RU2426589C2 - Способы и системы смешивания для введения предшественника катализатора в сырье, содержащее тяжелую нефть - Google Patents
Способы и системы смешивания для введения предшественника катализатора в сырье, содержащее тяжелую нефть Download PDFInfo
- Publication number
- RU2426589C2 RU2426589C2 RU2008140315/05A RU2008140315A RU2426589C2 RU 2426589 C2 RU2426589 C2 RU 2426589C2 RU 2008140315/05 A RU2008140315/05 A RU 2008140315/05A RU 2008140315 A RU2008140315 A RU 2008140315A RU 2426589 C2 RU2426589 C2 RU 2426589C2
- Authority
- RU
- Russia
- Prior art keywords
- heavy oil
- catalyst precursor
- containing heavy
- feed
- mixing
- Prior art date
Links
- 239000012018 catalyst precursor Substances 0.000 title claims abstract description 145
- 238000002156 mixing Methods 0.000 title claims description 105
- 238000000034 method Methods 0.000 title claims description 46
- 239000000203 mixture Substances 0.000 claims abstract description 82
- 239000000295 fuel oil Substances 0.000 claims description 172
- 239000003085 diluting agent Substances 0.000 claims description 38
- 239000002243 precursor Substances 0.000 claims description 35
- 239000003921 oil Substances 0.000 claims description 34
- 239000002994 raw material Substances 0.000 claims description 32
- 230000003068 static effect Effects 0.000 claims description 30
- 230000001143 conditioned effect Effects 0.000 claims description 19
- 238000009835 boiling Methods 0.000 claims description 16
- 239000010779 crude oil Substances 0.000 claims description 10
- 239000000839 emulsion Substances 0.000 claims description 7
- 230000006835 compression Effects 0.000 claims description 6
- 238000007906 compression Methods 0.000 claims description 6
- 238000009792 diffusion process Methods 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 4
- 238000004898 kneading Methods 0.000 claims description 3
- 239000003208 petroleum Substances 0.000 claims 8
- 238000006467 substitution reaction Methods 0.000 claims 2
- 239000002283 diesel fuel Substances 0.000 claims 1
- 239000006185 dispersion Substances 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- 238000010327 methods by industry Methods 0.000 abstract 1
- 239000003054 catalyst Substances 0.000 description 110
- 239000002245 particle Substances 0.000 description 24
- 230000015572 biosynthetic process Effects 0.000 description 22
- 229930195733 hydrocarbon Natural products 0.000 description 21
- 150000002430 hydrocarbons Chemical class 0.000 description 21
- 238000000354 decomposition reaction Methods 0.000 description 17
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 239000004215 Carbon black (E152) Substances 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 15
- 238000004517 catalytic hydrocracking Methods 0.000 description 13
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 13
- 229910052717 sulfur Inorganic materials 0.000 description 13
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 12
- 239000013078 crystal Substances 0.000 description 12
- 239000011593 sulfur Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 229910052750 molybdenum Inorganic materials 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 229910052976 metal sulfide Inorganic materials 0.000 description 9
- 239000011733 molybdenum Substances 0.000 description 9
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 6
- 230000002209 hydrophobic effect Effects 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 238000011065 in-situ storage Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- YKJSOAKPHMIDLP-UHFFFAOYSA-J 2-ethylhexanoate;molybdenum(4+) Chemical group [Mo+4].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O YKJSOAKPHMIDLP-UHFFFAOYSA-J 0.000 description 4
- 239000000571 coke Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000000750 progressive effect Effects 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 125000004434 sulfur atom Chemical group 0.000 description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000010426 asphalt Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 150000002751 molybdenum Chemical class 0.000 description 2
- -1 molybdenum salt Chemical class 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Chemical group 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004227 thermal cracking Methods 0.000 description 2
- DKIJBUAXSIPIKK-UHFFFAOYSA-J C(CCCCC)(=O)[O-].[Mo+4].C(CCCCC)(=O)[O-].C(CCCCC)(=O)[O-].C(CCCCC)(=O)[O-] Chemical compound C(CCCCC)(=O)[O-].[Mo+4].C(CCCCC)(=O)[O-].C(CCCCC)(=O)[O-].C(CCCCC)(=O)[O-] DKIJBUAXSIPIKK-UHFFFAOYSA-J 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000005078 molybdenum compound Substances 0.000 description 1
- 150000002752 molybdenum compounds Chemical class 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002358 oil sand bitumen Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002891 organic anions Chemical class 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/47—Mixing liquids with liquids; Emulsifying involving high-viscosity liquids, e.g. asphalt
- B01F23/471—Mixing liquids with liquids; Emulsifying involving high-viscosity liquids, e.g. asphalt using a very viscous liquid and a liquid of low viscosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/49—Mixing systems, i.e. flow charts or diagrams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/50—Mixing liquids with solids
- B01F23/57—Mixing high-viscosity liquids with solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
- B01J27/047—Sulfides with chromium, molybdenum, tungsten or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
- B01J27/047—Sulfides with chromium, molybdenum, tungsten or polonium
- B01J27/051—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
- B01J35/45—Nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/086—Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/0015—Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G49/00—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
- C10G49/02—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
- C10G49/04—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing nickel, cobalt, chromium, molybdenum, or tungsten metals, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/12—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00743—Feeding or discharging of solids
- B01J2208/00752—Feeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/48—Liquid treating or treating in liquid phase, e.g. dissolved or suspended
- B01J38/68—Liquid treating or treating in liquid phase, e.g. dissolved or suspended including substantial dissolution or chemical precipitation of a catalyst component in the ultimate reconstitution of the catalyst
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1033—Oil well production fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/107—Atmospheric residues having a boiling point of at least about 538 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1077—Vacuum residues
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/80—Additives
- C10G2300/802—Diluents
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Dispersion Chemistry (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Abstract
Изобретение может быть использовано в нефтехимической промышленности. Предшественник катализатора 202 предварительно смешивают с разбавителем 204, в результате чего образуется разбавленный предшественник катализатора 207. Сырье 208, содержащее тяжелую нефть и имеющее вязкость большую, чем вязкость предшественника катализатора 202, разделяют на два потока 208а и 208b. Первый поток 208а содержит от 30% до 90% сырья 208, содержащего тяжелую нефть. Разбавленный предшественник катализатора 207 смешивают с первым потоком сырья 208а таким образом, чтобы образовать смешанную композицию нефтяного сырья, которую затем смешивают с оставшейся частью сырья 208b, содержащего тяжелую нефть. Изобретение позволяет эффективно диспергировать предшественник катализатора. 4 н. и 27 з.п. ф-лы, 6 ил.
Description
Область техники, к которой относится изобретение
Настоящее изобретение относится к области превращения сырья, содержащего тяжелую нефть, в более низкокипящие материалы с более высоким качеством, более конкретно к системам и способам смешивания предшественника катализатора, содержащего соль молибдена или его комплекс с сырьем, содержащим тяжелую нефть, для образования в сырье катализатора гидрообработки.
Родственная область техники
Мировая потребность в очищенных видах ископаемого топлива постоянно возрастает и будет в конце концов опережать поставки сырой нефти высокого качества. Существует возрастающая потребность установить способы более полного использования сырья низкого качества и извлечь из них ценные топливные элементы. Сырье низкого качества характеризуется относительно высокими количествами углеводородов, которые имеют температуру кипения, равную 524°С (975°F), или более высокими концентрациями серы, азота и/или металлов. Высококипящие фракции обычно имеют высокую молекулярную массу и/или низкое отношение водород/углерод, примером которых является класс комплексных соединений, в обобщенном виде называемых "асфальтенами". Асфальтены трудно переработать и они обычно вызывают загрязнение традиционных катализаторов и оборудования гидрообработки.
Примеры видов сырья невысокого качества, которые содержат относительно высокие концентрации асфальтенов, серы, азота и металлов, включают тяжелую неочищенную нефть, битум нефтеносного песка, отстой и остаток (мазут), оставшийся после общепринятого процесса переработки (обобщенно "тяжелая нефть"). Термины "отстой" и "мазут" (или "остаток") обычно относятся к кубовым остаткам атмосферных ректификационных колонн, которые имеют температуру кипения, равную, по меньшей мере, 343°С (650°F), и кубовым остаткам вакуумных колонн, которые имеют температуру кипения, равную, по меньшей мере, 524°С (975°F) или выше.
Превращение тяжелой нефти в полезные конечные продукты требует глубокой переработки, включающей снижение температуры кипения тяжелой нефти, увеличение отношения водорода к углероду и удаление таких примесей, как металлы, сера, азот и соединения, образующие высокое содержание углерода. При использовании сырья, содержащего тяжелую нефть, существующие промышленные процессы каталитического гидрокрекинга становятся загрязненными или быстро претерпевают дезактивацию катализатора. Данное обстоятельство значительно увеличивает затраты на катализатор и техническое обслуживание, делая применяемые в настоящее время катализаторы неприменимыми для гидрообработки тяжелой нефти.
В одной перспективной технологии для гидрообработки тяжелых нефтей применяют растворимую в углеводородах соль молибдена, которая разлагается в тяжелой нефти во время гидрообработки с образованием in situ катализатора гидрообработки на основе сульфида молибдена. Один такой способ раскрыт в патенте США №5578197, выданный на имя Cyr et al. При образовании in situ катализатор на основе сульфида молибдена является высокоэффективным при гидрокрекинге асфальтенов и других углеводородов усложненной структуры для предотвращения загрязнения и закоксовывания.
Значительной проблемой при промышленном применении растворимых в нефти молибденовых катализаторов является их стоимость. Даже небольшие улучшения эффективности работы катализатора могут оказывать значительное благоприятное воздействие на стоимость процесса гидрокрекинга вследствие увеличения производительности катализатора и/или снижения используемого количества катализатора. Эффективность работы растворимых в нефти молибденовых катализаторов зависит значительно от концентрации металлического катализатора в тяжелой нефти и от того, как хорошо предшественник катализатора диспергирован в тяжелой нефти. Усовершенствования, которые могут более эффективно диспергировать предшественник катализатора, могут улучшить эффективность гидрокрекинга тяжелых нефтей с использованием растворимых в нефти соединений молибдена.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к способам и системам для смешивания предшественника катализатора с сырьем, содержащим тяжелую нефть, в качестве подготовительной стадии перед гидрообработкой сырья, содержащего тяжелую нефть, в реакторе с образованием обновленного сырья. Способы и системы изобретения преимущественно предоставляют образование коллоидного или молекулярного катализатора гидрообработки. Достижение хорошей дисперсии предшественника катализатора (т.е. достижение дисперсии ниже молекулярного уровня) является преимущественным, поскольку оно облегчает образование коллоидного или молекулярного катализатора гидрообработки. Применение хорошо диспергированного коллоидного или молекулярного катализатора гидрообработки преимущественно преодолевает проблемы, связанные с применением пористых катализаторов на носителе при обновлении сырья, содержащего тяжелую нефть, особенно, неспособность пористых катализаторов на носителе эффективно преобразовывать молекулы асфальтена. Результатом является однократное или многократное снижение загрязнения оборудования, увеличенная степень превращения, обеспечение возможности перерабатывать в реакторе более широкий ряд сырья более низкого качества, и более эффективное применение катализатора на носителе в сочетании с коллоидным или молекулярным катализатором.
В соответствии со способом изобретения предоставлены предшественник катализатора, имеющий относительно низкую вязкость, и сырье, содержащее тяжелую нефть, имеющее более высокую вязкость. Предшественник катализатора первоначально смешивают с углеводородным разбавителем (например, вакуумным газойлем, нефтяной эмульсией, рецикловым газойлем или легким газойлем), образуя композицию разбавленного предшественника. Необязательно разбавитель может содержать часть сырья, содержащего тяжелую нефть, вместо или в дополнение к одному или более из вакуумного газойля, нефтяной эмульсии, рециклового газойля или легкого газойля. Композицию разбавленного предшественника далее смешивают с первой частью сырья, содержащего тяжелую нефть, так, чтобы образовать композицию смешанного сырья. Окончательно, сырье, содержащее тяжелую нефть, смешивают с любым оставшимся сырьем, что приводит в результате к тому, что предшественник катализатора является гомогенно диспергированным ниже молекулярного уровня в сырье, содержащем тяжелую нефть.
Примерная система для осуществления способа изобретения включает первый статический смеситель в линии с низкой скоростью сдвига для смешивания предшественника катализатора с разбавителем так, чтобы образовать разбавленный предшественник катализатора; второй статический смеситель в линии с низкой скоростью сдвига с последующим смесителем с высокой скоростью сдвига для смешивания разбавленного предшественника катализатора с первой частью сырья, содержащего тяжелую нефть, так чтобы образовать композицию смешанного сырья; и промежуточный резервуар, в который вводят композицию смешанного сырья и любое оставшееся сырье, содержащее тяжелую нефть. Промежуточный резервуар может преимущественно обеспечить время пребывания от приблизительно 5 минут до приблизительно 60 минут, предпочтительно от приблизительно 10 минут до приблизительно 50 минут и более предпочтительно от приблизительно 20 минут до приблизительно 40 минут так, чтобы позволить первому компоненту смешанного сырья более равномерно диффундировать через оставшийся второй компонент тяжелой нефти. В результате предшественник катализатора гомогенно диспергирован ниже молекулярного уровня в сырье, содержащем тяжелую нефть, подготовительно перед образованием коллоидного или молекулярного катализатора.
В одном варианте осуществления статические смесители в линии, применяемые для смешивания предшественника катализатора с углеводородным разбавителем и разбавленного предшественника катализатора с сырьем, содержащим тяжелую нефть, характеризуются тем, что включают от приблизительно 2 до приблизительно 20 стадий, более предпочтительно от приблизительно 7 до приблизительно 15 стадий и наиболее предпочтительно от приблизительно 8 до приблизительно 12 стадий. Если предшественник катализатора хорошо смешан с преобладающим количеством или существенной частью сырья, содержащего тяжелую нефть, оставшаяся часть сырья, содержащего тяжелую нефть, может быть загружена в промежуточный резервуар, не будучи предварительно смешанной с разбавленным предшественником катализатора на уровне молекулярной диффузии в промежуточном резервуаре и последующей подаче насосом в многоступенчатые насосы высокого давления для достижения желательного тщательного смешивания предшественника катализатора со всем количеством сырья, содержащего тяжелую нефть.
Один или несколько многоступенчатых насосов, применяемых для подачи под давлением смешанного сырья, выходящего из промежуточного резервуара, предпочтительно включают по меньшей мере приблизительно 10 ступеней сжатия. Множественные многоступенчатые насосы высокого давления могут быть расположены последовательно и/или параллельно по отношению один к другому, чтобы либо увеличить эффективное число ступеней сжатия (последовательно) или увеличить пропускную способность для подачи в систему гидрообработки нисходящего потока (параллельно). В соответствии с принятым в настоящее время предпочтительным вариантом осуществления аппарат для смешивания разбавленного предшественника катализатора с первой частью сырья, содержащего тяжелую нефть, включает в себя единственный в линии статический смеситель с последующим смесителем с высокой скоростью сдвига. Смеситель с высокой скоростью сдвига наиболее предпочтительно имеет относительно короткое время пребывания, такое что наибольшая часть общего времени смешивания приходится на статический смеситель. В данной конфигурации применяется перепад давления статического смесителя, чтобы благоприятным образом достичь степени смешивания с последующим дополнительным смешиванием в смесителе с высокой скоростью сдвига.
Сырье, содержащее тяжелую нефть, разделяют на множество (предпочтительно два) потоков для усиления смешивания с разбавленным предшественником катализатора. Первый поток, который первоначально смешивают с разбавленным предшественником катализатора, содержит от приблизительно 10% до приблизительно 95% от общего потока, предпочтительно от приблизительно 30% до приблизительно 90% от общего потока, более предпочтительно от приблизительно 40% до приблизительно 80% от общего потока и наиболее предпочтительно от приблизительно 65% до приблизительно 75% от общего потока. Разделение сырья, содержащего тяжелую нефть, на два потока обеспечивает превосходное смешивание, в то же время минимизируя операционные и структурные затраты, связанные с разделением сырья на три потока.
