン酸−2−プロピニル、5−(エタンスルホニル)ペンタンスルホン酸−2−プロピニル、6−(エタンスルホニル)ヘキサンスルホン酸−2−プロピニル、トリフルオロメタンスルホニルメタンスルホン酸−2−プロピニル、2−(トリフルオロメタンスルホニル)エタンスルホン酸−2−プロピニル、3−(トリフルオロメタンスルホニル)プロパンスルホン酸−2−プロピニル、4−(トリフルオロメタンスルホニル)ブタンスルホン酸−2−プロピニル、5−(トリフルオロメタンスルホニル)ペンタンスルホン酸−2−プロピニル、6−(トリフルオロメタンスルホニル)ヘキサンスルホン酸−2−プロピニル、2−(2−(メタンスルホニル)エトキシ)エタンスルホン酸−2−プロピニル、ベンゼンスルホニルメタンスルホン酸−2−プロピニル、2−(ベンゼンスルホニル)エタンスルホン酸−2−プロピニル、3−(ベンゼンスルホニル)プロパンスルホン酸−2−プロピニル、4−(ベンゼンスルホニル)ブタンスルホン酸−2−プロピニル、5−(ベンゼンスルホニル)ペンタンスルホン酸−2−プロピニル、6−(ベンゼンスルホニル)ヘキサンスルホン酸−2−プロピニル、4−メチルベンゼンスルホニルメタンスルホン酸−2−プロピニル、2−(4−メチルベンゼンスルホニル)エタンスルホン酸−2−プロピニル、3−(4−メチルベンゼンスルホニル)プロパンスルホン酸−2−プロピニル、4−(4−メチルベンゼンスルホニル)ブタンスルホン酸−2−プロピニル、5−(4−メチルベンゼンスルホニル)ペンタンスルホン酸−2−プロピニル、6−(4−メチルベンゼンスルホニル)ヘキサンスルホン酸−2−プロピニル、4−フルオロベンゼンスルホニルメタンスルホン酸−2−プロピニル、2−(4−フルオロベンゼンスルホニル)エタンスルホン酸−2−プロピニル、3−(4−フルオロベンゼンスルホニル)プロパンスルホン酸−2−プロピニル、4−(4−フルオロベンゼンスルホニル)ブタンスルホン酸−2−プロピニル、5−(4−フルオロベンゼンスルホニル)ペンタンスルホン酸−2−プロピニル、6−(4−フルオロベンゼンスルホニル)ヘキサンスルホン酸−2−プロピニル、2−(2−ベンゼンスルホニルエトキシ)エタンスルホン酸−2−プロピニル、メトキシスルホニルメタンスルホン酸−2−プロピニル、2−(メトキシスルホニル)エタンスルホン酸−2−プロピニル、3−(メトキシスルホニル)プロパンスルホン酸−2−プロピニル、4−(メトキシスルホニル)ブタンスルホン酸−2−プロピニル、5−(メトキシスルホニル)ペンタンスルホン酸−2−プロピニル、6−(メトキシスルホニル)ヘキサンスルホン酸−2−プロピニル、エトキシスルホニルメタンスルホン酸−2−プロピニル、2−(エトキシスルホニル)エタンスルホン酸−2−プロピニル、3−(エトキシスルホニル)プロパンスルホン酸−2−プロピニル、4
−(エトキシスルホニル)ブタンスルホン酸−2−プロピニル、5−(エトキシスルホニル)ペンタンスルホン酸−2−プロピニル、6−(エトキシスルホニル)ヘキサンスルホン酸−2−プロピニル、2−(2−(メトキシスルホニル)エトキシ)エタンスルホン酸−2−プロピニル、2−プロペニルオキシスルホニルメタンスルホン酸−2−プロピニル、2−(2−プロペニルオキシスルホニル)エタンスルホン酸−2−プロピニル、3−(2−プロペニルオキシスルホニル)プロパンスルホン酸−2−プロピニル、4−(2−プロペニルオキシスルホニル)ブタンスルホン酸−2’−プロピニル、5−(2−プロペニルオキシスルホニル)ペンタンスルホン酸−2−プロピニル、6−(2−プロペニルオキシスルホニル)ヘキサンスルホン酸−2−プロピニル、2−(2−(2−プロペニルオキシスルホニル)エトキシ)エタンスルホン酸−2−プロピニル、ジメトキシホスホリルメタンスルホン酸−2−プロピニル、2−(ジメトキシホスホリル)エタンスルホン酸−2−プロピニル、3−(ジメトキシホスホリルプロパン)スルホン酸−2−プロピニル、4−(ジメトキシホスホリル)ブタンスルホン酸−2−プロピニル、5−(ジメトキシホスホリル)ペンタンスルホン酸−2−プロピニル、6−(ジメトキシホスホリル)ヘキサンスルホン酸−2−プロピニル、ジエトキシホスホリルメタンスルホン酸−2−プロピニル、2−(ジエトキシホスホリル)エタンスルホン酸−2−プロピニル、3−(ジエトキシホスホリル)プロパンスルホン酸−2−プロピニル、4−(ジエトキシホスホリル)ブタンスルホン酸−2−プロピニル、5−(ジエトキシホスホリル)ペンタンスルホン酸−2−プロピニル、6−(ジエトキシホスホリル)ヘキサンスルホン酸−2−プロピニル、2−(2−(ジメトキシホスホリル)エトキシ)エタンスルホン酸−2−プロピニル、メトキシ(メチル)ホスホリルメタンスルホン酸−2−プロピニル、2−(メトキシ(メチル)ホスホリル)エタンスルホン酸−2−プロピニル、3−(メトキシ(メチル)ホスホリル)プロパンスルホン酸−2−プロピニル、4−(メトキシ(メチル)ホスホリル)ブタンスルホン酸−2−プロピニル、5−(メトキシ(メチル)ホスホリル)ペンタンスルホン酸−2−プロピニル、6−(メトキシ(メチル)ホスホリル)ヘキサンスルホン酸−2−プロピニル、2−(2−(メトキシ(メチル)ホスホリル)エトキシ)エタンスルホン酸−2−プロピニル、エトキシ(メチル)ホスホリルメタンスルホン酸−2−プロピニル、2−(エトキシ(メチル)ホスホリル)エタンスルホン酸−2−プロピニル、3−(エトキシ(メチル)ホスホリル)プロパンスルホン酸−2−プロピニル、エチル(メトキシ)ホスホリルメタンスルホン酸−2−プロピニル、2−(エチル(メトキシ)ホスホリル)エタンスルホン酸−2−プロピニル、3−(エチル(メトキシ)ホスホリル)プロパンスルホン酸−2−プロピニル、ジメチルホスホリルメタンスルホン酸−2−プロピニル、2−(ジメチルホスホリル)エタンスルホン酸−2−プロピニル、3−(ジメチルホスホリル)プロパンスルホン酸−2−プロピニル、4−(ジメチルホスホリル)ブタンスルホン酸−2−プロピニル、5−(ジメチルホスホリル)ペンタンスルホン酸−2−プロピニル、6−(ジメチルホスホリル)ヘキサンスルホン酸−2−プロピニル、2−(2−(ジメチルホスホリル)エトキシ)エタンスルホン酸−2−プロピニル、メトキシメタンスルホン酸−2−プロピニル、2−メトキシエタンスルホン酸−2−プロピニル、3−メトキシプロパンスルホン酸−2−プロピニル、4−メトキシブタンスルホン酸−2−プロピニル、5−メトキシペンタンスルホン酸−2−プロピニル、6−メトキシヘキサンスルホン酸−2−プロピニル、エトキシメタンスルホン酸−2−プロピニル、2−エトキシエタンスルホン酸−2−プロピニル、3−エトキシプロパンスルホン酸−2−プロピニル、4−エトキシブタンスルホン酸−2−プロピニル、5−エトキシペンタンスルホン酸−2−プロピニル、6−エトキシヘキサンスルホン酸−2−プロピニル、2−(2−メトキシエトキシ)エタンスルホン酸−2−プロピニル、ホルミルオキシメタンスルホン酸−2−プロピニル、2−(ホルミルオキシ)エタンスルホン酸−2−プロピニル、3−(ホルミルオキシ)プロパンスルホン酸−2−プロピニル、4−(ホルミルオキシ)ブタンスルホン酸−2−プロピニル、5−(ホルミルオキシ)ペンタンスルホン酸−2−プロピニル、6−(ホルミルオキシ)ヘキサンスルホン酸−2−プロピニル、2−(2−(ホルミルオキシ)エトキシ)エタンスルホン酸−2−プロピニル、アセチルオキシメタンスルホン酸−2
−プロピニル、2−(アセチルオキシ)エタンスルホン酸−2−プロピニル、3−(アセチルオキシ)プロパンスルホン酸−2−プロピニル、4−(アセチルオキシ)ブタンスルホン酸−2−プロピニル、5−(アセチルオキシ)ペンタンスルホン酸−2−プロピニル、6−(アセチルオキシ)ヘキサンスルホン酸−2−プロピニル、プロピオニルオキシメタンスルホン酸−2−プロピニル、2−(プロピオニルオキシ)エタンスルホン酸−2−プロピニル、3−(プロピオニルオキシ)プロパンスルホン酸−2−プロピニル、4−(プロピオニルオキシ)ブタンスルホン酸−2−プロピニル、5−(プロピオニルオキシ)ペンタンスルホン酸−2−プロピニル、6−(プロピオニルオキシ)ヘキサンスルホン酸−2−プロピニル、2−(2−(アセチルオキシ)エトキシ)エタンスルホン酸−2−プロピニル、メタンスルホニルオキシメタンスルホン酸−2−プロピニル、2−(メタンスル
ホニルオキシ)エタンスルホン酸−2−プロピニル、3−(メタンスルホニルオキシ)プロパンスルホン酸−2−プロピニル、4−(メタンスルホニルオキシ)ブタンスルホン酸−2−プロピニル、5−(メタンスルホニルオキシ)ペンタンスルホン酸−2−プロピニル、6−(メタンスルホニルオキシ)ヘキサンスルホン酸−2−プロピニル、エタンスルホニルオキシメタンスルホン酸−2−プロピニル、2−(エタンスルホニルオキシ)エタンスルホン酸−2−プロピニル、3−(エタンスルホニルオキシ)プロパンスルホン酸−2−プロピニル、4−(エタンスルホニルオキシ)ブタンスルホン酸−2−プロピニル、5−(エタンスルホニルオキシ)ペンタンスルホン酸−2−プロピニル、5−(エタンスルホニルオキシ)ヘキサンスルホン酸−2−プロピニル、トリフルオロメタンスルホニルオキシメタンスルホン酸−2−プロピニル、2−(トリフルオロメタンスルホニルオキシ)エタンスルホン酸−2−プロピニル、3−(トリフルオロメタンスルホニルオキシ)プロパンスルホン酸−2−プロピニル、4−(トリフルオロメタンスルホニルオキシ)ブタンスルホン酸−2−プロピニル、5−(トリフルオロメタンスルホニルオキシ)ペンタンスルホン酸−2−プロピニル、6−(トリフルオロメタンスルホニルオキシ)ヘキサンスルホン酸−2−プロピニル、2−(2−(メタンスルホニルオキシ)エトキシ)エタンスルホン酸−2−プロピニル、ジメトキシホスホリルオキシメタンスルホン酸−2−プロピニル、2−(ジメトキシホスホリルオキシ)エタンスルホン酸−2−プロピニル、3−(ジメトキシホスホリルオキシ)プロパンスルホン酸−2−プロピニル、4−(ジメトキシホスホリルオキシ)ブタンスルホン酸−2−プロピニル、5−(ジメトキシホスホリルオキシ)ペンタンスルホン酸−2−プロピニル、6−(ジメトキシホスホリルオキシ)ヘキサンスルホン酸−2−プロピニル、ジエトキシホスホリルオキシメタンスルホン酸−2−プロピニル、2−(ジエトキシホスホリルオキシ)エタンスルホン酸−2−プロピニル、3−(ジエトキシホスホリルオキシ)プロパンスルホン酸−2−プロピニル、4−(ジエトキシホスホリルオキシ)ブタンスルホン酸−2−プロピニル、5−(ジエトキシホスホリルオキシ)ペンタンスルホン酸−2−プロピニル、6−(ジエトキシホスホリルオキシ)ヘキサンスルホン酸−2−プロピニル、2−(2−(ジメトキシホスホリルオキシ)エトキシ)エタンスルホン酸−2−プロピニル、メトキシ(メチル)ホスホリルオキシメタンスルホン酸−2−プロピニル、2−(メトキシ(メチル)ホスホリルオキシ)エタンスルホン酸−2−プロピニル、3−(メトキシ(メチル)ホスホリルオキシ)プロパンスルホン酸−2−プロピニル、4−(メトキシ(メチル)ホスホリルオキシ)ブタンスルホン酸−2−プロピニル、5−(メトキシ(メチル)ホスホリルオキシ)ペンタンスルホン酸−2−プロピニル、6−(メトキシ(メチル)ホスホリルオキシ)ヘキサンスルホン酸−2−プロピニル、2−(2−(メトキシ(メチル)ホスホリルオキシ)エトキシ)エタンスルホン酸−2−プロピニル、エトキシ(メチル)ホスホリルオキシメタンスルホン酸−2−プロピニル、2−(エトキシ(メチル)ホスホリルオキシ)エタンスルホン酸−2−プロピニル、3−(エトキシ(メチル)ホスホリルオキシ)プロパンスルホン酸−2−プロピニル、エチル(メトキシ)ホスホリルオキシメタンスルホン酸−2−プロピニル、2−(エチル(メトキシ)ホスホリルオキシ)エタンスルホン酸−2−プロピニル、3−(エチル(メトキシ)ホスホリルオキシ)プロパンスルホン酸−2−プロピニル、ジメチル
ホスホリルオキシメタンスルホン酸−2−プロピニル、2−(ジメチルホスホリルオキシ)エタンスルホン酸−2−プロピニル、3−(ジメチルホスホリルオキシ)プロパンスルホン酸−2−プロピニル、4−(ジメチルホスホリルオキシ)ブタンスルホン酸−2−プロピニル、5−(ジメチルホスホリルオキシ)ペンタンスルホン酸−2−プロピニル、6−(ジメチルホスホリルオキシ)ヘキサンスルホン酸−2−プロピニル、2−(2−(ジメチルホスホリルオキシ)エトキシ)エタンスルホン酸−2−プロピニル等のモノスルホン酸エステル;
2−ブチン−1,4−ジオール ジメタンスルホネート、2−ブチン−1,4−ジオー
ル ジプロパンスルホネート、2−ブチン−1,4−ジオール ジ−p−トルエンスルホ
ネート、2−ブチン−1,4−ジオール ジシクロヘキサンスルホネート、2−ブチン−
1,4−ジオール ジビニルスルホネート、2−ブチン−1,4−ジオール ジアリルスルホネート、2−ブチン−1,4−ジオール ジプロピニルスルホネート、メタン−1,1
−ジスルホン酸ジ(2−プロピニル)、エタン−1,2−ジスルホン酸ジ(2−プロピニル)、プロパン−1,3−ジスルホン酸ジ(2−プロピニル)、ブタン−1,4−ジスルホン酸ジ(2−プロピニル)、ペンタン−1,5−ジスルホン酸ジ(2−プロピニル)、ヘキサン−1,6−ジスルホン酸ジ(2−プロピニル)、2,2'−オキシジエタンスル
ホン酸ジ(2−プロピニル)等のジスルホン酸エステル;メチル−2−プロピニル硫酸、エチル−2−プロピニル硫酸、プロピル−2−プロピニル硫酸、ビニル−2−プロピニル硫酸、2−プロペニル2−プロピニル硫酸、ジ−2−プロピニル硫酸、2−プロペニル1,1−ジメチル−2−プロピニル硫酸、3−ブテニル2−プロピニル硫酸及び3−ブテニル1,1−ジメチル−2−プロピニル硫酸等の硫酸エステル;メチル(2−プロピニル)(ビニル)ホスフィンオキシド、ジビニル(2−プロピニル)ホスフィンオキシド、ジ(2−プロピニル)(ビニル)ホスフィンオキシド、ジ(2−プロペニル)2(−プロピニル)ホスフィンオキシド、ジ(2−プロピニル)(2−プロペニル)ホスフィンオキシド、ジ(3−ブテニル)(2−プロピニル)ホスフィンオキシド、及びジ(2−プロピニル)(3−ブテニル)ホスフィンオキシド等のホスフィンオキシド;
メチル(2−プロペニル)ホスフィン酸−2−プロピニル、2−ブテニル(メチル)ホスフィン酸−2−プロピニル、ジ(2−プロペニル)ホスフィン酸−2−プロピニル、ジ(3−ブテニル)ホスフィン酸−2−プロピニル、メチル(2−プロペニル)ホスフィン酸−1,1−ジメチル−2−プロピニル、2−ブテニル(メチル)ホスフィン酸−1,1−ジメチル−2−プロピニル、ジ(2−プロペニル)ホスフィン酸−1,1−ジメチル−2−プロピニル、及びジ(3−ブテニル)ホスフィン酸−1,1−ジメチル−2−プロピニル、メチル(2−プロピニル)ホスフィン酸−2−プロペニル、メチル(2−プロピニル)ホスフィン酸−3−ブテニル、ジ(2−プロピニル)ホスフィン酸−2−プロペニル、ジ(2−プロピニル)ホスフィン酸−3−ブテニル、2−プロピニル(2−プロペニル)ホスフィン酸−2−プロペニル、及び2−プロピニル(2−プロペニル)ホスフィン酸−3−ブテニル等のホスフィン酸エステル;2−プロペニルホスホン酸メチル−2−プロピニル、2−ブテニルホスホン酸メチル−2−プロピニル、2−プロペニルホスホン酸−2−プロピニル(−2−プロペニル)、3−ブテニルホスホン酸−3−ブテニル(−2−プロピニル)、2−プロペニルホスホン酸−1,1−ジメチル−2−プロピニル(メチル)、2−ブテニルホスホン酸−1,1−ジメチル−2−プロピニル(メチル)、2−プロペニルホスホン酸−1,1−ジメチル−2−プロピニル(−2−プロペニル)、及び3−ブテニルホスホン酸−3−ブテニル(−1,1−ジメチル−2−プロピニル)、メチルホスホン酸−2−プロピニル(−2−プロペニル)、メチルホスホン酸−3−ブテニル(−2−プロピニル)、メチルホスホン酸−1,1−ジメチル−2−プロピニル(−2−プロペニル)、メチルホスホン酸−3−ブテニル(−1,1−ジメチル−2−プロピニル)、エチルホスホン酸−2−プロピニル(−2−プロペニル)、エチルホスホン酸−3−ブテニル(−2−プロピニル)、エチルホスホン酸−1,1−ジメチル−2−プロピニル(−
2−プロペニル)、及びエチルホスホン酸−3−ブテニル(−1,1−ジメチル−2−プロピニル)等のホスホン酸エステル;リン酸メチル(−2−プロペニル)(−2−プロピニル)、リン酸エチル(−2−プロペニル)(−2−プロピニル)、リン酸−2−ブテニル(メチル)(−2−プロピニル)、リン酸−2−ブテニル(エチル)(−2−プロピニル)、リン酸−1,1−ジメチル−2−プロピニル(メチル)(−2−プロペニル)、リン酸−1,1−ジメチル−2−プロピニル(エチル)(−2−プロペニル)、リン酸−2−ブテニル(−1,1−ジメチル−2−プロピニル)(メチル)、及びリン酸−2−ブテニル(エチル)(−1,1−ジメチル−2−プロピニル)等のリン酸エステル。
これらのうち、アルキニルオキシ基を有する化合物は、少なくとも1種のハロゲン原子を有する化合物と反応することで、より安定に負極被膜を形成するため好ましい。
さらに、2−プロピニルメチルカーボネート、ジ−2−プロピニルカーボネート、2−ブチン−1,4−ジオール ジメチルジカーボネート、酢酸−2−プロピニル、2−(メタンスルホニルオキシ)プロピオン酸−2−プロピニル、2−ブチン−1,4−ジオール
ジアセテート、シュウ酸メチル−2−プロピニル、シュウ酸ジ−2−プロピニル、メタンスルホン酸−2−プロピニル、ビニルスルホン酸−2−プロピニル、2−プロペニルスルホン酸−2−プロピニル、2−ブチン−1,4−メタンジスルホネート、2−ブチン−1,4−ビニルジスルホネート、2−ブチン−1,4−アリルジスルホネート、等の化合物がより好ましく、また、メタンスルホン酸−2−プロピニル、ビニルスルホン酸−2−プロピニル、2−プロペニルスルホン酸−2−プロピニル等の化合物が保存特性向上の点から特に好ましい。
式(1)で示される化合物は、本発明の非水電解液中に、1種単独で含まれていても、2種以上が含まれていてもよい。式(1)で示される化合物の非水系電解液中における含有量(2種以上の場合には合計量)は、0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、また、通常5質量%以下、好ましくは4質量%以下、より好ましくは3質量%以下の範囲である。この濃度が低過ぎると、皮膜の化学的及び物理的安定性が不十分となる場合があり、濃度が高過ぎると、皮膜の絶縁性が高まり、抵抗増加により放電容量が低下する場合がある。式(1)で示される化合物の含有量が前記範囲であると、少なくとも1種のハロゲン原子を有する化合物との相乗効果が得られ易く、充電時に起こる非水溶媒の還元分解反応をより低く抑えることができ、高温保存特性やサイクル特性などの電池寿命の向上、電池の充放電効率の向上、および低温特性の改善を図ることができる。
1−2.塩素原子を有する化合物
本発明に用いる塩素原子を有する化合物は、塩素原子を有している化合物であれば特にその種類は限定されず、例えば、アルキルクロライド、アルケニルクロライド、アルキニルクロライド、アリールクロライド、カルボン酸クロライド、アルキル炭酸クロライド、アルケニル炭酸クロライド、アルキニル炭酸クロライド、アリール炭酸クロライド、アルキル硫酸クロライド、アルケニル硫酸クロライド、アルキニル硫酸クロライド、アリール硫酸クロライド、アルキルスルホン酸クロライド、アルケニルスルホン酸クロライド、アルキニルスルホン酸クロライド、アリールスルホン酸クロライド、アルキル亜硫酸クロライド、アルケニル亜硫酸クロライド、アルキニル亜硫酸クロライド、アリール亜硫酸クロライド、アルキルスルフィン酸クロライド、アルケニルスルフィン酸クロライド、アルキニルスルフィン酸クロライド、アリールスルフィン酸クロライド、ホスホリルクロライド等の化合物が挙げられる。この理由として、塩素原子は適度な脱離能を有しており、式(1)で示される化合物と反応して複合皮膜を形成することによる電池特性向上効果を最大限引き出すことができるためである。
