JP2002534583A - バルク多重金属触媒を用いた留出物の水素化脱硫−水素添加の多段方法 - Google Patents

バルク多重金属触媒を用いた留出物の水素化脱硫−水素添加の多段方法

Info

Publication number
JP2002534583A
JP2002534583A JP2000593683A JP2000593683A JP2002534583A JP 2002534583 A JP2002534583 A JP 2002534583A JP 2000593683 A JP2000593683 A JP 2000593683A JP 2000593683 A JP2000593683 A JP 2000593683A JP 2002534583 A JP2002534583 A JP 2002534583A
Authority
JP
Japan
Prior art keywords
catalyst
hydrodesulfurization
stage
metal
bulk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000593683A
Other languages
English (en)
Other versions
JP4766747B2 (ja
Inventor
ライリー,ケネス,ロイド
クレイン,ダーリル,パトリック
ホウ,ジィグオ
ソレッド,ステュアート,レオン
ケルビー,ミィハエル,チャールス
マクビィッカー,ガリー,ブライス
エリス,エドワード,スタンリー
トウベリー,ミィシェール,スー
ミセオ,サバト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Research and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Publication of JP2002534583A publication Critical patent/JP2002534583A/ja
Application granted granted Critical
Publication of JP4766747B2 publication Critical patent/JP4766747B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/16Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxo-reaction combined with reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8878Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/50Partial depolymerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/14Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with moving solid particles
    • C10G45/16Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with moving solid particles suspended in the oil, e.g. slurries
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/04Oxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/08Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a hydrogenation of the aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1062Lubricating oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/302Viscosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/44Solvents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/14White oil, eating oil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Lubricants (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Working-Up Tar And Pitch (AREA)

Abstract

(57)【要約】 低硫黄留出物を生成するための2段水素化脱硫方法。約3,000wppmを超える硫黄を含有する留出物沸点範囲の原料が、水素および水素化脱硫触媒の存在下で1つ以上の反応域を有する第1の水素化脱硫段において水素化脱硫される。その液体生成物流れが、第1の分離段を通過し、そこで蒸気相生成物流れと液体生成物流れが生成される。元の原料油流れよりも実質的に硫黄および窒素含量の少ない液体生成物流れが、同じく1つ以上の反応域を有する第2の水素化脱硫段を通過し、そこで水素および第2の水素化脱硫触媒の存在下で水素化脱硫条件にて反応する。1つ以上の反応域にある触媒は、少なくとも1種類の第VIII族の非貴金属と、少なくとも2種類の第VIB族金属とから構成されるバルク多重金属触媒である。

