RU2675361C1 - Способ получения катализатора и способ гидрирования нефтеполимерных смол в его присутствии - Google Patents

Способ получения катализатора и способ гидрирования нефтеполимерных смол в его присутствии Download PDF

Info

Publication number
RU2675361C1
RU2675361C1 RU2018128529A RU2018128529A RU2675361C1 RU 2675361 C1 RU2675361 C1 RU 2675361C1 RU 2018128529 A RU2018128529 A RU 2018128529A RU 2018128529 A RU2018128529 A RU 2018128529A RU 2675361 C1 RU2675361 C1 RU 2675361C1
Authority
RU
Russia
Prior art keywords
catalyst
hydrogenation
petroleum
emulsion
resin
Prior art date
Application number
RU2018128529A
Other languages
English (en)
Inventor
Антон Львович Максимов
Наталья Николаевна Петрухина
Original Assignee
Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) filed Critical Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН)
Priority to RU2018128529A priority Critical patent/RU2675361C1/ru
Application granted granted Critical
Publication of RU2675361C1 publication Critical patent/RU2675361C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J157/00Adhesives based on unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09J157/02Copolymers of mineral oil hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Изобретение относится к процессам получения светлых нефтеполимерных смол гидрированием при повышенной температуре при давлении водорода в присутствии катализатора и может быть использовано для получения компонентов адгезивов и клеев-расплавов, цветных асфальтобетонов, а также в пищевой и полиграфической промышленности. По способу получения катализатора гидрирования нефтеполимерных смол прекурсор катализатора - гексагидрат нитрата никеля и тетрагидрат парамолибдата аммония - растворяют в воде. Водный раствор прекурсора катализатора с мольным отношением Mo/Ni 1/0.25-1/2 вводят в декалин, в который предварительно введен эмульгатор - нефтеполимерная или инденкумароновая смола в количестве от 1 до 6% мас. Получают эмульсию водного раствора прекурсора катализатора с содержанием воды не более 2% мас. Затем в эмульсию вводят сульфидирующий агент - элементную серу до мольного отношения S/Mo в катализаторе 2/1-4/1, проводят синтез катализатора и удаляют декалин с выделением полученного катализатора. По способу гидрирования нефтеполимерной смолы вначале нефтеполимерную смолу растворяют в циклогексане, или бензоле, или их смеси до концентрации от 20 до 40% мас. Затем в нее вводят полученный катализатор при его содержании от 1 до 3% мас. в расчете на молибден от нефтеполимерной смолы и ведут гидрирование последней при повышенной температуре и давлении водорода при работе катализатора в отсутствие его регенерации не менее трех циклов. Технический результат - повышение степени гидрирования ароматических и олефиновых фрагментов при невысокой стоимости прекурсоров катализаторов, повышение стабильности катализатора при сохранении его активности без регенерации, улучшение цвета нефтеполимерной смолы. 2 н.п. ф-лы, 2 табл., 17 пр., 5 ил.