Данные и другие преимущества и признаки настоящего изобретения станут более очевидными из последующего описания и приложенной формулы изобретения или могут быть изучены посредством практического воплощения изобретения, как изложено далее в данном документе.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Для дальнейшего понимания приведенных выше и других преимуществ и признаков настоящего изобретения более конкретное описание изобретения будет представлено со ссылкой на конкретные его варианты осуществления, которые проиллюстрированы на прилагающихся чертежах. Следует учитывать, что данные чертежи отображают только типичные варианты осуществления изобретения и, поэтому, не должны рассматриваться как ограничивающие его объем притязаний. Изобретение будет описано и пояснено с дополнительной специфичностью и детальностью посредством использования сопровождающих чертежей, в которых:
На Фиг.1 изображена гипотетическая химическая структура молекулы асфальтена;
Фиг.2 представляет собой технологическую схему, которая схематически иллюстрирует примерный процесс для подготовки сырья, содержащего тяжелую нефть, для включения коллоидного или молекулярного катализатора, диспергированного в нем.
Фиг.3 схематически иллюстрирует еще одну примерную систему для замешивания предшественника катализатора в сырье, содержащее тяжелую нефть, в соответствии с настоящим изобретением;
Фиг.4 схематически иллюстрирует молекулы катализатора или частицы катализатора коллоидного размера, ассоциированные с молекулами асфальтена; и
Фиг.5А и 5В схематически изображают вид сверху и вид сбоку кристалла дисульфида молибдена размером приблизительно 1 нм.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Определения и введение
Настоящее изобретение относится к способам и системам для достижения тщательной дисперсии растворимого в углеводородах предшественника катализатора в сырье, содержащем тяжелую нефть. При диспергировании до молекулярного уровня предшественник катализатора в будущем разлагается при нагреве с образованием катализатора гидрообработки на основе сульфида молибдена в сырье, содержащем тяжелую нефть. Предшественник катализатора включает катионы металла, которые связаны с множеством органических анионов с образованием растворимой в нефти соли металла (например, соли молибдена). Растворимые в нефти соли металлов производят в присутствии восстановителя для получения атомов молибдена в желательном состоянии окисления.
Термины "коллоидный катализатор" и "коллоидно-диспергированный катализатор" будут относиться к частицам катализатора, имеющим размер частицы, который по размеру соответствует коллоидному состоянию, например, менее чем приблизительно 10 нм в диаметре, более предпочтительно менее приблизительно 5 нм в диаметре и, наиболее предпочтительно, менее приблизительно 1 нм в диаметре. Термин "коллоидный катализатор" включает, но не ограничен ими, молекулярные или молекулярно-диспергированные соединения катализатора.
Термины "молекулярный катализатор" и "молекулярно-диспергированный" катализатор будут относиться к соединениям катализатора, которые по существу "растворены" или полностью диссоциированы от других соединений катализатора или молекул в углеводородном сырье, содержащем тяжелую нефть, нелетучей жидкой фракции, кубовых фракциях, остатке или других сырье или продукте, в которых можно обнаружить катализатор. Его также следует отнести к очень малым частицам катализатора, которые только содержат несколько молекул катализатора, объединенных вместе (например, 15 молекул или менее).
Термины "композиция смешанного сырья" и "композиция кондиционированного сырья" будут относиться к сырью, содержащему тяжелую нефть, в которую композицию растворимого в нефти предшественника катализатора объединяют и смешивают достаточно так, что при разложении предшественника катализатора и образовании катализатора катализатор будет содержать коллоидный и/или молекулярный катализатор, диспергированный в сырье.
Термин "сырье, содержащее тяжелую нефть" будет относиться к тяжелой сырой нефти, битуминозным сланцам, кубовому остатку и остатку от процессов переработки (например, кубовым остаткам крекинг-печей) и любым другим материалам более низкого качества, которые содержат значительное количество высококипящих углеводородных фракций (например, которые кипят при 343°С (650°F) или выше, более конкретно при приблизительно 524°С (975°F)) и выше и/или которые содержат значительное количество асфальтенов, которые могут дезактивировать твердый катализатор на носителе и/или вызывать или приводить к образованию предшественников кокса и отложений. Примеры сырья, содержащего тяжелую нефть, включают, но не ограничены ими, тяжелую нефть Ллойдминстера, битум Колд Лэйк, битум Атабаски, кубовые остатки атмосферных колонн, кубовые остатки вакуумных колонн, мазут (или "остаток"), остаточную смолу, вакуумный остаток и нелетучие жидкие фракции, которые остаются после перегонки сырой нефти, битуминозных сланцев, ожиженного угля или сырья из угольной смолы, горячего разделения и т.п. и которые содержат высококипящие фракции и/или асфальтены.
Термин "асфальтен" будет относиться к фракции сырья, содержащего тяжелую нефть, которая типично является нерастворимой в таких парафиновых растворителях, как пропан, бутан, пентан, гексан и гептан, и которая включает плоские соединения с конденсированным циклом, удерживаемые вместе посредством гетероатомов, таких как сера, азот, кислород и металлы. Асфальтены включают широкий ряд комплексных соединений, содержащих от 80 до 160000 атомов углерода, с преобладанием молекулярных масс, как определено методами растворения в интервале от 5000 до 10000. Приблизительно 80-90% металлов в сырой нефти содержатся в асфальтеновой фракции, которые вместе с более высокой концентрацией неметаллических гетероатомов придают молекулам асфальтена большую гидрофильность и меньшую гидрофобность, чем у других углеводородов в сырой нефти. Гипотетическая структура молекулы асфальтена, разработанная A.G.Bridge и сотрудниками в Chevron, изображена на фиг.1.
Желательный коллоидный и/или молекулярный катализатор типично образуется in situ в сырье, содержащем тяжелую нефть, перед гидрообработкой или при начале гидрообработки сырья. Растворимый в нефти предшественник катализатора содержит металлоорганическое соединение или комплекс, который преимущественно смешивают с сырьем, содержащим тяжелую нефть, и тщательно диспергируют в нем, чтобы достичь очень высокой дисперсии предшественника катализатора в сырье перед нагревом, разложением и образованием конечного катализатора. Примерный предшественник катализатора представляет собой комплекс 2-этилгексаноата молибдена, содержащий приблизительно 15 мас.% молибдена.
Чтобы обеспечить тщательное смешивание предшественника катализатора в сырье, содержащем тяжелую нефть, предшественник катализатора замешивают в сырье, содержащее тяжелую нефть, посредством многоступенчатого процесса смешивания, как показано на фиг.2. Растворимый в нефти предшественник катализатора предварительно смешивают с углеводородным разбавителем нефти (например, вакуумным газойлем, нефтяной эмульсией, рецикловым газойлем или легким газойлем и/или частью сырья) для создания разбавленного предшественника катализатора, который затем смешивают с первой частью сырья, содержащего тяжелую нефть, для образования первой смеси предшественника катализатора и сырья, содержащего тяжелую нефть. Эту первую смесь смешивают со второй частью, состоящей из оставшегося сырья, содержащего тяжелую нефть, таким образом, чтобы в результате предшественник катализатора был гомогенно диспергирован до молекулярного уровня внутри сырья, содержащего тяжелую нефть. Композицию смешанного сырья можно далее нагреть для разложения предшественника катализатора, с образованием коллоидного или молекулярного катализатора в сырье, содержащем тяжелую нефть.
Фиг.3 схематически иллюстрирует примерную систему 200 для глубокого перемешивания растворимого в нефти предшественника катализатора 202 в сырье, содержащем тяжелую нефть 208, так, чтобы в результате предшественник катализатора был диспергирован на коллоидном и/или молекулярном уровне в сырье, содержащем тяжелую нефть 208. Растворимый в нефти предшественник катализатора 202 предпочтительно имеет температуру разложения в интервале от приблизительно 100°С (212°F) до приблизительно 350°С (662°F), более предпочтительно в интервале от приблизительно 110°С (230°F) до приблизительно 300°С (572°F) и наиболее предпочтительно в интервале от приблизительно 120°С (248°F) до приблизительно 250°С (482°F). Примеры представительных композиций предшественника катализатора включают металлоорганические комплексы или соединения, более конкретно, растворимые в нефти соединения или комплексы переходных металлов и органических кислот. В настоящее время предпочтительным предшественником катализатора является 2-этилгексаноат молибдена, содержащий приблизительно 15 мас.% молибдена и имеющий достаточно высокие "температуру или интервал температур разложения, чтобы избежать существенного разложения при смешивании с сырьем, содержащим тяжелую нефть, при температуре ниже приблизительно 250°С (482°F). Другие примерные композиции предшественника включают, но не ограничены ими, октоат молибдена, гексаноат молибдена, нафтанат молибдена, нафтанат ванадия, октоат ванадия, гексакарбонил молибдена, гексакарбонил ванадия и пентакарбонил железа.
Предшественник катализатора 202 дозируют насосом 203 таким образом, чтобы обеспечить требуемый поток предшественника катализатора 202. Предшественник катализатора 202 далее смешивают с разбавителем 204 в первом в линии статическом смесителе с низкой скоростью сдвига 206 с образованием композиции разбавленного предшественника катализатора 207. Примеры подходящих углеводородных разбавителей 204 включают, но не ограничены ими, исходное дизельное топливо, (которое типично имеет температуру кипения, равную приблизительно 150°С или выше), вакуумный газойль (который обычно имеет интервал температур кипения, равный приблизительно 360-524°С) (680-975°F), нефтяную эмульсию или рецикловый газойль (которые обычно имеют интервал температур кипения, равный приблизительно 360-550°С) (680-1022°F) и/или легкий газойль (который обычно имеет интервал температур кипения, равный приблизительно 200-360°С) (392-680°F). Несмотря на то что разбавитель может содержать значительную фракцию ароматических компонентов, не требуется поддерживать асфальтеновую фракцию сырья в растворе, так как хорошо диспергированный катализатор способен осуществлять гидрокрекинг асфальтенов в сырье, содержащем тяжелую нефть, а также других компонентов сырья.
Массовое отношение композиции предшественника катализатора 202 к углеводородному разбавителю нефти 204 предпочтительно находится в интервале от приблизительно 1:500 до приблизительно 1:1, более предпочтительно в интервале от приблизительно 1:150 до приблизительно 1:2, и наиболее предпочтительно в интервале от приблизительно 1:100 до приблизительно 1:5 (например, 1:100, 1:80, 1:50, 1:30 или 1:10).
Композицию предшественника катализатора 202 преимущественно смешивают с углеводородным разбавителем 204 при температуре, ниже которой значительная часть композиции предшественника катализатора 202 начинает разлагаться, предпочтительно при температуре в интервале от приблизительно 25°С (77°F) до приблизительно 300°С (572°F), более предпочтительно в интервале от приблизительно 50°С (122°F) до приблизительно 200°С (392°F) и наиболее предпочтительно в интервале от приблизительно 75°С (167°F) до приблизительно 150°С (302°F) с образованием смеси разбавленного предшественника. Следует учитывать, что действительная температура, при которой образуется смесь разбавленного предшественника, обычно зависит в большой степени от температуры разложения конкретной композиции предшественника, которая применяется.
Преимущественно было обнаружено, что предварительное смешивание композиции предшественника 202 с углеводородным разбавителем 204 перед смешиванием смеси разбавленного предшественника 207 с сырьем, содержащим тяжелую нефть 208, в значительной степени способствует тщательному и глубокому перемешиванию композиции предшественника 202 в сырье 208 в течение относительно короткого периода времени, требуемого для того, чтобы крупномасштабные промышленные операции были экономически оправданными, особенно, если система смешивания представляет собой непрерывный поточный процесс (в противоположность периодическому процессу). Образование смеси разбавленного предшественника 207 сокращает общее время смешивания за счет (1) снижения или устранения различий в растворимости между более полярной композицией предшественника катализатора 202 и сырьем, содержащим тяжелую нефть 208, (2) снижения или устранения различий в реологии между композицией предшественника катализатора 202 и сырьем, содержащим тяжелую нефть 208, и/или (3) разрушения кластеров молекул предшественника катализатора с образованием растворенного вещества в углеводородном нефтяном разбавителе 204, который значительно более легко диспергируется в сырье, содержащем тяжелую нефть 208.
Степень первоначального смешивания, достигаемая в линейном смесителе 206, зависит, по меньшей мере, отчасти, от количества ступеней в линейном смесителе с низкой скорстью сдвига. В одном варианте осуществления смеситель 206 характеризуется как включающий между приблизительно 2 и приблизительно 20 ступеней, предпочтительно между приблизительно 7 и приблизительно 15 ступеней, и более предпочтительно между приблизительно 8 и приблизительно 12 ступеней. В теории смешивания ступень по существу является эквивалентной обладанию емкости, которую энергично перемешивают. Вследствие несовершенства смешивания (т.е. существует некоторое проскальзывание емкости компонентами, подлежащими смешиванию) степень смешивания улучшается, если используют ряд емкостей смешивания (т.е. ступеней). Примерный линейный статический смеситель 206 не включает движущиеся части, но в значительной степени включает множество внутренних перегородок или других элементов внутри трубки или другого корпуса. Внутренние перегородки или другие элементы направляют поток текучей среды во многих различных направлениях посредством повторного разделения и объединения текучей среды турбулентным образом так, чтобы смешивать различные компоненты. Количество ступеней в статическом смесителе эмпирически коррелирует со степенью смешивания, которую можно ожидать в статическом смесителе, по сравнении со степенью смешивания, которая может иметь место при использовании ряда смешивающих емкостей (т.е. текучая среда, выходящая из первой емкости, входит во вторую емкость для смешивания и т.д.). Другими словами, статический смеситель, включающий 10 ступеней, обеспечивает степень смешивания, которая по существу эквивалентна степени, предоставляемой системой смешивания, содержащей ряд из 10 смешивающих емкостей.
Разбавление предшественника катализатора разбавителем перед смешиванием с сырьем, содержащим тяжелую нефть, способствует достижению тщательного перемешивания композиции предшественника в сырье, содержащем тяжелую нефть, вследствие того, что углеводородный разбавитель нефти более легко смешивается с сырьем, содержащим тяжелую нефть, чем сам предшественник катализатора. Важно, чтобы предшественник катализатора был предварительно смешан с разбавителем и следует позаботиться о том, чтобы в целом способ и система смешивания смешивали компоненты в течение времени, достаточного для тщательного перемешивания композиции предшественника в сырье перед существенным разложением композиции предшественника. Например, в патенте США №5578197, выданном на имя Cyr et al., описание которого включено в качестве ссылки, описан способ, посредством которого 2-этилгексаноат молибдена смешивают с остатком вакуумной колонны и растворителем в течение 24 часов перед нагревом полученной в результате смеси в реакционной емкости с образованием соединения катализатора и для воздействия на гидрокрекинг (см. столбец 10, строки 4-43). В то время как 24-х часовое смешивание в окружении для тестирования может быть полностью приемлемым, такое долгое время смешивания может сделать некоторые промышленные операции недопустимо дорогостоящими. Предварительное смешивание предшественника катализатора с разбавителем таким образом, что предшественник катализатора по существу является гомогенно диспергированным по всему объему разбавленного предшественника катализатора, является в огромной степени преимущественным при снижении требуемого времени смешивания для достижения желательной дисперсии по всему объему сырья, содержащего тяжелую нефть. Для специалиста в данной области будет очевидным, что непрерывные поточные системы Фиг.3 и 4, которые включают предварительное смешивание предшественника катализатора с разбавителем, как описано в данном описании, предоставляют ясные преимущества перед способом, описанным в патенте Cyr et al., особенно в окружении промышленной операции.
Особенно преимущественным является сначала образовать смесь разбавленного предшественника в случае, где сырье, содержащее тяжелую нефть 208, содержит воду (например, конденсированную воду). Иначе большее сродство воды к полярной композиции предшественника катализатора 202 может вызвать локализированную агломерацию композиции предшественника 202, приводящую к плохой дисперсии и образованию частиц катализатора микронного размера или крупнее. Углеводородный разбавитель нефти 204 предпочтительно является безводным (т.е. содержит менее приблизительно 0,5% воды), чтобы предотвратить образование значительных количеств частиц катализатора микронного размера или крупнее.