その中でも、好ましくは以下の式(2)で示される化合物である。
Figure 2013206708
式(2)中、R、Rは各々独立に、水素原子、ハロゲン原子、または置換基を有してもよい有機基であり、それぞれ同一であっても異なっていてもよい。
ここで、有機基とは、炭素原子、水素原子、窒素原子、酸素原子およびハロゲン原子からなる群から選ばれる原子で構成された官能基のことを表す。具体例としては、アルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、シアノ基、イソシアナト基、エーテル基、カーボネート基、カルボニル基、スルホニル基、ホスホリル基などが挙げられる。
また、置換基の具体例としては、ハロゲン原子で置換されていてもよいアルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、シアノ基、イソシアナト基、エーテル基、カーボネート基、カルボニル基、カルボキシル基、スルホニル基およびホスホリル基などが挙げられる。
前記式(2)中、Rが置換基を有していてもよいメチレン基であることが好ましい。メチレン基を有することで、塩素原子が脱離した後に生成するメチレン部位のラジカルが、隣接する三重結合によって共鳴安定化効果を受けるため、ラジカルの寿命が向上する。そのため、より式(1)で示される化合物と反応し、効率よく電極上に複合皮膜を形成しやすくなる。
前記式(2)で示される化合物の分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは55以上、より好ましくは60以上、さらに好ましくは70以上であり、350以下、好ましくは200以下、さらに好ましくは150以下である。この範囲であれば、非水系電解液に対する(2)で示される化合物の溶解性を確保しやすく、本発明の効果が発現されやすい。
式(2)で示される化合物の具体例としては、例えば、以下の化合物が挙げられる。
3−クロロ−1−プロピン、3−クロロ−1−ブチン、3−クロロ−3−メチル−1−ブ
チン、1−クロロ−2−ブチン、1−クロロ−1−メチル−2−ブチン、1−クロロ−1,1−ジメチル−2−ブチン、1,4−ジクロロ−2−ブチン、1,4−ジクロロ−1,4−ジメチル−2−ブチン、1,4−ジクロロ−1,1,4,4−テトラメチル−2−ブチン、4−クロロ−2−ブチン−1−オール、1,6−ジクロロ−2,4−ヘキサジイン、1,6−ジクロロ−1,6−ジメチル−2,4−ヘキサジイン、1,6−ジクロロ−1,1,6,6−テトラメチル−2,4−ヘキサジイン、1−クロロ−6−ヒドロキシ−2,4−ヘキサジイン。
中でも、3−クロロ−1−プロピン、3−クロロ−1−ブチン、3−クロロ−3−メチ
ル−1−ブチン、
等の三重結合末端にプロトンを持つ化合物は、式(1)で示される化合物と作用しあうことで、より緻密な皮膜を形成することができるため、より好ましい。
少なくとも1種のハロゲン原子を有する化合物は、本発明の非水電解液中に、1種単独で含まれていても、2種以上が含まれていてもよい。少なくとも1種のハロゲン原子を有する化合物の非水系電解液中における含有量(2種以上の場合には合計量)は、0.2質量ppm以上、好ましくは0.5質量ppm以上、より好ましくは0.7質量ppm以上、また、通常500質量ppm未満、好ましくは250質量ppm以下、より好ましくは100質量ppm以下、さらに好ましくは50質量ppm以下、よりさらに好ましくは10pp質量ppm以下、特に好ましくは5質量ppm以下、最も好ましくは2質量ppm
以下の範囲である。
また、少なくとも1種のハロゲン原子を有する化合物の式(1)で示される化合物中における含有量(2種以上の場合には合計量)は、20質量ppm以上、好ましくは50質量ppm以上、より好ましくは100質量ppm以上、また、通常5質量%以下、好ましくは1質量%以下、より好ましくは0.5質量%以下、さらに好ましくは0.1質量%以下の範囲である。この濃度が低過ぎると、式(1)で示される化合物との反応が少なく効果が不十分となる場合があり、濃度が高過ぎると、生成する塩化リチウムが増加することで電極界面抵抗が上昇し、抵抗増加により放電容量が低下する場合がある。
少なくとも1種のハロゲン原子を有する化合物が前記範囲であると、式(1)で示される化合物との相乗効果が得られ易く、充電時に起こる非水溶媒の還元分解反応をより低く抑えることができ、高温保存特性やサイクル特性などの電池寿命の向上、電池の充放電効率の向上、および低温特性の改善を図ることができる。
1−3.フッ素原子を有する環状カーボネート、炭素−炭素不飽和結合を有する環状カーボネート、モノフルオロリン酸塩、ジフルオロリン酸塩、イソシアネート化合物、環状スルホン酸エステルおよびニトリル化合物
本発明に係る非水系電解液は、更に、フッ素原子を有する環状カーボネート、炭素−炭素不飽和結合を有する環状カーボネート、モノフルオロリン酸塩、ジフルオロリン酸塩、イソシアネート化合物、環状スルホン酸エステルおよびニトリル化合物からなる群から選ばれる少なくとも一種の化合物を含有するものが好ましい。これらを併用することで、それぞれの添加剤が引き起こす副反応を効率よく抑制できるためである。
さらに、フッ素原子を有する環状カーボネート、炭素−炭素不飽和結合を有する環状カーボネートは、式(1)で示される化合物と負極の表面に安定な保護被膜を形成し、負極と電解液成分との副反応を抑制し、高温保存特性ならびにサイクル特性を向上することができるため、より好ましい。
1−3−1.フッ素原子を有する環状カーボネート
フッ素原子を有する環状カーボネート(以下、「フッ素化環状カーボネート」と記載する場合がある)としては、フッ素原子を有する環状カーボネートであれば、特に制限はされない。
フッ素化環状カーボネートとしては、炭素原子数2〜6のアルキレン基を有する環状カーボネートのフッ素化物、及びその誘導体が挙げられ、例えばエチレンカーボネートのフッ素化物、及びその誘導体が挙げられる。エチレンカーボネートのフッ素化物の誘導体としては、例えば、アルキル基(例えば、炭素原子数1〜4個のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられる。中でもフッ素原子を1〜8個有するエチレンカーボネート、及びその誘導体が好ましい。
具体的には、
モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−フルオロ−4−メチルエチレンカーボネート、4,5−ジフルオロ−4−メチルエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネート、4,4−ジフルオロ−5−メチルエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4−(ジフルオロメチル)−エチレンカーボネート、4−(トリフルオロメチル)−エチレンカーボネート、4−(フルオロメチル)−4−フルオロエチレンカーボネート、4−(フルオロメチル)−5−フルオロエチレンカーボネート、4−フルオロ−4,5−ジメチルエチレンカーボネート、4,5−ジフルオロ−4,5−ジメチルエチレンカーボネート、4,4−ジフルオロ−5,5−ジメチルエチレンカーボネート
等が挙げられる。
中でも、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート及び4,5−ジフルオロエチレンカーボネートよりなる群から選ばれる少なくとも1種が、高イオン伝導性を与え、かつ好適に界面保護被膜を形成する点でより好ましい。
フッ素化環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
フッ素化環状カーボネートの含有量は、非水系電解液に対して、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、さらに好ましくは1質量%以上であり、また、好ましくは10質量%以下であり、より好ましくは5質量%以下であり、さらに好ましくは3質量%以下である。また、フッ素化環状カーボネートを非水溶媒として用いる場合の配合量は、非水溶媒100体積%中、好ましくは1体積%以上、より好ましくは5体積%以上、さらに好ましくは10体積%以上であり、また、好ましくは50体積%以下、より好ましくは35体積%以下、さらに好ましくは25体積%以下である。
上記範囲内であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、高温保存特性の低下や、ガス発生量の増加により、放電容量維持率が低下することを回避しやすい。
本発明の非水系電解液において、上記式(1)で示される化合物とフッ素原子を有する環状カーボネートは、負極上に複合的な被膜を形成する。このような被膜を良好に形成する観点から、上記式(1)で示される化合物とフッ素化環状カーボネートの配合質量比は、0.4:100〜100:100であることが好ましく、1:100〜50:100であることがより好ましく、1.4:100〜35:100であることがさらに好ましい。この範囲で配合した場合、各添加剤の正負極での副反応を効率よく抑制でき、電池特性が向上する。
1−3−2.炭素−炭素不飽和結合を有する環状カーボネート
炭素−炭素不飽和結合を有する環状カーボネート(以下、「不飽和環状カーボネート」と記載する場合がある)としては、炭素−炭素二重結合または炭素−炭素三重結合を有する環状カーボネートであれば、特に制限はなく、任意の不飽和カーボネートを用いることができる。なお、芳香環を有する環状カーボネートも、不飽和環状カーボネートに包含されることとする。
不飽和環状カーボネートとしては、
ビニレンカーボネート類、芳香環または炭素−炭素二重結合または炭素−炭素三重結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類、カテコールカーボネート類
等が挙げられる。
ビニレンカーボネート類としては、
ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ジビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート
等が挙げられる。
芳香環または炭素−炭素二重結合または炭素−炭素三重結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、
ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート、4−メチル−5−エチニルエチレンカーボネート、4−ビニル−5−エチニルエチレンカーボネート、4−アリル−5−エチニルエチレンカーボネート、フェニルエチレンカーボネート、4,5−ジフェニルエチレンカーボネート、4−フェニル−5−ビニルエチレンカーボネート、4−アリル−5−フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート
等が挙げられる。
中でも、特に式(1)で示される化合物と併用するのに好ましい不飽和環状カーボネートとしては、
ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート、4−メチル−5−エチニルエチレンカーボネート、4−ビニル−5−エチニルエチレンカーボネート
が挙げられる。また、ビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネートはさらに安定な界面保護被膜を形成するので、特に好ましい。
不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、80以上、250以下である。この範囲であれば、非水系電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。不飽和環状カーボネートの分子量は、より好ましくは85以上であり、また、より好ましくは150以下である。
不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。不飽和環状カーボネートの配合量は、非水系電解液100質量%中、好ましくは、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。この範囲内であれば、非水系電解液電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
1−3−3.モノフルオロリン酸塩およびジフルオロリン酸塩
モノフルオロリン酸塩およびジフルオロリン酸塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、及び、NR11121314(式中、R11〜R14は、各々独立に、水素原子又は炭素数1〜12の有機基を表わす。)で表されるアンモニウム等が例示として挙げられる。
上記アンモニウムのR11〜R14で表わされる炭素数1〜12の有機基としては特に限定はないが、例えば、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR11〜R14として、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、又は窒素原子含有複素環基等が好ましい。
モノフルオロリン酸塩およびジフルオロリン酸塩の具体例としては、
モノフルオロリン酸リチウム、モノフルオロリン酸ナトリウム、モノフルオロリン酸カリウム、ジフルオロリン酸リチウム、ジフルオロリン酸ナトリウム、ジフルオロリン酸カリウム等が挙げられ、モノフルオロリン酸リチウム、ジフルオロリン酸リチウムが好ましく、ジフルオロリン酸リチウムがより好ましい。
モノフルオロリン酸塩およびジフルオロリン酸塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、モノフルオロリン酸塩およびジフルオロリン酸塩の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。
モノフルオロリン酸塩およびジフルオロリン酸塩の配合量は、非水系電解液100質量%中、好ましくは、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。
この範囲内であれば、非水系電解液電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
1−3−4.イソシアネート化合物
イソシアネート化合物としては、分子内にイソシアネート基を有している化合物であれば特にその種類は限定されない。
イソシアネート化合物の具体例としては、例えば、
メチルイソシアネート、エチルイソシアネート、プロピルイソシアネート、イソプロピルイソシアネート、ブチルイソシアネート、ターシャルブチルイソシアネート、ペンチルイソシアネートヘキシルイソシアネート、シクロヘキシルイソシアネート、ビニルイソシアネート、アリルイソシアネート、エチニルイソシアネート、プロピニルイソシアネート、フェニルイソシアネート、フロロフェニルイソシアネートなどのモノイソシアネート化合物;
モノメチレンジイソシアネート、ジメチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート、1,3−ジイソシアナトプロパン、1,4−ジイソシアナト−2−ブテン、1,4−ジイソシアナト−2−フルオロブタン、1,4−ジイソシアナト−2,3−ジフルオロブタン、1,5−ジイソシアナト−2−ペンテン、1,5−ジイソシアナト−2−メチルペンタン、1,6−ジイソシアナト−2−ヘキセン、1,6−ジイソシアナト−3−ヘキセン、1,6−ジイソシアナト−3−フルオロヘキサン、1,6−ジイソシアナト−3,4−ジフルオロヘキサン、トルエンジイソシアネート、キシレンジイソシアネート、トリレンジイソシアネート、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソ
シアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、ジシクロヘキシルメタン−1,1’−ジイソシアネート、ジシクロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−
4,4’−ジイソシアネート、ビシクロ[2.2.1]ヘプタン−2,5−ジイルビス(
メチルイソシアネート)、ビシクロ[2.2.1]ヘプタン−2,6−ジイルビス(メチルイソシアネート)、ジイソシアン酸イソホロン、カルボニルジイソシアネート、1,4−ジイソシアナトブタン−1,4−ジオン、1,5−ジイソシアナトペンタン−1,5−ジオン、2,2,4−トリメチルヘキサメチレンジイソシアナート、2,4,4−トリメチルヘキサメチレンジイソシアナートなどのジイソシアネート化合物;
等が挙げられる。
これらのうち、モノメチレンジイソシアネート、ジメチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート、1,3−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−4,4’−ジイソシアネート、ビシクロ[2.2.1]
ヘプタン−2,5−ジイルビス(メチルイソシアネート)、ビシクロ[2.2.1]ヘプタン−2,6−ジイルビス(メチルイソシアネート)、ジイソシアン酸イソホロン、2,2,4−トリメチルヘキサメチレンジイソシアナート、2,4,4−トリメチルヘキサメチレンジイソシアナート等のジイソシアネート化合物が保存特性向上の点から好ましい。
また、本発明に用いるイソシアネート化合物は、分子内に少なくとも2つのイソシアネート基を有する化合物から誘導される三量体化合物、もしくはそれに多価アルコールを付加した脂肪族ポリイソシアネートであってもよい。例えば、下記一般式(3−1)〜(3−4)の基本構造で示されるビウレット、イソシアヌレート、アダクト、及び二官能のタイプの変性ポリイソシアネート等が例示できる(下記一般式(3−1)〜(3−4)中、R及びR’はそれぞれ独立して任意の炭化水素基である)。
Figure 2013206708
本発明で用いる分子内に少なくとも2つのイソシアネート基を有する化合物は、ブロック剤でブロックして保存安定性を高めた、所謂ブロックイソシアネートも含まれる。ブロック剤には、アルコール類、フェノール類、有機アミン類、オキシム類、ラクタム類を挙げることができ、具体的には、n−ブタノール、フェノール、トリブチルアミン、ジエチルエタノールアミン、メチルエチルケトキシム、ε−カプロラクタム等を挙げることができる。
分子内に少なくとも2つのイソシアネート基を有する化合物に基づく反応を促進し、より高い効果を得る目的で、ジブチルスズジラウレート等のような金属触媒や、1,8-ジ
アザビシクロ[5.4.0]ウンデセン-7のようなアミン系触媒等を併用することも好
ましい。
さらに、イソシアネート基を有する化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
本発明の非水系電解液全体に対するイソシアネート基を有する化合物の配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下の濃度で含有させる。
上記範囲を満たした場合は、出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。
1−3−5.環状スルホン酸エステル