Description

Изобретение относится к процессам получения светлых нефтеполимерных смол гидрированием при повышенной температуре при давлении водорода в присутствии катализатора и может быть использовано для получения компонентов адгезивов и клеев-расплавов, цветных асфальтобетонов, а также в пищевой и полиграфической промышленности.
Нефтеполимерные смолы получают из отходов пиролизного производства.
Гидрирование позволяет не только улучшить цвет нефтеполимерных смол, но и исключить токсичность и запах, повышает устойчивость к воздействию кислорода воздуха и ультрафиолетового излучения. В результате повышается стабильность всех характеристик НПС и расширяется спектр областей применения.
В процессе гидрирования могут использоваться сульфидные [1, 2] и металлические [3, 4] катализаторы, либо процесс может осуществляться в две стадии на сульфидных и платиновых/палладиевых катализаторах [5]. Общий недостаток всех нанесенных катализаторов применительно к процессу гидрирования высокомолекулярных соединений - ограничение диффузии макромолекул в поры, в результате чего в реакции принимают участие только внешние, расположенные на поверхности, активные центры [6]. Кроме того, возможно блокирование пор и дезактивация катализатора по причине затруднения диффузии молекул из пор [7, 8]. Также наблюдается ограничение адсорбции полимерных цепей на поверхности вследствие конформационных ограничений и затруднение диффузии молекул из пор, что может привести к деструкции цепей, закупориванию пор и, как следствие - дезактивации катализатора.
В связи с этой проблемой привлекательным является катализ гидрирования нефтеполимерных смол в дисперсной фазе ненанесенными наноразмерными частицами сульфидов металлов, широко известный применительно к процессам гидроконверсии нефтяных остатков. Несмотря на видимые преимущества, данные катализаторы в процессах гидрирования нефтеполимерных смол мало изучены.
В публикации [9] рассмотрена возможность гидрирования НПС на сульфидных ненанесенных катализаторах, синтезируемых ex situ из маслорастворимых прекурсоров. Продемонстрирована возможность рециркуляции катализатора. Степень гидрирования ароматических колец достигает 46%. При высокой активности этих катализаторов и ее стабильности при рециркуляции можно отметить их недостаток - высокую стоимость маслорастворимых прекурсоров.
Наиболее близкими к предложенному изобретению по технической сущности и достигаемому результату являются способ получения катализатора гидрирования нефтеполимерных смол и способ гидрирования нефтеполимерных смол в его присутствии, описанные в патенте [10], где предложено синтезировать сульфидные никель(кобальт)-молибден-вольфрамовые катализаторы из триметаллических прекурсоров ex situ. Катализатор гидрирования нефтеполимерных смол получают ex situ осаждением из прекурсора, включающего раствор неорганической соли неблагородного металла группы VIII - железа, кобальта, никеля или их смеси, и неорганической соли металла группы VIB - хрома, молибдена, вольфрама или их смеси, в воде, карбоновой кислоте или спирте. Такими соединениями могут быть нитрат никеля и парамолибдата аммония, а также их гекса- и тетрагидраты. К полученным водным растворам могут добавлять спирт, а также углеводородное масло и серу как сульфидирующий агент. При нагреве до температур 300-450°С из прекурсора получают катализатор со средним диаметром частиц не менее 50 нм и не более 5000 мкм, то есть в том числе наноразмерный. Гидрирование нефтеполимерной смолы в присутствии этого катализатора ведут при температуре 100-330°С и давлении 1.013-27.6 МПа.
Отмечается большая активность данного катализатора по сравнению с нанесенным катализатором NiW/Al2O3 с точки зрения улучшения цвета нефтеполимерной смолы. Отмечается, что заявленные катализаторы идеально подходят для гидрирования нефтеполимерных смол, получаемых анионной полимеризацией в присутствии кислот Льюиса. В отличие от нанесенных катализаторов, частицы сульфидов лишены способности адсорбировать хлор и благодаря этому не приобретают кислотные свойства, ответственные за деструкцию молекул смолы.
Недостатком указанного способа является низкая степень гидрирования ароматических колец нефтеполимерной смолы, которая не превышает 15.83%. Это, в свою очередь, ограничивает области применения полученного продукта. Так, невозможно применение нефтеполимерных смол, содержащих ароматические кольца, в упаковке пищевых продуктов, в фармацевтической промышленности.
Задача настоящего изобретения заключается в разработке более эффективного и дешевого катализатора и способа гидрирования нефтеполимерных смол, обеспечивающего повышение степени гидрирования ароматических и олефиновых фрагментов при невысокой стоимости прекурсоров катализаторов и повышении стабильности катализатора при сохранении его активности без регенерации.
Поставленная задача решается тем, что в способе получения катализатора гидрирования нефтеполимерных смол, включающем растворение прекурсора катализатора - гексагидрата нитрата никеля и тетрагидрата парамолибдата аммония - в воде, введение в растворитель полученного водного раствора прекурсора катализатора, получение эмульсии и синтез катализатора ex situ при повышенной температуре и давлении водорода из эмульсии в присутствии сульфидирующего агента - элементной серы, в качестве растворителя используют декалин, в который предварительно вводят эмульгатор - нефтеполимерную или инден-кумароновую смолу в количестве от 1 до 6% мас. в расчете на декалин, затем вводят водный раствор прекурсора катализатора с мольным отношением Mo/Ni 1/0.25-1/2, взятый в количестве, обеспечивающем содержание воды в эмульсии не более 2% мас., диспергируют, вводят в указанную эмульсию элементную серу до мольного отношения S/Mo в катализаторе 2/1-4/1, проводят синтез катализатора и удаляют декалин с выделением полученного катализатора.
