JP6144857B1 - 半導体装置、表示装置、電子機器 - Google Patents

半導体装置、表示装置、電子機器 Download PDF

Info

Publication number
JP6144857B1
JP6144857B1 JP2017007451A JP2017007451A JP6144857B1 JP 6144857 B1 JP6144857 B1 JP 6144857B1 JP 2017007451 A JP2017007451 A JP 2017007451A JP 2017007451 A JP2017007451 A JP 2017007451A JP 6144857 B1 JP6144857 B1 JP 6144857B1
Authority
JP
Japan
Prior art keywords
transistor
layer
source
drain
oxide semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017007451A
Other languages
English (en)
Other versions
JP2017121064A (ja
Inventor
山崎 舜平
舜平 山崎
小山 潤
潤 小山
将志 津吹
将志 津吹
耕生 野田
耕生 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Application granted granted Critical
Publication of JP6144857B1 publication Critical patent/JP6144857B1/ja
Publication of JP2017121064A publication Critical patent/JP2017121064A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/18Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages
    • G11C19/182Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes
    • G11C19/184Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes with field-effect transistors, e.g. MOS-FET
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00315Modifications for increasing the reliability for protection in field-effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/096Synchronous circuits, i.e. using clock signals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0267Details of drivers for scan electrodes, other than drivers for liquid crystal, plasma or OLED displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0275Details of drivers for data electrodes, other than drivers for liquid crystal, plasma or OLED displays, not related to handling digital grey scale data or to communication of data to the pixels by means of a current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix

Abstract

【課題】トランジスタのリーク電流を低減し、論理回路の誤動作を抑制する。【解決手段】チャネル形成層としての機能を有する酸化物半導体層を含み、チャネル幅1μmあたりのオフ電流が1×10−13A以下であるトランジスタを有し、入力信号として、第1の信号、第2の信号、及びクロック信号である第3の信号が入力され、入力された第1の信号乃至第3の信号に応じて電圧状態が設定された第4の信号及び第5の信号を出力信号として出力する構成とする。【選択図】図1