Смесь разбавленного предшественника 207 далее объединяют с сырьем, содержащим тяжелую нефть 208, таким образом, чтобы диспергировать композицию предшественника катализатора 202 по всему объему сырья для получения на выходе композиции кондиционированного сырья, в которой композиция предшественника 202 тщательно перемешана в сырье, содержащем тяжелую нефть 208. На иллюстрированной системе 200 сырье, содержащее тяжелую нефть 208, разделяют на два потока 208а и 208b для прогрессивного смешивания с потоком разбавленного предшественника катализатора 207. В одном примере поток 208 может быть разделен так, что между приблизительно 10% и приблизительно 95% потока 208 содержится в потоке 208а, предпочтительно между приблизительно 40% и приблизительно 80%, и более предпочтительно между приблизительно 65% и приблизительно 75% содержится в потоке 208а.
Поток разбавленного предшественника катализатора 207 преимущественно смешивают с первым потоком сырья, содержащего тяжелую нефть 208а, во втором статическом линейном смесителе с низкой скоростью сдвига 210, который преимущественно действует, чтобы начать замешивание разбавленного предшественника катализатора в поток сырья 208а. Выходящий поток 211 из смесителя 210 содержит смесь разбавителя 204, предшественника катализатора 202 и часть сырья, содержащего тяжелую нефть 208. Предшественник катализатора в выходящем потоке 211 может еще не быть коллоидно и/или молекулярно диспергирован в сырье, содержащем тяжелую нефть. Выходящий поток 211 вводят в динамический смеситель с высокой скоростью сдвига 212 (например, емкость с воздушным винтом или турбинной мешалкой для обеспечения очень турбулентного смешивания с высокой скоростью сдвига), который благоприятным образом действует для глубокого перемешивания вместе предшественника катализатора и сырья, содержащего тяжелую нефть. Одним примером подходящего динамического смесителя с высокой скоростью сдвига является линейный смеситель 8000LS, производимый Silverson Machines, Ltd., расположенной в Waterside, England. Выходящий поток 213, состоящий из первой перемешанной смеси из смесителя с высокой скоростью сдвига 212, вводят вместе с оставшимся вторым потоком сырья, содержащего тяжелую нефть 208b, в промежуточный резервуар 214.
Чтобы обеспечить достаточное перемешивание композиции предшественника катализатора в сырье, содержащем тяжелую нефть, так чтобы на выходе получить коллоидный и/или молекулярный катализатор при разложении композиции предшественника, разбавленную смесь предшественника и сырье, содержащее тяжелую нефть 208, предпочтительно смешивают в течение от приблизительно 0,001 секунды до приблизительно 20 минут, более предпочтительно от приблизительно 0,005 секунд до приблизительно 20 секунд и, наиболее предпочтительно, от приблизительно 0,01 секунды до приблизительно 3 секунд. Время смешивания в статическом смесителе с низкой скоростью сдвига зависит от количества ступеней и объемного потока компонентов. Увеличение интенсивности и/или энергии сдвига процесса смешивания в смесителе с высокой скоростью сдвига 212 в целом снижает время смешивания, необходимое для осуществления тщательного смешивания в смесителе с высокой скоростью сдвига 212. Время смешивания в статическом линейном смесителе 210 может преимущественно включать в себя большую часть общего времени смешивания. В такой конфигурации используется перепад давления статического смесителя 210 для преимущественного достижения степени смешивания, с последующим или предыдущим дополнительным смешиванием в смесителе с высокой скоростью сдвига 212. В настоящее время является предпочтительным, чтобы смеситель с высокой скоростью сдвига 212 следовал за линейным смесителем 210. Например, при проведении примерной крупномасштабной промышленной операции адекватная степень смешивания может достигаться при времени между приблизительно 0,03 и приблизительно 0,5 секундами в динамическом смесителе с высокой скоростью сдвига 212, причем линейный статический смеситель 210 имеет время пребывания при смешивании больше, чем время для смесителя с высокой скоростью сдвига 212.
Было обнаружено, что специфическая конфигурация, включающая статический линейный смеситель с последующим динамическим смесителем с высокой скоростью сдвига, преимущественно обеспечивает очень тщательное смешивание потока разбавленного предшественника катализатора 207 и первой части сырья, содержащего тяжелую нефть 208а. Несмотря на то что такая конфигурация может быть предпочтительной, могут также применяться другие конфигурации смешивания. Например, другая конфигурация смешивания может включать только один или несколько динамических смесителей с высокой скоростью сдвига; множество статических линейных смесителей; или множество статических линейных смесителей в сочетании с одним или несколькими линейными смесителями с высокой скоростью сдвига.
Дополнительное устройство может быть включено в систему в нисходящем потоке для обеспечения даже более тщательного перемешивания предшественника катализатора в сырье, содержащем тяжелую нефть. Например, статический линейный смеситель 210 и динамический смеситель с высокой скоростью сдвига 212 (или еще одна конфигурация смешивающего устройства) могут сопровождаться насосом в окружении промежуточного резервуара 214 и/или одним или несколькими многоступенчатыми центрифужными насосами высокого давления. Представленная система 200 включает три насоса 216а-216с, расположенные параллельно, которые будут обсуждаться далее ниже.
В системе фиг.3 только часть сырья, содержащего тяжелую нефть 208 (т.е. поток 208а), первоначально смешивают с разбавленным предшественником катализатора 207. Несмотря на то что проиллюстрировано разделение поступающего потока 208 на два потока 208а и 208b, поступающий поток 208 может быть разделен на три или даже более потоков для прогрессивного перемешивания с предшественником катализатора. Однако система, в которой поступающий поток разделен на два потока с использованием промежуточного резервуара для повторного объединения двух потоков во время смешивания первой перемешанной смеси с любой оставшейся тяжелой нефтью, является особенно преимущественной, так как было обнаружено, что в ней достигается очень тщательное перемешивание предшественника катализатора 202 в сырье 208 без чрезмерного увеличения операционных затрат и сложности системы и способа.
В этой точке предшественник катализатора тщательно смешивают во всем объеме только части сырья, содержащего тяжелую нефть. Поток кондиционированного сырья, содержащего тяжелую нефть, 213 далее вводят наряду с оставшимся сырьем, содержащим тяжелую нефть, 208b в промежуточный резервуар 214. Такой промежуточный резервуар обычным образом связан с любой системой реактора гидрообработки в нисходящем потоке. В данном случае промежуточный резервуар применяют для более полной диффузии предшественника катализатора во всем объеме сырья, содержащего тяжелую нефть. Посредством молекулярной диффузии предшественник катализатора 202 в промежуточном резервуаре 214 продолжает диффундировать даже более полно во всем объеме сырья, содержащего тяжелую нефть, подготовительно перед нагревом и разложением с образованием коллоидного или молекулярного катализатора. Для обеспечения достаточного времени диффузии промежуточный резервуар 214 преимущественно может обеспечивать время пребывания между приблизительно 5 минутами и приблизительно 60 минутами, предпочтительно между приблизительно 10 минутами и приблизительно 50 минутами, и более предпочтительно между приблизительно 20 минутами и приблизительно 40 минутами. Номинальное время пребывания в промежуточном резервуаре может быть больше или меньше в зависимости от желательного выхода кондиционированного сырья, содержащего тяжелую нефть.
Окончательно кондиционированное сырье выводится насосом из промежуточного резервуара 214 посредством насосов 216а-216с и доставляется в систему реактора для гидрообработки сырья, содержащего тяжелую нефть. Насосы 216а-216с могут преимущественно включать в себя многоступенчатые насосы высокого давления. Вследствие множества ступеней сжатия (например, более приблизительно десяти) такие насосы обеспечивают дополнительное интенсивное смешивание кондиционированного сырья, гарантируя тщательное смешивание предшественника катализатора 202 в сырье 208. Результатом является то, что кондиционированное сырье, доставляемое в систему реактора гидрообработки, включает предшественник катализатора, диспергированный по всему объему сырья, содержащего тяжелую нефть, до молекулярного уровня, таким образом, что при нагреве и разложении предшественника с образованием катализатора образованный катализатор является преимущественно коллоидным или молекулярным по размеру.
Представленный вариант осуществления преимущественно включает три насоса, расположенных параллельно (например, насосы 216а, 216b и 216с). Вследствие того что насосы преимущественно включают множество ступеней (например, более приблизительно десяти), кондиционированное сырье интенсивно перемешивается по мере того, как оно проходит один из насосов 216а, 216b и 216с. Конфигурирование системы так, что насосы 216а-216с расположены параллельно, обеспечивает увеличенную скорость потока кондиционированного сырья, доставляемого в систему реактора гидрообработки нисходящего потока. В альтернативных вариантах осуществления насосы могут быть расположены последовательно или последовательно-параллельно. Последовательное размещение насосов эффективно увеличивает количество ступеней интенсивного смешивания, через которые проходит кондиционированное сырье. Например, два последовательных насоса, каждый из которых включает пять ступеней, могут применяться вместо единственного насоса, включающего десять ступеней для достижения по существу такого же тонкого перемешивания предшественника катализатора в сырье, содержащем тяжелую нефть, чтобы получить на выходе кондиционированное сырье. В другой конфигурации результатом является то, что предшественник катализатора является гомогенно диспергированным на коллоидном и/или молекулярном уровне в сырье так, что при нагреве в результате происходит образование коллоидного и/или молекулярного катализатора.
Ввиду вышеприведенного сырье, содержащее тяжелую нефть, может быть разделено и добавлено в виде множества фракций, например двух или более фракций. В одном способе прогрессивного смешивания 20% сырья, содержащего тяжелую нефть, первоначально смешивают с композицией разбавленного предшественника для образования первой перемешанной смеси, далее добавляют 40% сырья, содержащего тяжелую нефть (для достижения всего 60%), для образования второй перемешанной смеси, после которого оставшиеся 40% сырья, содержащего тяжелую нефть, смешивают для образования конечного кондиционированного сырья. Однако было обнаружено, что гораздо более превосходящий способ включает разделение сырья, содержащего тяжелую нефть, на только две фракции, как описано в сочетании с фиг.3. Предпочтительно, сырье, содержащее тяжелую нефть, разделяют на столько фракций, насколько возможно (т.е. 2), в то время как дальнейшее достижение очень тщательного перемешивания предшественника катализатора в сырье по мере увеличения числа фракций, потоков и ступеней смешивания увеличивает операционные затраты и сложность системы и способа. Было обнаружено, что способ прогрессивного смешивания, включающий две фракции, как описано в сочетании с фиг.3, приводит в результате к очень тщательному перемешиванию предшественника катализатора в сырье, содержащем тяжелую нефть.
В случае видов сырья, содержащего тяжелую нефть, которые являются твердыми или крайне вязкими при комнатной температуре, такие виды сырья могут благоприятным образом быть нагреты для их размягчения и создания сырья, имеющего достаточно низкую вязкость, чтобы обеспечить хорошее замешивание растворимого в нефти предшественника катализатора в сырье. В целом понижение вязкости сырья, содержащего тяжелую нефть, будет уменьшать время, требуемое для оказания эффекта тщательного и однородного перемешивания растворимой в нефти композиции предшественника в сырье. Однако сырье не следует нагревать до температуры, выше которой происходит значительное разложение композиции предшественника катализатора, до тех пор, пока предшественник катализатора не будет тщательно диспергирован во всем объеме композиции сырья. Преждевременное разложение композиции предшественника катализатора в общем случае приводит к образованию частиц катализатора микронного размера и крупнее в большей степени, чем коллоидного или молекулярного катализатора.
Сырье, содержащее тяжелую нефть, и разбавленную смесь предшественника катализатора предпочтительно смешивают в интервале от приблизительно 25°С (77°F) до приблизительно 300°С (572°F), более предпочтительно в интервале от приблизительно 50°С (122°F) до приблизительно 200°С (392°F) и наиболее предпочтительно в интервале от приблизительно 75°С (167°F) до приблизительно 150°С (302°F) с получением композиции смешанного сырья.
Система смешивания изобретения благоприятным образом поддерживает композицию предшественника катализатора при температуре ниже температуры разложения предшественника катализатора на протяжении всего процесса смешивания. Как таковая, композиция предшественника катализатора сопротивляется существенному преждевременному разложению перед достижением однородного смешивания композиции предшественника катализатора в сырье, содержащем тяжелую нефть. Последующий нагрев сырья до температуры, достаточной, чтобы вызвать высвобождение сульфида водорода из несущих серу углеводородных молекул либо перед или во время начала гидрообработки, приводит к выделению предшественником катализатора, который был однородно смешан с сырьем, индивидуальных молекул катализатора на основе сульфида металла и/или крайне малых частиц, которые являются коллоидными по размеру (т.е. менее чем 100 нм, предпочтительно менее чем приблизительно 10 нм, более предпочтительно менее чем приблизительно 5 нм и наиболее предпочтительно менее чем приблизительно 1 нм).
После того как композиция предшественника была хорошо смешана во всем объеме сырья, содержащего тяжелую нефть, так, чтобы дать на выходе•композицию смешанного сырья, эту композицию далее нагревают выше температуры, где происходит значительное разложение предшественника катализатора, чтобы высвободить из него металлический катализатор таким образом, чтобы образовать конечный активный катализатор. В соответствии с одним вариантом осуществления полагают, что металл из композиции предшественника первым образует оксид металла, который далее взаимодействует с серой, высвобождаемой из сырья, содержащего тяжелую нефть, с получением на выходе соединения сульфида металла, который является конечным активным катализатором. В случае когда сырье, содержащее тяжелую нефть, включает достаточное или избыточное количество серы, конечный активированный катализатор может быть образован in situ посредством нагрева кондиционированного сырья, содержащего тяжелую нефть, до температуры, достаточной для высвобождения из нее серы. В некоторых случаях сера может высвобождаться при той же температуре, при которой разлагается композиция предшественника. В других случаях может потребоваться дополнительный нагрев до более высокой температуры.
В соответствии с одним вариантом осуществления атомы металлического катализатора, высвобождаемые из металлоорганического соединения или комплекса, взаимодействуют с серой, высвобождаемой из сырья, содержащего тяжелую нефть, во время нагрева с получением соединений металлического катализатора, которые содержат один или несколько типов сульфидов металлов. Неограничивающим примером применимого катализатора на основе сульфида металла, который может применяться в способах и системах в соответствии с изобретением, является дисульфид молибдена. Неограничивающим примером предшественника катализатора, применяемого для образования дисульфида молибдена, является 2-этилгексаноат молибдена.
Коллоидный или молекулярный катализатор в общем случае никогда не становится дезактивированным, поскольку он не содержится внутри пор материала носителя. Кроме того, вследствие тесного контакта с молекулами тяжелой нефти, частицы молекулярного катализатора и/или коллоидного катализатора могут быстро катализировать реакцию гидрирования между атомами водорода и свободными радикалами, образованными из молекул тяжелой нефти. Несмотря на то что молекулярный или коллоидный катализатор покидает реактор гидрообработки вместе с обновленным продуктом, он постоянно заменяется свежим катализатором, содержащимся в поступающем сырье. В результате условия процесса, пропускная способность и уровни конверсии остаются значительно более постоянными с течением времени по сравнении с процессами, в которых используют катализаторы на твердых носителях в качестве единственного катализатора гидрообработки. При том, вследствие того, что коллоидный или молекулярный катализатор является более свободно диспергированным по всему объему сырья, включая то, что он тесно ассоциирован с асфальтенами, уровни конверсии и пропускная способность могут быть значительно или существенно увеличены по сравнению с общепринятыми системами гидрообработки.
Однородно диспергированный коллоидный и/или молекулярный катализатор также обладает способностью более ровно распределять участки каталитической реакции по всему объему реакционной камеры и сырьевого материала. Это снижает тенденцию для свободных радикалов взаимодействовать друг с другом с образованием молекул предшественников кокса и осадка по сравнению с реакторами кипящего слоя, в которых используют только относительно крупный (например, 1/4"×1/8" или 1/4"×1/16") (6,35 мм × 3,175 мм или 6,35 мм × 1,5875 мм) катализатор на носителе, где молекулы тяжелой нефти должны диффундировать в поры носителя катализатора для достижения активных каталитических участков. Как будет очевидно для специалиста в данной области, типовой реактор с кипящим слоем характерно имеет зоны без катализатора в низовой части реактора (заполнение) и выше уровня расширенного катализатора до рециркуляционного колпака. В этих зонах без катализатора молекулы тяжелой нефти продолжают претерпевать реакции термического крекинга таким образом, чтобы образовать свободные радикалы, которые могут взаимодействовать друг с другом для наработки молекул предшественников кокса и осадка.