環状スルホン酸エステルとしては、環状構造を有するスルホン酸エステルであれば特にその種類は限定されない。
環状スルホン酸エステルの具体例としては、例えば、
1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−メチル−1,3−プロパンスルトン、2−メチル−1,3−プロパンスルトン、3−メチル−1,3−プロパンスルトン1−プロペン−1,3−スルトン、2−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1−フルオロ−2−プロペン−1,3−スルトン、2−フルオロ−2−プロペン−1,3−スルトン、3−フルオロ−2−プロペン−1,3−スルトン、1−メチル−1−プロペン−1,3−スルトン、2−メチル−1−プロペン−1,3−スルトン、3−メチル−1−プロペン−1,3−スルトン、1−メチル−2−プロペン−1,3−スルトン、2−メチル−2−プロペン−1,3−スルトン、3−メチル−2−プロペン−1,3−スルトン、1,4−ブタンスルトン、1−フルオロ−1,4−ブタンスルトン、2−フルオロ−1,4−ブタンスルトン、3−フルオロ−1,4−ブタンスルトン、4−フルオロ−1,4−ブタンスルトン、1−メチル−1,4−ブタンスルトン、2−メチル−1,4−ブタンスルトン、3−メチル−1,4−ブタンスルトン、4−メチル−1,4−ブタンスルトン、1−ブテン−1,4−スルトン、2−ブテン−1,4−スルトン、3−ブテン−1,4−スルトン、1−フルオロ−1−ブテン−1,4−スルトン、2−フルオロ−1−ブテン−1,4−スルトン、3−フルオロ−1−ブテン−1,4−スルトン、4−フルオロ−1−ブテン−1,4−スルトン、1−フルオロ−2−ブテン−1,4−スルトン、2−フルオロ−2−ブテン−1,4−スルトン、3−フルオロ−2−ブテン−1,4−スルトン、4−フルオロ−2−ブテン−1,4−スルトン、1−フルオロ−3−ブテン−1,4−スルトン、2−フルオロ−3−ブテン−1,4−スルトン、3−フルオロ−3−ブテン−1,4−スルトン、4−フルオロ−3−ブテン−1,4−スルトン、1−メチル−1−ブテン−1,4−スルトン、2−メチル−1−ブテン−1,4−スルトン、3−メチル−1−ブテン−1,4−スルトン、4−メチル−1−ブテン−1,4−スルトン、1−メチル−2−ブテン−1,4−スルトン、2−メチル−2−ブテン−1,4−スルトン、3−メチル−2−ブテン−1,4−スルトン、4−メチル−2−ブテン−1,4−スルトン、1−メチル−3−ブテン−1,4−スルトン、2−メチル−3−ブテン−1,4−スルトン、3−メチル−3−ブテン−1,4−スルトン、4−メチル−3−ブテン−1,4−スルトン、1,5−ペンタンスルトン、1−フルオロ−1,5−ペンタンスルトン、2−フルオロ−1,5−ペンタンスルトン、3−フルオロ−1,5−ペンタンスルトン、4−フルオロ−1,5−ペンタンスルトン、5−フルオロ−1,5−ペンタンスルトン、1−メチル−1,5−ペンタンスルトン、2−メチル−1,5−ペンタンスルトン、3−メチル−1,5−ペンタンスルトン、4−メチル−1,5−ペンタンスルトン、5−メチル−1,5−ペンタンスルトン、1−ペンテン−1,5−スルトン、2−ペンテン−1,5−スルトン、3−ペンテン−1,5−スルトン、4−ペンテン−1,5−スルトン、1−フルオロ−1−ペンテン−1,5−スルトン、2−フルオロ−1−ペンテン−1,5−スルトン、3−フルオロ−1−
ペンテン−1,5−スルトン、4−フルオロ−1−ペンテン−1,5−スルトン、5−フルオロ−1−ペンテン−1,5−スルトン、1−フルオロ−2−ペンテン−1,5−スルトン、2−フルオロ−2−ペンテン−1,5−スルトン、3−フルオロ−2−ペンテン−1,5−スルトン、4−フルオロ−2−ペンテン−1,5−スルトン、5−フルオロ−2−ペンテン−1,5−スルトン、1−フルオロ−3−ペンテン−1,5−スルトン、2−フルオロ−3−ペンテン−1,5−スルトン、3−フルオロ−3−ペンテン−1,5−スルトン、4−フルオロ−3−ペンテン−1,5−スルトン、5−フルオロ−3−ペンテン−1,5−スルトン、1−フルオロ−4−ペンテン−1,5−スルトン、2−フルオロ−4−ペンテン−1,5−スルトン、3−フルオロ−4−ペンテン−1,5−スルトン、4−フルオロ−4−ペンテン−1,5−スルトン、5−フルオロ−4−ペンテン−1,5−スルトン、1−メチル−1−ペンテン−1,5−スルトン、2−メチル−1−ペンテン−1,5−スルトン、3−メチル−1−ペンテン−1,5−スルトン、4−メチル−1−ペンテン−1,5−スルトン、5−メチル−1−ペンテン−1,5−スルトン、1−メチル−2−ペンテン−1,5−スルトン、2−メチル−2−ペンテン−1,5−スルトン、3−メチル−2−ペンテン−1,5−スルトン、4−メチル−2−ペンテン−1,5−スルトン、5−メチル−2−ペンテン−1,5−スルトン、1−メチル−3−ペンテン−1,5−スルトン、2−メチル−3−ペンテン−1,5−スルトン、3−メチル−3−ペンテン−1,5−スルトン、4−メチル−3−ペンテン−1,5−スルトン、5−メチル−3−ペンテン−1,5−スルトン、1−メチル−4−ペンテン−1,5−スルトン、2−メチル−4−ペンテン−1,5−スルトン、3−メチル−4−ペンテン−1,5−スルトン、4−メチル−4−ペンテン−1,5−スルトン、5−メチル−4−ペンテン−1,5−スルトンなどのスルトン化合物;
メチレンスルフェート、エチレンスルフェート、プロピレンスルフェートなどのスルフェート化合物;
メチレンメタンジスルホネート、エチレンメタンジスルホネートなどのジスルホネート化合物;
1,2,3−オキサチアゾリジン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアゾリジン−2,2−ジオキシド、3H−1,2,3−オキサチアゾール−2,2−ジオキシド、5H−1,2,3−オキサチアゾール−2,2−ジオキシド、1,2,4−オキサチアゾリジン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアゾリジン−2,2−ジオキシド、3H−1,2,4−オキサチアゾール−2,2−ジオキシド、5H−1,2,4−オキサチアゾール−2,2−ジオキシド、1,2,5−オキサチアゾリジン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアゾリジン−2,2−ジオキシド、3H−1,2,5−オキサチアゾール−2,2−ジオキシド、5H−1,2,5−オキサチアゾール−2,2−ジオキシド、1,2,3−オキサチアジナン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,3−オキサチアジン−2,2−ジオキシド、1,2,4−オキサチアジナン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、3,6−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、3,4−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、1,2,5−オキサチアジナン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、3,6−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、3,4−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、1,2,6−オキサチアジナン−2,2−ジオキシド、6−メチル−1,2,6−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシド、3,4−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシド、5,6−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシドなどの含窒素化合物;
等が挙げられる。
これらのうち、
1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1,4−ブタンスルトン、メチレンメタンジスルホネート、エチレンメタンジスルホネートが保存特性向上の点から好ましく、
1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトンがより好ましい。
環状スルホン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。本発明の非水系電解液全体に対する環状スルホン酸エステルの配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下の濃度で含有させる。上記範囲を満たした場合は、出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。
<ニトリル化合物>
ニトリル化合物としては、分子内にニトリル基を有している化合物であれば特にその種類は限定されない。
ニトリル化合物の具体例としては、例えば、
アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ラウロニトリル、2−メチルブチロニトリル、トリメチルアセトニトリル、ヘキサンニトリル、シクロペンタンカルボニトリル、シクロヘキサンカルボニトリル、アクリロニトリル、メタクリロニトリル、クロトノニトリル、3−メチルクロトノニトリル、2−メチル−2−ブテン二トリル、2−ペンテンニトリル、2−メチル−2−ペンテンニトリル、3−メチル−2−ペンテンニトリル、2−ヘキセンニトリル、フルオロアセトニトリル、ジフルオロアセトニトリル、トリフルオロアセトニトリル、2−フルオロプロピオニトリル、3−フルオロプロピオニトリル、2,2−ジフルオロプロピオニトリル、2,3−ジフルオロプロピオニトリル、3,3−ジフルオロプロピオニトリル、2,2,3−トリフルオロプロピオニトリル、3,3,3−トリフルオロプロピオニトリル、3,3’−オキシジプロピオニトリル、3,3’−チオジプロピオニトリル、1,2,3−プロパントリカルボニトリル、1,3,5−ペンタントリカルボニトリル、ペンタフルオロプロピオニトリル
等のニトリル基を1つ有する化合物;
マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、メチルマロノニトリル、エチルマロノニトリル、イソプロピルマロノニトリル、tert−ブチルマロノニトリル、メチルスクシノニトリル、2,2−ジメチルスクシノニトリル、2,3−ジメチルスクシノニトリル、2,3,3−トリメチルスクシノニトリル、2,2,3,3−テトラメチルスクシノニトリル、2,3−ジエチル−2,3−ジメチルスクシノニトリル、2,2−ジエチル−3,3−ジメチルスクシノニトリル、ビシクロヘキシル−1,1−ジカルボニトリル、ビシクロヘキシル−2,2−ジカルボニトリル、ビシクロヘキシル−3,3−ジカルボニトリル、2,5−ジメチル−2,5−ヘキサンジカルボニトリル、2,3−ジイソブチル−2,3−ジメチルスクシノニトリル
、2,2−ジイソブチル−3,3−ジメチルスクシノニトリル、2−メチルグルタロニトリル、2,3−ジメチルグルタロニトリル、2,4−ジメチルグルタロニトリル、2,2,3,3−テトラメチルグルタロニトリル、2,2,4,4−テトラメチルグルタロニトリル、2,2,3,4−テトラメチルグルタロニトリル、2,3,3,4−テトラメチルグルタロニトリル、マレオニトリル、フマロニトリル、1,4−ジシアノペンタン、2,6−ジシアノヘプタン、2,7−ジシアノオクタン、2,8−ジシアノノナン、1,6−ジシアノデカン、1,2−ジジアノベンゼン、1,3−ジシアノベンゼン、1,4−ジシアノベンゼン、3,3’−(エチレンジオキシ)ジプロピオニトリル、3,3’−(エチレンジチオ)ジプロピオニトリル、3,9−ビス(2−シアノエチル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン等のニトリル基を2つ有する化合物;
シクロヘキサントリカルボニトリル、トリスシアノエチルアミン、トリスシアノエトキシプロパン、トリシアノエチレン、ペンタントリカルボニトリル、プロパントリカルボニトリル、ヘプタントリカルボニトリル等のシアノ基を3つ有する化合物;
等が挙げられる。
これらのうち、ラウロニトリル、クロトノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、フマロニトリル、3,9−ビス(2−シアノエチル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが保存特性向上の点から好ましい。また、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、フマロニトリル、3,9−ビス(2−シアノエチル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン等のジニトリル化合物が特に好ましい。
ニトリル化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。本発明の非水系電解液全体に対するニトリル化合物の配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下の濃度で含有させる。上記範囲を満たした場合は、出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。
1−3.電解質
<リチウム塩>
電解質としては、通常、リチウム塩が用いられる。リチウム塩としては、この用途に用いることが知られているものであれば特に制限がなく、任意のものを用いることができ、具体的には以下のものが挙げられる。
例えば、LiPF、LiBF、LiClO、LiAlF、LiSbF、LiTaF、LiWF等の無機リチウム塩;
LiWOF等のタングステン酸リチウム類;
HCOLi、CHCOLi、CHFCOLi、CHFCOLi、CFCOLi、CFCHCOLi、CFCFCOLi、CFCFCFCOLi、CFCFCFCFCOLi等のカルボン酸リチウム塩類;
FSOLi、CHSOLi、CHFSOLi、CHFSOLi、CFSOLi、CFCFSOLi、CFCFCFSOLi、CFCFCFCFSOLi等のスルホン酸リチウム塩類;
LiN(FCO)、LiN(FCO)(FSO)、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO
、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiN(CFSO)(CSO)等のリチウムイミド塩類;
LiC(FSO、LiC(CFSO、LiC(CSO等のリチウムメチド塩類;
リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート等のリチウムオキサラトボレート塩類;
リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェート等のリチウムオキサラトフォスフェート塩類;
その他、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBFCF、LiBF、LiBF、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩類;等が挙げられる。
中でも、LiPF、LiBF、LiSbF、LiTaF、FSOLi、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBFCF、LiBF、LiPF(CF、LiPF(C等が出力特性やハイレート充放電特性、高温保存特性、サイクル特性等を向上させる効果がある点から特に好ましい。
これらのリチウム塩は単独で用いても、2種以上を併用してもよい。2種以上を併用する場合の好ましい一例は、LiPFとLiBFや、LiPFとFSOLi等の併用であり、負荷特性やサイクル特性を向上させる効果がある。
この場合、非水系電解液全体100質量%に対するLiBF或いはFSOLiの濃度は配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常、0.01質量%以上、好ましくは0.1質量%以上であり、また、通常30質量%以下、好ましくは20質量%以下である。
また、他の一例は、無機リチウム塩と有機リチウム塩との併用であり、この両者の併用は、高温保存による劣化を抑制する効果がある。有機リチウム塩としては、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBFCF、LiBF、LiPF(CF、LiPF(C等であるのが好ましい。この場合には、非水系電解液全体100質量%に対する有機リチウム塩の割合は、好ましくは0.1質量%以上、特に好ましくは0.5質量%以上であり、また、好ましくは30質量%以下、特に好ましくは20質量%以下である。
非水系電解液中のこれらのリチウム塩の濃度は、本発明の効果を損なわない限り、その含有量は特に制限されないが、電解液の電気伝導率を良好な範囲とし、良好な電池性能を
確保する点から、非水系電解液中のリチウムの総モル濃度は、好ましくは0.3mol/L以上、より好ましくは0.4mol/L以上、さらに好ましくは0.5mol/L以上であり、また、好ましくは3mol/L以下、より好ましくは2.5mol/L以下、さらに好ましくは2.0mol/L以下である。
リチウムの総モル濃度が低すぎると、電解液の電気伝導率が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、電池性能が低下する場合がある。
1−4.非水溶媒
本発明における非水溶媒について特に制限はなく、公知の有機溶媒を用いることが可能である。これらを例示すると、フッ素原子を有していない環状カーボネート、鎖状カーボネート、環状及び鎖状カルボン酸エステル、エーテル化合物、スルホン系化合物等が挙げられる。
<フッ素原子を有していない環状カーボネート>
フッ素原子を有していない環状カーボネートとしては、炭素数2〜4のアルキレン基を有する環状カーボネートが挙げられる。
炭素数2〜4のアルキレン基を有する、フッ素原子を有していない環状カーボネートの具体的な例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートが挙げられる。中でも、エチレンカーボネートとプロピレンカーボネートがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
フッ素原子を有していない環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
フッ素原子を有していない環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、1種を単独で用いる場合の配合量は、非水溶媒100体積%中、5体積%以上、より好ましくは10体積%以上である。この範囲とすることで、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液電池の大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなる。また、95体積%以下、より好ましくは90体積%以下、さらに好ましくは85体積%以下である。この範囲とすることで、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液電池の負荷特性を良好な範囲としやすくなる。