Description

本発明の一態様は、論理回路に関する。また、該論理回路を用いた駆動回路を含む半導体
装置に関する。
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置
全般を指し、表示装置などの電気光学装置、半導体回路及び電子機器は全て半導体装置で
ある。
液晶表示装置に代表されるように、ガラス基板などの平板に形成される薄膜トランジスタ
(以下、TFT:Thin Film Transistorともいう)は、主にアモル
ファスシリコン又は多結晶シリコンなどの半導体材料を用いて作製される。アモルファス
シリコンを用いたTFTは、電界効果移動度が低いもののガラス基板の大面積化に対応す
ることができる。一方、多結晶シリコンを用いたTFTは、電界効果移動度が高いものの
レーザアニールなどの結晶化工程が必要であり、ガラス基板の大面積化には必ずしも適応
しないといった特性を有している。
これに対し、半導体材料として酸化物半導体を用いるTFTが注目されている。例えば、
半導体材料として酸化亜鉛又はIn−Ga−Zn−O系酸化物半導体を用いてTFTを作
製し、画像表示装置のスイッチング素子として用いる技術が特許文献1及び特許文献2で
開示されている。
酸化物半導体にチャネル形成領域(チャネル領域ともいう)を設けたTFTは、アモルフ
ァスシリコンを用いたTFTよりも高い電界効果移動度が得られている。また、酸化物半
導体膜は、スパッタリング法などによって膜形成が可能であり、多結晶シリコンを用いた
TFTよりも作製が容易である。
このような酸化物半導体を用いて作製されたTFTは、液晶ディスプレイ、エレクトロル
ミネセンスディスプレイ(以下、ELディスプレイともいう)又は電子ペーパーなどの表
示装置の画素部及び駆動回路を構成するスイッチング素子に適用することが期待されてい
る。例えば、上記の酸化物半導体を用いて作製されたTFTによって表示装置の画素部及
び駆動回路を構成する技術が特許文献3で開示されている。
特開2006−165527号公報 特開2006−165529号公報 特開2006−165528号公報
駆動回路は、シフトレジスタ及びバッファなどによって構成され、さらにシフトレジスタ
又はバッファは、論理回路を用いて構成される。また、論理回路は、トランジスタを用い
て構成されるが、従来のトランジスタは、オフ状態であってもリーク電流が発生する場合
がある。リーク電流が発生すると、例えば論理回路において出力信号の電圧の値を一定の
範囲に維持したい場合であっても、出力信号の値が変化し、誤動作する可能性がある。
本発明の一態様では、トランジスタのリーク電流を低減することを課題とし、また、トラ
ンジスタのリーク電流を低減することにより論理回路の誤動作を抑制することを課題とす
る。
本発明の一態様は、オフ電流が低く、チャネル形成層としての機能を有する酸化物半導体
層を有するトランジスタを、論理回路を構成するトランジスタとして用いたものである。
これにより論理回路における誤動作の抑制を図る。
トランジスタのチャネル形成層として用いられる酸化物半導体層は、酸化物半導体中で電
子供与体(ドナー)となる不純物を除去することにより高純度化させた、真性又は実質的
に真性な半導体であり、シリコン半導体よりもエネルギーギャップが大きい。該酸化物半
導体層を用いたトランジスタは、オフ状態のリーク電流(オフ電流)が小さくなる。また
、チャネル形成層として酸化物半導体層を用いたトランジスタは、閾値電圧のばらつきに
よる影響が小さい。
本発明の一態様は、チャネル形成層としての機能を有する酸化物半導体層を含み、チャネ
ル幅1μmあたりのオフ電流が1×10−13A以下(好ましくは1×10−17A以下
)であるトランジスタを有し、入力信号として、第1の信号、第2の信号、及びクロック
信号である第3の信号が入力され、入力された第1の信号乃至第3の信号に応じて電圧状
態が設定された第4の信号及び第5の信号を出力信号として出力する論理回路である。
本発明の一態様において、論理回路は、入力された第1の信号乃至第3の信号に応じて電
圧状態が設定された第4の信号を出力する第1の単位論理回路と、入力された第1の信号
乃至第3の信号に応じて電圧状態が設定された第5の信号を出力する第2の単位論理回路
と、を有する構成にすることもできる。
本発明の一態様は、入力信号として、第1の信号、第2の信号、及びクロック信号である
第3の信号が入力され、入力された第1の信号乃至第3の信号に応じて電圧状態が設定さ
れた第4の信号を出力する第1の単位論理回路と、入力信号として、第1の信号、第2の
信号、及びクロック信号である第3の信号が入力され、入力された第1の信号乃至第3の
信号に応じて電圧状態が設定された第5の信号を出力する第2の単位論理回路と、を有し
、第1の単位論理回路及び第2の単位論理回路のそれぞれは、ゲート、ソース、及びドレ
インを有し、ゲートに第3の信号が入力され、ソース及びドレインの一方に第1の信号及
び第2の信号のいずれか一方が入力される第1のトランジスタと、ゲート、ソース、及び
ドレインを有し、ゲートが第1のトランジスタのソース及びドレインの他方に電気的に接
続され、ソース及びドレインの一方に高電源電圧及び低電源電圧のいずれか一方が与えら
れ、ソース及びドレインの他方の電圧が第4の信号又は第5の信号の電圧となる第2のト
ランジスタと、第1の電極及び第2の電極を有し、第1の電極が第2のトランジスタのゲ
ートに電気的に接続され、第2の電極が第2のトランジスタのソース及びドレインの他方
に電気的に接続された第1の容量素子と、ゲート、ソース、及びドレインを有し、ゲート
に第3の信号が入力され、ソース及びドレインの一方に第1の信号及び第2の信号の他方
が入力される第3のトランジスタと、ゲート、ソース、及びドレインを有し、ゲートが第
3のトランジスタのソース及びドレインの他方に電気的に接続され、ソース及びドレイン
の一方が第2のトランジスタのソース及びドレインのいずれか一方に電気的に接続され、
ソース及びドレインの他方に高電源電圧及び低電源電圧の他方が入力された第4のトラン
ジスタと、第1の電極及び第2の電極を有し、第1の電極が第3のトランジスタのソース
及びドレインの他方に電気的に接続され、第2の電極に高電源電圧及び低電源電圧の他方
が入力された第2の容量素子と、を有し、第1のトランジスタ乃至第4のトランジスタの
それぞれは、チャネル形成層としての機能を有する酸化物半導体層を含み、チャネル幅1
μmあたりのオフ電流が1×10−13A以下(好ましくは1×10−17A以下)であ
る論理回路である。
本発明の一態様は、上記記載の論理回路を含むシフトレジスタを備えた駆動回路と、駆動
回路により表示状態が制御される画素を含む画素部と、を有する半導体装置である。
本発明の一態様により、トランジスタにおけるリーク電流を低減することができ、また、
トランジスタのリーク電流を低減することにより出力信号の電圧を所望の範囲の値に維持
することができるため、誤動作を抑制することができる。
実施の形態1における論理回路の構成の一例を示す図。 実施の形態1におけるシフトレジスタの構成の一例を示す回路図。 図2に示すシフトレジスタの動作の一例を説明するためのタイミングチャート。 実施の形態1における半導体装置を説明するブロック図。 実施の形態1における信号線駆動回路の構成を説明する図および信号線駆動回路のタイミングチャート。 トランジスタの作製方法を説明する図。 トランジスタを説明する図。 トランジスタの作製方法を説明する図。 トランジスタを説明する図。 トランジスタの作製方法を説明する図。 トランジスタの作製方法を説明する図。 トランジスタの作製方法を説明する図。 トランジスタの作製方法を説明する図。 トランジスタを説明する図。 半導体装置を説明する図。 半導体装置の画素等価回路を説明する図。 半導体装置を説明する図。 半導体装置を説明する図。 半導体装置を説明する図。 電子機器を示す図。 電子機器を示す図。 電子機器を示す図。 電子機器を示す図。 酸化物半導体を用いたMOSトランジスタのソース−ドレイン間のバンド構造を示す図。 図24においてドレイン側に正の電圧が印加された状態を示す図。 酸化物半導体を用いたMOSトランジスタのMOS構造のエネルギーバンド図であり、(A)ゲート電圧を正とした場合、(B)ゲート電圧を負とした場合を示す図。 シリコンMOSトランジスタのソース−ドレイン間のバンド構造を示す図。 薄膜トランジスタの初期特性を示す図。 薄膜トランジスタの構造を示す上面図。 薄膜トランジスタのVg−Id特性を示す図。 半導体装置を説明する図。
本発明の実施の形態の一例について、図面を用いて以下に説明する。但し、本発明は以下
の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細
を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示
す実施の形態の記載内容に限定して解釈されるものではないとする。
(実施の形態1)
本実施の形態では、まず本発明の一態様である論理回路について説明する。なお、本明細
書において、論理回路とは、特に指定する場合を除き、ある時点における出力信号の状態
が、その時点における入力信号の状態のみで決まる論理回路である組み合わせ論理回路と
、ある時点における出力信号の状態が、その時点における入力信号の状態だけでなく、そ
れ以前に論理回路がどのような状態であったかによって決まる論理回路である順序論理回
路と、を含むものとする。
本実施の形態の論理回路の構成の一例について、図1を用いて説明する。図1は本実施の
形態における論理回路の構成の一例を示す図である。
図1(A)に示す論理回路100には、入力信号として信号IN1、信号IN2、及び信
号CK1が入力される。また、図1(A)に示す論理回路100は、出力信号として信号
OUT1a及び信号OUT1bを出力する。
なお、一般的に電圧とは、ある二点間における電位の差(電位差ともいう)のことをいう
。しかし、電圧及び電位の値は、回路図などにおいていずれもボルト(V)で表されるこ
とがあるため、区別が困難である。そこで、本明細書では、特に指定する場合を除き、あ
る一点の電位と基準となる電位(基準電位ともいう)との電位差を、該一点の電圧として
用いる場合がある。
なお、本明細書における信号としては、例えば電圧、電流、抵抗、又は周波数などを用い
たアナログ信号又はデジタル信号を用いることができる。例えば、電圧を用いた信号(電
圧信号ともいう)としては、少なくとも第1の電圧状態及び第2の電圧状態を有する信号
を用いることが好ましく、例えば第1の電圧状態としてハイレベルの電圧状態及び第2の
電圧状態としてローレベルの電圧状態を有する2値のデジタル信号などを用いることがで
きる。なお、2値のデジタル信号において、ハイレベルの電圧を電圧Vともいい、ロー
レベルの電圧を電圧Vともいう。また、第1の電圧状態の電圧及び第2の電圧状態の電
圧は、それぞれ一定値であることが好ましい。しかし、電子回路では、例えばノイズなど
の影響があるため、第1の電圧状態の電圧及び第2の電圧状態の電圧は、一定値ではなく
、それぞれ一定の範囲内の値であればよい。
なお、本明細書において、高電源電圧とは、相対的に高電圧側の電圧(VDDともいう)
であり、低電源電圧とは、相対的に低電圧側の電圧(VSSともいう)である。高電源電
圧及び低電源電圧は、それぞれ定数であることが好ましいが、電子回路ではノイズなどに
より電圧が所望の値とずれることがある。よって本明細書では、それぞれ一定の範囲内の
値であれば、高電源電圧及び低電源電圧とみなすことができる。また、電源電圧の値は、
それぞれ適宜設定することができる。なお高電源電圧と低電源電圧は、トランジスタの極
性により与えられる場所が入れ替わるため、高電源電圧及び低電源電圧のいずれか一方を
高電源電圧及び低電源電圧の一方とし、他方を高電源電圧及び低電源電圧の他方とする。
また、本明細書において、第1、第2などの序数を用いた用語は、それぞれの要素の混同
を避けるために付したものであり、数的に限定するものではない。
信号IN2としては、例えば信号IN1の反転信号などを用いることができる。
信号CK1は、論理回路100のクロック信号としての機能を有する。
信号OUT1aは、入力された信号IN1及び信号IN2により電圧状態が設定される信
号である。
信号OUT1bは、入力された信号IN1及び信号IN2により電圧状態が設定される信
号である。
さらに、図1(A)に示す論理回路における回路構成の一例について図1(B)に示す。
図1(B)に示す論理回路は、単位論理回路131及び単位論理回路132を有する。
単位論理回路131には、信号IN1、信号IN2、及び信号CK1が入力される。また
、単位論理回路131は、入力された信号IN1、信号IN2、及び信号CK1に応じて
電圧状態が設定された信号OUT1aを出力する機能を有する。
単位論理回路132は、信号IN1、信号IN2、及び信号CK1が入力され、入力され
た信号IN1、信号IN2、及び信号CK1に応じて電圧状態が設定された信号OUT1
bを出力する機能を有する。
さらに、単位論理回路131は、トランジスタ101と、トランジスタ102と、容量素
子103と、トランジスタ104と、トランジスタ105と、容量素子106と、を有し
、単位論理回路132は、トランジスタ107と、トランジスタ108と、容量素子10
9と、トランジスタ110と、トランジスタ111と、容量素子112と、を有する。
なお、本明細書において、トランジスタとしては、例えば電界効果トランジスタを用いる
ことができる。
また、本明細書において、電界効果トランジスタは、ゲート、ソース、及びドレインを少
なくとも有する。電界効果トランジスタとしては、例えば薄膜トランジスタ(TFTとも
いう)を用いることができる。また、電界効果トランジスタとしては、例えばトップゲー
ト型、又はボトムゲート型のトランジスタを用いることができる。また、電界効果トラン
ジスタは、N型又はP型の導電型にすることができる。図1に示す論理回路では、トラン
ジスタの一例として全て同一の導電型の電界効果トランジスタを用いた場合について説明
する。全て同一の導電型とすることにより、異なる複数の導電型のトランジスタを用いる
場合に比べて作製工程数を低減することができる。
なお、ゲートとは、ゲート電極及びゲート配線の一部又は全部のことをいう。ゲート配線
とは、少なくとも一つのトランジスタのゲート電極と、別の電極や別の配線とを電気的に
接続させるための配線のことをいい、例えば表示装置における走査線もゲート配線に含ま
れる。
ソースとは、ソース領域、ソース電極、及びソース配線の一部又は全部のことをいう。ソ
ース領域とは、半導体層のうち、抵抗値がチャネル形成層より低い領域のことをいう。ソ
ース電極とは、ソース領域に接続される部分の導電層のことをいう。ソース配線とは、少
なくとも一つのトランジスタのソース電極と、別の電極や別の配線とを電気的に接続させ
るための配線のことをいい、例えば表示装置における信号線がソース電極に電気的に接続
される場合にはソース配線に信号線も含まれる。
ドレインとは、ドレイン領域、ドレイン電極、及びドレイン配線の一部又は全部のことを
いう。ドレイン領域とは、半導体層のうち、抵抗値がチャネル形成領域より低い領域のこ
とをいう。ドレイン電極とは、ドレイン領域に接続される部分の導電層のことをいう。ド
レイン配線とは、少なくとも一つのトランジスタのドレイン電極と、別の電極や別の配線
とを電気的に接続させるための配線のことをいい、例えば表示装置における信号線がドレ
イン電極に電気的に接続される場合にはドレイン配線に信号線も含まれる。
また、本書類(明細書、特許請求の範囲又は図面など)において、トランジスタのソース
とドレインは、トランジスタの構造や動作条件などによって互いに入れ替わるため、いず
れがソース又はドレインであるかを限定することが困難である。そこで、本書類(明細書
、特許請求の範囲又は図面など)においては、ソース及びドレインのいずれかから任意に
選択した一方をソース及びドレインの一方と表記し、他方をソース及びドレインの他方と
表記する。
また、本書類(明細書、特許請求の範囲又は図面など)において、容量素子は、第1の電
極と、第2の電極と、第1の電極及び第2の電極の間の電圧が印加される誘電体と、を有
する構成である。
トランジスタ101は、ゲートに信号CK1が入力され、ソース及びドレインの一方に信
号IN1が入力される。
トランジスタ102は、ゲートがトランジスタ101のソース及びドレインの他方に電気
的に接続され、ソース及びドレインの一方に高電源電圧及び低電源電圧の一方が与えられ
る。図1では、一例としてトランジスタ102のソース及びドレインの一方に高電源電圧
が与えられるとする。なお、トランジスタ102のゲートと、トランジスタ101のソー
ス及びドレインの他方との接続箇所をノード121という。また、図1に示す論理回路は
、トランジスタ102のソース及びドレインの他方の電圧を信号OUT1aとして出力す
る。
容量素子103は、第1の電極がトランジスタ102のゲートに電気的に接続され、第2
の電極がトランジスタ102のソース及びドレインの他方に電気的に接続される。なお、
トランジスタ102のゲートとソース及びドレインの他方との間に寄生容量を有する場合
、容量素子103として該寄生容量を用いることもできる。
トランジスタ104は、ゲートに信号CK1が入力され、ソース及びドレインの一方に信
号IN2が入力される。
トランジスタ105は、ゲートがトランジスタ104のソース及びドレインの他方に電気
的に接続され、ソース及びドレインの一方がトランジスタ102のソース及びドレインの
他方に電気的に接続され、ソース及びドレインの他方に高電源電圧及び低電源電圧の他方
が与えられる。図1に示す論理回路では、一例としてトランジスタ105のソース及びド
レインの他方に低電源電圧が与えられるものとする。なお、トランジスタ105のゲート
と、トランジスタ104のソース及びドレインの他方との接続箇所をノード122という
容量素子106は、第1の電極がトランジスタ104のソース及びドレインの他方に電気
的に接続され、第2の電極に高電源電圧及び低電源電圧の他方が与えられる。図1に示す
論理回路では、一例として容量素子106の第2の電極に低電源電圧が与えられるものと
する。
トランジスタ107は、ゲートに信号CK1が入力され、ソース及びドレインの一方に信
号IN2が入力される。
トランジスタ108は、ゲートがトランジスタ107のソース及びドレインの他方に電気
的に接続され、ソース及びドレインの一方に高電源電圧及び低電源電圧の一方が与えられ
る。なお、図1に示す論理回路は、トランジスタ108のソース及びドレインの他方の電
圧を信号OUT1bとして出力する。なお、トランジスタ108のゲートと、トランジス
タ107のソース及びドレインの他方との接続箇所をノード123という。
容量素子109は、第1の電極がトランジスタ108のゲートに電気的に接続され、第2
の電極がトランジスタ108のソース及びドレインの他方に電気的に接続される。なお、
トランジスタ108のゲートと、ソース及びドレインの他方との間に寄生容量を有する場
合には、該寄生容量を容量素子109として用いることもできる。
トランジスタ110は、ゲートに信号CK1が入力され、ソース及びドレインの一方に信
号IN1が入力される。
トランジスタ111は、ゲートがトランジスタ110のソース及びドレインの他方に電気
的に接続され、ソース及びドレインの一方がトランジスタ108のソース及びドレインの
他方に電気的に接続され、ソース及びドレインの他方に高電源電圧及び低電源電圧の他方
が与えられる。図1に示す論理回路では、一例として、トランジスタ111のソース及び
ドレインの他方に低電源電圧が与えられるものとする。なお、トランジスタ111のゲー
トと、トランジスタ110のソース及びドレインの他方との接続箇所をノード124とい
う。
容量素子112は、第1の電極がトランジスタ110のソース及びドレインの他方に電気
的に接続され、第2の電極に高電源電圧及び低電源電圧の他方が与えられる。なお、図1
に示す論理回路では、容量素子112の第2の電極に低電源電圧が与えられるものとして
説明する。
なお、トランジスタ101、トランジスタ102、トランジスタ104、トランジスタ1
05、トランジスタ107、トランジスタ108、トランジスタ110、及びトランジス
タ111としては、チャネル形成層としての機能を有する酸化物半導体層を有するトラン
ジスタを適用することができる。なお、チャネル形成層の水素濃度は、5×1019/c
以下、好ましくは5×1018/cm以下、さらに好ましくは5×1017/cm
以下とする。該水素濃度は、例えば二次イオン質量分析法(SIMS:Seconda
ry Ion Mass Spectrometry)による測定値である。またトラン
ジスタのキャリア濃度は、1×1014/cm以下、好ましくは1×1012/cm
以下とする。
図1に一例として示すように、本実施の形態の論理回路の一例は、入力信号として第1の
信号(例えば信号IN1)、第2の信号(例えば信号IN2)、及び第3の信号(例えば
信号CK1)が入力され、入力された第1の信号乃至第3の信号に応じて電圧状態が設定
された第4の信号(例えば信号OUT1a)及び第5の信号(例えば信号OUT1b)を
出力信号として出力する構成である。
さらに、本実施の形態の論理回路の一例は、全て同一の導電型のトランジスタを用いて構
成される。これにより、複数の導電型のトランジスタを用いる場合に比べて作製工程数を
低減することができる。同一の導電型のトランジスタとしては、例えばN型トランジスタ
又はP型トランジスタを用いることができる。
さらに、図1に示す論理回路を用いたシフトレジスタの構成の一例について図2に示す。
図2は、シフトレジスタの構成の一例を示す回路図である。なお、論理回路の数は必ずし
も限定されるものはなく、少なくとも2段以上の論理回路を有する構成とすればよい。な
お、図2では、一例としてシフトレジスタを構成するトランジスタが全てN型トランジス
タである例について説明するが、これに限定されず、P型トランジスタを用いて構成する
こともできる。
図2に示すシフトレジスタは、論理回路151、論理回路152、及び論理回路153を
有する。なお、それぞれの各論理回路において、図1に示す論理回路と同じ部分について
は図1に示す論理回路の説明を適宜援用する。なお、論理回路151乃至論理回路153
は、全て順序論理回路とする。
論理回路151には、図1に示す論理回路と同様に、入力信号としてトランジスタ101
のゲート、トランジスタ104のゲート、トランジスタ107のゲート、及びトランジス
タ110のゲートに信号CK1が入力され、入力信号としてトランジスタ101のソース
及びドレインの一方、並びにトランジスタ110のソース及びドレインの一方に信号IN
1が入力され、入力信号としてトランジスタ104のソース及びドレインの一方、並びに
トランジスタ107のソース及びドレインの一方に信号IN2が入力される。また、論理
回路151は、入力された各信号の状態に応じて電圧状態が設定された信号OUT1a及
び信号OUT1bを出力信号として出力する。
論理回路152は、信号OUT1a、信号OUT1b、及び信号CK2が入力信号として
入力され、入力された信号に応じて電圧状態が設定された信号OUT2a及び信号OUT
2bを出力信号として出力する。また、論理回路152の回路構成については、論理回路
151の回路構成と同じである。
信号CK2は、論理回路151における信号CK1の代わりに論理回路152に入力され
る信号である。信号CK2としては、例えば信号CK1と異なるタイミングでハイレベル
になるクロック信号を用いることができる。本実施の形態におけるシフトレジスタでは、
信号CK1が入力される論理回路と信号CK2が入力される論理回路とが交互に電気的に
接続された構成とすることができる。例えば、シフトレジスタにおける奇数段の論理回路
には信号CK1及び信号CK2の一方が入力され、偶数段の論理回路には信号CK1及び
信号CK2の他方が入力される構成とすることもできる。
論理回路153は、信号OUT2a、信号OUT2b、及び信号CK1が入力され、入力
された信号に応じて電圧状態が設定された信号OUT3a及び信号OUT3bを出力信号
として出力する。また、論理回路153の回路構成については、論理回路151の回路構
成と同じである。
次に、図2に示すシフトレジスタの動作の一例について図3を用いて説明する。図3は、
図2に示すシフトレジスタの動作の一例を説明するためのタイミングチャートであり、信
号CK1、信号CK2、信号IN1、信号IN2、ノード121、ノード122、ノード
123、ノード124、信号OUT1a、信号OUT1b、信号OUT2a、信号OUT
2b、信号OUT3a、及び信号OUT3bの信号波形をそれぞれ示したものである。な
お、図3を用いて説明する図2に示すシフトレジスタの動作の一例では、各信号を2値の
デジタル信号とし、信号CK1及び信号CK2をクロック信号として説明する。また、高
電源電圧の値をハイレベルの電圧VHと等しいとし、低電源電圧の値をローレベルの電圧
と等しいものとする。また、本実施の形態における論理回路の動作では、図3に示す
各信号の電圧状態を反転させることもできる。
図2に示すシフトレジスタの動作は、複数の期間に分けて説明することができる。各期間
における動作について以下に説明する。
まず、論理回路151に着目して各期間の動作を説明する。期間141では、信号CK1
はローレベルであり、信号CK2はローレベルであり、信号IN1はローレベルであり、
信号IN2はハイレベルである。
このとき、論理回路151における信号OUT1a、信号OUT1b、信号OUT2aは
ローレベルである。
次に、期間142では、信号CK1が時刻A2にてハイレベルになり、信号CK2はロー
レベルのままであり、信号IN1はハイレベルであり、信号IN2はローレベルである。
なお、信号IN1は、期間141の間にハイレベルになってもよく、信号IN2は、期間
141の間にローレベルになってもよい。
このとき、論理回路151では、トランジスタ101及びトランジスタ110がオン状態
になり、トランジスタ104及びトランジスタ107はオフ状態である。さらに、信号I
N1に応じて、ノード121の電位及びノード124の電位が大きくなり、電圧Vと同
じになる。さらに、ノード121の電位に応じてトランジスタ102がオン状態になり、
信号OUT1aの電圧が上昇する。このとき、信号OUT1aの電圧は、容量素子103
によりノード121の電位に合わせて上昇し、電圧Vと同じになる。いわゆるブートス
トラップである。また、ノード124の電位が信号IN1の電圧に応じて大きくなり、電
圧Vと同じである。さらに、ノード124の電位に応じてトランジスタ111がオン状
態になり、信号OUT1bの電圧が電圧Vになる。このとき、容量素子106には、ノ
ード122の電位と低電源電圧に応じた電圧が印加され、容量素子106によりノード1
22の電位は、一定期間保持される。また、容量素子112には、ノード124の電位と
低電源電圧に応じた電圧が印加され、容量素子112によりノード124の電位は、一定
期間保持される。トランジスタ104及びトランジスタ110のオフ電流が無い場合、容
量素子106及び容量素子112に保持された電圧は、一定の範囲の値に保持されるため
、本実施の形態の論理回路に適用可能なトランジスタのように、オフ電流の低いトランジ
スタを用いることにより、トランジスタがオフ状態のときのノード122の電位及びノー
ド124の電位を一定の範囲内の値を維持しながら保持しておくことができる。
次に、期間143では、信号CK1が時刻A3にてローレベルになり、信号CK2はロー
レベルのままであり、信号IN1はローレベルになり、信号IN2はハイレベルになる。
このとき、論理回路151は、トランジスタ101、トランジスタ104、トランジスタ
107、及びトランジスタ110がオフ状態になり、ノード121の電位は電圧Vと同
じ値に保持され、ノード122の電位は電圧Vに保持され、ノード123の電位は電圧
に保持され、ノード124の電位は電圧Vに保持され、信号OUT1aはハイレベ
ルのままであり、信号OUT1bはローレベルのままである。
次に、期間144では、信号CK1はローレベルのままであり、信号CK2が時刻A4に
てハイレベルになり、信号IN1はローレベルのままであり、信号IN2はハイレベルの
ままである。なお、信号IN1は、時刻A3にてローレベルになってもよく、信号IN2
は、時刻A3にてハイレベルになってもよい。
このとき、論理回路151は、期間143における状態を維持し、信号OUT1aはハイ
レベルのままであり、信号OUT1bはローレベルのままである。
次に、期間145において、信号CK1はローレベルのままであり、信号CK2が時刻A
5にてローレベルになり、信号IN1はローレベルのままであり、信号IN2はハイレベ
ルのままである。
このとき、論理回路151は、期間144における状態を維持し、信号OUT1aはハイ
レベルのままであり、信号OUT1bはローレベルのままである。
次に、期間146において、信号CK1が時刻A6にてハイレベルになり、信号CK2は
ローレベルのままであり、信号IN1はローレベルのままであり、信号IN2はハイレベ
ルのままである。
このとき、論理回路151は、トランジスタ101、トランジスタ104、トランジスタ
107、及びトランジスタ110がオン状態になり、ノード121の電位及びノード12
4の電位が電圧Vと同じになる。さらに、ノード121の電位及びノード124の電位
に応じてトランジスタ102及びトランジスタ111がオフ状態になる。また、ノード1
22の電位及びノード123の電位が大きくなり、電圧Vと同じになる。さらに、ノー
ド122の電位及びノード123の電位に応じてトランジスタ105及びトランジスタ1
11がオン状態になり、信号OUT1aの電圧が電圧Vになり、信号OUT1bの電圧
が電圧Vになる。このとき、容量素子106には、ノード122の電位と低電源電圧に
応じた電圧が印加され、容量素子106によりノード122の電位は一定期間保持される
。また、容量素子112には、ノード124の電位と低電源電圧に応じた電圧が印加され
、容量素子112によりノード124の電位は一定期間保持される。トランジスタが10
4及びトランジスタ110のオフ電流が無い場合、容量素子106及び容量素子112に
保持された電圧は、一定の範囲の値に保持されるため、本実施の形態の論理回路に適用可
能なトランジスタのように、オフ電流の低いトランジスタを用いることにより、トランジ
スタがオフ状態のときのノード122の電位及びノード124の電位を一定の範囲内の値
を維持しながら保持しておくことができる。
その後の期間において、論理回路151は、一定期間同じ状態を維持し、信号OUT1a
の電圧は、一定期間ローレベルに維持され、信号OUT1bの電圧は、一定期間ハイレベ
ルに維持される。
さらに、論理回路151以降の段の論理回路(ここでは一例として論理回路152及び論
理回路153)について説明する。なお、各論理回路内の動作は、入力信号及び出力信号
の状態を除いては論理回路151と同じであるため、ここでの説明は省略する。
まず、論理回路152は、期間144において、出力信号である信号OUT2aが時刻A
4にてハイレベルになり、信号OUT2bはローレベルのままである。
さらに、期間145乃至期間147において、論理回路152は、期間144と同じ状態
を維持し、信号OUT2aはハイレベルのままであり、信号OUT2bはローレベルのま
まである。
さらに、期間148において、論理回路152は、信号OUT2aが時刻A8にてローレ
ベルになり、信号OUT2bが時刻A8にてハイレベルになる。
さらに、論理回路153は、期間146において、出力信号である信号OUT2aが時刻
A6にてハイレベルになり、信号OUT2bはローレベルのままである。
さらに、期間147乃至期間149において、論理回路153は、期間146と同じ状態
を維持し、信号OUT3aはハイレベルのままであり、信号OUT3bはローレベルのま
まである。
さらに、期間150において、論理回路152は、信号OUT3aが時刻A10にてロー
レベルになり、信号OUT3bはハイレベルになる。
また、図示しないが、3段以上の論理回路を用いてシフトレジスタが構成される場合であ
っても同様に、段毎に論理回路における出力信号の電圧状態が順次変化する。
以上のように、本実施の形態のシフトレジスタは、各段の論理回路において、2つの異な
る電圧状態の出力信号を出力することができる。また、本実施の形態のシフトレジスタは
、出力信号をハイレベル又はローレベルにするためのトランジスタのゲート電位を一定期
間保持するための保持容量を有する構成であり、また、トランジスタとしてオフ電流が低
く、チャネル形成層として酸化物半導体層を有するトランジスタを用いた構成である。該
構成にすることにより、トランジスタを介してのリーク電流が低減するため、保持容量に
保持された電圧を一定期間、一定の範囲の値に維持することができるため、誤動作を抑制
することができる。また、トランジスタによるリーク電流が低減するため、消費電力を低
減することもできる。また、チャネル形成層として酸化物半導体層を有するトランジスタ
は、酸化物半導体層の不純物濃度が低いため、閾値電圧のばらつきが小さい。一般的に複
数のトランジスタを備えるシフトレジスタにおいて、トランジスタの閾値電圧のばらつき
が大きいと全てのトランジスタをオンさせるときの電圧が高いため、チャネル形成層とし
て酸化物半導体層を有するトランジスタを本実施の形態のシフトレジスタに用いることに
より、消費電力を低減することができる。
さらに、本実施の形態では、本発明の一態様であるシフトレジスタを駆動回路に用いた半
導体装置について説明する。なお、本実施の形態では、一例として同一基板上に少なくと
も駆動回路の一部と、該駆動回路により表示状態が制御される画素を含む画素部を有する
表示装置について説明する。
アクティブマトリクス型表示装置のブロック図の一例を図4(A)に示す。表示装置の基
板5300上には、画素部5301、第1の走査線駆動回路5302、第2の走査線駆動
回路5303、信号線駆動回路5304を有する。画素部5301には、複数の信号線が
信号線駆動回路5304から延伸して配置され、複数の走査線が第1の走査線駆動回路5
302、及び第2の走査線駆動回路5303から延伸して配置されている。なお走査線と
信号線との交差領域には、各々、表示素子を有する画素がマトリクス状に配置されている
。また、表示装置の基板5300は、FPC(Flexible Printed Ci
rcuit)等の接続部を介して、タイミング制御回路5305(コントローラ、制御I
Cともいう)に接続されている。
図4(A)では、第1の走査線駆動回路5302、第2の走査線駆動回路5303、信号
線駆動回路5304は、画素部5301と同じ基板5300上に形成される。そのため、
外部に設ける駆動回路等の部品の数が減るので、コストの低減を図ることができる。また
、基板5300外部に駆動回路を設けた場合、配線を延伸させる必要が生じ、配線間の接
続数が増える。同じ基板5300上に駆動回路を設けた場合、その配線間の接続数を減ら
すことができ、信頼性の向上、又は歩留まりの向上を図ることができる。
なお、タイミング制御回路5305は、第1の走査線駆動回路5302に対し、一例とし
て、第1の走査線駆動回路用スタート信号(GSP1)、第1の走査線駆動回路用クロッ
ク信号(GCK1)を供給する。また、タイミング制御回路5305は、第2の走査線駆
動回路5303に対し、一例として、第2の走査線駆動回路用スタート信号(GSP2)
(スタートパルスともいう)、走査線駆動回路用クロック信号(GCK2)を供給する。
また、タイミング制御回路5305は、信号線駆動回路5304に対し、一例として、信
号線駆動回路用スタート信号(SSP)、信号線駆動回路用クロック信号(SCK)、ビ
デオ信号用データ(DATA)(単にビデオ信号ともいう)、ラッチ信号(LAT)を供
給する。なお、各クロック信号は、周期のずれた複数のクロック信号でもよいし、クロッ
ク信号を反転させた信号(CKB)とともに供給されるものであってもよい。また、第1
の走査線駆動回路用スタート信号、第2の走査線駆動回路用スタート信号、走査線駆動回
路用クロック信号、信号線駆動回路用スタート信号、及び信号線駆動回路用クロック信号
は、それぞれ複数あってもよい。本実施の形態の半導体装置では、第1の走査線駆動回路
5302と第2の走査線駆動回路5303との一方を省略することが可能である。
図4(B)では、駆動周波数が低い回路(例えば、第1の走査線駆動回路5302、第2
の走査線駆動回路5303)を画素部5301と同じ基板5300に形成し、信号線駆動
回路5304を画素部5301とは別の基板に形成する構成について示している。当該構
成により、単結晶半導体を用いたトランジスタと比較すると電界効果移動度が小さい薄膜
トランジスタによって、基板5300に形成する駆動回路を構成することができる。した
がって、表示装置の大型化、工程数の削減、コストの低減、又は歩留まりの向上などを図
ることができる。
また、図5(A)、図5(B)ではNチャネル型TFTで構成する信号線駆動回路の構成
、動作について一例を示し説明する。
図5(A)に示す信号線駆動回路は、シフトレジスタ5601、及びスイッチング回路5
602を有する。スイッチング回路5602は、複数のスイッチング回路を有する。スイ
ッチング回路5602_1〜5602_N(Nは2以上の自然数)は、各々、薄膜トラン
ジスタ5603_1〜5603_k(kは2以上の自然数)という複数のトランジスタを
有する。ここでは、薄膜トランジスタ5603_1〜5603_kが、Nチャネル型TF
Tである例を説明する。
信号線駆動回路の接続関係について、スイッチング回路5602_1を例にして説明する
。薄膜トランジスタ5603_1〜5603_kのソース及びドレインの一方は、各々、
配線5604_1〜5604_kと電気的に接続される。薄膜トランジスタ5603_1
〜5603_kのソース及びドレインの他方は、各々、信号線S1〜Skと電気的に接続
される。薄膜トランジスタ5603_1〜5603_kのゲートは、配線5605_1と
電気的に接続される。
シフトレジスタ5601は、配線5605_1〜5605_Nに順番にハイレベルの信号
を出力し、スイッチング回路5602_1〜5602_Nを順番に選択する機能を有する
スイッチング回路5602_1は、配線5604_1〜5604_kと信号線S1〜Sk
との導通状態を制御する機能、即ち配線5604_1〜5604_kの電位を信号線S1
〜Skに供給するか否かを制御する機能を有する。このように、スイッチング回路560
2_1は、セレクタとしての機能を有する。また、薄膜トランジスタ5603_1〜56
03_kは、各々、配線5604_1〜5604_kと信号線S1〜Skとの導通状態を
制御する機能、即ち配線5604_1〜5604_kの電位を信号線S1〜Skに供給す
る機能を有する。このように、薄膜トランジスタ5603_1〜5603_kは、各々、
スイッチとしての機能を有する。
なお、配線5604_1〜5604_kには、各々、ビデオ信号用データ(DATA)が
入力される。ビデオ信号用データ(DATA)は、画像情報又は画像信号に応じたアナロ
グ信号である場合が多い。
次に、図5(A)の信号線駆動回路の動作について、図5(B)のタイミングチャートを
参照して説明する。図5(B)には、信号Sout_1〜Sout_N、及び信号Vda
ta_1〜Vdata_kの一例を示す。信号Sout_1〜Sout_Nは、各々、シ
フトレジスタ5601の出力信号の一例であり、信号Vdata_1〜Vdata_kは
、各々、配線5604_1〜5604_kに入力される信号の一例である。なお、信号線
駆動回路の1動作期間は、表示装置における1ゲート選択期間に対応する。1ゲート選択
期間は、一例として、期間T1〜期間TNに分割される。期間T1〜TNは、各々、選択
された行に属する画素にビデオ信号用データ(DATA)を書き込むための期間である。
期間T1〜期間TNにおいて、シフトレジスタ5601は、ハイレベルの信号を配線56
05_1〜5605_Nに順番に出力する。例えば、期間T1において、シフトレジスタ
5601は、ハイレベルの信号を配線5605_1に出力する。すると、薄膜トランジス
タ5603_1〜5603_kはオンになるので、配線5604_1〜5604_kと、
信号線S1〜Skとが導通状態になる。このとき、配線5604_1〜5604_kには
、Data(S1)〜Data(Sk)が入力される。Data(S1)〜Data(S
k)は、各々、薄膜トランジスタ5603_1〜5603_kを介して、選択される行に
属する画素のうち、1列目〜k列目の画素に書き込まれる。こうして、期間T1〜TNに
おいて、選択された行に属する画素に、k列ずつ順番にビデオ信号用データ(DATA)
が書き込まれる。
以上のように、ビデオ信号用データ(DATA)が複数の列ずつ画素に書き込まれること
によって、ビデオ信号用データ(DATA)の数、又は配線の数を減らすことができる。
よって、外部回路との接続数を減らすことができる。また、ビデオ信号が複数の列ずつ画
素に書き込まれることによって、書き込み時間を長くすることができ、ビデオ信号の書き
込み不足を防止することができる。
なお、シフトレジスタ5601としては、本発明の一態様であるシフトレジスタを用いる
ことができる。
次に、走査線駆動回路の構成について説明する。走査線駆動回路は、シフトレジスタを有
している。また場合によってはレベルシフタやバッファ等を有していてもよい。走査線駆
動回路では、シフトレジスタによって選択信号が生成される。生成された選択信号はバッ
ファにおいて緩衝増幅され、対応する走査線に供給される。走査線には、1ライン分の画
素のトランジスタのゲートが電気的に接続されている。そして、1ライン分の画素のトラ
ンジスタを一斉にONにしなくてはならないので、バッファは大きな電流を流すことが可
能なものが用いられる。
以上のように、本発明の一態様であるシフトレジスタは、半導体装置の駆動回路に適用す
ることが可能である。本発明の一態様であるシフトレジスタを用いることにより、単位画
像の表示期間を延ばすことができるため、例えば静止画などを表示する場合など消費電力
を低減することができる。
(実施の形態2)
本実施の形態は、本明細書で開示する論理回路及び半導体装置を構成するトランジスタに
適用できる薄膜トランジスタの例を示す。
本実施の形態の半導体装置及び半導体装置の作製方法の一形態を、図31及び図6を用い
て説明する。
図31(A)(B)に半導体装置の平面及び断面構造の一例を示す。図31(A)(B)
に示す薄膜トランジスタ410は、トップゲート構造の薄膜トランジスタの一つである。
図31(A)はトップゲート構造の薄膜トランジスタ410の平面図であり、図31(B
)は図31(A)の線C1−C2における断面図である。
薄膜トランジスタ410は、基板400上に、絶縁層407、酸化物半導体層412、ソ
ース電極層又はドレイン電極層415a、及びソース電極層又はドレイン電極層415b
、ゲート絶縁層402、ゲート電極層411を含み、ソース電極層又はドレイン電極層4
15a、ソース電極層又はドレイン電極層415bにそれぞれ配線層414a、配線層4
14bが接して設けられ電気的に接続している。
また、薄膜トランジスタ410はシングルゲート構造の薄膜トランジスタを用いて説明し
たが、必要に応じて、チャネル形成領域を複数有するマルチゲート構造の薄膜トランジス
タも形成することができる。
以下、図6(A)乃至(E)を用い、基板400上に薄膜トランジスタ410を作製する
工程を説明する。
絶縁表面を有する基板400に使用することができる基板に大きな制限はないが、少なく
とも、後の加熱処理に耐えうる程度の耐熱性を有していることが必要となる。バリウムホ
ウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板を用いることができる。
また、ガラス基板としては、後の加熱処理の温度が高い場合には、歪み点が730℃以上
のものを用いるとよい。また、ガラス基板には、例えば、アルミノシリケートガラス、ア
ルミノホウケイ酸ガラス、バリウムホウケイ酸ガラスなどのガラス材料が用いられている
。なお、一般に酸化ホウ素(B)と比較して酸化バリウム(BaO)を多く含ませ
ることで、より実用的な耐熱ガラスが得られる。このため、BよりBaOを多く含
むガラス基板を用いることが好ましい
なお、上記のガラス基板に代えて、セラミック基板、石英基板、サファイア基板などの絶
縁体でなる基板を用いてもよい。他にも、結晶化ガラス基板などを用いることができる。
また、プラスチック基板等も適宜用いることができる。
まず、絶縁表面を有する基板400上に下地膜となる絶縁層407を形成する。酸化物半
導体層と接する絶縁層407は、酸化シリコン層、酸化窒化シリコン層、酸化アルミニウ
ム層、又は酸化窒化アルミニウム層などの酸化物絶縁層を用いると好ましい。絶縁層40
7の形成方法としては、プラズマCVD法又はスパッタリング法等を用いることができる
が、絶縁層407中に水素が多量に含まれないようにするためには、スパッタリング法で
絶縁層407を成膜することが好ましい。
本実施の形態では、絶縁層407として、スパッタリング法により酸化シリコン層を形成
する。基板400を処理室へ搬送し、水素及び水分が除去された高純度酸素を含むスパッ
タリングガスを導入しシリコンターゲットを用いて、基板400に絶縁層407として、
酸化シリコン層を成膜する。また基板400は室温でもよいし、加熱されていてもよい。
例えば、石英(好ましくは合成石英)をターゲットとして用い、基板温度108℃、基板
とターゲットの間との距離(T−S間距離)を60mm、圧力0.4Pa、高周波電源1
.5kW、酸素及びアルゴン(酸素流量25sccm:アルゴン流量25sccm=1:
1)雰囲気下でRFスパッタリング法により酸化シリコン膜を成膜する。膜厚は100n
mとする。なお、石英(好ましくは合成石英)に代えてシリコンターゲットを酸化シリコ
ン膜を成膜するためのターゲットとして用いることができる。なお、スパッタリングガス
として酸素又は、酸素及びアルゴンの混合ガスを用いる。
この場合において、処理室内の残留水分を除去しつつ絶縁層407を成膜することが好ま
しい。絶縁層407に水素、水酸基又は水分が含まれないようにするためである。
処理室内の残留水分を除去するためには、吸着型の真空ポンプを用いることが好ましい。
例えば、クライオポンプ、イオンポンプ、チタンサブリメーションポンプを用いることが
好ましい。また、排気手段としては、ターボポンプにコールドトラップを加えたものであ
ってもよい。クライオポンプを用いて排気した成膜室は、例えば、水素原子や、水(H
O)など水素原子を含む化合物等が排出されるため、当該成膜室で成膜し絶縁層407に
含まれる不純物の濃度を低減できる。
絶縁層407を成膜する際に用いるスパッタリングガスは水素、水、水酸基又は水素化物
などの不純物が、濃度ppm程度、濃度ppb程度まで除去された高純度ガスを用いるこ
とが好ましい。
スパッタリング法にはスパッタリング用電源に高周波電源を用いるRFスパッタリング法
、直流電源を用いるDCスパッタリング法、さらにパルス的にバイアスを与えるパルスD
Cスパッタリング法がある。RFスパッタリング法は主に絶縁膜を成膜する場合に用いら
れ、DCスパッタリング法は主に金属膜を成膜する場合に用いられる。
また、材料の異なるターゲットを複数設置できる多元スパッタリング装置もある。多元ス
パッタリング装置は、同一チャンバーで異なる材料膜を積層成膜することも、同一チャン
バーで複数種類の材料を同時に放電させて成膜することもできる。
また、チャンバー内部に磁石機構を備えたマグネトロンスパッタリング法を用いるスパッ
タリング装置や、グロー放電を使わずマイクロ波を用いて発生させたプラズマを用いるE
CRスパッタリング法を用いるスパッタリング装置がある。
また、スパッタリング法を用いる成膜方法として、成膜中にターゲット物質とスパッタリ
ングガス成分とを化学反応させてそれらの化合物薄膜を形成するリアクティブスパッタリ
ング法や、成膜中に基板にも電圧をかけるバイアススパッタリング法もある。
また、絶縁層407は積層構造でもよく、例えば、基板400側から窒化シリコン層、窒