Поставленная задача также решается тем, что в способе гидрирования нефтеполимерной смолы в присутствии полученного ненанесенного нанодисперсного сульфидного катализатора при повышенной температуре и давлении водорода вначале нефтеполимерную смолу растворяют в циклогексане или бензоле, или их смеси, до ее концентрации в растворе от 20 до 40% мас. и вводят в нее катализатор, полученный заявленным способом, при его содержании от 1 до 3% мас. в расчете на молибден от нефтеполимерной смолы, причем гидрирование нефтеполимерной смолы ведут не менее трех циклов работы катализатора в отсутствии его регенерации.
Осуществление изобретения может быть проиллюстрировано следующими примерами.
Пример 1.
В качестве сырья используют нефтеполимерную смолу, имеющую следующие характеристики: цвет по йодной шкале 60 мг I2/100 см3, цвет по шкале Гарднера 11, содержание ароматических протонов по спектру 1Н ЯМР 22,3%, олефиновых - 2,6%, средневесовая молекулярная масса Mw = 1325, среднечисловая ММ Mn = 589, z-средняя MM Mz = 3268.
Ненанесенные сульфидные катализаторы синтезируют ex situ из гексагидрата нитрата никеля и тетрагидрата парамолибдата аммония. Их растворяют в воде. В декалин в качестве эмульгатора предварительно вводят нефтеполимерную смолу, после чего в него вводят водный раствор прекурсора катализатира и диспергируют в декалине ультразвуком, получая эмульсию. Мольное отношение Mo/Ni в прекурсоре катализатора составляет 1/0,25 мольн.
Содержание эмульгатора в эмульсии составляет 1% мас. в расчете на декалин. Содержание воды в эмульсии составляет 0,56% мас. Эмульсию загружают в автоклав и добавляют элементную серу в качестве сульфидирующего агента до соотношения S/Mo от 2/1 до 4/1, предпочтительно 3/1. Синтез ведут при температуре 360°С и начальном давлении водорода 30 атм в течение 6 ч. Затем катализатор отделяют от декалина, к катализатору добавляют 30%-ный раствор нефтеполимерной смолы в циклогексане (по массе) и проводят гидрирование нефтеполимерной смолы при начальном давлении водорода 30 атм и температуре 290°С в течение 7 ч. Расход катализатора - 2% мас. от смолы в расчете на Мо. Катализатор отделяют от раствора продукта центрифугированием, растворитель отгоняют в роторном испарителе при остаточном давлении 30 мм рт.ст. и температуре не выше 70°С.
Цвет нефтеполимерной смолы определяют согласно ГОСТ 19266-79 по йодометрической шкале. Для анализа готовят 30%-ные (по массе) растворы в циклогексане.
Степень гидрирования определяют методом 1Н ЯМР. 1Н ЯМР спектры высокого разрешения получают на ЯМР спектрометре MSL-300 (Bruker) в растворах CDCl3 при следующих условиях: частота 300,13 МГц; количество накоплений 40 при частотной развертке 8928 Гц (29,8 м.д.); температура 24°С; 90° импульс 3 мксек. Химические сдвиги считают от сигнала остаточных протонов хлороформа 7,27 м.д. по импульсной программе PAPS.PC с последующим Фурье-преобразованием. Степень гидрирования олефиновых и ароматических фрагментов вычисляют по формулам (1) и (2):
Figure 00000001
Figure 00000002
где ηol, ηar - степень гидрирования соответственно олефиновых и ароматических фрагментов, %;
Figure 00000003
Figure 00000004
- интегральная интенсивность сигнала в соответствующей области для продукта и сырья. Область олефиновых протонов соответствует 4,0-6,5 ppm, ароматических - 6,5-8,0 ppm, алифатических - 1,0-4,0 ppm.
Пример 2
Получают катализатор и проводят гидрирование, как в примере 1. Отличие состоит в том, что содержание нефтеполимерной смолы в эмульсии в расчете на декалин составляет 2% мас.
Пример 3
Получают катализатор и проводят гидрирование, как в примере 1. Отличие состоит в том, что содержание нефтеполимерной смолы в эмульсии в расчете на декалин составляет 4% мас.
Пример 4
Получают катализатор и проводят гидрирование, как в примере 1. Отличие состоит в том, что содержание нефтеполимерной смолы в эмульсии в расчете на декалин составляет 6% мас.
Пример 5
Получают катализатор и проводят гидрирование, как в примере 1. Отличие состоит в том, что в качестве эмульгатора используют инден-кумароновую смолу, и содержание ее в эмульсии в расчете на декалин составляет 1% мас.
Пример 6
Получают катализатор и проводят гидрирование, как в примере 5. Отличие состоит в том, что содержание инден-кумароновой смолы в эмульсии в расчете на декалин составляет 2% мас.
Пример 7
Получают катализатор и проводят гидрирование, как в примере 5. Отличие состоит в том, что содержание инден-кумароновой смолы в эмульсии в расчете на декалин составляет 4% мас.
Пример 8
Получают катализатор и проводят гидрирование, как в примере 5. Отличие состоит в том, что содержание инден-кумароновой смолы в эмульсии в расчете на декалин составляет 6% мас.
Пример 9 (сравнительный).
Получают катализатор и проводят гидрирование, как в примере 5. Отличие состоит в том, что при получении катализатора не используют эмульгатор.