<鎖状カーボネート>
鎖状カーボネートとしては、炭素数3〜7の鎖状カーボネートが好ましく、炭素数3〜7のジアルキルカーボネートがより好ましい。
鎖状カーボネートの具体例としては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、n−ブチルメチルカーボネート、イソブチルメチルカーボネート、t−ブチルメチルカーボネート、エチル−n−プロピルカーボネート、n−ブチルエチルカーボネート、イソブチルエチルカーボネート、t−ブチルエチルカーボネート等が挙げられる。
中でも、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネートが好ましく、特に好ましくはジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。
また、フッ素原子を有する鎖状カーボネート類(以下、「フッ素化鎖状カーボネート」と記載する場合がある)も好適に用いることができる。
フッ素化鎖状カーボネートが有するフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましくは4以下である。フッ素化鎖状カーボネートが複数のフッ素原子を有する場合、それらは互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。
フッ素化鎖状カーボネートとしては、フッ素化ジメチルカーボネート及びその誘導体、フッ素化エチルメチルカーボネート及びその誘導体、フッ素化ジエチルカーボネート及びその誘導体等が挙げられる。
フッ素化ジメチルカーボネート及びその誘導体としては、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ビス(ジフルオロ)メチルカーボネート、ビス(トリフルオロメチル)カーボネート等が挙げられる。
フッ素化エチルメチルカーボネート及びその誘導体としては、2−フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2−ジフルオロエチルメチルカーボネート、2−フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート、2,2−ジフルオロエチルフルオロメチルカーボネート、2−フルオロエチルジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。
フッ素化ジエチルカーボネート及びその誘導体としては、エチル−(2−フルオロエチル)カーボネート、エチル−(2,2−ジフルオロエチル)カーボネート、ビス(2−フルオロエチル)カーボネート、エチル−(2,2,2−トリフルオロエチル)カーボネート、2,2−ジフルオロエチル−2’−フルオロエチルカーボネート、ビス(2,2−ジフルオロエチル)カーボネート、2,2,2−トリフルオロエチル−2’−フルオロエチルカーボネート、2,2,2−トリフルオロエチル−2’,2’−ジフルオロエチルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート等が挙げられる。
鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
鎖状カーボネートの配合量は、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上である。このように下限を設定することにより、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液電池の大電流放電特性を良好な範囲としやすくなる。また、鎖状カーボネートは、非水溶媒100体積%中、90体積%以下、より好ましくは85体積%以下であることが好ましい。このように上限を設定することにより、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液電池の大電流放電特性を良好な範囲としやすくなる。
<環状カルボン酸エステル>
環状カルボン酸エステルとしては、炭素原子数が3〜12のものが好ましい。
具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
環状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
環状カルボン酸エステルの配合量は、通常、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上である。この範囲であれば、非水系電解液の電気伝導率を改善し、非水系電解液電池の大電流放電特性を向上させやすくなる。また、環
状カルボン酸エステルの配合量は、好ましくは50体積%以下、より好ましくは40体積%以下である。このように上限を設定することにより、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。
<鎖状カルボン酸エステル>
鎖状カルボン酸エステルとしては、炭素数が3〜7のものが好ましい。具体的には、
酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸イソプロピル、酢酸−n−ブチル、酢酸イソブチル、酢酸−t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、プロピオン酸−n−ブチル、プロピオン酸イソブチル、プロピオン酸−t−ブチル、酪酸メチル、酪酸エチル、酪酸−n−プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸−n−プロピル、イソ酪酸イソプロピル
等が挙げられる。
中でも、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸−n−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル等が、粘度低下によるイオン伝導度の向上の点から好ましい。
鎖状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
鎖状カルボン酸エステルの配合量は、通常、非水溶媒100体積%中、好ましくは10体積%以上、より好ましくは15体積%以上である。このように下限を設定することで、非水系電解液の電気伝導率を改善し、非水系電解液電池の大電流放電特性を向上させやすくなる。また、鎖状カルボン酸エステルの配合量は、非水溶媒100体積%中、好ましくは60体積%以下、より好ましくは50体積%以下である。このように上限を設定することで、負極抵抗の増大を抑制し、非水系電解液電池の大電流放電特性、サイクル特性を良好な範囲としやすくなる。
<エーテル系化合物>
エーテル系化合物としては、一部の水素がフッ素にて置換されていても良い炭素数3〜10の鎖状エーテル、及び炭素数3〜6の環状エーテルが好ましい。
炭素数3〜10の鎖状エーテルとしては、
ジエチルエーテル、ジ(2−フルオロエチル)エーテル、ジ(2,2−ジフルオロエチル)エーテル、ジ(2,2,2−トリフルオロエチル)エーテル、エチル(2−フルオロエチル)エーテル、エチル(2,2,2−トリフルオロエチル)エーテル、エチル(1,1,2,2−テトラフルオロエチル)エーテル、(2−フルオロエチル)(2,2,2−トリフルオロエチル)エーテル、(2−フルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、(2,2,2−トリフルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、エチル−n−プロピルエーテル、エチル(3−フルオロ−n−プロピル)エーテル、エチル(3,3,3−トリフルオロ−n−プロピル)エーテル、エチル(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、エチル(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2−フルオロエチル−n−プロピルエーテル、(2−フルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2−フルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2,2,2−トリフルオロエチル−n−プロピルエーテル、(2,2,2−トリフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(3
,3,3−トリフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、1,1,2,2−テトラフルオロエチル−n−プロピルエーテル、(1,1,2,2−テトラフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−プロピルエーテル、(n−プロピル)(3−フルオロ−n−プロピル)エーテル、(n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3−フルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3,3,3−トリフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,3,3−テトラフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、メトキシ(2−フルオロエトキシ)メタン、メトキシ(2,2,2−トリフルオロエトキシ)メタンメトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジエトキシメタン、エトキシ(2−フルオロエトキシ)メタン、エトキシ(2,2,2−トリフルオロエトキシ)メタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(2−フルオロエトキシ)メタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)メタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタンジ(2,2,2−トリフルオロエトキシ)メタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(1,1,2,2−テトラフルオロエトキシ)メタン、ジメトキシエタン、メトキシエトキシエタン、メトキシ(2−フルオロエトキシ)エタン、メトキシ(2,2,2−トリフルオロエトキシ)エタン、メトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジエトキシエタン、エトキシ(2−フルオロエトキシ)エタン、エトキシ(2,2,2−トリフルオロエトキシ)エタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2−フルオロエトキシ)エタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)エタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2,2,2−トリフルオロエトキシ)エタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(1,1,2,2−テトラフルオロエトキシ)エタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル
等が挙げられる。
炭素数3〜6の環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチルテトラヒドロフラン、1,3−ジオキサン、2−メチル−1,3−ジオキサン、4−メチル−1,3−ジオキサン、1,4−ジオキサン等、及びこれらのフッ素化化合物が挙げられる。
中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエ
チレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離性を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
エーテル系化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
エーテル系化合物の配合量は、通常、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上、また、好ましくは70体積%以下、より好ましくは60体積%以下、さらに好ましくは50体積%以下である。
この範囲であれば、鎖状エーテルのリチウムイオン解離度の向上と粘度低下に由来するイオン伝導度の向上効果を確保しやすく、負極活物質が炭素質材料の場合、鎖状エーテルがリチウムイオンと共に共挿入されて容量が低下するといった事態を回避しやすい。
<スルホン系化合物>
スルホン系化合物としては、炭素数3〜6の環状スルホン、及び炭素数2〜6の鎖状スルホンが好ましい。1分子中のスルホニル基の数は、1又は2であることが好ましい。
炭素数3〜6の環状スルホンとしては、
モノスルホン化合物であるトリメチレンスルホン類、テトラメチレンスルホン類、ヘキサメチレンスルホン類;
ジスルホン化合物であるトリメチレンジスルホン類、テトラメチレンジスルホン類、ヘキサメチレンジスルホン類等が挙げられる。
中でも誘電率と粘性の観点から、テトラメチレンスルホン類、テトラメチレンジスルホン類、ヘキサメチレンスルホン類、ヘキサメチレンジスルホン類がより好ましく、テトラメチレンスルホン類(スルホラン類)が特に好ましい。
スルホラン類としては、スルホラン及び/又はスルホラン誘導体(以下、スルホランも含めて「スルホラン類」と記載する場合がある)が好ましい。スルホラン誘導体としては、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子やアルキル基で置換されたものが好ましい。
中でも、2−メチルスルホラン、3−メチルスルホラン、2−フルオロスルホラン、3−フルオロスルホラン、2,2−ジフルオロスルホラン、2,3−ジフルオロスルホラン、2,4−ジフルオロスルホラン、2,5−ジフルオロスルホラン、3,4−ジフルオロスルホラン、2−フルオロ−3−メチルスルホラン、2−フルオロ−2−メチルスルホラン、3−フルオロ−3−メチルスルホラン、3−フルオロ−2−メチルスルホラン、4−フルオロ−3−メチルスルホラン、4−フルオロ−2−メチルスルホラン、5−フルオロ−3−メチルスルホラン、5−フルオロ−2−メチルスルホラン、2−フルオロメチルスルホラン、3−フルオロメチルスルホラン、2−ジフルオロメチルスルホラン、3−ジフルオロメチルスルホラン、2−トリフルオロメチルスルホラン、3−トリフルオロメチルスルホラン、2−フルオロ−3−(トリフルオロメチル)スルホラン、3−フルオロ−3−(トリフルオロメチル)スルホラン、4−フルオロ−3−(トリフルオロメチル)スルホラン、5−フルオロ−3−(トリフルオロメチル)スルホラン等が、イオン伝導度が高く、入出力特性が高い点で好ましい。
また、炭素数2〜6の鎖状スルホンとしては、
ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、n−プロピルエチルスルホン、ジ−n−プロピルスルホン、イソプロピルメチルスルホン、イソプロピルエチルスルホン、ジイソプロピルスルホン、n−ブチルメチルスルホン、n−ブチルエチルスルホン、t−ブチルメチルスルホン、t−ブチルエチルスル
ホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、パーフルオロエチルメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、ジ(トリフルオロエチル)スルホン、パーフルオロジエチルスルホン、フルオロメチル−n−プロピルスルホン、ジフルオロメチル−n−プロピルスルホン、トリフルオロメチル−n−プロピルスルホン、フルオロメチルイソプロピルスルホン、ジフルオロメチルイソプロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−プロピルスルホン、トリフルオロエチルイソプロピルスルホン、ペンタフルオロエチル−n−プロピルスルホン、ペンタフルオロエチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、ペンタフルオロエチル−n−ブチルスルホン、ペンタフルオロエチル−t−ブチルスルホン等が挙げられる。
中でも、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、イソプロピルメチルスルホン、n−ブチルメチルスルホン、t−ブチルメチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、トリフルオロメチル−n−プロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、トリフルオロメチル−n−ブチルスルホン、トリフルオロメチル−t−ブチルスルホン等がイオン伝導度が高く、入出力特性が高い点で好ましい。
スルホン系化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
スルホン系化合物の配合量は、通常、非水溶媒100体積%中、好ましくは0.3体積%以上、より好ましくは1体積%以上、さらに好ましくは5体積%以上であり、また、好ましくは40体積%以下、より好ましくは35体積%以下、さらに好ましくは30体積%以下である。
この範囲であれば、サイクル特性や保存特性等の耐久性の向上効果が得られやすく、また、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避することができ、非水系電解液電池の充放電を高電流密度で行う場合に、充放電容量維持率が低下するといった事態を回避しやすい。
<フッ素原子を有する環状カーボネートを非水溶媒として用いる場合>
本発明において、フッ素原子を有する環状カーボネートを非水溶媒として用いる場合は、フッ素原子を有する環状カーボネート以外の非水溶媒として、上記例示した非水溶媒の1種をフッ素原子を有する環状カーボネートと組み合わせて用いてもよく、2種以上をフッ素原子を有する環状カーボネートと組み合わせて併用しても良い。
例えば、非水溶媒の好ましい組合せの一つとして、フッ素原子を有する環状カーボネートと鎖状カーボネートを主体とする組合せが挙げられる。中でも、非水溶媒に占めるフッ素原子を有する環状カーボネートと鎖状カーボネートとの合計が、好ましくは60体積%以上、より好ましくは80体積%以上、更に好ましくは90体積%以上であり、かつフッ素原子を有する環状カーボネートと鎖状カーボネートとの合計に対するフッ素原子を有す
る環状カーボネートの割合が3体積%以上、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上であり、また好ましくは60体積%以下、より好ましくは50体積%以下、さらに好ましくは40体積%以下、特に好ましくは35体積%以下である。
これらの非水溶媒の組み合わせを用いると、これを用いて作製された電池のサイクル特性と高温保存特性(特に、高温保存後の残存容量及び高負荷放電容量)のバランスが良くなることがある。