Description

【発明の詳細な説明】
【0001】関連出願の相互参照 これは、1997年7月15日出願のUSSN第08/900,389号の一
部継続出願である1999年1月15日出願のUSSN第09/231,156
号の一部継続出願である。
【0002】発明の分野 本発明は、低硫黄留出物を生成する多段水素化脱硫方法に関する。約3,00
0wppmを超える硫黄を含有する留出物沸点範囲の原料が、水素および水素化
脱硫触媒の存在下で1つ以上の反応域を有する第1の水素化脱硫段において水素
化脱硫される。その液体生成物流れが、第1の分離段を通過し、そこで蒸気相生
成物流れと液体生成物流れが生成される。元の原料油流れよりも実質的に硫黄お
よび窒素含量の少ない液体生成物流れが、同じく1つ以上の反応域を有する第2
の水素化脱硫段を通過し、そこで水素および第2の水素化脱硫触媒の存在下で水
素化脱硫条件にて反応する。この第2の水素化脱硫段からの液体生成物流れが、
1つ以上の反応域を有する第3の反応段を通過し、そこで前記液体生成物流れが
、水素の存在下で第3の触媒の存在下、水素添加条件にて水素添加される。1つ
以上の反応域にある触媒は、少なくとも1種類の第VIII族の非貴金属と、少
なくとも2種類の第VIB族金属とから構成されるバルク多重金属触媒であり、
このとき、第VIB族金属対第VIII族非貴金属の比率は、約10:1〜約1
:10である。
【0003】発明の背景 環境規制主導で、留出物燃料における硫黄および芳香族化合物の両方が非常に
低濃度であることが求められている。例えば、2005年の欧州連合において市
販される留出物燃料について提案されている硫黄の制限は、50wppm以下で
ある。炭化水素中の総芳香族化合物を低濃度にする、すなわち、留出物燃料中の
多環芳香族化合物および重質炭化水素生成物の濃度を低くすることを求める規則
もある。さらに、米国運転用ディーゼル、CARB参照ディーゼルおよびスウェ
ーデンI等級ディーゼルの最大許容芳香族化合物レベルは、それぞれ35、10
および5容量%である。さらに、CARBおよびスウェーデンI等級ディーゼル
燃料の多芳香族化合物は、それぞれ1.4と0.02容量%以下しか許されてい
ない。従って、これらの提案された規制のために、水素化処理の業界においては
多くの取り組みがなされている。
【0004】 水素化処理、または硫黄除去の場合には、水素化脱硫は、業界において周知で
あり、一般に、石油流れを、担持触媒の存在下、水素処理条件にて水素で処理す
る必要がある。触媒は、通常、高融点担体上に1種類以上の第VIII族金属を
促進剤とした第VI族金属から構成されている。水素化脱硫および水素化脱窒に
特に好適な水素化処理触媒は、通常、コバルト、ニッケル、鉄またはこれらの組
み合わせのような金属で促進されたアルミナ担持のモリブデンまたはタングステ
ンを含有している。制限仕様が水素化脱硫のときには、アルミナ担持のコバルト
促進モリブデン触媒が最も広く使われている。一方、水素化脱窒、部分芳香族化
合物飽和および水素化脱硫については、アルミナ担持のニッケル促進モリブデン
触媒が最も広く使われている。
【0005】 また、より効果的な水素処理方法に対する要求に応えるために、より活性な触
媒および改善された反応容器設計を開発すべく多くの取り組みがなされている。
様々な改善されたハードウェア構成が提案されている。かかる構成の一つに、原
料流れが、一般に、水素含有処理ガスである上流処理ガスとは逆の連続触媒床を
下方に流れる逆流設計がある。下流触媒床は、原料の流れに対して、上流処理ガ
スが、硫黄および窒素感受性のある触媒に対して有害であるHSやNHのよ
うなヘテロ原子成分を流し去るため、高性能でより硫黄感受性のある触媒を含む
【0006】 改善された水素処理触媒を調製する一つの方法は、ハイドロタルク石関連の化
合物系列、例えば、アンモニウムモリブデン酸ニッケルを調製することである。
X線回折分析によれば、ハイドロタルク石が、正に帯電したシートと、シート間
のギャラリーにある交換可能なアニオンを備えた層状相から構成されているとい
うことが示されているが、関連アンモニウムモリブデン酸ニッケル相は、オキシ
水酸化ニッケルシートに結合した層間ギャラリーにモリブデン酸アニオンを有し
ている。例えば、Levin,D.,Soled,S.L.,およびYing,
J.Y.,化学沈殿により調製されたアンモニウムモリブデン酸ニッケルの結晶
構造、無機化学、第35冊、No.14、4191〜4197頁(1996年)
を参照のこと。かかる材料の調製についてはまた、TeichnerとAsti
er、Appl.Catal.72、321−29(1991年);Ann.C
him.Fr.12、337−43(1987年)およびC.R.Acad.S
ci.304(II)、#11、563−6(1987年)およびMazzoc
chia、固体イオン、63−65(1993年)731−35に報告されてい
る。
【0007】 モリブデンをタングステンにより部分的に置換するときは、アモルファス相を
生成する。これは、分解および、好ましくはスルフィド化に際して、非置換(N
i−Mo)相に比べて水素化脱窒(HDN)触媒活性を向上させる。
【0008】発明の概要 本発明によれば、 a)水素化脱硫条件にて水素化脱硫触媒の存在下で操作される1つ以上の反応域
を有する第1の水素化脱硫段において、原料を水素含有処理ガスの存在下で反応
させて、硫黄含量が約3,000wppmの液体生成物流れを得る工程と、 b)前記第1の水素化脱硫段の前記液体生成物流れを、蒸気相生成物流れと液相
生成物流れが生成される分離域に通過させる工程と、 c)水素処理触媒の床を含有し、水素化脱硫条件にて操作される1つ以上の反応
域を有する第2の水素化脱硫段において、b)の前記液相生成物流れを水素含有
処理ガスの存在下で反応させて、硫黄約1,000wppm未満の液体生成物流
れを得る工程と、 d)工程c)の前記液体生成物流れを蒸気相生成物流れと液相生成物流れが生成
される分離域に通過させる工程と、 e)第3の反応域において、d)からの前記液相流れを、水素化条件にて水素お
よび水素化活性を有する第3の触媒の存在下で反応させる工程と、 f)e)の前記液体生成物流れを蒸気相生成物流れと液相生成物流れが生成され
る分離域に通過させる工程と、 g)前記蒸気相流れと前記液相流れの両方を集める工程とを有し、 少なくとも1つの前記水素化脱硫段の少なくとも1つの前記反応域が、少なくと
も1種類の第VIII族非貴金属および少なくとも2種類の第VIB族金属から
構成され、第VIB族金属対第VIII族非貴金属の比率が約10:1〜約1:
10であるバルク多重金属触媒を含む、硫黄含量が約3,000wppmを超え
る留出物原料の硫黄含量の減じた多段水素化脱硫方法が提供される。
【0009】 本発明の好ましい実施形態において、第VIII族非貴金属は、NiおよびC
oから選ばれ、第VIB族金属はMoおよびWから選ばれる。
【0010】 本発明の他の好ましい実施形態において、2種類の第VIB金属は、Moおよ
びWとして存在し、Mo対Wの比率は約9:1〜約1:9である。
【0011】 本発明のさらに他の好ましい実施形態において、バルク多重金属は、式:(X
(Mo)(W)で表され、式中、Xは1種類以上の第VIII族非
貴金属であり、b:(c+d)のモル比は、0.5/1〜3/1、好ましくは0
.75/1〜1.5/1、より好ましくは0.75/1〜1.25/1である。
【0012】 本発明のさらに他の好ましい実施形態において、c:dのモル比は、好ましく
は>0.01/1、より好ましくは>0.1/1、さらに好ましくは1/10〜
10/1、さらに好ましくは1/3〜3/1、最も好ましくは実質的に等モル量
のMoとW、すなわち、2/3〜3/2であり、そしてz=[2b+6(c+d
)]/2である。
【0013】 本発明の他の好ましい実施形態において、実質的にアモルファスの材料は、d
=2.53オングストロームとd=1.70オングストロームで結晶ピークを示
す固有のX線回折パターンを有している。
【0014】 本発明のさらに他の好ましい実施形態において、第VIII族非貴金属は、ニ
ッケルである。
【0015】 本発明のさらに他の好ましい実施形態において、前記第1の分離域からの前記
蒸気生成物流れの少なくとも一部が前記第1の水素化脱硫域へと再生される。
【0016】 本発明の他の好ましい実施形態において、前記第2の分離段からの前記蒸気生
成物流れの少なくとも一部が前記第1の水素化脱硫段へとカスケードされる。
【0017】発明の詳細な説明 本発明の実施に用いられるバルク多重金属触媒組成物は、実質的にすべての水
素処理プロセスに用いて、200〜450℃の温度、5〜300バールの水素圧
、0.05〜10h−1の液体時間空間速度、および35.6〜1780m
(200〜10000SCF/B)の水素処理ガス速度といった幅広い反応
条件下で複数の原料を処理することができる。「水素処理」という用語には、炭
化水素原料を上述の温度および圧力で水素と反応させるすべてのプロセスが含ま
れ、水素化脱金属、水素化脱ロウ、水素化処理、水素添加水素化脱硫、水素化脱
窒素、水素化脱芳香族化合物、水素異性化および選択的水素化分解をはじめとす
る水素化分解がこれに含まれる。水素処理の種類および反応条件によって、水素
処理生成物は、改善された粘度、粘性率、飽和含量、低温特性、揮発性および減
極を示す。本発明の水素処理は、1つ以上の反応域において実施され、逆流フロ
ーか並流フローモードのいずれかで実施できるものと考えられる。逆流フローモ
ードとは、原料流れが、水素含有処理ガスのフローに対して逆流で流れるプロセ
スモードのことをいう。水素処理リアクターは、また、好適な触媒床構成モード
で操作することもできる。例えば、固定床、スラリー床または沸騰床とすること
ができる。
【0018】 本発明によれば、様々な石油および化学原料を水素処理することができる。好
適な原料としては、全および抜頭原油、常圧および真空残渣、プロパン脱瀝残渣
、例えば、ブライトストック、サイクル油、FCC塔底物、常圧および真空ガス
オイルおよびコーカーガスオイルをはじめとするガスオイル、生の未使用留出物
をはじめとする軽〜重留出物、水素化分解物、水素処理油、脱ロウ油、粗ロウ、
フィッシャー・トロプシュろう、ラフィネート、ナフサおよびその混合物が挙げ
られる。
【0019】 本発明は、高濃度の硫黄と窒素を含有する留出物沸点範囲の原料を、第1の水
素化脱硫反応段に供給して、大半の硫黄および窒素を除去することにより実施す
ることができる。好適な原料は、約3,000wppmを超える硫黄を含有する
ものであり、一般に生の未使用留出物である。原料は、水素および第1の水素処
理触媒の存在下、水素化脱硫条件にて1つ以上の反応域を有する第1段で水素化
脱硫される。生成物流れを、蒸気相流れと液相流れの生成される分離域に通過さ
せる。液相生成物流れを、同じく1つ以上の反応域を有する第2の水素化脱硫段
に通過させ、水素および第2の水素化脱硫触媒の存在下でさらに水素化脱硫させ
る。第2の水素化脱硫段からの液体生成物流れを、第2の分離域に通過させ、さ
らなる処理またはブレンドのために蒸気生成物流れを集める。液体生成物流れを
、水素処理触媒の存在下で操作される第3の反応段に通過させる。一方または両
方の反応段からの蒸気生成物流れの少なくとも一部を第1の反応段へと再生する
ことも本発明の範囲に含まれる。
【0020】 本発明の実施にはいくつかのプロセススキームが含まれる。一つのプロセスス
キームは、それぞれが1つ以上の反応域を有し、それぞれの域が触媒床を有する
3つの別の反応段のあるものである。最初の2つの反応段は、水素化脱硫触媒を
含み、第3の反応段は、単独の触媒としてか、本発明のバルク多重金属触媒と組
み合わせた水素添加触媒を含む。このプロセススキームが実施されるとき、第1
の反応段に導入される原料は、留出物沸点範囲の原料、好ましくは生の未使用石
油留出物のような常圧蒸留塔からの留出物沸点範囲の原料である。かかる原料は
、約3,000wppmを超える硫黄と比較的多くの窒素を含む。第1の水素化
脱硫段における水素化脱硫の後、原料生成物流れは、約350〜600wppm
の硫黄を含む。少なくとも1つの反応域が、本発明のバルク多重金属触媒の床を
含むのが好ましい。例えば、この第1の水素化脱硫段のリアクターは、従来の水
素化脱硫触媒が1つ以上の反応域に含まれ、本発明のバルク多重金属触媒が別の
1つ以上の反応域に含まれている積層床構造を含むことができる。従来の水素化
脱硫触媒とバルク多重金属触媒を用いる場合には、従来の触媒は、上流反応域(
1つまたは複数)にあるのが好ましい。この第1の水素化脱硫段のすべての反応
域が、本発明のバルク多重金属触媒を含むのがより好ましい。
【0021】 反応生成物を、蒸気相生成物流れと液相生成物流れが生成される分離域に通過
させる。硫黄含量が約350〜600wppmとなった液相生成物流れを、同じ
く1つ以上の反応域を有する第2の水素化脱硫段へ導入する。この第2の水素化
脱硫段は、第1と同様に、本発明のバルク多重金属触媒を1つ以上の反応域に含
むことができる。存在させる場合には、その他の触媒は、従来の水素化脱硫触媒
とすることができる。生成物流れを、蒸気相と液相生成物流れが生成される第2
の分離域に通過させる。液相生成物流れの硫黄含量は、約150wppm未満、
好ましくは約100wppm未満、より好ましくは約50wppm未満となる。
2回水素化脱硫したこの生成物流れを、第3の反応段に通過させ、水素と、硫黄
レベルをさらに減じ、芳香族化合物の水素添加を行うことのできる触媒との存在
下で反応させる。最終生成物流れの硫黄レベルは、約10wppm未満、好まし
くは約5wppm未満、より好ましくは約1wppm未満である。この第3の反
応段は、少なくとも1つの反応域に、水素添加触媒と、任意で、本発明のバルク
多重金属触媒を含む。
【0022】 3つの反応段プロセスについての触媒構成の異なる種類を挙げると、 a)最初の2つの反応段のいずれか又は両方に本発明のバルク多重金属触媒、た
だし、第3にはない、 b)最初の2つの反応段に従来の水素化脱硫触媒、第3の反応段にのみバルク多
重金属触媒、 c)最初の2つの反応段のいずれかにバルク多重金属触媒、第3の反応段に水素
添加触媒と共に同じくバルク多重金属触媒、および d)3つの反応段のすべてが、バルク多重金属触媒を含む少なくとも1つの反応
域を有する、 となる。
【0023】 2つの反応段しか存在しないものも、本発明の範囲に含まれる。かかる場合、
第1の反応段への原料は、3つの反応段プロセスの原料と同じであるが、ただし
、第1段からの生成物流れは、約300〜1,500wppm、好ましくは約3
00〜1,000wppm、より好ましくは約300〜750wppmの硫黄を
含む。この場合、第2の反応段は、本発明のバルク多重金属触媒と、芳香族化合
物水素添加触媒の両方を含む必要がある。最終生成物流れは、約30wppm未
満、好ましくは約20wppm未満の硫黄と、かなり低レベルの芳香族化合物を
含む。
【0024】 芳香族化合物水素添加触媒としては、ニッケル、コバルト−モリブデン、ニッ
ケル−モリブデンおよびニッケルタングステンが挙げられるが、これに限られる
ものではない。貴金属触媒としては、白金および/またはパラジウム担持のもの
が挙げられるが、これに限られるものではなく、好ましくは好適な担持材料、例
えば、アルミナ、シリカ、アルミナ−シリカ、珪藻土(keiselguhr、
diatomaceous earth)、マグネシアおよびジルコニアといっ
た高融点酸化物に担持される。ゼオライト担体もまた用いることができる。かか
る触媒は、一般に、硫黄や窒素により被毒されやすい。芳香族化合物飽和域は、
約40℃〜約400℃、より好ましくは約260℃〜約350℃の温度、約10
0psig〜約3,000psig、好ましくは約200psig〜約1,20
0psigの圧力、および約0.3V/V/Hr〜約2.0V/V/Hrの液体
時間空間速度(LHSV)で操作されるのが好ましい。
【0025】 1つまたは両方の水素化脱硫段の1つ以上の反応域の水素化処理触媒は、少な
くとも1種類の第VIII族非貴金属および少なくとも2種類の第VIB族金属
から構成され、第VIB族金属対第VIII族非貴金属の比率が約10:1〜約
1:10であるバルク多重金属触媒である。触媒は、1種類の第VIII族非貴
金属、好ましくはNiまたはCoと、2種類の第VIB族金属、MoおよびWか
ら構成されるバルク三重金属触媒であるのが好ましい。Mo対Wの比率は、約9
:1〜約1:9であるのが好ましい。
【0026】 本発明の実施に用いられる好ましいバルク三重金属触媒組成は、式:(X) (Mo)(W)で表され、式中、Xは1種類以上の第VIII族非貴金
属であり、b:(c+d)のモル比は0.5/1〜3/1、好ましくは0.75
/1〜1.5/1、より好ましくは0.75/1〜1.25/1である。
【0027】 c:dのモル比は、好ましくは>0.01/1、より好ましくは>0.1/1
、さらに好ましくは1/10〜10/1、さらに好ましくは1/3〜3/1、最
も好ましくは実質的に等モル量のMoとW、すなわち、2/3〜3/2であり、
そしてz=[2b+6(c+d)]/2である。
【0028】 実質的にアモルファスの材料は、d=2.53オングストロームとd=1.7
0オングストロームで結晶ピークを示す固有のX線回折パターンを有している。
【0029】 前駆体の分解は、高温、例えば、少なくとも約300℃、好ましくは約300
〜450℃の温度で、好適な雰囲気、例えば、窒素、アルゴンまたは蒸気のよう
な不活性雰囲気中で、分解が実質的に完了するまで、すなわち、アンモニウムが
実質的に完全に飛ぶまで行う。実質的に完全な分解は、熱重量分析(TGA)、
すなわち、重量変化曲線が平坦になることにより容易に確認することができる。
【0030】 本発明の実施に用いられる触媒組成物は、いずれかの好適な手段によって調製
することができる。かかる手段の一つは、必ずしもすべての金属を溶液には入れ
ない方法である。通常、プロトン性液体の存在下で金属成分を接触させるには、
金属成分を混合してから、得られた混合物を反応させる。固体経路では、少なく
とも1つの金属成分を混合工程中に少なくとも部分的に固体状態で加え、固体状
態で少なくとも部分的に加えられた少なくとも1つの金属成分の金属が、混合お
よび反応工程中に少なくとも部分的に固体状態のままであることが必須である。
ここで「金属」とは、金属形態にある金属のことではなく、バルク触媒組成物に
最初に適用されたり、または該組成物中に存在する金属成分のような金属化合物
中に存在するものを意味している。
【0031】 通常、混合工程中、少なくとも1つの金属成分は、少なくとも部分的に固体状
態で加えられ、少なくとも1つの金属成分は、溶質状態で加えられるか、あるい
は、全ての金属成分は、少なくとも部分的に固体状態で加えられる。このとき、
固体経由の全プロセス中、少なくとも部分的に固体状態で加えられる金属成分の
うち少なくとも1種類の金属は、少なくとも部分的に固体状態のままである。金
属成分が「溶質状態」で加えられるとは、この金属成分の全量が、プロトン性液
体におけるこの金属成分の溶液として加えられることを意味している。金属成分
が「少なくとも部分的に固体状態で」加えられるとは、金属成分の少なくとも一
部が固体金属成分として加えられ、任意で、金属成分の他の部分が、プロトン性
液体におけるこの金属成分の溶液として加えられることを意味している。代表例
としては、金属が少なくとも部分的に固体として存在し、任意でプロトン性液体
に部分的に溶解しているプロトン性液体中の金属成分の懸濁液がある。
【0032】 高触媒活性のバルク触媒組成物を得るには、従って、接触中に少なくとも部分
的に固体状態にある金属成分が多孔性金属成分であるのが好ましい。こうした金
属成分の総細孔容積および孔径分布は、従来の水素化処理触媒とほぼ同じである
のが望ましい。従来の水素化処理触媒の窒素吸着により求められる細孔容積は、
0.05〜5ml/g、好ましくは0.1〜4ml/g、より好ましくは0.1
〜3ml/g、最も好ましくは0.1〜2ml/gである。1nm未満の直径の
孔は、通常、従来の水素化処理触媒には存在しない。さらに、従来の水素化処理
触媒のB.E.T.法により求められる表面積は、少なくとも10m/g、よ
り好ましくは少なくとも50m/g、最も好ましくは少なくとも100m
gである。例えば、窒素吸着により求められる総細孔容積が0.19〜0.39
ml/g、好ましくは0.24〜0.35ml/g、B.E.T.法により求め
られる表面積が150〜400m/g、より好ましくは200〜370m
gの炭酸ニッケルを選ぶことができる。さらに、これらの金属成分の中央値粒径
は、少なくとも50nm、より好ましくは少なくとも100nm、好ましくは5
000μm以下、より好ましくは3000μm以下とする。さらに好ましくは、
中央値粒径は、0.1〜50μmの範囲内、最も好ましくは0.5〜50μmの
範囲内である。例えば、少なくとも部分的に固体状態で加えられ、大きな中央値
粒径を有する金属成分を選ぶことによって、別の金属成分は、大きな金属成分粒
子の外側層のみと反応する。この場合、いわゆる「コア−シェル」構造のバルク
触媒粒子が得られる。
【0033】 金属成分の適正な形態およびテクスチャーは、好適にプリフォームされた金属
成分を適用するか、またはこれらの金属成分を、好適な形態およびテクスチャー
の得られるような条件下で上述の沈殿により作成することにより得られる。規定
の実験を行うことにより、適正な沈殿条件を適宜選択することができる。
【0034】 上記に規定した通り、少なくとも部分的に固体状態で加えられる金属成分の形
態およびテクスチャーを保持するには、固体経路の全プロセスにおいて、金属成
分の金属が少なくとも部分的に固体状態のままであることが必須である。すなわ
ち、固体経路のプロセス中、固体金属の量が決してゼロとなってはいけないので
ある。粒子を含む固体金属の存在は、金属を含む固体粒子の直径が少なくとも可
視光の波長より大きければ、目視による検査で容易に検出することができる。当
然のことながら、当業者に知られた準弾性散乱(QELS)や近前方散乱のよう
な方法を用いて、固体経路のプロセスのときには、いずれの点においてもすべて
の金属が溶質状態でないことを確認することもできる。
【0035】 触媒を調製するために本発明の固体または溶液経路において適用されるプロト
ン性液体は、プロトン性液体であればどれでもよい。水、カルボン酸、メタノー
ルやエタノールのようなアルコールが例示される。アルコールと水の混合物のよ
うな水を含む液体が好ましく、固体経路においては、水をプロトン性液体として
用いるのがより好ましい。固体経路において異なるプロトン性液体を同時に適用
することもできる。例えば、金属成分のエタノール懸濁液を、別の金属成分の水
溶液に加えることが可能である。場合によっては、金属成分は、自身の結晶水中
で溶解させて用いることができる。この場合、結晶水がプロトン性液体として作
用する。
【0036】 第VIB族金属は、通常、クロム、モリブデン、タングステンまたはその混合
物を含む。好適な第VIII族非貴金属は、例えば、鉄、コバルト、ニッケルま
たはその混合物である。ニッケル、モリブデンおよびタングステン、またはニッ