При отсутствии эмульгатора в эмульсии средний диаметр капель составляет 465 нм, данная эмульсия нестабильна и через 240 с после приготовления расслаивается. Вследствие этого при синтезе катализатора формируются крупные малоактивные частицы. Эмульсии же, приготовленные с использованием нефтеполимерной и инден-кумароновой смолы как эмульгаторов, остаются стабильными.
На Фиг. 1 приведена зависимость размера частиц дисперсной фазы эмульсии от концентрации нефтеполимерной смолы в эмульсии. Минимальный размер частиц достигается при концентрации смолы 2-4%, дальнейшее увеличение концентрации ведет к агломерации капель воды. Инден-кумароновая смола обеспечивает получение эмульсии с меньшим диаметром частиц - всего 88 нм при содержании в эмульсии 2% смолы. Очевидно, это связано с лучшими поверхностно-активными свойствами инден-кумароновой смолы благодаря наличию в ее макромолекулах кислородсодержащих групп и отсутствию таковых в молекулах нефтеполимерных смол.
На Фиг. 2 приведены СЭМ-изображения катализатора (изображения в сканирующем электронном микроскопе), синтезированного из эмульсии, содержащей 2% инден-кумароновой смолы (по примеру 6). Размер шарообразных частиц катализатора составляет в среднем 300-400 нм.
В отсутствие катализатора степень гидрирования олефиновых фрагментов нефтеполимерной смолы составляет 71%, ароматические фрагменты не гидрируются. Напротив, наблюдается небольшое увеличение их содержания (на 5%) вследствие протекания реакций дегидроциклизации и конденсации и связанное с этим ухудшение цвета смолы до 700 мг I2/100 мл.
В Таблице 1 представлены результаты гидрирования нефтеполимерной смолы на ненанесенных катализаторах, синтезированных из эмульсий с различными эмульгаторами. Можно отметить невысокую активность катализатора, синтезированного без эмульгатора, что можно объяснить большим размером частиц и, соответственно, недостаточной площадью поверхности. Если сравнить катализаторы, синтезированные из эмульсий, стабилизированных нефтеполимерной и инден-кумароновой смолами, можно отметить меньшую активность последних. Несмотря на меньший диаметр капель эмульсии, ввиду наличия в молекулах инден-кумароновой смолы кислородсодержащих групп поверхность катализатора оказывается более окисленной и содержит больше оксисульфидной фазы, что выражается в меньшей активности. Увеличение концентрации инден-кумароновой смолы в эмульсии приводит к снижению активности катализатора.
Figure 00000005
Figure 00000006
Было проведено сравнение активности синтезированных катализаторов и ненанесенного сульфидного катализатора, полученного из маслорастворимых прекурсоров - карбонила молибдена + этилгексаноата никеля, а также промышленного катализатора ГО-38 производства АО «Ангарский завод катализаторов и органического синтеза» при одинаковых условиях гидрирования и равном расходе молибдена в расчете на нефтеполимерную смолу - 2% мас. Результаты приведены в Табл. 2. Видно, что по активности в реакциях гидрирования олефиновых фрагментов заявленный катализатор не уступает промышленному, а также ненанесенному катализатору, получаемому из более дорогостоящих и менее доступных маслорастворимых прекурсоров. По степени гидрирования ароматических фрагментов заявленный катализатор превосходит как промышленный, так и синтезированный из маслорастворимых прекурсоров.
Figure 00000007
Figure 00000008
Пример 10
Получают катализатор и проводят гидрирование, как в примере 1. Отличие состоит в том, что мольное соотношение Mo/Ni в катализаторе составляет 1/0.5.
Пример 11
Получают катализатор и проводят гидрирование, как в примере 1. Отличие состоит в том, что мольное соотношение Mo/Ni в катализаторе составляет 1/1.
Пример 11
Получают катализатор и проводят гидрирование, как в примере 1. Отличие состоит в том, что мольное соотношение Mo/Ni в катализаторе составляет 1/2.
Пример 12 (сравнительный)
Получают катализатор и проводят гидрирование, как в примере 1. Отличие состоит в том, что мольное соотношение Mo/Ni в катализаторе составляет 1/3.
На Фиг. 3 показано влияние мольного соотношения Mo/Ni на степень гидрирования ароматических (показаны черным цветом на диаграмме) и олефиновых (показаны серым цветом на диаграмме) фрагментов нефтеполимерной смолы. Из представленного рисунка видно, что оптимальное значение мольного соотношения Mo/Ni составляет 1/0.25 мольн
Дальнейшее увеличение содержания никеля ведет к плавному снижению активности катализатора в реакции гидрирования ароматических колец; при этом гидрирование олефиновых фрагментов остается исчерпывающим и снижается до 76% лишь при соотношении Mo/Ni 1/3 мольн.
Важно отметить высокую активность непромотированного дисульфида молибдена, что характерно для реакций гидрирования.
Пример 13 (сравнительный).
Получают катализатор и проводят гидрирование, как в примере 1. Отличие состоит в том, что концентрация молибдена составляет 0.5% мас. на нефтеполимерную смолу.
Пример 14.
Получают катализатор и проводят гидрирование, как в примере 1. Отличие состоит в том, что концентрация молибдена составляет 1% мас. на нефтеполимерную смолу.
Пример 15.
Получают катализатор и проводят гидрирование, как в примере 1. Отличие состоит в том, что концентрация молибдена составляет 1.5% мас. на нефтеполимерную смолу.
Пример 16.
Получают катализатор и проводят гидрирование, как в примере 1. Отличие состоит в том, что концентрация молибдена составляет 3% мас. на нефтеполимерную смолу.
Пример 17 (сравнительный)