例えば、フッ素原子を有する環状カーボネートと鎖状カーボネートの好ましい組み合わせの具体例としては、
モノフルオロエチレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。
フッ素原子を有する環状カーボネートと鎖状カーボネートとの組み合わせの中で、鎖状カーボネートとして対称鎖状アルキルカーボネート類を含有するものが更に好ましく、特に、モノフルオロエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートといったモノフルオロエチレンカーボネートと対称鎖状カーボネート類と非対称鎖状カーボネート類を含有するものが、サイクル特性と大電流放電特性のバランスが良いので好ましい。中でも、対称鎖状カーボネート類がジメチルカーボネートであることが好ましく、又、鎖状カーボネートのアルキル基は炭素数1〜2が好ましい。
これらのフッ素原子を有する環状カーボネートと鎖状カーボネート類との組み合わせに、更にフッ素原子を有していない環状カーボネートを加えた組み合わせも、好ましい組み合わせとして挙げられる。中でも、非水溶媒に占めるフッ素原子を有する環状カーボネートとフッ素原子を有していない環状カーボネートとの合計が、好ましくは10体積%以上、より好ましくは15体積%以上、さらに好ましくは20体積%以上であり、かつフッ素原子を有する環状カーボネートとフッ素原子を有していない環状カーボネートとの合計に対するフッ素原子を有する環状カーボネートの割合が5体積%以上、好ましくは10体積%以上、より好ましくは15体積%以上、さらに好ましくは25体積%以上であり、また、好ましくは95体積%以下、より好ましくは85体積%以下、さらに好ましくは75体積%以下、特に好ましくは60体積%以下のものである。
この濃度範囲でフッ素原子を有していない環状カーボネートを含有すると、負極に安定な保護被膜を形成しつつ、電解液の電気伝導度を維持できる。
フッ素原子を有する環状カーボネートとフッ素原子を有していない環状カーボネートと鎖状カーボネートの好ましい組み合わせの具体例としては、
モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエ
チレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。
フッ素原子を有する環状カーボネートとフッ素原子を有していない環状カーボネートと鎖状カーボネートとの組み合わせの中で、鎖状カーボネートとして対称鎖状アルキルカーボネート類を含有するものがさらに好ましく、特に、
モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートモノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートモノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート
といったモノフルオロエチレンカーボネートと対称鎖状カーボネート類と非対称鎖状カーボネート類を含有するものが、サイクル特性と大電流放電特性のバランスが良いので好ましい。中でも、対称鎖状カーボネート類がジメチルカーボネートであるのが好ましく、又、鎖状カーボネートのアルキル基は炭素数1〜2が好ましい。
非水溶媒中にジメチルカーボネートを含有する場合は、全非水溶媒中に占めるジメチルカーボネートの割合が、好ましくは10体積%以上、より好ましくは20体積%以上、さらに好ましくは25体積%以上、特に好ましくは30体積%以上であり、また、好ましくは90体積%以下、より好ましくは80体積%以下、さらに好ましくは75体積%以下、特に好ましくは70体積%以下となる範囲で含有させると、電池の負荷特性が向上するこ
とがある。
中でも、ジメチルカーボネートとエチルメチルカーボネートを含有し、ジメチルカーボネートの含有割合をエチルメチルカーボネートの含有割合よりも多くすることにより、電解液の電気伝導度を維持できながら、高温保存後の電池特性が向上することから、好ましい。
全非水溶媒中に占めるジメチルカーボネートのエチルメチルカーボネートに対する体積比(ジメチルカーボネート/エチルメチルカーボネート)は、電解液の電気伝導度の向上と保存後の電池特性を向上させる点で、1.1以上が好ましく、1.5以上がより好ましく、2.5以上がさらに好ましい。
上記体積比(ジメチルカーボネート/エチルメチルカーボネート)は、低温での電池特性を向上の点で、40以下が好ましく、20以下がより好ましく、10以下がさらに好ましく、8以下が特に好ましい。
上記フッ素原子を有する環状カーボネートと鎖状カーボネートを主体とする組合せにおいては、上記フッ素原子を有していない環状カーボネート以外にも、環状カルボン酸エステル類、鎖状カルボン酸エステル類、環状エーテル類、鎖状エーテル類、含硫黄有機溶媒、含燐有機溶媒、含フッ素芳香族溶媒等、他の溶媒を混合してもよい。
<フッ素原子を有する環状カーボネートを助剤として用いる場合>
本発明において、フッ素原子を有する環状カーボネートを助剤として用いる場合は、フッ素原子を有する環状カーボネート以外の非水溶媒として、上記例示した非水溶媒1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
例えば、非水溶媒の好ましい組合せの一つとして、フッ素原子を有していない環状カーボネートと鎖状カーボネートを主体とする組合せが挙げられる。
中でも、非水溶媒に占めるフッ素原子を有していない環状カーボネートと鎖状カーボネートとの合計が、好ましくは70体積%以上、より好ましくは80体積%以上、さらに好ましくは90体積%以上であり、かつ環状カーボネートと鎖状カーボネートとの合計に対するフッ素原子を有していない環状カーボネートの割合が好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上であり、また、好ましくは50体積%以下、より好ましくは35体積%以下、さらに好ましくは30体積%以下、特に好ましくは25体積%以下である。
これらの非水溶媒の組み合わせを用いると、これを用いて作製された電池のサイクル特性と高温保存特性(特に、高温保存後の残存容量及び高負荷放電容量)のバランスが良くなることがある。
例えば、フッ素原子を有していない環状カーボネートと鎖状カーボネートの好ましい組み合わせの具体例としては、
エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとジエチルカーボネート、エチレンカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。
フッ素原子を有していない環状カーボネートと鎖状カーボネートとの組み合わせの中で、鎖状カーボネートとして非対称鎖状アルキルカーボネート類を含有するものがさらに好ましく、特に、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレ
ンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートといったエチレンカーボネートと対称鎖状カーボネート類と非対称鎖状カーボネート類を含有するものが、サイクル特性と大電流放電特性のバランスが良いので好ましい。
中でも、非対称鎖状カーボネート類がエチルメチルカーボネートであるのが好ましく、又、鎖状カーボネートのアルキル基は炭素数1〜2が好ましい。
これらのエチレンカーボネートと鎖状カーボネート類との組み合わせに、更にプロピレンカーボネートを加えた組み合わせも、好ましい組み合わせとして挙げられる。
プロピレンカーボネートを含有する場合には、エチレンカーボネートとプロピレンカーボネートの体積比は、99:1〜40:60が好ましく、特に好ましくは95:5〜50:50である。更に、非水溶媒全体に占めるプロピレンカーボネートの割合は、、好ましくは0.1容量%以上、より好ましくは1体積%以上、さらに好ましくは2体積%以上、また、好ましくは20体積%以下、より好ましくは8体積%以下、さらに好ましくは5体積%以下である。
この濃度範囲でプロピレンカーボネートを含有すると、エチレンカーボネートと鎖状カーボネートとの組み合わせの特性を維持したまま、更に低温特性が優れることがあるので好ましい。
非水溶媒中にジメチルカーボネートを含有する場合は、全非水溶媒中に占めるジメチルカーボネートの割合が、好ましくは10体積%以上、より好ましくは20体積%以上、さらに好ましくは25体積%以上、特に好ましくは30体積%以上であり、また、好ましくは90体積%以下、より好ましくは80体積%以下、さらに好ましくは75体積%以下、特に好ましくは、70体積%以下となる範囲で含有させると、電池の負荷特性が向上することがある。
中でも、ジメチルカーボネートとエチルメチルカーボネートを含有し、ジメチルカーボネートの含有割合をエチルメチルカーボネートの含有割合よりも多くすることにより、電解液の電気伝導度を維持できながら、高温保存後の電池特性が向上することがあり好ましい。
全非水溶媒中に占めるジメチルカーボネートのエチルメチルカーボネートに対する体積比(ジメチルカーボネート/エチルメチルカーボネート)は、電解液の電気伝導度の向上と保存後の電池特性を向上させる点で、1.1以上が好ましく、1.5以上がより好ましく、2.5以上がさらに好ましい。上記体積比(ジメチルカーボネート/エチルメチルカーボネート)は、低温での電池特性を向上の点で、40以下が好ましく、20以下がより好ましく、10以下がさらに好ましく、8以下が特に好ましい。
上記フッ素原子を有していない環状カーボネートと鎖状カーボネートを主体とする組合せにおいては、環状カルボン酸エステル類、鎖状カルボン酸エステル類、環状エーテル類、鎖状エーテル類、含硫黄有機溶媒、含燐有機溶媒、芳香族含フッ素溶媒等、他の溶媒を混合してもよい。
なお、本明細書において、非水溶媒の体積は25℃での測定値であるが、エチレンカーボネートのように25℃で固体のものは融点での測定値を用いる。
1−5.助剤
本発明の非水系電解液電池において、式(1)で表されるカルボン酸二無水物以外に、目的に応じて適宜助剤を用いても良い。助剤としては、以下に示されるフッ素原子を有する不飽和環状カーボネート、過充電防止剤、その他の助剤、等が挙げられる。
<フッ素化不飽和環状カーボネート>
フッ素化環状カーボネートとして、不飽和結合とフッ素原子とを有する環状カーボネー
ト(以下、「フッ素化不飽和環状カーボネート」と記載する場合がある)を用いることも好ましい。フッ素化不飽和環状カーボネートが有するフッ素原子の数は1以上であれば、特に制限されない。中でもフッ素原子が通常6以下、好ましくは4以下であり、1又は2のものが最も好ましい。
フッ素化不飽和環状カーボネートとしては、フッ素化ビニレンカーボネート誘導体、芳香環又は炭素−炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体等が挙げられる。
フッ素化ビニレンカーボネート誘導体としては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート等が挙げられる。
芳香環又は炭素−炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体としては、
4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネート、4−フルオロ−4−フェニルエチレンカーボネート、4−フルオロ−5−フェニルエチレンカーボネート、4,4−ジフルオロ−5−フェニルエチレンカーボネート、4,5−ジフルオロ−4−フェニルエチレンカーボネート等が挙げられる。
中でも、特に式(1)で表されるカルボン酸二無水物と併用するのに好ましいフッ素化不飽和環状カーボネートとしては、
4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。
フッ素化不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、また、250以下である。この範囲であれば、非水系電解液に対するフッ素化環状カーボネートの溶解性を確保しやすく、本発明の効果が発現されやすい。
フッ素化不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。分子量は、より好ましくは100以上であり、また、より好ましくは200以下である。
フッ素化不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組
み合わせ及び比率で併用してもよい。また、フッ素化不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。
フッ素化不飽和環状カーボネートの配合量は、通常、非水系電解液100質量%中、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。
この範囲内であれば、非水系電解液電池は十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
<過充電防止剤>
本発明の非水系電解液において、非水系電解液電池が過充電等の状態になった際に電池の破裂・発火を効果的に抑制するために、過充電防止剤を用いることができる。
過充電防止剤としては、
ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;
2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物
等が挙げられる。中でも、
ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。
これらは1種を単独で用いても、2種以上を併用してもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンとt−ブチルベンゼン又はt−アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
過充電防止剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。過充電防止剤は、非水系電解液100質量%中、好ましくは、0.1質量%以上であり、また、5質量%以下である。この範囲であれば、過充電防止剤の効果を十分に発現させやすく、また、高温保存特性等の電池の特性が低下するといった事態も回避しやすい。
過充電防止剤は、より好ましくは0.2質量%以上、さらに好ましくは0.3質量%以上、特に好ましくは0.5質量%以上であり、また、より好ましくは3質量%以下、さらに好ましくは2質量%以下である。
<その他の助剤>
本発明の非水系電解液には、公知のその他の助剤を用いることができる。その他の助剤としては、
エリスリタンカーボネート、スピロ−ビス−ジメチレンカーボネート、メトキシエチル−メチルカーボネート等のカーボネート化合物;
無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペ
ンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物等の式(1)で表されるカルボン酸二無水物以外のカルボン酸無水物;
2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ジビニル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;
エチレンサルファイト、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、ジフェニルスルホン、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド、ビニルスルホン酸メチル、ビニルスルホン酸エチル、ビニルスルホン酸アリル、ビニルスルホン酸プロパルギル、アリルスルホン酸メチル、アリルスルホン酸エチル、アリルスルホン酸アリル、アリルスルホン酸プロパルギル、1,2−ビス(ビニルスルホニロキシ)エタン
等の含硫黄化合物;
1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン及びN−メチルスクシンイミド等の含窒素化合物;
亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、メチルホスホン酸ジメチル、エチルホスホン酸ジエチル、ビニルホスホン酸ジメチル、ビニルホスホン酸ジエチル、ジエチルホスホノ酢酸エチル、ジメチルホスフィン酸メチル、ジエチルホスフィン酸エチル、トリメチルホスフィンオキシド、トリエチルホスフィンオキシド
等の含燐化合物;
ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物;
フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物;
等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。
その他の助剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。その他の助剤は、非水系電解液100質量%中、好ましくは、0.01質量%以上であり、また、5質量%以下である。この範囲であれば、その他助剤の効果が十分に発現させやすく、高負荷放電特性等の電池の特性が低下するといった事態も回避しやすい。
その他の助剤の配合量は、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。
以上、上述の非水系電解液は、本発明に記載の非水系電解液電池の内部に存在するものも含まれる。
具体的には、リチウム塩や溶媒、助剤等の非水系電解液の構成要素を別途合成し、実質的に単離されたものから非水系電解液を調整し、下記に記載する方法にて別途組み立てた電池内に注液して得た非水系電解液電池内の非水系電解液である場合や、本発明の非水系電解液の構成要素を個別に電池内に入れておき、電池内にて混合させることにより本発明の非水系電解液と同じ組成を得る場合、更には、本発明の非水系電解液を構成する化合物を該非水系電解液電池内で発生させて、本発明の非水系電解液と同じ組成を得る場合も含まれるものとする。
2.電池構成
本発明の非水系電解液電池は、非水系電解液電池の中でも二次電池用、例えばリチウム二次電池用の電解液として用いるのに好適である。以下、本発明の非水系電解液を用いた
非水系電解液電池について説明する。
本発明の非水系電解液電池は、公知の構造を採ることができ、典型的には、イオン(例えば、リチウムイオン)を吸蔵・放出可能な負極及び正極と、上記の本発明の非水系電解液とを備える。
2−1.負極
以下に負極に使用される負極活物質について述べる。負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
<負極活物質>
負極活物質としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。
炭素質材料としては、(1)天然黒鉛、(2)人造黒鉛、(3)非晶質炭素、(4)炭素被覆黒鉛、(5)黒鉛被覆黒鉛、(6)樹脂被覆黒鉛等が挙げられる。
(1)天然黒鉛としては、鱗状黒鉛、鱗片状黒鉛、土壌黒鉛及び/又はこれらの黒鉛を原料に球形化や緻密化等の処理を施した黒鉛粒子等が挙げられる。これらの中でも、粒子の充填性や充放電レート特性の観点から、球形化処理を施した球状もしくは楕円体状の黒鉛が特に好ましい。