ケル、コバルト、モリブデンおよびタングステンの金属成分の組み合わせは、固
体経路でのプロセスに適用されるのが好ましい。プロトン性液体が水の場合には
、接触中少なくとも部分的に固体状態である好適なニッケル成分は、炭酸ニッケ
ル、水酸化ニッケル、リン酸ニッケル、亜リン酸ニッケル、ギ酸ニッケル、硫化
ニッケル、モリブデン酸ニッケル、タングステン酸ニッケル、酸化ニッケル、ニ
ッケル−モリブデン合金のようなニッケル合金、ラネーニッケルまたはその混合
物のような水に不溶のニッケル成分を含む。接触中少なくとも部分的に固体状態
である好適なモリブデン成分は、(二および三)酸化モリブデン、炭化モリブデ
ン、窒化モリブデン、モリブデン酸アルミニウム、モリブデン酸(例えば、H MoO)、硫化モリブデンまたはその混合物のような水に不溶のモリブデン成
分を含む。接触中に少なくとも部分的に固体状態である好適なタングステン成分
は、二および三酸化タングステン、硫化タングステン(WSおよびWS)、
炭化タングステン、タングステン酸(例えば、HWO−HO、H 13 −9HO)、窒化タングステン、タングステン酸アルミニウム(メタ−ま
たはポリタングステン酸も)またはその混合物を含む。これらの成分は、通常市
販されているし、例えば、適正な量の炭酸ナトリウムを添加することにより、塩
化、硫酸または硝酸ニッケル溶液から炭酸ニッケルを調製するなど、沈殿によっ
て調製することもできる。所望の形態およびテクスチャーを得るようなやり方で
沈殿条件を選択することは、当業者であれば分かる。
【0037】 通常、金属以外にC、Oおよび/またはHを主に含有する金属成分は、環境に
あまり有害でないことから好ましい。炭酸ニッケルが、少なくとも部分的に固体
状態で加えるのに好ましい金属成分である。というのは、炭酸ニッケルを適用す
ると、COが放出されて、反応混合物のpHにプラスの影響を与えるためであ
る。さらに、炭酸塩がCOに変換されるため、炭酸塩は廃水には入らない。
【0038】 溶質状態で加えられる好ましいニッケル成分は、例えば、硝酸ニッケル、硫酸
ニッケル、酢酸ニッケル、塩化ニッケルまたはその混合物のような水溶性ニッケ
ル成分である。溶質状態で加えられる好ましいモリブデンおよびタングステン成
分は、モリブデン酸アルカリ金属またはアンモニウム(ペルオキソ−、二−、三
−、四−、七−、八−または十四モリブデン酸も)、Mo−Pヘテロポリアニオ
ン化合物、Wo−Siヘテロポリアニオン化合物、W−Pヘテロポリアニオン化
合物、W−Siヘテロポリアニオン化合物、Ni−Mo−Wヘテロポリアニオン
化合物、Co−Mo−Wヘテロポリアニオン化合物、タングステン酸アルカリ金
属またはアンモニウム(メタ−、パラ−、ヘキサ−またはポリタングステン酸も
)またはその混合物のような水溶性モリブデンおよびタングステン成分である。
【0039】 金属成分の好ましい組み合わせは、炭酸ニッケル、タングステン酸および酸化
モリブデンである。その他の好ましい組み合わせは、炭酸ニッケル、二モリブデ
ン酸アンモニウムおよびメタタングステン酸アンモニウムである。当業者であれ
ば、金属成分のさらに好適な組み合わせを選択することができる。炭酸ニッケル
は常にある量の水酸基を含むことに注意しなければならない。炭酸ニッケル中に
存在する水酸基の量は高い方が好ましい。
【0040】 本発明の実施に用いる触媒を調製する別の方法は、反応混合物中で溶液中の第
VIII族非貴金属成分と溶液中の第VIB族金属成分を反応させて沈殿物を得
るプロセスによりバルク触媒組成物を調製するものである。固体経路の場合には
、1種類の第VIII族非貴金属成分を、2種類の第VIB族金属成分と反応さ
せるのが好ましい。溶液経路のプロセスに適用される第VIB族金属対第VII
I族非貴金属のモル比は、固体経路について記載したのと同じであるのが好まし
い。好適な第VIB族および第VIII族非貴金属成分は、固体経路について記
載したような水溶性ニッケル、モリブデンおよびタングステン成分である。さら
に、第VIII族非貴金属成分は、例えば、コバルトまたは鉄成分である。さら
に第VIB族金属成分は、例えば、クロム成分である。金属成分は、溶液、懸濁
液またはそのままで反応混合物に加えることができる。可溶性塩をそのまま加え
る場合には、反応混合物中で溶解した後沈殿させる。水に可能な好適な第VIB
族塩は、二モリブデン酸アンモニウム、三−、四−、七−、八−および十四−モ
リブデン酸アンモニウム、パラ−、メタ−、ヘキサ−およびポリタングステン酸
アンモニウム、アルカリ金属塩、モリブデンケイ酸、モリブデンケイ酸タングス
テン酸のような第VIB族金属のケイ酸塩、タングステン酸、メタタングステン
酸、ペルタングステン酸、Mo−P、Mo−Si、W−PおよびW−Siのヘテ
ロポリアニオン化合物である。添加時には溶液中にないが、溶液が反応混合物中
にもたらされる場合に、第VIB族含有化合物を添加することも可能である。こ
うした化合物としては、温度が上昇した際に自身の金属水中で溶解する十分な結
晶水を含む金属化合物が例示される。さらに、不溶性金属塩を、懸濁液またはそ
のままで添加してもよく、溶液が反応混合物にもたらされる。好適な不溶性金属
塩は、Co−Mo−Wのヘテロポリアニオン化合物(冷水に穏やかに可溶)、N
i−Mo−Wのヘテロポリアニオン化合物(冷水に穏やかに可溶)である。
【0041】 反応混合物を反応させて沈殿物を得る。沈殿は、第VIII族非貴金属塩溶液
を第VIII族非貴金属と第VIB族金属が沈殿する温度およびpHで添加し、
金属と錯体を作り、温度の上昇またはpHの変化に際して沈殿のために金属を放
出する化合物を添加し、または第VIII族非貴金属と第VIB族金属が沈殿す
る温度およびpHで第VIB金属塩溶液を添加し、温度を変え、pHを変え、ま
たは溶媒の量を下げることにより行われる。このプロセスにより得られた沈殿物
は、高い触媒活性を示すようである。第VIII族非貴金属と第VIB族金属で
含浸されたキャリアを通常含む従来の水素処理触媒とは対照的に、前記沈殿物は
担体なしで用いることができる。非担持触媒組成物は、通常、バルク触媒と呼ば
れる。塩基または酸を反応混合物に加えるか、温度の上昇に際して分解し、それ
ぞれpHを増大または減少させる水酸化物イオンまたはHイオンを増大させる
化合物を加えることによりpHを変えることができる。温度の増大に際して分解
して、pHを増大または減少させる化合物としては、尿素、亜硝酸塩、シアン酸
アンモニウム、水酸化アンモニウムおよび炭酸アンモニウムが例示される。
【0042】 溶液経路による例示のプロセスにおいて、第VIB族金属のアンモニウム塩の
溶液を作成し、第VIII族非貴金属硝酸塩の溶液を作成する。両方の溶液を約
90℃の温度まで加熱する。水酸化アンモニウムを第VIB族金属溶液に加える
。第VIII族非貴金属溶液を、第VIB族金属溶液に加えると、第VIB族と
第VIII族非貴金属成分の直接沈殿が生じる。このプロセスはまた、低温およ
び/または減圧または高圧および/または増圧で行うこともできる。
【0043】 溶液経路による他の例示のプロセスにおいて、第VIB族金属塩、第VIII
族金属塩および水酸化アンモニウムを溶液中で共に混合し、アンモニアが飛んで
、沈殿が生じるpHまでpHが下がるように加熱する。例えば、ニッケル、モリ
ブデンおよびタングステン成分を適用するときは、沈殿はpH7未満で生じる。
【0044】 固体経路と溶液経路のいずれを選択するかに関わりなく、得られるバルク触媒
組成物は、「本発明の触媒組成物」という表題に記載したバルク触媒粒子の特性
を有するバルク触媒粒子を含むのが好ましく、実質的にこのバルク触媒粒子から
なるのがより好ましい。
【0045】 バルク触媒組成物は、通常、水素処理粒子に直接成形することができる。バル
ク触媒組成物の液体の量が、成形工程に直接用いることができないほど多い場合
には、成形前に固液分離を行うことができる。バルク触媒組成物は、そのままか
、固液分離後、成形の前、任意でか焼することができる。
【0046】 バルク触媒粒子の中央値直径は、少なくとも50nm、より好ましくは、少な
くとも100nm、好ましくは、5000μm以下、より好ましくは3000μ
m以下である。さらに好ましくは、中央値粒子直径は、0.1〜50μmの範囲
、最も好ましくは0.5〜50μmの範囲である。
【0047】 バインダー材料を、触媒組成物の調製に用いる場合には、水素処理触媒にバイ
ンダーとして従来適用されている材料であればいずれでも用いることができる。
シリカ、従来のシリカ−アルミナ、シリカコートアルミナおよびアルミナコート
のシリカのようなシリカ−アルミナ、(擬)ベーマイトのようなアルミナ、ギブ
サイト、チタニア、ジルコニア、サポナイト、ベントナイト、カオリン、セピオ
ライトまたはヒドロタルサイトのようなカチオンクレイまたはアニオンクレイま
たはその混合物が例示される。好ましいバインダーは、シリカ、シリカ−アルミ
ナ、アルミナ、チタン、ジルコニアまたはその混合物である。これらのバインダ
ーは、そのまま、または解凝固後に適用してよい。本発明のプロセス中、上述の
バインダーに変換されるこれらのバインダーの前駆体を適用することもできる。
好適な前駆体は、例えば、アルカリ金属アルミン酸塩(アルミナバインダーを得
るため)、水ガラス(シリカバインダーを得るため)、アルカリ金属アルミン酸
塩と水ガラスの混合物(シリカアルミナバインダーを得るため)、マグネシウム
、アルミニウムおよび/またはケイ素の水溶性塩の混合物のような二−、三−お
よび/または四価の金属の源の混合物(カチオンクレイおよび/またはアニオン
クレイを調製するため)、クロロヒドロール、硫酸アルミニウム、またはその混
合物である。
【0048】 所望であれば、バインダー材料は、バルク触媒組成物と配合する前、かつ/ま
たはその調製中に加える前に、第VIB族金属および/または第VIII族非貴
金属と配合してもよい。バインダー材料とこれらの金属との配合は、固体バイン
ダーをこれらの材料と共に含浸させることによりなされる。当業者であれば、好
適な含浸技術を知っている。バインダーを解凝固する場合には、第VIB族およ
び/または第VIII族非貴金属成分の存在下で解凝固を行うこともできる。
【0049】 アルミナをバインダーとして適用する場合には、B.E.T法により求められ
る表面積は、好ましくは100〜400m/g、より好ましくは150〜35
0m/gである。窒素吸着により求められるアルミナの細孔容積は、好ましく
は0.5〜1.5ml/gである。
【0050】 通常、本発明のプロセスに加えられるバインダー材料の触媒活性は、バルク触
媒組成物よりも小さいか、または触媒活性は全くない。従って、バインダー材料
を加えることによって、バルク触媒組成物の活性を減じてもよい。従って、本発
明のプロセスに加えるバインダー材料の量は、通常、最終触媒組成物の所望の活
性に依存している。予想される触媒用途に応じて、組成物総量の0〜95重量%
のバインダー量が好適である。しかしながら、本発明の組成物に得られる通常で
ない高い活性を利用するためには、加えるバインダーの量は、通常、組成物の総
量の0.5〜75重量%である。
【0051】 触媒組成物は直接成形することができる。成形には、押出し、造粒、ビーディ
ングおよび/またはスプレー乾燥が含まれる。触媒組成物を、スラリータイプの
リアクタ、流動床、稼動床、膨張床または沸騰床で適用する場合には、通常、固
定床についてはスプレー乾燥またはビーディングを適用し、通常、触媒組成物を
押出し、造粒し、かつ/またはビーディングすることに留意しなければならない
。後者の場合には、成形工程の前または最中に、成形を促すのに従来から用いら
れている添加剤を加えることができる。こうした添加剤には、ステアリン酸アル
ミニウム、界面活性剤、グラファイトまたはその混合物が含まれる。これらの添
加剤は、成形工程の前のどの段階でも加えることができる。さらに、アルミナを
バインダーとして用いるときは、硝酸のような酸を成形工程の前に加えて、押出
し物の機械的強度を増大させるのが望ましい。
【0052】 バインダー材料は成形工程の前に加えるのが好ましい。さらに、成形工程は、
水のような液体を存在させて実施するのが好ましい。LOIで表される押出し混
合物中の液体の量は20〜80%の範囲であるのが好ましい。
【0053】 得られた成形触媒組成物は、任意の乾燥工程後に任意でか焼することができる
。しかしながら、か焼は本発明のプロセスには必須ではない。か焼を本発明のプ
ロセスにおいて実施する場合には、100°〜600℃、好ましくは350°〜
500℃の温度で、0.5から48時間にわたって行うことができる。成形粒子
の乾燥は、100℃を超える温度で実施される。
【0054】 本発明の好ましい実施形態において、触媒組成物に、成形前に、スプレー乾燥
、(フラッシュ)乾燥、ミリング、混練またはこの組み合わせを行う。これらの
追加のプロセス工程は、バインダーを加える前後、固−液分離後、か焼前後、再
湿潤に続いて実施することができる。上述した技術のスプレー乾燥、(フラッシ
ュ)乾燥、ミリング、混練またはその組み合わせのいずれかを適用すると、バル
ク触媒組成物とバインダー材料の間の混合度が改善されると考えられている。こ
れは、バインダー材料を上述の方法のいずれかを行う前後に添加する場合の両方
に当てはまる。しかしながら、スプレー乾燥および/または代替の技術の前にバ
インダー材料を加えるのが一般に好ましい。バインダーをスプレー乾燥および/
または代替の技術に続いて添加する場合には、得られる組成物を、成形の前に従
来の技術により完全に混合するのが好ましい。例えば、スプレー乾燥の利点は、
この技術を適用したときに廃水流れがないことである。
【0055】 さらに、分解成分を触媒調製中に加えてもよい。分解成分は、異性化向上剤と
して作用する。分解成分は、カチオンクレイ、アニオンクレイ、ZSM−5、(
超安定)ゼオライトY、ゼオライトX、ALPO、SAPO等のゼオライト、シ
リカ−アルミナのようなアモルファス分解成分またはその混合物のような従来の
分解成分とすることができる。ある材料は、バインダーおよび分解成分として同
時に作用することが明らかである。例えば、シリカ−アルミナは、同時に分解と
バインダー機能を持っている。
【0056】 所望であれば、分解成分は、バルク触媒組成物と配合する前、および/または
その調製中に加えられる前に、第VIB族の金属および/または第VIII非貴
金属と配合してもよい。これらの金属と共に分解成分を配合するのは、分解成分
をこれらの材料と共に含浸することによりなされる。
【0057】 触媒の総重量に基づいて約0〜80重量%の分解成分は、成形工程の前に本発
明のプロセスのどの段階でも加えることができる。しかしながら、分解成分は、
バインダーとの配合工程(ii)中に加えるのが好ましい。
【0058】 通常、これは、上述の分解成分が加えられる最終触媒組成物の予想される触媒
用途に依存している。得られる組成物を水素化分解または流体触媒分解において
適用する場合には、ゼオライトを加えるのが好ましい。最終触媒組成物を水素処
理用途に用いる場合には、シリカ−アルミナまたはカチオンクレイのようなその
他の分解成分を加えるのが好ましい。加える分解材料の量は、最終組成物の所望
の活性および予想される用途に依存しており、触媒組成物の総重量に基づいて0
〜80重量%と異なる。
【0059】 所望であれば、既に加えられた金属成分に追加して、さらなる材料を加えるこ
とができる。これらの材料は、従来の水素処理触媒調製中に加えられる材料であ
ればどれでもよい。好適なものとしては、リン化合物、ホウ素化合物、フッ素含
有化合物、追加の遷移金属、希土類金属、充填剤またはその混合物が例示される
【0060】 好適なリン化合物としては、リン酸アンモニウム、リン酸または有機リン化合
物が挙げられる。リン化合物は、成形工程の前および/または成形工程に続いて
、本発明のプロセスのどの段階でも加えることができる。バインダー材料を解凝
固する場合には、リン化合物もまた解凝固に用いることもできる。例えば、バイ
ンダーは、リン酸またはリン酸と硝酸の混合物と接触させることにより解凝固す
ることができる。
【0061】 好適な追加の遷移金属は、例えば、レニウム、ルテニウム、ロジウム、イリジ
ウム、クロム、バナジウム、鉄、コバルト、白金、パラジウム、コバルト、ニッ
ケル、モリブデンまたはタングステンである。ニッケル、モリブデンおよびタン
グステンは、固体経路について上述した水不溶性ニッケル、モリブデンおよび/
またはタングステン成分のいずれの形態でも適用することができる。これらの金
属は、成形工程の前、本発明のプロセスのどの段階でも加えることができる。こ
れらの金属を本発明のプロセス中に加えるだけでなく、最終触媒組成物と共に配
合することも可能である。例えば、最終触媒組成物を、これらの金属のいずれか
を含む含浸溶液と共に含浸することが可能である。
【0062】 バルク触媒組成物を調製するための本発明のプロセスは、さらに硫化工程を含
んでいてもよい。硫化は、通常、触媒組成物またはその前駆体を、元素硫黄、硫
化水素または多硫化物のような硫黄含有化合物と接触させることにより行われる
。硫化は、バルク触媒組成物の調製に続いて、ただし、バインダー材料を添加す
る前に、かつ/またはバインダー材料の添加に続いて、ただし、触媒組成物にス
プレー乾燥および/または代替の方法を行う前、かつ/または組成物にスプレー
乾燥および/または代替の方法を行うのに続けて、ただし、成形の前、かつ/ま
たは触媒組成物の成形に続けて行うことができる。硫化は、得られた金属硫化物
を酸化物に戻すプロセス工程の前には行わないのが好ましい。かかるプロセス工
程は、例えば、か焼またはスプレー乾燥、または酸素の存在下でのその他の高温
処理である。従って、触媒組成物にスプレー乾燥および/または代替の技術を行
う場合は、硫化は、これらの方法を適用した後に行うものとする。
【0063】 硫化工程に加えて、またはこの代わりに、バルク触媒組成物を、少なくとも1
種類の硫化金属から調製してもよい。例えば、固体経路を工程(i)で適用する
場合には、バルク触媒成分を、硫化ニッケルおよび/または硫化モリブデンおよ
び/または硫化タングステンから調製することができる。
【0064】 触媒組成物を固定床プロセスで用いる場合には、硫化は、成形工程に続いて、
そしてもし適用する場合には最後のか焼工程に続いて行うのが好ましい。硫化は
ex situで行う、すなわち、硫化は、硫化触媒組成物を水素処理ユニット
に充填する前に別個のリアクター内で行うのが好ましい。さらに、触媒組成物は
硫化ex situおよびin situの両方で硫化されるのが好ましい。
【0065】 水素化脱硫段のいずれか、またはその両方の反応域の1つ以上に、従来の水素
化脱硫触媒が含まれていてもよい。本発明に用いるのに好適な従来の水素化脱硫
触媒としては、比較的表面積の広い担体材料、好ましくはアルミナ担持の、少な
くとも1種類の第VIII族金属、好ましくはFe、CoまたはNi,より好ま
しくはCoおよび/またはNi、最も好ましくはCoと、少なくとも1種類の第
VI族金属、好ましくはMoまたはW、より好ましくはMoから構成されるよう
なものが挙げられる。その他の好適な水素化脱硫触媒担体としては、ゼオライト
、アモルファスシリカ−アルミナおよびチタニア−アルミナが挙げられる。好ま
しくは、貴金属をPdおよびPtから選ぶときは、貴金属触媒もまた用いること
ができる。2種類以上の水素化脱硫触媒を同一の反応容器において用いることも
本発明の範囲に含まれる。第VIII族金属は、一般に、約2〜20重量%、好
ましくは約4〜12重量%の範囲の量で存在する。第VI族金属は、一般に、約
5〜50重量%、好ましくは10〜40重量%、より好ましくは約20〜30重
量%の範囲の量で存在する。金属重量パーセントはすべて担体上でのものである
。「担体上」とは、パーセントが担体の重量に基づいているということである。
例えば、担体が100gであった場合には、20重量%の第VIII族金属とは
、20gの第VIII族金属が担体上にあったということである。
【0066】 この場合、バルク触媒粒子は、耐焼結性であることがわかっている。このよう
にバルク触媒粒子の活性表面積は、使用中維持される。第VIB族対第VIII
族非貴金属のモル比は、通常、10:1〜1:10、好ましくは3:1〜1:3
である。コア−シェル構造の粒子の場合には、これらの比率は、当然、シェル内
に含まれる金属に当てはまる。2種類以上の第VIB族金属がバルク触媒粒子に
含まれる場合には、異なる第VIB族の比率は、通常重要ではない。2種類以上
の第VIII族非貴金属を適用するときにも同じことが言える。モリブデンとタ
ングステンが第VIB族金属として存在する場合には、モリブデン:タングステ
ン比は、9:1〜1:9の範囲にあるのが好ましい。第VIII族非貴金属は、
ニッケルおよび/またはコバルトを含むのが好ましい。第VIB族金属は、モリ
ブデンとタングステンの組み合わせを含むのがさらに好ましい。ニッケル/モリ
ブデン/タングステン、コバルト/モリブデン/タングステン、およびニッケル
/コバルト/モリブデン/タングステンの組み合わせを用いるのが好ましい。こ
れらの種類の沈殿物は、耐焼結性を有しているようである。このように、沈殿物
の活性表面積は使用中保持される。
【0067】 金属は、対応の金属の酸化化合物として、あるいは、触媒組成物を硫化した場
合には、対応の金属の硫化化合物として存在するのが好ましい。
【0068】 VIB B.E.T.法により求められる粒子の表面積は、好ましくは少なく
とも50m/g、より好ましくは少なくとも100m/gである。金属酸化
物として計算したときに、粒子の総重量に基づいて、粒子は、好ましくは50〜
100重量%、より好ましくは70〜100重量%の第VIII族非貴金属を少
なくとも1種類と第VIB族金属を少なくとも1種類含む。第VIB族および第
VIII族非貴金属の量は、VIB TEM−EDXにより容易に求めることが
できる。
【0069】 粒子の孔径分布は、従来の水素化処理触媒のそれとほぼ同じであるのが望まし
い。特に、窒素吸着により求められるこれらの粒子の細孔容積は、0.05〜5
ml/g、より好ましくは0.1〜4ml/g、さらに好ましくは0.1〜3m
l/g、最も好ましくは0.1〜2ml/gである。1nm未満の孔は、存在し
ないのが好ましい。さらに、これらの粒子は、少なくとも50nm、より好まし
くは少なくとも100nm、好ましくは5000μm以下、さらに好ましくは3
000μm以下の中央値直径を有する。さらに好ましくは、中央値粒径は0.1
〜50μm、最も好ましくは0.5〜50μmの範囲である。
【0070】 触媒組成物の表面積は、好ましくは少なくとも40m/g、より好ましくは
少なくとも80m/g、最も好ましくは少なくとも120m/gである。水
多孔度計により求められる触媒組成物の総細孔容積は、好ましくは少なくとも0
.05ml/g、より好ましくは少なくとも0.1ml/gである。機械的強度
の高い触媒組成物を得るには、本発明の触媒組成物のマクロ多孔性が低いのが望
ましい。
【0071】 バルク触媒粒子は、共混合により得られる触媒および含浸により得られる従来
の水素処理触媒とは異なる特性X線回折パターンを有していることが分かった。