Благоприятные эффекты в результате применения систем перемешивания изобретения по отношению к системам реактора гидрообработки в нисходящем потоке включают увеличенный перенос водорода к расщепленным углеводородным молекулам, обеспечивающий более высокие уровни конверсии и пропускную способность, сниженный перепад давления в случае реакторов с фиксированным слоем, сниженное загрязнение катализатора, замедление скорости увеличения температуры реактора при гидрообработке с фиксированным слоем для компенсации дезактивации катализатора, которая может произойти иным образом, и/или снижение частоты остановки реактора с фиксированным слоем для замены катализатора на твердом носителе.
Если растворимый в нефти предшественник катализатора тщательно перемешивают по всему объему сырья, содержащего тяжелую нефть, по меньшей мере, значительная часть высвобождаемых ионов металла будет достаточно укрыта или защищена от других ионов металлов таким образом, что они могут образовать молекулярно-диспергированный катализатор при взаимодействии с серой с образованием соединения сульфида металла. При некоторых обстоятельствах может происходить минорная агломерация, давая в результате частицы катализатора коллоидного размера. Однако полагают, что принятие мер по тщательному перемешиванию композиции предшественника по всему объему сырья будет приводить к получению индивидуальных молекул катализатора в большей степени, чем коллоидных частиц. Простое смешивание, не приводящее к достаточному перемешиванию композиции предшественника катализатора с сырьем, вызывает образование крупных агломерированных соединений сульфида металла, которые имеют микронный размер или крупнее.
Чтобы образовать катализатор на основе сульфида металла, композицию смешанного сырья предпочтительно нагревают до температуры в интервале от приблизительно 200°С (392°F) до приблизительно 500°С (932°F), более предпочтительно в интервале от приблизительно 250°С (482°F) до приблизительно 450°С (842°F) и наиболее предпочтительно в интервале от приблизительно 300°С (572°F) до приблизительно 400°С (752°F). В соответствии с одним вариантом осуществления кондиционированное сырье нагревают до температуры, которая составляет приблизительно 100°С (212°F) менее, чем температура гидрокрекинга внутри реактора гидрокрекинга, предпочтительно приблизительно 50°С (122°F) менее, чем температура гидрокрекинга. В соответствии с одним вариантом осуществления коллоидный или молекулярный катализатор образуется во время предварительного нагрева перед тем, как сырье, содержащее тяжелую нефть, вводят в реактор гидрокрекинга. В соответствии с еще одним вариантом осуществления, по меньшей мере, часть коллоидного или молекулярного катализатора образуется in situ в самом реакторе гидрокрекинга. В некоторых случаях коллоидный или молекулярный катализатор может быть образован по мере того, как сырье, содержащее тяжелую нефть, нагревают до температуры гидрокрекинга перед тем или после того, как сырье, содержащее тяжелую нефть, вводят в реактор гидрокрекинга. Начальная концентрация металлического катализатора в коллоидном или молекулярном катализаторе находится предпочтительно в интервале от приблизительно 5 частей на миллион (чнм) до приблизительно 500 чнм от массы сырья, содержащего тяжелую нефть, более предпочтительно в интервале от приблизительно 15 чнм до приблизительно 300 чнм и наиболее предпочтительно в интервале от приблизительно 25 чнм до приблизительно 175 чнм. Катализатор может стать более концентрированным по мере того, как летучие фракции удаляют из нелетучей фракции кубового остатка.
Несмотря на, в целом, гидрофобную природу видов сырья, содержащего тяжелую нефть, вследствие того что молекулы асфальтена в общем случае содержат большое количество функциональных групп, содержащих кислород, серу и азот, а также ассоциированные составные части металлов, таких как никель и ванадий, асфальтеновая фракция является значительно менее гидрофобной и более гидрофильной, чем другие углеводороды в сырье. Молекулы асфальтена, следовательно, в целом, имеют большее сродство к полярному катализатору из сульфида металла, особенно, когда он находится в коллоидном или молекулярном состоянии, в сравнении с более гидрофобными углеводородами в сырье, содержащем тяжелую нефть. В результате значительная часть полярных молекул сульфида металла или коллоидных частиц имеют тенденцию становиться более ассоциированными с более гидрофильными и менее гидрофобными молекулами асфальтена по сравнению с более гидрофобными углеводородами в сырье. Тесная приближенность частиц или молекул катализатора к молекулам асфальтена способствует инициации благоприятных реакций обновления, включая образование свободных радикалов посредством термического крекинга асфальтеновой фракции. Этот феномен является особенно благоприятным в случае тяжелых нефтей, которые имеют относительно высокое содержание асфальтенов, которые трудно, если не невозможно, обновить иным образом, применяя общепринятые методы, вследствие тенденции асфальтенов к дезактивации пористых катализаторов на носителе и отложению кокса и осадка на оборудовании для переработки или внутри него. Фиг.4 схематически изображает молекулы катализатора или коллоидные частицы "X", ассоциированные с молекулами асфальтена или находящиеся с ними в тесной близости.
В то время как высокополярная природа соединения катализатора вызывает или обеспечивает ассоциацию коллоидного и/или молекулярного катализатора с молекулами асфальтена, существует общая несовместимость между высокополярным соединением катализатора и гидрофобным сырьем, содержащим тяжелую нефть, что делает необходимым вышеупомянутое глубокое или тщательное перемешивание растворимой в нефти композиции предшественника катализатора в сырье, содержащем тяжелую нефть, перед разложением предшественника и образованием коллоидного или молекулярного катализатора. Вследствие того что соединения металлического катализатора являются высокополярными, они не могут быть эффективно диспергированы в сырье, содержащем тяжелую нефть, в коллоидной или молекулярной форме при добавлении к нему непосредственно или в виде части водного раствора или масляной и водяной эмульсии. Такие способы неизбежно приводят к получению частиц микронного размера или крупнее.
Теперь ссылаются на фиг.5А и 5В, которые схематически изображают кристалл дисульфида молибдена нанометрического размера. Фиг.5А представляет собой вид сверху, а фиг.5В представляет собой вид сбоку кристалла дисульфида молибдена. Молекулы дисульфида молибдена типично образуют плоские, гексагональные кристаллы, в которых единичные слои атомов молибдена (Мо) расположены по принципу сэндвича между слоями атомов серы (3). Единственные активные участки для катализа находятся на краях кристалла, где атомы молибдена экспонированы. Более мелкие кристаллы имеют более высокое процентное содержание атомов молибдена, экспонированных по краям.
Диаметр атома молибдена составляет приблизительно 0,3 нм, а диаметр атома серы равен приблизительно 0,2 нм. Иллюстрированный кристалл дисульфида молибдена нанометрического размера имеет 7 атомов молибдена, расположенных по принципу сэндвича между 14 атомами серы. Как лучше видно на фиг.5А, 6 из 7 (85,7%) от общего числа атомов молибдена будут экспонированы по краю и доступными для каталитической активности. Напротив, кристалл дисульфида молибдена имеет несколько миллионов атомов, причем только 0,2% от общего числа атомов молибдена являются экспонированными по краю кристалла и доступными для каталитической активности. Оставшиеся 99,8% атомов молибдена в кристаллах микронного размера погружены во внутрь кристалла и, следовательно, являются недоступными для катализа. Это означает, что частицы дисульфида молибдена нанометрического размера, по крайней мере, в теории, на порядки являются более эффективными, чем частицы микронного размера, при обеспечении активных каталитических участков.
С практической точки зрения образование более мелких частиц катализатора приводит к большему числу частиц катализатора и более равномерно распределенным каталитическим участкам по всему объему сырья. Простая математика диктует, что образование частиц нанометрического размера вместо частиц микронного размера будет приводить в результате приблизительно к большему количеству частиц в интервале приблизительно от 10003 (т.е. 1 миллион) до 10006 (т.е. 1 миллиард) в зависимости от размера и формы кристаллов катализатора. Это означает, что приблизительно от 1 миллиона до 1 миллиарда раз существует больше точек или расположений в сырье, где присутствуют активные участки катализатора. Кроме того, полагают, что частицы дисульфида молибдена нанометрического размера или менее становятся плотно ассоциированными с молекулами асфальтена, как показано на фиг.4. Напротив, полагают, что частицы катализатора микронного размера или крупнее являются значительно более крупными, чтобы быть плотно ассоциированными с молекулами асфальтена или внутри них. По меньшей мере, этим причинам четко выраженные преимущества, связанные с системой и способом смешивания, которые обеспечивают образование коллоидного и/или молекулярного катализатора, будут очевидными для специалиста в данной области.
ПРИМЕРЫ
Следующие примеры более конкретно иллюстрируют некоторые примерные способы и системы смешивания в соответствии с настоящим изобретением для однородного замешивания предшественника катализатора в сырье, содержащем тяжелую нефть, таким образом, чтобы получить кондиционированное сырье, содержащее тяжелую нефть.
Пример 1
Смешанное сырье, содержащее тяжелую нефть, получают в системе, как иллюстрировано на фиг.3. Разбавленный предшественник катализатора сначала получают посредством смешивания потока, имеющего скорость потока, равную приблизительно 75 кг/час, предшественника катализатора с потоком, имеющим скорость потока, равную приблизительно 6000 кг/час, разбавителя нефтяной эмульсии при приблизительно 100°С. Два потока смешивают вместе в первом в линии статическом смесителе с низкой скоростью сдвига. Поток сырья, содержащего тяжелую нефть, имеющий скорость потока, равную приблизительно 225000 кг/час, разделяют на два потока. Первый поток имеет скорость потока, равную приблизительно 164925 кг/час, приблизительно 73% от общей скорости потока сырья, содержащего тяжелую нефть. Второй поток имеет скорость потока, равную приблизительно 60075 кг/час. Оба потока находятся при приблизительно 180°С. Первый поток смешивают с потоком разбавленного предшественника катализатора во втором смесителе с низкой скоростью сдвига в линии обводного потока. Объединенный поток далее вводят в динамический смеситель с высокой скоростью сдвига, содержащий емкость с воздушным винтом для принудительной подачи текучей среды через ряд открытых бороздок (например, смеситель с высокой скоростью сдвига типа 800LS Silverson, имеющий объем, приблизительно равный 6,5 литрам) для обеспечения высокого сдвига, турбулентного смешивания с содержимым емкости. Время пребывания в смесителе с высокой скоростью сдвига составляет приблизительно 0,14 секунд. Объединенный поток, выходящий из динамического смесителя с высокой скоростью сдвига, далее вводят, наряду со вторым потоком сырья, содержащего тяжелую нефть, в промежуточный резервуар.
В промежуточном резервуаре предшественник катализатора продолжает диффундировать через сырье, содержащее тяжелую нефть, посредством молекулярной диффузии. Промежуточный резервуар имеет время пребывания, равное приблизительно 30 минутам.
Сырье, содержащее тяжелую нефть, выкачивают из промежуточного резервуара посредством трех многоступенчатых насосов высокого давления, расположенных параллельно так, чтобы обеспечить достаточную производительность по скорости потока для подачи в систему гидрообработки в нисходящем потоке для гидрообработки кондиционированного сырья, содержащего тяжелую нефть. Каждый насос включает 10 ступеней сжатия. По мере того как сырье прокачивается через насосы, прохождение тяжелой нефти и предшественника катализатора через ряд ступеней сжатия дополнительно распределяет предшественник катализатора по всему объему тяжелой нефти.
На протяжении всего процесса температуру поддерживают ниже значения, при котором иначе бы произошло существенное разложение предшественника катализатора. Как только предшественник катализатора хорошо перемешивают по всему объему тяжелой нефти, сырьевой поток нагревают так, чтобы вызвать разложение предшественника и образование катализатора. Коллоидный и/или молекулярный катализатор образуется по всему объему сырья, содержащего тяжелую нефть. Начальная концентрация металлического молибденового катализатора в коллоидном и/или молекулярном катализаторе составляет приблизительно 50 частей на миллион (чнм).
Настоящее изобретение может быть воплощено в других специфических формах без отхода от его духа или существенных характеристик. Описанные варианты осуществления должны рассматриваться во всех отношениях только как иллюстративные, а не ограничивающие. Объем притязаний изобретения, следовательно, указан прилагаемой формулой изобретения в большей степени, чем вышеприведенным описанием. Все изменения, которые происходят в пределах значения и интервала эквивалентности формулы изобретения, должны охватываться его объемом притязаний.
Claims (31)
1. Способ гомогенного замещивания предшественника катализатора, имеющего относительно низкую вязкость, в сырье, содержащее тяжелую нефть, имеющее относительно высокую вязкость, включающий в себя:
предварительное смешивание предшественника катализатора с разбавителем таким образом, что предшественник катализатора является по существу гомогенно диспергированным по всему объему разбавителя так, чтобы образовать разбавленный предшественник катализатора, причем разбавитель имеет температуру кипения, равную по меньшей мере приблизительно 150°С;
разделение сырья, содержащего тяжелую нефть, имеющего вязкость большую, чем вязкость предшественника катализатора, на два потока, состоящих из первого потока и второго потока, причем первый поток содержит от приблизительно 30% до приблизительно 90% сырья, содержащего тяжелую нефть;
смешивание разбавленного предшественника катализатора с первым потоком сырья, содержащего тяжелую нефть, таким образом, чтобы образовать смешанную композицию нефтяного сырья; и тщательное перемешивание смешанной композиции нефтяного сырья с оставшейся частью сырья, содержащего тяжелую нефть, содержащей второй поток, так, чтобы предшественник катализатора являлся по существу гомогенно диспергированным во всем объеме сырья, содержащего тяжелую нефть.
предварительное смешивание предшественника катализатора с разбавителем таким образом, что предшественник катализатора является по существу гомогенно диспергированным по всему объему разбавителя так, чтобы образовать разбавленный предшественник катализатора, причем разбавитель имеет температуру кипения, равную по меньшей мере приблизительно 150°С;
разделение сырья, содержащего тяжелую нефть, имеющего вязкость большую, чем вязкость предшественника катализатора, на два потока, состоящих из первого потока и второго потока, причем первый поток содержит от приблизительно 30% до приблизительно 90% сырья, содержащего тяжелую нефть;
смешивание разбавленного предшественника катализатора с первым потоком сырья, содержащего тяжелую нефть, таким образом, чтобы образовать смешанную композицию нефтяного сырья; и тщательное перемешивание смешанной композиции нефтяного сырья с оставшейся частью сырья, содержащего тяжелую нефть, содержащей второй поток, так, чтобы предшественник катализатора являлся по существу гомогенно диспергированным во всем объеме сырья, содержащего тяжелую нефть.
2. Способ гомогенного замешивания предшественника катализатора, имеющего относительно низкую вязкость, в сырье, содержащее тяжелую нефть, имеющее относительно высокую вязкость, включающий в себя:
предварительное смешивание предшественника катализатора с разбавителем таким образом, что предшественник катализатора является по существу гомогенно диспергированным по всему объему разбавителя так, чтобы образовать разбавленный предшественник катализатора, причем разбавитель имеет температуру кипения, равную по меньшей мере приблизительно 150°С;
разделение сырья, содержащего тяжелую нефть, имеющего вязкость большую, чем вязкость предшественника катализатора на множество потоков;
смешивание разбавленного предшественника катализатора с одним из потоков сырья, содержащего тяжелую нефть, так, чтобы образовать смешанную композицию нефтяного сырья посредством по меньшей мере одного статического смесителя с низкой скоростью сдвига в линии с последующим по меньшей мере одним смесителем с высокой скоростью сдвига; и
введение смешанной композиции нефтяного сырья и любой оставшейся части сырья, содержащего тяжелую нефть, в промежуточный резервуар для того, чтобы предшественник катализатора диффундировал через сырье, содержащее тяжелую нефть,
причем способ обеспечивает кондиционированное сырье, содержащее тяжелую нефть.