Получают катализатор и проводят гидрирование, как в примере 1. Отличие состоит в том, что концентрация молибдена составляет 4% мас. на нефтеполимерную смолу.
На Фиг. 4 показана зависимость степени гидрирования ароматических (показаны черным цветом на диаграмме) и олефиновых (показаны серым цветом на диаграмме) фрагментов нефтеполимерной смолы от содержания катализатора. Из представленного рисунка видно, что степень гидрирования достигает максимума при концентрации молибдена (катализатора в расчете на молибден) 2% мас. на нефтеполимерную смолу.
Дальнейшее увеличение концентрации катализатора ведет к агломерации его частиц и потере активности вследствие уменьшения удельной поверхности. Так, при концентрации молибдена 4% мас. не наблюдается исчерпывающего гидрирования олефиновых фрагментов смолы. При концентрации 1% мас. степень гидрирования ароматических фрагментов уже относительно высока - 55,1%, при этом олефиновые фрагменты гидрируются полностью. При концентрации молибдена ниже 1% мас. полного гидрирования не наблюдается.
На Фиг. 5 показано изменение значения степени гидрирования ароматических фрагментов (показана черным цветом на диаграмме) и цвета продукта (показан белым цветом на диаграмме) спустя 1-5 циклов. Степень гидрирования ароматических фрагментов на 2 и 3 циклах по существу не изменяется, заметно снижаясь только на 4 и 5 циклах, при этом цвет продукта ухудшается до 40 мг I2/100 мл.
На каждом цикле степень гидрирования олефиновых фрагментов составляет 100% (на фиг 5 эта величина не показана).
Таким образом, катализатор сохраняет свою активность в течение трех циклов по отношению к гидрированию ароматических фрагментов, и в течение пяти и более циклов - по отношению к гидрированию олефиновых фрагментов.
Пример 18
Получают катализатор и проводят гидрирование, как в примере 1. Отличие состоит в том, что мольное соотношение S/Mo составляет 2/1.
Пример 19
Получают катализатор и проводят гидрирование, как в примере 1. Отличие состоит в том, что мольное соотношение S/Mo составляет 4/1.
Пример 20
В таблице 3 показана зависимость степени гидрирования ароматических и олефиновых фрагментов нефтеполимерной смолы от мольного соотношения S/Mo. Как видно, при значении мольного соотношения S/Mo 2/1 степень гидрирования ароматических фрагментов меньше, чем при значении этого соотношения 3/1 и выше. Это связано с недостатком серы для образования сульфидной фазы. Вместо нее формируется каталитически малоактивная оксисульфидная фаза. Увеличение мольного соотношения S/Mo выше 4/1 нецелесообразно, поскольку приводит к увеличению затрат на синтез катализатора при отсутствии увеличения его активности.
Figure 00000009
Использование при гидрировании вместо чистого циклогексана бензола при концентрации нефтеполимерной смолы в нем 20% мас., или смеси бензола и циклогексана в отношении 1:1 при концентрации нефтеполимерной смолы в смеси 40% мас., не сказывается на результатах гидрирования по сравнению с примером 1.
Технические результаты, которые могут быть получены от использования предлагаемого технического решения, заключаются:
- в повышении степени гидрирования ароматических и олефиновых фрагментов нефтеполимерной смолы до соответственно 72 и 100%;
- в повышении стабильности катализатора при сохранении его активности без регенерации;
- в значительном улучшении цвета нефтеполимерной смолы относительно гидрирования на промышленных нанесенных катализаторах;
- в возможности снижения стоимости процесса гидрирования нефтеполимерной смолы за счет использования более экономичных водорастворимых прекурсоров взамен маслорастворимых.
Список источников информации, принятых во внимание
1. Патент US 6433104, кл. МПК С08С 19/02; C08F 8/04, 13.08.2002.
2. Патент US 4328090, кл. МПК C08F 240/00; C08F 8/00; C08F 8/04, 04.05.1982.
3. Sae-Ma N., Praserthdam P., Panpranot J., Chaemchuen S., Dokjamp S., Suriye K., Rempel G.L. Color Improvment of C9 Hydrocarbon Resin by Hydrogenation Over 2% Pd/c-Alumina Catalyst: Effect of Degree of Aromatic Rings Hydrogenation // Journal of Applied Polymer Science. 2010. T. 117. C. 2862-2869.
4. Coca J., Rosal R., Diez F.V., Sastre H. Decoloration of Indene-Coumarone Resins by Catalytic Hydrogenation // J. Chem. Tech. Biotechnol. 1992. T. 53. C. 365-371.
5. Lujun Y., Dahao J., Jiao X., Lei M., Xiaonian L. Two-Stage Hydrogenation Modification of C9 Petroleum Resin over NiWS/γ-Al2O3 and PdRu/γ-Al2O3 Catalysts in Series // China Petroleum Processing and Petrochemical Technology. 2012. T. 14. №3. C. 83-89.
6. Антонов С.В., Петрухина Н.Н., Пахманова О.А., Максимов А.Л. Процесс гидрирования для получения светлых нефтеполимерных смол - компонентов адгезивов и клеев-расплавов (обзор) // Нефтехимия. 2017. Т. 57. №6. С. 605-623.
7. Xu D., Carbonell R.G., Kiserow D.J., Roberts G.W. Kinetic and Transport Processes in the Heterogeneous Catalytic Hydrogenation of Polystyrene // Ind. Eng. Chem. Res. 2003. T. 42. C. 3509-3515.
8. Ness J.S., Brodil J.C, Bates F.S., Hahn S.F., Hucul D.A., Hillmyer M.A. Molecular Weight Effects in the Hydrogenation of Model Polystyrenes Using Platinum Supported on Wide-Pore Silica // Macromolecules. 2002. T. 35. C. 602-609.
9. Петрухина H.H., Захарян E.M., Корчагина С.А., Нагиева M.В., Максимов А.Л. Гидрирование нефтеполимерных смол на сульфидных ненанесенных наноразмерных катализаторах // Наногетерогенный катализ. 2017. Т. 2. №2. С. 127-135.
10. Патент US 6755963, кл. МПК B01J 23/85, B01J 23/88, B01J 23/883, 29.06.2004.