バルク触媒粒子のX線回折パターンは、反応金属成分に特有のピークを含み、好
ましくは実質的にこの特有のピークからなる。例えば、ヒドロキシ炭酸ニッケル
を、上述した通り、モリブデンおよびタングステン成分と接触させた場合には、
得られるバルク触媒粒子は、d値が(4.09)、2.83、2.54、2.3
2、2.23、1.71、(1.54)、1.47のピークを含むX線回折パタ
ーンという特徴を示す。括弧内の値は、対応のピークが、幾分広く、かつ/また
は低強度を有している、または全く識別されないとうことを示している。「X線
回折パターンが、これらのピークから実質的になる」とは、これらのピーク以外
に、回折パターンに含まれるピークが実質的にないとうことである。溶液経路に
より得られた触媒の沈殿物は、共混合により得られる触媒および含浸により得ら
れる従来の水素処理触媒とは異なる特性X線回折パターンを有している。例えば
、溶液経路により作成されるNi−Mo−W沈殿物のX線回折パターンは、d値
が2.52、1.72および1.46のピークを有している。
【0072】 上述した通り、触媒組成物は、従来の水素処理触媒を含んでいてもよい。従来
の水素処理触媒のバインダー材料および分解成分は、通常、上述のバインダー材
料および分解成分のいずれかを含む。従来の水素処理触媒の水素添加金属は、通
常、ニッケルまたはコバルトとモリブデンまたはタングステンの組み合わせのよ
うな第VIB族および第VIII族非貴金属を含む。好適な従来の水素処理触媒
は、例えば、水素化処理触媒である。これらの触媒は、使用済み、再生済みまた
は未使用状態とすることができる。
【0073】 上記より明らかなように、第VIII族非貴金属を含有する化合物および第V
IB族金属含有化合物は、様々な方法、様々な温度およびpHで、溶液、懸濁液
、そのまま、同時および逐次に添加することができる。
【0074】 前駆体化合物はまた、タングステン化合物をモリブデン塩、ニッケル塩および
水酸化アンモニウムの初期混合物に加えるTeichnerとAstierによ
り用いられる沸騰分解法の変種をはじめとするいくつかの方法のうちいずれかに
より容易に調製することもできる。前駆体化合物を調製するのに直接沈殿および
pH制御沈殿もまた用いてよい。しかしながら、すべての場合において、ニッケ
ル、モリブデンおよびタングステンの水溶性塩を用いる。
【0075】 好ましくは、モリブデンおよびタングステン塩は、アンモニウム化合物、例え
ば、モリブデン酸アンモニウム、メタタングステン酸アンモニウムであり、一方
、ニッケル塩は、硝酸塩または水和硝酸塩であってもよい。
【0076】 分解前駆体は、様々な公知の方法により硫化または前硫化することができる。
例えば、分解生成物は、HSと水素、例えば、10%HS/Hを含むガス
と、高温で、分解生成物を硫化するのに十分な時間、通常は、排ガスにHSが
生じる点で、接触させることができる。硫化はまた、in situで、硫黄を
含有する代表的な原料を、分解生成物に通すことにより行うこともできる。
【0077】 ここに記載した触媒の使用に適用できるプロセス条件は、処理する原料に応じ
て大きく異なる。このように、原料の沸点が高くなるにつれて、条件の厳しさも
増す。下記の表1に、いくつかの原料の代表的な条件について示す。
【0078】
【表1】
【0079】
【実施例】
以下の実施例は、本発明を例証するものであり、これを限定するものではない
【0080】実施例1 NH−Ni−Mo−O相の調製(TeichnerおよびAstier手順に
従った沸騰分解) 1リットルのフラスコに、モリブデン酸アンモニウム26.5g(Mo0.1
5モル)と硝酸ニッケル六水和物43.6g(Ni0.15モル)を水300c
cに溶かし、得られるpHが4.3となるようにした。この溶液に、濃縮NH OH溶液を加えた。最初に、沈殿物が形成され、これに溶解したNHOHさら
に加えたところ、pH8.3の透明な青色溶液となり、pHが10になるまでさ
らにNHOH(〜250cc)を加えた。この溶液を3時間にわたって90℃
まで加熱したところ、アンモニアガスが発生し、緑の沈殿物が形成された。最終
pHは、6.8〜7.0となった。懸濁液を室温まで冷やし、ろ過し、水で洗っ
て、120℃で一晩乾燥させた。約18.6gの材料が得られた。試料を分析し
たところNiは26.6重量%、Moは34重量%であった。相のX線回折スペ
クトルはTeichnerにより報告されたパターンと合っていた。
【0081】実施例2 沸騰分解によるNH−Ni−Mo0.5−W0.5−Oの調製 1リットルのフラスコに、モリブデン酸アンモニウム13.2g(Mo0.0
75モル)、メタタングステン酸アンモニウム18.7g(W0.075モル)
、硝酸ニッケル六水和物43.6g(Ni0.15モル)を水300ccに溶か
し、得られるpHが4.3となるようにした。この溶液に、pHが10になるま
で濃縮NHOH溶液(〜600cc)を加えた。このとき、沈殿物が少量残っ
た。この溶液を〜100℃で3時間還流した。この加熱中、沈殿物が溶解して透
明な青色溶液が得られ、さらに加熱すると、緑の沈殿物が形成された。pHが6
.8〜7.0になるまで加熱を続けた。懸濁液を室温まで冷やし、ろ過し、水で
洗って、120℃で一晩乾燥させた。18gの材料が得られた。相のX線回折ス
ペクトルを図2に示す。d=2.58と1.70Åに、2つの最大のピークのあ
るアモルファスバックグラウンドを示している。
【0082】実施例3 直接沈殿によるNH−Ni−Mo0.5−W0.5−Oの調製 1リットルのフラスコに、モリブデン酸アンモニウム17.65g(Mo0.
1モル)とメタタングステン酸アンモニウム24.60g(W0.1モル)を水
800ccに溶かし、pHが〜5.2の溶液とした。この溶液に、NHOH溶
液0.4モル(〜30cc)を加え、pHを〜9.8まで上げた(溶液A)。こ
の溶液を90℃まで温めた。水50ccに溶かした硝酸ニッケル58.2g(N
i0.2モル)を加えることにより第2の溶液(溶液B)を調製し、90℃に維
持した。この溶液を、モリブデン酸アンモニウム/メタタングステン酸アンモニ
ウム溶液に7cc/分の速度で滴下して加えた。溶液1/4を加えた後、沈殿物
が形成され始めた。温度を90℃に維持しながら、pHが〜6.5であったこの
懸濁液を30分間攪拌した。この材料を熱ろ過し、熱水で洗い、120℃で乾燥
した。約38gの材料が回収された。
【0083】実施例4 制御pH沈殿によるNH−Ni−Mo0.5−W0.5−Oの調製 各溶液が約700ccの水を含んでいた以外は、実施例3に記載したのと同量
のニッケル、タングステン、モリブデンおよび水酸化アンモニウムで2つの溶液
(溶液AおよびB)を調製した。この2つの溶液を、90℃に維持された400
ccの水を最初含有していた別個の容器に入れた。溶液B(酸性溶液)は、〜1
5cc/分の一定速度で容器に汲み出し、溶液Aは、フィードバックPCコント
ロールで、pH6.5に維持されるように設定された別個ポンプにより加える。
2つの溶液を混合すると、沈殿物が形成される。このスラリーを90℃で30分
間攪拌し、熱ろ過し、熱水で洗って、120℃で乾燥した。
【0084】実施例5 ジベンゾチオフェン(DBT)を用いた触媒評価 実施例1〜4の触媒1.5〜2gを、水平水晶管に挿入され、リンドバーグ炉
に入れられた水晶ボートに入れた。Nを50cc/mで流しながら約1時間3
70℃まで昇温し、フローを370℃で1.5時間続けた。Nのスイッチを切
り、10%のHS/Hを20cc/mでリアクターに加え、400℃まで昇
温し、2時間そのまま保持した。熱を止め、HS/Hを流しながら触媒を7
0℃まで冷やし、この点でこのフローを切り、Nを加えた。室温で、水晶管を
外し、材料を、Nのパージされたグローブボックスに移した。触媒を、一定に
水素フロー用に設計された300ccの修正カーベリーバッチリアクターで評価
した。触媒を小球化し、20/40のメッシュの等級に分け、1グラムをステン
レス鋼バスケットに入れて、ムライトビーズの層の間に挟んだ。デカリン中5重
量%のジベンゾチオフェンを含有する液体原料100ccをオートクレーブに入
れた。100cc/分の水素フローをリアクターに通し、背圧調製器を用いて圧
力を3150kPaに維持した。5〜6度/分で温度を350℃まで上げ、50
%のDBTが転化されるか7時間経つまで続けた。小分取の生成物を30分毎に
除去しGCにより分析した。全体の転化率および反応生成物ビフェニル(BP)
とシクロヘキシルベンゼン(CHB)への転化率についての速度定数を、M.D
aageおよびR.R.Chianelli[J.Cat.149、414−2
7(1994年)]に記載されている通りに計算し、表2に示してある。その記
事に記載されているように、脱硫反応中のBPに比べたシクロヘキシルベンゼン
の高選択性は、高水素脱窒素活性を有する触媒であることを示す良い指標である
。一方、CHBに比べたBPの高選択性は、高脱硫活性を有する触媒であること
を示している。
【0085】 この結果は、モリブデンにタングステンが部分置換されると、DBT転化が実
質的に高い触媒となることを示している。標準のAl担持のNi−Mo触
媒も比較のために示してある。高いCHB/BP比は、触媒がHDNに対して活
性であることを示している。
【0086】
【表2】
【0087】実施例6 溶液に加えたモリブデン酸アンモニウムとメタタングステン酸アンモニウムの
量を変えることによりMoとWの相対比を変えた以外は、実施例2の一般調製ス
キーム(沸騰分解)に従って一連の触媒を調製した。実施例5に記載したように
して分解を行った。このようにして調製した触媒を実施例5に記載したように測
定したDBTに対する触媒活性と共に表3に示してある。
【0088】
【表3】
【0089】 データによれば、最も活性な触媒は、タングステンとモリブデンのほぼ等モル
の混合物を含んでいることが分かる。
【0090】実施例7 ニッケル含量を変えた以外は、MoとWの等モルの混合物を沈殿させた実施例
3(直接沈殿)に記載された通りにして一連の触媒を調製した。実施例5に記載
したようにして分解を行った。このようにして調製した触媒を実施例5に記載し
たように測定したDBTに対する触媒活性と共に表4に示してある。
【0091】
【表4】
【0092】 Niを0.75〜1.5に変えても触媒の性能は実質的に変わっていない。た
だしKは、約1.25Niで最大となっているようである。
【0093】実施例8 調製に用いるNHOHの量を変えて一連の触媒を調製した。溶液Aにおける
NHOHの量を変えて、2つの溶液を混合するときにNHOH/Niのモル
比を変えた以外は、実施例3に記載した手順に従って触媒を調製した。実施例5
に記載したようにして分解を行った。このようにして調製した触媒を実施例5に
記載したように測定したDBTに対する触媒活性と共に表5に示してある。
【0094】
【表5】
【0095】 前駆体化合物の分解により、前駆体のアンモニア部分の大部分が飛んでも(全
てでない場合には)、前駆体の調製および分解生成物の触媒としての有用性は、
用いたNHOHの量に影響される。このように、分解生成物の触媒としての有
効性は、前駆体化合物の調製におけるNHOH/Ni比が約1:1〜約4:1
、好ましくは約1.5:1〜約4:1、より好ましくは約2:1〜約4:1のと
きに向上する。特定の理論やメカニズムに拘束されることは意図するところでは
ないが、NHOH/Ni比が、Ni−M−W−O相が分解生成物に変化をもた
らすことは多少なりとも明らかである。
【0096】実施例9 実施例1および2の触媒を、LSADO(低硫黄自動車用ディーゼルオイル原
料)の転化について、標準の担持Ni−Mo触媒と比べた。この原料は、39.
8°API比重で、510wppmの硫黄、50wppmの窒素および30.6
%の芳香族化合物を含んでいた。触媒を579°F、H650psigおよび
の1850SCFB/Bで試験した。異なる触媒の相対活性を表6にまとめ
てある。
【0097】
【表6】
【0098】 Ni,Mo/Al触媒は、標準HDN/HDS触媒であり、NH−N
iMo相は、タングステンのないバルク相であり、NH−Ni1.0Mo0. 0.5−Oは、Wを部分的にMoに置換したバルク相である。NH−Ni
Mo−O触媒は、また既知の化合物の代表でもある。本発明の触媒は、NH
Ni1.0Mo0.50.5−Oにより例証されるものであり、データによれ
ば、HDN活性に対するモリブデン酸アンモニウムニッケルタングステンの明ら
かな利点が示されている。
【0099】実施例10 固体経路によるバルク触媒組成物の調製:18.1kgの二モリブデン酸アン
モニウム(15.33kgMoO)を575リットルの水に溶解する。続いて
、28.5kgのメタタングステン酸アンモニウム(24.69kgWO)を
溶液に加える。得られた溶液を90℃まで予備加熱する。26.5kgのNiC
(49.7%Ni)粉末を水と混合し、得られたペーストを二モリブデン酸
アンモニウム/メタタングステン酸アンモニウム溶液に加える。得られた混合物
を89℃で7時間反応させる。
【0100】実施例11 溶液経路によるバルク触媒組成物の調製:1リットルのフラスコに、モリブデ
ン酸アンモニウム13.2g(Mo0.075モル)、メタタングステン酸アン
モニウム18.7g(W0.075モル)および硝酸ニッケル六水和物43.6
g(Ni0.15モル)を水300ccに溶かし、得られるpHが4.3となる
ようにした。この溶液に、pHが10になるまで濃縮NHOH溶液を加えた(
約600ml)。この点で、沈殿物がやや残った。この溶液を100℃で3時間
還流した。この加熱中、沈殿物が溶解して透明な青色溶液が得られ、さらに加熱
すると、緑の沈殿物が形成された。pHが6.8〜7.0になるまで加熱を続け
た。懸濁液を室温まで冷やし、ろ過し、水で洗って、120℃で一晩乾燥させた
。18gの材料が得られた。
【0101】実施例12(試料2110587) 実施例10または11に記載した手順に従って得られたNiMo−Wバルク触
媒組成物657gを、アルミナ125gを含有する水性スラリー(アルミン酸ナ
トリウムおよび硫酸アルミニウムの沈殿により調製したもの)1362gに加え
た。LOI31%となるまで、得られたNi−Mo−Wバルク触媒−アルミナ組
成物を80℃で混合した。得られた組成物を続いて押出し、押出し物を120℃
で約90分間乾燥し、385℃で空気中で1時間か焼した。
【0102】実施例13(試料2110598) アルミナ懸濁液の変わりに10重量%のシリカを含有するシリカゾルを適用し
た以外は実施例12のプロセスを繰り返した。
【0103】実施例14(試料2110591) 実施例7または8に記載した手順に従って得られたNi−Mo−Wバルク触媒
組成物657gを、ベーマイト125gを含有するベーマイトペースト510g
に加えた。再バフ研磨ペーストを60℃で混合してLOI42%を得た。実施例
12に記載したように、得られた組成物を押出し、乾燥してか焼した。
【0104】実施例15(試料2110469) バルク触媒組成物の調製中アルミナを存在させた以外は実施例7または8に記
載された手順を繰り返した。アルミナ60gを含有する得られた乾燥Ni−Mo
−Wバルク触媒−アルミナ組成物755gに、水461gと少量の硝酸を加えた
。得られた混合物を70℃で混合し、LOI34%が得られるまで水を蒸発させ
た。実施例12に記載したように、得られた組成物を押出し、乾燥してか焼した
【0105】実施例16 モリブデン酸アンモニウム、アンモニウムタングステンおよび/またはクロム
酸アンモニウムを溶解し、第1のリアクター中で混合する。温度を90℃まで上
げる。第VIII族の塩を第2のリアクターで溶解し90℃まで加熱する。水酸
化アンモニウムを第1のリアクターに加えて塩基性溶液を形成する。第VIII
族金属溶液を、攪拌しながら20分間、第1に滴下して加える。30分後、沈殿
物をろ過し洗う。沈殿物を120℃で一晩乾燥し、385℃でか焼する。
【0106】実施例17 実施例16の沈殿法を用いて、98%の収量で、Feを41.2重量%
、MoOを21.3重量%およびWOを36.9重量%含む二モリブデン酸
アンモニウム、メタタングステン酸アンモニウムおよびFe(III(NO ・9HOから沈殿物を調製した。沈殿物の表面積は、76m/gであった
。吸着曲線を用いてBETにより60nmまで測定した細孔容積は、0.147
ml/gであった。
【0107】実施例18 実施例16の沈殿法を用いて、87.7%の収量で、NiOを52.2重量%
、MoOを29.4重量%およびCrを16.6重量%含むNi(CO ・6HO、(NHMO24・4HOおよび(NH
から沈殿物を調製した。沈殿物の表面積は、199m/gであった。
吸着曲線を用いてBETにより60nmまで測定した細孔容積は、0.276m
l/gであった。
【0108】実施例19 実施例16の沈殿法を用いて、87.7%の収量で、NiOを44.0重量%
、WOを42.4重量%およびCrを11.8重量%含むNi(CO・6HO、(NH1240および(NHCr から沈殿物を調製した。沈殿物の表面積は、199m/gであった。吸着曲線
を用いてBETにより60nmまで測定した細孔容積は、0.245ml/gで
あった。
【0109】 芳香族飽和度の実施例 本発明の実施に用いるバルク多重金属触媒の超高ASAT(芳香族飽和度)、
HDSおよびHDN活性を、低硫黄自動車用ディーゼルオイル(LSADO)の
並流水素処理により示した。本発明のバルク触媒と、CriterionよりC
−411という商品名で市販されている従来の市販のアルミナ担持のNiMo触
媒の活性を、650〜1000psigで比較した。選択した原料特性を表7に
挙げてある。結果は表8、9および10にある。
【0110】
【表7】
【0111】実施例20(ASAT活性) 2つ並べたリアクターに、Ni1.5Mo0.50.5の組成を有する本発
明のバルク触媒を5.0ccと、C−411を5.0ccそれぞれ充填した。同
一条件での液相硫化後、触媒を用いて、水素化処理済み未使用留出液(FS−9
632、表7)を処理した。両リアクターのラインアウト液体生成物の芳香族化
合物の含量をSFC(超臨界流体クロマトグラフィー法)により分析した。結果
を表8に示してある。
【0112】
【表8】
【0113】実施例21(HDS活性) 2つ並べた同一のリアクターに、本発明のバルク触媒を5.0ccとC−41
1を5.0ccそれぞれ充填した。同一条件での液相硫化後、触媒を用いて、水
素化処理済み未使用留出液(FS−9632、表2)を処理した。両触媒のライ
ンアウト液体生成物の硫黄含量をX線により分析した。結果を表8に示してある
【0114】実施例22(バルク触媒のHDSおよびHDN活性) リアクターに、denstoneを用いて8ccまで希釈した本発明のバルク
触媒6ccを充填した。液相硫化後、触媒を用いて、水素化処理済み未使用留出
液(FS−9632、表7)を処理した。ラインアウト液体生成物の硫黄をX線
により、窒素をAntekにより分析した。結果を硫黄については表8、窒素に
ついては表9にそれぞれ示してある。
【0115】実施例23(C−411のHDSおよびHDN活性、比較) リアクターに、denstoneを用いて8ccまで希釈したC−411を6
cc充填した。液相硫化後、触媒を用いて、水素化処理済み未使用留出液(FS
−9632、表7)を処理した。ラインアウト液体生成物の硫黄をX線により、
窒素をAntekにより分析した。結果を硫黄については表9、窒素については
表10にそれぞれ示してある。
【0116】
【表9】
【0117】実施例24(Co置換のバルク触媒のASAT、HDSおよびHDN活性) Co置換バルク触媒に修正することに限定されるものではないが、この特別の
バルク触媒誘導体を用いて、同一の水素化処理済みLSADO(FS−9632
)で試験した。固定床上流リアクターに、denstoneを用いて8ccまで
希釈した触媒を6cc充填した。液相硫化後、原料の並流水素処理にこれを用い
た。生成物の液体を、API(表7)、硫黄(表8)および窒素(表9)につい
て分析した。
【0118】
【表10】
【図面の簡単な説明】
【図1】 図1は、か焼前(曲線A)および400℃でのか焼後(曲線B)の沸騰沈殿に
より調製されたNH−Ni−0.5Mo−0.5W−O化合物のX線回折パタ
ーンである。前駆体と、前駆体の分解生成物の両方のパターンが2つのピークが
実質的に同じ位置であり、全く同じであることに留意されたい。縦座標は相対強
度であり、横座標は2シータ(度)である。
【図2】 図2は、NH−Ni−Mo1−x−W−O前駆体のCuKα放射線(λ=
1.5405Å)によるX線回折パターンを示す。曲線AはMo0.90.1 、曲線BはMo0.70.3、曲線CはMo0.50.5、曲線DはMo .30.7、曲線EはMo0.10.9、曲線FはMoである。縦座
標および横座標は図1に記載した通りである。
───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,GW,ML, MR,NE,SN,TD,TG),AP(GH,GM,K E,LS,MW,SD,SL,SZ,TZ,UG,ZW ),EA(AM,AZ,BY,KG,KZ,MD,RU, TJ,TM),AL,AU,BA,BB,BG,BR, CA,CN,CU,CZ,EE,GE,HR,HU,I D,IL,IN,IS,JP,KP,KR,LC,LK ,LR,LT,LV,MG,MK,MN,MX,NO, NZ,PL,RO,RU,SG,SI,SK,SL,T R,TT,UA,US,UZ,VN,YU,ZA (72)発明者 クレイン,ダーリル,パトリック アメリカ合衆国,ルイジアナ州 70820, バトン ルージュ,ベル グローブ アベ ニュー 6265 (72)発明者 ホウ,ジィグオ アメリカ合衆国,ルイジアナ州 70810, バトン ルージュ,オークデイル ドライ ブ 2028 (72)発明者 ソレッド,ステュアート,レオン アメリカ合衆国,ニュージャージー州 08867,ピィッツタウン,クックス クロ ス ロード 21 (72)発明者 ケルビー,ミィハエル,チャールス アメリカ合衆国,ルイジアナ州 70810, バトン ルージュ,マクシェイ アベニュ ー 10731 (72)発明者 マクビィッカー,ガリー,ブライス アメリカ合衆国,ニュージャージー州 07830,キャリフォン,メイン ストリー ト 65,ピー.オー.ボックス 427 (72)発明者 エリス,エドワード,スタンリー アメリカ合衆国,ニュージャージー州 07920,バスキング リッジ,ランキン アベニュー 39 (72)発明者 トウベリー,ミィシェール,スー アメリカ合衆国,ルイジアナ州 70808, バトン ルージュ,ウィックハム 7222 (72)発明者 ミセオ,サバト アメリカ合衆国,ニュージャージー州 08867,ピィッツタウン,579 カウンティ ロード 770 Fターム(参考) 4G069 AA02 AA03 AA08 BB06A BB06B BC59A BC59B BC60A BC60B BC67A BC68A BC68B BD01B BD06B CC02 DA06 FB04 FB05 FB06 FB09 4H029 CA00 DA00 DA01 DA09 DA10