球形化処理に用いる装置としては、例えば、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し粒子に与える装置を用いることができる。具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された炭素材に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、球形化処理を行なう装置が好ましい。また、炭素材を循環させることによって機械的作用を繰り返して与える機構を有するものであるのが好ましい。
例えば前述の装置を用いて球形化処理する場合は、回転するローターの周速度を30〜100m/秒にするのが好ましく、40〜100m/秒にするのがより好ましく、50〜100m/秒にするのが更に好ましい。また、処理は、単に炭素質物を通過させるだけでも可能であるが、30秒以上装置内を循環又は滞留させて処理するのが好ましく、1分以上装置内を循環又は滞留させて処理するのがより好ましい。
(2)人造黒鉛としては、コールタールピッチ、石炭系重質油、常圧残油、石油系重質油、芳香族炭化水素、窒素含有環状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルブチラール、天然高分子、ポリフェニレンサイルファイド、ポリフェニレンオキシド、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂などの有機化合物を、通常2500℃以上、通常3200℃以下の範囲の温度で黒鉛化し、必要に応じて粉砕及び/又は分級して製造されたものが挙げられる。この際、珪素含有化合物やホウ素含有化合物などを黒鉛化触媒として用いることもできる。また、ピッチの熱処理過程で分離したメソカーボンマイクロビーズを黒鉛化して得た人造黒鉛が挙げられる。更に一次粒子からなる造粒粒子の人造黒鉛も挙げられる。例えば、メソカーボンマイクロビーズや、コークス等の黒鉛化可能な炭素質材料粉体とタール、ピッチ等の黒鉛化可能なバインダと黒鉛化触媒を混合し、黒鉛化し、必要に応じて粉砕することで得られる、扁平状の粒子を複数、配向面が非平行となるように集合又は結合した黒鉛粒子が挙げられる。
(3)非晶質炭素としては、タール、ピッチ等の易黒鉛化性炭素前駆体を原料に用い、黒鉛化しない温度領域(400〜2200℃の範囲)で1回以上熱処理した非晶質炭素粒
子や、樹脂などの難黒鉛化性炭素前駆体を原料に用いて熱処理した非晶質炭素粒子が挙げられる。
(4)炭素被覆黒鉛としては、天然黒鉛及び/又は人造黒鉛と、タール、ピッチや樹脂等の有機化合物である炭素前駆体を混合し、400〜2300℃の範囲で1回以上熱処理し得られる天然黒鉛及び/又は人造黒鉛を核黒鉛とし、非晶質炭素が核黒鉛を被覆している炭素黒鉛複合体が挙げられる。複合の形態は、表面全体または一部を被覆しても、複数の一次粒子を前記炭素前駆体起源の炭素をバインダーとして複合させたものであってもよい。また、天然黒鉛及び/又は人造黒鉛にベンゼン、トルエン、メタン、プロパン、芳香族系の揮発分等の炭化水素系ガス等を高温で反応させ、黒鉛表面に炭素を堆積(CVD)さ
せることでも炭素黒鉛複合体を得ることもできる。
(5)黒鉛被覆黒鉛としては、天然黒鉛及び/又は人造黒鉛と、タール、ピッチや樹脂等の易黒鉛化性の有機化合物の炭素前駆体を混合し、2400〜3200℃程度の範囲で1回以上熱処理し得られる天然黒鉛及び/又は人造黒鉛を核黒鉛とし、黒鉛化物が核黒鉛の表面全体または一部を被覆している黒鉛被覆黒鉛が挙げられる。
(6)樹脂被覆黒鉛としては、天然黒鉛及び/又は人造黒鉛と、樹脂等を混合、400℃未満の温度で乾燥し得られる天然黒鉛及び/又は人造黒鉛を核黒鉛とし、樹脂等が核黒鉛を被覆している樹脂被覆黒鉛が挙げられる。
また、(1)〜(6)の炭素質材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記(2)〜(5)に用いられるタール、ピッチや樹脂等の有機化合物としては、石炭系重質油、直流系重質油、分解系石油重質油、芳香族炭化水素、N環化合物、S環化合物、ポリフェニレン、有機合成高分子、天然高分子、熱可塑性樹脂及び熱硬化性樹脂からなる群より選ばれた炭化可能な有機化合物などが挙げられる。また、原料有機化合物は混合時の粘度を調整するため、低分子有機溶媒に溶解させて用いても良い。
また、核黒鉛の原料となる天然黒鉛及び/又は人造黒鉛としては、球形化処理を施した天然黒鉛が好ましい。
負極活物質として用いられる合金系材料としては、リチウムを吸蔵・放出可能であれば、リチウム単体、リチウム合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の化合物のいずれであってもよく、特に制限されない。リチウム合金を形成する単体金属及び合金としては、13族及び14族の金属・半金属元素(即ち炭素を除く)を含む材料であることが好ましく、より好ましくはアルミニウム、ケイ素及びスズの単体金属及びこれら原子を含む合金又は化合物である。これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
<炭素質材料の物性>
負極活物質として炭素質材料を用いる場合、以下の物性を有するものであることが望ましい。
(X線パラメータ)
炭素質材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、通常0.335nm以上であり、また、通常0.360nm以下であり、0.350nm以下が好ましく、0.345nm以下がさらに好ましい。また、学振法によるX線回折で求めた炭素質材料の結晶子サイズ(Lc)は、1.0nm以上であることが好ましく、中でも1.5nm以上であることがさらに好ましい。
(体積基準平均粒径)
炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均
粒径(メジアン径)であり、通常1μm以上であり、3μm以上が好ましく、5μm以上がさらに好ましく、7μm以上が特に好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましく、25μm以下が特に好ましい。
体積基準平均粒径が上記範囲を下回ると、不可逆容量が増大して、初期の電池容量の損失を招くことになる場合がある。また、上記範囲を上回ると、塗布により電極を作製する際に、不均一な塗面になりやすく、電池製作工程上望ましくない場合がある。
体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(例えば、堀場製作所社製LA−700)を用いて行なう。該測定で求められるメジアン径を、本発明の炭素質材料の体積基準平均粒径と定義する。
(ラマンR値)
炭素質材料のラマンR値は、レーザーラマンスペクトル法を用いて測定した値であり、通常0.01以上であり、0.03以上が好ましく、0.1以上がさらに好ましく、また、通常1.5以下であり、1.2以下が好ましく、1以下がさらに好ましく、0.5以下が特に好ましい。
ラマンR値が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。即ち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。
一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
ラマンスペクトルの測定は、ラマン分光器(例えば、日本分光社製ラマン分光器)を用いて、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光(若しくは半導体レーザー光)を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。得られるラマンスペクトルについて、1580cm−1付近のピークPの強度Iと、1360cm−1付近のピークPの強度Iとを測定し、その強度比R(R=I/I)を算出する。該測定で算出されるラマンR値を、本発明の炭素質材料のラマンR値と定義する。
また、上記のラマン測定条件は、次の通りである。
・レーザー波長 :Arイオンレーザー514.5nm(半導体レーザー532nm)
・測定範囲 :1100cm−1〜1730cm−1
・ラマンR値 :バックグラウンド処理、
・スムージング処理 :単純平均、コンボリューション5ポイント
(BET比表面積)
炭素質材料のBET比表面積は、BET法を用いて測定した比表面積の値であり、通常0.1m・g−1以上であり、0.7m・g−1以上が好ましく、1.0m・g−1以上がさらに好ましく、1.5m・g−1以上が特に好ましく、また、通常100m・g−1以下であり、25m・g−1以下が好ましく、15m・g−1以下がさらに好ましく、10m・g−1以下が特に好ましい。
BET比表面積の値がこの範囲を下回ると、負極材料として用いた場合の充電時にリチウムの受け入れ性が悪くなりやすく、リチウムが電極表面で析出しやすくなり、安定性が低下する可能性がある。一方、この範囲を上回ると、負極材料として用いた時に非水系電
解液との反応性が増加し、ガス発生が多くなりやすく、好ましい電池が得られにくい場合がある。
BET法による比表面積の測定は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。
(円形度)
炭素質材料の球形の程度として円形度を測定した場合、以下の範囲に収まることが好ましい。なお、円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
炭素質材料の粒径が3〜40μmの範囲にある粒子の円形度は1に近いほど望ましく、また、0.1以上が好ましく、中でも0.5以上が好ましく、0.8以上がより好ましく、0.85以上がさらに好ましく、0.9以上が特に好ましい。高電流密度充放電特性は、円形度が大きいほど向上する。従って、円形度が上記範囲を下回ると、負極活物質の充填性が低下し、粒子間の抵抗が増大して、短時間高電流密度充放電特性が低下する場合がある。
円形度の測定は、フロー式粒子像分析装置(例えば、シスメックス社製FPIA)を用いて行う。試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定する。
円形度を向上させる方法は、特に制限されないが、球形化処理を施して球形にしたものが、電極体にしたときの粒子間空隙の形状が整うので好ましい。球形化処理の例としては、せん断力、圧縮力を与えることによって機械的に球形に近づける方法、複数の微粒子をバインダーもしくは、粒子自身の有する付着力によって造粒する機械的・物理的処理方法等が挙げられる。
(タップ密度)
炭素質材料のタップ密度は、通常0.1g・cm−3以上であり、0.5g・cm−3以上が好ましく、0.7g・cm−3以上がさらに好ましく、1g・cm−3以上が特に好ましく、また、2g・cm−3以下が好ましく、1.8g・cm−3以下がさらに好ましく、1.6g・cm−3以下が特に好ましい。タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、高容量の電池を得ることができない場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい場合がある。
タップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量からタップ密度を算出する。
(配向比)
炭素質材料の配向比は、通常0.005以上であり、0.01以上が好ましく、0.015以上がさらに好ましく、また、通常0.67以下である。配向比が、上記範囲を下回ると、高密度充放電特性が低下する場合がある。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
配向比は、試料を加圧成型してからX線回折により測定する。試料0.47gを直径1
7mmの成型機に充填し58.8MN・m−2で圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表わされる比を算出する。
X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :
発散スリット=0.5度
受光スリット=0.15mm
散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
(アスペクト比(粉))
炭素質材料のアスペクト比は、通常1以上、また、通常10以下であり、8以下が好ましく、5以下がさらに好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、炭素質材料のアスペクト比の理論下限値である。
アスペクト比の測定は、炭素質材料の粒子を走査型電子顕微鏡で拡大観察して行う。厚さ50μm以下の金属の端面に固定した任意の50個の黒鉛粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の炭素質材料粒子の最長となる径Aと、それと直交する最短となる径Bを測定し、A/Bの平均値を求める。
<負極の構成と作製法>
電極の製造は、本発明の効果を著しく損なわない限り、公知のいずれの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
また、合金系材料を用いる場合には、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法も用いられる。
(電極密度)
負極活物質を電極化した際の電極構造は特に制限されないが、集電体上に存在している負極活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がさらに好ましく、1.3g・cm−3以上が特に好ましく、また、2.2g・cm−3以下が好ましく、2.1g・cm−3以下がより好ましく、2.0g・cm−3以下がさらに好ましく、1.9g・cm−3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
2−2.正極
<正極活物質>
以下に正極に使用される正極活物質(リチウム遷移金属系化合物)について述べる。
〈リチウム遷移金属系化合物〉
リチウム遷移金属系化合物とは、Liイオンを脱離、挿入することが可能な構造を有する化合物であり、例えば、硫化物やリン酸塩化合物、リチウム遷移金属複合酸化物などが挙げられる。硫化物としては、TiSやMoSなどの二次元層状構造をもつ化合物や、一般式MeMo(MeはPb,Ag,Cuをはじめとする各種遷移金属)で表される強固な三次元骨格構造を有するシュブレル化合物などが挙げられる。リン酸塩化合物としては、オリビン構造に属するものが挙げられ、一般的にはLiMePO(Meは少なくとも1種以上の遷移金属)で表され、具体的にはLiFePO、LiCoPO、LiNiPO、LiMnPOなどが挙げられる。リチウム遷移金属複合酸化物としては、三次元的拡散が可能なスピネル構造や、リチウムイオンの二次元的拡散を可能にする層状構造に属するものが挙げられる。スピネル構造を有するものは、一般的にLiMe(Meは少なくとも1種以上の遷移金属)と表され、具体的にはLiMn、LiCoMnO、LiNi0.5Mn1.5、LiCoVOなどが挙げられる。層状構造を有するものは、一般的にLiMeO(Meは少なくとも1種以上の遷移金属)と表される。具体的にはLiCoO、LiNiO、LiNi1−xCo、LiNi1−x−yCoMn、LiNi0.5Mn0.5、Li1.2Cr0.4Mn0.4、Li1.2Cr0.4Ti0.4、LiMnOなどが挙げられる。
〈組成〉
また、リチウム含有遷移金属化合物は、例えば、下記組成式(A)または(B)で示されるリチウム遷移金属系化合物であることが挙げられる。
1)下記組成式(A)で示されるリチウム遷移金属系化合物である場合
Li1+xMO …(A)
ただし、xは通常0以上、0.5以下である。Mは、Ni及びMn、或いは、Ni、Mn及びCoから構成される元素であり、Mn/Niモル比は通常0.1以上、5以下である。Ni/Mモル比は通常0以上、0.5以下である。Co/Mモル比は通常0以上、0.5以下である。なお、xで表されるLiのリッチ分は、遷移金属サイトMに置換している場合もある。
なお、上記組成式(A)においては、酸素量の原子比は便宜上2と記載しているが、多少の不定比性があってもよい。また、上記組成式中のxは、リチウム遷移金属系化合物の製造段階での仕込み組成である。通常、市場に出回る電池は、電池を組み立てた後に、エージングを行っている。そのため、充放電に伴い、正極のLi量は欠損している場合がある。その場合、組成分析上、3Vまで放電した場合のxが−0.65以上、1以下に測定されることがある。
また、リチウム遷移金属系化合物は、正極活物質の結晶性を高めるために酸素含有ガス雰囲気下で高温焼成を行って焼成されたものが電池特性に優れる。 さらに、組成式(A)で示されるリチウム遷移金属系化合物は、以下一般式(A’)のとおり、213層と呼ばれるLiMOとの固溶体であってもよい。
αLiMO・(1−α)LiM’O・・・(A’)
一般式中、αは、0<α<1を満たす数である。
Mは、平均酸化数が4である少なくとも一種の金属元素であり、具体的には、Mn、Zr、Ti、Ru、Re及びPtからなる群より選択される少なくとも一種の金属元素である。
M’は、平均酸化数が3である少なくとも一種の金属元素であり、好ましくは、V、Mn、Fe、Co及びNiからなる群より選択される少なくとも一種の金属元素であり、より好ましくは、Mn、Co及びNiからなる群より選択される少なくとも一種の金属元素である。
2)下記一般式(B)で表されるリチウム遷移金属系化合物である場合。
Li[LiaMn2−b−a]O4+δ・・・(B)
ただし、Mは、Ni、Cr、Fe、Co、Cu、Zr、AlおよびMgから選ばれる遷移金属のうちの少なくとも1種から構成される元素である。
bの値は通常0.4以上、0.6以下である。
bの値がこの範囲であれば、リチウム遷移金属系化合物における単位重量当たりのエネルギー密度が高い。
また、aの値は通常0以上、0.3以下である。また、上記組成式中のaは、リチウム遷移金属系化合物の製造段階での仕込み組成である。通常、市場に出回る電池は、電池を組み立てた後に、エージングを行っている。そのため、充放電に伴い、正極のLi量は欠損している場合がある。その場合、組成分析上、3Vまで放電した場合のaが−0.65以上、1以下に測定されることがある。aの値がこの範囲であれば、リチウム遷移金属系化合物における単位重量当たりのエネルギー密度を大きく損なわず、かつ、良好な負荷特性が得られる。
さらに、δの値は通常±0.5の範囲である。
δの値がこの範囲であれば、結晶構造としての安定性が高く、このリチウム遷移金属系化合物を用いて作製した電極を有する電池のサイクル特性や高温保存が良好である。
ここでリチウム遷移金属系化合物の組成であるリチウムニッケルマンガン系複合酸化物におけるリチウム組成の化学的な意味について、以下により詳細に説明する。
上記リチウム遷移金属系化合物の組成式のa,bを求めるには、各遷移金属とリチウムを誘導結合プラズマ発光分光分析装置(ICP−AES)で分析して、Li/Ni/Mnの比を求める事で計算される。
構造的視点では、aに係るリチウムは、同じ遷移金属サイトに置換されて入っていると考えられる。ここで、aに係るリチウムによって、電荷中性の原理によりMとマンガンの平均価数が3.5価より大きくなる。
また、上記リチウム遷移金属系化合物は、フッ素置換されていてもよく、LiMn4‐x2xと表記される。
〈ブレンド〉