предварительное смешивание предшественника катализатора с разбавителем таким образом, что предшественник катализатора является по существу гомогенно диспергированным по всему объему разбавителя так, чтобы образовать разбавленный предшественник катализатора, причем разбавитель имеет температуру кипения, равную по меньшей мере приблизительно 150°С;
разделение сырья, содержащего тяжелую нефть, имеющего вязкость большую, чем вязкость предшественника катализатора на множество потоков;
смешивание разбавленного предшественника катализатора с одним из потоков сырья, содержащего тяжелую нефть, так, чтобы образовать смешанную композицию нефтяного сырья посредством по меньшей мере одного статического смесителя с низкой скоростью сдвига в линии с последующим по меньшей мере одним смесителем с высокой скоростью сдвига; и
введение смешанной композиции нефтяного сырья и любой оставшейся части сырья, содержащего тяжелую нефть, в промежуточный резервуар для того, чтобы предшественник катализатора диффундировал через сырье, содержащее тяжелую нефть,
причем способ обеспечивает кондиционированное сырье, содержащее тяжелую нефть.
3. Способ по п.1 или 2, где разбавитель содержит один или несколько из вакуумного газойля, нефтяной эмульсии, рециклового газойля, стартового дизельного топлива или легкого газойля.
4. Способ по п.1 или 2, где разбавитель содержит часть сырья, содержащего тяжелую нефть.
5. Способ по п.1 или 2, где предшественник катализатора смешивают с разбавителем в статическом смесителе с низкой скоростью сдвига в линии так, чтобы образовать разбавленный предшественник катализатора.
6. Способ по п.1 или 2, где массовое отношение предшественника катализатора к разбавителю находится между приблизительно 1:500 и приблизительно 1:1.
7. Способ по п.1 или 2, где массовое отношение предшественника катализатора к разбавителю находится между приблизительно 1:100 и приблизительно 1:5.
8. Способ по п.1 или 2, где разбавленный предшественник катализатора первоначально смешивают с первым потоком сырья, содержащего тяжелую нефть, в статическом смесителе с низкой скоростью сдвига в линии с последующим перемешиванием в смесителе с высокой скоростью сдвига.
9. Способ по п.1, где смешанную композицию нефтяного сырья и оставшуюся часть сырья, содержащего тяжелую нефть, смешивают посредством введения в промежуточный резервуар.
10. Способ по п.2 или 9, где смешанную композицию нефтяного сырья и оставшуюся часть сырья, содержащего тяжелую нефть, дополнительно смешивают посредством рециркуляционного насоса, связанного с промежуточным резервуаром и/или посредством одного или более многоступенчатых насосов высокого давления, которые нагнетают содержимое промежуточного резервуара в реактор гидрообработки.
11. Способ по п.2 или 9, где кондиционированное сырье, содержащее тяжелую нефть, дополнительно смешивают посредством множества параллельных многоступенчатых насосов высокого давления, которые нагнетают содержимое промежуточного резервуара в реактор гидрообработки.
12. Способ по п.1, где первый поток сырья, содержащего тяжелую нефть, смешанный с композицией разбавленного предшественника, содержит от приблизительно 40% до приблизительно 80% сырья, содержащего тяжелую нефть.
13. Способ по п.1, где первый поток сырья, содержащего тяжелую нефть, смешанный с композицией разбавленного предшественника, содержит от приблизительно 65% до приблизительно 75% сырья, содержащего тяжелую нефть.
14. Способ по п.1 или 9, где предварительное смешивание и смешивание происходят при температуре приблизительно 25°С и приблизительно 300°С.
15. Способ по п.1 или 9, где предварительное смешивание и смешивание происходят при температуре приблизительно 75°С и приблизительно 150°С.
16. Система для гомогенного замешивания предшественника катализатора, имеющего относительно низкую вязкость, в сырье, содержащее тяжелую нефть, имеющее относительно высокую вязкость, включающая в себя:
средства для предварительного смешивания предшественника катализатора с разбавителем таким образом, что предшественник катализатора является по существу гомогенно диспергированным по всему объему разбавителя так, чтобы образовать разбавленный предшественник катализатора, причем разбавитель имеет температуру кипения, равную по меньшей мере приблизительно 150°С;
средства для разделения сырья, содержащего тяжелую нефть, имеющего вязкость большую, чем вязкость предшественника катализатора, на два потока, состоящих из первого потока и второго потока, причем первый поток содержит от приблизительно 30% до приблизительно 90% сырья, содержащего тяжелую нефть;
средства для смешивания разбавленного предшественника катализатора с первым потоком сырья, содержащего тяжелую нефть, таким образом, чтобы образовать смешанную композицию нефтяного сырья; и
средства для тщательного перемешивания смешанной композиции нефтяного сырья с оставшейся частью сырья, содержащего тяжелую нефть, содержащей второй поток, так, чтобы предшественник катализатора являлся по существу гомогенно диспергированным во всем объеме сырья, содержащего тяжелую нефть.
средства для предварительного смешивания предшественника катализатора с разбавителем таким образом, что предшественник катализатора является по существу гомогенно диспергированным по всему объему разбавителя так, чтобы образовать разбавленный предшественник катализатора, причем разбавитель имеет температуру кипения, равную по меньшей мере приблизительно 150°С;
средства для разделения сырья, содержащего тяжелую нефть, имеющего вязкость большую, чем вязкость предшественника катализатора, на два потока, состоящих из первого потока и второго потока, причем первый поток содержит от приблизительно 30% до приблизительно 90% сырья, содержащего тяжелую нефть;
средства для смешивания разбавленного предшественника катализатора с первым потоком сырья, содержащего тяжелую нефть, таким образом, чтобы образовать смешанную композицию нефтяного сырья; и
средства для тщательного перемешивания смешанной композиции нефтяного сырья с оставшейся частью сырья, содержащего тяжелую нефть, содержащей второй поток, так, чтобы предшественник катализатора являлся по существу гомогенно диспергированным во всем объеме сырья, содержащего тяжелую нефть.
17. Система для гомогенного замещивания предшественника катализатора, имеющего относительно низкую вязкость, в сырье, содержащее тяжелую нефть, имеющее относительно высокую вязкость, включающая в себя:
средства для предварительного смешивания предшественника катализатора с разбавителем таким образом, что предшественник катализатора является по существу гомогенно диспергированным по всему объему разбавителя так, чтобы образовать разбавленный предшественник катализатора, причем разбавитель имеет температуру кипения, равную по меньшей мере приблизительно 150°С;
средства для разделения сырья, содержащего тяжелую нефть, имеющего вязкость большую, чем вязкость предшественника катализатора, на множество потоков;
по меньшей мере один статический смеситель с низкой скоростью сдвига в линии с последующим по меньшей мере одним смесителем с высокой скоростью сдвига, расположенные для последовательного смешивания разбавленного предшественника катализатора с одним из потоков сырья, содержащего тяжелую нефть таким образом, чтобы посредством их образовать композицию смешанного нефтяного сырья; и промежуточный резервуар для приема композиции смешанного нефтяного сырья и любой оставшейся части сырья, содержащего тяжелую нефть, для того, чтобы предшественник катализатора диффундировал через сырье, содержащее тяжелую нефть,
причем система обеспечивает кондиционированное сырье, содержащее тяжелую нефть.
средства для предварительного смешивания предшественника катализатора с разбавителем таким образом, что предшественник катализатора является по существу гомогенно диспергированным по всему объему разбавителя так, чтобы образовать разбавленный предшественник катализатора, причем разбавитель имеет температуру кипения, равную по меньшей мере приблизительно 150°С;
средства для разделения сырья, содержащего тяжелую нефть, имеющего вязкость большую, чем вязкость предшественника катализатора, на множество потоков;
по меньшей мере один статический смеситель с низкой скоростью сдвига в линии с последующим по меньшей мере одним смесителем с высокой скоростью сдвига, расположенные для последовательного смешивания разбавленного предшественника катализатора с одним из потоков сырья, содержащего тяжелую нефть таким образом, чтобы посредством их образовать композицию смешанного нефтяного сырья; и промежуточный резервуар для приема композиции смешанного нефтяного сырья и любой оставшейся части сырья, содержащего тяжелую нефть, для того, чтобы предшественник катализатора диффундировал через сырье, содержащее тяжелую нефть,
причем система обеспечивает кондиционированное сырье, содержащее тяжелую нефть.
18. Система по п.16 или 17, где средство для смешивания предшественника катализатора с разбавителем включает в себя статический смеситель с низкой скоростью сдвига в линии.
19. Система по п.16, где средство для смешивания разбавленного предшественника катализатора с первым потоком сырья, содержащего тяжелую нефть, включает в себя статический смеситель с низкой скоростью сдвига в линии и динамический смеситель с высокой скоростью сдвига.
20. Система по п.19, где статический смеситель с низкой скоростью сдвига в линии характеризуется как включающий между приблизительно 7 и приблизительно 15 ступеней смешивания.
21. Система по п.19, где статический смеситель с низкой скоростью сдвига в линии характеризуется как включающий между приблизительно 8 и приблизительно 12 ступеней смешивания.
22. Система по п.19, где смеситель с высокой скоростью сдвига обеспечивает время пребывания между приблизительно 0,001 с и приблизительно 20 мин.
23. Система по п.19, где смеситель с высокой скоростью сдвига обеспечивает время пребывания между приблизительно 0,01 с и приблизительно 3 с.
24. Система по п.16, где средство тщательного перемешивания смешанной композиции нефтяного сырья с оставшейся частью сырья, содержащего тяжелую нефть, включает в себя промежуточный резервуар, имеющий такое время пребывания, чтобы обеспечить диффузию предшественника катализатора по всему объему сырья, содержащего тяжелую нефть, чтобы в результате предшественник катализатора являлся по существу гомогенно диспергированным на коллоидном и/или молекулярном уровне в сырье, содержащем тяжелую нефть.
25. Система по п.17 или 24, где промежуточный резервуар обеспечивает время пребывания между приблизительно 5 мин и приблизительно 60 мин.
26. Система по п.17 или 24, где промежуточный резервуар обеспечивает время пребывания между приблизительно 20 мин и приблизительно 40 мин.
27. Система по п.16, где средство тщательного перемешивания смешанной композиции нефтяного сырья с оставшейся частью сырья, содержащего тяжелую нефть, включает в себя один или несколько многоступенчатых насосов высокого давления.
28. Система по п.17, дополнительно включающая в себя множественные параллельные многоступенчатые насосы высокого давления, которые нагнетают кондиционированное сырье, содержащее тяжелую нефть, из промежуточного резервуара в реактор гидрообработки.
29. Система по п.27 или 28, где многоступенчатые насосы высокого давления включают в себя по меньшей мере приблизительно 10 ступеней сжатия.
30. Система по п.27, где один или несколько многоступенчатых насосов высокого давления включают в себя два или более насосов, расположенных параллельно.
31. Система по п.27, где один или несколько многоступенчатых насосов высокого давления включают в себя два или более насосов, расположенных последовательно.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/374,369 US10941353B2 (en) | 2004-04-28 | 2006-03-13 | Methods and mixing systems for introducing catalyst precursor into heavy oil feedstock |
US11/374,369 | 2006-03-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2008140315A RU2008140315A (ru) | 2010-04-20 |
RU2426589C2 true RU2426589C2 (ru) | 2011-08-20 |
Family
ID=38510211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2008140315/05A RU2426589C2 (ru) | 2006-03-13 | 2007-03-12 | Способы и системы смешивания для введения предшественника катализатора в сырье, содержащее тяжелую нефть |
Country Status (13)
Country | Link |
---|---|
US (2) | US10941353B2 (ru) |
EP (2) | EP2735601B1 (ru) |
JP (1) | JP5437789B2 (ru) |
KR (1) | KR101515850B1 (ru) |
CN (1) | CN101405370A (ru) |
CA (1) | CA2646492C (ru) |
ES (1) | ES2875011T3 (ru) |
IN (1) | IN2008DE07704A (ru) |
MX (1) | MX340029B (ru) |
PL (2) | PL2735601T3 (ru) |
RU (1) | RU2426589C2 (ru) |
TW (1) | TWI360571B (ru) |
WO (1) | WO2007106783A2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2675361C1 (ru) * | 2018-08-06 | 2018-12-19 | Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) | Способ получения катализатора и способ гидрирования нефтеполимерных смол в его присутствии |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1753844B1 (en) * | 2004-04-28 | 2016-06-08 | Headwaters Heavy Oil, LLC | Hydroprocessing method and system for upgrading heavy oil |
JP5318410B2 (ja) | 2004-04-28 | 2013-10-16 | ヘッドウォーターズ ヘビー オイル リミテッド ライアビリティ カンパニー | 沸騰床水素化処理方法およびシステムならびに既存の沸騰床システムをアップグレードする方法 |
US10941353B2 (en) | 2004-04-28 | 2021-03-09 | Hydrocarbon Technology & Innovation, Llc | Methods and mixing systems for introducing catalyst precursor into heavy oil feedstock |
KR101399811B1 (ko) * | 2004-04-28 | 2014-05-27 | 헤드워터스 헤비 오일, 엘엘씨 | 고정 베드 하이드로프로세싱 방법 및 시스템 및 기존의고정 베드 시스템을 개량하는 방법 |
US7678732B2 (en) | 2004-09-10 | 2010-03-16 | Chevron Usa Inc. | Highly active slurry catalyst composition |
US7972499B2 (en) | 2004-09-10 | 2011-07-05 | Chevron U.S.A. Inc. | Process for recycling an active slurry catalyst composition in heavy oil upgrading |
US7431822B2 (en) | 2005-12-16 | 2008-10-07 | Chevron U.S.A. Inc. | Process for upgrading heavy oil using a reactor with a novel reactor separation system |
US7931796B2 (en) | 2008-09-18 | 2011-04-26 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US8435400B2 (en) | 2005-12-16 | 2013-05-07 | Chevron U.S.A. | Systems and methods for producing a crude product |