Claims (11)

    【特許請求の範囲】
  1. 【請求項1】 a)水素化脱硫条件にて水素化脱硫触媒の存在下で操作され
    る1つ以上の反応域を有する第1の水素化脱硫段において、原料を水素含有処理
    ガスの存在下で反応させて、硫黄含量が約3,000wppmの液体生成物流れ
    を得る工程と、 b)前記第1の水素化脱硫段の前記液体生成物流れを、蒸気相生成物流れと液相
    生成物流れが生成される分離域に通過させる工程と、 c)水素処理触媒の床を含有し、水素化脱硫条件にて操作される1つ以上の反応
    域を有する第2の水素化脱硫段において、b)の前記液相生成物流れを水素含有
    処理ガスの存在下で反応させて、硫黄約1,000wppm未満の液体生成物流
    れを得る工程と、 d)工程c)の前記液体生成物流れを蒸気相生成物流れと液相生成物流れが生成
    される分離域に通過させる工程と、 e)第3の反応域において、d)からの前記液相流れを、水素化条件にて水素お
    よび第3の触媒の存在下で反応させる工程と、 f)e)の前記液体生成物流れを、蒸気相生成物流れと液相生成物流れが生成さ
    れる分離域に通過させる工程と、 g)前記蒸気相流れと前記液相流れの両方を集める工程とを有し、 少なくとも1つの前記水素化脱硫段の少なくとも1つの前記反応域が、少なくと
    も1種類の第VIII族非貴金属および少なくとも2種類の第VIB族金属から
    構成され、第VIB族金属対第VIII族非貴金属の比率が約10:1〜約1:
    10であるバルク多重金属触媒を含む、硫黄含量が約3,000wppmを超え
    る留出物原料の硫黄含量を減じる多段水素化脱硫方法。
  2. 【請求項2】 バルク多重金属触媒は、前記第1の反応段においてのみ存在
    することを特徴とする請求項1記載の多段水素化脱硫方法。
  3. 【請求項3】 前記バルク多重金属触媒は、前記第2の反応段においてのみ
    存在することを特徴とする請求項1記載の多段水素化脱硫方法。
  4. 【請求項4】 前記バルク多重金属触媒は、前記第1および第2の両方の反
    応段において存在することを特徴とする請求項1記載の多段水素化脱硫方法。
  5. 【請求項5】 前記バルク多重金属触媒は、前記第3の反応段においてのみ
    存在することを特徴とする請求項1記載の多段水素化脱硫方法。
  6. 【請求項6】 前記バルク多重金属触媒は、すべての3つの反応段において
    存在し、芳香族化合物水素添加触媒もまた第3の反応段に存在することを特徴と
    する請求項1記載の多段水素化脱硫方法。
  7. 【請求項7】 前記第VIII族非貴金属は、NiおよびCoから選ばれ、
    前記第VIB族金属は、MoおよびWから選ばれることを特徴とする請求項1記
    載の多段水素化脱硫方法。
  8. 【請求項8】 前記バルク多重金属は、式 (X)(Mo)(W) で表され、式中、Xは、1種類以上の第VIII族非貴金属であり、b:(c+
    d)のモル比は、0.5/1〜3/1であることを特徴とする請求項1記載の多
    段水素化脱硫方法。
  9. 【請求項9】 b:(c+d)のモル比は、0.75/1〜1.5/1であ
    ることを特徴とする請求項8記載の多段水素化脱硫方法。
  10. 【請求項10】 c:dのモル比は、好ましくは>0.01/1であること
    を特徴とする請求項8記載の多段水素化脱硫方法。
  11. 【請求項11】 前記バルク多重金属触媒は、d=2.53オングストロー
    ムとd=1.70オングストロームで結晶ピークを示す固有のX線回折パターン
    を有する実質的にアモルファスの材料であることを特徴とする請求項1記載の多
    段水素化脱硫方法。
JP2000593683A 1999-01-15 2000-01-14 バルク多重金属触媒を用いた留出物の水素化脱硫−水素添加の多段方法 Expired - Lifetime JP4766747B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/231,156 1999-01-15
US09/231,156 US6162350A (en) 1997-07-15 1999-01-15 Hydroprocessing using bulk Group VIII/Group VIB catalysts (HEN-9901)
PCT/US2000/000979 WO2000042124A1 (en) 1999-01-15 2000-01-14 Multistage process for hydrodesulfurizing-hydrogenating distillates using bulk multimetallic catalyst

Publications (2)

Publication Number Publication Date
JP2002534583A true JP2002534583A (ja) 2002-10-15
JP4766747B2 JP4766747B2 (ja) 2011-09-07

Family

ID=22867969

Family Applications (12)

Application Number Title Priority Date Filing Date
JP2000593686A Expired - Lifetime JP4524044B2 (ja) 1999-01-15 2000-01-14 バルク多金属触媒を用いるスラリー水素処理
JP2000593687A Expired - Lifetime JP4766748B2 (ja) 1999-01-15 2000-01-14 バルク第viii族/第vib族触媒を用いた水素化分解法
JP2000593684A Expired - Fee Related JP4625582B2 (ja) 1999-01-15 2000-01-14 バルク複合金属触媒を用いた二段水素化脱硫方法
JP2000593685A Pending JP2002534585A (ja) 1999-01-15 2000-01-14 バルク第viii族/第vib族触媒を用いた水素処理
JP2000593688A Expired - Fee Related JP5039256B2 (ja) 1999-01-15 2000-01-14 低硫黄かつ低窒素の水素化分解生成物の製造方法
JP2000593679A Pending JP2002534580A (ja) 1999-01-15 2000-01-14 新規のバルク多金属触媒を用いた直留留出物の水素化処理
JP2000593683A Expired - Lifetime JP4766747B2 (ja) 1999-01-15 2000-01-14 バルク多重金属触媒を用いた留出物の水素化脱硫−水素添加の多段方法
JP2000593680A Expired - Lifetime JP4766746B2 (ja) 1999-01-15 2000-01-14 バルクviii族/vib族触媒を用いる水素化精製方法
JP2000593558A Withdrawn JP2002534264A (ja) 1999-01-15 2000-01-14 オキソ法によりアルコールを製造するための改良方法
JP2000593678A Expired - Lifetime JP4681735B2 (ja) 1999-01-15 2000-01-14 バルク第viii族/第vib族触媒を用いる水素転化方法
JP2000593648A Withdrawn JP2002534569A (ja) 1999-01-15 2000-01-14 炭化水素樹脂の水素化の方法
JP2000593690A Expired - Lifetime JP4766749B2 (ja) 1999-01-15 2000-01-14 バルク第viii族/第vib族触媒を用いた水素処理

Family Applications Before (6)

Application Number Title Priority Date Filing Date
JP2000593686A Expired - Lifetime JP4524044B2 (ja) 1999-01-15 2000-01-14 バルク多金属触媒を用いるスラリー水素処理
JP2000593687A Expired - Lifetime JP4766748B2 (ja) 1999-01-15 2000-01-14 バルク第viii族/第vib族触媒を用いた水素化分解法
JP2000593684A Expired - Fee Related JP4625582B2 (ja) 1999-01-15 2000-01-14 バルク複合金属触媒を用いた二段水素化脱硫方法
JP2000593685A Pending JP2002534585A (ja) 1999-01-15 2000-01-14 バルク第viii族/第vib族触媒を用いた水素処理
JP2000593688A Expired - Fee Related JP5039256B2 (ja) 1999-01-15 2000-01-14 低硫黄かつ低窒素の水素化分解生成物の製造方法
JP2000593679A Pending JP2002534580A (ja) 1999-01-15 2000-01-14 新規のバルク多金属触媒を用いた直留留出物の水素化処理

Family Applications After (5)

Application Number Title Priority Date Filing Date
JP2000593680A Expired - Lifetime JP4766746B2 (ja) 1999-01-15 2000-01-14 バルクviii族/vib族触媒を用いる水素化精製方法
JP2000593558A Withdrawn JP2002534264A (ja) 1999-01-15 2000-01-14 オキソ法によりアルコールを製造するための改良方法
JP2000593678A Expired - Lifetime JP4681735B2 (ja) 1999-01-15 2000-01-14 バルク第viii族/第vib族触媒を用いる水素転化方法
JP2000593648A Withdrawn JP2002534569A (ja) 1999-01-15 2000-01-14 炭化水素樹脂の水素化の方法
JP2000593690A Expired - Lifetime JP4766749B2 (ja) 1999-01-15 2000-01-14 バルク第viii族/第vib族触媒を用いた水素処理

Country Status (15)

Country Link
US (1) US6162350A (ja)
EP (12) EP1171549B1 (ja)
JP (12) JP4524044B2 (ja)
KR (1) KR20010101526A (ja)
CN (1) CN1136236C (ja)
AT (7) ATE388217T1 (ja)
AU (11) AU759972B2 (ja)
BR (2) BR0007558A (ja)
CA (11) CA2358905C (ja)
DE (8) DE60044244D1 (ja)
DK (5) DK1169414T3 (ja)
ES (3) ES2246828T3 (ja)
MX (1) MXPA01007139A (ja)
NO (11) NO20013425D0 (ja)
WO (12) WO2000042127A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510798A (ja) 2003-11-10 2007-04-26 エクソンモービル リサーチ アンド エンジニアリング カンパニー 潤滑油基油の製造方法
JP2009540021A (ja) * 2006-06-02 2009-11-19 エクソンモービル リサーチ アンド エンジニアリング カンパニー 低硫黄燃料の製造のための改良された水素化分解装置後処理触媒
JP4810530B2 (ja) * 2004-04-22 2011-11-09 エクソンモービル リサーチ アンド エンジニアリング カンパニー 炭化水素質原料ストリームの品質向上方法
JP2019506351A (ja) * 2015-12-15 2019-03-07 ユーオーピー エルエルシー 結晶性ビスアンモニア金属モリブデート