化酸化シリコン層、窒化アルミニウム層、又は窒化酸化アルミニウム層などの窒化物絶縁
層と、上記酸化物絶縁層との積層構造としてもよい。
例えば、水素及び水分が除去され、窒素を含む高純度のスパッタリングガスを導入しシリ
コンターゲットを用いて、酸化シリコン層と基板との間に窒化シリコン層を成膜する。こ
の場合においても、酸化シリコン層と同様に、処理室内の残留水分を除去しつつ窒化シリ
コン層を成膜することが好ましい。
窒化シリコン層を形成する場合も、成膜時に基板を加熱してもよい。
絶縁層407として窒化シリコン層と酸化シリコン層とを積層する場合、窒化シリコン層
と酸化シリコン層を同じ処理室において、共通のシリコンターゲットを用いて成膜するこ
とができる。先に窒素を含むエッチングガスを導入して、処理室内に装着されたシリコン
ターゲットを用いて窒化シリコン層を形成し、次にエッチングガスを、酸素を含むエッチ
ングガスに切り替えて同じシリコンターゲットを用いて酸化シリコン層を成膜する。窒化
シリコン層と酸化シリコン層とを大気に曝露せずに連続して形成することができるため、
窒化シリコン層表面に水素や水分などの不純物が吸着することを防止することができる。
次いで、絶縁層407上に、膜厚2nm以上200nm以下の酸化物半導体膜を形成する
また、酸化物半導体膜に水素、水酸基及び水分がなるべく含まれないようにするために、
成膜の前処理として、スパッタリング装置の予備加熱室で絶縁層407が形成された基板
400を予備加熱し、基板400に吸着した水素、水分などの不純物を脱離し排出するこ
とが好ましい。なお、予備加熱室に設ける排気手段はクライオポンプが好ましい。なお、
この予備加熱の処理は省略することもできる。またこの予備加熱は、後に形成するゲート
絶縁層402の成膜前の基板400に行ってもよいし、後に形成するソース電極層又はド
レイン電極層415a及びソース電極層又はドレイン電極層415bまで形成した基板4
00にも同様に行ってもよい。
なお、酸化物半導体膜をスパッタリング法により成膜する前に、アルゴンガスを導入して
プラズマを発生させて逆スパッタを行い、絶縁層407の表面に付着しているゴミを除去
することが好ましい。逆スパッタとは、ターゲット側に電圧を印加せずに、アルゴン雰囲
気下で基板側に高周波電源を用いて電圧を印加してプラズマを形成して基板表面を改質す
る方法である。なお、アルゴン雰囲気に代えて窒素、ヘリウム、酸素などを用いてもよい
酸化物半導体膜はスパッタリング法により成膜する。酸化物半導体膜は、In−Ga−Z
n−O系膜、In−Sn−Zn−O系、In−Al−Zn−O系、Sn−Ga−Zn−O
系、Al−Ga−Zn−O系、Sn−Al−Zn−O系、In−Zn−O系、Sn−Zn
−O系、Al−Zn−O系、In−O系、Sn−O系、Zn−O系の酸化物半導体膜を用
いる。本実施の形態では、酸化物半導体膜をIn−Ga−Zn−O系酸化物半導体成膜用
ターゲットを用いてスパッタリング法により成膜する。また、酸化物半導体膜は、希ガス
(代表的にはアルゴン)雰囲気下、酸素雰囲気下、又は希ガス(代表的にはアルゴン)及
び酸素混合雰囲気下においてスパッタリング法により形成することができる。また、スパ
ッタリング法を用いる場合、SiOを2重量%以上10重量%以下含むターゲットを用
いて成膜を行ってもよい。
酸化物半導体膜を、成膜する際に用いるスパッタリングガスは水素、水、水酸基又は水素
化物などの不純物が、濃度ppm程度、濃度ppb程度まで除去された高純度ガスを用い
ることが好ましい。
酸化物半導体膜をスパッタリング法で形成するためのターゲットとして、酸化亜鉛を主成
分とする金属酸化物のターゲットを用いることができる。また、金属酸化物のターゲット
の他の例としては、In、Ga、及びZnを含む酸化物半導体成膜用ターゲット(組成比
として、In:Ga:ZnO=1:1:1[mol%]、In:Ga:Zn
=1:1:0.5[atom%])を用いることができる。また、In、Ga、及びZn
を含む酸化物半導体成膜用ターゲットとして、In:Ga:Zn=1:1:1[atom
%]、又はIn:Ga:Zn=1:1:2[atom%]の組成比を有するターゲットを
用いることもできる。また、作製される酸化物半導体成膜用ターゲットの全体の体積に対
して全体の体積から空隙などが占める空間を除いた部分の体積の割合(充填率ともいう)
は、90%以上100%以下、好ましくは95%以上99.9%以下である。充填率の高
い酸化物半導体成膜用ターゲットを用いることにより、成膜した酸化物半導体膜は緻密な
膜となる。
減圧状態に保持された処理室内に基板を保持し、処理室内の残留水分を除去しつつ水素及
び水分が除去されたスパッタリングガスを導入し、金属酸化物をターゲットとして基板4
00上に酸化物半導体膜を成膜する。処理室内の残留水分を除去するためには、吸着型の
真空ポンプを用いることが好ましい。例えば、クライオポンプ、イオンポンプ、チタンサ
ブリメーションポンプを用いることが好ましい。また、排気手段としては、ターボポンプ
にコールドトラップを加えたものであってもよい。クライオポンプを用いて排気した成膜
室は、例えば、水素原子、水(HO)など水素原子を含む化合物(より好ましくは炭素
原子を含む化合物も)等が排気されるため、当該成膜室で成膜した酸化物半導体膜に含ま
れる不純物の濃度を低減できる。また、酸化物半導体膜成膜時に基板を加熱してもよい。
成膜条件の一例としては、基板温度を室温、基板とターゲットの間との距離を60mm、
圧力0.4Pa、直流(DC)電源0.5kW、酸素及びアルゴン(酸素流量15scc
m:アルゴン流量30sccm)雰囲気下の条件が適用される。なお、パルス直流(DC
)電源を用いると、成膜時に発生する粉状物質(パーティクル、ゴミともいう)が軽減で
き、膜厚分布も均一となるために好ましい。酸化物半導体膜は好ましくは5nm以上30
nm以下とする。なお、適用する酸化物半導体材料により適切な厚みは異なり、材料に応
じて適宜厚みを選択すればよい。
次いで、酸化物半導体膜を第1のフォトリソグラフィ工程により島状の酸化物半導体層4
12に加工する(図6(A)参照。)。また、島状の酸化物半導体層412を形成するた
めのレジストマスクをインクジェット法で形成してもよい。レジストマスクをインクジェ
ット法で形成するとフォトマスクを使用しないため、製造コストを低減できる。
なお、ここでの酸化物半導体膜のエッチングは、ドライエッチングでもウェットエッチン
グでもよく、両方を用いてもよい。
ドライエッチングに用いるエッチングガスとしては、塩素を含むガス(塩素系ガス、例え
ば塩素(Cl)、塩化硼素(BCl)、塩化珪素(SiCl)、四塩化炭素(CC
)など)が好ましい。
また、フッ素を含むガス(フッ素系ガス、例えば四弗化炭素(CF)、弗化硫黄(SF
)、弗化窒素(NF)、トリフルオロメタン(CHF)など)、臭化水素(HBr
)、酸素(O)、これらのガスにヘリウム(He)やアルゴン(Ar)などの希ガスを
添加したガス、などを用いることができる。
ドライエッチング法としては、平行平板型RIE(Reactive Ion Etch
ing)法や、ICP(Inductively Coupled Plasma:誘導
結合型プラズマ)エッチング法を用いることができる。所望の加工形状にエッチングでき
るように、エッチング条件(コイル型の電極に印加される電力量、基板側の電極に印加さ
れる電力量、基板側の電極温度等)を適宜調節する。
ウェットエッチングに用いるエッチング液としては、燐酸と酢酸と硝酸を混ぜた溶液など
を用いることができる。また、ITO07N(関東化学社製)を用いてもよい。
また、ウェットエッチング後のエッチング液はエッチングされた材料とともに洗浄によっ
て除去される。その除去された材料を含むエッチング液の廃液を精製し、含まれる材料を
再利用してもよい。当該エッチング後の廃液から酸化物半導体層に含まれるインジウム等
の材料を回収して再利用することにより、資源を有効活用し低コスト化することができる
所望の加工形状にエッチングできるように、材料に合わせてエッチング条件(エッチング
液、エッチング時間、温度等)を適宜調節する。
本実施の形態では、エッチング液として燐酸と酢酸と硝酸を混ぜた溶液を用いたウェット
エッチング法により、酸化物半導体膜を島状の酸化物半導体層412に加工する。
本実施の形態では、酸化物半導体層412に、第1の加熱処理を行う。第1の加熱処理の
温度は、400℃以上750℃以下、好ましくは400℃以上基板の歪み点未満とする。
ここでは、加熱処理装置の一つである電気炉に基板を導入し、酸化物半導体層に対して窒
素雰囲気下450℃において1時間の加熱処理を行った後、大気に触れることなく、酸化
物半導体層への水や水素の再混入を防ぎ、酸化物半導体層を得る。この第1の加熱処理に
よって酸化物半導体層412の脱水化又は脱水素化を行うことができる。
なお、加熱処理装置としては、電気炉に限られず、抵抗発熱体などの発熱体からの熱伝導
又は熱輻射によって、被処理物を加熱する装置を用いてもよい。例えば、GRTA(Ga
s Rapid Thermal Anneal)装置、LRTA(Lamp Rapi
d Thermal Anneal)装置等のRTA(Rapid Thermal A
nneal)装置を用いることができる。LRTA装置は、ハロゲンランプ、メタルハラ
イドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、高
圧水銀ランプなどのランプから発する光(電磁波)の輻射により、被処理物を加熱する装
置である。GRTA装置は、高温のガスを用いて加熱処理を行う装置である。ガスとして
は、アルゴンなどの希ガス、又は窒素のような、加熱処理によって被処理物とほとんど反
応しない不活性気体が用いられる。
例えば、第1の加熱処理として、650℃〜700℃の高温に加熱した不活性ガス中に基
板を移動させて入れ、数分間加熱した後、基板を移動させて高温に加熱した不活性ガス中
から出すGRTAを行ってもよい。GRTAを用いると短時間での高温加熱処理が可能と
なる。
なお、第1の加熱処理においては、窒素、又はヘリウム、ネオン、アルゴン等の希ガスに
、水、水素などが含まれないことが好ましい。又は、加熱処理装置に導入する窒素、又は
ヘリウム、ネオン、アルゴン等の希ガスの純度を、6N(99.9999%)以上、好ま
しくは7N(99.99999%)以上、(即ち不純物濃度を1ppm以下、好ましくは
0.1ppm以下)とすることが好ましい。
また、第1の加熱処理の条件、又は酸化物半導体層の材料によっては、酸化物半導体層が
結晶化し、微結晶膜又は多結晶膜となる場合もある。例えば、結晶化率が90%以上、又
は80%以上の微結晶の酸化物半導体膜となる場合もある。また、第1の加熱処理の条件
、又は酸化物半導体層の材料によっては、結晶成分を含まない非晶質の酸化物半導体膜と
なる場合もある。また、非晶質の酸化物半導体の中に微結晶部(粒径1nm以上20nm
以下(代表的には2nm以上4nm以下))が混在する酸化物半導体膜となる場合もある
また、酸化物半導体層の第1の加熱処理は、島状の酸化物半導体層に加工する前の酸化物
半導体膜に行うこともできる。その場合には、第1の加熱処理後に、加熱装置から基板を
取り出し、フォトリソグラフィ工程を行う。
酸化物半導体層に対する脱水化、脱水素化の効果を奏する加熱処理は、酸化物半導体層成
膜後、酸化物半導体層上にソース電極層及びドレイン電極層を積層させた後、ソース電極
及びドレイン電極上にゲート絶縁層を形成した後、のいずれで行ってもよい。
次いで、絶縁層407及び酸化物半導体層412上に、導電膜を形成する。例えばスパッ
タリング法や真空蒸着法で導電膜を形成すればよい。導電膜の材料としては、Al、Cr
、Cu、Ta、Ti、Mo、Wからから選ばれた元素、又は上述した元素を成分とする合
金か、上述した元素を組み合わせた合金膜等が挙げられる。また、マンガン、マグネシウ
ム、ジルコニウム、ベリリウム、トリウムのいずれか一又は複数から選択された材料を用
いてもよい。また、導電膜は、単層構造でも、2層以上の積層構造としてもよい。例えば
、シリコンを含むアルミニウム膜の単層構造、アルミニウム膜上にチタン膜を積層する2
層構造、Ti膜と、そのTi膜上に重ねてアルミニウム膜を積層し、さらにその上にTi
膜を成膜する3層構造などが挙げられる。また、Alに、チタン(Ti)、タンタル(T
a)、タングステン(W)、モリブデン(Mo)、クロム(Cr)、Nd(ネオジム)、
Sc(スカンジウム)から選ばれた元素を単数、又は複数組み合わせた膜、それらの合金
膜、若しくは窒化膜を用いてもよい。
第2のフォトリソグラフィ工程により導電膜上にレジストマスクを形成し、選択的にエッ
チングを行ってソース電極層又はドレイン電極層415a、ソース電極層又はドレイン電
極層415bを形成した後、レジストマスクを除去する(図6(B)参照。)。なお、形
成されたソース電極層、ドレイン電極層の端部はテーパ形状であると、上に積層するゲー
ト絶縁層の被覆性が向上するため好ましい。
本実施の形態ではソース電極層又はドレイン電極層415a、ソース電極層又はドレイン
電極層415bとしてスパッタリング法により膜厚150nmのチタン膜を形成する。
なお、導電膜のエッチングの際に、酸化物半導体層412は酸化物半導体層412が除去
されて、その下の絶縁層407が露出しないようにそれぞれの材料及びエッチング条件を
適宜調節する。
なお、第2のフォトリソグラフィ工程では、酸化物半導体層412は一部のみがエッチン
グされ、溝部(凹部)を有する酸化物半導体層となることもある。また、ソース電極層又
はドレイン電極層415a、ソース電極層又はドレイン電極層415bを形成するための
レジストマスクをインクジェット法で形成してもよい。レジストマスクをインクジェット
法で形成するとフォトマスクを使用しないため、製造コストを低減できる。
第2のフォトリソグラフィ工程でのレジストマスク形成時の露光には、紫外線やKrFレ
ーザ光やArFレーザ光を用いる。酸化物半導体層412上で隣り合うソース電極層の下
端部とドレイン電極層の下端部との間隔幅によって後に形成される薄膜トランジスタのチ
ャネル長Lが決定される。なお、チャネル長L=25nm未満の露光を行う場合には、数
nm〜数10nmと極めて波長が短い超紫外線(Extreme Ultraviole
t)を用いて第2のフォトリソグラフィ工程でのレジストマスク形成時の露光を行う。超
紫外線による露光は、解像度が高く焦点深度も大きい。従って、後に形成される薄膜トラ
ンジスタのチャネル長Lを10nm以上1000nm以下とすることも可能であり、回路
の動作速度を高速化でき、さらにオフ電流値が極めて小さくすることができるため、低消
費電力化も図ることができる。
次いで、絶縁層407、酸化物半導体層412、ソース電極層又はドレイン電極層415
a、ソース電極層又はドレイン電極層415b上にゲート絶縁層402を形成する(図6
(C)参照。)。
ゲート絶縁層402は、プラズマCVD法又はスパッタリング法等を用いて、酸化シリコ
ン層、窒化シリコン層、酸化窒化シリコン層、窒化酸化シリコン層、又は酸化アルミニウ
ム層を単層で又は積層して形成することができる。なお、ゲート絶縁層402中に水素が
多量に含まれないようにするためには、スパッタリング法でゲート絶縁層402を成膜す
ることが好ましい。スパッタリング法により酸化シリコン膜を成膜する場合には、ターゲ
ットとしてシリコンターゲット又は石英ターゲットを用い、スパッタリングガスとして酸
素又は、酸素及びアルゴンの混合ガスを用いる。
ゲート絶縁層402は、ソース電極層又はドレイン電極層415a、ソース電極層又はド
レイン電極層415b側から酸化シリコン層と窒化シリコン層を積層した構造とすること
もできる。例えば、第1のゲート絶縁層として膜厚5nm以上300nm以下の酸化シリ
コン層(SiOx(x>0))を形成し、第1のゲート絶縁層上に第2のゲート絶縁層と
してスパッタリング法により膜厚50nm以上200nm以下の窒化シリコン層(SiN
y(y>0))を積層して、膜厚100nmのゲート絶縁層としてもよい。本実施の形態
では、圧力0.4Pa、高周波電源1.5kW、酸素及びアルゴン(酸素流量25scc
m:アルゴン流量25sccm=1:1)雰囲気下でRFスパッタリング法により膜厚1
00nmの酸化シリコン層を形成する。
次いで、第3のフォトリソグラフィ工程によりレジストマスクを形成し、選択的にエッチ
ングを行ってゲート絶縁層402の一部を除去して、ソース電極層又はドレイン電極層4
15a、ソース電極層又はドレイン電極層415bに達する開口421a、開口421b
を形成する(図6(D)参照。)。
次に、ゲート絶縁層402、及び開口421a、421b上に導電膜を形成した後、第4
のフォトリソグラフィ工程によりゲート電極層411、配線層414a、414bを形成
する。なお、レジストマスクをインクジェット法で形成してもよい。レジストマスクをイ
ンクジェット法で形成するとフォトマスクを使用しないため、製造コストを低減できる。
また、ゲート電極層411、配線層414a、414bは、モリブデン、チタン、クロム
、タンタル、タングステン、アルミニウム、銅、ネオジム、スカンジウム等の金属材料又
はこれらを主成分とする合金材料を用いて、単層で又は積層して形成することができる。
例えば、ゲート電極層411、配線層414a、414bの2層の積層構造としては、ア
ルミニウム層上にモリブデン層が積層された2層の積層構造、又は銅層上にモリブデン層
を積層した2層構造、又は銅層上に窒化チタン層若しくは窒化タンタル層を積層した2層
構造、窒化チタン層とモリブデン層とを積層した2層構造とすることが好ましい。3層の
積層構造としては、タングステン層又は窒化タングステン層と、アルミニウムとシリコン
の合金層又はアルミニウムとチタンの合金層と、窒化チタン層又はチタン層とを積層した
層とすることが好ましい。なお、透光性を有する導電膜を用いてゲート電極層を形成する
こともできる。透光性を有する導電膜としては、透光性導電性酸化物等をその例に挙げる
ことができる。
本実施の形態ではゲート電極層411、配線層414a、414bとしてスパッタリング
法により膜厚150nmのチタン膜を形成する。
次いで、不活性ガス雰囲気下、又は酸素ガス雰囲気下で第2の加熱処理(好ましくは20
0℃以上400℃以下、例えば250℃以上350℃以下)を行う。本実施の形態では、
窒素雰囲気下で250℃、1時間の第2の加熱処理を行う。また、第2の加熱処理は、薄
膜トランジスタ410上に保護絶縁層や平坦化絶縁層を形成してから行ってもよい。
さらに、大気中、100℃以上200℃以下、1時間以上30時間以下での加熱処理を行
ってもよい。この加熱処理は一定の加熱温度を保持して加熱してもよいし、室温から、1
00℃以上200℃以下の加熱温度への昇温と、加熱温度から室温までの降温を複数回く
りかえして行ってもよい。また、この加熱処理を、酸化物絶縁層の形成前に、減圧下で行
ってもよい。減圧下で加熱処理を行うと、加熱時間を短縮することができる。
以上の工程で、水素、水分、水素化物、水酸化物の濃度が低減された酸化物半導体層41
2を有する薄膜トランジスタ410を形成することができる(図6(E)参照。)。
また、薄膜トランジスタ410上に保護絶縁層や、平坦化のための平坦化絶縁層を設けて
もよい。例えば、保護絶縁層として酸化シリコン層、窒化シリコン層、酸化窒化シリコン
層、窒化酸化シリコン層、又は酸化アルミニウム層を単層で又は積層して形成することが
できる。
また、平坦化絶縁層としては、ポリイミド、アクリル樹脂、ベンゾシクロブテン系樹脂、
ポリアミド、エポキシ樹脂等の、耐熱性を有する有機材料を用いることができる。また上
記有機材料の他に、低誘電率材料(low−k材料)、シロキサン系樹脂、PSG(リン
ガラス)、BPSG(リンボロンガラス)等を用いることができる。なお、これらの材料
で形成される絶縁膜を複数積層させることで、平坦化絶縁層を形成してもよい。
なお、シロキサン系樹脂とは、シロキサン系材料を出発材料として形成されたSi−O−
Si結合を含む樹脂に相当する。シロキサン系樹脂は置換基としては有機基(例えばアル
キル基やアリール基)やフルオロ基を用いてもよい。また、有機基はフルオロ基を有して
いてもよい。
平坦化絶縁層の形成法は、特に限定されず、その材料に応じて、スパッタリング法、SO
G法、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法、スクリ
ーン印刷、オフセット印刷等)、ドクターナイフ、ロールコーター、カーテンコーター、
ナイフコーター等を用いることができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
上記のように酸化物半導体膜を成膜するに際し、反応雰囲気中の残留水分を除去すること
で、該酸化物半導体膜中の水素及び水素化物の濃度を低減することができる。それにより
酸化物半導体膜の安定化を図ることができる。
以上のように、酸化物半導体層を用いる薄膜トランジスタを有する半導体装置において、
安定な電気特性を有し信頼性の高い半導体装置を提供することができる。
(実施の形態3)
本実施の形態は、本明細書で開示する論理回路及び半導体装置を構成するトランジスタに
適用できる薄膜トランジスタの他の例を示す。なお、実施の形態2と同一部分又は同様な
機能を有する部分、及び工程は、実施の形態2と同様とすればよく、その繰り返しの説明
は省略する。また同じ箇所の詳細な説明も省略する。
本実施の形態の半導体装置及び半導体装置の作製方法の一形態を、図7及び図8を用いて
説明する。
図7(A)(B)に半導体装置の平面及び断面構造の一例を示す。図7(A)(B)に示
す薄膜トランジスタ460は、トップゲート構造の薄膜トランジスタの一つである。
図7(A)はトップゲート構造の薄膜トランジスタ460の平面図であり、図7(B)は
図7(A)の線D1−D2における断面図である。
薄膜トランジスタ460は、絶縁表面を有する基板450上に、絶縁層457、ソース電
極層又はドレイン電極層465a(465a1、465a2)、酸化物半導体層462、
ソース電極層又はドレイン電極層465b、配線層468、ゲート絶縁層452、ゲート
電極層461(461a、461b)を含み、ソース電極層又はドレイン電極層465a
(465a1、465a2)は配線層468を介して配線層464と電気的に接続してい
る。また、図示していないが、ソース電極層又はドレイン電極層465bもゲート絶縁層
452に設けられた開口において配線層と電気的に接続する。
以下、図8(A)乃至(E)を用い、基板450上に薄膜トランジスタ460を作製する
工程を説明する。
まず、基板450上に下地膜となる絶縁層457を形成する。
本実施の形態では、絶縁層457として、スパッタリング法により酸化シリコン層を形成
する。基板450を処理室へ搬送し、水素及び水分が除去され、酸素を含む高純度のスパ
ッタリングガスを導入しシリコンターゲット又は石英(好ましくは合成石英)を用いて、
基板450に絶縁層457として、酸化シリコン層を成膜する。なお、スパッタリングガ
スとして酸素又は、酸素及びアルゴンの混合ガスを用いて行う。
例えば、スパッタリングガスの純度が6Nであり、石英(好ましくは合成石英)を用い、
基板温度108℃、基板とターゲットの間との距離(T−S間距離)を60mm、圧力0
.4Pa、高周波電源1.5kW、酸素及びアルゴン(酸素流量25sccm:アルゴン
流量25sccm=1:1)雰囲気下でRFスパッタリング法により酸化シリコン膜を成
膜する。膜厚は100nmとする。なお、石英(好ましくは合成石英)に代えてシリコン
ターゲットを酸化シリコン膜を成膜するためのターゲットとして用いることができる。
この場合において、処理室内の残留水分を除去しつつ絶縁層457を成膜することが好ま
しい。絶縁層457に水素、水酸基又は水分が含まれないようにするためである。クライ
オポンプを用いて排気した成膜室は、例えば、水素原子や、水(HO)など水素原子を
含む化合物等が排気されるため、当該成膜室で成膜し絶縁層457に含まれる不純物の濃
度を低減できる。
絶縁層457を成膜する際に用いるスパッタリングガスは水素、水、水酸基又は水素化物
などの不純物が、濃度ppm程度、濃度ppb程度まで除去された高純度ガスを用いるこ
とが好ましい。
また、絶縁層457は積層構造でもよく、例えば、基板450側から窒化シリコン層、窒
化酸化シリコン層、窒化アルミニウム層、窒化酸化アルミニウム層などの窒化物絶縁層と
、上記酸化物絶縁層との積層構造としてもよい。
例えば、水素及び水分が除去され、窒素を含む高純度のスパッタリングガスを導入しシリ
コンターゲットを用いて、酸化シリコン層と基板との間に窒化シリコン層を成膜する。こ
の場合においても、酸化シリコン層と同様に、処理室内の残留水分を除去しつつ窒化シリ
コン層を成膜することが好ましい。
次いで、絶縁層457上に、導電膜を形成し、第1のフォトリソグラフィ工程により導電
膜上にレジストマスクを形成し、選択的にエッチングを行ってソース電極層又はドレイン
電極層465a1、465a2を形成した後、レジストマスクを除去する(図8(A)参
照。)。ソース電極層又はドレイン電極層465a1、465a2は断面図では分断され
て示されているが、連続した膜である。なお、形成されたソース電極層、ドレイン電極層
の端部はテーパ形状であると、上に積層するゲート絶縁層の被覆性が向上するため好まし
い。
ソース電極層又はドレイン電極層465a1、465a2の材料としては、Al、Cr、
Cu、Ta、Ti、Mo、Wからから選ばれた元素、又は上述した元素を成分とする合金
か、上述した元素を組み合わせた合金膜等が挙げられる。また、マンガン、マグネシウム
、ジルコニウム、ベリリウム、トリウムから選択されたいずれか一又は複数の材料を用い
てもよい。また、導電膜は、単層構造でも、2層以上の積層構造としてもよい。例えば、
シリコンを含むアルミニウム膜の単層構造、アルミニウム膜上にチタン膜を積層する2層
構造、Ti膜と、そのTi膜上に重ねてアルミニウム膜を積層し、さらにその上にTi膜
を成膜する3層構造などが挙げられる。また、Alに、チタン(Ti)、タンタル(Ta
)、タングステン(W)、モリブデン(Mo)、クロム(Cr)、Nd(ネオジム)、S
c(スカンジウム)から選ばれた元素を単数、又は複数組み合わせた膜、合金膜、若しく
は窒化膜を用いてもよい。
本実施の形態ではソース電極層又はドレイン電極層465a1、465a2としてスパッ
タリング法により膜厚150nmのチタン膜を形成する。
次いで、ゲート絶縁層452上に、膜厚2nm以上200nm以下の酸化物半導体膜を形
成する。
次に酸化物半導体膜を形成し、第2のフォトリソグラフィ工程により島状の酸化物半導体
層462に加工する(図8(B)参照。)。本実施の形態では、酸化物半導体膜をIn−
Ga−Zn−O系酸化物半導体成膜用ターゲットを用いてスパッタリング法により成膜す
る。
酸化物半導体膜は、減圧状態に保持された処理室内に基板を保持し、処理室内の残留水分
を除去しつつ水素及び水分が除去されたスパッタリングガスを導入し、金属酸化物をター
ゲットとして基板450上に酸化物半導体膜を成膜する。処理室内の残留水分を除去する
ためには、吸着型の真空ポンプを用いることが好ましい。例えば、クライオポンプ、イオ
ンポンプ、チタンサブリメーションポンプを用いることが好ましい。また、排気手段とし
ては、ターボポンプにコールドトラップを加えたものであってもよい。クライオポンプを
用いて排気した成膜室は、例えば、水素原子、水(HO)など水素原子を含む化合物(
より好ましくは炭素原子を含む化合物も)等が排気されるため、当該成膜室で成膜した酸
化物半導体膜に含まれる不純物の濃度を低減できる。また、酸化物半導体膜成膜時に基板
を加熱してもよい。
酸化物半導体膜を成膜する際に用いるスパッタリングガスは、水素、水、水酸基又は水素
化物などの不純物が、濃度ppm程度、濃度ppb程度まで除去された高純度ガスを用い
ることが好ましい。
成膜条件の一例としては、基板温度を室温、基板とターゲットの間との距離を60mm、
圧力0.4Pa、直流(DC)電源0.5kW、酸素及びアルゴン(酸素流量15scc
m:アルゴン流量30sccm)雰囲気下の条件が適用される。なお、パルス直流(DC
)電源を用いると、成膜時に発生する粉状物質(パーティクル、ゴミともいう)が軽減で
き、膜厚分布も均一となるために好ましい。酸化物半導体膜は好ましくは5nm以上30
nm以下とする。なお、適用する酸化物半導体材料により適切な厚みは異なり、材料に応
じて適宜厚みを選択すればよい。
本実施の形態では、エッチング液として燐酸と酢酸と硝酸を混ぜた溶液を用いたウェット
エッチング法により、酸化物半導体膜を島状の酸化物半導体層462に加工する。
本実施の形態では、酸化物半導体層462に、第1の加熱処理を行う。第1の加熱処理の
温度は、400℃以上750℃以下、好ましくは400℃以上基板の歪み点未満とする。
ここでは、加熱処理装置の一つである電気炉に基板を導入し、酸化物半導体層に対して窒
素雰囲気下450℃において1時間の加熱処理を行った後、大気に触れることなく、酸化
物半導体層への水や水素の再混入を防ぎ、酸化物半導体層を得る。この第1の加熱処理に
よって酸化物半導体層462の脱水化又は脱水素化を行うことができる。
なお、加熱処理装置は電気炉に限られず、抵抗発熱体などの発熱体からの熱伝導又は熱輻
射によって、被処理物を加熱する装置を備えていてもよい。例えば、GRTA(Gas
Rapid Thermal Anneal)装置、LRTA(Lamp Rapid
Thermal Anneal)装置等のRTA(Rapid Thermal Ann
eal)装置を用いることができる。例えば、第1の加熱処理として、650℃〜700
℃の高温に加熱した不活性ガス中に基板を移動させて入れ、数分間加熱した後、基板を移
動させて高温に加熱した不活性ガス中から出すGRTAを行ってもよい。GRTAを用い
ると短時間での高温加熱処理が可能となる。
なお、第1の加熱処理においては、窒素、又はヘリウム、ネオン、アルゴン等の希ガスに
、水、水素などが含まれないことが好ましい。又は、加熱処理装置に導入する窒素、又は
ヘリウム、ネオン、アルゴン等の希ガスの純度を、6N(99.9999%)以上、好ま
しくは7N(99.99999%)以上、(即ち不純物濃度を1ppm以下、好ましくは
0.1ppm以下)とすることが好ましい。
また、第1の加熱処理の条件、又は酸化物半導体層の材料によっては、酸化物半導体層が
結晶化し、微結晶膜又は多結晶膜となる場合もある。
また、酸化物半導体層の第1の加熱処理は、島状の酸化物半導体層に加工する前の酸化物
半導体膜に行うこともできる。その場合には、第1の加熱処理後に、加熱装置から基板を
取り出し、フォトリソグラフィ工程を行う。
酸化物半導体層に対する脱水化、脱水素化の効果を奏する加熱処理は、酸化物半導体層成
膜後、酸化物半導体層上にさらにソース電極層及びドレイン電極層を積層させた後、ソー
ス電極及びドレイン電極上にゲート絶縁層を形成した後、のいずれで行ってもよい。
次いで、絶縁層457及び酸化物半導体層462上に、導電膜を形成し、第3のフォトリ
ソグラフィ工程により導電膜上にレジストマスクを形成し、選択的にエッチングを行って
ソース電極層又はドレイン電極層465b、配線層468を形成した後、レジストマスク
を除去する(図8(C)参照。)。ソース電極層又はドレイン電極層465b、配線層4
68はソース電極層又はドレイン電極層465a1、465a2と同様な材料及び工程で
形成すればよい。
本実施の形態ではソース電極層又はドレイン電極層465b、配線層468としてスパッ
タリング法により膜厚150nmのチタン膜を形成する。本実施の形態では、ソース電極
層又はドレイン電極層465a1、465a2とソース電極層又はドレイン電極層465
bに同じチタン膜を用いる例のため、ソース電極層又はドレイン電極層465a1、46
5a2とソース電極層又はドレイン電極層465bとはエッチングにおいて選択比がとれ
ない。よって、ソース電極層又はドレイン電極層465a1、465a2が、ソース電極
層又はドレイン電極層465bのエッチング時にエッチングされないように、酸化物半導
体層462に覆われないソース電極層又はドレイン電極層465a2上に配線層468を
設けている。ソース電極層又はドレイン電極層465a1、465a2とソース電極層又
はドレイン電極層465bとにエッチング工程において高い選択比を有する異なる材料を
用いる場合には、エッチング時にソース電極層又はドレイン電極層465a2を保護する
配線層468は必ずしも設けなくてもよい。
なお、導電膜のエッチングの際に、酸化物半導体層462が除去されないようにそれぞれ
の材料及びエッチング条件を適宜調節する。
なお、第3のフォトリソグラフィ工程では、酸化物半導体層462は一部のみがエッチン
グされ、溝部(凹部)を有する酸化物半導体層となることもある。また、ソース電極層又
はドレイン電極層465b、配線層468を形成するためのレジストマスクをインクジェ
ット法で形成してもよい。レジストマスクをインクジェット法で形成するとフォトマスク
を使用しないため、製造コストを低減できる。
次いで、絶縁層457、酸化物半導体層462、ソース電極層又はドレイン電極層465
a1、465a2、ソース電極層又はドレイン電極層465b、及び配線層468上にゲ
ート絶縁層452を形成する。
ゲート絶縁層452は、プラズマCVD法又はスパッタリング法等を用いて、酸化シリコ
ン層、窒化シリコン層、酸化窒化シリコン層、窒化酸化シリコン層、又は酸化アルミニウ
ム層を単層で又は積層して形成することができる。なお、ゲート絶縁層452中に水素が
多量に含まれないようにするためには、スパッタリング法でゲート絶縁層452を成膜す
ることが好ましい。スパッタリング法により酸化シリコン膜を成膜する場合には、ターゲ
ットとしてシリコンターゲット又は石英ターゲットを用い、スパッタリングガスとして酸
素又は、酸素及びアルゴンの混合ガスを用いて行う。
ゲート絶縁層452は、ソース電極層又はドレイン電極層465a1、465a2、ソー
ス電極層又はドレイン電極層465b側から酸化シリコン層と窒化シリコン層を積層した
構造とすることもできる。本実施の形態では、圧力0.4Pa、高周波電源1.5kW、
酸素及びアルゴン(酸素流量25sccm:アルゴン流量25sccm=1:1)雰囲気
下でRFスパッタリング法により膜厚100nmの酸化シリコン層を形成する。
次いで、第4のフォトリソグラフィ工程によりレジストマスクを形成し、選択的にエッチ
ングを行ってゲート絶縁層452の一部を除去して、配線層438に達する開口423を
形成する(図8(D)参照。)。図示しないが開口423の形成時にソース電極層又はド
レイン電極層465bに達する開口を形成してもよい。本実施の形態では、ソース電極層
又はドレイン電極層465bへの開口はさらに層間絶縁層を積層した後に形成し、電気的
に接続する配線層を開口に形成する例とする。
次に、ゲート絶縁層452、及び開口423上に導電膜を形成した後、第5のフォトリソ
グラフィ工程によりゲート電極層461(461a、461b)、配線層464を形成す
る。なお、レジストマスクをインクジェット法で形成してもよい。レジストマスクをイン
クジェット法で形成するとフォトマスクを使用しないため、製造コストを低減できる。
また、ゲート電極層461(461a、461b)、配線層464の材料は、モリブデン
、チタン、クロム、タンタル、タングステン、アルミニウム、銅、ネオジム、スカンジウ
ム等の金属材料又はこれらを主成分とする合金材料を用いて、単層で又は積層して形成す
ることができる。
本実施の形態ではゲート電極層461(461a、461b)、配線層464としてスパ
ッタリング法により膜厚150nmのチタン膜を形成する。
次いで、不活性ガス雰囲気下、又は酸素ガス雰囲気下で第2の加熱処理(好ましくは20
0℃以上400℃以下、例えば250℃以上350℃以下)を行う。本実施の形態では、
窒素雰囲気下で250℃、1時間の第2の加熱処理を行う。また、第2の加熱処理は、薄
膜トランジスタ410上に保護絶縁層や平坦化絶縁層を形成してから行ってもよい。
さらに大気中、100℃以上200℃以下、1時間以上30時間以下での加熱処理を行っ
てもよい。この加熱処理は一定の加熱温度を保持して加熱してもよいし、室温から、10
0℃以上200℃以下の加熱温度への昇温と、加熱温度から室温までの降温を複数回くり
かえして行ってもよい。また、この加熱処理を、酸化物絶縁層の形成前に、減圧下で行っ
てもよい。減圧下で加熱処理を行うと、加熱時間を短縮することができる。
以上の工程で、水素、水分、水素化物、水酸化物の濃度が低減された酸化物半導体層46
2を有する薄膜トランジスタ460を形成することができる(図8(E)参照。)。
また、薄膜トランジスタ460上に保護絶縁層や、平坦化のための平坦化絶縁層を設けて
もよい。なお、図示しないが、ゲート絶縁層452、保護絶縁層や平坦化絶縁層にソース
電極層又はドレイン電極層465bに達する開口を形成し、その開口に、ソース電極層又
はドレイン電極層465bと電気的に接続する配線層を形成する。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
上記のように酸化物半導体膜を成膜するに際し、反応雰囲気中の残留水分を除去すること
で、該酸化物半導体膜中の水素及び水素化物の濃度を低減することができる。それにより
酸化物半導体膜の安定化を図ることができる。
以上のように、酸化物半導体層を用いる薄膜トランジスタを有する半導体装置において、
安定な電気特性を有し信頼性の高い半導体装置を提供することができる。
(実施の形態4)
本実施の形態は、本明細書で開示する論理回路及び半導体装置を構成するトランジスタに
適用できる薄膜トランジスタの他の例を示す。なお、実施の形態2と同一部分又は同様な
機能を有する部分、及び工程は、実施の形態2と同様とすればよく、その繰り返しの説明
は省略する。また同じ箇所の詳細な説明も省略する。本実施の形態で示す薄膜トランジス
タ425、426は、実施の形態1の論理回路及び半導体装置を構成する薄膜トランジス
タとして用いることができる。
本実施の形態の薄膜トランジスタを、図9を用いて説明する。
図9(A)(B)に薄膜トランジスタの断面構造の一例を示す。図9(A)(B)に示す
薄膜トランジスタ425、426は、酸化物半導体層を導電層とゲート電極層とで挟んだ
構造の薄膜トランジスタの一つである。
また、図9(A)(B)において、基板はシリコン基板を用いており、シリコン基板42
0上に設けられた絶縁層422上に薄膜トランジスタ425、426がそれぞれ設けられ
ている。
図9(A)において、シリコン基板420に設けられた絶縁層422と絶縁層407との
間に少なくとも酸化物半導体層412全体と重なるように導電層427が設けられている
なお、図9(B)は、絶縁層422と絶縁層407との間の導電層が、導電層424のよ
うにエッチングにより加工され、酸化物半導体層412の少なくともチャネル領域を含む
一部と重なる例である。
導電層427、424は後工程で行われる加熱処理温度に耐えられる金属材料であればよ
く、チタン(Ti)、タンタル(Ta)、タングステン(W)、モリブデン(Mo)、ク
ロム(Cr)、Nd(ネオジム)、スカンジウム(Sc)から選ばれた元素、又は上述し
た元素を成分とする合金か、上述した元素を組み合わせた合金膜、又は上述した元素を成
分とする窒化物などを用いることができる。また、単層構造でも積層構造でもよく、例え
ばタングステン層単層、又は窒化タングステン層とタングステン層との積層構造などを用
いることができる。
また、導電層427、424は、電位が薄膜トランジスタ425、426のゲート電極層
411と同じでもよいし、異なっていても良く、第2のゲート電極層として機能させるこ
ともできる。また、導電層427、424の電位がGND、0Vという固定電位であって
もよい。
導電層427、424によって、薄膜トランジスタ425、426の電気特性を制御する
ことができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態5)
本実施の形態は、本明細書で開示する論理回路及び半導体装置を構成するトランジスタに
適用できる薄膜トランジスタの例を示す。
本実施の形態の薄膜トランジスタ及び薄膜トランジスタの作製方法の一形態を、図10を
用いて説明する。
図10(A)乃至(E)に薄膜トランジスタの断面構造の一例を示す。図10(A)乃至
(E)に示す薄膜トランジスタ390は、ボトムゲート構造の一つであり逆スタガ型薄膜
トランジスタともいう。
また、薄膜トランジスタ390はシングルゲート構造の薄膜トランジスタを用いて説明す
るが、必要に応じて、チャネル形成領域を複数有するマルチゲート構造の薄膜トランジス
タも形成することができる。
以下、図10(A)乃至(E)を用い、基板394上に薄膜トランジスタ390を作製す
る工程を説明する。
まず、絶縁表面を有する基板394上に導電膜を形成した後、第1のフォトリソグラフィ
工程によりゲート電極層391を形成する。形成されたゲート電極層の端部はテーパ形状
であると、上に積層するゲート絶縁層の被覆性が向上するため好ましい。なお、レジスト
マスクをインクジェット法で形成してもよい。レジストマスクをインクジェット法で形成
するとフォトマスクを使用しないため、製造コストを低減できる。
絶縁表面を有する基板394に使用することができる基板に大きな制限はないが、少なく
とも、後の加熱処理に耐えうる程度の耐熱性を有していることが必要となる。バリウムホ
ウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板を用いることができる。
また、ガラス基板としては、後の加熱処理の温度が高い場合には、歪み点が730℃以上
のものを用いるとよい。また、ガラス基板には、例えば、アルミノシリケートガラス、ア
ルミノホウケイ酸ガラス、バリウムホウケイ酸ガラスなどのガラス材料が用いられている
。なお、一般的に酸化ホウ素と比較して酸化バリウム(BaO)を多く含ませることで、
より実用的な耐熱ガラスが得られる。このため、BよりBaOを多く含むガラス基
板を用いることが好ましい
なお、上記のガラス基板に代えて、セラミック基板、石英基板、サファイア基板などの絶
縁体でなる基板を用いてもよい。他にも、結晶化ガラス基板などを用いることができる。
また、プラスチック基板等も適宜用いることができる。
下地膜となる絶縁膜を基板394とゲート電極層391との間に設けてもよい。下地膜は
、基板394からの不純物元素の拡散を防止する機能があり、窒化シリコン膜、酸化シリ
コン膜、窒化酸化シリコン膜、又は酸化窒化シリコン膜から選ばれた一又は複数の膜によ
る積層構造により形成することができる。
また、ゲート電極層391の材料は、モリブデン、チタン、クロム、タンタル、タングス
テン、アルミニウム、銅、ネオジム、スカンジウム等の金属材料又はこれらを主成分とす
る合金材料を用いて、単層で又は積層して形成することができる。
例えば、ゲート電極層391の2層の積層構造としては、アルミニウム層上にモリブデン
層が積層された2層の積層構造、銅層上にモリブデン層を積層した2層構造、銅層上に窒
化チタン層若しくは窒化タンタル層を積層した2層構造、窒化チタン層とモリブデン層と
を積層した2層構造、又は窒化タングステン層とタングステン層とを積層した2層構造と
することが好ましい。3層の積層構造としては、タングステン層又は窒化タングステン層
と、アルミニウムとシリコンの合金層又はアルミニウムとチタンの合金層と、窒化チタン
層又はチタン層との積層とすることが好ましい。なお、透光性を有する導電膜を用いてゲ
ート電極層を形成することもできる。透光性を有する導電膜としては、透光性導電性酸化
物等をその例に挙げることができる。
次いで、ゲート電極層391上にゲート絶縁層397を形成する。
ゲート絶縁層397は、プラズマCVD法又はスパッタリング法等を用いて、酸化シリコ
ン層、窒化シリコン層、酸化窒化シリコン層、窒化酸化シリコン層、又は酸化アルミニウ
ム層を単層で又は積層して形成することができる。なお、ゲート絶縁層397中に水素が
多量に含まれないようにするためには、スパッタリング法でゲート絶縁層397を成膜す
ることが好ましい。スパッタリング法により酸化シリコン膜を成膜する場合には、ターゲ
ットとしてシリコンターゲット又は石英ターゲットを用い、スパッタリングガスとして酸
素又は、酸素及びアルゴンの混合ガスを用いる。
ゲート絶縁層397は、ゲート電極層391側から窒化シリコン層と酸化シリコン層を積
層した構造とすることもできる。例えば、第1のゲート絶縁層としてスパッタリング法に
より膜厚50nm以上200nm以下の窒化シリコン層(SiNy(y>0))を形成し
、第1のゲート絶縁層上に第2のゲート絶縁層として膜厚5nm以上300nm以下の酸
化シリコン層(SiOx(x>0))を積層して、膜厚100nmのゲート絶縁層とする
また、ゲート絶縁層397、酸化物半導体膜393に水素、水酸基及び水分がなるべく含
まれないようにするために、成膜の前処理として、スパッタリング装置の予備加熱室でゲ
ート電極層391が形成された基板394、又はゲート絶縁層397までが形成された基
板394を予備加熱し、基板394に吸着した水素、水分などの不純物を脱離し排気する
ことが好ましい。なお、予備加熱の温度としては、100℃以上400℃以下好ましくは
150℃以上300℃以下である。なお、予備加熱室に設ける排気手段はクライオポンプ
が好ましい。なお、この予備加熱の処理は省略することもできる。またこの予備加熱は、
酸化物絶縁層396の成膜前に、ソース電極層395a及びドレイン電極層395bまで
形成した基板394にも同様に行ってもよい。
次いで、ゲート絶縁層397上に、膜厚2nm以上200nm以下の酸化物半導体膜39
3を形成する(図10(A)参照。)。
なお、酸化物半導体膜393をスパッタリング法により成膜する前に、アルゴンガスを導
入してプラズマを発生させて逆スパッタを行い、ゲート絶縁層397の表面に付着してい
るゴミを除去することが好ましい。
酸化物半導体膜393はスパッタリング法により成膜する。酸化物半導体膜393は、I
n−Ga−Zn−O系膜、In−Sn−Zn−O系、In−Al−Zn−O系、Sn−G
a−Zn−O系、Al−Ga−Zn−O系、Sn−Al−Zn−O系、In−Zn−O系
、Sn−Zn−O系、Al−Zn−O系、In−O系、Sn−O系、Zn−O系の酸化物
半導体膜を用いる。本実施の形態では、酸化物半導体膜393をIn−Ga−Zn−O系
酸化物半導体成膜用ターゲットを用いてスパッタリング法により成膜する。また、酸化物
半導体膜393は、希ガス(代表的にはアルゴン)雰囲気下、酸素雰囲気下、又は希ガス
(代表的にはアルゴン)及び酸素混合雰囲気下においてスパッタリング法により形成する
ことができる。また、スパッタリング法を用いる場合、SiOを2重量%以上10重量
%以下含むターゲットを用いて成膜を行ってもよい。
酸化物半導体膜393をスパッタリング法で作製するためのターゲットとして、酸化亜鉛
を主成分とする金属酸化物のターゲットを用いることができる。また、金属酸化物のター
ゲットの他の例としては、In、Ga、及びZnを含む酸化物半導体成膜用ターゲット(
組成比として、In:Ga:ZnO=1:1:1[mol%]、In:Ga
:Zn=1:1:0.5[atom%])を用いることができる。また、In、Ga、及
びZnを含む酸化物半導体成膜用ターゲットとして、In:Ga:Zn=1:1:1[a
tom%]、又はIn:Ga:Zn=1:1:2[atom%]の組成比を有するターゲ
ットを用いることもできる。酸化物半導体成膜用ターゲットの充填率は90%以上100
%以下、好ましくは95%以上99.9%である。充填率の高い酸化物半導体成膜用ター
ゲットを用いることにより、成膜した酸化物半導体膜は緻密な膜となる。
減圧状態に保持された処理室内に基板を保持し、基板を室温又は400℃未満の温度に加
熱する。そして、処理室内の残留水分を除去しつつ水素及び水分が除去されたスパッタリ
ングガスを導入し、金属酸化物をターゲットとして基板394上に酸化物半導体膜393
を成膜する。処理室内の残留水分を除去するためには、吸着型の真空ポンプを用いること
が好ましい。例えば、クライオポンプ、イオンポンプ、チタンサブリメーションポンプを