Claims (2)

1. Способ получения катализатора гидрирования нефтеполимерных смол, включающий растворение прекурсора катализатора - гексагидрата нитрата никеля и тетрагидрата парамолибдата аммония - в воде, введение в растворитель полученного водного раствора прекурсора катализатора, получение эмульсии и синтез катализатора ex situ при повышенной температуре и давлении водорода из эмульсии в присутствии сульфидирующего агента - элементной серы, отличающийся тем, что в качестве растворителя используют декалин, в который предварительно вводят эмульгатор - нефтеполимерную или инденкумароновую смолу в количестве от 1 до 6% маc. в расчете на декалин, затем вводят водный раствор прекурсора катализатора с мольным отношением Mo/Ni 1/0.25-1/2, взятый в количестве, обеспечивающем содержание воды в эмульсии не более 2% мас., диспергируют, вводят в указанную эмульсию элементную серу до мольного отношения S/Mo в катализаторе 2/1-4/1, проводят синтез катализатора и удаляют декалин с выделением полученного катализатора.
2. Способ гидрирования нефтеполимерной смолы в присутствии полученного ненанесенного нанодисперсного сульфидного катализатора при повышенной температуре и давлении водорода, отличающийся тем, что вначале нефтеполимерную смолу растворяют в циклогексане, или бензоле, или их смеси до ее концентрации в растворе от 20 до 40% мас. и вводят в нее катализатор, полученный способом по п. 1, при его содержании от 1 до 3% мас. в расчете на молибден от нефтеполимерной смолы, причем гидрирование нефтеполимерной смолы ведут не менее трех циклов работы катализатора в отсутствие его регенерации.
RU2018128529A 2018-08-06 2018-08-06 Способ получения катализатора и способ гидрирования нефтеполимерных смол в его присутствии RU2675361C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018128529A RU2675361C1 (ru) 2018-08-06 2018-08-06 Способ получения катализатора и способ гидрирования нефтеполимерных смол в его присутствии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018128529A RU2675361C1 (ru) 2018-08-06 2018-08-06 Способ получения катализатора и способ гидрирования нефтеполимерных смол в его присутствии