Families Citing this family (233)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989008819A1 (en) * 1988-03-15 1989-09-21 Divetronic Ag Process and device for compensating errors of measurement
US6863803B1 (en) * 1997-07-15 2005-03-08 Exxonmobil Research And Engineering Company Production of low sulfur/low nitrogen hydrocrackates
US6582590B1 (en) * 1997-07-15 2003-06-24 Exxonmobil Research And Engineering Company Multistage hydroprocessing using bulk multimetallic catalyst
US6758963B1 (en) * 1997-07-15 2004-07-06 Exxonmobil Research And Engineering Company Hydroprocessing using bulk group VIII/group vib catalysts
US6783663B1 (en) * 1997-07-15 2004-08-31 Exxonmobil Research And Engineering Company Hydrotreating using bulk multimetallic catalysts
US7288182B1 (en) * 1997-07-15 2007-10-30 Exxonmobil Research And Engineering Company Hydroprocessing using bulk Group VIII/Group VIB catalysts
US7229548B2 (en) * 1997-07-15 2007-06-12 Exxonmobil Research And Engineering Company Process for upgrading naphtha
US6162350A (en) * 1997-07-15 2000-12-19 Exxon Research And Engineering Company Hydroprocessing using bulk Group VIII/Group VIB catalysts (HEN-9901)
US6755963B2 (en) * 1997-07-15 2004-06-29 Exxonmobil Chemical Patents Inc. Hydrogenation process for hydrocarbon resins
US6712955B1 (en) * 1997-07-15 2004-03-30 Exxonmobil Research And Engineering Company Slurry hydroprocessing using bulk multimetallic catalysts
US7232515B1 (en) * 1997-07-15 2007-06-19 Exxonmobil Research And Engineering Company Hydrofining process using bulk group VIII/Group VIB catalysts
US6620313B1 (en) * 1997-07-15 2003-09-16 Exxonmobil Research And Engineering Company Hydroconversion process using bulk group VIII/Group VIB catalysts
US7513989B1 (en) * 1997-07-15 2009-04-07 Exxonmobil Research And Engineering Company Hydrocracking process using bulk group VIII/Group VIB catalysts
US6534437B2 (en) 1999-01-15 2003-03-18 Akzo Nobel N.V. Process for preparing a mixed metal catalyst composition
US6281158B1 (en) * 1999-02-15 2001-08-28 Shell Oil Company Preparation of a co-containing hydrotreating catalyst precursor and catalyst
EP1153005A1 (en) * 1999-02-22 2001-11-14 Symyx Technologies Compositions comprising nickel and their use as catalyst in oxidative dehydrogenation of alkanes
US6841512B1 (en) * 1999-04-12 2005-01-11 Ovonic Battery Company, Inc. Finely divided metal catalyst and method for making same
US6372125B1 (en) * 1999-08-23 2002-04-16 Institut Francais Du Petrole Catalyst comprising a group VIB metal carbide, phosphorous and its use for hydrodesulphurisation and hydrogenation of gas oils
DE60134140D1 (de) * 2000-07-12 2008-07-03 Albemarle Netherlands Bv Verfahren zur herstellung eines ein additiv enthaltenden mischmetallkatalysators
EP1299185B1 (en) * 2000-07-12 2011-03-02 Albemarle Netherlands B.V. Mixed metal catalyst comprising a combustible binder
US6632414B2 (en) * 2001-03-30 2003-10-14 Corning Incorporated Mini-structured catalyst beds for three-phase chemical processing
US6515033B2 (en) 2001-05-11 2003-02-04 Chevron U.S.A. Inc. Methods for optimizing fischer-tropsch synthesis hydrocarbons in the distillate fuel range
US6515034B2 (en) 2001-05-11 2003-02-04 Chevron U.S.A. Inc. Co-hydroprocessing of Fischer-Tropsch products and crude oil fractions
FR2838743A1 (fr) * 2002-04-18 2003-10-24 Centre Nat Rech Scient Procede de transformation et/ou recyclage de polymeres et copolymeres
CA2491211A1 (en) * 2002-06-25 2003-12-31 Akzo Nobel N.V. Use of cationic layered materials, compositions comprising these materials, and the preparation of cationic layered materials
FR2842202A1 (fr) * 2002-07-11 2004-01-16 Bp Lavera Snc Terpolymere du styrene et procede de transformation controlee de polymeres hydrocarbones
US7173160B2 (en) 2002-07-18 2007-02-06 Chevron U.S.A. Inc. Processes for concentrating higher diamondoids
FR2843050B1 (fr) * 2002-08-01 2005-04-15 Inst Francais Du Petrole Catalyseur a base de metaux du groupe vi et du groupe viii presents au moins en partie sous la forme d'heteropolyanions dans le precurseur oxyde
TW200425950A (en) * 2003-02-24 2004-12-01 Shell Int Research Catalyst composition preparation and use
AR043243A1 (es) * 2003-02-24 2005-07-20 Shell Int Research Composicion de catalizador ,su preparacion y uso
US7598202B2 (en) * 2003-06-24 2009-10-06 Albemarle Netherlands B.V. Use of cationic layered materials, compositions comprising these materials, and the preparation of cationic layered materials
US6951830B2 (en) * 2003-08-05 2005-10-04 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst compositions, their production and use in conversion processes
AU2004279081A1 (en) * 2003-10-02 2005-04-14 Exxonmobil Research And Engineering Company Process for upgrading naphtha
US20050109679A1 (en) * 2003-11-10 2005-05-26 Schleicher Gary P. Process for making lube oil basestocks
US7816299B2 (en) * 2003-11-10 2010-10-19 Exxonmobil Research And Engineering Company Hydrotreating catalyst system suitable for use in hydrotreating hydrocarbonaceous feedstreams
CA2544210C (en) * 2003-11-10 2012-12-04 Exxonmobil Research And Engineering Company A hydrotreating catalyst system suitable for use in hydrotreating hydrocarbonaceous feedstreams
US8070937B2 (en) 2003-12-19 2011-12-06 Shell Oil Company Systems, methods, and catalysts for producing a crude product
BRPI0405565A (pt) * 2003-12-19 2005-08-30 Shell Int Research Métodos de produzir um produto de petróleo bruto e combustìvel de transporte, combustìvel de aquecimento, lubrificantes ou substâncias quìmicas, e, produto de petróleo bruto
US20100098602A1 (en) 2003-12-19 2010-04-22 Opinder Kishan Bhan Systems, methods, and catalysts for producing a crude product
CN1894371A (zh) * 2003-12-19 2007-01-10 国际壳牌研究有限公司 生产原油产品的系统,方法和催化剂
US7416653B2 (en) 2003-12-19 2008-08-26 Shell Oil Company Systems and methods of producing a crude product
US7745369B2 (en) 2003-12-19 2010-06-29 Shell Oil Company Method and catalyst for producing a crude product with minimal hydrogen uptake
CA2455011C (en) 2004-01-09 2011-04-05 Suncor Energy Inc. Bituminous froth inline steam injection processing
CA2455149C (en) * 2004-01-22 2006-04-11 Suncor Energy Inc. In-line hydrotreatment process for low tan synthetic crude oil production from oil sand
US7780845B2 (en) * 2004-04-22 2010-08-24 Exxonmobil Research And Engineering Company Process to manufacture low sulfur distillates
US7691257B2 (en) * 2004-04-22 2010-04-06 Exxonmobil Research And Engineering Company Process to manufacture low sulfur diesel fuels
CA2570004A1 (en) * 2004-06-22 2005-12-29 Albemarle Netherlands B.V. Process for upgrading liquid hydrocarbon feeds
US7629289B2 (en) * 2004-06-23 2009-12-08 Uop Llc Selective naphtha desulfurization process and catalyst
CN101035881B (zh) * 2004-09-08 2010-10-13 国际壳牌研究有限公司 加氢裂化催化剂组合物
US7678732B2 (en) 2004-09-10 2010-03-16 Chevron Usa Inc. Highly active slurry catalyst composition
US7737072B2 (en) * 2004-09-10 2010-06-15 Chevron Usa Inc. Hydroprocessing bulk catalyst and uses thereof
US7972499B2 (en) 2004-09-10 2011-07-05 Chevron U.S.A. Inc. Process for recycling an active slurry catalyst composition in heavy oil upgrading
JP5033631B2 (ja) * 2004-09-22 2012-09-26 エクソンモービル リサーチ アンド エンジニアリング カンパニー 有機剤を含む前駆体から作製されるバルクNi−Mo−W触媒
EP1866083B1 (en) * 2005-03-24 2021-06-30 University of Regina Nickel on Ceria/Zirconia catalyst
CA2604006A1 (en) 2005-04-11 2006-10-19 Shell International Research Maatschappij B.V. Method and catalyst for producing a crude product having a reduced nitroge content
EP1885822A2 (en) * 2005-04-11 2008-02-13 Shell Internationale Research Maatschappij B.V. Systems, methods, and catalysts for producing a crude product
CA2604012C (en) 2005-04-11 2013-11-19 Shell Internationale Research Maatschappij B.V. Method and catalyst for producing a crude product having a reduced mcr content
CA2605505C (en) * 2005-04-21 2015-06-16 China Petroleum & Chemical Corporation A hydrogenation catalyst and use thereof
MXPA05009283A (es) * 2005-08-31 2007-02-27 Mexicano Inst Petrol Procedimiento para la preparacion de una composicion catalitica para el hidroprocesamiento de fracciones del petroleo.
US8067331B2 (en) * 2005-10-26 2011-11-29 Albemarle Netherlands B.V. Bulk catalyst comprising nickel tungsten metal oxidic particles
PL1957197T3 (pl) * 2005-10-26 2017-04-28 Albemarle Netherlands B.V. Kompozycja katalizatora nieosadzonego na nośniku i sposób jej wytwarzania
DK1951425T3 (da) * 2005-10-26 2019-11-25 Exxonmobil Res & Eng Co Hydrogenbehandling ved anvendelse af hydrotermisk fremstillede bulk-multimetalkatalysatorer
US7897537B2 (en) * 2005-11-23 2011-03-01 University Of Calgary Ultradispersed catalyst compositions and methods of preparation
US8372266B2 (en) 2005-12-16 2013-02-12 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US7938954B2 (en) 2005-12-16 2011-05-10 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US8048292B2 (en) * 2005-12-16 2011-11-01 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US8435400B2 (en) 2005-12-16 2013-05-07 Chevron U.S.A. Systems and methods for producing a crude product
US7931796B2 (en) 2008-09-18 2011-04-26 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US7431822B2 (en) 2005-12-16 2008-10-07 Chevron U.S.A. Inc. Process for upgrading heavy oil using a reactor with a novel reactor separation system
US7943036B2 (en) * 2009-07-21 2011-05-17 Chevron U.S.A. Inc. Systems and methods for producing a crude product
BRPI0714021A2 (pt) * 2006-07-06 2013-04-02 Grace W R & Co catalisadores ligados por sulfato de alumÍnio
TWI311498B (en) * 2006-07-19 2009-07-01 Lg Chemical Ltd Catalyst for partial oxidation of methylbenzenes, method for preparing the same, and method for producing aromatic aldehydes using the same
US20080083650A1 (en) 2006-10-06 2008-04-10 Bhan Opinder K Methods for producing a crude product
US7951746B2 (en) 2006-10-11 2011-05-31 Exxonmobil Research And Engineering Company Bulk group VIII/group VIB metal catalysts and method of preparing same
WO2008045550A1 (en) 2006-10-11 2008-04-17 Exxonmobil Research And Engineering Company Hydroprocessing methods for bulk group viii/vib metal catalysts
US20080139380A1 (en) * 2006-12-06 2008-06-12 Chevron U.S.A. Inc. Concentration of active catalyst slurry
CN101563437B (zh) * 2006-12-19 2013-11-06 埃克森美孚研究工程公司 高活性负载馏出物加氢处理催化剂
US8158842B2 (en) * 2007-06-15 2012-04-17 Uop Llc Production of chemicals from pyrolysis oil
US7960520B2 (en) 2007-06-15 2011-06-14 Uop Llc Conversion of lignocellulosic biomass to chemicals and fuels
US8013195B2 (en) * 2007-06-15 2011-09-06 Uop Llc Enhancing conversion of lignocellulosic biomass
US7838696B2 (en) * 2007-10-31 2010-11-23 Chevron U. S. A. Inc. Hydroconversion process employing multi-metallic catalysts and method for making thereof
MX2010004665A (es) * 2007-10-31 2010-08-04 Chevron Usa Inc Catalizador volumetrico de hidroprocesamiento y usos del mismo.
US20090107880A1 (en) * 2007-10-31 2009-04-30 Chevron U.S.A. Inc. Method of upgrading heavy hydrocarbon streams to jet products
EP2217373B1 (en) 2007-11-09 2019-03-06 ExxonMobil Research and Engineering Company Preparation of bulk metallic group viii/group vib metal catalysts
WO2009065878A2 (en) * 2007-11-19 2009-05-28 Shell Internationale Research Maatschappij B.V. Method for the start-up of a catalytic process
CN101932381B (zh) * 2007-12-04 2014-04-30 埃克森美孚研究工程公司 使用本体催化剂组合物的烃氢化操作
US7594991B2 (en) 2007-12-28 2009-09-29 Exxonmobil Research And Engineering Company All catalytic medicinal white oil production
FR2927267B1 (fr) * 2008-02-07 2010-04-16 Inst Francais Du Petrole Catalyseur d'hydrogenation selective et son procede de preparation
CN101544904B (zh) * 2008-03-28 2012-11-14 中国科学院大连化学物理研究所 一种复合金属氧化物催化剂及制备和应用
WO2009134941A2 (en) * 2008-04-29 2009-11-05 Iovation Inc. System and method for facilitating secure payment in digital transactions
US20090023965A1 (en) * 2008-05-01 2009-01-22 Intevep, S.A. Dispersed metal sulfide-based catalysts
US7935243B2 (en) 2008-09-18 2011-05-03 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US7897036B2 (en) 2008-09-18 2011-03-01 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US7897035B2 (en) 2008-09-18 2011-03-01 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US20110017637A1 (en) * 2009-07-21 2011-01-27 Bruce Reynolds Systems and Methods for Producing a Crude Product
US8236169B2 (en) 2009-07-21 2012-08-07 Chevron U.S.A. Inc Systems and methods for producing a crude product
US7931797B2 (en) * 2009-07-21 2011-04-26 Chevron U.S.A. Inc. Systems and methods for producing a crude product
FR2940143B1 (fr) * 2008-12-18 2015-12-11 Inst Francais Du Petrole Catalyseurs d'hydrodemetallation et d'hydrodesulfuration et mise en oeuvre dans un procede d'enchainement en formulation unique
FR2940313B1 (fr) * 2008-12-18 2011-10-28 Inst Francais Du Petrole Procede d'hydrocraquage incluant des reacteurs permutables avec des charges contenant 200ppm poids-2%poids d'asphaltenes
US7964526B2 (en) * 2009-04-29 2011-06-21 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof
EA020644B1 (ru) * 2009-04-29 2014-12-30 Шеврон Ю.Эс.Эй. Инк. Полиметаллический катализатор для гидропереработки и способ его получения
US8058203B2 (en) * 2009-04-29 2011-11-15 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof
US8080492B2 (en) * 2009-04-29 2011-12-20 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof
US8383543B2 (en) * 2009-04-29 2013-02-26 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof
US7931799B2 (en) * 2009-04-29 2011-04-26 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof
US7964525B2 (en) * 2009-04-29 2011-06-21 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof
US7964524B2 (en) * 2009-04-29 2011-06-21 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof
US8686203B2 (en) 2009-06-12 2014-04-01 Exxonmobil Research And Engineering Company Process for preparing diesel fuels using vegetable oils or fatty acid derivatives
US8734638B2 (en) 2009-06-19 2014-05-27 Exxonmobil Research And Engineering Company Ebullating bed methods for treatment of biocomponent feedstocks
SG177561A1 (en) * 2009-07-17 2012-03-29 Exxonmobil Res & Eng Co Hydroprocessing of biocomponent feedstocks with fcc off-gas
US8759242B2 (en) 2009-07-21 2014-06-24 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US9068132B2 (en) 2009-07-21 2015-06-30 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US8927448B2 (en) 2009-07-21 2015-01-06 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
EP2470622A4 (en) * 2009-08-28 2014-11-26 Exxonmobil Res & Eng Co REDUCTION OF HYDROGEN CONSUMPTION IN THE HYDROGENATION OF BIOCOMPONENT RAW MATERIALS
WO2011031630A2 (en) * 2009-09-08 2011-03-17 Exxonmobil Research And Engineering Company Fuel production from feedstock containing lipidic material
US20110072715A1 (en) * 2009-09-25 2011-03-31 Exxonmobil Research And Engineering Company Fuel production from feedstock containing triglyceride and/or fatty acid alkyl ester
IT1398288B1 (it) * 2009-09-30 2013-02-22 Eni Spa Ossidi misti di metalli di transizione, catalizzatori di idrotrattamento da essi ottenuti, e processo di preparazione comprendente procedimenti sol-gel
WO2011043936A2 (en) * 2009-10-05 2011-04-14 Exxonmobil Research And Engineering Company Stacking of low activity or regenerated catalyst above higher activity catalyst
US8212099B2 (en) * 2009-11-05 2012-07-03 Chevron U.S.A. Inc. N-paraffin selective hydroconversion process using borosilicate ZSM-48 molecular sieves
BR112012009242B1 (pt) 2009-11-11 2021-09-14 Dow Global Technologies Llc Metodo para converter um alquileno em uma corrente de produto que compreenda um alcanol
CA2781893C (en) 2009-12-08 2016-10-04 Exxonmobil Research And Engineering Company Hydroprocessing of high nitrogen feed using bulk catalyst
AU2010331966B2 (en) * 2009-12-18 2016-04-14 Exxonmobil Research And Engineering Company Hydroprocessing catalysts and their production
US8853474B2 (en) 2009-12-29 2014-10-07 Exxonmobil Research And Engineering Company Hydroprocessing of biocomponent feedstocks with low purity hydrogen-containing streams
WO2011115695A1 (en) * 2010-03-15 2011-09-22 Exxonmobil Chemical Patents Inc. Processes for the production of alcohols
US20120016167A1 (en) 2010-07-15 2012-01-19 Exxonmobil Research And Engineering Company Hydroprocessing of biocomponent feeds with low pressure hydrogen-containing streams
US8557106B2 (en) 2010-09-30 2013-10-15 Exxonmobil Research And Engineering Company Hydrocracking process selective for improved distillate and improved lube yield and properties
US10144882B2 (en) 2010-10-28 2018-12-04 E I Du Pont De Nemours And Company Hydroprocessing of heavy hydrocarbon feeds in liquid-full reactors
SG10201508876UA (en) 2010-11-04 2015-11-27 Albemarle Europe Sprl Hydrodeoxygenation of pyrolysis oil in presence of admixed alcohol
US20120168351A1 (en) 2010-12-30 2012-07-05 c/o Chevron Corporation Hydroprocessing catalysts and methods for making thereof
US9109176B2 (en) 2011-03-28 2015-08-18 Exxonmobil Research And Engineering Company Method for making marine bunker fuels
ITMI20110510A1 (it) * 2011-03-30 2012-10-01 Eni Spa Ossidi misti di metalli di transizione, catalizzatori di idrotrattamento da essi ottenuti, e processo di preparazione
WO2012156294A1 (en) * 2011-05-13 2012-11-22 Shell Internationale Research Maatschappij B.V. Hydrotreating catalyst comprising a group viii and/or group vib metal silicide compound
CN103930411B (zh) 2011-06-09 2016-08-17 微麦德斯公司 使用多相反应器转化生物质以制备取代呋喃
US8222465B2 (en) 2011-07-28 2012-07-17 Uop Llc Catalytic process for continuously generating polyols
US8222464B2 (en) 2011-07-28 2012-07-17 Uop Llc Catalytic process for continuously generating polyols
US8222462B2 (en) 2011-07-28 2012-07-17 Uop Llc Process for generation of polyols from saccharides
US8222463B2 (en) 2011-07-28 2012-07-17 Uop Llc Process for generation of polyols from saccharide containing feedstock
US8323937B2 (en) 2011-07-28 2012-12-04 Uop Llc Continuous catalytic generation of polyols from cellulose
US8410319B2 (en) 2011-07-28 2013-04-02 Uop Llc Continuous catalytic generation of polyols from cellulose with recycle
RU2468864C1 (ru) * 2011-10-25 2012-12-10 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Катализатор, способ его приготовления и способ гидрооблагораживания дизельных дистиллятов
US20130150641A1 (en) * 2011-12-09 2013-06-13 Chevron U.S.A. Inc. Hydroconversion of renewable feedstocks
US9035115B2 (en) * 2011-12-09 2015-05-19 Chevron U.S.A. Inc. Hydroconversion of renewable feedstocks
US9199909B2 (en) * 2011-12-09 2015-12-01 Chevron U.S.A. Inc. Hydroconversion of renewable feedstocks
US8704007B2 (en) 2011-12-09 2014-04-22 Chevron U.S.A. Inc. Hydroconversion of renewable feedstocks
US8884077B2 (en) 2011-12-09 2014-11-11 Chevron U.S.A. Inc. Hydroconversion of renewable feedstocks
US9199224B2 (en) 2012-09-05 2015-12-01 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalysts and method for making thereof
EP2917193A1 (en) 2012-10-26 2015-09-16 Micromidas, Inc. Methods for producing 5-(halomethyl) furfural
US9687823B2 (en) 2012-12-14 2017-06-27 Chevron U.S.A. Inc. Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units
US9321037B2 (en) 2012-12-14 2016-04-26 Chevron U.S.A., Inc. Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units
KR102267501B1 (ko) * 2013-01-08 2021-06-21 사우디 아라비안 오일 컴퍼니 수소화분해 공정을 위한 촉매 로딩을 최적화하는 방법
US20140206915A1 (en) 2013-01-18 2014-07-24 Chevron U.S.A. Inc. Paraffinic jet and diesel fuels and base oils from vegetable oils via a combination of hydrotreating, paraffin disproportionation and hydroisomerization
KR102247145B1 (ko) 2013-03-14 2021-05-04 마이크로마이다스, 인코포레이티드 5-(할로메틸)푸르푸랄의 정제 방법
US9650312B2 (en) 2013-03-14 2017-05-16 Lummus Technology Inc. Integration of residue hydrocracking and hydrotreating
SG11201507336WA (en) 2013-03-14 2015-10-29 Micromidas Inc Solid forms of 5-(halomethyl) furfural and methods for preparing thereof
KR101797406B1 (ko) * 2013-07-17 2017-11-13 바스프 코포레이션 수지의 수소화 방법 및 촉매
TW201527289A (zh) 2013-09-20 2015-07-16 Micromidas Inc 製備5-(鹵甲基)糠醛之方法
US10196575B2 (en) * 2013-11-15 2019-02-05 Chevron U.S.A. Inc. Lubricating base oil production
RU2544996C1 (ru) * 2013-11-27 2015-03-20 Общество с ограниченной ответственностью "ЛУКОЙЛ-Нижегороднефтеоргсинтез" (ООО "ЛУКОЙЛ-Нижегороднефтеоргсинтез") Способ получения высокоиндексных базовых масел
US10273420B2 (en) 2014-10-27 2019-04-30 Uop Llc Process for hydrotreating a hydrocarbons stream
CN104530317B (zh) * 2014-11-27 2017-12-29 宁波职业技术学院 一种加氢茚树脂的制备方法
CN107001959B (zh) 2014-12-04 2019-05-03 埃克森美孚研究工程公司 低硫船用燃料及其制备方法
CN104693359B (zh) * 2015-02-15 2017-08-29 广西大学 跨临界反应系统加氢改性松脂与c9/c5石油树脂方法及装置
CN104815697A (zh) * 2015-05-20 2015-08-05 南开大学 一种用于蓖麻油制备生物航空煤油超分散加氢脱氧和加氢异构化催化剂的制备方法
US10052614B2 (en) 2015-12-15 2018-08-21 Uop Llc Mixed metal oxides
US10322404B2 (en) 2015-12-15 2019-06-18 Uop Llc Crystalline transition metal oxy-hydroxide molybdate
US10046315B2 (en) 2015-12-15 2018-08-14 Uop Llc Crystalline transition metal molybdotungstate
US10399065B2 (en) 2015-12-15 2019-09-03 Uop Llc Crystalline transition metal tungstate
US10399063B2 (en) 2015-12-15 2019-09-03 Uop Llc Mixed metal oxides
US10052616B2 (en) 2015-12-15 2018-08-21 Uop Llc Crystalline ammonia transition metal molybdotungstate
US10233398B2 (en) 2015-12-15 2019-03-19 Uop Llc Crystalline transition metal oxy-hydroxide molybdotungstate
US10232357B2 (en) 2015-12-15 2019-03-19 Uop Llc Crystalline ammonia transition metal molybdate
US10053637B2 (en) 2015-12-15 2018-08-21 Uop Llc Transition metal tungsten oxy-hydroxide
US10449523B2 (en) 2015-12-15 2019-10-22 Uop Llc Crystalline bis-ammonia transition metal molybdotungstate
US10005812B2 (en) 2015-12-15 2018-06-26 Uop Llc Transition metal molybdotungsten oxy-hydroxide
CN106994350B (zh) * 2016-01-22 2019-12-20 中国科学院大连化学物理研究所 一种汽油选择性加氢脱硫体相催化剂及其制备和应用
US10457877B2 (en) 2016-03-31 2019-10-29 Exxonmobil Research And Engineering Company Lubricant basestock production with enhanced aromatic saturation
WO2017200640A1 (en) 2016-05-17 2017-11-23 Exxonmobil Research And Engineering Company Jet and diesel selective hydrocracking
CA3038902A1 (en) 2016-10-14 2018-04-19 Exxonmobil Research And Engineering Company Lubricant basestock production with enhanced aromatic saturation
EP3535355A4 (en) * 2016-11-07 2020-05-13 Hindustan Petroleum Corporation Limited METHOD FOR PRODUCING LIGHTER DISTILLATES
CN106693997B (zh) * 2017-01-10 2019-05-31 中国石油大学(华东) 一种柴油加氢脱硫催化剂及其制备方法和应用
US10655074B2 (en) 2017-02-12 2020-05-19 Mag{hacek over (e)}m{hacek over (a)} Technology LLC Multi-stage process and device for reducing environmental contaminates in heavy marine fuel oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
WO2019027677A1 (en) 2017-08-03 2019-02-07 Exxonmobil Research And Engineering Company BLOCKED OPERATION FOR THE PRODUCTION OF GROUP II AND GROUP III LUBRICANTS
CN110997144A (zh) 2017-08-03 2020-04-10 埃克森美孚研究工程公司 利用含水气流活化硅质载体上的贵金属催化剂
RU2665484C1 (ru) * 2017-08-25 2018-08-30 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Способ получения катализатора и способ гидрирования нефтеполимерных смол в его присутствии
US10882030B2 (en) 2017-08-25 2021-01-05 Uop Llc Crystalline transition metal tungstate
US10773245B2 (en) 2017-08-25 2020-09-15 Uop Llc Crystalline transition metal molybdotungstate
US10995013B2 (en) 2017-12-20 2021-05-04 Uop Llc Mixed transition metal tungstate
US10843176B2 (en) * 2017-12-20 2020-11-24 Uop Llc Highly active quaternary metallic materials using short-chain alkyl quaternary ammonium compounds
US10875013B2 (en) 2017-12-20 2020-12-29 Uop Llc Crystalline oxy-hydroxide transition metal molybdotungstate
US11117811B2 (en) 2017-12-20 2021-09-14 Uop Llc Highly active quaternary metallic materials using short-chain alkyl quaternary ammonium compounds
US11007515B2 (en) 2017-12-20 2021-05-18 Uop Llc Highly active trimetallic materials using short-chain alkyl quaternary ammonium compounds
US11034591B2 (en) 2017-12-20 2021-06-15 Uop Llc Highly active quaternary metallic materials using short-chain alkyl quaternary ammonium compounds
US10822247B2 (en) 2017-12-20 2020-11-03 Uop Llc Highly active trimetallic materials using short-chain alkyl quaternary ammonium compounds
US11078088B2 (en) 2017-12-20 2021-08-03 Uop Llc Highly active multimetallic materials using short-chain alkyl quaternary ammonium compounds
TW201932583A (zh) 2017-12-21 2019-08-16 美商艾克頌美孚研究工程公司 第ⅲ類基礎油及潤滑劑組成物
TW201930575A (zh) 2017-12-21 2019-08-01 美商艾克頌美孚研究工程公司 具有經改善的低溫性能之潤滑劑組成物
TW201934734A (zh) 2017-12-21 2019-09-01 美商艾克頌美孚研究工程公司 具有改良的氧化效能之潤滑劑組成物
TW201934731A (zh) 2017-12-21 2019-09-01 美商艾克頌美孚研究工程公司 第ⅲ類基礎油及潤滑油組成物
WO2019217044A1 (en) 2018-05-07 2019-11-14 Exxonmobil Research And Engineering Company Process for production of base stocks
SG11202010266RA (en) 2018-06-26 2021-01-28 Exxonmobil Res & Eng Co Production of improved base stocks
US11033883B2 (en) 2018-06-26 2021-06-15 Uop Llc Transition metal molybdotungstate material
US10737249B2 (en) 2018-06-26 2020-08-11 Uop Llc Crystalline transition metal molybdotungstate
US10688479B2 (en) 2018-06-26 2020-06-23 Uop Llc Crystalline transition metal tungstate
US10682632B2 (en) 2018-06-26 2020-06-16 Uop Llc Transition metal tungstate material
US10737248B2 (en) 2018-06-26 2020-08-11 Uop Llc Crystalline transition metal tungstate
US10981151B2 (en) 2018-06-29 2021-04-20 Uop Llc Poorly crystalline transition metal molybdotungstate
US10737246B2 (en) 2018-06-29 2020-08-11 Uop Llc Poorly crystalline transition metal tungstate
RU2675361C1 (ru) * 2018-08-06 2018-12-19 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Способ получения катализатора и способ гидрирования нефтеполимерных смол в его присутствии
US10933407B2 (en) 2018-12-13 2021-03-02 Uop Llc Ammonia-free synthesis for Al or Si based multimetallic materials
US11213803B2 (en) 2018-12-13 2022-01-04 Uop Llc Ammonia-free synthesis for Al or Si based multimetallic materials
WO2020171965A1 (en) * 2019-02-22 2020-08-27 Exxonmobil Research And Engineering Company Hydroprocessing feedstocks having silicon content
US11426711B2 (en) 2019-05-22 2022-08-30 Uop Llc Method of making highly active metal oxide and metal sulfide materials
CN113939548B (zh) * 2019-06-03 2024-04-26 韩华思路信(株) 氢化石油树脂的制备方法
WO2021028839A1 (en) 2019-08-12 2021-02-18 Chevron U.S.A. Inc. Process for improving base oil yields
JP2022551943A (ja) 2019-10-11 2022-12-14 ヴェクター ヴィターレ アイピー エルエルシー パーキンソン病およびその他の神経変性疾患を処置するためのルビジウムおよび/または亜鉛化合物
US11185850B2 (en) 2019-12-02 2021-11-30 Saudi Arabian Oil Company Dual functional composite catalyst for olefin metathesis and cracking
CN110961127A (zh) * 2019-12-09 2020-04-07 大连理工大学 一种以类水滑石为前驱体制备负载型dcpd树脂加氢催化剂的方法
CN111333752B (zh) * 2020-02-28 2021-06-08 宁波工程学院 一种碳九树脂的加氢催化方法
FR3111827B1 (fr) 2020-06-29 2022-08-19 Ifp Energies Now Catalyseur trimetallique a base de nickel, molybdene et tungstene et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
US11826738B2 (en) 2020-07-27 2023-11-28 Uop Llc High activity and high distillate yield hydrocracking catalysts with intimate interaction between unsupported metal oxide and zeolite
EP4192927A1 (en) 2020-08-07 2023-06-14 Totalenergies Onetech Process for the production of white oils
US20230303936A1 (en) 2020-08-07 2023-09-28 Totalenergies Onetech Process for the production of white oils
CN111825846B (zh) * 2020-08-12 2021-10-22 广西壮族自治区林业科学研究院 一种浅色高稳定性水溶性松香树脂及其制备方法
WO2022039730A1 (en) * 2020-08-19 2022-02-24 Exxonmobil Research And Engineering Company Tungsten-containing bulk catalysts, method of making the same, and their use in low pressure diesel hydroprocessing
US20240117256A1 (en) 2021-01-26 2024-04-11 Chevron U.S.A. Inc. Process for making heavy grade base oil products
TW202239952A (zh) 2021-01-26 2022-10-16 美商雪維隆美國有限公司 用於製造亮滑油料基礎油產品之製程
US11384297B1 (en) * 2021-02-04 2022-07-12 Saudi Arabian Oil Company Systems and methods for upgrading pyrolysis oil to light aromatics over mixed metal oxide catalysts
WO2023015168A1 (en) 2021-08-06 2023-02-09 ExxonMobil Technology and Engineering Company Hydro-dealkylation process to generate high quality fuels, base stocks and waxes
WO2023114839A1 (en) 2021-12-15 2023-06-22 ExxonMobil Technology and Engineering Company Bulk cobalt-molybdenum catalyst compositions and synthesis methods
US11746299B1 (en) 2022-07-11 2023-09-05 Saudi Arabian Oil Company Methods and systems for upgrading mixed pyrolysis oil to light aromatics over mixed metal oxide catalysts
CN115475644B (zh) * 2022-09-15 2023-09-19 青岛科技大学 一种松香加氢制备氢化松香的方法及其催化剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094140A (ja) * 1983-10-25 1985-05-27 アンステイテユ・フランセ・デユ・ペトロール 第8族および第6b族の硫化金属をベースとする炭化水素の水素化処理触媒およびそれらの製造法
JPS61245846A (ja) * 1984-12-28 1986-11-01 エクソン リサ−チ アンド エンヂニアリング コムパニ− 無定形の鉄で助触媒されるMo及びW硫化物水素化処理触媒及びその使用法
JP4365526B2 (ja) * 1997-07-15 2009-11-18 エクソンモービル リサーチ アンド エンジニアリング カンパニー 混合金属酸化物、混合金属酸化物プレカーサ、および接触水素化脱窒素方法