US8372266B2 (en) * | 2005-12-16 | 2013-02-12 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US7943036B2 (en) | 2009-07-21 | 2011-05-17 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US7938954B2 (en) * | 2005-12-16 | 2011-05-10 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US8048292B2 (en) | 2005-12-16 | 2011-11-01 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US8034232B2 (en) * | 2007-10-31 | 2011-10-11 | Headwaters Technology Innovation, Llc | Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker |
US8142645B2 (en) | 2008-01-03 | 2012-03-27 | Headwaters Technology Innovation, Llc | Process for increasing the mono-aromatic content of polynuclear-aromatic-containing feedstocks |
US8236169B2 (en) | 2009-07-21 | 2012-08-07 | Chevron U.S.A. Inc | Systems and methods for producing a crude product |
US7897035B2 (en) | 2008-09-18 | 2011-03-01 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US7897036B2 (en) * | 2008-09-18 | 2011-03-01 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US7931797B2 (en) * | 2009-07-21 | 2011-04-26 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US7935243B2 (en) | 2008-09-18 | 2011-05-03 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
KR100992776B1 (ko) | 2008-11-14 | 2010-11-05 | 엘지이노텍 주식회사 | 반도체 발광소자 및 그 제조방법 |
US9068132B2 (en) | 2009-07-21 | 2015-06-30 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US8759242B2 (en) | 2009-07-21 | 2014-06-24 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US8927448B2 (en) | 2009-07-21 | 2015-01-06 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US8821713B2 (en) | 2009-12-17 | 2014-09-02 | H R D Corporation | High shear process for processing naphtha |
US8815184B2 (en) | 2010-08-16 | 2014-08-26 | Chevron U.S.A. Inc. | Process for separating and recovering metals |
US8663460B2 (en) * | 2010-09-16 | 2014-03-04 | Chevron U.S.A. Inc. | Process, method, and system for removing heavy metals from fluids |
CA2817595C (en) | 2010-12-20 | 2021-01-05 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
SG190910A1 (en) | 2010-12-30 | 2013-07-31 | Chevron Usa Inc | Hydroprocessing catalysts and methods for making thereof |
US9790440B2 (en) * | 2011-09-23 | 2017-10-17 | Headwaters Technology Innovation Group, Inc. | Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker |
US9644157B2 (en) * | 2012-07-30 | 2017-05-09 | Headwaters Heavy Oil, Llc | Methods and systems for upgrading heavy oil using catalytic hydrocracking and thermal coking |
US9687823B2 (en) | 2012-12-14 | 2017-06-27 | Chevron U.S.A. Inc. | Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units |
US9321037B2 (en) | 2012-12-14 | 2016-04-26 | Chevron U.S.A., Inc. | Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units |
US8815185B1 (en) | 2013-03-04 | 2014-08-26 | Chevron U.S.A. Inc. | Recovery of vanadium from petroleum coke slurry containing solubilized base metals |
US11414608B2 (en) | 2015-09-22 | 2022-08-16 | Hydrocarbon Technology & Innovation, Llc | Upgraded ebullated bed reactor used with opportunity feedstocks |
US11414607B2 (en) | 2015-09-22 | 2022-08-16 | Hydrocarbon Technology & Innovation, Llc | Upgraded ebullated bed reactor with increased production rate of converted products |
US11421164B2 (en) | 2016-06-08 | 2022-08-23 | Hydrocarbon Technology & Innovation, Llc | Dual catalyst system for ebullated bed upgrading to produce improved quality vacuum residue product |
US11118119B2 (en) | 2017-03-02 | 2021-09-14 | Hydrocarbon Technology & Innovation, Llc | Upgraded ebullated bed reactor with less fouling sediment |
US11732203B2 (en) | 2017-03-02 | 2023-08-22 | Hydrocarbon Technology & Innovation, Llc | Ebullated bed reactor upgraded to produce sediment that causes less equipment fouling |
CN110824026B (zh) * | 2018-08-10 | 2023-09-05 | 中国石油化工股份有限公司 | 一种用于重油接触裂化的接触剂的评价方法 |
CA3057131C (en) | 2018-10-17 | 2024-04-23 | Hydrocarbon Technology And Innovation, Llc | Upgraded ebullated bed reactor with no recycle buildup of asphaltenes in vacuum bottoms |
TW202117027A (zh) | 2019-07-08 | 2021-05-01 | 美商雪維隆美國有限公司 | 自廢催化劑回收金屬 |
KR102629120B1 (ko) * | 2020-11-09 | 2024-01-24 | 주식회사 엘지화학 | 석유화학 제품 내 메탈 성분 제거방법 |
FR3125057B1 (fr) | 2021-07-08 | 2024-10-04 | Ifp Energies Now | Hydroconversion en lit hybride bouillonnant-entraîné d’une charge hydrocarbonee lourde comprenant le prémélange de ladite charge avec un additif organique |
FR3125058B1 (fr) | 2021-07-08 | 2024-09-27 | Ifp Energies Now | Hydroconversion en lit entraine d’une charge hydrocarbonee lourd comprenant le prémélange de ladite charge avec un additif organique |
FR3130836A1 (fr) | 2021-12-20 | 2023-06-23 | IFP Energies Nouvelles | Hydroconversion en lit bouillonnant ou hybride bouillonnant-entraîné d’une charge comportant une fraction plastique |
WO2023137350A1 (en) | 2022-01-13 | 2023-07-20 | Chevron U.S.A. Inc. | Improved ebullated bed reactor and process |
WO2023154077A1 (en) | 2022-02-14 | 2023-08-17 | Chevron U.S.A. Inc. | Metals recovery from spent supported catalyst |
FR3133197A1 (fr) | 2022-03-01 | 2023-09-08 | IFP Energies Nouvelles | Hydroconversion en lit bouillonnant ou hybride bouillonnant-entraîné d’une charge comportant une fraction d’huile végétale ou animale |
FR3133618A1 (fr) | 2022-03-17 | 2023-09-22 | IFP Energies Nouvelles | Hydroconversion en lit bouillonnant ou hybride bouillonnant-entraîné d’une charge comportant une fraction d’huile de pyrolyse de plastiques et/ou de combustibles solides de recuperation |
US20230383198A1 (en) * | 2022-05-26 | 2023-11-30 | Hydrocarbon Technology & Innovation, Llc | Method and system for introducing catalyst precursor into heavy oil using parallel mixer lines and bypass line |
Family Cites Families (266)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2850552A (en) | 1952-06-30 | 1958-09-02 | Phillips Petroleum Co | Control of reactions involving fluids of different densities |
US3019180A (en) | 1959-02-20 | 1962-01-30 | Socony Mobil Oil Co Inc | Conversion of high boiling hydrocarbons |
US3161585A (en) | 1962-07-02 | 1964-12-15 | Universal Oil Prod Co | Hydrorefining crude oils with colloidally dispersed catalyst |
US3254017A (en) * | 1963-08-23 | 1966-05-31 | Exxon Research Engineering Co | Process for hydrocracking heavy oils in two stages |
NL297593A (ru) | 1964-03-05 | 1900-01-01 | ||
US3267021A (en) * | 1964-03-30 | 1966-08-16 | Chevron Res | Multi-stage hydrocracking process |
US3362972A (en) * | 1964-06-29 | 1968-01-09 | Halcon International Inc | Process for the preparation of certain molybdenum and vanadium salts |
US3297563A (en) * | 1964-08-17 | 1967-01-10 | Union Oil Co | Treatment of heavy oils in two stages of hydrotreating |
DE1220394B (de) | 1964-09-12 | 1966-07-07 | Glanzstoff Koeln Ges Mit Besch | Vorrichtung zum kontinuierlichen Mischen und Homogenisieren von Fluessigkeiten verschiedener Viskositaet |
JPS4714205Y1 (ru) | 1968-01-09 | 1972-05-23 | ||
US3578690A (en) * | 1968-06-28 | 1971-05-11 | Halcon International Inc | Process for preparing molybdenum acid salts |
US3595891A (en) * | 1969-09-17 | 1971-07-27 | Jefferson Chem Co Inc | Process for hydrocarbon soluble metal salts |
US3622497A (en) * | 1970-01-22 | 1971-11-23 | Universal Oil Prod Co | Slurry process using vanadium sulfide for converting hydrocarbonaceous black oil |
US3622498A (en) | 1970-01-22 | 1971-11-23 | Universal Oil Prod Co | Slurry processing for black oil conversion |
US3694352A (en) | 1970-02-24 | 1972-09-26 | Universal Oil Prod Co | Slurry hydrorefining of black oils with mixed vanadium and manganese sulfides |
US3694351A (en) | 1970-03-06 | 1972-09-26 | Gulf Research Development Co | Catalytic process including continuous catalyst injection without catalyst removal |
US3870623A (en) | 1971-12-21 | 1975-03-11 | Hydrocarbon Research Inc | Hydroconversion process of residuum oils |
FR2184404B1 (ru) | 1972-05-15 | 1974-09-27 | Inst Francais Du Petrole | |
US3907852A (en) | 1972-06-23 | 1975-09-23 | Exxon Research Engineering Co | Silylhydrocarbyl phosphines and related compounds |
US3816020A (en) * | 1972-10-19 | 1974-06-11 | Selgo Pumps Inc | Pump |
US3892389A (en) | 1972-11-29 | 1975-07-01 | Bekaert Sa Nv | Device and method for injecting liquids into a mixing head |
DE2315114B2 (de) | 1973-03-27 | 1979-08-23 | Basf Ag, 6700 Ludwigshafen | Verfahren zum Mischen von flüssigen Stoffen mit hohen Viskositätsunterschieden |
JPS5740811B2 (ru) | 1973-05-08 | 1982-08-30 | ||
US4125455A (en) | 1973-09-26 | 1978-11-14 | Texaco Inc. | Hydrotreating heavy residual oils |
US4066561A (en) * | 1974-01-04 | 1978-01-03 | Mobil Oil Corporation | Organometallic compounds and compositions thereof with lubricants |
US4068830A (en) * | 1974-01-04 | 1978-01-17 | E. I. Du Pont De Nemours And Company | Mixing method and system |
US3983028A (en) | 1974-07-01 | 1976-09-28 | Standard Oil Company (Indiana) | Process for recovering upgraded products from coal |
US3915842A (en) | 1974-07-22 | 1975-10-28 | Universal Oil Prod Co | Catalytic conversion of hydrocarbon mixtures |
US3919074A (en) | 1974-08-22 | 1975-11-11 | Universal Oil Prod Co | Process for the conversion of hydrocarbonaceous black oil |
US3992285A (en) | 1974-09-23 | 1976-11-16 | Universal Oil Products Company | Process for the conversion of hydrocarbonaceous black oil |
US3953362A (en) * | 1975-04-30 | 1976-04-27 | Olin Corporation | Molybdenum salt catalysts and methods of preparing them |
US4022681A (en) * | 1975-12-24 | 1977-05-10 | Atlantic Richfield Company | Production of monoaromatics from light pyrolysis fuel oil |
US4067798A (en) * | 1976-02-26 | 1978-01-10 | Standard Oil Company (Indiana) | Catalytic cracking process |
US4066530A (en) | 1976-07-02 | 1978-01-03 | Exxon Research & Engineering Co. | Hydroconversion of heavy hydrocarbons |
US4192735A (en) | 1976-07-02 | 1980-03-11 | Exxon Research & Engineering Co. | Hydrocracking of hydrocarbons |
US4298454A (en) | 1976-07-02 | 1981-11-03 | Exxon Research And Engineering Company | Hydroconversion of an oil-coal mixture |
US4077867A (en) * | 1976-07-02 | 1978-03-07 | Exxon Research & Engineering Co. | Hydroconversion of coal in a hydrogen donor solvent with an oil-soluble catalyst |
US4067799A (en) * | 1976-07-02 | 1978-01-10 | Exxon Research And Engineering Company | Hydroconversion process |
US4148750A (en) | 1977-01-10 | 1979-04-10 | Exxon Research & Engineering Co. | Redispersion of noble metals on supported catalysts |
US4181601A (en) * | 1977-06-17 | 1980-01-01 | The Lummus Company | Feed hydrotreating for improved thermal cracking |
CA1097245A (en) * | 1977-11-22 | 1981-03-10 | Chandra P. Khulbe | Thermal hydrocracking of heavy hydrocarbon oils with heavy oil recycle |
US4151070A (en) | 1977-12-20 | 1979-04-24 | Exxon Research & Engineering Co. | Staged slurry hydroconversion process |
US4178227A (en) | 1978-03-24 | 1979-12-11 | Exxon Research & Engineering Co. | Combination hydroconversion, fluid coking and gasification |
US4196072A (en) * | 1978-05-23 | 1980-04-01 | Exxon Research & Engineering Co. | Hydroconversion process |
US4226742A (en) | 1978-07-14 | 1980-10-07 | Exxon Research & Engineering Co. | Catalyst for the hydroconversion of heavy hydrocarbons |
US4313818A (en) | 1978-10-30 | 1982-02-02 | Exxon Research & Engineering Co. | Hydrocracking process utilizing high surface area catalysts |
FR2456774A1 (fr) * | 1979-05-18 | 1980-12-12 | Inst Francais Du Petrole | Procede d'hydrotraitement d'hydrocarbures lourds en phase liquide en presence d'un catalyseur disperse |
US4411768A (en) | 1979-12-21 | 1983-10-25 | The Lummus Company | Hydrogenation of high boiling hydrocarbons |
SE416889B (sv) | 1979-12-27 | 1981-02-16 | Imo Industri Ab | Forfarande for blandning av tva vetskor med olika viskositet samt anordning for genomforande av forfarandet |
FR2473056A1 (fr) | 1980-01-04 | 1981-07-10 | Inst Francais Du Petrole | Procede d'hydrotraitement d'hydrocarbures lourds en presence d'un catalyseur au molybdene |
JPS601056B2 (ja) | 1980-02-19 | 1985-01-11 | 千代田化工建設株式会社 | アスファルテンを含む重質炭化水素油の水素化処理 |
US4305808A (en) | 1980-04-14 | 1981-12-15 | Mobil Oil Corporation | Catalytic hydrocracking |
US4338183A (en) | 1980-10-14 | 1982-07-06 | Uop Inc. | Method of solvent extraction of coal by a heavy oil |
US4325802A (en) * | 1980-11-17 | 1982-04-20 | Pentanyl Technologies, Inc. | Method of liquefaction of carbonaceous materials |
US4485008A (en) | 1980-12-05 | 1984-11-27 | Exxon Research And Engineering Co. | Liquefaction process |
US4370221A (en) * | 1981-03-03 | 1983-01-25 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Energy, Mines And Resources | Catalytic hydrocracking of heavy oils |
NL8103703A (nl) * | 1981-08-06 | 1983-03-01 | Stamicarbon | Werkwijze voor de bereiding van een polymerisatiekatalysator en bereiding van etheenpolymeren daarmee. |
US4465630A (en) * | 1981-08-24 | 1984-08-14 | Asahi Kasei Kogyo Kabushiki Kaisha | Tetraazaannulene cobalt complex compounds and method for preparation therefor |
US4389301A (en) | 1981-10-22 | 1983-06-21 | Chevron Research Company | Two-step hydroprocessing of heavy hydrocarbonaceous oils |
US4422927A (en) | 1982-01-25 | 1983-12-27 | The Pittsburg & Midway Coal Mining Co. | Process for removing polymer-forming impurities from naphtha fraction |
US4420008A (en) | 1982-01-29 | 1983-12-13 | Mobil Oil Corporation | Method for transporting viscous crude oils |
CA1183098A (en) | 1982-02-24 | 1985-02-26 | Kenneth R. Dymock | Hydrogenation of carbonaceous material |
US4808007A (en) | 1982-05-13 | 1989-02-28 | Komax Systems, Inc. | Dual viscosity mixer |
US4485004A (en) | 1982-09-07 | 1984-11-27 | Gulf Canada Limited | Catalytic hydrocracking in the presence of hydrogen donor |
US4427532A (en) | 1982-09-28 | 1984-01-24 | Mobil Oil Corporation | Coking of coal with petroleum residua |
JPS59108091A (ja) | 1982-12-10 | 1984-06-22 | Chiyoda Chem Eng & Constr Co Ltd | 重質炭化水素の水素化分解方法 |
US4592827A (en) | 1983-01-28 | 1986-06-03 | Intevep, S.A. | Hydroconversion of heavy crudes with high metal and asphaltene content in the presence of soluble metallic compounds and water |
JPS59142848A (ja) | 1983-02-02 | 1984-08-16 | Toshitaka Ueda | 触媒 |