Publications (1)

Publication Number Publication Date
RU2675361C1 true RU2675361C1 (ru) 2018-12-19

Family

ID=64753403

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018128529A RU2675361C1 (ru) 2018-08-06 2018-08-06 Способ получения катализатора и способ гидрирования нефтеполимерных смол в его присутствии

Country Status (1)

Country Link
RU (1) RU2675361C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200082911A (ko) * 2018-12-31 2020-07-08 한화솔루션 주식회사 수소화반응용 촉매 및 이의 제조방법
US11969711B2 (en) 2018-12-31 2024-04-30 Hanwha Solutions Corporation Carbon-based, precious metal-transition metal composite catalyst and preparation method therefor
RU2828453C1 (ru) * 2019-10-25 2024-10-14 Чайна Петролиум & Кемикал Корпорейшн Катализатор гидрирования, способ его получения и его применение

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0145105B1 (en) * 1983-08-29 1993-01-27 Chevron Research And Technology Company Heavy oil hydroprocessing
US6004454A (en) * 1995-11-22 1999-12-21 China Petro-Chemical Corporation Hydrocracking of heavy oil and residuum with a dispersing-type catalyst
WO2000042082A1 (en) * 1999-01-15 2000-07-20 Exxon Chemical Patents Inc. Hydrogenation process for hydrocarbon resins
US6755963B2 (en) * 1997-07-15 2004-06-29 Exxonmobil Chemical Patents Inc. Hydrogenation process for hydrocarbon resins
RU2400525C1 (ru) * 2008-12-30 2010-09-27 Учреждение Российской Академии Наук Ордена Трудового Красного Знамени Институт Нефтехимического Синтеза Им. А.В. Топчиева Ран (Инхс Ран) Способ гидрогенизационной переработки тяжелых нефтяных остатков
RU2426589C2 (ru) * 2006-03-13 2011-08-20 ХЭДУОТЕРС ХЭВИ ОЙЛ, ЭлЭлСи Способы и системы смешивания для введения предшественника катализатора в сырье, содержащее тяжелую нефть
RU2614140C1 (ru) * 2016-03-09 2017-03-23 Публичное акционерное общество "Газпром" Способ гидроконверсии тяжелой части матричной нефти

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0145105B1 (en) * 1983-08-29 1993-01-27 Chevron Research And Technology Company Heavy oil hydroprocessing
US6004454A (en) * 1995-11-22 1999-12-21 China Petro-Chemical Corporation Hydrocracking of heavy oil and residuum with a dispersing-type catalyst
US6755963B2 (en) * 1997-07-15 2004-06-29 Exxonmobil Chemical Patents Inc. Hydrogenation process for hydrocarbon resins
WO2000042082A1 (en) * 1999-01-15 2000-07-20 Exxon Chemical Patents Inc. Hydrogenation process for hydrocarbon resins
RU2426589C2 (ru) * 2006-03-13 2011-08-20 ХЭДУОТЕРС ХЭВИ ОЙЛ, ЭлЭлСи Способы и системы смешивания для введения предшественника катализатора в сырье, содержащее тяжелую нефть
RU2400525C1 (ru) * 2008-12-30 2010-09-27 Учреждение Российской Академии Наук Ордена Трудового Красного Знамени Институт Нефтехимического Синтеза Им. А.В. Топчиева Ран (Инхс Ран) Способ гидрогенизационной переработки тяжелых нефтяных остатков
RU2614140C1 (ru) * 2016-03-09 2017-03-23 Публичное акционерное общество "Газпром" Способ гидроконверсии тяжелой части матричной нефти