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US480563A (en) * 1892-08-09 Sectional horseshoe
NL78907C (ja) * 1951-08-31
US3520796A (en) * 1968-08-21 1970-07-14 Gulf Research Development Co Making lubricating oils by hydrotreating and dewaxing
US3678124A (en) * 1968-10-24 1972-07-18 Gennady Arkadievich Stepanov Process for the production of mono- and diolefin hydrocarbons
US3619414A (en) * 1969-02-19 1971-11-09 Sun Oil Co Catalytic hydrofinishing of petroleum distillates in the lubricating oil boiling range
US3861005A (en) * 1969-05-28 1975-01-21 Sun Oil Co Pennsylvania Catalytic isomerization of lube streams and waxes
US3901828A (en) * 1971-11-08 1975-08-26 Heraeus Gmbh W C Oxidation catalyst for combustibles in gas mixtures
GB1408759A (en) * 1971-12-07 1975-10-01 Shell Int Research Catalytic hydrodesulphurisation process
US3850746A (en) * 1972-03-09 1974-11-26 Exxon Research Engineering Co Hydrodenitrogenation of hydrocarbon feedstocks with a catalyst composite of chrysotile and hydrogenation metal
JPS5714333B2 (ja) * 1973-07-05 1982-03-24
IT1001977B (it) * 1973-11-28 1976-04-30 Sir Soc Italiana Resine Spa Procedimento per la preparazione di acrilato di metile o di miscele di acrilato di metile ed acido acri lico
US4102822A (en) * 1976-07-26 1978-07-25 Chevron Research Company Hydrocarbon hydroconversion catalyst and the method for its preparation
US4388223A (en) * 1981-04-06 1983-06-14 Euteco Impianti S.P.A. Catalyst for the conversion of unsaturated hydrocarbons into diolefins or unsaturated aldehydes and nitriles, and process for preparing the same
US4395328A (en) * 1981-06-17 1983-07-26 Standard Oil Company (Indiana) Catalyst and support, their methods of preparation, and processes employing same
US4824821A (en) * 1983-08-29 1989-04-25 Chevron Research Company Dispersed group VIB metal sulfide catalyst promoted with Group VIII metal
US4857496A (en) * 1983-08-29 1989-08-15 Chevron Research Company Heavy oil hydroprocessing with Group VI metal slurry catalyst
EP0169054A3 (en) * 1984-07-18 1987-12-16 The University Of Newcastle Upon Tyne Composite materials and products
US4721558A (en) * 1984-09-28 1988-01-26 Exxon Research And Engineering Company Hydrotreating catalysts comprising a mixture of a sulfide of a promoter metal amorphous sulfide of trivalent chromium and microcrystalline molybdenum or tungsten sulfide
US4591429A (en) * 1984-09-28 1986-05-27 Exxon Research And Engineering Co. Hydrotreating process employing catalysts comprising a supported mixture of a sulfide of a promoter metal, trivalent chromium and molybdenum or tungsten
GB8518940D0 (en) * 1985-07-26 1985-09-04 Shell Int Research Manufacture of lubricating base oils
EP0215989A1 (en) * 1985-08-06 1987-04-01 Exxon Research And Engineering Company Amorphous, iron promoted mo and w sulfide hydroprocessing catalysts and uses thereof
US4808563A (en) * 1986-03-24 1989-02-28 The Standard Oil Company Molybdenum-tungsten-containing catalyst for methane conversion process
JPS62199687A (ja) * 1986-04-28 1987-09-03 ユニオン・オイル・コンパニ−・オブ・カリフオルニア 細孔の大きい触媒を用いる水素化法
US4849093A (en) * 1987-02-02 1989-07-18 Union Oil Company Of California Catalytic aromatic saturation of hydrocarbons
US4875992A (en) * 1987-12-18 1989-10-24 Exxon Research And Engineering Company Process for the production of high density jet fuel from fused multi-ring aromatics and hydroaromatics
US4952306A (en) * 1989-09-22 1990-08-28 Exxon Research And Engineering Company Slurry hydroprocessing process
GB8925980D0 (en) * 1989-11-16 1990-01-04 Shell Int Research Process for converting hydrocarbon oils
US5122258A (en) * 1991-05-16 1992-06-16 Exxon Research And Engineering Company Increasing VI of lube oil by hydrotreating using bulk Ni/Mn/Mo or Ni/Cr/Mo sulfide catalysts prepared from ligated metal complexes
JPH04365526A (ja) * 1991-06-12 1992-12-17 Kiwa Giken Kk 複合加工機械
US5320741A (en) * 1992-04-09 1994-06-14 Stone & Webster Engineering Corporation Combination process for the pretreatment and hydroconversion of heavy residual oils
RU2030444C1 (ru) * 1992-07-20 1995-03-10 Акционерное общество открытого типа "ЛУКойл-Пермнефтеоргсинтез" Способ гидроочистки нефтяных дистиллятных фракций
JP3057125B2 (ja) * 1992-10-02 2000-06-26 日石三菱株式会社 高粘度指数低粘度潤滑油基油の製造方法
JP3065816B2 (ja) * 1992-10-02 2000-07-17 日石三菱株式会社 高粘度指数低粘度潤滑油基油の製造法
US5306848A (en) * 1992-10-16 1994-04-26 Exxon Chemical Patents Inc. Hydrogenation catalyst for oxo alcohol process
DE4302991A1 (de) * 1993-02-03 1994-08-04 Basf Ag Multimetalloxidmassen
JPH06262084A (ja) * 1993-03-12 1994-09-20 Agency Of Ind Science & Technol 炭化水素油の水素化分解触媒
JPH0782573A (ja) * 1993-07-23 1995-03-28 Jgc Corp 石油の処理方法及び装置
US5382715A (en) * 1993-11-29 1995-01-17 Exxon Chemical Patents Inc. Hydrogenation catalyst with low phosphorous content for oxo alcohol process
US5399793A (en) * 1993-11-29 1995-03-21 Exxon Chemical Patents Inc. Hydrogenation catalyst for oxo alcohol process
US5510309A (en) * 1994-05-02 1996-04-23 Mobil Oil Corporation Method for preparing a modified solid oxide
TW309513B (ja) * 1994-05-31 1997-07-01 Nippon Catalytic Chem Ind
IT1275447B (it) * 1995-05-26 1997-08-07 Snam Progetti Procedimento per la conversione di greggi pesanti e residui di distillazione a distillati
JP3676849B2 (ja) * 1995-06-10 2005-07-27 財団法人石油産業活性化センター 軽油の水素化脱硫触媒
US5976353A (en) * 1996-06-28 1999-11-02 Exxon Research And Engineering Co Raffinate hydroconversion process (JHT-9601)
US5911874A (en) * 1996-06-28 1999-06-15 Exxon Research And Engineering Co. Raffinate hydroconversion process
HUP0004280A3 (en) * 1996-07-15 2001-06-28 Chevron U S A Inc San Francisc Layered catalyst system for lube oil hydroconversion
EA000850B1 (ru) * 1996-07-16 2000-06-26 Шеврон Ю.Эс.Эй. Инк. Способ получения базового компонента смазочного масла
US6096189A (en) * 1996-12-17 2000-08-01 Exxon Research And Engineering Co. Hydroconversion process for making lubricating oil basestocks
US6162350A (en) * 1997-07-15 2000-12-19 Exxon Research And Engineering Company Hydroprocessing using bulk Group VIII/Group VIB catalysts (HEN-9901)
CN1055955C (zh) * 1997-11-24 2000-08-30 中国石油化工总公司 一种加氢处理催化剂及其制备方法
US5968346A (en) * 1998-09-16 1999-10-19 Exxon Research And Engineering Co. Two stage hydroprocessing with vapor-liquid interstage contacting for vapor heteroatom removal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094140A (ja) * 1983-10-25 1985-05-27 アンステイテユ・フランセ・デユ・ペトロール 第8族および第6b族の硫化金属をベースとする炭化水素の水素化処理触媒およびそれらの製造法
JPS61245846A (ja) * 1984-12-28 1986-11-01 エクソン リサ−チ アンド エンヂニアリング コムパニ− 無定形の鉄で助触媒されるMo及びW硫化物水素化処理触媒及びその使用法
JP4365526B2 (ja) * 1997-07-15 2009-11-18 エクソンモービル リサーチ アンド エンジニアリング カンパニー 混合金属酸化物、混合金属酸化物プレカーサ、および接触水素化脱窒素方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6009065116, JOURNAL OF CATALYSIS, 1980, Vol.66, p.82−92 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510798A (ja) 2003-11-10 2007-04-26 エクソンモービル リサーチ アンド エンジニアリング カンパニー 潤滑油基油の製造方法
JP4810530B2 (ja) * 2004-04-22 2011-11-09 エクソンモービル リサーチ アンド エンジニアリング カンパニー 炭化水素質原料ストリームの品質向上方法
JP2009540021A (ja) * 2006-06-02 2009-11-19 エクソンモービル リサーチ アンド エンジニアリング カンパニー 低硫黄燃料の製造のための改良された水素化分解装置後処理触媒
JP2019506351A (ja) * 2015-12-15 2019-03-07 ユーオーピー エルエルシー 結晶性ビスアンモニア金属モリブデート