用いることが好ましい。また、排気手段としては、ターボポンプにコールドトラップを加
えたものであってもよい。クライオポンプを用いて排気した成膜室は、例えば、水素原子
、水(HO)など水素原子を含む化合物(より好ましくは炭素原子を含む化合物も)等
が排気されるため、当該成膜室で成膜した酸化物半導体膜に含まれる不純物の濃度を低減
できる。
成膜条件の一例としては、基板とターゲットの間との距離を60mm、圧力0.6Pa、
直流(DC)電源0.5kW、酸素(酸素流量比率100%)雰囲気下の条件が適用され
る。なお、パルス直流(DC)電源を用いると、成膜時に発生する粉状物質が軽減でき、
膜厚分布も均一となるために好ましい。酸化物半導体膜は好ましくは5nm以上30nm
以下とする。なお、適用する酸化物半導体材料により適切な厚みは異なり、材料に応じて
適宜厚みを選択すればよい。
次いで、酸化物半導体膜を第2のフォトリソグラフィ工程により島状の酸化物半導体層3
99に加工する(図10(B)参照。)。また、島状の酸化物半導体層399を形成する
ためのレジストマスクをインクジェット法で形成してもよい。レジストマスクをインクジ
ェット法で形成するとフォトマスクを使用しないため、製造コストを低減できる。
また、酸化物半導体層399の形成時に、ゲート絶縁層397にコンタクトホールを形成
することができる。
なお、ここでの酸化物半導体膜393のエッチングは、ドライエッチングでもウェットエ
ッチングでもよく、両方を用いてもよい。
ドライエッチングに用いるエッチングガスとしては、塩素を含むガス(塩素系ガス、例え
ば塩素(Cl)、塩化硼素(BCl)、塩化珪素(SiCl)、四塩化炭素(CC
)など)が好ましい。
また、フッ素を含むガス(フッ素系ガス、例えば四弗化炭素(CF)、弗化硫黄(SF
)、弗化窒素(NF)、トリフルオロメタン(CHF)など)、臭化水素(HBr
)、酸素(O)、これらのガスにヘリウム(He)やアルゴン(Ar)などの希ガスを
添加したガス、などを用いることができる。
ドライエッチング法としては、平行平板型RIE(Reactive Ion Etch
ing)法や、ICP(Inductively Coupled Plasma:誘導
結合型プラズマ)エッチング法を用いることができる。所望の加工形状にエッチングでき
るように、エッチング条件(コイル型の電極に印加される電力量、基板側の電極に印加さ
れる電力量、基板側の電極温度等)を適宜調節する。
ウェットエッチングに用いるエッチング液としては、燐酸と酢酸と硝酸を混ぜた溶液など
を用いることができる。また、ITO07N(関東化学社製)を用いてもよい。
また、ウェットエッチング後のエッチング液はエッチングされた材料とともに洗浄によっ
て除去される。その除去された材料を含むエッチング液の廃液を精製し、含まれる材料を
再利用してもよい。当該エッチング後の廃液から酸化物半導体層に含まれるインジウム等
の材料を回収して再利用することにより、資源を有効活用し低コスト化することができる
所望の加工形状にエッチングできるように、材料に合わせてエッチング条件(エッチング
液、エッチング時間、温度等)を適宜調節する。
なお、次工程の導電膜を形成する前に逆スパッタを行い、酸化物半導体層399及びゲー
ト絶縁層397の表面に付着しているレジスト残渣などを除去することが好ましい。
次いで、ゲート絶縁層397、及び酸化物半導体層399上に、導電膜を形成する。スパ
ッタリング法や真空蒸着法で導電膜を形成すればよい。導電膜の材料としては、Al、C
r、Cu、Ta、Ti、Mo、Wからから選ばれた元素、又は上述した元素を成分とする
合金か、上述した元素を組み合わせた合金膜等が挙げられる。また、マンガン、マグネシ
ウム、ジルコニウム、ベリリウム、トリウムのいずれか一又は複数から選択された材料を
用いてもよい。また、導電膜は、単層構造でも、2層以上の積層構造としてもよい。例え
ば、シリコンを含むアルミニウム膜の単層構造、アルミニウム膜上にチタン膜を積層する
2層構造、Ti膜と、そのTi膜上に重ねてアルミニウム膜を積層し、さらにその上にT
i膜を成膜する3層構造などが挙げられる。また、Alに、チタン(Ti)、タンタル(
Ta)、タングステン(W)、モリブデン(Mo)、クロム(Cr)、Nd(ネオジム)
、Sc(スカンジウム)から選ばれた元素を単数、又は複数組み合わせた膜、合金膜、若
しくは窒化膜を用いてもよい。
第3のフォトリソグラフィ工程により導電膜上にレジストマスクを形成し、選択的にエッ
チングを行ってソース電極層395a、ドレイン電極層395bを形成した後、レジスト
マスクを除去する(図10(C)参照。)。
第3のフォトリソグラフィ工程でのレジストマスク形成時の露光には、紫外線やKrFレ
ーザ光やArFレーザ光を用いる。酸化物半導体層399上で隣り合うソース電極層の下
端部とドレイン電極層の下端部との間隔幅によって後に形成される薄膜トランジスタのチ
ャネル長Lが決定される。なお、チャネル長L=25nm未満の露光を行う場合には、数
nm〜数10nmと極めて波長が短い超紫外線(Extreme Ultraviole
t)を用いて第3のフォトリソグラフィ工程でのレジストマスク形成時の露光を行う。超
紫外線による露光は、解像度が高く焦点深度も大きい。従って、後に形成される薄膜トラ
ンジスタのチャネル長Lを10nm以上1000nm以下とすることも可能であり、回路
の動作速度を高速化でき、さらにオフ電流値が極めて小さいため、低消費電力化も図るこ
とができる。
なお、導電膜のエッチングの際に、酸化物半導体層399は除去されないようにそれぞれ
の材料及びエッチング条件を適宜調節する。
なお、第3のフォトリソグラフィ工程では、酸化物半導体層399は一部のみがエッチン
グされ、溝部(凹部)を有する酸化物半導体層となることもある。また、ソース電極層3
95a、ドレイン電極層395bを形成するためのレジストマスクをインクジェット法で
形成してもよい。レジストマスクをインクジェット法で形成するとフォトマスクを使用し
ないため、製造コストを低減できる。
また、フォトリソグラフィ工程で用いるフォトマスク数及び工程数を削減するため、透過
した光が複数の強度となる露光マスクである多階調マスクによって形成されたレジストマ
スクを用いてエッチング工程を行ってもよい。多階調マスクを用いて形成したレジストマ
スクは複数の膜厚を有する形状となり、エッチングを行うことでさらに形状を変形するこ
とができるため、異なるパターンに加工する複数のエッチング工程に用いることができる
。よって、一枚の多階調マスクによって、少なくとも二種類以上の異なるパターンに対応
するレジストマスクを形成することができる。よって露光マスク数を削減することができ
、対応するフォトリソグラフィ工程も削減できるため、工程の簡略化が可能となる。
O、N、又はArなどのガスを用いたプラズマ処理によって露出している酸化物半
導体層の表面に付着した吸着水などを除去してもよい。また、酸素とアルゴンの混合ガス
を用いてプラズマ処理を行ってもよい。
プラズマ処理を行った場合、大気に触れることなく、酸化物半導体層の一部に接する保護
絶縁膜となる酸化物絶縁層として酸化物絶縁層396を形成する(図10(D)参照。)
。本実施の形態では、酸化物半導体層399がソース電極層395a、ドレイン電極層3
95bと重ならない領域において、酸化物半導体層399と酸化物絶縁層396とが接す
るように形成する。
本実施の形態では、酸化物絶縁層396として、島状の酸化物半導体層399、ソース電
極層395a、ドレイン電極層395bまで形成された基板394を室温又は100℃未
満の温度に加熱し、水素及び水分が除去された高純度酸素を含むスパッタリングガスを導
入しシリコン半導体のターゲットを用いて、欠陥を含む酸化シリコン層を成膜する。
例えば、スパッタリングガスの純度が6Nであり、ボロンがドープされたシリコンターゲ
ット(抵抗値0.01Ωcm)を用い、基板とターゲットの間との距離(T−S間距離)
を89mm、圧力0.4Pa、直流(DC)電源6kW、酸素(酸素流量比率100%)
雰囲気下でパルスDCスパッタリング法により酸化シリコン層を成膜する。膜厚は300
nmとする。なお、シリコンターゲットに代えて石英(好ましくは合成石英)を酸化シリ
コン膜を成膜するためのターゲットとして用いることができる。なお、スパッタリングガ
スとして酸素又は、酸素及びアルゴンの混合ガスを用いて行う。
この場合において、処理室内の残留水分を除去しつつ酸化物絶縁層396を成膜すること
が好ましい。酸化物半導体層399及び酸化物絶縁層396に水素、水酸基又は水分が含
まれないようにするためである。
処理室内の残留水分を除去するためには、吸着型の真空ポンプを用いることが好ましい。
例えば、クライオポンプ、イオンポンプ、チタンサブリメーションポンプを用いることが
好ましい。また、排気手段としては、ターボポンプにコールドトラップを加えたものであ
ってもよい。クライオポンプを用いて排気した成膜室は、例えば、水素原子や、水(H
O)など水素原子を含む化合物等が排気されるため、当該成膜室で成膜した酸化物絶縁層
396に含まれる不純物の濃度を低減できる。
なお、酸化物絶縁層396として、酸化シリコン層に代えて、酸化窒化シリコン層、酸化
アルミニウム層、又は酸化窒化アルミニウム層などを用いることもできる。
さらに、酸化物絶縁層396と酸化物半導体層399とを接した状態で100℃乃至40
0℃で加熱処理を行ってもよい。本実施の形態における酸化物絶縁層396は欠陥を多く
含むため、この加熱処理によって酸化物半導体層399中に含まれる水素、水分、水酸基
又は水素化物などの不純物を酸化物絶縁層396に拡散させ、酸化物半導体層399中に
含まれる該不純物をより低減させることができる。
以上の工程で、水素、水分、水酸基又は水素化物の濃度が低減された酸化物半導体層39
2を有する薄膜トランジスタ390を形成することができる(図10(E)参照。)。
上記のように酸化物半導体膜を成膜するに際し、反応雰囲気中の残留水分を除去すること
で、該酸化物半導体膜中の水素及び水素化物の濃度を低減することができる。それにより
酸化物半導体膜の安定化を図ることができる。
酸化物絶縁層上に保護絶縁層を設けてもよい。本実施の形態では、保護絶縁層398を酸
化物絶縁層396上に形成する。保護絶縁層398としては、窒化シリコン膜、窒化酸化
シリコン膜、窒化アルミニウム膜、又は窒化酸化アルミニウム膜などを用いる。
保護絶縁層398として、酸化物絶縁層396まで形成された基板394を100℃〜4
00℃の温度に加熱し、水素及び水分が除去された高純度窒素を含むスパッタリングガス
を導入しシリコン半導体のターゲットを用いて窒化シリコン膜を成膜する。この場合にお
いても、酸化物絶縁層396と同様に、処理室内の残留水分を除去しつつ保護絶縁層39
8を成膜することが好ましい。
保護絶縁層398を形成する場合、保護絶縁層398の成膜時に100℃〜400℃に基
板394を加熱することで、酸化物半導体層中に含まれる水素若しくは水分を酸化物絶縁
層に拡散させることができる。この場合上記酸化物絶縁層396の形成後に加熱処理を行
わなくてもよい。
酸化物絶縁層396として酸化シリコン層を形成し、保護絶縁層398として窒化シリコ
ン層を積層する場合、酸化シリコン層と窒化シリコン層を同じ処理室において、共通のシ
リコンターゲットを用いて成膜することができる。先に酸素を含むエッチングガスを導入
して、処理室内に装着されたシリコンターゲットを用いて酸化シリコン層を形成し、次に
エッチングガスを窒素を含むエッチングガスに切り替えて同じシリコンターゲットを用い
て窒化シリコン層を成膜する。酸化シリコン層と窒化シリコン層とを大気に曝露せずに連
続して形成することができるため、酸化シリコン層表面に水素や水分などの不純物が吸着
することを防止することができる。この場合、酸化物絶縁層396として酸化シリコン層
を形成し、保護絶縁層398として窒化シリコン層を積層した後、酸化物半導体層中に含
まれる水素若しくは水分を酸化物絶縁層に拡散させるための加熱処理(温度100℃乃至
400℃)を行うとよい。
保護絶縁層の形成後、さらに大気中、100℃以上200℃以下、1時間以上30時間以
下での加熱処理を行ってもよい。この加熱処理は一定の加熱温度を保持して加熱してもよ
いし、室温から、100℃以上200℃以下の加熱温度への昇温と、加熱温度から室温ま
での降温を複数回くりかえして行ってもよい。また、この加熱処理を、酸化物絶縁層の形
成前に、減圧下で行ってもよい。減圧下で加熱処理を行うと、加熱時間を短縮することが
できる。この加熱処理によって、ノーマリーオフとなる薄膜トランジスタを得ることがで
きる。よって薄膜トランジスタの信頼性を向上できる。
また、ゲート絶縁層上にチャネル形成領域とする酸化物半導体層を成膜するに際し、反応
雰囲気中の残留水分を除去することで、該酸化物半導体層中の水素及び水素化物の濃度を
低減することができる。
上記の工程は、液晶表示パネル、エレクトロルミネセンス表示パネル、電子インクを用い
た表示装置などのバックプレーン(薄膜トランジスタが形成された基板)の製造に用いる
ことができる。上記の工程は、400℃以下の温度で行われるため、厚さが1mm以下で
、一辺が1mを超えるガラス基板を用いる製造工程にも適用することができる。また、4
00℃以下の処理温度で全ての工程を行うことができるので、表示パネルを製造するため
に多大なエネルギーを消費しないで済む。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
以上のように、酸化物半導体層を用いる薄膜トランジスタにおいて、安定な電気特性を有
し信頼性の高い薄膜トランジスタを提供することができる。
(実施の形態6)
本実施の形態は、本明細書で開示する論理回路及び半導体装置を構成するトランジスタに
適用できる薄膜トランジスタの他の例を示す。
本実施の形態の薄膜トランジスタ及び薄膜トランジスタの作製方法の一形態を図11を用
いて説明する。
図11(A)乃至(E)に薄膜トランジスタの断面構造の一例を示す。図11(A)乃至
(E)に示す薄膜トランジスタ310は、ボトムゲート構造の一つであり逆スタガ型薄膜
トランジスタともいう。
また、薄膜トランジスタ310はシングルゲート構造の薄膜トランジスタを用いて説明し
たが、必要に応じて、チャネル形成領域を複数有するマルチゲート構造の薄膜トランジス
タも形成することができる。
以下、図11(A)乃至(E)を用い、基板300上に薄膜トランジスタ410を作製す
る工程を説明する。
まず、絶縁表面を有する基板300上に導電膜を形成した後、第1のフォトリソグラフィ
工程によりゲート電極層311を形成する。なお、レジストマスクをインクジェット法で
形成してもよい。レジストマスクをインクジェット法で形成するとフォトマスクを使用し
ないため、製造コストを低減できる。
絶縁表面を有する基板300に使用することができる基板に大きな制限はないが、少なく
とも、後の加熱処理に耐えうる程度の耐熱性を有していることが必要となる。バリウムホ
ウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板を用いることができる。
また、ガラス基板としては、後の加熱処理の温度が高い場合には、歪み点が730℃以上
のものを用いるとよい。また、ガラス基板には、例えば、アルミノシリケートガラス、ア
ルミノホウケイ酸ガラス、バリウムホウケイ酸ガラスなどのガラス材料が用いられている
。なお、酸化ホウ素(B)と比較して酸化バリウム(BaO)を多く含ませること
で、より実用的な耐熱ガラスが得られる。このため、BよりBaOを多く含むガラ
ス基板を用いることが好ましい
なお、上記のガラス基板に代えて、セラミック基板、石英基板、サファイア基板などの絶
縁体でなる基板を用いてもよい。他にも、結晶化ガラス基板などを用いることができる。
下地膜となる絶縁膜を基板300とゲート電極層311との間に設けてもよい。下地膜は
、基板300からの不純物元素の拡散を防止する機能があり、窒化珪素膜、酸化珪素膜、
窒化酸化珪素膜、又は酸化窒化珪素膜から選ばれた一又は複数の膜による積層構造により
形成することができる。
また、ゲート電極層311の材料は、モリブデン、チタン、クロム、タンタル、タングス
テン、アルミニウム、銅、ネオジム、スカンジウム等の金属材料又はこれらを主成分とす
る合金材料を用いて、単層で又は積層して形成することができる。
例えば、ゲート電極層311の2層の積層構造としては、アルミニウム層上にモリブデン
層が積層された2層の積層構造、銅層上にモリブデン層を積層した2層の積層構造、銅層
上に窒化チタン層若しくは窒化タンタル層を積層した2層の積層構造、窒化チタン層とモ
リブデン層とを積層した2層の積層構造、又は窒化タングステン層とタングステン層との
2層の積層構造とすることが好ましい。3層の積層構造としては、タングステン層又は窒
化タングステン層と、アルミニウムと珪素の合金層又はアルミニウムとチタンの合金層と
、窒化チタン層又はチタン層とを積層した積層とすることが好ましい。
次いで、ゲート電極層311上にゲート絶縁層302を形成する。
ゲート絶縁層302は、プラズマCVD法又はスパッタリング法等を用いて、酸化珪素層
、窒化珪素層、酸化窒化珪素層、窒化酸化珪素層、又は酸化アルミニウム層を単層で又は
積層して形成することができる。例えば、成膜ガスとして、SiH、酸素及び窒素を用
いてプラズマCVD法により酸化窒化珪素層を形成すればよい。ゲート絶縁層302の膜
厚は、100nm以上500nm以下とし、積層の場合は、例えば、膜厚50nm以上2
00nm以下の第1のゲート絶縁層と、第1のゲート絶縁層上に膜厚5nm以上300n
m以下の第2のゲート絶縁層の積層とする。
本実施の形態では、ゲート絶縁層302としてプラズマCVD法により膜厚100nm以
下の酸化窒化珪素層を形成する。
次いで、ゲート絶縁層302上に、膜厚2nm以上200nm以下の酸化物半導体膜33
0を形成する。
なお、酸化物半導体膜330をスパッタリング法により成膜する前に、アルゴンガスを導
入してプラズマを発生させる逆スパッタを行い、ゲート絶縁層302の表面に付着してい
るゴミを除去することが好ましい。なお、アルゴン雰囲気に代えて窒素、ヘリウム、酸素
などを用いてもよい。
酸化物半導体膜330は、In−Ga−Zn−O系、In−Sn−Zn−O系、In−A
l−Zn−O系、Sn−Ga−Zn−O系、Al−Ga−Zn−O系、Sn−Al−Zn
−O系、In−Zn−O系、Sn−Zn−O系、Al−Zn−O系、In−O系、Sn−
O系、Zn−O系の酸化物半導体膜を用いる。本実施の形態では、酸化物半導体膜330
としてIn−Ga−Zn−O系酸化物半導体ターゲットを用いてスパッタリング法により
成膜する。この段階での断面図が図11(A)に相当する。また、酸化物半導体膜330
は、希ガス(代表的にはアルゴン)雰囲気下、酸素雰囲気下、又は希ガス(代表的にはア
ルゴン)及び酸素雰囲気下においてスパッタリング法により形成することができる。また
、スパッタリング法を用いる場合、SiOを2重量%以上10重量%以下含むターゲッ
トを用いて成膜を行ってもよい。
酸化物半導体膜330をスパッタリング法で作製するためのターゲットとして、酸化亜鉛
を主成分とする金属酸化物のターゲットを用いることができる。また、金属酸化物のター
ゲットの他の例としては、In、Ga、及びZnを含む酸化物半導体成膜用ターゲット(
組成比として、In:Ga:ZnO=1:1:1[mol%]、In:Ga
:Zn=1:1:0.5[atom%])を用いることができる。また、In、Ga、及
びZnを含む酸化物半導体成膜用ターゲットとして、In:Ga:Zn=1:1:1[a
tom%]、又はIn:Ga:Zn=1:1:2[atom%]の組成比を有するターゲ
ットを用いることもできる。酸化物半導体成膜用ターゲットの充填率は90%以上100
%以下、好ましくは95%以上99.9%である。充填率の高い酸化物半導体成膜用ター
ゲットを用いることにより、成膜した酸化物半導体膜は緻密な膜となる。
酸化物半導体膜330を、成膜する際に用いるスパッタリングガスは水素、水、水酸基又
は水素化物などの不純物が、濃度ppm程度、濃度ppb程度まで除去された高純度ガス
を用いることが好ましい。
減圧状態に保持された処理室内に基板を保持し、基板温度を100℃以上600℃以下好
ましくは200℃以上400℃以下とする。基板を加熱しながら成膜することにより、成
膜した酸化物半導体膜に含まれる不純物濃度を低減することができる。また、スパッタリ
ングによる損傷が軽減される。そして、処理室内の残留水分を除去しつつ水素及び水分が
除去されたスパッタリングガスを導入し、金属酸化物をターゲットとして基板300上に
酸化物半導体膜330を成膜する。処理室内の残留水分を除去するためには、吸着型の真
空ポンプを用いることが好ましい。例えば、クライオポンプ、イオンポンプ、チタンサブ
リメーションポンプを用いることが好ましい。また、排気手段としては、ターボポンプに
コールドトラップを加えたものであってもよい。クライオポンプを用いて排気した成膜室
は、例えば、水素原子、水(HO)など水素原子を含む化合物(より好ましくは炭素原
子を含む化合物も)等が排気されるため、当該成膜室で成膜した酸化物半導体膜に含まれ
る不純物の濃度を低減できる。
成膜条件の一例としては、基板とターゲットの間との距離を100mm、圧力0.6Pa
、直流(DC)電源0.5kW、酸素(酸素流量比率100%)雰囲気下の条件が適用さ
れる。なお、パルス直流(DC)電源を用いると、成膜時に発生する粉状物質が軽減でき
、膜厚分布も均一となるために好ましい。酸化物半導体膜は好ましくは5nm以上30n
m以下とする。なお、適用する酸化物半導体材料により適切な厚みは異なり、材料に応じ
て適宜厚みを選択すればよい。
次いで、酸化物半導体膜330を第2のフォトリソグラフィ工程により島状の酸化物半導
体層に加工する。また、島状の酸化物半導体層を形成するためのレジストマスクをインク
ジェット法で形成してもよい。レジストマスクをインクジェット法で形成するとフォトマ
スクを使用しないため、製造コストを低減できる。
次いで、酸化物半導体層に第1の加熱処理を行う。この第1の加熱処理によって酸化物半
導体層の脱水化又は脱水素化を行うことができる。第1の加熱処理の温度は、400℃以
上750℃以下、好ましくは400℃以上基板の歪み点未満とする。ここでは、加熱処理
装置の一つである電気炉に基板を導入し、酸化物半導体層に対して窒素雰囲気下450℃
において1時間の加熱処理を行った後、大気に触れることなく、酸化物半導体層への水や
水素の再混入を防ぎ、酸化物半導体層331を得る(図11(B)参照。)。
なお、加熱処理装置は電気炉に限られず、抵抗発熱体などの発熱体からの熱伝導又は熱輻
射によって、被処理物を加熱する装置を備えていてもよい。例えば、GRTA(Gas
Rapid Thermal Anneal)装置、LRTA(Lamp Rapid
Thermal Anneal)装置等のRTA(Rapid Thermal Ann
eal)装置を用いることができる。LRTA装置は、ハロゲンランプ、メタルハライド
ランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、高圧水
銀ランプなどのランプから発する光(電磁波)の輻射により、被処理物を加熱する装置で
ある。GRTA装置は、高温のガスを用いて加熱処理を行う装置である。気体には、アル
ゴンなどの希ガス、又は窒素のような、加熱処理によって被処理物と反応しない不活性気
体が用いられる。
例えば、第1の加熱処理として、650℃〜700℃の高温に加熱した不活性ガス中に基
板を移動させて入れ、数分間加熱した後、基板を移動させて高温に加熱した不活性ガス中
から出すGRTAを行ってもよい。GRTAを用いると短時間での高温加熱処理が可能と
なる。
なお、第1の加熱処理においては、窒素、又はヘリウム、ネオン、アルゴン等の希ガスに
、水、水素などが含まれないことが好ましい。又は、加熱処理装置に導入する窒素、又は
ヘリウム、ネオン、アルゴン等の希ガスの純度を、6N(99.9999%)以上、好ま
しくは7N(99.99999%)以上、(即ち不純物濃度を1ppm以下、好ましくは
0.1ppm以下)とすることが好ましい。
また、第1の加熱処理の条件、又は酸化物半導体層の材料によっては、結晶化し、微結晶
膜又は多結晶膜となる場合もある。例えば、結晶化率が90%以上、又は80%以上の微
結晶の酸化物半導体膜となる場合もある。また、第1の加熱処理の条件、又は酸化物半導
体層の材料によっては、結晶成分を含まない非晶質の酸化物半導体膜となる場合もある。
また、非晶質の酸化物半導体の中に微結晶部(粒径1nm以上20nm以下(代表的には
2nm以上4nm以下))が混在する酸化物半導体膜となる場合もある。
また、酸化物半導体層の第1の加熱処理は、島状の酸化物半導体層に加工する前の酸化物
半導体膜330に行うこともできる。その場合には、第1の加熱処理後に、加熱装置から
基板を取り出し、フォトリソグラフィ工程を行う。
酸化物半導体層に対する脱水化、脱水素化の効果を奏する加熱処理は、酸化物半導体層成
膜後、酸化物半導体層上にソース電極層及びドレイン電極層を積層させた後、ソース電極
及びドレイン電極上に保護絶縁膜を形成した後、のいずれで行ってもよい。
また、ゲート絶縁層302にコンタクトホールを形成する場合、その工程は酸化物半導体
膜330に脱水化又は脱水素化処理を行う前でも行った後に行ってもよい。
なお、ここでの酸化物半導体膜のエッチングは、ウェットエッチングに限定されずドライ
エッチングを用いてもよい。
所望の加工形状にエッチングできるように、材料に合わせてエッチング条件(エッチング
液、エッチング時間、温度等)を適宜調節する。
次いで、ゲート絶縁層302、及び酸化物半導体層331上に、導電膜を形成する。導電
膜をスパッタリング法や真空蒸着法で形成すればよい。導電膜の材料としては、Al、C
r、Cu、Ta、Ti、Mo、Wからから選ばれた元素、又は上述した元素を成分とする
合金か、上述した元素を組み合わせた合金膜等が挙げられる。また、マンガン、マグネシ
ウム、ジルコニウム、ベリリウム、トリウムのいずれか一又は複数から選択された材料を
用いてもよい。また、導電膜は、単層構造でも、2層以上の積層構造としてもよい。例え
ば、シリコンを含むアルミニウム膜の単層構造、アルミニウム膜上にチタン膜を積層する
2層構造、Ti膜と、そのTi膜上に重ねてアルミニウム膜を積層し、さらにその上にT
i膜を成膜する3層構造などが挙げられる。また、Alに、チタン(Ti)、タンタル(
Ta)、タングステン(W)、モリブデン(Mo)、クロム(Cr)、Nd(ネオジム)
、Sc(スカンジウム)から選ばれた元素を単数、又は複数組み合わせた膜、合金膜、若
しくは窒化膜を用いてもよい。
導電膜成膜後に加熱処理を行う場合には、この加熱処理に耐える耐熱性を導電膜に持たせ
ることが好ましい。
第3のフォトリソグラフィ工程により導電膜上にレジストマスクを形成し、選択的にエッ
チングを行ってソース電極層315a、ドレイン電極層315bを形成した後、レジスト
マスクを除去する(図11(C)参照。)。
第3のフォトリソグラフィ工程でのレジストマスク形成時の露光には、紫外線やKrFレ
ーザ光やArFレーザ光を用いる。酸化物半導体層331上で隣り合うソース電極層の下
端部とドレイン電極層の下端部との間隔幅によって後に形成される薄膜トランジスタのチ
ャネル長Lが決定される。なお、チャネル長L=25nm未満の露光を行う場合には、数
nm〜数10nmと極めて波長が短い超紫外線(Extreme Ultraviole
t)を用いて第3のフォトリソグラフィ工程でのレジストマスク形成時の露光を行う。超
紫外線による露光は、解像度が高く焦点深度も大きい。従って、後に形成される薄膜トラ
ンジスタのチャネル長Lを10nm以上1000nm以下とすることも可能であり、回路
の動作速度を高速化でき、さらにオフ電流値が極めて小さいため、低消費電力化も図るこ
とができる。
なお、導電膜のエッチングの際に、酸化物半導体層331は除去されないようにそれぞれ
の材料及びエッチング条件を適宜調節する。
なお、第3のフォトリソグラフィ工程では、酸化物半導体層331は一部のみがエッチン
グされ、溝部(凹部)を有する酸化物半導体層となることもある。また、ソース電極層3
15a、ドレイン電極層315bを形成するためのレジストマスクをインクジェット法で
形成してもよい。レジストマスクをインクジェット法で形成するとフォトマスクを使用し
ないため、製造コストを低減できる。
また、酸化物半導体層とソース電極層及びドレイン電極層の間に、酸化物導電層を形成し
てもよい。酸化物導電層とソース電極層及びドレイン電極層を形成するための金属層は、
連続成膜が可能である。酸化物導電層はソース領域及びドレイン領域として機能しうる。
ソース領域及びドレイン領域として、酸化物導電層を酸化物半導体層とソース電極層及び
ドレイン電極層との間に設けることで、ソース領域及びドレイン領域の低抵抗化を図るこ
とができ、トランジスタの高速動作をすることができる。
また、フォトリソグラフィ工程で用いるフォトマスク数及び工程数を削減するため、透過
した光が複数の強度となる露光マスクである多階調マスクによって形成されたレジストマ
スクを用いてエッチング工程を行ってもよい。多階調マスクを用いて形成したレジストマ
スクは複数の膜厚を有する形状となり、エッチングを行うことでさらに形状を変形するこ
とができるため、異なるパターンに加工する複数のエッチング工程に用いることができる
。よって、一枚の多階調マスクによって、少なくとも二種類以上の異なるパターンに対応
するレジストマスクを形成することができる。よって露光マスク数を削減することができ
、対応するフォトリソグラフィ工程も削減できるため、工程の簡略化が可能となる。
次いで、NO、N、又はArなどのガスを用いたプラズマ処理を行う。このプラズマ
処理によって露出している酸化物半導体層の表面に付着した吸着水などを除去する。また
、酸素とアルゴンの混合ガスを用いてプラズマ処理を行ってもよい。
プラズマ処理を行った後、大気に触れることなく、酸化物半導体層の一部に接する保護絶
縁膜となる酸化物絶縁層316を形成する。
酸化物絶縁層316は、少なくとも1nm以上の膜厚とし、スパッタリング法など、酸化
物絶縁層316に水、水素等の不純物を混入させない方法を適宜用いて形成することがで
きる。酸化物絶縁層316に水素が含まれると、その水素の酸化物半導体層への侵入、又
は水素による酸化物半導体層中の酸素の引き抜き、が生じ酸化物半導体層のバックチャネ
ルがN型化(低抵抗化)してしまい、寄生チャネルが形成されるおそれがある。よって、
酸化物絶縁層316はできるだけ水素を含まない膜になるように、成膜方法に水素を用い
ないことが重要である。
本実施の形態では、酸化物絶縁層316として膜厚200nmの酸化珪素膜をスパッタリ
ング法を用いて成膜する。成膜時の基板温度は、室温以上300℃以下とすればよく、本
実施の形態では100℃とする。酸化珪素膜のスパッタリング法による成膜は、希ガス(
代表的にはアルゴン)雰囲気下、酸素雰囲気下、又は希ガス(代表的にはアルゴン)及び
酸素混合雰囲気下において行うことができる。また、ターゲットとして酸化珪素ターゲッ
ト又は珪素ターゲットを用いることができる。例えば、珪素ターゲットを用いて、酸素、
及び窒素雰囲気下でスパッタリング法により酸化珪素膜を形成することができる。酸素欠
乏状態になり、N型化すなわち低抵抗化した酸化物半導体層に接して形成される酸化物絶
縁層316は、水分、水素イオン、OHなどの不純物を含まず、これらが外部から侵入
することをブロックする無機絶縁膜を用い、代表的には酸化シリコン膜、酸化窒化シリコ
ン膜、酸化アルミニウム膜、又は酸化窒化アルミニウム膜などを用いる。
この場合において、処理室内の残留水分を除去しつつ酸化物絶縁層316を成膜すること
が好ましい。酸化物半導体層331及び酸化物絶縁層316に水素、水酸基又は水分が含
まれないようにするためである。
処理室内の残留水分を除去するためには、吸着型の真空ポンプを用いることが好ましい。
例えば、クライオポンプ、イオンポンプ、チタンサブリメーションポンプを用いることが
好ましい。また、排気手段としては、ターボポンプにコールドトラップを加えたものであ
ってもよい。クライオポンプを用いて排気した成膜室は、例えば、水素原子や、水(H
O)など水素原子を含む化合物等が排気されるため、当該成膜室で成膜した酸化物絶縁層
316に含まれる不純物の濃度を低減できる。
酸化物絶縁層316を成膜する際に用いるスパッタリングガスは水素、水、水酸基又は水
素化物などの不純物が、濃度ppm程度、濃度ppb程度まで除去された高純度ガスを用
いることが好ましい。
次いで、不活性ガス雰囲気下、又は酸素ガス雰囲気下で第2の加熱処理(好ましくは20
0℃以上400℃以下、例えば250℃以上350℃以下)を行う。例えば、窒素雰囲気
下で250℃、1時間の第2の加熱処理を行う。第2の加熱処理を行うと、酸化物半導体
層の一部(チャネル形成領域)が酸化物絶縁層316と接した状態で加熱される。
以上の工程を経ることによって、成膜後の酸化物半導体層に対して脱水化又は脱水素化の
ための加熱処理を行うと同時に酸化物半導体層が酸素欠乏状態となり低抵抗化、すなわち
N型化した後、酸化物半導体層に接するように酸化物絶縁層を形成することにより、酸化
物半導体層の一部を選択的に酸素過剰な状態とする。その結果、ゲート電極層311と重
なるチャネル形成領域313はI型となる。このとき、少なくともチャネル形成領域36
3に比べてキャリア濃度が高く、ソース電極層315aに重なる高抵抗ソース領域314
aと、少なくともチャネル形成領域363に比べてキャリア濃度が高く、ドレイン電極層
315bに重なる高抵抗ドレイン領域314bとが自己整合的に形成される。以上の工程
で薄膜トランジスタ310が形成される(図11(D)参照。)。
さらに、大気中、100℃以上200℃以下、1時間以上30時間以下での加熱処理を行
ってもよい。本実施の形態では150℃で10時間加熱処理を行う。この加熱処理は一定
の加熱温度を保持して加熱してもよいし、室温から、100℃以上200℃以下の加熱温
度への昇温と、加熱温度から室温までの降温を複数回くりかえして行ってもよい。また、
この加熱処理を、酸化物絶縁層の形成前に、減圧下で行ってもよい。減圧下で加熱処理を
行うと、加熱時間を短縮することができる。この加熱処理によって、酸化物半導体層から
酸化物絶縁層中に水素がとりこまれ、ノーマリーオフとなる薄膜トランジスタを得ること
ができる。よって薄膜トランジスタの信頼性を向上できる。また、酸化物絶縁層に欠陥を
多く含む酸化シリコン層を用いると、この加熱処理によって酸化物半導体層中に含まれる
水素、水分、水酸基又は水素化物などの不純物を酸化物絶縁層に拡散させ、酸化物半導体
層中に含まれる該不純物をより低減させる効果を奏する。
なお、ドレイン電極層315b(及びソース電極層315a)と重畳した酸化物半導体層
において高抵抗ドレイン領域314b(及び高抵抗ソース領域314a)を形成すること
により、薄膜トランジスタの信頼性の向上を図ることができる。具体的には、高抵抗ドレ
イン領域314bを形成することで、ドレイン電極層315bから高抵抗ドレイン領域3
14b、チャネル形成領域313にかけて、導電性を段階的に変化させうるような構造と
することができる。そのため、ドレイン電極層315bを、高電源電位VDDを供給する
配線に接続して動作させる場合、ゲート電極層311とドレイン電極層315bとの間に
電圧が印加されても高抵抗ドレイン領域がバッファとなり局所的な電界集中が生じにくく
、トランジスタの絶縁耐圧を向上させた構成とすることができる。
また、酸化物半導体層における高抵抗ソース領域又は高抵抗ドレイン領域は、酸化物半導
体層の膜厚が15nm以下と薄い場合は膜厚方向全体にわたって形成されるが、酸化物半
導体層の膜厚が30nm以上50nm以下とより厚い場合は、酸化物半導体層の一部、ソ
ース電極層又はドレイン電極層と接する領域及びその近傍が低抵抗化し高抵抗ソース領域
又は高抵抗ドレイン領域が形成され、酸化物半導体層においてゲート絶縁膜に近い領域は
I型とすることもできる。
酸化物絶縁層316上にさらに保護絶縁層を形成してもよい。例えば、RFスパッタリン
グ法を用いて窒化珪素膜を形成する。RFスパッタリング法は、量産性がよいため、保護
絶縁層の成膜方法として好ましい。保護絶縁層は、水分、水素イオン、OHなどの不純
物を含まず、これらが外部から侵入することをブロックする無機絶縁膜を用い、窒化シリ
コン膜、窒化アルミニウム膜、窒化酸化シリコン膜、窒化酸化アルミニウム膜などを用い
る。本実施の形態では、保護絶縁層として保護絶縁層303を、窒化シリコン膜を用いて
形成する(図11(E)参照。)。
本実施の形態では、保護絶縁層として保護絶縁層303として、酸化物絶縁層316まで
形成された基板300を100℃〜400℃の温度に加熱し、水素及び水分が除去された
高純度窒素を含むスパッタリングガスを導入しシリコンターゲットを用いて、保護絶縁層
303として、窒化シリコン膜を成膜する。この場合においても、酸化物絶縁層316と
同様に、処理室内の残留水分を除去しつつ保護絶縁層303を成膜することが好ましい。
なお、保護絶縁層303上に平坦化のための平坦化絶縁層を設けてもよい。
また、保護絶縁層303の上(平坦化絶縁層を設ける場合には平坦化絶縁層の上)に酸化
物半導体層と重なる導電層を設けてもよい。導電層は、電位が薄膜トランジスタ310の
ゲート電極層311と同じでもよいし、異なっていても良く、第2のゲート電極層として
機能させることもできる。また、導電層の電位がGND、0Vという固定電位であっても
よい。
導電層によって、薄膜トランジスタ310の電気特性を制御することができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
以上のように、酸化物半導体層を用いる薄膜トランジスタにおいて、安定な電気特性を有
し信頼性の高い薄膜トランジスタを提供することができる。
(実施の形態7)
本実施の形態は、本明細書で開示する論理回路及び半導体装置を構成するトランジスタに
適用できる薄膜トランジスタの他の例を示す。
本実施の形態の薄膜トランジスタ及び薄膜トランジスタの作製方法の一形態を、図12を
用いて説明する。
図12(A)乃至(D)に薄膜トランジスタの断面構造の一例を示す。図12(A)乃至
(D)に示す薄膜トランジスタ360は、チャネル保護型(チャネルストップ型ともいう
)と呼ばれるボトムゲート構造の一つであり逆スタガ型薄膜トランジスタともいう。
また、薄膜トランジスタ360はシングルゲート構造の薄膜トランジスタを用いて説明し
たが、必要に応じて、チャネル形成領域を複数有するマルチゲート構造の薄膜トランジス
タも形成することができる。
以下、図12(A)乃至(D)を用い、基板320上に薄膜トランジスタ360を作製す
る工程を説明する。
まず、絶縁表面を有する基板320上に導電膜を形成した後、第1のフォトリソグラフィ
工程によりゲート電極層361を形成する。なお、レジストマスクをインクジェット法で
形成してもよい。レジストマスクをインクジェット法で形成するとフォトマスクを使用し
ないため、製造コストを低減できる。
また、ゲート電極層361の材料は、モリブデン、チタン、クロム、タンタル、タングス
テン、アルミニウム、銅、ネオジム、スカンジウム等の金属材料又はこれらを主成分とす
る合金材料を用いて、単層で又は積層して形成することができる。
次いで、ゲート電極層361上にゲート絶縁層322を形成する。
本実施の形態では、ゲート絶縁層322としてプラズマCVD法により膜厚100nm以
下の酸化窒化珪素層を形成する。
次いで、ゲート絶縁層322上に、膜厚2nm以上200nm以下の酸化物半導体膜を形
成し、第2のフォトリソグラフィ工程により島状の酸化物半導体層に加工する。本実施の
形態では、In−Ga−Zn−O系酸化物半導体成膜用ターゲットを用いてスパッタリン
グ法により酸化物半導体膜を成膜する。
この場合において、処理室内の残留水分を除去しつつ酸化物半導体膜を成膜することが好
ましい。酸化物半導体膜に水素、水酸基又は水分が含まれないようにするためである。
処理室内の残留水分を除去するためには、吸着型の真空ポンプを用いることが好ましい。
例えば、クライオポンプ、イオンポンプ、チタンサブリメーションポンプを用いることが
好ましい。また、排気手段としては、ターボポンプにコールドトラップを加えたものであ
ってもよい。クライオポンプを用いて排気した成膜室は、例えば、水素原子や、水(H
O)など水素原子を含む化合物等が排気されるため、当該成膜室で成膜した酸化物半導体
膜に含まれる不純物の濃度を低減できる。
酸化物半導体膜を、成膜する際に用いるスパッタリングガスは水素、水、水酸基又は水素
化物などの不純物が、濃度ppm程度、濃度ppb程度まで除去された高純度ガスを用い
ることが好ましい。
次いで、酸化物半導体層の脱水化又は脱水素化を行う。脱水化又は脱水素化を行う第1の
加熱処理の温度は、400℃以上750℃以下、好ましくは400℃以上基板の歪み点未
満とする。ここでは、加熱処理装置の一つである電気炉に基板を導入し、酸化物半導体層
に対して窒素雰囲気下450℃において1時間の加熱処理を行った後、大気に触れること
なく、酸化物半導体層への水や水素の再混入を防ぎ、酸化物半導体層332を得る(図1
2(A)参照。)。
次いで、NO、N、又はArなどのガスを用いたプラズマ処理を行う。このプラズマ
処理によって露出している酸化物半導体層の表面に付着した吸着水などを除去する。また
、酸素とアルゴンの混合ガスを用いてプラズマ処理を行ってもよい。
次いで、ゲート絶縁層322、及び酸化物半導体層332上に、酸化物絶縁層を形成した
後、第3のフォトリソグラフィ工程によりレジストマスクを形成し、選択的にエッチング
を行って酸化物絶縁層366を形成した後、レジストマスクを除去する。
本実施の形態では、酸化物絶縁層366として膜厚200nmの酸化珪素膜をスパッタリ
ング法を用いて成膜する。成膜時の基板温度は、室温以上300℃以下とすればよく、本
実施の形態では100℃とする。酸化珪素膜のスパッタリング法による成膜は、希ガス(
代表的にはアルゴン)雰囲気下、酸素雰囲気下、又は希ガス(代表的にはアルゴン)及び
酸素混合雰囲気下において行うことができる。また、ターゲットとして酸化珪素ターゲッ
ト又は珪素ターゲットを用いることができる。例えば、珪素ターゲットを用いて、酸素、
及び窒素雰囲気下でスパッタリング法により酸化珪素膜を形成することができる。酸素欠
乏状態となり低抵抗化した酸化物半導体層に接して形成する酸化物絶縁層366は、水分
、水素イオン、OHなどの不純物を含まず、これらが外部から侵入することをブロック
する無機絶縁膜を用い、代表的には酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニ
ウム膜、又は酸化窒化アルミニウム膜などを用いる。
この場合において、処理室内の残留水分を除去しつつ酸化物絶縁層366を成膜すること
が好ましい。酸化物半導体層332及び酸化物絶縁層366に水素、水酸基又は水分が含
まれないようにするためである。
処理室内の残留水分を除去するためには、吸着型の真空ポンプを用いることが好ましい。
例えば、クライオポンプ、イオンポンプ、チタンサブリメーションポンプを用いることが
好ましい。また、排気手段としては、ターボポンプにコールドトラップを加えたものであ
ってもよい。クライオポンプを用いて排気した成膜室は、例えば、水素原子や、水(H
O)など水素原子を含む化合物等が排気されるため、当該成膜室で成膜した酸化物絶縁層
366に含まれる不純物の濃度を低減できる。
酸化物絶縁層366を成膜する際に用いるスパッタリングガスは水素、水、水酸基又は水
素化物などの不純物が、濃度ppm程度、濃度ppb程度まで除去された高純度ガスを用
いることが好ましい。
次いで、不活性ガス雰囲気下、又は酸素ガス雰囲気下で第2の加熱処理(好ましくは20
0℃以上400℃以下、例えば250℃以上350℃以下)を行ってもよい。例えば、窒
素雰囲気下で250℃、1時間の第2の加熱処理を行う。第2の加熱処理を行うと、酸化
物半導体層の一部(チャネル形成領域)が酸化物絶縁層366と接した状態で加熱される
本実施の形態は、さらに酸化物絶縁層366が設けられ一部が露出している酸化物半導体
層332を、窒素のような不活性ガス雰囲気下、又は減圧下で加熱処理を行う。酸化物絶
縁層366によって覆われていない露出された酸化物半導体層332の領域は、窒素のよ
うな不活性ガス雰囲気下、又は減圧下で加熱処理を行うと、高抵抗化することができる。
例えば、窒素雰囲気下で250℃、1時間の加熱処理を行う。
酸化物絶縁層366が設けられた酸化物半導体層332に対する窒素雰囲気下の加熱処理
によって、酸化物半導体層332の露出領域は高抵抗化し、抵抗の異なる領域(図12(
B)においては斜線領域及び白地領域で示す)を有する酸化物半導体層362となる。
次いで、ゲート絶縁層322、酸化物半導体層362、及び酸化物絶縁層366上に、導
電膜を形成した後、第4のフォトリソグラフィ工程によりレジストマスクを形成し、選択
的にエッチングを行ってソース電極層365a、ドレイン電極層365bを形成した後、
レジストマスクを除去する(図12(C)参照。)。
ソース電極層365a、ドレイン電極層365bの材料としては、Al、Cr、Cu、T
a、Ti、Mo、Wからから選ばれた元素、又は上述した元素を成分とする合金か、上述
した元素を組み合わせた合金膜等が挙げられる。また、金属導電膜は、単層構造でも、2
層以上の積層構造としてもよい。
以上の工程を経ることによって、成膜後の酸化物半導体層に対して脱水化又は脱水素化の
ための加熱処理を行うと同時に酸素欠乏状態となり、即ちN型化した後、酸化物半導体層
に接する酸化物絶縁層の形成を行うことにより酸化物半導体層の一部を選択的に酸素過剰
な状態とする。その結果、ゲート電極層361と重なるチャネル形成領域363は、I型
となる。このとき、少なくともチャネル形成領域363に比べてキャリア濃度が高く、ソ
ース電極層365aに重なる高抵抗ソース領域364aと、チャネル形成領域363に比
べてキャリア濃度が高く、ドレイン電極層365bに重なる高抵抗ドレイン領域364b
とが自己整合的に形成される。以上の工程で薄膜トランジスタ360が形成される。
さらに、大気中、100℃以上200℃以下、1時間以上30時間以下での加熱処理を行
ってもよい。本実施の形態では150℃で10時間加熱処理を行う。この加熱処理は一定
の加熱温度を保持して加熱してもよいし、室温から、100℃以上200℃以下の加熱温
度への昇温と、加熱温度から室温までの降温を複数回くりかえして行ってもよい。また、
この加熱処理を、酸化物絶縁層の形成前に、減圧下で行ってもよい。減圧下で加熱処理を
行うと、加熱時間を短縮することができる。この加熱処理によって、酸化物半導体層から
酸化物絶縁層中に水素がとりこまれ、ノーマリーオフとなる薄膜トランジスタを得ること
ができる。よって薄膜トランジスタの信頼性を向上できる。
なお、ドレイン電極層365b(及びソース電極層365a)と重畳した酸化物半導体層
において高抵抗ドレイン領域364b(及び高抵抗ソース領域364a)を形成すること
により、薄膜トランジスタの信頼性の向上を図ることができる。具体的には、高抵抗ドレ
イン領域364bを形成することで、ドレイン電極層から高抵抗ドレイン領域364b、
チャネル形成領域363にかけて、導電性を段階的に変化させうるような構造とすること
ができる。そのため、ドレイン電極層365bを、高電源電位VDDを供給する配線に接
続して動作させる場合、ゲート電極層361とドレイン電極層365bとの間に電圧が印
加されても高抵抗ドレイン領域がバッファとなり局所的な電界集中が生じにくく、トラン
ジスタの耐圧を向上させた構成とすることができる。
ソース電極層365a、ドレイン電極層365b、酸化物絶縁層366上に保護絶縁層3
23を形成する。本実施の形態では、保護絶縁層323を、窒化珪素膜を用いて形成する
(図12(D)参照。)。
なお、ソース電極層365a、ドレイン電極層365b、酸化物絶縁層366上にさらに
酸化物絶縁層を形成し、該酸化物絶縁層上に保護絶縁層323を積層してもよい。
以上のように、酸化物半導体層を用いる薄膜トランジスタにおいて、安定な電気特性を有