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200082911A (ko) * 2018-12-31 2020-07-08 한화솔루션 주식회사 수소화반응용 촉매 및 이의 제조방법
KR102311346B1 (ko) * 2018-12-31 2021-10-08 한화솔루션 주식회사 수소화반응용 촉매 및 이의 제조방법
US11878286B2 (en) 2018-12-31 2024-01-23 Hanwha Solutions Corporation Catalyst for hydrogenation reaction and preparation method for same
US11969711B2 (en) 2018-12-31 2024-04-30 Hanwha Solutions Corporation Carbon-based, precious metal-transition metal composite catalyst and preparation method therefor
RU2828453C1 (ru) * 2019-10-25 2024-10-14 Чайна Петролиум & Кемикал Корпорейшн Катализатор гидрирования, способ его получения и его применение

Similar Documents

Publication Publication Date Title
Zhao et al. Heterogeneous catalysis by gold and gold-based bimetal nanoclusters
Wang et al. Rational control of nano-scale metal-catalysts for biomass conversion
RU2675361C1 (ru) Способ получения катализатора и способ гидрирования нефтеполимерных смол в его присутствии
RU2646216C2 (ru) Катализаторы гидроочистки на подложках, обладающие повышенной активностью
Huang et al. Study on the heterogeneous degradation of chitosan with hydrogen peroxide under the catalysis of phosphotungstic acid
JP2002534569A (ja) 炭化水素樹脂の水素化の方法
Li et al. Carbonyl reduction and biomass: a case study of sustainable catalysis
CN101016479B (zh) 使用具有控制孔隙度的催化剂的选择性氢化方法
Bu et al. Ru/SBA-15 catalysts for partial hydrogenation of benzene to cyclohexene: Tuning the Ru crystallite size by Ba
US12023654B2 (en) Catalyst and method for preparation of 2-ethoxyphenol by catalytic depolymerization of lignin
Jiang et al. C9 petroleum resin hydrogenation over a PEG1000-modified nickel catalyst supported on a recyclable fluid catalytic cracking catalyst residue
Mounguengui-Diallo et al. Base free oxidation of 1, 6-hexanediol to adipic acid over supported noble metal mono-and bimetallic catalysts
Noël et al. Acid-tolerant cyclodextrin-based ruthenium nanoparticles for the hydrogenation of unsaturated compounds in water
Sadjadi et al. Palladated chitosan-halloysite bead as an efficient catalyst for hydrogenation of lubricants
FR2468618A1 (fr) Procede pour l'hydrogenation selective de polymeres
RU2722837C1 (ru) Способ приготовления катализатора гидрирования фурфурола и фурфурилового спирта до 2-метилфурана
Makaryan et al. Application of supercritical fluid technologies in chemical and petrochemical industries
Petrukhina et al. Hydrogenation of polymeric petroleum resins in the presence of unsupported sulfide catalysts synthesized from water-soluble precursors
CN112898248B (zh) 一种烯基琥珀酸酐的制备方法
Parenago et al. Obtaining of highly-active catalysts of unsaturated compounds hydrogenation by using supercritical carbon dioxide
Petrukhina et al. Hydrogenation of petroleum resins in the presence of supported sulfide catalysts
Gundekari et al. Selective synthesis of cyclohexanol intermediates from lignin-based phenolics and diaryl ethers using hydrogen over supported metal catalysts: a critical review
CN114144257A (zh) 包含小颗粒形式的活性镍相和镍铜合金的催化剂
Bleta et al. Mesoporous RuO 2/TiO 2 composites prepared by cyclodextrin-assisted colloidal self-assembly: towards efficient catalysts for the hydrogenation of methyl oleate
Lu et al. Synthesis of PVP-Ru amphiphilic microreactors with Ru nanocatalysts and their application in the fast hydrogenation of unsaturated compounds in aqueous media