Also Published As

Publication number Publication date
EP1169414A1 (en) 2002-01-09
CA2359192A1 (en) 2000-07-20
ATE465225T1 (de) 2010-05-15
ES2246828T3 (es) 2006-03-01
WO2000042120A8 (en) 2001-04-12
NO20013424D0 (no) 2001-07-10
EP1171549B1 (en) 2008-03-05
EP1157083A1 (en) 2001-11-28
EP1153106B1 (en) 2008-03-05
JP2002534585A (ja) 2002-10-15
JP5039256B2 (ja) 2012-10-03
CA2356909A1 (en) 2000-07-20
EP1153106A4 (en) 2003-01-02
AU2728000A (en) 2000-08-01
AU2966200A (en) 2000-08-01
NO20013491D0 (no) 2001-07-13
NO20013425L (no) 2001-07-10
US6162350A (en) 2000-12-19
AU759434B2 (en) 2003-04-17
CA2357528C (en) 2010-08-03
ATE388216T1 (de) 2008-03-15
WO2000042121A1 (en) 2000-07-20
DK1157083T3 (da) 2005-01-31
NO20013490L (no) 2001-08-31
CA2358905A1 (en) 2000-07-20
AU2966300A (en) 2000-08-01
CA2358910C (en) 2010-07-13
EP1169411A1 (en) 2002-01-09
DE60019400T2 (de) 2006-03-16
ATE411372T1 (de) 2008-10-15
DE60044244D1 (de) 2010-06-02
EP1153046A1 (en) 2001-11-14
DE60022176T2 (de) 2006-06-08
NO20013488D0 (no) 2001-07-13
DK1171547T3 (da) 2010-08-16
NO20013488L (no) 2001-09-13
WO2000041988A1 (en) 2000-07-20
NO20013489D0 (no) 2001-07-13
JP2002534569A (ja) 2002-10-15
ATE277149T1 (de) 2004-10-15
AU759864B2 (en) 2003-05-01
JP2002534588A (ja) 2002-10-15
WO2000042124A1 (en) 2000-07-20
EP1171547A1 (en) 2002-01-16
WO2000042126A1 (en) 2000-07-20
JP2002534581A (ja) 2002-10-15
JP2002534584A (ja) 2002-10-15
JP4625582B2 (ja) 2011-02-02
DE60038227T2 (de) 2009-03-19
NO20013485D0 (no) 2001-07-13
DE60040527D1 (de) 2008-11-27
AU763406B2 (en) 2003-07-24
WO2000042119A1 (en) 2000-07-20
NO20013486L (no) 2001-09-13
JP4766749B2 (ja) 2011-09-07
CA2357022A1 (en) 2000-07-20
CA2358901A1 (en) 2000-07-20
JP2002534589A (ja) 2002-10-15
ATE388217T1 (de) 2008-03-15
AU3209500A (en) 2000-08-01
CA2359192C (en) 2011-03-15
BR0007821A (pt) 2001-11-20
EP1157083A4 (en) 2003-03-26
AU2966700A (en) 2000-08-01
CA2360035A1 (en) 2000-07-20
NO20013417L (no) 2001-08-27
JP4766746B2 (ja) 2011-09-07
NO20013491L (no) 2001-08-31
JP2002534579A (ja) 2002-10-15
WO2000042127A1 (en) 2000-07-20
CA2357022C (en) 2011-03-15
AU2613500A (en) 2000-08-01
EP1169417B1 (en) 2006-03-29
ES2261183T3 (es) 2006-11-16
NO20013489L (no) 2001-09-14
WO2000042131A1 (en) 2000-07-20
AU2966600A (en) 2000-08-01
EP1144351A1 (en) 2001-10-17
WO2000042120A1 (en) 2000-07-20
CN1136236C (zh) 2004-01-28
DE60026977D1 (de) 2006-05-18
CA2358695C (en) 2010-08-03
DK1169416T3 (da) 2005-11-28
WO2000042082A1 (en) 2000-07-20
AU763909B2 (en) 2003-08-07
NO20013485L (no) 2001-09-06
ATE321830T1 (de) 2006-04-15
BR0007558A (pt) 2001-10-23
EP1169414B1 (en) 2008-10-15
ATE302831T1 (de) 2005-09-15
EP1169416A4 (en) 2003-03-26
AU2850600A (en) 2000-08-01
NO20013486D0 (no) 2001-07-13
JP2002534587A (ja) 2002-10-15
EP1153106A1 (en) 2001-11-14
EP1169417A4 (en) 2003-03-26
JP2002534580A (ja) 2002-10-15
WO2000042128A1 (en) 2000-07-20
JP4766747B2 (ja) 2011-09-07
AU757449B2 (en) 2003-02-20
EP1169416A1 (en) 2002-01-09
AU762701B2 (en) 2003-07-03
KR20010101526A (ko) 2001-11-14
CA2356920A1 (en) 2000-07-20
NO329318B1 (no) 2010-09-27
NO20013487D0 (no) 2001-07-13
NO20013487L (no) 2001-09-14
CA2356909C (en) 2010-07-06
CA2358901C (en) 2010-07-06
AU2727600A (en) 2000-08-01
JP4766748B2 (ja) 2011-09-07
WO2000042121A8 (en) 2001-04-12
NO329317B1 (no) 2010-09-27
AU2613700A (en) 2000-08-01
NO20013492L (no) 2001-08-31
EP1169411A4 (en) 2003-01-08
AU757716B2 (en) 2003-03-06
JP2002534586A (ja) 2002-10-15
EP1171547B1 (en) 2010-04-21
EP1169416B1 (en) 2005-08-24
WO2000042126A9 (en) 2002-01-31
JP4524044B2 (ja) 2010-08-11
EP1169415A1 (en) 2002-01-09
DE60026977T2 (de) 2006-10-05
CN1322217A (zh) 2001-11-14
NO20013424L (no) 2001-07-10
NO329323B1 (no) 2010-09-27
DE60019400D1 (de) 2005-05-19
DE60014040D1 (de) 2004-10-28
DE60038223D1 (de) 2008-04-17
WO2000042125A1 (en) 2000-07-20
WO2000042129A1 (en) 2000-07-20
CA2356920C (en) 2010-06-01
CA2357528A1 (en) 2000-07-20
DE60022176D1 (de) 2005-09-29
ES2316351T3 (es) 2009-04-16
CA2357024C (en) 2011-03-15
CA2357024A1 (en) 2000-07-20
EP1171549A1 (en) 2002-01-16
NO331510B1 (no) 2012-01-16
EP1169413A4 (en) 2003-01-29
DE60038227D1 (de) 2008-04-17
DK1169414T3 (da) 2009-02-16
JP2002534264A (ja) 2002-10-15
NO20013492D0 (no) 2001-07-13
NO20013417D0 (no) 2001-07-10
MXPA01007139A (es) 2006-02-10
EP1157083B1 (en) 2004-09-22
AU2966500A (en) 2000-08-01
CA2358910A1 (en) 2000-07-20
AU762503B2 (en) 2003-06-26
EP1169415A4 (en) 2003-01-08
NO20013490D0 (no) 2001-07-13
EP1169417A1 (en) 2002-01-09
EP1171549A4 (en) 2003-01-02
DK1169417T3 (da) 2006-08-07
AU759972B2 (en) 2003-05-01
EP1171547A4 (en) 2003-01-29
JP4681735B2 (ja) 2011-05-11
DE60014040T2 (de) 2005-10-06
NO20013425D0 (no) 2001-07-10
EP1169414A4 (en) 2003-01-29
EP1153046B1 (en) 2005-04-13
EP1169413A1 (en) 2002-01-09
CA2358695A1 (en) 2000-07-20
CA2358905C (en) 2010-05-25
AU755642B2 (en) 2002-12-19

Similar Documents

Publication Publication Date Title
JP4766747B2 (ja) バルク多重金属触媒を用いた留出物の水素化脱硫−水素添加の多段方法
US6582590B1 (en) Multistage hydroprocessing using bulk multimetallic catalyst
US6929738B1 (en) Two stage process for hydrodesulfurizing distillates using bulk multimetallic catalyst
US7591942B2 (en) Bulk bi-metallic catalysts made from precursors containing an organic agent
US6712955B1 (en) Slurry hydroprocessing using bulk multimetallic catalysts
US7288182B1 (en) Hydroprocessing using bulk Group VIII/Group VIB catalysts
US6783663B1 (en) Hydrotreating using bulk multimetallic catalysts
US6863803B1 (en) Production of low sulfur/low nitrogen hydrocrackates
US7232515B1 (en) Hydrofining process using bulk group VIII/Group VIB catalysts
US6758963B1 (en) Hydroprocessing using bulk group VIII/group vib catalysts
JP5033631B2 (ja) 有機剤を含む前駆体から作製されるバルクNi−Mo−W触媒
JP2007507590A (ja) ナフサの品質向上方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110614

R150 Certificate of patent or registration of utility model

Ref document number: 4766747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term