し信頼性の高い薄膜トランジスタを提供することができる。
なお本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態8)
本実施の形態は、本明細書で開示する論理回路及び半導体装置を構成するトランジスタに
適用できる薄膜トランジスタの他の例を示す。
本実施の形態の薄膜トランジスタ及び薄膜トランジスタの作製方法の一形態を、図13を
用いて説明する。
また、薄膜トランジスタ350はシングルゲート構造の薄膜トランジスタを用いて説明し
たが、必要に応じて、チャネル形成領域を複数有するマルチゲート構造の薄膜トランジス
タも形成することができる。
以下、図13(A)乃至(D)を用い、基板340上に薄膜トランジスタ350を作製す
る工程を説明する。
まず、絶縁表面を有する基板340上に導電膜を形成した後、第1のフォトリソグラフィ
工程によりゲート電極層351を形成する。本実施の形態では、ゲート電極層351とし
て、膜厚150nmのタングステン膜を、スパッタリング法を用いて形成する。
次いで、ゲート電極層351上にゲート絶縁層342を形成する。本実施の形態では、ゲ
ート絶縁層342としてプラズマCVD法により膜厚100nm以下の酸化窒化珪素層を
形成する。
次いで、ゲート絶縁層342上に、導電膜を形成し、第2のフォトリソグラフィ工程によ
り導電膜上にレジストマスクを形成し、選択的にエッチングを行ってソース電極層355
a、ドレイン電極層355bを形成した後、レジストマスクを除去する(図13(A)参
照。)。
次に酸化物半導体膜345を形成する(図13(B)参照。)。本実施の形態では、In
−Ga−Zn−O系酸化物半導体成膜用ターゲットを用いてスパッタリング法により酸化
物半導体膜345を成膜する。酸化物半導体膜345を第3のフォトリソグラフィ工程に
より島状の酸化物半導体層に加工する。
この場合において、処理室内の残留水分を除去しつつ酸化物半導体膜345を成膜するこ
とが好ましい。酸化物半導体膜345に水素、水酸基又は水分が含まれないようにするた
めである。
処理室内の残留水分を除去するためには、吸着型の真空ポンプを用いることが好ましい。
例えば、クライオポンプ、イオンポンプ、チタンサブリメーションポンプを用いることが
好ましい。また、排気手段としては、ターボポンプにコールドトラップを加えたものであ
ってもよい。クライオポンプを用いて排気した成膜室は、例えば、水素原子や、水(H
O)など水素原子を含む化合物等が排気されるため、当該成膜室で成膜した酸化物半導体
膜345に含まれる不純物の濃度を低減できる。
酸化物半導体膜345を成膜する際に用いるスパッタリングガスは水素、水、水酸基又は
水素化物などの不純物が、濃度ppm程度、濃度ppb程度まで除去された高純度ガスを
用いることが好ましい。
次いで、酸化物半導体層の脱水化又は脱水素化を行う。脱水化又は脱水素化を行う第1の
加熱処理の温度は、400℃以上750℃以下、好ましくは400℃以上基板の歪み点未
満とする。ここでは、加熱処理装置の一つである電気炉に基板を導入し、酸化物半導体層
に対して窒素雰囲気下450℃において1時間の加熱処理を行った後、大気に触れること
なく、酸化物半導体層への水や水素の再混入を防ぎ、酸化物半導体層346を得る(図1
3(C)参照。)。
また、第1の加熱処理として、650℃〜700℃の高温に加熱した不活性ガス中に基板
を移動させて入れ、数分間加熱した後、基板を移動させて高温に加熱した不活性ガス中か
ら出すGRTAを行ってもよい。GRTAを用いると短時間での高温加熱処理が可能とな
る。
酸化物半導体層346に接する保護絶縁膜となる酸化物絶縁層356を形成する。
酸化物絶縁層356は、少なくとも1nm以上の膜厚とし、スパッタリング法など、酸化
物絶縁層356に水、水素等の不純物を混入させない方法を適宜用いて形成することがで
きる。酸化物絶縁層356に水素が含まれると、その水素の酸化物半導体層への侵入、又
は水素による酸化物半導体層中の酸素の引き抜き、が生じ酸化物半導体層のバックチャネ
ルが低抵抗化(N型化)してしまい、寄生チャネルが形成されるおそれがある。よって、
酸化物絶縁層356はできるだけ水素を含まない膜になるように、成膜方法に水素を用い
ないことが重要である。
本実施の形態では、酸化物絶縁層356として膜厚200nmの酸化珪素膜をスパッタリ
ング法を用いて成膜する。成膜時の基板温度は、室温以上300℃以下とすればよく、本
実施の形態では100℃とする。酸化珪素膜のスパッタリング法による成膜は、希ガス(
代表的にはアルゴン)雰囲気下、酸素雰囲気下、又は希ガス(代表的にはアルゴン)及び
酸素混合雰囲気下において行うことができる。また、ターゲットとして酸化珪素ターゲッ
ト又は珪素ターゲットを用いることができる。例えば、珪素ターゲットを用いて、酸素、
及び窒素雰囲気下でスパッタリング法により酸化珪素膜を形成することができる。酸素欠
乏状態となり低抵抗化した酸化物半導体層に接して形成する酸化物絶縁層356は、水分
、水素イオン、OHなどの不純物を含まず、これらが外部から侵入することをブロック
する無機絶縁膜を用い、代表的には酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニ
ウム膜、又は酸化窒化アルミニウム膜などを用いる。
この場合において、処理室内の残留水分を除去しつつ酸化物絶縁層356を成膜すること
が好ましい。酸化物半導体層346及び酸化物絶縁層356に水素、水酸基又は水分が含
まれないようにするためである。
処理室内の残留水分を除去するためには、吸着型の真空ポンプを用いることが好ましい。
例えば、クライオポンプ、イオンポンプ、チタンサブリメーションポンプを用いることが
好ましい。また、排気手段としては、ターボポンプにコールドトラップを加えたものであ
ってもよい。クライオポンプを用いて排気した成膜室は、例えば、水素原子や、水(H
O)など水素原子を含む化合物等が排気されるため、当該成膜室で成膜した酸化物絶縁層
356に含まれる不純物の濃度を低減できる。
酸化物絶縁層356を成膜する際に用いるスパッタリングガスは水素、水、水酸基又は水
素化物などの不純物が、濃度ppm程度、濃度ppb程度まで除去された高純度ガスを用
いることが好ましい。
次いで、不活性ガス雰囲気下、又は酸素ガス雰囲気下で第2の加熱処理(好ましくは20
0℃以上400℃以下、例えば250℃以上350℃以下)を行う。例えば、窒素雰囲気
下で250℃、1時間の第2の加熱処理を行う。第2の加熱処理を行うと、酸化物半導体
層の一部(チャネル形成領域)が酸化物絶縁層356と接した状態で加熱される。
以上の工程を経ることによって、脱水化又は脱水素化と同時に酸素欠乏状態となり低抵抗
化していた酸化物半導体膜を酸素過剰な状態とする。その結果、高抵抗なI型の酸化物半
導体層352が形成される。以上の工程で薄膜トランジスタ350が形成される。
さらに大気中、100℃以上200℃以下、1時間以上30時間以下での加熱処理を行っ
てもよい。本実施の形態では150℃で10時間加熱処理を行う。この加熱処理は一定の
加熱温度を保持して加熱してもよいし、室温から、100℃以上200℃以下の加熱温度
への昇温と、加熱温度から室温までの降温を複数回くりかえして行ってもよい。減圧下で
加熱処理を行うと、加熱時間を短縮することができる。この加熱処理によって、酸化物半
導体層から酸化物絶縁層中に水素がとりこまれ、ノーマリーオフとなる薄膜トランジスタ
を得ることができる。よって薄膜トランジスタの信頼性を向上できる。
酸化物絶縁層356上にさらに保護絶縁層を形成してもよい。例えば、RFスパッタリン
グ法を用いて窒化珪素膜を形成する。本実施の形態では、保護絶縁層として保護絶縁層3
43を、窒化珪素膜を用いて形成する(図13(D)参照。)。
保護絶縁層343上に平坦化のための平坦化絶縁層を設けてもよい。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
以上のように、酸化物半導体層を用いる薄膜トランジスタにおいて、安定な電気特性を有
し信頼性の高い薄膜トランジスタを提供することができる。
(実施の形態9)
本実施の形態は、本明細書で開示する論理回路及び半導体装置を構成するトランジスタに
適用できる薄膜トランジスタの他の例を示す。
本実施の形態では、薄膜トランジスタの作製工程の一部が実施の形態6と異なる例を図1
4に示す。図14は、図11と工程が一部異なる点以外は同じであるため、同じ箇所には
同じ符号を用い、同じ箇所の詳細な説明は省略する。
まず基板370上にゲート電極層381を形成し、第1のゲート絶縁層372a、第2の
ゲート絶縁層372bを積層する。本実施の形態では、ゲート絶縁層を2層構造とし、第
1のゲート絶縁層372aに窒化物絶縁層を、第2のゲート絶縁層372bに酸化物絶縁
層を用いる。
酸化物絶縁層としては、酸化シリコン層、酸化窒化シリコン層、又は酸化アルミニウム層
、又は酸化窒化アルミニウム層などを用いることができる。また、窒化絶縁層としては、
窒化シリコン層、窒化酸化シリコン層、窒化アルミニウム層、又は窒化酸化アルミニウム
層などを用いることができる。
本実施の形態では、ゲート電極層381側から窒化シリコン層と酸化シリコン層とを積層
した構造とする。第1のゲート絶縁層372aとしてスパッタリング法により膜厚50n
m以上200nm以下(本実施の形態では50nm)の窒化シリコン層(SiNy(y>
0))を形成し、第1のゲート絶縁層372a上に第2のゲート絶縁層372bとして膜
厚5nm以上300nm以下(本実施の形態では100nm)の酸化シリコン層(SiO
x(x>0))を積層して、膜厚150nmのゲート絶縁層とする。
次に酸化物半導体膜の形成を行い、酸化物半導体膜をフォトリソグラフィ工程により島状
の酸化物半導体層に加工する。本実施の形態では、In−Ga−Zn−O系酸化物半導体
ターゲットを用いてスパッタリング法により酸化物半導体膜を成膜する。
この場合において、処理室内の残留水分を除去しつつ酸化物半導体膜を成膜することが好
ましい。酸化物半導体膜に水素、水酸基又は水分が含まれないようにするためである。
処理室内の残留水分を除去するためには、吸着型の真空ポンプを用いることが好ましい。
例えば、クライオポンプ、イオンポンプ、チタンサブリメーションポンプを用いることが
好ましい。また、排気手段としては、ターボポンプにコールドトラップを加えたものであ
ってもよい。クライオポンプを用いて排気した成膜室は、例えば、水素原子や、水(H
O)など水素原子を含む化合物等が排気されるため、当該成膜室で成膜した酸化物半導体
膜に含まれる不純物の濃度を低減できる。
酸化物半導体膜を成膜する際に用いるスパッタリングガスは水素、水、水酸基又は水素化
物などの不純物が、濃度ppm程度、濃度ppb程度まで除去された高純度ガスを用いる
ことが好ましい。
次いで、酸化物半導体層の脱水化又は脱水素化を行う。脱水化又は脱水素化を行う第1の
加熱処理の温度は、400℃以上750℃以下、好ましくは425℃以上とする。なお、
425℃以上であれば加熱処理時間は1時間以下でよいが、425℃未満であれば加熱処
理時間は、1時間よりも長時間行うこととする。ここでは、加熱処理装置の一つである電
気炉に基板を導入し、酸化物半導体層に対して窒素雰囲気下において加熱処理を行った後
、大気に触れることなく、酸化物半導体層への水や水素の再混入を防ぎ、酸化物半導体層
を得る。その後、同じ炉に高純度の酸素ガス、高純度のNOガス、又は超乾燥エア(露
点が−40℃以下、好ましくは−60℃以下)を導入して冷却を行う。酸素ガス又はN
Oガスに、水、水素などが含まれないことが好ましい。又は、加熱処理装置に導入する酸
素ガス又はNOガスの純度を、6N(99.9999%)以上、好ましくは7N(99
.99999%)以上、(即ち酸素ガス又はNOガス中の不純物濃度を1ppm以下、
好ましくは0.1ppm以下)とすることが好ましい。
なお、加熱処理装置としては、電気炉に限られず、例えば、GRTA(Gas Rapi
d Thermal Anneal)装置、LRTA(Lamp Rapid Ther
mal Anneal)装置等のRTA(Rapid Thermal Anneal)
装置を用いることができる。LRTA装置は、ハロゲンランプ、メタルハライドランプ、
キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、高圧水銀ランプ
などのランプから発する光(電磁波)の輻射により、被処理物を加熱する装置である。ま
た、LRTA装置、ランプだけでなく、抵抗発熱体などの発熱体からの熱伝導又は熱輻射
によって、被処理物を加熱する装置を用いてもよい。GRTAとは高温のガスを用いて加
熱処理を行う方法である。ガスには、アルゴンなどの希ガス、又は窒素のような、加熱処
理によって被処理物と反応しない不活性気体が用いられる。RTA法を用いて、600℃
〜750℃で数分間加熱処理を行ってもよい。
また、脱水化又は脱水素化を行う第1の加熱処理後に200℃以上400℃以下、好まし
くは200℃以上300℃以下の温度で酸素ガス又はNOガス雰囲気下での加熱処理を
行ってもよい。
また、酸化物半導体層の第1の加熱処理は、島状の酸化物半導体層に加工する前の酸化物
半導体膜に行うこともできる。その場合には、第1の加熱処理後に、加熱装置から基板を
取り出し、フォトリソグラフィ工程を行う。
以上の工程を経ることによって酸化物半導体層全体を酸素過剰な状態とすることで、高抵
抗化、即ちI型化させる。よって、全体がI型化した酸化物半導体層382を得る。
次いで、酸化物半導体層382上に導電膜を形成し、フォトリソグラフィ工程によりレジ
ストマスクを形成し、選択的にエッチングを行ってソース電極層385a、ドレイン電極
層385bを形成し、スパッタリング法で酸化物絶縁層386を形成する。
この場合において、処理室内の残留水分を除去しつつ酸化物絶縁層386を成膜すること
が好ましい。酸化物半導体層382及び酸化物絶縁層386に水素、水酸基又は水分が含
まれないようにするためである。
処理室内の残留水分を除去するためには、吸着型の真空ポンプを用いることが好ましい。
例えば、クライオポンプ、イオンポンプ、チタンサブリメーションポンプを用いることが
好ましい。また、排気手段としては、ターボポンプにコールドトラップを加えたものであ
ってもよい。クライオポンプを用いて排気した成膜室は、例えば、水素原子や、水(H
O)など水素原子を含む化合物等が排気されるため、当該成膜室で成膜した酸化物絶縁層
386に含まれる不純物の濃度を低減できる。
酸化物絶縁層386を成膜する際に用いるスパッタリングガスは水素、水、水酸基又は水
素化物などの不純物が、濃度ppm程度、濃度ppb程度まで除去された高純度ガスを用
いることが好ましい。
以上の工程で、薄膜トランジスタ380を形成することができる。
次いで、薄膜トランジスタの電気的特性のばらつきを軽減するため、不活性ガス雰囲気下
、例えば、窒素ガス雰囲気下で加熱処理(好ましくは150℃以上350℃未満)を行っ
てもよい。例えば、窒素雰囲気下で250℃、1時間の加熱処理を行う。
また、大気中、100℃以上200℃以下、1時間以上30時間以下での加熱処理を行っ
てもよい。本実施の形態では150℃で10時間加熱処理を行う。この加熱処理は一定の
加熱温度を保持して加熱してもよいし、室温から、100℃以上200℃以下の加熱温度
への昇温と、加熱温度から室温までの降温を複数回くりかえして行ってもよい。減圧下で
加熱処理を行うと、加熱時間を短縮することができる。この加熱処理によって、酸化物半
導体層から酸化物絶縁層中に水素がとりこまれ、ノーマリーオフとなる薄膜トランジスタ
を得ることができる。よって薄膜トランジスタの信頼性を向上できる。
酸化物絶縁層386上に保護絶縁層373を形成する。本実施の形態では、保護絶縁層3
73として、スパッタリング法を用いて膜厚100nmの窒化珪素膜を形成する。
窒化物絶縁層からなる保護絶縁層373及び第1のゲート絶縁層372aは、水分や、水
素や、水素化物、水酸化物などの不純物を含まず、これらが外部から侵入することをブロ
ックする効果がある。
従って、保護絶縁層373形成後の製造プロセスにおいて、外部からの水分などの不純物
の侵入を防ぐことができる。また、半導体装置、例えば液晶表示装置としてデバイスが完
成した後にも長期的に、外部からの水分などの不純物の侵入を防ぐことができデバイスの
長期信頼性を向上することができる。
また、窒化物絶縁層からなる保護絶縁層373と、第1のゲート絶縁層372aとの間に
設けられる絶縁層の一部を除去し、保護絶縁層373と、第1のゲート絶縁層372aと
が接する構造としてもよい。
従って、酸化物半導体層中の水分や、水素や、水素化物、水酸化物などの不純物を究極に
まで低減し、かつ該不純物の再混入を防止し、酸化物半導体層中の不純物濃度を低く維持
することができる。
また、保護絶縁層373上に平坦化のための平坦化絶縁層を設けてもよい。
また、保護絶縁層373の上に酸化物半導体層と重なる導電層を設けてもよい。導電層は
、電位が薄膜トランジスタ380のゲート電極層381と同じでもよいし、異なっていて
も良く、第2のゲート電極層として機能させることもできる。また、導電層の電位がGN
D、0Vという固定電位であってもよい。
導電層によって、薄膜トランジスタ380の電気特性を制御することができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
以上のように、酸化物半導体層を用いる薄膜トランジスタにおいて、安定な電気特性を有
し信頼性の高い薄膜トランジスタを提供することができる。
(実施の形態10)
半導体装置の一形態に相当する液晶表示パネルの外観及び断面について、図15を用いて
説明する。図15は、薄膜トランジスタ4010、4011、及び液晶素子4013を、
第2の基板4006との間にシール材4005によって封止した、パネルの平面図であり
、図15(B)は、図15(A)又は図15(C)のM−Nにおける断面図に相当する。
第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004とを囲む
ようにして、シール材4005が設けられている。また画素部4002と、走査線駆動回
路4004の上に第2の基板4006が設けられている。よって画素部4002と、走査
線駆動回路4004とは、第1の基板4001とシール材4005と第2の基板4006
とによって、液晶層4008と共に封止されている。また第1の基板4001上のシール
材4005によって囲まれている領域とは異なる領域に、別途用意された基板上に単結晶
半導体膜又は多結晶半導体膜で形成された信号線駆動回路4003が実装されている。
なお、別途形成した駆動回路の接続方法は、特に限定されるものではなく、COG法、ワ
イヤボンディング法、或いはTAB法などを用いることができる。図15(A)は、CO
G法により信号線駆動回路4003を実装する例であり、図15(C)は、TAB法によ
り信号線駆動回路4003を実装する例である。
また、第1の基板4001上に設けられた画素部4002及び走査線駆動回路4004は
、薄膜トランジスタを複数有しており、図15(B)では、画素部4002に含まれる薄
膜トランジスタ4010と、走査線駆動回路4004に含まれる薄膜トランジスタ401
1とを例示している。薄膜トランジスタ4010、4011上には絶縁層4041、40
42、4021が設けられている。
薄膜トランジスタ4010、4011としては、実施の形態2乃至9のいずれか一の薄膜
トランジスタを適宜用いることができる。薄膜トランジスタ4010、4011の酸化物
半導体層は水素や水が低減されている。従って、薄膜トランジスタ4010、4011は
信頼性の高い薄膜トランジスタである。本実施の形態において、薄膜トランジスタ401
0、4011はNチャネル型薄膜トランジスタである。
絶縁層4021上において、薄膜トランジスタ4011の酸化物半導体層のチャネル形成
領域と重なる位置に導電層4040が設けられている。導電層4040を酸化物半導体層
のチャネル形成領域と重なる位置に設けることによって、BT試験前後における薄膜トラ
ンジスタ4011のしきい値電圧の変化量を低減することができる。また、導電層404
0は、電位が薄膜トランジスタ4011のゲート電極層と同じでもよいし、異なっていて
も良く、第2のゲート電極層として機能させることもできる。また、導電層4040の電
位がGND、0V、或いはフローティング状態であってもよい。
また、液晶素子4013が有する画素電極層4030は、薄膜トランジスタ4010のソ
ース電極層又はドレイン電極層と電気的に接続されている。そして液晶素子4013の対
向電極層4031は第2の基板4006上に形成されている。画素電極層4030と対向
電極層4031と液晶層4008とが重なっている部分が、液晶素子4013に相当する
。なお、画素電極層4030、対向電極層4031はそれぞれ配向膜として機能する絶縁
層4032、4033が設けられ、絶縁層4032、4033を介して液晶層4008を
挟持している。
なお、第1の基板4001、第2の基板4006としては、透光性基板を用いることがで
き、ガラス、セラミックス、プラスチックを用いることができる。プラスチックとしては
、FRP(Fiberglass−Reinforced Plastics)板、PV
F(ポリビニルフルオライド)フィルム、ポリエステルフィルム、又はアクリル樹脂フィ
ルムを用いることができる。
また、スペーサ4035は、絶縁膜を選択的にエッチングすることで得られる柱状の隔壁
であり、画素電極層4030と対向電極層4031との間の距離(セルギャップ)を制御
するために設けられている。なお球状のスペーサを用いていてもよい。また、対向電極層
4031は、薄膜トランジスタ4010と同一基板上に設けられる共通電位線と電気的に
接続される。共通接続部を用いて、一対の基板間に配置される導電性粒子を介して対向電
極層4031と共通電位線とを電気的に接続することができる。なお、導電性粒子はシー
ル材4005に含有させる。
また、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つで
あり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直
前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善
するために5重量%以上のカイラル剤を混合させた液晶組成物を用いて液晶層4008に
用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が1msec
以下と短く、光学的等方性であるため配向処理が不要であり、視野角依存性が小さい。ま
た配向膜を設けなくてもよいのでラビング処理も不要となるため、ラビング処理によって
引き起こされる静電破壊を防止することができ、作製工程中の液晶表示装置の不良や破損
を軽減することができる。よって液晶表示装置の生産性を向上させることが可能となる。
特に、酸化物半導体層を用いる薄膜トランジスタは、静電気の影響により薄膜トランジス
タの電気的な特性が著しく変動して設計範囲を逸脱する恐れがある。よって酸化物半導体
層を用いる薄膜トランジスタを有する液晶表示装置にブルー相の液晶材料を用いることは
より効果的である。
なお、透過型液晶表示装置の他に、半透過型液晶表示装置でも適用できる。
また、液晶表示装置では、基板の外側(視認側)に偏光板を設け、内側に着色層、表示素
子に用いる電極層という順に設ける例を示すが、偏光板は基板の内側に設けてもよい。ま
た、偏光板と着色層の積層構造も本実施の形態に限定されず、偏光板及び着色層の材料や
作製工程条件によって適宜設定すればよい。また、表示部以外にブラックマトリクスとし
て機能する遮光膜を設けてもよい。
薄膜トランジスタ4011、4010上には、酸化物半導体層に接して絶縁層4041が
形成されている。絶縁層4041は上記実施の形態で示した酸化物絶縁層と同様な材料及
び方法で形成すればよい。ここでは、絶縁層4041として、スパッタリング法により酸
化シリコン層を形成する。また、絶縁層4041上に接して保護絶縁層4042を形成す
る。また、保護絶縁層4042は実施の形態6で示した保護絶縁層303と同様に形成す
ればよく、例えば窒化シリコン膜を用いることができる。また、保護絶縁層4042上に
薄膜トランジスタ起因の表面凹凸を低減するため平坦化絶縁膜として機能する絶縁層40
21で覆う構成となっている。
また、平坦化絶縁膜として絶縁層4021を形成する。絶縁層4021としては、ポリイ
ミド、アクリル、ベンゾシクロブテン、ポリアミド、エポキシ等の、耐熱性を有する有機
材料を用いることができる。また上記有機材料の他に、低誘電率材料(low−k材料)
、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等を用いる
ことができる。なお、これらの材料で形成される絶縁膜を複数積層させることで、絶縁層
4021を形成してもよい。
絶縁層4021の形成法は、特に限定されず、その材料に応じて、スパッタリング法、S
OG法、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法、スク
リーン印刷、オフセット印刷等)、ドクターナイフ、ロールコーター、カーテンコーター
、ナイフコーター等を用いることができる。絶縁層4021の焼成工程と半導体層のアニ
ールを兼ねることで効率よく半導体装置を作製することが可能となる。
画素電極層4030、対向電極層4031としては、インジウム錫酸化物(ITO)、酸
化インジウムに酸化亜鉛(ZnO)を混合したIZO(indium zinc oxi
de)、酸化インジウムに酸化珪素(SiO)を混合した導電材料、有機インジウム、
有機スズ、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウ
ム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化
物、などの透光性を有する導電性材料を用いることができる。又は反射型の液晶表示装置
において、透光性を有する必要がない、又は反射性を有する必要がある場合は、タングス
テン(W)、モリブデン(Mo)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジ
ウム(V)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、コバルト(Co)、
ニッケル(Ni)、チタン(Ti)、白金(Pt)、アルミニウム(Al)、銅(Cu)
、銀(Ag)等の金属、又はその合金、若しくはその金属窒化物から一つ、又は複数種を
用いて形成することができる。
また、画素電極層4030、対向電極層4031を、導電性高分子(導電性ポリマーとも
いう)を含む導電性組成物を用いて形成することができる。導電性組成物を用いて形成し
た画素電極は、シート抵抗が10000Ω/□以下、波長550nmにおける透光率が7
0%以上であることが好ましい。また、導電性組成物に含まれる導電性高分子の抵抗率が
0.1Ω・cm以下であることが好ましい。
導電性高分子としては、いわゆるπ電子共役系導電性高分子が用いることができる。例え
ば、ポリアニリン又はその誘導体、ポリピロール又はその誘導体、ポリチオフェン又はそ
の誘導体、若しくはこれらの2種以上の共重合体などがあげられる。
また、別途形成された信号線駆動回路4003と、走査線駆動回路4004又は画素部4
002に与えられる各種信号及び電位は、FPC4018から供給されている。
接続端子電極4015が、液晶素子4013が有する画素電極層4030と同じ導電膜か
ら形成され、端子電極4016は、薄膜トランジスタ4010、4011のソース電極層
及びドレイン電極層と同じ導電膜で形成されている。
接続端子電極4015は、FPC4018が有する端子と、異方性導電膜4019を介し
て電気的に接続されている。
また、図15においては、信号線駆動回路4003を別途形成し、第1の基板4001に
実装している例を示しているがこの構成に限定されない。走査線駆動回路を別途形成して
実装してもよいし、信号線駆動回路の一部又は走査線駆動回路の一部のみを別途形成して
実装してもよい。
また、ブラックマトリクス(遮光層)、偏光部材、位相差部材、反射防止部材などの光学
部材(光学基板)などは適宜設けてもよい。例えば、偏光基板及び位相差基板による円偏
光を用いてもよい。また、光源としてバックライト、サイドライトなどを用いてもよい。
アクティブマトリクス型の液晶表示装置においては、マトリクス状に配置された画素電極
を駆動することによって、画面上に表示パターンが形成される。詳しくは選択された画素
電極と該画素電極に対応する対向電極との間に電圧が印加されることによって、画素電極
と対向電極との間に配置された液晶層の光学変調が行われ、この光学変調が表示パターン
として観察者に認識される。
液晶表示装置の動画表示において、液晶分子自体の応答が遅いため、残像が生じる、又は
動画のぼけが生じるという問題がある。液晶表示装置の動画特性を改善するため、全面黒
表示を1フレームおきに行う、所謂、黒挿入と呼ばれる駆動技術がある。
また、通常の垂直同期周波数を1.5倍、好ましくは2倍以上にすることで応答速度を改
善する、所謂、倍速駆動と呼ばれる駆動技術もある。
また、液晶表示装置の動画特性を改善するため、バックライトとして複数のLED(発光
ダイオード)光源又は複数のEL光源などを用いて面光源を構成し、面光源を構成してい
る各光源を独立して1フレーム期間内で間欠点灯駆動する駆動技術もある。面光源として
、3種類以上のLEDを用いてもよいし、白色発光のLEDを用いてもよい。独立して複
数のLEDを制御できるため、液晶層の光学変調の切り替えタイミングに合わせてLED
の発光タイミングを同期させることもできる。この駆動技術は、LEDを部分的に消灯す
ることができるため、特に一画面を占める黒い表示領域の割合が多い映像表示の場合には
、消費電力の低減効果が図れる。
これらの駆動技術を組み合わせることによって、液晶表示装置の動画特性などの表示特性
を従来よりも改善することができる。
また、薄膜トランジスタは静電気などにより破壊されやすいため、さらに画素部又は駆動
回路と同一基板上に保護回路を設けることが好ましい。保護回路は、酸化物半導体層を用
いた非線形素子を用いて構成することが好ましい。例えば、保護回路は画素部と、走査線
入力端子及び信号線入力端子との間に配設されている。本実施の形態では複数の保護回路
を配設して、走査線、信号線及び容量バス線に静電気等によりサージ電圧が印加され、画
素トランジスタなどが破壊されないように構成されている。そのため、保護回路にはサー
ジ電圧が印加されたときに、共通配線に電荷を逃がすように構成する。また、保護回路は
、走査線に対して並列に配置された非線形素子を用いて構成されている。非線形素子は、
ダイオードのような二端子素子又はトランジスタのような三端子素子で構成される。例え
ば、画素部の薄膜トランジスタと同じ工程で形成することも可能であり、例えばゲート端
子とドレイン端子を接続することによりダイオードと同様の特性を持たせることができる
また、液晶表示モジュールには、TN(Twisted Nematic)モード、IP
S(In−Plane−Switching)モード、FFS(Fringe Fiel
d Switching)モード、ASM(Axially Symmetric al
igned Micro−cell)モード、OCB(Optically Compe
nsated Birefringence)モード、FLC(Ferroelectr
ic Liquid Crystal)モード、AFLC(AntiFerroelec
tric Liquid Crystal)などを用いることができる。
このように、本明細書に開示される半導体装置としては、特に限定されず、TN液晶、O
CB液晶、STN液晶、VA液晶、ECB型液晶、GH液晶、高分子分散型液晶、ディス
コティック液晶などを用いることができるが、中でもノーマリーブラック型の液晶パネル
、例えば垂直配向(VA)モードを採用した透過型の液晶表示装置とすることが好ましい
。垂直配向モードとしては、いくつか挙げられるが、例えば、MVA(Multi−Do
main Vertical Alignment)モード、PVA(Patterne
d Vertical Alignment)モード、ASVモードなどを用いることが
できる。
また、VA型の液晶表示装置にも適用することができる。VA型の液晶表示装置とは、液
晶表示パネルの液晶分子の配列を制御する方式の一種である。VA型の液晶表示装置は、
電圧が印加されていないときにパネル面に対して液晶分子が垂直方向を向く方式である。
また、画素(ピクセル)をいくつかの領域(サブピクセル)に分け、それぞれ別の方向に
分子を倒すよう工夫されているマルチドメイン化あるいはマルチドメイン設計といわれる
方法を用いることができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態11)
本実施の形態では、実施の形態1に示した半導体装置において、薄膜トランジスタと、エ
レクトロルミネッセンスを利用する発光素子とを用い、アクティブマトリクス型の発光表
示装置を作製する一例を示す。
エレクトロルミネッセンスを利用する発光素子は、発光材料が有機化合物であるか、無機
化合物であるかによって区別され、一般的に、前者は有機EL素子、後者は無機EL素子
と呼ばれている。
有機EL素子は、発光素子に電圧を印加することにより、一対の電極から電子及び正孔が
それぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、それらキャリ
ア(電子及び正孔)が再結合することにより発光する。このようなメカニズムから、この
ような発光素子は、電流励起型の発光素子と呼ばれる。
無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分
類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を有
するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー−ア
クセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み、
さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を利
用する局在型発光である。なお、ここでは、発光素子として有機EL素子を用いて説明す
る。
図16は、半導体装置の例としてデジタル時間階調駆動を適用可能な画素構成の一例を示
す図である。
デジタル時間階調駆動を適用可能な画素の構成及び画素の動作について説明する。ここで
は酸化物半導体層をチャネル形成領域に用いるNチャネル型のトランジスタを1つの画素
に2つ用いる例を示す。
画素6400は、スイッチング用トランジスタ6401、駆動用トランジスタ6402、
発光素子6404及び容量素子6403を有している。スイッチング用トランジスタ64
01はゲートが走査線6406に接続され、第1電極(ソース電極及びドレイン電極の一
方)が信号線6405に接続され、第2電極(ソース電極及びドレイン電極の他方)が駆
動用トランジスタ6402のゲートに接続されている。駆動用トランジスタ6402は、
ゲートが容量素子6403を介して電源線6407に接続され、第1電極が電源線640
7に接続され、第2電極が発光素子6404の第1電極(画素電極)に接続されている。
発光素子6404の第2電極は共通電極に相当する。共通電極は、同一基板上に形成され
る共通電位線6408と電気的に接続される。
なお、発光素子6404の第2電極(共通電極)には低電源電位が設定されている。なお
、低電源電位とは、電源線6407に設定される高電源電位を基準にして低電源電位<高
電源電位を満たす電位であり、低電源電位としては例えばGND、0Vなどが設定されて
いてもよい。この高電源電位と低電源電位との電位差を発光素子6404に印加して、発
光素子6404に電流を流して発光素子6404を発光させるため、高電源電位と低電源
電位との電位差が発光素子6404のしきい値電圧以上となるようにそれぞれの電位を設
定する。
なお、容量素子6403は駆動用トランジスタ6402のゲート容量を代用して省略する
ことも可能である。駆動用トランジスタ6402のゲート容量については、チャネル形成
領域とゲート電極との間で容量が形成されていてもよい。
ここで、電圧入力電圧駆動方式の場合には、駆動用トランジスタ6402のゲートには、
駆動用トランジスタ6402が十分にオンするか、オフするかの二つの状態となるような
ビデオ信号を入力する。つまり、駆動用トランジスタ6402は線形領域で動作させる。
駆動用トランジスタ6402は線形領域で動作させるため、電源線6407の電圧よりも
高い電圧を駆動用トランジスタ6402のゲートにかける。なお、信号線6405には、
(電源線電圧+駆動用トランジスタ6402のVth)以上の電圧をかける。
また、デジタル時間階調駆動に代えて、アナログ階調駆動を行う場合、信号の入力を異な
らせることで、図16と同じ画素構成を用いることができる。
アナログ階調駆動を行う場合、駆動用トランジスタ6402のゲートに発光素子6404
の順方向電圧+駆動用トランジスタ6402のVth以上の電圧をかける。発光素子64
04の順方向電圧とは、所望の輝度とする場合の電圧を指しており、少なくとも順方向し
きい値電圧を含む。なお、駆動用トランジスタ6402が飽和領域で動作するようなビデ
オ信号を入力することで、発光素子6404に電流を流すことができる。駆動用トランジ
スタ6402を飽和領域で動作させるため、電源線6407の電位は、駆動用トランジス
タ6402のゲート電位よりも高くする。ビデオ信号をアナログとすることで、発光素子
6404にビデオ信号に応じた電流を流し、アナログ階調駆動を行うことができる。
なお、図16に示す画素構成は、これに限定されない。例えば、図16に示す画素に新た
にスイッチ、抵抗素子、容量素子、トランジスタ又は論理回路などを追加してもよい。
次に、発光素子の構成について、図17を用いて説明する。ここでは、駆動用TFTがN
型の場合を例に挙げて、画素の断面構造について説明する。
発光素子は発光を取り出すために少なくとも陽極又は陰極の一方が透明であればよい。そ
して、基板上に薄膜トランジスタ及び発光素子を形成し、基板とは逆側の面から発光を取
り出す上面射出構造や、基板側の面から発光を取り出す下面射出構造や、基板側及び基板
とは反対側の面から発光を取り出す両面射出構造の発光素子があり、画素構成はどの射出
構造の発光素子にも適用することができる。
下面射出構造の発光素子について図17(A)を用いて説明する。
駆動用TFT7011がN型で、発光素子7012から発せられる光が第1の電極701
3側に射出する場合の、画素の断面図を示す。図17(A)では、駆動用TFT7011
のドレイン電極層と電気的に接続された透光性を有する導電膜7017上に、発光素子7
012の第1の電極7013が形成されており、第1の電極7013上にEL層7014
、第2の電極7015が順に積層されている。
透光性を有する導電膜7017としては、酸化タングステンを含むインジウム酸化物、酸
化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化
チタンを含むインジウム錫酸化物、インジウム錫酸化物、インジウム亜鉛酸化物、酸化ケ
イ素を添加したインジウム錫酸化物などの透光性を有する導電膜を用いることができる。
また、発光素子の第1の電極7013は様々な材料を用いることができる。例えば、第1
の電極7013を陰極として用いる場合には、仕事関数が小さい材料、具体的には、例え
ば、LiやCs等のアルカリ金属、及びMg、Ca、Sr等のアルカリ土類金属、及びこ
れらを含む合金(Mg:Ag、Al:Liなど)の他、YbやEr等の希土類金属等が好
ましい。図17(A)では、第1の電極7013の膜厚は、光を透過する程度(好ましく
は、5nm〜30nm程度)とする。例えば20nmの膜厚を有するアルミニウム膜を、
第1の電極7013として用いる。
なお、透光性を有する導電膜とアルミニウム膜を積層成膜した後、選択的にエッチングし
て透光性を有する導電膜7017と第1の電極7013を形成してもよく、この場合、同
じマスクを用いてエッチングすることができるため、好ましい。
また、第1の電極7013の周縁部は、隔壁7019で覆う。隔壁7019は、ポリイミ
ド、アクリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶縁膜又は有機ポリシロキサ
ンを用いて形成する。隔壁7019は、特に感光性の樹脂材料を用い、第1の電極701
3上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面とな
るように形成することが好ましい。隔壁7019として感光性の樹脂材料を用いる場合、
レジストマスクを形成する工程を省略することができる。
また、第1の電極7013及び隔壁7019上に形成するEL層7014は、少なくとも
発光層を含めば良く、単数の層で構成されていても、複数の層が積層されるように構成さ
れていてもどちらでもよい。EL層7014が複数の層で構成されている場合、陰極とし
て機能する第1の電極7013上に電子注入層、電子輸送層、発光層、ホール輸送層、ホ
ール注入層の順に積層する。なお、これらの層のうち、発光層以外の層を全て設ける必要
はない。
また、上記積層順に限定されず、第1の電極7013を陽極として機能させ、第1の電極
7013上にホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層
してもよい。ただし、消費電力を比較する場合、第1の電極7013を陰極として機能さ
せ、第1の電極7013上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注
入層の順に積層するほうが、駆動回路部の電圧上昇を抑制でき、消費電力を少なくできる
ため好ましい。
また、EL層7014上に形成する第2の電極7015としては、様々な材料を用いるこ
とができる。例えば、第2の電極7015を陽極として用いる場合、仕事関数が大きい材
料、例えば、ZrN、Ti、W、Ni、Pt、Cr等や、ITO、IZO、ZnOなどの
透明導電性材料が好ましい。また、第2の電極7015上に遮蔽膜7016、例えば光を
遮光する金属、光を反射する金属等を用いる。本実施の形態では、第2の電極7015と
してITO膜を用い、遮蔽膜7016としてTi膜を用いる。
第1の電極7013及び第2の電極7015で、発光層を含むEL層7014を挟んでい
る領域が発光素子7012に相当する。図17(A)に示した素子構造の場合、発光素子
7012から発せられる光は、矢印で示すように第1の電極7013側に射出する。
なお、図17(A)ではゲート電極層として透光性を有する導電膜を用い、かつソース電
極層及びドレイン電極層に透光性を有するような薄膜を用いる例を示しており、発光素子
7012から発せられる光は、カラーフィルタ層7033を通過し、基板を通過して射出
させることができる。
カラーフィルタ層7033はインクジェット法などの液滴吐出法や、印刷法、フォトリソ
グラフィ技術を用いたエッチング方法などでそれぞれ形成する。
また、カラーフィルタ層7033はオーバーコート層7034で覆われ、さらに保護絶縁
層7035によって覆う。なお、図17(A)ではオーバーコート層7034は薄い膜厚
で図示したが、オーバーコート層7034は、カラーフィルタ層7033に起因する凹凸
を平坦化する機能を有している。
また、保護絶縁層7035、オーバーコート層7034、平坦化絶縁層7036、絶縁層
7032、及び絶縁層7031に形成され、且つ、ドレイン電極層に達するコンタクトホ
ールは、隔壁7019と重なる位置に配置する。
次に、両面射出構造の発光素子について、図17(B)を用いて説明する。
図17(B)では、駆動用TFT7021のドレイン電極層と電気的に接続された透光性
を有する導電膜7027上に、発光素子7022の第1の電極7023が形成されており
、第1の電極7023上にEL層7024、第2の電極7025が順に積層されている。
透光性を有する導電膜7027としては、酸化タングステンを含むインジウム酸化物、酸
化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化
チタンを含むインジウム錫酸化物、インジウム錫酸化物、インジウム亜鉛酸化物、酸化ケ
イ素を添加したインジウム錫酸化物などの透光性を有する導電膜を用いることができる。
また、第1の電極7023は様々な材料を用いることができる。例えば、第1の電極70
23を陰極として用いる場合、仕事関数が小さい材料、具体的には、例えば、LiやCs
等のアルカリ金属、及びMg、Ca、Sr等のアルカリ土類金属、及びこれらを含む合金
(Mg:Ag、Al:Liなど)の他、YbやEr等の希土類金属等が好ましい。本実施
の形態では、第1の電極7023を陰極として用い、その膜厚は、光を透過する程度(好
ましくは、5nm〜30nm程度)とする。例えば20nmの膜厚を有するアルミニウム
膜を、陰極として用いる。
なお、透光性を有する導電膜とアルミニウム膜を積層成膜した後、選択的にエッチングし
て透光性を有する導電膜7027と第1の電極7023を形成してもよく、この場合、同
じマスクを用いてエッチングすることができ、好ましい。
また、第1の電極7023の周縁部は、隔壁7029で覆う。隔壁7029は、ポリイミ
ド、アクリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶縁膜又は有機ポリシロキサ
ンを用いて形成する。隔壁7029は、特に感光性の樹脂材料を用い、第1の電極702
3上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面とな
るように形成することが好ましい。隔壁7029として感光性の樹脂材料を用いる場合、
レジストマスクを形成する工程を省略することができる。
また、第1の電極7023及び隔壁7029上に形成するEL層7024は、発光層を含
めば良く、単数の層で構成されていても、複数の層が積層されるように構成されていても
どちらでもよい。EL層7024が複数の層で構成されている場合、陰極として機能する
第1の電極7023上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注入層
の順に積層する。なお、これらの層のうち、発光層以外の層を全て設ける必要はない。
また、上記積層順に限定されず、第1の電極7023を陽極として用い、陽極上にホール
注入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層してもよい。ただし
、消費電力を比較する場合、第1の電極7023を陰極として用い、陰極上に電子注入層
、電子輸送層、発光層、ホール輸送層、ホール注入層の順に積層するほうが消費電力が少
ないため好ましい。
また、EL層7024上に形成する第2の電極7025としては、様々な材料を用いるこ
とができる。例えば、第2の電極7025を陽極として用いる場合、仕事関数が大きい材
料、例えば、ITO、IZO、ZnOなどの透明導電性材料を好ましく用いることができ
る。本実施の形態では、第2の電極7026を陽極として用い、酸化シリコンを含むIT
O膜を形成する。
第1の電極7023及び第2の電極7025で、発光層を含むEL層7024を挟んでい
る領域が発光素子7022に相当する。図17(B)に示した素子構造の場合、発光素子
7022から発せられる光は、矢印で示すように第2の電極7025側と第1の電極70
23側の両方に射出する。
なお、図17(B)ではゲート電極層として透光性を有する導電膜を用い、かつソース電
極層及びドレイン電極層に透光性を有するような薄膜を用いる例を示しており、発光素子
7022から第1の電極7023側に発せられる光は、カラーフィルタ層7043を通過
し、基板を通過して射出させることができる。