上記の組成のリチウム遷移金属系化合物の具体例としては、例えば、Li1+xNi0.5Mn0.5、Li1+xNi0.85Co0.10Al0.05、Li1+xNi0.33Mn0.33Co0.33、Li1+xNi0.45Mn0.45Co0.1、Li1+xMn1.8Al0.2、Li1+xMn1.5Ni0.5等が挙げられる。これらのリチウム遷移金属系化合物は、一種を単独で用いてもよく、二種以上をブレンドして用いても良い。
〈異元素導入〉
また、リチウム遷移金属系化合物は、異元素が導入されてもよい。異元素としては、B,Na,Mg,Al,K,Ca,Ti,V,Cr,Fe,Cu,Zn,Sr,Y,Zr,Nb,Ru,Rh,Pd,Ag,In,Sb,Te,Ba,Ta,Mo,W,Re,Os,Ir,Pt,Au,Pb,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Bi,N,F,S,Cl,Br,I,As,Ge,P,Pb,Sb,SiおよびSnの何れか1種以上の中から選択される。これらの異元素は、リチウム遷移金属系化合物の結晶構造内に取り込まれていてもよく、あるいは、リチウム遷移金属系化合物の結晶構造内に取り込まれず、その粒子表面や結晶粒界などに単体もしくは化合物として偏在していてもよい。
[リチウム二次電池用正極]
リチウム二次電池用正極は、上述のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体及び結着剤を含有する正極活物質層を集電体上に形成してなるものである。
正極活物質層は、通常、正極材料と結着剤と更に必要に応じて用いられる導電材及び増粘剤等を、乾式で混合してシート状にしたものを正極集電体に圧着するか、或いはこれらの材料を液体媒体中に溶解又は分散させてスラリー状にして、正極集電体に塗布、乾燥することにより作成される。
正極集電体の材質としては、通常、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料が用いられる。また、形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。なお、薄膜は適宜メッシュ状に形成しても良い。
正極集電体として薄膜を使用する場合、その厚さは任意であるが、通常1μm以上、100mm以下の範囲が好適である。上記範囲よりも薄いと、集電体として必要な強度が不足する可能性がある一方で、上記範囲よりも厚いと、取り扱い性が損なわれる可能性がある。
正極活物質層の製造に用いる結着剤としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して安定な材料であれば良いが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子、SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子、スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレンスチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子、シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子、アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
正極活物質層中の結着剤の割合は、通常0.1重量%以上、80重量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう可能性がある一方で、高すぎると、電池容量や導電性の低下につながる可能性がある。
正極活物質層には、通常、導電性を高めるために導電材を含有させる。その種類に特に制限はないが、具体例としては、銅、ニッケル等の金属材料や、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素材料などを挙げることができる。なお、これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。正極活物質層中の導電材の割合は、通常0.01重量%以上、50重量%以下である。導電材の割合が低すぎると導電性が不十分になることがあり、逆に高すぎると電池容量が低下することがある。
スラリーを形成するための液体媒体としては、正極材料であるリチウム遷移金属系化合物粉体、結着剤、並びに必要に応じて使用される導電材及び増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いても良い。水系溶媒の例としては水、アルコールなどが挙げられ、有機系溶媒の例としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセタミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等を挙げることができる。特に水系溶媒を用いる場合、増粘剤に併せて分散剤を加え、SBR等のラテックスを用いてスラリー化する。なお、これらの溶媒は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
正極活物質層中の正極材料としてのリチウム遷移金属系化合物粉体の含有割合は、通常10重量%以上、99.9重量%以下である。正極活物質層中のリチウム遷移金属系化合物粉体の割合が多すぎると正極の強度が不足する傾向にあり、少なすぎると容量の面で不十分となることがある。
また、正極活物質層の厚さは、通常10〜200μm程度である。
正極のプレス後の電極密度としては、通常、2.2g/cm以上、4.2g/cm以下である。
なお、塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ローラープレス等により圧密化することが好ましい。
かくして、リチウム二次電池用正極が調製できる。
2−3.セパレータ
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、本発明の非水系電解液は、通常はこのセパレータに含浸させて用いる。
セパレータの材料や形状については特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、本発明の非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。中でも好ましくはガラスフィルター、ポリオレフィンであり、さらに好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、10μm以上がさらに好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がさらに好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、非水系電解液二次電池全体としてのエネルギー密度が低下する場合がある。
さらに、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上がさらに好ましく、また、通常90%以下であり、85%以下が好ましく、75%以
下がさらに好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状もしくは繊維形状のものが用いられる。
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着材を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着材として多孔層を形成させることが挙げられる。
セパレータの非電解液二次電池における特性を、ガーレ値で把握することができる。ガーレ値とは、フィルム厚さ方向の空気の通り抜け難さを示し、100mlの空気が該フィルムを通過するのに必要な秒数で表されるため、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方がフィルムの厚さ方向の連通性が良いことを意味し、その数値が大きい方がフィルムの厚さ方向の連通性が悪いことを意味する。連通性とは、フィルム厚さ方向の孔のつながり度合いである。本発明のセパレータのガーレ値が低ければ、様々な用途に使用することが出来る。例えば非水系リチウム二次電池のセパレータとして使用した場合、ガーレ値が低いということは、リチウムイオンの移動が容易であることを意味し、電池性能に優れるため好ましい。セパレータのガーレ値は、任意ではあるが、好ましくは10〜1000秒/100mlであり、より好ましくは15〜800秒/100mlであり、更に好ましくは20〜500秒/100mlである。ガーレ値が1000秒/100ml以下であれば、実質的には電気抵抗が低く、セパレータとしては好ましい。
2−4.電池設計
<電極群>
電極群は、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。
<外装ケース>
外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合
金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
<保護素子>
保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等を使用することができる。上記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
<外装体>
本発明の非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体内に収納して構成される。この外装体は、特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。具体的に、外装体の材質は任意であるが、通常は、例えばニッケルメッキを施した鉄、ステンレス、アルミウム又はその合金、ニッケル、チタン等が用いられる。
また、外装体の形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等のいずれであってもよい。
以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
本実施例に使用した式(1)で表される化合物を以下に示す。
Figure 2013206708
本実施例に使用した少なくとも1種のハロゲン原子を有する化合物を以下に示す。
Figure 2013206708
<実施例1,2及び比較例1〜6(電池評価)>
[実施例1]
[非水系電解液の調製]
乾燥アルゴン雰囲気下、エチレンカーボネート(以下、ECと称する場合がある。)とジメチルカーボネート(以下、DMCと称する場合がある。)との混合物(体積比30:70)にLiPFを1.0モル/リットルの割合となるように溶解して基準電解液を調製し、この基準電解液に対し、3−クロロ−1−プロピン(以下、CPと称する場合があ
る。)を147質量ppm含有するビニルスルホン酸−2−プロピニル(以下、化合物(A)と称する場合がある。)0.5質量%を添加して電解液を調製した。
なお、この非水電解液におけるCPの含有量は、基準電解液に対して0.74質量ppmである。
[正極の製造]
正極活物質としてコバルト酸リチウム(LiCoO)97質量%と、導電材としてアセチレンブラック1.5質量%と、結着材としてポリフッ化ビニリデン(PVdF)1.5質量%とを、N−メチルピロリドン溶媒中で混合してスラリー化した。これをアルミニウム箔の片面に均一に塗布・乾燥・プレスした。その後、直径12.5mmの円盤状に打ち抜いて、非水系電解液電池(コイン型)用の正極とした。
[負極の製造]
負極活物質としてグラファイト粉末100質量部に、増粘剤、バインダーとしてそれぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)1質量部、及び、スチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。このスラリーを厚さ12μmの銅箔の片面に均一に塗布、乾燥した後、プレスした。その後、直径12.5mmの円盤状に打ち抜いて非水系電解液電池(コイン型)用の負極とした。以下、これを炭素負極と称す。
[非水系電解液電池(コイン型)の製造]
上記の正極及び負極と、各実施例及び比較例で調製した非水系電解液とを用いて、以下の手順でコイン型セルを作製した。即ち、正極導電体を兼ねるステンレス鋼製の缶体に正極を収容し、その上に電解液を含浸させたポリエチレン製のセパレータを介して負極を載置した。この缶体と負極導電体を兼ねる封口板とを、絶縁用のガスケットを介してかしめて密封し、コイン型セルを作製した。
[レート特性評価]
非水系電解液電池(コイン型)を、25℃において、0.2Cに相当する電流で4.1VまでCCCV充電(0.05Cカット)した後、0.2Cの定電流で3Vまで放電した。次いで、0.2Cで4.33VまでCCCV充電(0.05Cカット)した後、0.2Cで3Vまで放電した。再度、0.2Cで4.33VまでCCCV充電(0.05Cカット)した後、0.2Cで3Vまで放電し、0.2C容量を求めた。
再度、0.2Cで4.2VまでCCCV充電(0.05Cカット)した後、1Cで3V
まで放電し、1C容量を求めた。そして、(1C容量)÷(0.2C容量)×100の計算式から、初期1Cレート特性(%)を求めた。
ここで、1Cとは電池の基準容量を1時間で放電する電流値を表し、例えば、0.2Cとはその1/5の電流値を表す。
[高温保存特性評価]
初期容量評価を行った後の非水系電解液電池を、25℃において、0.2Cで4.33VまでCCCV充電(0.05Cカット)を行った後、85℃、24時間の条件で高温保存を行った。電池を十分に冷却させた後、保存後の電圧を測定し、保存後電圧(V)とした。
この非水系電解液電池を用いて、レート特性評価を実施した。評価結果を表1、図1ならびに図2に示す。
[実施例2]
実施例1−1の電解液において、CPを147質量ppm含有する化合物(A)を0.5質量%添加する代わりに、CPを2.0質量%含有する化合物(A)を0.5質量%添加した添加した以外は実施例1と同様にして非水系電解液電池を作製し、レート特性評価を実施した。評価結果を表1、図1ならびに図2に示す。
なお、この非水電解液におけるCPの含有量は、基準電解液に対して100.0質量ppmである。
[比較例1]
実施例1の電解液において、CPを147質量ppm含有する化合物(A)を0.5質量%添加する代わりに、基準電解液に対し、CPを0.13質量ppm添加した以外は実施例1と同様にして非水系電解液電池を作製し、レート特性評価を実施した。評価結果を表1、図1ならびに図2に示す。
なお、この非水電解液におけるCPの含有量は、基準電解液に対して0.13質量ppmである。
[比較例2]
実施例1の電解液において、CPを147質量ppm含有する化合物(A)を0.5質量%添加する代わりに、基準電解液に対し、CPを0.74質量ppm添加した以外は実施例1と同様にして非水系電解液電池を作製し、レート特性評価を実施した。評価結果を表1、図1ならびに図2に示す。
なお、この非水電解液におけるCPの含有量は、基準電解液に対して0.74質量ppmである。
[比較例3]
実施例1の電解液において、CPを147質量ppm含有する化合物(A)を0.5質量%添加する代わりに、基準電解液に対し、CPを100.0質量ppm添加した以外は実施例1と同様にして非水系電解液電池を作製し、レート特性評価を実施した。評価結果を表1、図1ならびに図2に示す。
なお、この非水電解液におけるCPの含有量は、基準電解液に対して100.0質量ppmである。
[比較例4]
実施例1の電解液において、CPを147質量ppm含有する化合物(A)を0.5質量%添加する代わりに、基準電解液に対し、CPを500.0質量ppm添加した以
外は実施例1と同様にして非水系電解液電池を作製し、レート特性評価を実施した。評価結果を表1、図1ならびに図2に示す。
なお、この非水電解液におけるCPの含有量は、基準電解液に対して500.0質量ppmである。
[比較例5]
実施例1の電解液において、CPを147質量ppm含有する化合物(A)を0.5質量%添加する代わりに、基準電解液に対し、CPを25.0質量ppm含有する化合物(A)を0.5質量%添加した以外は実施例1と同様にして非水系電解液電池を作製し、レート特性評価を実施した。評価結果を表1、図1ならびに図2に示す。
なお、この非水電解液におけるCPの含有量は、基準電解液に対して0.13質量ppmである。
[比較例6]
実施例1の電解液において、CPを147質量ppm含有する化合物(A)を0.5質量%添加する代わりに、基準電解液に対し、CPを10%含有する化合物(A)を0.5質量%添加した以外は実施例1と同様にして非水系電解液電池を作製し、レート特性評価を実施した。評価結果を表1、図1ならびに図2に示す。
なお、この非水電解液におけるCPの含有量は、基準電解液に対して500.0質量ppmである。
Figure 2013206708
※実施例1、2ならびに比較例1〜6の初期1Cレートは、比較例1を100%としたときの相対値である。また、実施例1に示される向上率とは、比較例2の各々のレート特性の値に対する増減分であり、実施例2に示される向上率とは、比較例3のレート特性の値に対する増減分であり、比較例5に示される向上率とは、比較例1のレート特性の値に対する増減分であり、比較例6に示される向上率とは、比較例4のレート特性の値に対する増減分である。
表1より、第一の本発明にかかる実施例1ならびに実施例2の非水系電解液を用いると
、少なくとも1種の塩素原子を有する化合物を単独で添加した場合(比較例1〜4)に比べ、1Cレート特性ならびに保存後電圧に優れていることが分かる。そのことは、向上率を見ても明らかである。また、式(1)で示される化合物ならびに少なくとも1種の塩素原子を有する化合物が本発明に記載される添加量範囲を超えた場合(比較例5、6)、保存後電圧向上は見られるものの0.5Cならびに1Cレート特性は不十分である。そのことは、向上率を見ても明らかである。
この要因については、以下のように考える。式(1)で示される化合物と少なくとも1種のハロゲン原子を有する化合物を併用添加することで、リチウム伝導性の高い負極皮膜が形成される。また、この皮膜形成反応は効率よく進行するため、式(1)で示される化合物の分解物が生成しにくい。これらの効果が総合的に発揮され、レート特性が向上する。さらに、生成する負極皮膜は熱安定性が高いため、保存試験中の溶出ならびに正極で酸化される寄与が減少し、結果として、保存試験中の電池電圧低下が抑制される。
一方、少なくとも1種の塩素原子を有する化合物の添加量が増加すると、電極表面で塩化リチウムが多量に生じるため、電極界面の抵抗が増加してしまう。結果として、レート特性向上効果が不十分となる。よって、レート特性向上の観点から、少なくとも1種のハロゲン原子を有する化合物の添加量をある特定した範囲に限定することが好ましい。
本発明の非水系電解液によれば、非水系電解液電池の高温保存時における容量劣化とガス発生を改善できる。そのため、本発明の非水系電解液及びこれを用いた非水系電解液電池は、公知の各種の用途に用いることが可能である。具体例としては、例えば、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ、負荷平準化用電源、自然エネルギー貯蔵電源等が挙げられる。

Claims (10)

  1. 金属イオンを吸蔵・放出しうる正極及び負極を備える非水系電解液電池用の非水系電解液であって、該非水系電解液が電解質及び非系水溶媒とともに、