GB2142930B (en) | 1983-03-19 | 1987-07-01 | Asahi Chemical Ind | A process for cracking a heavy hydrocarbon |
US4454023A (en) * | 1983-03-23 | 1984-06-12 | Alberta Oil Sands Technology & Research Authority | Process for upgrading a heavy viscous hydrocarbon |
US4430207A (en) | 1983-05-17 | 1984-02-07 | Phillips Petroleum Company | Demetallization of hydrocarbon containing feed streams |
US4513098A (en) | 1983-06-28 | 1985-04-23 | Mobil Oil Corporation | Multimetallic catalysts and their method of preparation from organometallic precursors |
FR2549389A1 (fr) * | 1983-07-19 | 1985-01-25 | Centre Nat Rech Scient | Catalyseur d'hydrotraitement d'hydrocarbures, leur preparation et leur application |
US4564441A (en) | 1983-08-05 | 1986-01-14 | Phillips Petroleum Company | Hydrofining process for hydrocarbon-containing feed streams |
JPS6044587A (ja) | 1983-08-22 | 1985-03-09 | Mitsubishi Heavy Ind Ltd | 水素化分解反応装置 |
US4508616A (en) * | 1983-08-23 | 1985-04-02 | Intevep, S.A. | Hydrocracking with treated bauxite or laterite |
US4762812A (en) | 1983-08-29 | 1988-08-09 | Chevron Research Company | Heavy oil hydroprocess including recovery of molybdenum catalyst |
US4857496A (en) | 1983-08-29 | 1989-08-15 | Chevron Research Company | Heavy oil hydroprocessing with Group VI metal slurry catalyst |
US5164075A (en) | 1983-08-29 | 1992-11-17 | Chevron Research & Technology Company | High activity slurry catalyst |
US4824821A (en) | 1983-08-29 | 1989-04-25 | Chevron Research Company | Dispersed group VIB metal sulfide catalyst promoted with Group VIII metal |
US5178749A (en) | 1983-08-29 | 1993-01-12 | Chevron Research And Technology Company | Catalytic process for treating heavy oils |
US4710486A (en) | 1983-08-29 | 1987-12-01 | Chevron Research Company | Process for preparing heavy oil hydroprocessing slurry catalyst |
US4970190A (en) | 1983-08-29 | 1990-11-13 | Chevron Research Company | Heavy oil hydroprocessing with group VI metal slurry catalyst |
US5094991A (en) | 1983-08-29 | 1992-03-10 | Chevron Research Company | Slurry catalyst for hydroprocessing heavy and refractory oils |
US5162282A (en) | 1983-08-29 | 1992-11-10 | Chevron Research And Technology Company | Heavy oil hydroprocessing with group VI metal slurry catalyst |
US4557824A (en) | 1984-01-31 | 1985-12-10 | Phillips Petroleum Company | Demetallization of hydrocarbon containing feed streams |
US5017712A (en) * | 1984-03-09 | 1991-05-21 | Arco Chemical Technology, Inc. | Production of hydrocarbon-soluble salts of molybdenum for epoxidation of olefins |
JPS6115739A (ja) * | 1984-04-25 | 1986-01-23 | Toa Nenryo Kogyo Kk | 水素化処理用触媒 |
US4652311A (en) * | 1984-05-07 | 1987-03-24 | Shipley Company Inc. | Catalytic metal of reduced particle size |
US4557823A (en) | 1984-06-22 | 1985-12-10 | Phillips Petroleum Company | Hydrofining process for hydrocarbon containing feed streams |
US4578181A (en) | 1984-06-25 | 1986-03-25 | Mobil Oil Corporation | Hydrothermal conversion of heavy oils and residua with highly dispersed catalysts |
US5055174A (en) | 1984-06-27 | 1991-10-08 | Phillips Petroleum Company | Hydrovisbreaking process for hydrocarbon containing feed streams |
US4579646A (en) | 1984-07-13 | 1986-04-01 | Atlantic Richfield Co. | Bottoms visbreaking hydroconversion process |
US4551230A (en) | 1984-10-01 | 1985-11-05 | Phillips Petroleum Company | Demetallization of hydrocarbon feed streams with nickel arsenide |
US4561964A (en) | 1984-10-01 | 1985-12-31 | Exxon Research And Engineering Co. | Catalyst for the hydroconversion of carbonaceous materials |
US4568657A (en) * | 1984-10-03 | 1986-02-04 | Intevep, S.A. | Catalyst formed of natural clay for use in the hydrodemetallization and hydroconversion of heavy crudes and residues and method of preparation of same |
US4613427A (en) | 1984-10-03 | 1986-09-23 | Intevep, S.A. | Process for the demetallization and hydroconversion of heavy crudes and residues using a natural clay catalyst |
US4590172A (en) * | 1984-10-26 | 1986-05-20 | Atlantic Richfield Company | Preparation of soluble molybdenum catalysts for epoxidation of olefins |
US4608152A (en) * | 1984-11-30 | 1986-08-26 | Phillips Petroleum Company | Hydrovisbreaking process for hydrocarbon containing feed streams |
US4585545A (en) * | 1984-12-07 | 1986-04-29 | Ashland Oil, Inc. | Process for the production of aromatic fuel |
US4633001A (en) | 1984-12-18 | 1986-12-30 | Mooney Chemicals, Inc. | Preparation of transition metal salt compositions of organic carboxylic acids |
US4824611A (en) * | 1984-12-18 | 1989-04-25 | Mooney Chemicals, Inc. | Preparation of hydrocarbon-soluble transition metal salts of organic carboxylic acids |
US4582432A (en) | 1984-12-20 | 1986-04-15 | Usm Corporation | Rotary processors and methods for mixing low viscosity liquids with viscous materials |
US4652647A (en) * | 1984-12-26 | 1987-03-24 | Exxon Research And Engineering Company | Aromatic-metal chelate compositions |
US4812228A (en) * | 1985-09-10 | 1989-03-14 | Mobil Oil Corporation | Process for hydrotreating residual petroleum oil |
US4674885A (en) | 1985-01-04 | 1987-06-23 | Massachusetts Institute Of Technology | Mixing liquids of different viscosity |
JPH0662958B2 (ja) | 1985-02-28 | 1994-08-17 | 富士スタンダ−ドリサ−チ株式会社 | 重質油の熱分解法 |
US4592830A (en) * | 1985-03-22 | 1986-06-03 | Phillips Petroleum Company | Hydrovisbreaking process for hydrocarbon containing feed streams |
JPS6239634A (ja) | 1985-08-13 | 1987-02-20 | Asahi Chem Ind Co Ltd | ポリパラフェニレンテレフタルアミド系フィルムの製造方法 |
EP0199399B1 (en) | 1985-04-24 | 1990-08-22 | Shell Internationale Researchmaatschappij B.V. | Improved hydroconversion catalyst and process |
US4567156A (en) | 1985-04-29 | 1986-01-28 | Exxon Research And Engineering Co. | Oil soluble chromium catalyst |
US4676886A (en) | 1985-05-20 | 1987-06-30 | Intevep, S.A. | Process for producing anode grade coke employing heavy crudes characterized by high metal and sulfur levels |
US4606809A (en) | 1985-07-01 | 1986-08-19 | Air Products And Chemicals, Inc. | Hydroconversion of heavy oils |
US4678557A (en) * | 1985-09-09 | 1987-07-07 | Intevep, S.A. | Process for the regeneration of spent catalyst used in the upgrading of heavy hydrocarbon feedstocks |
US5108581A (en) | 1985-09-09 | 1992-04-28 | Exxon Research And Engineering Company | Hydroconversion of heavy feeds by use of both supported and unsupported catalysts |
US4626340A (en) | 1985-09-26 | 1986-12-02 | Intevep, S.A. | Process for the conversion of heavy hydrocarbon feedstocks characterized by high molecular weight, low reactivity and high metal contents |
US4707245A (en) | 1985-12-20 | 1987-11-17 | Lummus Crest, Inc. | Temperature control for hydrogenation reactions |
US4746419A (en) | 1985-12-20 | 1988-05-24 | Amoco Corporation | Process for the hydrodemetallation hydrodesulfuration and hydrocracking of a hydrocarbon feedstock |
US4734186A (en) * | 1986-03-24 | 1988-03-29 | Phillips Petroleum Company | Hydrofining process |
US4701435A (en) | 1986-04-07 | 1987-10-20 | Intevep, S.A. | Catalyst and method of preparation from a naturally occurring material |
US4740295A (en) * | 1986-04-21 | 1988-04-26 | Exxon Research And Engineering Company | Hydroconversion process using a sulfided molybdenum catalyst concentrate |
US4765882A (en) * | 1986-04-30 | 1988-08-23 | Exxon Research And Engineering Company | Hydroconversion process |
US4693991A (en) | 1986-05-02 | 1987-09-15 | Phillips Petroleum Company | Hydrotreating catalyst composition |
US4713167A (en) | 1986-06-20 | 1987-12-15 | Uop Inc. | Multiple single-stage hydrocracking process |
US4695369A (en) | 1986-08-11 | 1987-09-22 | Air Products And Chemicals, Inc. | Catalytic hydroconversion of heavy oil using two metal catalyst |
US4724069A (en) | 1986-08-15 | 1988-02-09 | Phillips Petroleum Company | Hydrofining process for hydrocarbon containing feed streams |
US4716142A (en) | 1986-08-26 | 1987-12-29 | Sri International | Catalysts for the hydrodenitrogenation of organic materials and process for the preparation of the catalysts |
US5166118A (en) | 1986-10-08 | 1992-11-24 | Veba Oel Technologie Gmbh | Catalyst for the hydrogenation of hydrocarbon material |
DE3634275A1 (de) * | 1986-10-08 | 1988-04-28 | Veba Oel Entwicklungs Gmbh | Verfahren zur hydrierenden konversion von schwer- und rueckstandsoelen |
US4762814A (en) * | 1986-11-14 | 1988-08-09 | Phillips Petroleum Company | Hydrotreating catalyst and process for its preparation |
US4707246A (en) | 1986-11-14 | 1987-11-17 | Phillips Petroleum Company | Hydrotreating catalyst and process |
CA1305467C (en) | 1986-12-12 | 1992-07-21 | Nobumitsu Ohtake | Additive for the hydroconversion of a heavy hydrocarbon oil |
US4851109A (en) * | 1987-02-26 | 1989-07-25 | Mobil Oil Corporation | Integrated hydroprocessing scheme for production of premium quality distillates and lubricants |
US4764266A (en) * | 1987-02-26 | 1988-08-16 | Mobil Oil Corporation | Integrated hydroprocessing scheme for production of premium quality distillates and lubricants |
GB8726838D0 (en) | 1987-11-17 | 1987-12-23 | Shell Int Research | Preparation of light hydrocarbon distillates |
US4802972A (en) * | 1988-02-10 | 1989-02-07 | Phillips Petroleum Company | Hydrofining of oils |
FR2627105B3 (fr) * | 1988-02-16 | 1990-06-08 | Inst Francais Du Petrole | Procede de presulfuration de catalyseur de traitement d'hydrocarbures |
US4834865A (en) | 1988-02-26 | 1989-05-30 | Amoco Corporation | Hydrocracking process using disparate catalyst particle sizes |
EP0343045B1 (fr) | 1988-05-19 | 1992-07-15 | Institut Français du Pétrole | Composition catalytique comprenant un sulfure métallique en suspension dans un liquide contenant des asphaltènes et procédé d'hydroviscoreduction d'une charge d'hydrocarbures |
CA1300068C (en) | 1988-09-12 | 1992-05-05 | Keith Belinko | Hydrocracking of heavy oil in presence of ultrafine iron sulphate |
US5114900A (en) * | 1988-09-30 | 1992-05-19 | Union Carbide Chemicals & Plastics Technology Corporation | Alkoxylation using modified calcium-containing bimetallic or polymetallic catalysts |
US5191131A (en) * | 1988-12-05 | 1993-03-02 | Research Association For Utilization Of Light Oil | Process for preparation of lower aliphatic hydrocarbons |
US4959140A (en) | 1989-03-27 | 1990-09-25 | Amoco Corporation | Two-catalyst hydrocracking process |
US5578197A (en) * | 1989-05-09 | 1996-11-26 | Alberta Oil Sands Technology & Research Authority | Hydrocracking process involving colloidal catalyst formed in situ |
US5013427A (en) * | 1989-07-18 | 1991-05-07 | Amoco Corportion | Resid hydrotreating with resins |
US4983273A (en) * | 1989-10-05 | 1991-01-08 | Mobil Oil Corporation | Hydrocracking process with partial liquid recycle |
CA2004882A1 (en) | 1989-12-07 | 1991-06-07 | Roger K. Lott | Process for reducing coke formation during hydroconversion of heavy hydrocarbons |
US5038392A (en) * | 1990-02-12 | 1991-08-06 | International Business Machines Corporation | Method and apparatus for adaptive image processing by recognizing a characterizing indicium in a captured image of a document |
US5154818A (en) | 1990-05-24 | 1992-10-13 | Mobil Oil Corporation | Multiple zone catalytic cracking of hydrocarbons |
US5039392A (en) | 1990-06-04 | 1991-08-13 | Exxon Research And Engineering Company | Hydroconversion process using a sulfided molybdenum catalyst concentrate |
EP0460300A1 (en) | 1990-06-20 | 1991-12-11 | Akzo Nobel N.V. | Process for the preparation of a presulphided catalyst; Process for the preparation of a sulphided catalyst, and use of said catalyst |
KR920702252A (ko) | 1990-07-05 | 1992-09-03 | 원본미기재 | 고활성 슬러리 촉매법 |
US5868923A (en) | 1991-05-02 | 1999-02-09 | Texaco Inc | Hydroconversion process |
US5622616A (en) | 1991-05-02 | 1997-04-22 | Texaco Development Corporation | Hydroconversion process and catalyst |
US5229347A (en) | 1991-05-08 | 1993-07-20 | Intevep, S.A. | Catalyst for mild hydrocracking of cracked feedstocks and method for its preparation |
US5134108A (en) | 1991-05-22 | 1992-07-28 | Engelhard Corporation | Process for preparing catalyst with copper or zinc and with chromium, molybdenum, tungsten, or vanadium, and product thereof |
US5171916A (en) | 1991-06-14 | 1992-12-15 | Mobil Oil Corp. | Light cycle oil conversion |
US5358634A (en) | 1991-07-11 | 1994-10-25 | Mobil Oil Corporation | Process for treating heavy oil |
US5364524A (en) | 1991-07-11 | 1994-11-15 | Mobil Oil Corporation | Process for treating heavy oil |
US5281328A (en) * | 1991-07-24 | 1994-01-25 | Mobil Oil Corporation | Hydrocracking with ultra large pore size catalysts |
US5474977A (en) | 1991-08-26 | 1995-12-12 | Uop | Catalyst for the hydroconversion of asphaltene-containing hydrocarbonaceous charge stocks |
FR2680983B1 (fr) | 1991-09-10 | 1993-10-29 | Institut Francais Petrole | Dispositif melangeur continu, procede et utilisation dans une installation de pompage d'un fluide de forte viscosite. |
CA2073417C (en) | 1991-11-22 | 2004-04-20 | Michael K. Porter | Improved hydroconversion process |
US5372705A (en) | 1992-03-02 | 1994-12-13 | Texaco Inc. | Hydroprocessing of heavy hydrocarbonaceous feeds |
FR2689137B1 (fr) | 1992-03-26 | 1994-05-27 | Inst Francais Du Petrole | Procede d'hydro conversion de fractions lourds en phase liquide en presence d'un catalyseur disperse et d'additif polyaromatique. |
CA2093412C (en) | 1992-04-20 | 2002-12-31 | Gerald Verdell Nelson | Novel hydroconversion process employing catalyst with specified pore size distribution |
CA2088402C (en) | 1993-01-29 | 1997-07-08 | Roger Kai Lott | Hydrocracking process involving colloidal catalyst formed in situ |
US5332709A (en) * | 1993-03-22 | 1994-07-26 | Om Group, Inc. (Mooney Chemicals, Inc.) | Stabilized aqueous solutions for preparing catalysts and process for preparing catalysts |
JPH06287574A (ja) | 1993-04-07 | 1994-10-11 | Ishikawajima Harima Heavy Ind Co Ltd | 炭化水素油水添分解装置 |
JP3604414B2 (ja) | 1993-05-31 | 2004-12-22 | アルバータ オイル サンズ テクノロジー アンド リサーチ オーソリティ | その場で調製したコロイド状触媒を用いるハイドロクラッキング法 |
US5452954A (en) | 1993-06-04 | 1995-09-26 | Halliburton Company | Control method for a multi-component slurrying process |