カラーフィルタ層7043はインクジェット法などの液滴吐出法や、印刷法、フォトリソ
グラフィ技術を用いたエッチング方法などでそれぞれ形成する。
また、カラーフィルタ層7043はオーバーコート層7044で覆われ、さらに保護絶縁
層7045によって覆う。
また、保護絶縁層7045、オーバーコート層7044、平坦化絶縁層7046、絶縁層
7042及び、絶縁層7041に形成され、且つ、ドレイン電極層に達するコンタクトホ
ールは、隔壁7029と重なる位置に配置する。
ただし、両面射出構造の発光素子を用い、どちらの表示面もフルカラー表示とする場合、
第2の電極7025側からの光はカラーフィルタ層7043を通過しないため、別途カラ
ーフィルタ層を備えた封止基板を第2の電極7025上方に設けることが好ましい。
次に、上面射出構造の発光素子について、図17(C)を用いて説明する。
図17(C)に、駆動用TFT7001がN型で、発光素子7002から発せられる光が
第2の電極7005側に抜ける場合の、画素の断面図を示す。図17(C)では、駆動用
TFT7001のドレイン電極層と第1の電極7003と接しており、駆動用TFT70
01と発光素子7002の第1の電極7003とを電気的に接続している。第1の電極7
003上にEL層7004、第2の電極7005が順に積層されている。
また、第1の電極7013は様々な材料を用いることができる。例えば、第1の電極70
13を陰極として用いる場合、仕事関数が小さい材料、具体的には、例えば、LiやCs
等のアルカリ金属、及びMg、Ca、Sr等のアルカリ土類金属、及びこれらを含む合金
(Mg:Ag、Al:Liなど)の他、YbやEr等の希土類金属等が好ましい。
また、第1の電極7003の周縁部は、隔壁7009で覆う。隔壁7009は、ポリイミ
ド、アクリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶縁膜又は有機ポリシロキサ
ンを用いて形成する。隔壁7009は、特に感光性の樹脂材料を用い、第1の電極701
3上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面とな
るように形成することが好ましい。隔壁7009として感光性の樹脂材料を用いる場合、
レジストマスクを形成する工程を省略することができる。
また、第1の電極7003及び隔壁7009上に形成するEL層7004は、少なくとも
発光層を含めば良く、単数の層で構成されていても、複数の層が積層されるように構成さ
れていてもどちらでもよい。EL層7004が複数の層で構成されている場合、陰極とし
て用いる第1の電極7003上に電子注入層、電子輸送層、発光層、ホール輸送層、ホー
ル注入層の順に積層する。なお、これらの層のうち、発光層以外の層を全て設ける必要は
ない。
また、上記積層順に限定されず、陽極として用いる第1の電極7003上にホール注入層
、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層してもよい。
図17(C)ではTi膜、アルミニウム膜、Ti膜の順に積層した積層膜上に、ホール注
入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層し、その上にMg:A
g合金薄膜とITOとの積層を形成する。
ただし、駆動用TFT7001がN型の場合、第1の電極7003上に電子注入層、電子
輸送層、発光層、ホール輸送層、ホール注入層の順に積層するほうが、駆動回路における
電圧上昇を抑制することができ、消費電力を少なくできるため好ましい。
第2の電極7005は光を透過する透光性を有する導電性材料を用いて形成し、例えば酸
化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物
、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウ
ム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透
光性を有する導電膜を用いてもよい。
第1の電極7003及び第2の電極7005で発光層を含むEL層7004を挟んでいる
領域が発光素子7002に相当する。図17(C)に示した画素の場合、発光素子700
2から発せられる光は、矢印で示すように第2の電極7005側に射出する。
また、図17(C)において、駆動用TFT7001のドレイン電極層は、酸化シリコン
層7051、保護絶縁層7052、平坦化絶縁層7056、平坦化絶縁層7053、及び
絶縁層7055に設けられたコンタクトホールを介して第1の電極7003と電気的に接
続する。平坦化絶縁層7036、7046、7053、7056は、ポリイミド、アクリ
ル、ベンゾシクロブテン、ポリアミド、エポキシ等の樹脂材料を用いることができる。ま
た上記樹脂材料の他に、低誘電率材料(low−k材料)、シロキサン系樹脂、PSG(
リンガラス)、BPSG(リンボロンガラス)等を用いることができる。なお、これらの
材料で形成される絶縁膜を複数積層させることで、平坦化絶縁層7036、7046、7
053、7056を形成してもよい。平坦化絶縁層7036、7046、7053、70
56の形成法は、特に限定されず、その材料に応じて、スパッタリング法、SOG法、ス
ピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法、スクリーン印刷
、オフセット印刷等)、ドクターナイフ、ロールコーター、カーテンコーター、ナイフコ
ーター等を用いることができる。
また、第1の電極7003と、隣り合う画素の第1の電極とを絶縁するために隔壁700
9を設ける。隔壁7009は、ポリイミド、アクリル、ポリアミド、エポキシ等の有機樹
脂膜、無機絶縁膜又は有機ポリシロキサンを用いて形成する。隔壁7009は、特に感光
性の樹脂材料を用い、第1の電極7003上に開口部を形成し、その開口部の側壁が連続
した曲率を持って形成される傾斜面となるように形成することが好ましい。隔壁7009
として感光性の樹脂材料を用いる場合、レジストマスクを形成する工程を省略することが
できる。
また、図17(C)の構造においては、フルカラー表示を行う場合、例えば発光素子70
02として緑色発光素子とし、隣り合う一方の発光素子を赤色発光素子とし、もう一方の
発光素子を青色発光素子とする。また、3種類の発光素子だけでなく白色素子を加えた4
種類の発光素子でフルカラー表示ができる発光表示装置を作製してもよい。
また、図17(C)の構造においては、配置する複数の発光素子を全て白色発光素子とし
て、発光素子7002上方にカラーフィルタなどを有する封止基板を配置する構成とし、
フルカラー表示ができる発光表示装置を作製してもよい。白色などの単色の発光を示す材
料を形成し、カラーフィルタや色変換層を組み合わせることによりフルカラー表示を行う
ことができる。
もちろん単色発光の表示を行ってもよい。例えば、白色発光を用いて照明装置を形成して
もよいし、単色発光を用いてエリアカラータイプの発光装置を形成してもよい。
また、必要があれば、円偏光板などの偏光フィルムなどの光学フィルムを設けてもよい。
なお、ここでは、発光素子として有機EL素子について述べたが、発光素子として無機E
L素子を設けることも可能である。
なお、発光素子の駆動を制御する薄膜トランジスタ(駆動用TFT)と発光素子が電気的
に接続されている例を示したが、駆動用TFTと発光素子との間に電流制御用TFTが接
続されている構成であってもよい。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
次に、本実施の形態における発光表示パネル(発光パネルともいう)の外観及び断面につ
いて、図18を用いて説明する。図18は、第1の基板上に形成された薄膜トランジスタ
及び発光素子を、第2の基板との間にシール材によって封止した、パネルの平面図であり
、図18(B)は、図18(A)のH−Iにおける断面図に相当する。
第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、450
3b、及び走査線駆動回路4504a、4504bを囲むようにして、シール材4505
が設けられている。また画素部4502、信号線駆動回路4503a、4503b、及び
走査線駆動回路4504a、4504bの上に第2の基板4506が設けられている。よ
って画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路45
04a、4504bは、第1の基板4501とシール材4505と第2の基板4506と
によって、充填材4507と共に密封されている。このように外気に曝されないように気
密性が高く、脱ガスの少ない保護フィルム(貼り合わせフィルム、紫外線硬化樹脂フィル
ム等)やカバー材でパッケージング(封入)することが好ましい。
また第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、4
503b、及び走査線駆動回路4504a、4504bは、薄膜トランジスタを複数有し
ており、図18(B)では、画素部4502に含まれる薄膜トランジスタ4510と、信
号線駆動回路4503aに含まれる薄膜トランジスタ4509とを例示している。
薄膜トランジスタ4509、4510は、実施の形態2乃至9のいずれか一の薄膜トラン
ジスタを適宜用いることができ、同様な工程及び材料で形成することができる。薄膜トラ
ンジスタ4509、4510の酸化物半導体層は水素や水が低減されている。従って、薄
膜トランジスタ4509、4510は信頼性の高い薄膜トランジスタである。
なお、駆動回路用の薄膜トランジスタ4509としては、薄膜トランジスタの酸化物半導
体層のチャネル形成領域と重なる位置に導電層を設けた構造とする。本実施の形態におい
て、薄膜トランジスタ4509、4510はNチャネル型薄膜トランジスタである。
酸化シリコン層4542上において駆動回路用の薄膜トランジスタ4509の酸化物半導
体層のチャネル形成領域と重なる位置に導電層4540が設けられている。導電層454
0を酸化物半導体層のチャネル形成領域と重なる位置に設けることによって、BT試験前
後における薄膜トランジスタ4509のしきい値電圧の変化量を低減することができる。
また、導電層4540は、電位が薄膜トランジスタ4509のゲート電極層と同じでもよ
いし、異なっていても良く、第2のゲート電極層として機能させることもできる。また、
導電層4540の電位がGND、0V、或いはフローティング状態であってもよい。
また、薄膜トランジスタ4510の酸化物半導体層を覆う酸化シリコン層4542が形成
されている。薄膜トランジスタ4510のソース電極層又はドレイン電極層は薄膜トラン
ジスタ上に設けられた酸化シリコン層4542及び絶縁層4551に形成された開口にお
いて配線層4550と電気的に接続されている。配線層4550は第1の電極4517と
接して形成されており、薄膜トランジスタ4510と第1の電極4517とは配線層45
50を介して電気的に接続されている。
酸化シリコン層4542は上記実施の形態に示した酸化物絶縁層と同様な材料及び方法で
形成すればよい。
発光素子4511の発光領域と重なるようにカラーフィルタ層4545が、絶縁層455
1上に形成される。
また、カラーフィルタ層4545の表面凹凸を低減するため平坦化絶縁膜として機能する
オーバーコート層4543で覆う構成となっている。
また、オーバーコート層4543上に絶縁層4544が形成されている。絶縁層4544
は、実施の形態6で示した保護絶縁層303と同様に形成すればよく、例えば窒化シリコ
ン膜をスパッタリング法で形成すればよい。
また4511は発光素子に相当し、発光素子4511が有する画素電極である第1電極4
517は、薄膜トランジスタ4510のソース電極層又はドレイン電極層と配線層455
0を介して電気的に接続されている。なお発光素子4511の構成は、第1電極4517
、電界発光層4512、第2電極4513の積層構造であるが、示した構成に限定されな
い。発光素子4511から取り出す光の方向などに合わせて、発光素子4511の構成は
適宜変えることができる。
隔壁4520は、有機樹脂膜、無機絶縁膜又は有機ポリシロキサンを用いて形成する。特
に感光性の材料を用い、第1電極4517上に開口部を形成し、その開口部の側壁が連続
した曲率を持って形成される傾斜面となるように形成することが好ましい。
電界発光層4512は、単数の層で構成されていても、複数の層が積層されるように構成
されていてもどちらでもよい。
発光素子4511に酸素、水素、水分、二酸化炭素等が侵入しないように、第2電極45
13及び隔壁4520上に保護膜を形成してもよい。保護膜としては、窒化シリコン膜、
窒化酸化シリコン膜、DLC膜等を形成することができる。
また、信号線駆動回路4503a、4503b、走査線駆動回路4504a、4504b
、又は画素部4502に与えられる各種信号及び電位は、FPC4518a、FPC45
18bから供給されている。
接続端子電極4515が、発光素子4511が有する第1電極4517と同じ導電膜から
形成され、端子電極4516は、薄膜トランジスタ4509のソース電極層及びドレイン
電極層と同じ導電膜から形成されている。
接続端子電極4515は、FPC4518aが有する端子と、異方性導電膜4519を介
して電気的に接続されている。
発光素子4511からの光の取り出し方向に位置する基板には、第2の基板は透光性でな
ければならない。その場合には、ガラス板、プラスチック板、ポリエステルフィルム又は
アクリルフィルムのような透光性を有する材料を用いる。
また、充填材4507としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹
脂又は熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル、ポ
リイミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)又はEVA(
エチレンビニルアセテート)を用いることができる。例えば充填材として窒素を用いれば
よい。
また、必要であれば、発光素子の射出面に偏光板、又は円偏光板(楕円偏光板を含む)、
位相差板(λ/4板、λ/2板)などの光学フィルムを適宜設けてもよい。また、偏光板
又は円偏光板に反射防止膜を設けてもよい。例えば、表面の凹凸により反射光を拡散し、
映り込みを低減できるアンチグレア処理を施すことができる。
シール材は、スクリーン印刷法、インクジェット装置又はディスペンス装置を用いて形成
することができる。シール材は、代表的には可視光硬化性、紫外線硬化性又は熱硬化性の
樹脂を含む材料を用いることができる。また、フィラーを含んでもよい。
信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bは
、別途用意された基板上に単結晶半導体膜又は多結晶半導体膜によって形成された駆動回
路で実装されていてもよい。また、信号線駆動回路のみ、或いは一部、又は走査線駆動回
路のみ、或いは一部のみを別途形成して実装しても良く、図18の構成に限定されない。
以上の工程により、半導体装置として信頼性の高い発光表示装置(表示パネル)を作製す
ることができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態12)
本実施の形態では、本発明の一実施の形態である半導体装置として電子ペーパーの例を示
す。
図19は、本発明の一実施の形態を適用した半導体装置の例としてアクティブマトリクス
型の電子ペーパーを示す。本実施の形態では、薄膜トランジスタ581として実施の形態
5で示す薄膜トランジスタを適用する例を示す。薄膜トランジスタ581の酸化物半導体
層は水素や水が低減されている。従って、薄膜トランジスタ581は信頼性の高い薄膜ト
ランジスタである。
図19の電子ペーパーは、ツイストボール表示方式を用いた表示装置の例である。ツイス
トボール表示方式とは、白と黒に塗り分けられた球形粒子を表示素子に用い、電極層であ
る第1の電極層及び第2の電極層の間に該球形粒子を配置し、第1の電極層及び第2の電
極層に電位差を生じさせて球形粒子の向きを制御することにより、表示を行う方法である
基板580上に設けられた薄膜トランジスタ581はボトムゲート構造の薄膜トランジス
タであり、ソース電極層又はドレイン電極層は、酸化シリコン層583、保護絶縁層58
4、絶縁層585に形成される開口において第1の電極層587と接して電気的に接続さ
れている。
第1の電極層587と第2の電極層588との間には黒色領域590a及び白色領域59
0bを有し、周りに液体で満たされているキャビティ594を含む球形粒子が設けられて
おり、球形粒子の周囲は樹脂等の充填材595で充填されている(図19参照。)。本実
施の形態においては、第1の電極層587が画素電極に相当し、対向基板596に設けら
れる第2の電極層588が共通電極に相当する。
また、球形素子の代わりに、電気泳動素子を用いることも可能である。透明な液体と、正
に帯電した白い微粒子と負に帯電した黒い微粒子とを封入した直径10μm〜200μm
程度のマイクロカプセルを用いる。第1の電極層と第2の電極層との間に設けられるマイ
クロカプセルは、第1の電極層と第2の電極層によって、電場が与えられると、白い微粒
子と、黒い微粒子が逆の方向に移動し、白又は黒を表示することができる。この原理を応
用した表示素子が電気泳動表示素子であり、一般的に電子ペーパーとよばれている。電気
泳動表示素子は、液晶表示素子に比べて反射率が高いため、補助ライトは不要であり、ま
た消費電力が小さく、薄暗い場所でも表示部を認識することが可能である。また、表示部
に電源が供給されない場合であっても、一度表示した像を保持することが可能であるため
、電波発信源から表示機能付き半導体装置(単に表示装置、又は表示装置を具備する半導
体装置ともいう)を遠ざけた場合であっても、表示された像を保存しておくことが可能と
なる。
以上の工程により、半導体装置として信頼性の高い電子ペーパーを作製することができる
実施の形態1に示す論理回路は、例えば本実施の形態における電子ペーパーの駆動回路に
用いることができる。また表示部のトランジスタも酸化物半導体層を用いたトランジスタ
を適用することができ、例えば同一基板に駆動回路及び表示部を設けることもできる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態13)
本明細書に開示する半導体装置は、さまざまな電子機器(遊技機も含む)に適用すること
ができる。電子機器としては、例えば、テレビジョン装置(テレビ、又はテレビジョン受
信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ
、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲ
ーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる
図20(A)は、携帯電話機の一例を示している。携帯電話機1600は、筐体1601
に組み込まれた表示部1602の他、操作ボタン1603a、操作ボタン1603b、外
部接続ポート1604、スピーカー1605、マイク1606などを備えている。
図20(A)に示す携帯電話機1600は、表示部1602を指などで触れることで、情
報を入力することができる。また、電話を掛ける、或いはメールを打つなどの操作は、表
示部1602を指などで触れることにより行うことができる。
表示部1602の画面は主として3つのモードがある。第1は、画像の表示を主とする表
示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表示
モードと入力モードの2つのモードが混合した表示+入力モードである。
例えば、電話を掛ける、或いはメールを作成する場合は、表示部1602を文字の入力を
主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合
、表示部1602の画面のほとんどにキーボード又は番号ボタンを表示させることが好ま
しい。
また、携帯電話機1600内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを
有する検出装置を設けることで、携帯電話機1600の向き(縦か横か)を判断して、表
示部1602の画面表示を自動的に切り替えるようにすることができる。
また、画面モードの切り替えは、表示部1602を触れること、又は筐体1601の操作
ボタン1603a、1603bの操作により行われる。また、表示部1602に表示され
る画像の種類によって切り替えるようにすることもできる。例えば、表示部に表示する画
像信号が動画のデータであれば表示モード、テキストデータであれば入力モードに切り替
える。
また、入力モードにおいて、表示部1602の光センサで検出される信号を検知し、表示
部1602のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モード
から表示モードに切り替えるように制御してもよい。
表示部1602は、イメージセンサとして機能させることもできる。例えば、表示部16
02に掌や指を触れることで、掌紋、指紋等を撮像することで、本人認証を行うことがで
きる。また、表示部に近赤外光を発光するバックライト又は近赤外光を発光するセンシン
グ用光源を用いれば、指静脈、掌静脈などを撮像することもできる。
表示部1602には、上記実施の形態に示す半導体装置を適用することができ、例えば画
素のスイッチング素子として、上記他の実施の形態に示す薄膜トランジスタを複数配置す
ることができる。
図20(B)も携帯電話機の一例である。図20(B)を一例とした携帯型情報端末は、
複数の機能を備えることができる。例えば電話機能に加えて、コンピュータを内蔵し、様
々なデータ処理機能を備えることもできる。
図20(B)に示す携帯型情報端末は、筐体1800及び筐体1801の二つの筐体で構
成されている。筐体1801には、表示パネル1802、スピーカー1803、マイクロ
フォン1804、ポインティングデバイス1806、カメラ用レンズ1807、外部接続
端子1808などを備え、筐体1800には、キーボード1810、外部メモリスロット
1811などを備えている。また、アンテナは筐体1801内部に内蔵されている。
また、表示パネル1802はタッチパネルを備えており、図20(B)には映像表示され
ている複数の操作キー1805を点線で示している。
また、上記構成に加えて、非接触ICチップ、小型記録装置などを内蔵していてもよい。
上記実施の形態に示す半導体装置は、表示パネル1802に用いることができ、使用形態
に応じて表示の方向が適宜変化する。また、表示パネル1802と同一面上にカメラ用レ
ンズ1807を備えているため、テレビ電話が可能である。スピーカー1803及びマイ
クロフォン1804は音声通話に限らず、テレビ電話、録音、再生などが可能である。さ
らに、筐体1800と筐体1801は、スライドし、図20(B)のように展開している
状態から重なり合った状態とすることができ、携帯に適した小型化が可能である。
外部接続端子1808はACアダプタ及びUSBケーブルなどの各種ケーブルと接続可能
であり、充電及びパーソナルコンピュータなどとのデータ通信が可能である。また、外部
メモリスロット1811に記録媒体を挿入し、より大量のデータ保存及び移動に対応でき
る。
また、上記機能に加えて、赤外線通信機能、テレビ受信機能などを備えたものであっても
よい。
図21(A)は、テレビジョン装置の一例を示している。テレビジョン装置9600は、
筐体9601に表示部9603が組み込まれている。表示部9603により、映像を表示
することが可能である。また、ここでは、スタンド9605により筐体9601を支持し
た構成を示している。
テレビジョン装置9600の操作は、筐体9601が備える操作スイッチや、別体のリモ
コン操作機9610により行うことができる。リモコン操作機9610が備える操作キー
9609により、チャンネルや音量の操作を行うことができ、表示部9603に表示され
る映像を操作することができる。また、リモコン操作機9610に、当該リモコン操作機
9610から出力する情報を表示する表示部9607を設ける構成としてもよい。
なお、テレビジョン装置9600は、受信機やモデムなどを備えた構成とする。受信機に
より一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線又は無線によ
る通信ネットワークに接続することにより、一方向(送信者から受信者)又は双方向(送
信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
表示部9603には、上記実施の形態に示す半導体装置を適用することができ、例えば画
素のスイッチング素子として、上記他の実施の形態に示す薄膜トランジスタを複数配置す
ることができる。
図21(B)は、デジタルフォトフレームの一例を示している。例えば、デジタルフォト
フレーム9700は、筐体9701に表示部9703が組み込まれている。表示部970
3は、各種画像を表示することが可能であり、例えばデジタルカメラなどで撮影した画像
データを表示させることで、通常の写真立てと同様に機能させることができる。
表示部9703には、上記実施の形態に示す半導体装置を適用することができ、例えば画
素のスイッチング素子として、上記他の実施の形態に示す薄膜トランジスタを複数配置す
ることができる。
なお、デジタルフォトフレーム9700は、操作部、外部接続用端子(USB端子、US
Bケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える。
これらの構成は、表示部と同一面に組み込まれていてもよいが、側面や裏面に備えるとデ
ザイン性が向上するため好ましい。例えば、デジタルフォトフレームの記録媒体挿入部に
、デジタルカメラで撮影した画像データを記憶したメモリを挿入して画像データを取り込
み、取り込んだ画像データを表示部9703に表示させることができる。
また、デジタルフォトフレーム9700は、無線で情報を送受信できる構成としてもよい
。無線により、所望の画像データを取り込み、表示させる構成とすることもできる。
図22は、携帯型遊技機であり、筐体9881と筐体9891の2つの筐体で構成されて
おり、連結部9893により、開閉可能に連結されている。筐体9881には表示部98
82が組み込まれ、筐体9891には表示部9883が組み込まれている。
表示部9883には、上記実施の形態に示す半導体装置を適用することができ、例えば画
素のスイッチング素子として、上記他の実施の形態に示す薄膜トランジスタを複数配置す
ることができる。
また、図22に示す携帯型遊技機は、その他、スピーカー部9884、記録媒体挿入部9
886、LEDランプ9890、入力手段(操作キー9885、接続端子9887、セン
サ9888(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温
度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度
、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン9889)等を
備えている。もちろん、携帯型遊技機の構成は上述のものに限定されず、少なくとも本明
細書に開示する薄膜トランジスタを備えた構成であればよく、その他付属設備が適宜設け
られた構成とすることができる。図22に示す携帯型遊技機は、記録媒体に記録されてい
るプログラム又はデータを読み出して表示部に表示する機能や、他の携帯型遊技機と無線
通信を行って情報を共有する機能を有する。なお、図22に示す携帯型遊技機が有する機
能はこれに限定されず、様々な機能を有することができる。
(実施の形態14)
本明細書に開示する半導体装置は、電子ペーパーとして適用することができる。電子ペー
パーは、情報を表示するものであればあらゆる分野の電子機器に用いることが可能である
。例えば、電子ペーパーを用いて、電子書籍(電子ブック)、ポスター、電車などの乗り
物の車内広告、クレジットカード等の各種カードにおける表示等に適用することができる
。電子機器の一例を図23に示す。
図23は、電子書籍の一例を示している。例えば、電子書籍2700は、筐体2701及
び筐体2703の2つの筐体で構成されている。筐体2701及び筐体2703は、軸部
2711により一体とされており、該軸部2711を軸として開閉動作を行うことができ
る。このような構成により、紙の書籍のような動作を行うことが可能となる。
筐体2701には表示部2705が組み込まれ、筐体2703には表示部2707が組み
込まれている。表示部2705及び表示部2707は、続き画面を表示する構成としても
よいし、異なる画面を表示する構成としてもよい。異なる画面を表示する構成とすること
で、例えば右側の表示部(図23では表示部2705)に文章を表示し、左側の表示部(
図23では表示部2707)に画像を表示することができる。
また、図23では、筐体2701に操作部などを備えた例を示している。例えば、筐体2
701において、電源2721、操作キー2723、スピーカー2725などを備えてい
る。操作キー2723により、頁を送ることができる。なお、筐体の表示部と同一面にキ
ーボードやポインティングデバイスなどを備える構成としてもよい。また、筐体の裏面や
側面に、外部接続用端子(イヤホン端子、USB端子、又はACアダプタ及びUSBケー
ブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構成とし
てもよい。さらに、電子書籍2700は、電子辞書としての機能を持たせた構成としても
よい。
また、電子書籍2700は、無線で情報を送受信できる構成としてもよい。無線により、
電子書籍サーバから、所望の書籍データなどを購入し、ダウンロードする構成とすること
も可能である。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態15)
本発明の一形態は、酸化物半導体中でキャリアの供与体(ドナー又はアクセプタ)となり
得る不純物を極めて少ないレベルにまで除去することで、真性又は実質的に真性な半導体
であって、当該酸化物半導体を薄膜トランジスタに適用するものである。
図24は、このようなトランジスタのソース−ドレイン間のバンド構造を示す図である。
高純度化が図られた酸化物半導体のフェルミ準位は、理想的な状態では禁制帯の中央に位
置している。
この場合、仕事関数をφm、酸化物半導体の電子親和力をχとする。
ここで、φm=χであれば、接合面において電極メタルのフェルミレベルと酸化物半導体
の伝導帯のレベルが一致する。この等式を境目として、右辺が大きい場合はオーミック接
触となる。バンドギャップ3.05eV、電子親和力4.3eV、真性状態(キャリア密
度約1×10−7/cm)であると仮定し、ソース電極及びドレイン電極として仕事関
数4.3eVのチタン(Ti)を用いたときには、図24で示すように電子に対してショ
ットキー障壁は形成されない
図25は酸化物半導体を用いたトランジスタにおいて、ドレイン側に正の電圧が印加され
た状態を示す図である。ドレインに正の電圧(V>0)を印加した上で、破線はゲート
に電圧を印加しない場合(V=0)、実線はゲートに正の電圧(V>0)を印加した
場合を示す。酸化物半導体はバンドギャップが広いため、高純度化され真性若しくは実質
的に真性な酸化物半導体の真性キャリア密度はゼロ又は限りなくゼロに近い状態である。
ゲートに電圧を印加しない場合は高いオーミック接触抵抗のために電極から酸化物半導体
側へキャリア(電子)が注入されず、電流を流さないオフ状態を示す。一方、ゲートに正
の電圧を印加するとオーミック接触抵抗が低下し、電流を流すオン状態を示す。
図26(A)はゲート電圧を正にしたときのMOS構造のエネルギーバンド図であり、酸
化物半導体を用いたトランジスタにおけるものを示している。この場合、高純度化された
酸化物半導体には熱励起キャリアがほとんど存在しないことから、ゲート絶縁膜近傍にも
キャリアは蓄積されない。しかし、図25で示すように、ソース側から注入されたキャリ
アが伝搬することはできる。
図26(B)は、ゲート電圧を負にしたときのMOS構造のエネルギーバンド図であり、
酸化物半導体を用いたトランジスタにおけるものを示している。酸化物半導体中に少数キ
ャリア(正孔)はほとんど存在しないので、ゲート絶縁膜近傍にもキャリアは蓄積されな
い。このことは、オフ電流が小さいことを意味している。
なお、図27にシリコン半導体を用いた場合のトランジスタのバンド図を示す。シリコン
半導体のバンドギャップは1.12eVである。真性キャリア密度は1.45×1010
/cm(300K)であり、室温においてもキャリアが存在している。これは、室温に
おいても熱励起キャリアが無視できず、温度に依存してオフ電流が大きく変動することと
なる。
このように、単に、バンドギャップの広い酸化物半導体をトランジスタに適用するのでは
なく、ドナーを形成する水素等の不純物を極力低減し、キャリア濃度を1×1014/c
以下、好ましくは1×1012/cm以下となるようにすることで、実用的な動作
温度で熱的に励起されるキャリアを排除して、ソース側から注入されるキャリアのみによ
ってトランジスタを動作させることができる。それにより、オフ電流を1×10−13
以下にまで下げると共に、温度変化によってオフ電流がほとんど変化しない極めて安定に
動作するトランジスタを得ることができる。
(実施の形態16)
本実施の形態では、評価用素子(TEGとも呼ぶ)でのオフ電流の測定値について以下に
説明する。
図28にL/W=3μm/50μmの薄膜トランジスタを200個並列に接続し、実効的
にはL/W=3μm/10000μmの薄膜トランジスタの初期特性を示す。また、上面
図を図29(A)に示し、その一部を拡大した上面図を図29(B)に示す。図29(B
)の点線で囲んだ領域がL/W=3μm/50μm、Lov=1.5μmの1段分の薄膜
トランジスタである。薄膜トランジスタの初期特性を測定するため、基板温度を室温とし
、ソース−ドレイン間電圧(以下、ドレイン電圧又はVdという)を10Vとし、ソース
−ゲート間電圧(以下、ゲート電圧又はVgという)を−20V〜+20Vまで変化させ
たときのソース−ドレイン電流(以下、ドレイン電流又はIdという)の変化特性、すな
わちVg−Id特性を測定した。なお、図28では、Vgを−20V〜+5Vまでの範囲
で示している。
図28に示すようにチャネル幅Wが10000μmの薄膜トランジスタは、Vdが1V及
び10Vにおいてオフ電流は1×10−13[A]以下となっており、測定機(半導体パ
ラメータ・アナライザ、Agilent 4156C;Agilent社製)の分解能(
100fA)以下となっている。チャネル幅W10000μmあたりのトランジスタのオ
フ電流が1×10−13A以下であるため、チャネル幅W1μmあたりのトランジスタの
オフ電流も1×10−13A以下であるといえる。さらに、チャネル幅W10000μm
あたりのトランジスタのオフ電流が1×10−13A以下とすると、チャネル幅W1μm
あたりのトランジスタのオフ電流は、1×10−17A以下と換算することができる。
測定した薄膜トランジスタの作製方法について説明する。
まず、ガラス基板上に下地層として、CVD法により窒化珪素層を形成し、窒化珪素層上
に酸化窒化珪素層を形成した。酸化窒化珪素層上にゲート電極層としてスパッタリング法
によりタングステン層を形成した。ここで、タングステン層を選択的にエッチングしてゲ
ート電極層を形成した。
次に、ゲート電極層上にゲート絶縁層としてCVD法により厚さ100nmの酸化窒化珪
素層を形成した。
次に、ゲート絶縁層上に、スパッタリング法によりIn−Ga−Zn−O系酸化物半導体
成膜用ターゲット(モル数比で、In:Ga:ZnO=1:1:2)を用い
て、厚さ50nmの酸化物半導体層を形成した。ここで、酸化物半導体層を選択的にエッ
チングし、島状の酸化物半導体層を形成した。
次に、酸化物半導体層をクリーンオーブンにて窒素雰囲気下、450℃、1時間の第1の
熱処理を行った。
次に、酸化物半導体層上にソース電極層及びドレイン電極層としてチタン層(厚さ150
nm)をスパッタリング法により形成した。ここで、ソース電極層及びドレイン電極層を
選択的にエッチングし、1つの薄膜トランジスタのチャネル長Lが3μm、チャネル幅W
が50μmとし、200個を並列とすることで、実効的にL/W=3μm/10000μ
mとなるようにした。
次に、酸化物半導体層に接するように保護絶縁層としてリアクティブスパッタリング法に
より酸化珪素層を膜厚300nmで形成した。ここで、保護層である酸化珪素層を選択的
にエッチングし、ゲート電極層、ソース電極層及びドレイン電極層上に開口部を形成した
。その後、窒素雰囲気下、250℃で1時間、第2の熱処理を行った。
そして、Vg−Id特性を測定する前に150℃、10時間の加熱を行った。
以上の工程により、ボトムゲート型の薄膜トランジスタを作製した。
図28に示すように薄膜トランジスタが、1×10−13[A]程度であるのは、上記作
製工程において酸化物半導体層中における水素濃度を十分に低減できたためである。酸化
物半導体層中の水素濃度は、5×1019/cm以下、好ましくは5×1018/cm
以下、さらに好ましくは5×1017/cm以下とする。なお、酸化物半導体層中の
水素濃度測定は、二次イオン質量分析法(SIMS:Secondary Ion Ma
ss Spectrometry)で行う。
また、In−Ga−Zn−O系酸化物半導体を用いる例を示したが、特に限定されず、他
の酸化物半導体材料、例えば、In−Sn−Zn−O系、Sn−Ga−Zn−O系、Al
−Ga−Zn−O系、Sn−Al−Zn−O系、In−Zn−O系、In−Sn−O系、
Sn−Zn−O系、Al−Zn−O系、In−O系、Sn−O系、Zn−O系などを用い
ることができる。また、酸化物半導体材料として、AlOxを2.5〜10wt%混入し
たIn−Al−Zn−O系や、SiOxを2.5〜10wt%混入したIn−Zn−O系
を用いることもできる。
また、キャリア測定機で測定される酸化物半導体層のキャリア濃度は、シリコンのキャリ
ア濃度1.45×1010/cmと同等、若しくはそれ以下、好ましくは5×1014
/cm以下、さらに好ましくは5×1012/cm以下である。即ち、酸化物半導体
層のキャリア濃度は、限りなくゼロに近くすることができる。
また、薄膜トランジスタのチャネル長Lを10nm以上1000nm以下とすることも可
能であり、回路の動作速度を高速化でき、オフ電流値が極めて小さいため、さらに低消費
電力化も図ることができる。
また、薄膜トランジスタのオフ状態において、酸化物半導体層を絶縁体とみなして回路設
計を行うことができる。
続いて、本実施の形態で作製した薄膜トランジスタに対してオフ電流の温度特性を評価し
た。温度特性は、薄膜トランジスタが使われる最終製品の耐環境性や、性能の維持などを
考慮する上で重要である。当然ながら、変化量が小さいほど好ましく、製品設計の自由度
が増す。
温度特性は、恒温槽を用い、−30、0、25、40、60、80、100、及び120
℃のそれぞれの温度で薄膜トランジスタを形成した基板を一定温度とし、ドレイン電圧を
6V、ゲート電圧を−20V〜+20Vまで変化させてVg−Id特性を取得した。
図30(A)に示すのは、上記それぞれの温度で測定したVg−Id特性を重ね書きした
ものであり、点線で囲むオフ電流の領域を拡大したものを図30(B)に示す。図中の矢
印で示す右端の曲線が−30℃、左端が120℃で取得した曲線で、その他の温度で取得
した曲線は、その間に位置する。オン電流の温度依存性はほとんど見られない。一方、オ
フ電流は拡大図の図30(B)においても明かであるように、ゲート電圧が20V近傍を
除いて、全ての温度で測定機の分解能近傍の1×10−12[A]以下となっており、温
度依存性も見えていない。すなわち、120℃の高温においても、オフ電流が1×10
12[A]以下を維持しており、チャネル幅Wが10000μmであることを考慮すると
、オフ電流が非常に小さいことがわかる。
高純度化された酸化物半導体を用いた薄膜トランジスタは、オフ電流の温度依存性がほと
んど現れない。これは、酸化物半導体のエネルギーギャップが3eV以上であり、真性キ
ャリアが極めて少ないことに起因する。また、ソース領域及びドレイン領域は縮退した状
態にあるのでやはり温度依存性が現れない要因となっている。薄膜トランジスタの動作は
、縮退したソース領域から酸化物半導体に注入されたキャリアによるものがほとんどであ
り、キャリア密度の温度依存性がないことから上記特性(オフ電流の温度依存性無し)を
説明することができる。
このようにオフ電流値が極めて小さい薄膜トランジスタを用いて、記憶回路(記憶素子)
などを作製した場合、オフ電流値が小さくほとんどリークがないため、記憶データを保持
する時間を長くすることができる。なお、ここでの記憶回路とは論理回路も含まれる。
100 論理回路
101 トランジスタ
102 トランジスタ
103 容量素子
104 トランジスタ
105 トランジスタ
106 容量素子
107 トランジスタ
108 トランジスタ
109 容量素子
110 トランジスタ
111 トランジスタ
112 容量素子
121 ノード
122 ノード
123 ノード
124 ノード
131 単位論理回路
132 単位論理回路
141 期間
142 期間
143 期間
144 期間
145 期間
146 期間
147 期間
148 期間
149 期間
150 期間
151 論理回路
152 論理回路
153 論理回路
300 基板
302 ゲート絶縁層
303 保護絶縁層
310 薄膜トランジスタ
311 ゲート電極層
313 チャネル形成領域
314a 高抵抗ソース領域
314b 高抵抗ドレイン領域
315a ソース電極層
315b ドレイン電極層
316 酸化物絶縁層
320 基板
322 ゲート絶縁層
323 保護絶縁層
330 酸化物半導体膜
331 酸化物半導体層
332 酸化物半導体層
340 基板
342 ゲート絶縁層
343 保護絶縁層
345 酸化物半導体膜
346 酸化物半導体層
350 薄膜トランジスタ
351 ゲート電極層
352 酸化物半導体層
355a ソース電極層
355b ドレイン電極層
356 酸化物絶縁層
360 薄膜トランジスタ
361 ゲート電極層
362 酸化物半導体層
363 チャネル形成領域
364a 高抵抗ソース領域
364b 高抵抗ドレイン領域
365a ソース電極層
365b ドレイン電極層
366 酸化物絶縁層
370 基板
372a 第1のゲート絶縁層
372b 第2のゲート絶縁層
373 保護絶縁層
380 薄膜トランジスタ
381 ゲート電極層
382 酸化物半導体層
385a ソース電極層
385b ドレイン電極層
386 酸化物絶縁層
390 薄膜トランジスタ
391 ゲート電極層
392 酸化物半導体層
393 酸化物半導体膜
394 基板
395a ソース電極層
395b ドレイン電極層
396 酸化物絶縁層
397 ゲート絶縁層
398 保護絶縁層
399 酸化物半導体層
400 基板
402 ゲート絶縁層
407 絶縁層
410 薄膜トランジスタ
411 ゲート電極層
412 酸化物半導体層
414a 配線層
414b 配線層
415a ソース電極層又はドレイン電極層
415b ソース電極層又はドレイン電極層
420 シリコン基板
421a 開口
421b 開口
422 絶縁層
423 開口
424 導電層
425 薄膜トランジスタ
426 薄膜トランジスタ
427 導電層
438 配線層
450 基板
452 ゲート絶縁層
457 絶縁層
460 薄膜トランジスタ
461 ゲート電極層
461a ゲート電極層
461b ゲート電極層
462 酸化物半導体層
464 配線層
465a ソース電極層又はドレイン電極層
465a1 ソース電極層又はドレイン電極層
465a2 ソース電極層又はドレイン電極層
465b ソース電極層又はドレイン電極層
468 配線層
580 基板
581 薄膜トランジスタ
583 酸化シリコン層
584 保護絶縁層
585 絶縁層
587 電極層
588 電極層
590a 黒色領域
590b 白色領域
594 キャビティ
595 充填材
596 対向基板
1600 携帯電話機
1601 筐体
1602 表示部
1603a 操作ボタン
1603b 操作ボタン
1604 外部接続ポート
1605 スピーカー
1606 マイク
1800 筐体
1801 筐体
1802 表示パネル
1803 スピーカー
1804 マイクロフォン
1805 操作キー
1806 ポインティングデバイス
1807 カメラ用レンズ
1808 外部接続端子
1810 キーボード
1811 外部メモリスロット
2700 電子書籍
2701 筐体
2703 筐体
2705 表示部
2707 表示部
2711 軸部
2721 電源
2723 操作キー
2725 スピーカー
4001 基板
4002 画素部
4003 信号線駆動回路
4004 走査線駆動回路
4005 シール材
4006 基板
4008 液晶層
4010 薄膜トランジスタ
4011 薄膜トランジスタ
4013 液晶素子
4015 接続端子電極
4016 端子電極
4018 FPC
4019 異方性導電膜
4021 絶縁層
4030 画素電極層
4031 対向電極層
4032 絶縁層
4033 絶縁層
4035 スペーサ
4040 導電層
4041 絶縁層
4042 保護絶縁層
4501 基板
4502 画素部
4503a 信号線駆動回路
4503b 信号線駆動回路
4504a 走査線駆動回路
4504b 走査線駆動回路
4505 シール材
4506 基板
4507 充填材
4509 薄膜トランジスタ
4510 薄膜トランジスタ
4511 発光素子
4512 電界発光層
4513 電極
4515 接続端子電極
4516 端子電極
4517 電極
4518a FPC
4518b FPC
4519 異方性導電膜
4520 隔壁
4540 導電層
4542 酸化シリコン層
4543 オーバーコート層
4544 絶縁層
4545 カラーフィルタ層
4550 配線層
4551 絶縁層
5300 基板
5301 画素部
5302 走査線駆動回路
5303 走査線駆動回路
5304 信号線駆動回路
5305 タイミング制御回路
5601 シフトレジスタ
5602 スイッチング回路
5603 薄膜トランジスタ
5604 配線
5605 配線
6400 画素
6401 スイッチング用トランジスタ
6402 駆動用トランジスタ
6403 容量素子
6404 発光素子
6405 信号線
6406 走査線
6407 電源線
6408 共通電位線
7001 駆動用TFT
7002 発光素子
7003 電極
7004 EL層
7005 電極
7009 隔壁
7011 駆動用TFT
7012 発光素子
7013 電極
7014 EL層
7015 電極
7016 遮蔽膜
7017 導電膜
7019 隔壁
7021 駆動用TFT
7022 発光素子
7023 電極
7024 EL層
7025 電極
7026 電極
7027 導電膜
7029 隔壁
7031 絶縁層
7032 絶縁層
7033 カラーフィルタ層
7034 オーバーコート層
7035 保護絶縁層
7036 平坦化絶縁層
7041 絶縁層
7042 絶縁層
7043 カラーフィルタ層
7044 オーバーコート層
7045 保護絶縁層
7046 平坦化絶縁層
7051 酸化シリコン層
7052 保護絶縁層
7053 平坦化絶縁層
7055 絶縁層
7056 平坦化絶縁層
9600 テレビジョン装置
9601 筐体
9603 表示部
9605 スタンド
9607 表示部
9609 操作キー
9610 リモコン操作機
9700 デジタルフォトフレーム
9701 筐体
9703 表示部
9881 筐体
9882 表示部
9883 表示部
9884 スピーカー部
9885 操作キー
9886 記録媒体挿入部
9887 接続端子
9888 センサ
9889 マイクロフォン
9890 LEDランプ
9891 筐体
9893 連結部