    (A)下記式(1)で示される化合物、ならびに
    (B)塩素原子を有する化合物を非水系電解液中に0.2質量ppm以上500質量ppm未満
    を含有することを特徴とする非水系電解液。
    Figure 2013206708
    (式(1)中、R、Rは各々独立に、水素原子、ハロゲン原子、または置換基を有してもよい有機基であり、それぞれ同一であっても異なっていてもよい。)
  2. 金属イオンを吸蔵・放出しうる正極及び負極を備える非水系電解液電池用の非水系電解液であって、塩素原子を有する化合物を20質量ppm以上5質量%以下含む下記式(1)で示される化合物を含有することを特徴とする非水系電解液。
    Figure 2013206708
    (式(1)中、R、Rは各々独立に、水素原子、ハロゲン原子、または置換基を有してもよい有機基であり、それぞれ同一であっても異なっていてもよい。)
  3. 前記塩素原子を有する化合物が、下記一般式(2)で示される化合物を含むことを特徴とする請求項1または2に記載の非水系電解液。
    Figure 2013206708
    (式(2)中、R、Rは各々独立に、水素原子、ハロゲン原子、または置換基を有してもよい有機基であり、それぞれ同一であっても異なっていてもよい。)
  4. 前記式(1)中、R若しくはRのいずれか一方、または両方がS=O基を1つ以上含む有機基であることを特徴とする請求項1乃至3のいずれか1項に記載の非水系電解液。
  5. 前記式(2)中、Rが水素原子であることを特徴とする請求項1乃至4のいずれか1項に記載の非水系電解液。
  6. 前記式(2)中、Rが置換基を有していてもよいメチレン基であることを特徴とする請求項1乃至5のいずれか1項に記載の非水系電解液。
  7. 前記一般式(1)で示される化合物を非水系電解液中に0.01質量%以上5質量%以下含有することを特徴とする請求項1乃至6のいずれか1項に記載の非水系電解液。
  8. フッ素原子を有する環状カーボネート、炭素−炭素不飽和結合を有する環状カーボネート、モノフルオロリン酸塩、ジフルオロリン酸塩、イソシアネート化合物、環状スルホン酸エステルおよびニトリル化合物よりなる群から選ばれる少なくとも1種の化合物を更に
    含有することを特徴とする請求項1乃至7のいずれか1項に記載の非水系電解液。
  9. フッ素原子を有する環状カーボネートが、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネートよりなる群から選ばれる少なくとも1種の化合物であり、炭素−炭素不飽和結合を有する環状カーボネートが、ビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネートであり、イソシアネート化合物が少なくとも2つのイソシアネート基を有する化合物であり、ニトリル化合物が少なくとも2つのイソシアネート基を有する化合物であることを特徴とする請求項8に記載の非水系電解液。
  10. リチウムイオンを吸蔵・放出可能な負極及び正極、並びに非水系電解液を含む非水系電解液二次電池であって、該非水系電解液が請求項1乃至9のいずれか1項に記載の非水系電解液であることを特徴とする非水系電解液二次電池。
JP2012074403A 2012-03-28 2012-03-28 非水系電解液及びそれを用いた非水系電解液電池 Active JP6019663B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012074403A JP6019663B2 (ja) 2012-03-28 2012-03-28 非水系電解液及びそれを用いた非水系電解液電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012074403A JP6019663B2 (ja) 2012-03-28 2012-03-28 非水系電解液及びそれを用いた非水系電解液電池

Publications (2)

Publication Number Publication Date
JP2013206708A true JP2013206708A (ja) 2013-10-07
JP6019663B2 JP6019663B2 (ja) 2016-11-02

Family

ID=49525591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074403A Active JP6019663B2 (ja) 2012-03-28 2012-03-28 非水系電解液及びそれを用いた非水系電解液電池

Country Status (1)

Country Link
JP (1) JP6019663B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111557A (ja) * 2013-11-05 2015-06-18 三菱化学株式会社 非水系電解質、およびそれを用いた非水系電解質二次電池
EP3203568A4 (en) * 2014-10-02 2017-08-09 LG Chem, Ltd. Electrolyte additive for lithium secondary battery and non-aqueous electrolyte and lithium secondary battery comprising the electrolyte additive
CN108140891A (zh) * 2015-10-15 2018-06-08 中央硝子株式会社 非水电解液电池用电解液和使用其的非水电解液电池
CN109638354A (zh) * 2018-12-04 2019-04-16 南通新宙邦电子材料有限公司 一种锂离子电池电解液及锂离子电池
CN109950612A (zh) * 2019-04-08 2019-06-28 珠海冠宇电池有限公司 一种非水电解液和锂离子电池
CN113690489A (zh) * 2019-09-09 2021-11-23 宁德时代新能源科技股份有限公司 一种电解液及包含该电解液的锂金属电池
US11183711B2 (en) 2017-09-21 2021-11-23 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
CN114927755A (zh) * 2022-05-30 2022-08-19 深圳澳睿新能源科技有限公司 含氰基星状胺化合物在锂离子电池非水电解液中的应用及非水电解液、锂离子电池

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173180A (ja) * 2005-12-26 2007-07-05 Central Glass Co Ltd 非水電解液電池用電解液及び非水電解液電池
JP2009181846A (ja) * 2008-01-31 2009-08-13 Sony Corp 非水電解液電池
JP2009193836A (ja) * 2008-02-15 2009-08-27 Adeka Corp 非水電解液及び該電解液を用いた非水電解液二次電池
WO2010021236A1 (ja) * 2008-08-20 2010-02-25 三洋電機株式会社 非水電解質二次電池
JP2010267509A (ja) * 2009-05-15 2010-11-25 Adeka Corp 非水電解液及び該電解液を用いた非水電解液二次電池
JP2010272376A (ja) * 2009-05-21 2010-12-02 Denso Corp 非水電解液及び該電解液を有する非水電解液二次電池
JP2011077029A (ja) * 2009-09-07 2011-04-14 Adeka Corp 非水電解液及び該電解液を用いた非水電解液二次電池
JP2011124039A (ja) * 2009-12-09 2011-06-23 Denso Corp 電池用非水電解液及び該電解液を用いた非水電解液二次電池
WO2011096450A1 (ja) * 2010-02-03 2011-08-11 宇部興産株式会社 非水電解液、それを用いた電気化学素子、及びそれに用いられるアルキニル化合物
JP2011192632A (ja) * 2010-03-16 2011-09-29 Samsung Sdi Co Ltd リチウム2次電池用電解液及びリチウム2次電池
JP2011192402A (ja) * 2010-03-11 2011-09-29 Sanyo Electric Co Ltd 非水電解質二次電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173180A (ja) * 2005-12-26 2007-07-05 Central Glass Co Ltd 非水電解液電池用電解液及び非水電解液電池
JP2009181846A (ja) * 2008-01-31 2009-08-13 Sony Corp 非水電解液電池
JP2009193836A (ja) * 2008-02-15 2009-08-27 Adeka Corp 非水電解液及び該電解液を用いた非水電解液二次電池
WO2010021236A1 (ja) * 2008-08-20 2010-02-25 三洋電機株式会社 非水電解質二次電池
JP2010267509A (ja) * 2009-05-15 2010-11-25 Adeka Corp 非水電解液及び該電解液を用いた非水電解液二次電池
JP2010272376A (ja) * 2009-05-21 2010-12-02 Denso Corp 非水電解液及び該電解液を有する非水電解液二次電池
JP2011077029A (ja) * 2009-09-07 2011-04-14 Adeka Corp 非水電解液及び該電解液を用いた非水電解液二次電池
JP2011124039A (ja) * 2009-12-09 2011-06-23 Denso Corp 電池用非水電解液及び該電解液を用いた非水電解液二次電池
WO2011096450A1 (ja) * 2010-02-03 2011-08-11 宇部興産株式会社 非水電解液、それを用いた電気化学素子、及びそれに用いられるアルキニル化合物
JP2011192402A (ja) * 2010-03-11 2011-09-29 Sanyo Electric Co Ltd 非水電解質二次電池
JP2011192632A (ja) * 2010-03-16 2011-09-29 Samsung Sdi Co Ltd リチウム2次電池用電解液及びリチウム2次電池

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111557A (ja) * 2013-11-05 2015-06-18 三菱化学株式会社 非水系電解質、およびそれを用いた非水系電解質二次電池
US10381685B2 (en) 2014-10-02 2019-08-13 Lg Chem, Ltd. Liquid electrolyte additive for lithium secondary battery, non-aqueous liquid electrolyte and lithium secondary battery comprising the same
EP3203568A4 (en) * 2014-10-02 2017-08-09 LG Chem, Ltd. Electrolyte additive for lithium secondary battery and non-aqueous electrolyte and lithium secondary battery comprising the electrolyte additive
JP2017536652A (ja) * 2014-10-02 2017-12-07 エルジー・ケム・リミテッド リチウム二次電池用電解液添加剤、前記電解液添加剤を含む非水性電解液及びリチウム二次電池
CN111052484B (zh) * 2014-10-02 2023-05-02 株式会社Lg新能源 用于锂二次电池的液体电解质添加剂、包含该添加剂的非水液体电解质和锂二次电池
CN111052484A (zh) * 2014-10-02 2020-04-21 株式会社Lg化学 用于锂二次电池的液体电解质添加剂、包含该添加剂的非水液体电解质和锂二次电池
US20190006713A1 (en) * 2015-10-15 2019-01-03 Central Glass Company, Limited Electrolyte Solution for Nonaqueous Electrolyte Batteries, and Nonaqueous Electrolyte Battery Using Same
CN108140891B (zh) * 2015-10-15 2021-06-04 中央硝子株式会社 非水电解液电池用电解液和使用其的非水电解液电池
CN108140891A (zh) * 2015-10-15 2018-06-08 中央硝子株式会社 非水电解液电池用电解液和使用其的非水电解液电池
EP3425718A4 (en) * 2015-10-15 2019-10-30 Central Glass Company, Limited ELECTROLYTIC SOLUTION FOR NONAQUEOUS ELECTROLYTE BATTERIES, AND NONAQUEOUS ELECTROLYTE BATTERY USING THE SAME
KR20180064523A (ko) * 2015-10-15 2018-06-14 샌트랄 글래스 컴퍼니 리미티드 비수전해액 전지용 전해액 및 그를 이용한 비수전해액 전지
KR102203779B1 (ko) * 2015-10-15 2021-01-15 샌트랄 글래스 컴퍼니 리미티드 비수전해액 전지용 전해액 및 그를 이용한 비수전해액 전지
US11183711B2 (en) 2017-09-21 2021-11-23 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
CN109638354B (zh) * 2018-12-04 2021-04-09 南通新宙邦电子材料有限公司 一种锂离子电池电解液及锂离子电池
CN109638354A (zh) * 2018-12-04 2019-04-16 南通新宙邦电子材料有限公司 一种锂离子电池电解液及锂离子电池
CN109950612A (zh) * 2019-04-08 2019-06-28 珠海冠宇电池有限公司 一种非水电解液和锂离子电池
CN113690489A (zh) * 2019-09-09 2021-11-23 宁德时代新能源科技股份有限公司 一种电解液及包含该电解液的锂金属电池
CN113690489B (zh) * 2019-09-09 2022-11-08 宁德时代新能源科技股份有限公司 一种电解液及包含该电解液的锂金属电池
US11888115B2 (en) 2019-09-09 2024-01-30 Contemporary Amperex Technology Co., Limited Electrolytic solution and lithium metal battery containing the same, battery module, battery pack, and device
CN114927755A (zh) * 2022-05-30 2022-08-19 深圳澳睿新能源科技有限公司 含氰基星状胺化合物在锂离子电池非水电解液中的应用及非水电解液、锂离子电池

Also Published As

Publication number Publication date
JP6019663B2 (ja) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6906476B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6624243B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6772834B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP6031861B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6263910B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6019663B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
WO2014133107A1 (ja) 非水系電解液及びそれを用いた非水系電解液電池
WO2012108270A1 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP5928057B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2020021747A (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP5903931B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6131757B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6201485B2 (ja) 非水系電解液二次電池
JP6638251B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6500541B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6167729B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6201363B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6657658B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6729167B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6601262B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2017168443A (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP2018029030A (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2017152241A (ja) 非水系電解液及びそれを用いた非水系電解液二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R150 Certificate of patent or registration of utility model

Ref document number: 6019663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350