Claims (7)

  1. 第1乃至第8のトランジスタと、第1の容量素子と、第2の容量素子と、を有し、
    前記第1乃至前記第8のトランジスタはそれぞれ、半導体層として、インジウムと、ガリウムと、亜鉛とを有する酸化物半導体層を有し、
    前記第1のトランジスタのソース又はドレインの一方は、前記第2のトランジスタのソース又はドレインの一方と電気的に接続され、
    前記第3のトランジスタのソース又はドレインの一方は、前記第1のトランジスタのゲートと電気的に接続され、
    前記第4のトランジスタのソース又はドレインの一方は、前記第2のトランジスタのゲートと電気的に接続され、
    前記第1の容量素子の第1の電極は、前記第のトランジスタのゲートと電気的に接続され、
    前記第1の容量素子の第2の電極は、前記第のトランジスタのソース又はドレインの一方と電気的に接続され
    前記第5のトランジスタのソース又はドレインの一方は、前記第6のトランジスタのソース又はドレインの一方と電気的に接続され、
    前記第7のトランジスタのソース又はドレインの一方は、前記第5のトランジスタのゲートと電気的に接続され、
    前記第8のトランジスタのソース又はドレインの一方は、前記第6のトランジスタのゲートと電気的に接続され、
    前記第2の容量素子の第1の電極は、前記第5のトランジスタのゲートと電気的に接続され、
    前記第2の容量素子の第2の電極は、前記第5のトランジスタのソース又はドレインの一方と電気的に接続され、
    前記第2のトランジスタのソース又はドレインの他方は、電源線と電気的に接続され、
    前記第6のトランジスタのソース又はドレインの他方は、前記電源線と電気的に接続され、
    前記第1のトランジスタのソース又はドレインの一方からは、第1の信号が出力され、
    前記第5のトランジスタのソース又はドレインの一方からは、第2の信号が出力され、
    前記第3のトランジスタのソース又はドレインの他方と、前記第8のトランジスタのソース又はドレインの他方とには、第3の信号が入力され、
    前記第4のトランジスタのソース又はドレインの他方と、前記第7のトランジスタのソース又はドレインの他方とには、第4の信号が入力されることを特徴とする半導体装置。
  2. 第1乃至第8のトランジスタと、第1の容量素子と、第2の容量素子と、を有し、
    前記第1乃至前記第8のトランジスタはそれぞれ、半導体層として、インジウムと、ガリウムと、亜鉛とを有する酸化物半導体層を有し、
    前記第1のトランジスタのソース又はドレインの一方は、前記第2のトランジスタのソース又はドレインの一方と電気的に接続され、
    前記第3のトランジスタのソース又はドレインの一方は、前記第1のトランジスタのゲートと電気的に接続され、
    前記第4のトランジスタのソース又はドレインの一方は、前記第2のトランジスタのゲートと電気的に接続され、
    前記第3のトランジスタのゲートは、前記第4のトランジスタのゲートと電気的に接続され、
    前記第1の容量素子の第1の電極は、前記第1のトランジスタのゲートと電気的に接続され、
    前記第1の容量素子の第2の電極は、前記第1のトランジスタのソース又はドレインの一方と電気的に接続され、
    前記第5のトランジスタのソース又はドレインの一方は、前記第6のトランジスタのソース又はドレインの一方と電気的に接続され、
    前記第7のトランジスタのソース又はドレインの一方は、前記第5のトランジスタのゲートと電気的に接続され、
    前記第8のトランジスタのソース又はドレインの一方は、前記第6のトランジスタのゲートと電気的に接続され、
    前記第7のトランジスタのゲートは、前記第8のトランジスタのゲートと電気的に接続され、
    前記第2の容量素子の第1の電極は、前記第5のトランジスタのゲートと電気的に接続され、
    前記第2の容量素子の第2の電極は、前記第5のトランジスタのソース又はドレインの一方と電気的に接続され、
    前記第2のトランジスタのソース又はドレインの他方は、電源線と電気的に接続され、
    前記第6のトランジスタのソース又はドレインの他方は、前記電源線と電気的に接続され、
    前記第1のトランジスタのソース又はドレインの一方からは、第1の信号が出力され、
    前記第5のトランジスタのソース又はドレインの一方からは、第2の信号が出力され、
    前記第3のトランジスタのソース又はドレインの他方と、前記第8のトランジスタのソース又はドレインの他方とには、第3の信号が入力され、
    前記第4のトランジスタのソース又はドレインの他方と、前記第7のトランジスタのソース又はドレインの他方とには、第4の信号が入力されることを特徴とする半導体装置。
  3. 第1乃至第8のトランジスタと、第1の容量素子と、第2の容量素子と、を有し、
    前記第1乃至前記第8のトランジスタはそれぞれ、半導体層として、インジウムと、ガリウムと、亜鉛とを有する酸化物半導体層を有し、
    前記第1のトランジスタのソース又はドレインの一方は、前記第2のトランジスタのソース又はドレインの一方と直接接続され、
    前記第3のトランジスタのソース又はドレインの一方は、前記第1のトランジスタのゲートと直接接続され、
    前記第4のトランジスタのソース又はドレインの一方は、前記第2のトランジスタのゲートと直接接続され、
    前記第1の容量素子の第1の電極は、前記第1のトランジスタのゲートと直接接続され、
    前記第1の容量素子の第2の電極は、前記第1のトランジスタのソース又はドレインの一方と直接接続され、
    前記第5のトランジスタのソース又はドレインの一方は、前記第6のトランジスタのソース又はドレインの一方と直接接続され、
    前記第7のトランジスタのソース又はドレインの一方は、前記第5のトランジスタのゲートと直接接続され、
    前記第8のトランジスタのソース又はドレインの一方は、前記第6のトランジスタのゲートと直接接続され、
    前記第2の容量素子の第1の電極は、前記第5のトランジスタのゲートと直接接続され、
    前記第2の容量素子の第2の電極は、前記第5のトランジスタのソース又はドレインの一方と直接接続され、
    前記第2のトランジスタのソース又はドレインの他方は、電源線と直接接続され、
    前記第6のトランジスタのソース又はドレインの他方は、前記電源線と直接接続され、
    前記第1のトランジスタのソース又はドレインの一方からは、第1の信号が出力され、
    前記第5のトランジスタのソース又はドレインの一方からは、第2の信号が出力され、
    前記第3のトランジスタのソース又はドレインの他方と、前記第8のトランジスタのソース又はドレインの他方とには、第3の信号が入力され、
    前記第4のトランジスタのソース又はドレインの他方と、前記第7のトランジスタのソース又はドレインの他方とには、第4の信号が入力されることを特徴とする半導体装置。
  4. 第1乃至第8のトランジスタと、第1の容量素子と、第2の容量素子と、を有し、
    前記第1乃至前記第8のトランジスタはそれぞれ、半導体層として、インジウムと、ガリウムと、亜鉛とを有する酸化物半導体層を有し、
    前記第1のトランジスタのソース又はドレインの一方は、前記第2のトランジスタのソース又はドレインの一方と直接接続され、
    前記第3のトランジスタのソース又はドレインの一方は、前記第1のトランジスタのゲートと直接接続され、
    前記第4のトランジスタのソース又はドレインの一方は、前記第2のトランジスタのゲートと直接接続され、
    前記第3のトランジスタのゲートは、前記第4のトランジスタのゲートと直接接続され、
    前記第1の容量素子の第1の電極は、前記第1のトランジスタのゲートと直接接続され、
    前記第1の容量素子の第2の電極は、前記第1のトランジスタのソース又はドレインの一方と直接接続され、
    前記第5のトランジスタのソース又はドレインの一方は、前記第6のトランジスタのソース又はドレインの一方と直接接続され、
    前記第7のトランジスタのソース又はドレインの一方は、前記第5のトランジスタのゲートと直接接続され、
    前記第8のトランジスタのソース又はドレインの一方は、前記第6のトランジスタのゲートと直接接続され、
    前記第7のトランジスタのゲートは、前記第8のトランジスタのゲートと直接接続され、
    前記第2の容量素子の第1の電極は、前記第5のトランジスタのゲートと直接接続され、
    前記第2の容量素子の第2の電極は、前記第5のトランジスタのソース又はドレインの一方と直接接続され、
    前記第2のトランジスタのソース又はドレインの他方は、電源線と直接接続され、
    前記第6のトランジスタのソース又はドレインの他方は、前記電源線と直接接続され、
    前記第1のトランジスタのソース又はドレインの一方からは、第1の信号が出力され、
    前記第5のトランジスタのソース又はドレインの一方からは、第2の信号が出力され、
    前記第3のトランジスタのソース又はドレインの他方と、前記第8のトランジスタのソース又はドレインの他方とには、第3の信号が入力され、
    前記第4のトランジスタのソース又はドレインの他方と、前記第7のトランジスタのソース又はドレインの他方とには、第4の信号が入力されることを特徴とする半導体装置。
  5. 請求項1乃至請求項4のいずれか一において、
    前記第1乃至前記第8のトランジスタはそれぞれ、ボトムゲート構造であることを特徴とする半導体装置。
  6. 請求項1乃至請求項5のいずれか一に記載の半導体装置を有する駆動回路と、
    前記駆動回路と電気的に接続された画素と、
    を有する表示装置。
  7. 請求項1乃至請求項5のいずれか一に記載の半導体装置、又は請求項6に記載の表示装置と、
    入力手段若しくはスピーカと、
    を有する電子機器。
JP2017007451A 2009-10-16 2017-01-19 半導体装置、表示装置、電子機器 Active JP6144857B1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009238918 2009-10-16
JP2009238918 2009-10-16

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015116886A Division JP6254550B2 (ja) 2009-10-16 2015-06-09 半導体装置、表示装置、電子機器

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2017022152A Division JP6203974B2 (ja) 2009-10-16 2017-02-09 半導体装置の作製方法
JP2017094447A Division JP6473191B2 (ja) 2009-10-16 2017-05-11 液晶表示装置の作製方法

Publications (2)

Publication Number Publication Date
JP6144857B1 true JP6144857B1 (ja) 2017-06-07
JP2017121064A JP2017121064A (ja) 2017-07-06

Family

ID=43876068

Family Applications (13)

Application Number Title Priority Date Filing Date
JP2010229460A Active JP5106611B2 (ja) 2009-10-16 2010-10-12 論理回路及び半導体装置
JP2012220094A Expired - Fee Related JP5225494B2 (ja) 2009-10-16 2012-10-02 論理回路および半導体装置
JP2013048929A Active JP5374654B2 (ja) 2009-10-16 2013-03-12 半導体装置、表示装置及び電子機器
JP2013194868A Active JP5602924B2 (ja) 2009-10-16 2013-09-20 半導体装置及び表示装置
JP2014167165A Expired - Fee Related JP5762610B2 (ja) 2009-10-16 2014-08-20 半導体装置
JP2015116886A Active JP6254550B2 (ja) 2009-10-16 2015-06-09 半導体装置、表示装置、電子機器
JP2017007451A Active JP6144857B1 (ja) 2009-10-16 2017-01-19 半導体装置、表示装置、電子機器
JP2017022152A Active JP6203974B2 (ja) 2009-10-16 2017-02-09 半導体装置の作製方法
JP2017094447A Active JP6473191B2 (ja) 2009-10-16 2017-05-11 液晶表示装置の作製方法
JP2019010203A Active JP6773823B2 (ja) 2009-10-16 2019-01-24 半導体装置
JP2020166875A Withdrawn JP2021013029A (ja) 2009-10-16 2020-10-01 半導体装置の作製方法
JP2022101623A Pending JP2022118230A (ja) 2009-10-16 2022-06-24 半導体装置の作製方法
JP2023194287A Pending JP2024014950A (ja) 2009-10-16 2023-11-15 半導体装置

Family Applications Before (6)

Application Number Title Priority Date Filing Date
JP2010229460A Active JP5106611B2 (ja) 2009-10-16 2010-10-12 論理回路及び半導体装置
JP2012220094A Expired - Fee Related JP5225494B2 (ja) 2009-10-16 2012-10-02 論理回路および半導体装置
JP2013048929A Active JP5374654B2 (ja) 2009-10-16 2013-03-12 半導体装置、表示装置及び電子機器
JP2013194868A Active JP5602924B2 (ja) 2009-10-16 2013-09-20 半導体装置及び表示装置
JP2014167165A Expired - Fee Related JP5762610B2 (ja) 2009-10-16 2014-08-20 半導体装置
JP2015116886A Active JP6254550B2 (ja) 2009-10-16 2015-06-09 半導体装置、表示装置、電子機器

Family Applications After (6)

Application Number Title Priority Date Filing Date
JP2017022152A Active JP6203974B2 (ja) 2009-10-16 2017-02-09 半導体装置の作製方法
JP2017094447A Active JP6473191B2 (ja) 2009-10-16 2017-05-11 液晶表示装置の作製方法
JP2019010203A Active JP6773823B2 (ja) 2009-10-16 2019-01-24 半導体装置
JP2020166875A Withdrawn JP2021013029A (ja) 2009-10-16 2020-10-01 半導体装置の作製方法
JP2022101623A Pending JP2022118230A (ja) 2009-10-16 2022-06-24 半導体装置の作製方法
JP2023194287A Pending JP2024014950A (ja) 2009-10-16 2023-11-15 半導体装置

Country Status (5)

Country Link
US (10) US8952726B2 (ja)
JP (13) JP5106611B2 (ja)
KR (11) KR102065330B1 (ja)
TW (8) TWI699741B (ja)
WO (1) WO2011046015A1 (ja)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101318292B1 (ko) * 2007-11-30 2013-10-18 삼성전자주식회사 마이크로 히터, 마이크로 히터 어레이, 그 제조 방법 및이를 이용한 전자 장치
KR20090128006A (ko) * 2008-06-10 2009-12-15 삼성전자주식회사 마이크로 히터, 마이크로 히터 어레이, 그 제조 방법 및이를 이용한 패턴 형성 방법
CN113903796A (zh) 2009-10-16 2022-01-07 株式会社半导体能源研究所 逻辑电路和半导体器件
KR102065330B1 (ko) * 2009-10-16 2020-01-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치의 제작 방법
KR101875794B1 (ko) 2009-10-21 2018-08-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 표시 장치를 갖는 전자 기기
KR20170143023A (ko) * 2009-10-21 2017-12-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제작방법
KR20170130641A (ko) 2009-10-21 2017-11-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치 및 그 액정 표시 장치를 구비하는 전자기기
KR101700154B1 (ko) * 2009-11-20 2017-01-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 래치 회로와 회로
WO2011068025A1 (en) 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Dc converter circuit and power supply circuit
KR101832119B1 (ko) 2010-02-19 2018-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9167234B2 (en) * 2011-02-14 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Display device
TWI568181B (zh) 2011-05-06 2017-01-21 半導體能源研究所股份有限公司 邏輯電路及半導體裝置
WO2012153697A1 (en) * 2011-05-06 2012-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
TWI536502B (zh) 2011-05-13 2016-06-01 半導體能源研究所股份有限公司 記憶體電路及電子裝置
US8508256B2 (en) * 2011-05-20 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit
WO2012160963A1 (en) * 2011-05-20 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5951351B2 (ja) 2011-05-20 2016-07-13 株式会社半導体エネルギー研究所 加算器及び全加算器
US9467047B2 (en) * 2011-05-31 2016-10-11 Semiconductor Energy Laboratory Co., Ltd. DC-DC converter, power source circuit, and semiconductor device
US8673426B2 (en) * 2011-06-29 2014-03-18 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, method of manufacturing the driver circuit, and display device including the driver circuit
JP2013012610A (ja) * 2011-06-29 2013-01-17 Dainippon Printing Co Ltd 薄膜トランジスタおよびその製造方法
JP6116149B2 (ja) * 2011-08-24 2017-04-19 株式会社半導体エネルギー研究所 半導体装置
JP6099336B2 (ja) * 2011-09-14 2017-03-22 株式会社半導体エネルギー研究所 発光装置
US9112037B2 (en) * 2012-02-09 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2013243565A (ja) * 2012-05-22 2013-12-05 Semiconductor Energy Lab Co Ltd 半導体装置とその駆動方法
CN104321967B (zh) * 2012-05-25 2018-01-09 株式会社半导体能源研究所 可编程逻辑装置及半导体装置
WO2013179787A1 (ja) * 2012-06-01 2013-12-05 シャープ株式会社 液晶表示装置の駆動方法、液晶表示装置およびそれを備えた携帯機器
US9135182B2 (en) 2012-06-01 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Central processing unit and driving method thereof
KR102343715B1 (ko) * 2012-07-20 2021-12-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제조 방법
US9853053B2 (en) 2012-09-10 2017-12-26 3B Technologies, Inc. Three dimension integrated circuits employing thin film transistors
JP6254834B2 (ja) * 2012-12-06 2017-12-27 株式会社半導体エネルギー研究所 半導体装置
US9318484B2 (en) * 2013-02-20 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9106223B2 (en) * 2013-05-20 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Signal processing device
KR20150008316A (ko) * 2013-07-12 2015-01-22 삼성디스플레이 주식회사 반도체 장치, 이의 제조 방법 및 시스템.
JP6207321B2 (ja) * 2013-09-26 2017-10-04 ローム株式会社 光センサ装置
KR102159682B1 (ko) * 2013-12-13 2020-10-15 삼성디스플레이 주식회사 액정 표시 장치
KR20220046701A (ko) 2013-12-27 2022-04-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치
JP2015188071A (ja) * 2014-03-14 2015-10-29 株式会社半導体エネルギー研究所 半導体装置
CN106664081A (zh) * 2014-06-03 2017-05-10 耶鲁大学 自举电路及使用自举电路的单极性逻辑电路
JP6427595B2 (ja) * 2014-11-28 2018-11-21 シャープ株式会社 半導体装置およびその製造方法
CN107112049A (zh) 2014-12-23 2017-08-29 3B技术公司 采用薄膜晶体管的三维集成电路
KR102348762B1 (ko) * 2015-01-21 2022-01-07 엘지디스플레이 주식회사 유기 발광 다이오드 표시 장치
US9633710B2 (en) 2015-01-23 2017-04-25 Semiconductor Energy Laboratory Co., Ltd. Method for operating semiconductor device
JP6857447B2 (ja) * 2015-01-26 2021-04-14 株式会社半導体エネルギー研究所 半導体装置
US9958993B2 (en) 2015-06-30 2018-05-01 Synaptics Incorporated Active matrix capacitive fingerprint sensor with 1-TFT pixel architecture for display integration
US10325131B2 (en) * 2015-06-30 2019-06-18 Synaptics Incorporated Active matrix capacitive fingerprint sensor for display integration based on charge sensing by a 2-TFT pixel architecture
US9946375B2 (en) 2015-06-30 2018-04-17 Synaptics Incorporated Active matrix capacitive fingerprint sensor with 2-TFT pixel architecture for display integration
US9880688B2 (en) 2015-08-05 2018-01-30 Synaptics Incorporated Active matrix capacitive sensor for common-mode cancellation
CN105097675B (zh) * 2015-09-22 2018-01-30 深圳市华星光电技术有限公司 阵列基板及其制备方法
JP2016177863A (ja) * 2016-04-11 2016-10-06 株式会社半導体エネルギー研究所 半導体装置
DE102016107643A1 (de) * 2016-04-25 2017-10-26 Endress+Hauser Process Solutions Ag Gerätezugriffssoftware mit umschaltbarem Darstellungsmodus
US10109633B2 (en) * 2016-04-27 2018-10-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and authentication system
CN106057142B (zh) * 2016-05-26 2018-12-25 深圳市华星光电技术有限公司 显示装置及其控制方法
CN106057154B (zh) * 2016-07-25 2018-05-25 京东方科技集团股份有限公司 像素电路、显示器件、显示装置以及驱动方法
KR102588078B1 (ko) * 2016-11-21 2023-10-13 엘지디스플레이 주식회사 표시장치
KR102570976B1 (ko) * 2016-11-25 2023-08-28 엘지디스플레이 주식회사 표시장치와 그 소자 특성 센싱 방법
US10216972B2 (en) 2017-01-13 2019-02-26 Synaptics Incorporated Pixel architecture and driving scheme for biometric sensing
US10430633B2 (en) 2017-01-13 2019-10-01 Synaptics Incorporated Pixel architecture and driving scheme for biometric sensing
CN106950775A (zh) * 2017-05-16 2017-07-14 京东方科技集团股份有限公司 一种阵列基板和显示装置
JP6817155B2 (ja) 2017-06-23 2021-01-20 株式会社シマノ 自転車用制御装置およびこれを含む自転車用駆動システム
WO2019053558A1 (en) * 2017-09-15 2019-03-21 Semiconductor Energy Laboratory Co., Ltd. SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME
CN113035926A (zh) * 2017-11-29 2021-06-25 京东方科技集团股份有限公司 有机发光显示装置
US11508804B2 (en) 2017-11-29 2022-11-22 Ordos Yuansheng Optoelectronics, Co., Ltd. Organic light emitting display device
US11626875B2 (en) * 2018-04-20 2023-04-11 Texas Instruments Incorporated Stress reduction on stacked transistor circuits
KR102612577B1 (ko) * 2018-08-13 2023-12-08 엘지디스플레이 주식회사 박막 트랜지스터 기판, 쉬프트 레지스터 및 표시장치
US10580768B1 (en) * 2018-09-28 2020-03-03 Win Semiconductors Corp. Gallium arsenide cell
CN112955946A (zh) * 2018-11-09 2021-06-11 株式会社半导体能源研究所 显示装置及电子设备
EP3887957A4 (en) 2018-11-27 2022-07-20 Minima Processor Oy COVER-BASED MICROELECTRONIC CIRCUIT AND METHOD FOR PROVIDING A DESIGN OF A MICROELECTRONIC CIRCUIT
KR20200097856A (ko) * 2019-02-08 2020-08-20 삼성디스플레이 주식회사 유기 발광 표시 장치
US10885955B2 (en) 2019-04-03 2021-01-05 Micron Technology, Inc. Driver circuit equipped with power gating circuit
US10777153B1 (en) * 2019-05-16 2020-09-15 Himax Display, Inc. Method for calculating pixel voltage for liquid crystal on silicon display device
CN110148383B (zh) 2019-06-19 2021-01-26 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法以及栅极驱动电路
US11379231B2 (en) 2019-10-25 2022-07-05 Semiconductor Energy Laboratory Co., Ltd. Data processing system and operation method of data processing system
CN111243516B (zh) * 2020-03-19 2021-11-05 京东方科技集团股份有限公司 驱动电路、显示面板、显示装置及电路驱动方法
CN114005410B (zh) * 2020-07-28 2023-04-18 京东方科技集团股份有限公司 一种显示面板、其驱动方法及显示装置
TWI774392B (zh) * 2021-05-26 2022-08-11 敦泰電子股份有限公司 薄膜電晶體感光電路、顯示面板以及使用其之行動裝置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5275943A (en) * 1975-12-17 1977-06-25 Itt Dynamic shift register using insulated gate fet transistor
JPS6272223A (ja) * 1985-09-25 1987-04-02 Nec Corp デ−タ出力バツフア回路
JPH05335918A (ja) * 1992-05-29 1993-12-17 Toshiba Corp 半導体集積回路
JP2004222256A (ja) * 2002-12-25 2004-08-05 Semiconductor Energy Lab Co Ltd 半導体装置およびこれを用いた表示装置並びに電子機器
JP2004348940A (ja) * 2003-05-22 2004-12-09 Au Optronics Corp シフトレジスタ回路
JP2005251348A (ja) * 2004-03-08 2005-09-15 Casio Comput Co Ltd シフトレジスタ回路及びその駆動制御方法
JP2006323987A (ja) * 2005-04-19 2006-11-30 Semiconductor Energy Lab Co Ltd シフトレジスタ、表示装置、電子機器
JP2009188867A (ja) * 2008-02-08 2009-08-20 Sony Corp ブートストラップ回路

Family Cites Families (209)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JP2766859B2 (ja) 1989-06-16 1998-06-18 日本電信電話株式会社 絶縁ゲート形薄膜トランジスタ論理回路の駆動方法
JPH05243946A (ja) * 1992-02-28 1993-09-21 G T C:Kk インバータ回路
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
US5313222A (en) * 1992-12-24 1994-05-17 Yuen Foong Yu H. K. Co., Ltd. Select driver circuit for an LCD display
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
JPH0946216A (ja) 1995-07-28 1997-02-14 Casio Comput Co Ltd 半導体装置
EP0820644B1 (en) 1995-08-03 2005-08-24 Koninklijke Philips Electronics N.V. Semiconductor device provided with transparent switching element
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP2921510B2 (ja) 1996-10-07 1999-07-19 日本電気株式会社 ブートストラップ回路
KR100276442B1 (ko) 1998-02-20 2000-12-15 구본준 액정표시장치 제조방법 및 그 제조방법에 의한 액정표시장치
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4253826B2 (ja) * 1999-09-07 2009-04-15 カシオ計算機株式会社 画像読取装置
US6384461B1 (en) * 1999-10-15 2002-05-07 Xerox Corporation Dual dielectric structure for suppressing lateral leakage current in high fill factor arrays
US6794725B2 (en) * 1999-12-21 2004-09-21 Xerox Corporation Amorphous silicon sensor with micro-spring interconnects for achieving high uniformity in integrated light-emitting sources
US6300648B1 (en) * 1999-12-28 2001-10-09 Xerox Corporation Continuous amorphous silicon layer sensors using sealed metal back contact
US6392257B1 (en) 2000-02-10 2002-05-21 Motorola Inc. Semiconductor structure, semiconductor device, communicating device, integrated circuit, and process for fabricating the same
US6693033B2 (en) 2000-02-10 2004-02-17 Motorola, Inc. Method of removing an amorphous oxide from a monocrystalline surface
US20010013313A1 (en) 2000-02-10 2001-08-16 Motorola, Inc. Apparatus for fabricating semiconductor structures and method of forming the structures
US20020003239A1 (en) 2000-06-28 2002-01-10 Motorola, Inc. Semiconductor structure and device including a carbon film and method of forming the same
US20020003238A1 (en) 2000-06-28 2002-01-10 Motorola, Inc. Structure including cubic boron nitride films and method of forming the same
US20020000584A1 (en) 2000-06-28 2002-01-03 Motorola, Inc. Semiconductor structure and device including a monocrystalline conducting layer and method for fabricating the same
US20020008234A1 (en) 2000-06-28 2002-01-24 Motorola, Inc. Mixed-signal semiconductor structure, device including the structure, and methods of forming the device and the structure
US20020030246A1 (en) 2000-06-28 2002-03-14 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices not lattice matched to the substrate
WO2002001648A1 (en) 2000-06-28 2002-01-03 Motorola, Inc. Semiconductor structure, device, circuit, and process
JP2002057339A (ja) * 2000-08-10 2002-02-22 Sony Corp 薄膜半導体装置
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
US20030102432A1 (en) * 2001-04-12 2003-06-05 Epir Ltd. Monolithic infrared focal plane array detectors
US6605981B2 (en) 2001-04-26 2003-08-12 International Business Machines Corporation Apparatus for biasing ultra-low voltage logic circuits
JP4831895B2 (ja) 2001-08-03 2011-12-07 株式会社半導体エネルギー研究所 半導体装置
US6777317B2 (en) 2001-08-29 2004-08-17 Ultratech Stepper, Inc. Method for semiconductor gate doping
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP2003101029A (ja) * 2001-09-20 2003-04-04 Casio Comput Co Ltd 薄膜トランジスタ、フォトセンサ及びその製造方法
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
WO2003040441A1 (en) 2001-11-05 2003-05-15 Japan Science And Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP4179800B2 (ja) 2002-05-24 2008-11-12 ソニー株式会社 表示装置及びその製造方法
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
TW591583B (en) 2003-05-09 2004-06-11 Toppoly Optoelectronics Corp Current register unit and circuit, and image display device applying the current register unit
JP4572597B2 (ja) 2003-06-20 2010-11-04 日亜化学工業株式会社 窒化物半導体素子
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
JP4480968B2 (ja) 2003-07-18 2010-06-16 株式会社半導体エネルギー研究所 表示装置
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
JP4167565B2 (ja) 2003-07-31 2008-10-15 株式会社東芝 部分soi基板の製造方法
JP2005072144A (ja) * 2003-08-21 2005-03-17 Seiko Epson Corp 薄膜半導体装置及びその製造方法、電気光学装置、並びに電子機器
JP3962953B2 (ja) 2003-12-26 2007-08-22 カシオ計算機株式会社 レベルシフト回路及び該レベルシフト回路を備えた信号出力回路
US7691685B2 (en) 2004-01-26 2010-04-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP4543700B2 (ja) 2004-02-27 2010-09-15 日亜化学工業株式会社 半導体発光素子
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
CN1998087B (zh) 2004-03-12 2014-12-31 独立行政法人科学技术振兴机构 非晶形氧化物和薄膜晶体管
US7223641B2 (en) 2004-03-26 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, liquid crystal television and EL television
US7491590B2 (en) 2004-05-28 2009-02-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing thin film transistor in display device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006005116A (ja) 2004-06-17 2006-01-05 Casio Comput Co Ltd 膜形成方法、半導体膜、及び積層絶縁膜
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
TWI648719B (zh) 2004-09-16 2019-01-21 日商半導體能源研究所股份有限公司 具有圖素的顯示裝置和電子裝置
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
JP5118810B2 (ja) 2004-11-10 2013-01-16 キヤノン株式会社 電界効果型トランジスタ
JP5138163B2 (ja) 2004-11-10 2013-02-06 キヤノン株式会社 電界効果型トランジスタ
US7868326B2 (en) 2004-11-10 2011-01-11 Canon Kabushiki Kaisha Field effect transistor
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
WO2006051994A2 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Light-emitting device
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
JP5126729B2 (ja) 2004-11-10 2013-01-23 キヤノン株式会社 画像表示装置
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
RU2399989C2 (ru) 2004-11-10 2010-09-20 Кэнон Кабусики Кайся Аморфный оксид и полевой транзистор с его использованием
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI412138B (zh) 2005-01-28 2013-10-11 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI569441B (zh) 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US8058794B2 (en) * 2005-03-25 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device and electric appliance using the same
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
JP2006277789A (ja) * 2005-03-28 2006-10-12 Sony Corp シフトレジスタおよび表示装置
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US7888702B2 (en) * 2005-04-15 2011-02-15 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method of the display device
US7688107B2 (en) * 2005-04-19 2010-03-30 Semiconductor Energy Laboratory Co., Ltd. Shift register, display device, and electronic device
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
KR100645700B1 (ko) * 2005-04-28 2006-11-14 삼성에스디아이 주식회사 주사 구동부 및 이를 이용한 발광 표시장치와 그의 구동방법
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
EP1760776B1 (en) * 2005-08-31 2019-12-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for semiconductor device with flexible substrate
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP4560502B2 (ja) 2005-09-06 2010-10-13 キヤノン株式会社 電界効果型トランジスタ
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
CN101258607B (zh) * 2005-09-06 2011-01-05 佳能株式会社 使用非晶氧化物膜作为沟道层的场效应晶体管、使用非晶氧化物膜作为沟道层的场效应晶体管的制造方法、以及非晶氧化物膜的制造方法
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
EP1995787A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method therof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
CN101577282A (zh) 2005-11-15 2009-11-11 株式会社半导体能源研究所 半导体器件及其制造方法
TWI328213B (en) 2005-12-16 2010-08-01 Chi Mei El Corp Plate display and pixel circuitry
JP5099740B2 (ja) * 2005-12-19 2012-12-19 財団法人高知県産業振興センター 薄膜トランジスタ
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
JP2007207411A (ja) 2006-01-05 2007-08-16 Mitsubishi Electric Corp シフトレジスタ回路およびそれを備える画像表示装置
TW200735027A (en) 2006-01-05 2007-09-16 Mitsubishi Electric Corp Shift register and image display apparatus containing the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
JP4912023B2 (ja) 2006-04-25 2012-04-04 三菱電機株式会社 シフトレジスタ回路
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP2007317288A (ja) * 2006-05-25 2007-12-06 Mitsubishi Electric Corp シフトレジスタ回路およびそれを備える画像表示装置
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
EP1895545B1 (en) 2006-08-31 2014-04-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
KR101272337B1 (ko) 2006-09-01 2013-06-07 삼성디스플레이 주식회사 부분 화면 표시가 가능한 표시장치 및 그 구동방법
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
TWI651701B (zh) 2006-09-29 2019-02-21 日商半導體能源研究所股份有限公司 顯示裝置和電子裝置
JP4932415B2 (ja) 2006-09-29 2012-05-16 株式会社半導体エネルギー研究所 半導体装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US8937013B2 (en) 2006-10-17 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor
JP5254589B2 (ja) 2006-10-17 2013-08-07 株式会社半導体エネルギー研究所 半導体装置の作製方法
US7646015B2 (en) 2006-10-31 2010-01-12 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device and semiconductor device
KR101281167B1 (ko) 2006-11-22 2013-07-02 삼성전자주식회사 유기발광 디스플레이의 단위 화소부 구동소자 및 그제조방법
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
JP5305630B2 (ja) 2006-12-05 2013-10-02 キヤノン株式会社 ボトムゲート型薄膜トランジスタの製造方法及び表示装置の製造方法
WO2008069255A1 (en) 2006-12-05 2008-06-12 Canon Kabushiki Kaisha Method for manufacturing thin film transistor using oxide semiconductor and display apparatus
US7968884B2 (en) * 2006-12-05 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8143115B2 (en) 2006-12-05 2012-03-27 Canon Kabushiki Kaisha Method for manufacturing thin film transistor using oxide semiconductor and display apparatus
JP5401758B2 (ja) 2006-12-12 2014-01-29 サンケン電気株式会社 半導体装置及びその製造方法
JP2008151963A (ja) * 2006-12-15 2008-07-03 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の駆動方法
KR100846971B1 (ko) * 2007-01-03 2008-07-17 삼성에스디아이 주식회사 유기 전계 발광 표시 장치 및 그의 구동회로
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
JP2008205763A (ja) * 2007-02-20 2008-09-04 Ricoh Co Ltd 通信装置、通信方法およびプログラム
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
KR101338021B1 (ko) 2007-04-04 2013-12-06 삼성디스플레이 주식회사 박막 트랜지스터, 이를 포함하는 유기 발광 표시 장치 및그 제조 방법
WO2008126879A1 (en) 2007-04-09 2008-10-23 Canon Kabushiki Kaisha Light-emitting apparatus and production method thereof
JP5197058B2 (ja) * 2007-04-09 2013-05-15 キヤノン株式会社 発光装置とその作製方法
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
US8803781B2 (en) 2007-05-18 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
WO2008149873A1 (en) 2007-05-31 2008-12-11 Canon Kabushiki Kaisha Manufacturing method of thin film transistor using oxide semiconductor
KR101415562B1 (ko) * 2007-08-06 2014-07-07 삼성디스플레이 주식회사 게이트 구동회로 및 이를 가지는 표시장치
JP4759598B2 (ja) 2007-09-28 2011-08-31 キヤノン株式会社 薄膜トランジスタ、その製造方法及びそれを用いた表示装置
JP5489445B2 (ja) 2007-11-15 2014-05-14 富士フイルム株式会社 薄膜電界効果型トランジスタおよびそれを用いた表示装置
KR100946808B1 (ko) 2007-11-21 2010-03-11 주식회사 엔씰텍 다결정 실리콘 박막의 제조 방법, 이를 이용하여 제조된다결정 실리콘 박막, 및 이를 포함하는 박막트랜지스터
KR101270174B1 (ko) * 2007-12-03 2013-05-31 삼성전자주식회사 산화물 반도체 박막 트랜지스터의 제조방법
JP5213422B2 (ja) 2007-12-04 2013-06-19 キヤノン株式会社 絶縁層を有する酸化物半導体素子およびそれを用いた表示装置
WO2009075281A1 (ja) 2007-12-13 2009-06-18 Idemitsu Kosan Co., Ltd. 酸化物半導体を用いた電界効果型トランジスタ及びその製造方法
KR20090073884A (ko) * 2007-12-31 2009-07-03 엘지디스플레이 주식회사 산화물반도체를 적용한 박막트랜지스터 제조방법
WO2009093625A1 (ja) * 2008-01-23 2009-07-30 Idemitsu Kosan Co., Ltd. 電界効果型トランジスタ及びその製造方法、それを用いた表示装置、並びに半導体装置
JP2009211732A (ja) 2008-02-29 2009-09-17 Eastman Kodak Co シフトレジスタ回路および表示装置
JP5305696B2 (ja) 2008-03-06 2013-10-02 キヤノン株式会社 半導体素子の処理方法
US8314765B2 (en) 2008-06-17 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device, and electronic device
US9000441B2 (en) * 2008-08-05 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
US8284142B2 (en) 2008-09-30 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Display device
US8330702B2 (en) 2009-02-12 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Pulse output circuit, display device, and electronic device
US8872751B2 (en) 2009-03-26 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device having interconnected transistors and electronic device including the same
KR101752640B1 (ko) 2009-03-27 2017-06-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치
JP5615018B2 (ja) * 2009-04-10 2014-10-29 株式会社半導体エネルギー研究所 半導体装置および半導体装置の作製方法
KR101604577B1 (ko) 2009-06-30 2016-03-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제조 방법
KR101810699B1 (ko) 2009-06-30 2018-01-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제작 방법
WO2011001881A1 (en) 2009-06-30 2011-01-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5663214B2 (ja) 2009-07-03 2015-02-04 株式会社半導体エネルギー研究所 半導体装置の作製方法
TWI512997B (zh) 2009-09-24 2015-12-11 Semiconductor Energy Lab 半導體裝置,電源電路,和半導體裝置的製造方法
KR101991006B1 (ko) * 2009-10-08 2019-06-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101820972B1 (ko) * 2009-10-09 2018-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
KR20120093864A (ko) * 2009-10-09 2012-08-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101988819B1 (ko) 2009-10-16 2019-06-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치 및 이를 구비한 전자 장치
KR101717460B1 (ko) 2009-10-16 2017-03-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치 및 액정 표시 장치를 포함한 전자 기기
KR102065330B1 (ko) * 2009-10-16 2020-01-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치의 제작 방법
KR20200124769A (ko) 2009-11-20 2020-11-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 트랜지스터
JP6116149B2 (ja) * 2011-08-24 2017-04-19 株式会社半導体エネルギー研究所 半導体装置
KR101881853B1 (ko) * 2012-02-29 2018-07-26 삼성디스플레이 주식회사 에미션 구동 유닛, 에미션 구동부 및 이를 포함하는 유기 발광 표시 장치
US9553201B2 (en) * 2012-04-02 2017-01-24 Samsung Display Co., Ltd. Thin film transistor, thin film transistor array panel, and manufacturing method of thin film transistor
JP2014057296A (ja) 2012-08-10 2014-03-27 Semiconductor Energy Lab Co Ltd 半導体装置の駆動方法
TWI581404B (zh) 2012-08-10 2017-05-01 半導體能源研究所股份有限公司 半導體裝置以及該半導體裝置的驅動方法
JP6635597B2 (ja) * 2015-06-12 2020-01-29 任天堂株式会社 情報処理システム、および、操作装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5275943A (en) * 1975-12-17 1977-06-25 Itt Dynamic shift register using insulated gate fet transistor
JPS6272223A (ja) * 1985-09-25 1987-04-02 Nec Corp デ−タ出力バツフア回路
JPH05335918A (ja) * 1992-05-29 1993-12-17 Toshiba Corp 半導体集積回路
JP2004222256A (ja) * 2002-12-25 2004-08-05 Semiconductor Energy Lab Co Ltd 半導体装置およびこれを用いた表示装置並びに電子機器
JP2004348940A (ja) * 2003-05-22 2004-12-09 Au Optronics Corp シフトレジスタ回路
JP2005251348A (ja) * 2004-03-08 2005-09-15 Casio Comput Co Ltd シフトレジスタ回路及びその駆動制御方法
JP2006323987A (ja) * 2005-04-19 2006-11-30 Semiconductor Energy Lab Co Ltd シフトレジスタ、表示装置、電子機器
JP2009188867A (ja) * 2008-02-08 2009-08-20 Sony Corp ブートストラップ回路

Also Published As

Publication number Publication date
JP5106611B2 (ja) 2012-12-26
JP5602924B2 (ja) 2014-10-08
JP5225494B2 (ja) 2013-07-03
KR20170010075A (ko) 2017-01-25
TWI699741B (zh) 2020-07-21
KR102314748B1 (ko) 2021-10-20
JP2015019383A (ja) 2015-01-29
TW201732768A (zh) 2017-09-16
KR20120087914A (ko) 2012-08-07
US8952726B2 (en) 2015-02-10
KR102065330B1 (ko) 2020-01-13
US20150097595A1 (en) 2015-04-09
TWI615825B (zh) 2018-02-21
US9947695B2 (en) 2018-04-17
KR101801538B1 (ko) 2017-11-27
JP2017121064A (ja) 2017-07-06
TW201135700A (en) 2011-10-16
JP2011103453A (ja) 2011-05-26
US20180301476A1 (en) 2018-10-18
JP6773823B2 (ja) 2020-10-21
JP5374654B2 (ja) 2013-12-25
KR20210038703A (ko) 2021-04-07
TW202107435A (zh) 2021-02-16
KR20230135155A (ko) 2023-09-22
JP2021013029A (ja) 2021-02-04
JP6473191B2 (ja) 2019-02-20
KR20200004469A (ko) 2020-01-13
KR20190014127A (ko) 2019-02-11
JP2015228653A (ja) 2015-12-17
JP2014053901A (ja) 2014-03-20
KR102235725B1 (ko) 2021-04-05
JP2013168210A (ja) 2013-08-29
US11056515B2 (en) 2021-07-06
US20140061639A1 (en) 2014-03-06
KR20170039763A (ko) 2017-04-11
JP6254550B2 (ja) 2017-12-27
JP2024014950A (ja) 2024-02-01
US10002891B2 (en) 2018-06-19
JP2022118230A (ja) 2022-08-12
KR20140007022A (ko) 2014-01-16
TWI539417B (zh) 2016-06-21
KR102462043B1 (ko) 2022-11-03
US10593710B2 (en) 2020-03-17
TW201415439A (zh) 2014-04-16
US20170040350A1 (en) 2017-02-09
KR101698751B1 (ko) 2017-01-23
KR102005736B1 (ko) 2019-07-31
JP2017123468A (ja) 2017-07-13
TWI755783B (zh) 2022-02-21
TWI508042B (zh) 2015-11-11
KR101943293B1 (ko) 2019-01-29
TWI654588B (zh) 2019-03-21
TW201705111A (zh) 2017-02-01
US20230411410A1 (en) 2023-12-21
US9553583B2 (en) 2017-01-24
US20210296371A1 (en) 2021-09-23
TW202221677A (zh) 2022-06-01
TWI562115B (en) 2016-12-11
KR20220150429A (ko) 2022-11-10
JP2017188184A (ja) 2017-10-12
KR101945301B1 (ko) 2019-02-07
US20110090184A1 (en) 2011-04-21
US20170200748A1 (en) 2017-07-13
KR20210128503A (ko) 2021-10-26
KR102577885B1 (ko) 2023-09-14
US11756966B2 (en) 2023-09-12
WO2011046015A1 (en) 2011-04-21
JP2013062809A (ja) 2013-04-04
JP2019106540A (ja) 2019-06-27
TW201627969A (zh) 2016-08-01
TW201818385A (zh) 2018-05-16
TW201921328A (zh) 2019-06-01
JP5762610B2 (ja) 2015-08-12
US20200212078A1 (en) 2020-07-02
JP6203974B2 (ja) 2017-09-27
TWI621113B (zh) 2018-04-11
US8884651B2 (en) 2014-11-11
US20230064813A1 (en) 2023-03-02
KR20190090084A (ko) 2019-07-31

Similar Documents

Publication Publication Date Title
JP6473191B2 (ja) 液晶表示装置の作製方法
JP6581255B2 (ja) 表示装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170511

R150 Certificate of patent or registration of utility model

Ref document number: 6144857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250