US5396010A (en) * | 1993-08-16 | 1995-03-07 | Mobil Oil Corporation | Heavy naphtha upgrading |
US6270654B1 (en) * | 1993-08-18 | 2001-08-07 | Ifp North America, Inc. | Catalytic hydrogenation process utilizing multi-stage ebullated bed reactors |
JPH0762355A (ja) | 1993-08-30 | 1995-03-07 | Nippon Oil Co Ltd | 炭素質生成を抑制した重質油の水素化処理法 |
US5374348A (en) | 1993-09-13 | 1994-12-20 | Energy Mines & Resources - Canada | Hydrocracking of heavy hydrocarbon oils with heavy hydrocarbon recycle |
JPH0790282A (ja) | 1993-09-27 | 1995-04-04 | Asahi Chem Ind Co Ltd | 重質油分解・水素化処理方法 |
US6015485A (en) | 1994-05-13 | 2000-01-18 | Cytec Technology Corporation | High activity catalysts having a bimodal mesopore structure |
ZA961830B (en) | 1995-03-16 | 1997-10-31 | Inst Francais Du Petrole | Catalytic hydroconversion process for heavy petroleum feedstocks. |
US5597236A (en) | 1995-03-24 | 1997-01-28 | Chemineer, Inc. | High/low viscosity static mixer and method |
IT1275447B (it) * | 1995-05-26 | 1997-08-07 | Snam Progetti | Procedimento per la conversione di greggi pesanti e residui di distillazione a distillati |
ES2144595T3 (es) | 1995-10-05 | 2000-06-16 | Sulzer Chemtech Ag | Aparato mezclador de un fluido muy viscoso con un fluido poco viscoso. |
US5755955A (en) | 1995-12-21 | 1998-05-26 | Petro-Canada | Hydrocracking of heavy hydrocarbon oils with conversion facilitated by control of polar aromatics |
RU2181751C2 (ru) | 1996-02-14 | 2002-04-27 | Тексако Дивелопмент Корпорейшн | Способ гидроконверсии тяжелых углеводородов при низком давлении (варианты) |
US6139723A (en) | 1996-02-23 | 2000-10-31 | Hydrocarbon Technologies, Inc. | Iron-based ionic liquid catalysts for hydroprocessing carbonaceous feeds |
US5871638A (en) * | 1996-02-23 | 1999-02-16 | Hydrocarbon Technologies, Inc. | Dispersed anion-modified phosphorus-promoted iron oxide catalysts |
US6190542B1 (en) * | 1996-02-23 | 2001-02-20 | Hydrocarbon Technologies, Inc. | Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds |
US5866501A (en) | 1996-02-23 | 1999-02-02 | Pradhan; Vivek R. | Dispersed anion-modified iron oxide catalysts for hydroconversion processes |
DE69701088T2 (de) | 1996-03-15 | 2000-09-14 | Petro-Canada, Calgary | Wasserstoffbehandlung von schweren kohlenwasserstoffölen mit kontrolle der verteilung der teilchenförmigen additiven |
US5852146A (en) * | 1996-06-27 | 1998-12-22 | Union Carbide Chemicals & Plastics Technology Corporation | Catalyst for the production of olefin polymers |
US6068758A (en) * | 1996-08-16 | 2000-05-30 | Strausz; Otto P. | Process for hydrocracking heavy oil |
US6059957A (en) | 1996-09-16 | 2000-05-09 | Texaco Inc. | Methods for adding value to heavy oil |
US5935419A (en) | 1996-09-16 | 1999-08-10 | Texaco Inc. | Methods for adding value to heavy oil utilizing a soluble metal catalyst |
EP0838259A1 (de) | 1996-10-23 | 1998-04-29 | Sulzer Chemtech AG | Einrichtung zum Zuführen von Additiven in einen Strom einer hochviskosen Flüssigkeit |
US6495487B1 (en) * | 1996-12-09 | 2002-12-17 | Uop Llc | Selective bifunctional multimetallic reforming catalyst |
US6086749A (en) * | 1996-12-23 | 2000-07-11 | Chevron U.S.A. Inc. | Catalyst and method for hydroprocessing a hydrocarbon feed stream in a reactor containing two or more catalysts |
US5954945A (en) * | 1997-03-27 | 1999-09-21 | Bp Amoco Corporation | Fluid hydrocracking catalyst precursor and method |
US6712955B1 (en) * | 1997-07-15 | 2004-03-30 | Exxonmobil Research And Engineering Company | Slurry hydroprocessing using bulk multimetallic catalysts |
US5962364A (en) | 1997-07-30 | 1999-10-05 | Bp Amoco Corporation | Process for synthesis of molybdenum sulfide dimers |
GB9717953D0 (en) * | 1997-08-22 | 1997-10-29 | Smithkline Beecham Biolog | Vaccine |
CA2216671C (en) | 1997-09-24 | 2000-12-05 | Richard Anthony Mcfarlane | Process for dispersing transition metal catalytic particles in heavy oil |
DE19745904A1 (de) | 1997-10-17 | 1999-04-22 | Hoechst Ag | Polymerstabilisierte Metallkolloid-Lösungen, Verfahren zu ihrer Herstellung und ihre Verwendung als Katalysatoren für Brennstoffzellen |
US5925235A (en) * | 1997-12-22 | 1999-07-20 | Chevron U.S.A. Inc. | Middle distillate selective hydrocracking process |
US6090858A (en) * | 1998-03-18 | 2000-07-18 | Georgia Tech Reseach Corporation | Shape control method for nanoparticles for making better and new catalysts |
FR2776297B1 (fr) | 1998-03-23 | 2000-05-05 | Inst Francais Du Petrole | Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydrotraitement en lit fixe, une etape de conversion en lit bouillonnant et une etape de craquage catalytique |
US6214195B1 (en) * | 1998-09-14 | 2001-04-10 | Nanomaterials Research Corporation | Method and device for transforming chemical compositions |
ATE296163T1 (de) | 1999-04-08 | 2005-06-15 | Albemarle Netherlands Bv | Verfahren zur sulfidierung eines organischen stickstoff und carbonyl enthaltenden hydrobehandlungskatalysators |
JP3824464B2 (ja) | 1999-04-28 | 2006-09-20 | 財団法人石油産業活性化センター | 重質油類の水素化分解方法 |
FR2794370B1 (fr) | 1999-06-03 | 2003-10-17 | Biovector Therapeutics | Fragments proteiques polyepitopiques, leur obtention et leurs utilisations notamment en vaccination |
KR20010072350A (ko) | 1999-06-28 | 2001-07-31 | 이데이 노부유끼 | 광기록매체 및 광기록매체의 독출방법 |
US6217746B1 (en) * | 1999-08-16 | 2001-04-17 | Uop Llc | Two stage hydrocracking process |
US20020179493A1 (en) | 1999-08-20 | 2002-12-05 | Environmental & Energy Enterprises, Llc | Production and use of a premium fuel grade petroleum coke |
FR2797883B1 (fr) * | 1999-08-24 | 2004-12-17 | Inst Francais Du Petrole | Procede de production d'huiles ayant un indice de viscosite eleve |
JP4505084B2 (ja) | 1999-09-13 | 2010-07-14 | アイノベックス株式会社 | 金属コロイドの製造方法およびその方法によって製造された金属コロイド |
US6559090B1 (en) | 1999-11-01 | 2003-05-06 | W. R. Grace & Co.-Conn. | Metallocene and constrained geometry catalyst systems employing agglomerated metal oxide/clay support-activator and method of their preparation |
US7026443B1 (en) | 1999-12-10 | 2006-04-11 | Epimmune Inc. | Inducing cellular immune responses to human Papillomavirus using peptide and nucleic acid compositions |
US6379532B1 (en) * | 2000-02-17 | 2002-04-30 | Uop Llc | Hydrocracking process |
US6454932B1 (en) | 2000-08-15 | 2002-09-24 | Abb Lummus Global Inc. | Multiple stage ebullating bed hydrocracking with interstage stripping and separating |
JP3842086B2 (ja) * | 2000-08-28 | 2006-11-08 | 財団法人石油産業活性化センター | 重質炭化水素油の流動接触分解用触媒及び流動接触分解方法 |
US6596155B1 (en) * | 2000-09-26 | 2003-07-22 | Uop Llc | Hydrocracking process |
DE10048844A1 (de) | 2000-10-02 | 2002-04-11 | Basf Ag | Verfahren zur Herstellung von Platinmetall-Katalysatoren |
US6550960B2 (en) * | 2000-10-11 | 2003-04-22 | The Procter & Gamble Company | Apparatus for in-line mixing and process of making such apparatus |
CN1098337C (zh) | 2000-11-02 | 2003-01-08 | 中国石油天然气股份有限公司 | 一种采用多金属液体催化剂的常压重油悬浮床加氢新工艺 |
EP1383597A4 (en) * | 2001-04-30 | 2006-09-06 | Postech Foundation | COLLOIDAL SOLUTION OF METAL NANOPARTICLES, METAL-POLYMER NANOCOMPOSITES AND PREPARATION METHODS THEREOF |
WO2002098545A1 (en) | 2001-06-01 | 2002-12-12 | E. I. Du Pont De Nemours And Company | Process for blending fluids of widely differing viscosities |
US20030094400A1 (en) * | 2001-08-10 | 2003-05-22 | Levy Robert Edward | Hydrodesulfurization of oxidized sulfur compounds in liquid hydrocarbons |
JP2003193074A (ja) | 2001-10-17 | 2003-07-09 | Asahi Denka Kogyo Kk | 燃焼排ガス中の窒素酸化物の低減方法及び燃料組成物 |
US6686308B2 (en) * | 2001-12-03 | 2004-02-03 | 3M Innovative Properties Company | Supported nanoparticle catalyst |
US7090767B2 (en) * | 2002-05-02 | 2006-08-15 | Equistar Chemicals, Lp | Hydrodesulfurization of gasoline fractions |
CN1203032C (zh) | 2002-11-12 | 2005-05-25 | 石油大学(北京) | 以复合离子液体为催化剂制备烷基化油剂的方法 |
US8123932B2 (en) * | 2002-12-20 | 2012-02-28 | Eni S.P.A. | Process for the conversion of heavy feedstocks such as heavy crude oils and distillation residues |
JP4231307B2 (ja) * | 2003-03-03 | 2009-02-25 | 田中貴金属工業株式会社 | 金属コロイド及び該金属コロイドを原料とする触媒 |
US7011807B2 (en) * | 2003-07-14 | 2006-03-14 | Headwaters Nanokinetix, Inc. | Supported catalysts having a controlled coordination structure and methods for preparing such catalysts |
CN1333044C (zh) | 2003-09-28 | 2007-08-22 | 中国石油化工股份有限公司 | 一种烃油裂化方法 |
DE10349343A1 (de) | 2003-10-23 | 2005-06-02 | Basf Ag | Stabilisierung von Hydroformylierungskatalysatoren auf Basis von Phosphoramiditliganden |
US20050109674A1 (en) * | 2003-11-20 | 2005-05-26 | Advanced Refining Technologies Llc | Hydroconversion catalysts and methods of making and using same |
JP4942911B2 (ja) * | 2003-11-28 | 2012-05-30 | 東洋エンジニアリング株式会社 | 水素化分解触媒、重質油を水素化分解する方法 |
US20070012595A1 (en) * | 2003-12-19 | 2007-01-18 | Brownscombe Thomas F | Methods for producing a total product in the presence of sulfur |
US20060289340A1 (en) | 2003-12-19 | 2006-12-28 | Brownscombe Thomas F | Methods for producing a total product in the presence of sulfur |
JP4313237B2 (ja) * | 2004-03-29 | 2009-08-12 | 新日本石油株式会社 | 水素化分解触媒および液状炭化水素の製造方法 |
JP5318410B2 (ja) | 2004-04-28 | 2013-10-16 | ヘッドウォーターズ ヘビー オイル リミテッド ライアビリティ カンパニー | 沸騰床水素化処理方法およびシステムならびに既存の沸騰床システムをアップグレードする方法 |
KR101399811B1 (ko) * | 2004-04-28 | 2014-05-27 | 헤드워터스 헤비 오일, 엘엘씨 | 고정 베드 하이드로프로세싱 방법 및 시스템 및 기존의고정 베드 시스템을 개량하는 방법 |
US10941353B2 (en) | 2004-04-28 | 2021-03-09 | Hydrocarbon Technology & Innovation, Llc | Methods and mixing systems for introducing catalyst precursor into heavy oil feedstock |
EP1753844B1 (en) | 2004-04-28 | 2016-06-08 | Headwaters Heavy Oil, LLC | Hydroprocessing method and system for upgrading heavy oil |
CA2467499C (en) | 2004-05-19 | 2012-07-17 | Nova Chemicals Corporation | Integrated process to convert heavy oils from oil sands to petrochemical feedstock |
JP4313265B2 (ja) | 2004-07-23 | 2009-08-12 | 新日本石油株式会社 | 石油系炭化水素の水素化脱硫触媒および水素化脱硫方法 |
FR2875509B1 (fr) * | 2004-09-20 | 2006-11-24 | Inst Francais Du Petrole | Procede d'hydroconversion d'une charge lourde avec un catalyseur disperse |
CN100425676C (zh) | 2005-04-29 | 2008-10-15 | 中国石油化工股份有限公司 | 一种加氢裂化催化剂组合物 |
US7790018B2 (en) | 2005-05-11 | 2010-09-07 | Saudia Arabian Oil Company | Methods for making higher value products from sulfur containing crude oil |
US7594990B2 (en) * | 2005-11-14 | 2009-09-29 | The Boc Group, Inc. | Hydrogen donor solvent production and use in resid hydrocracking processes |
CN1966618A (zh) | 2005-11-14 | 2007-05-23 | 波克股份有限公司 | 氢供体溶剂的生产及其在渣油加氢裂化法中的应用 |
US7708877B2 (en) | 2005-12-16 | 2010-05-04 | Chevron Usa Inc. | Integrated heavy oil upgrading process and in-line hydrofinishing process |
US7842635B2 (en) * | 2006-01-06 | 2010-11-30 | Headwaters Technology Innovation, Llc | Hydrocarbon-soluble, bimetallic catalyst precursors and methods for making same |
US7670984B2 (en) * | 2006-01-06 | 2010-03-02 | Headwaters Technology Innovation, Llc | Hydrocarbon-soluble molybdenum catalyst precursors and methods for making same |
US7618530B2 (en) * | 2006-01-12 | 2009-11-17 | The Boc Group, Inc. | Heavy oil hydroconversion process |
US7906010B2 (en) * | 2006-01-13 | 2011-03-15 | Exxonmobil Chemical Patents Inc. | Use of steam cracked tar |
US7704377B2 (en) | 2006-03-08 | 2010-04-27 | Institut Francais Du Petrole | Process and installation for conversion of heavy petroleum fractions in a boiling bed with integrated production of middle distillates with a very low sulfur content |
JP4813933B2 (ja) | 2006-03-16 | 2011-11-09 | 株式会社神戸製鋼所 | 石油系重質油の水素化分解方法 |
US8034232B2 (en) * | 2007-10-31 | 2011-10-11 | Headwaters Technology Innovation, Llc | Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker |
US8080155B2 (en) * | 2007-12-20 | 2011-12-20 | Chevron U.S.A. Inc. | Heavy oil upgrade process including recovery of spent catalyst |
US8142645B2 (en) * | 2008-01-03 | 2012-03-27 | Headwaters Technology Innovation, Llc | Process for increasing the mono-aromatic content of polynuclear-aromatic-containing feedstocks |
US7897035B2 (en) | 2008-09-18 | 2011-03-01 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US20110017637A1 (en) * | 2009-07-21 | 2011-01-27 | Bruce Reynolds | Systems and Methods for Producing a Crude Product |
US9109165B2 (en) | 2008-11-15 | 2015-08-18 | Uop Llc | Coking of gas oil from slurry hydrocracking |
US9523048B2 (en) * | 2009-07-24 | 2016-12-20 | Lummus Technology Inc. | Pre-sulfiding and pre-conditioning of residuum hydroconversion catalysts for ebullated-bed hydroconversion processes |
US9790440B2 (en) * | 2011-09-23 | 2017-10-17 | Headwaters Technology Innovation Group, Inc. | Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker |
JP6287574B2 (ja) | 2014-05-20 | 2018-03-07 | 富士通株式会社 | 通信方法、通信システム及び通信装置 |
-
2006
- 2006-03-13 US US11/374,369 patent/US10941353B2/en active Active
-
2007
- 2007-03-09 TW TW096108263A patent/TWI360571B/zh not_active IP Right Cessation
- 2007-03-12 KR KR1020087024672A patent/KR101515850B1/ko active IP Right Grant
- 2007-03-12 EP EP14155923.7A patent/EP2735601B1/en active Active
- 2007-03-12 JP JP2009500576A patent/JP5437789B2/ja not_active Expired - Fee Related
- 2007-03-12 PL PL14155923T patent/PL2735601T3/pl unknown
- 2007-03-12 ES ES14155923T patent/ES2875011T3/es active Active
- 2007-03-12 EP EP07758375.5A patent/EP1999233B1/en active Active
- 2007-03-12 WO PCT/US2007/063819 patent/WO2007106783A2/en active Application Filing
- 2007-03-12 CA CA2646492A patent/CA2646492C/en active Active
- 2007-03-12 RU RU2008140315/05A patent/RU2426589C2/ru active
- 2007-03-12 PL PL07758375T patent/PL1999233T3/pl unknown
- 2007-03-12 CN CNA2007800092321A patent/CN101405370A/zh active Pending
- 2007-03-12 MX MX2008011734A patent/MX340029B/es active IP Right Grant
-
2008
- 2008-09-12 IN IN7704DE2008 patent/IN2008DE07704A/en unknown
-
2009
- 2009-08-25 US US12/547,278 patent/US10822553B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2675361C1 (ru) * | 2018-08-06 | 2018-12-19 | Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) | Способ получения катализатора и способ гидрирования нефтеполимерных смол в его присутствии |
Also Published As
Publication number | Publication date |
---|---|
EP2735601B1 (en) | 2021-05-05 |
US10822553B2 (en) | 2020-11-03 |
WO2007106783A2 (en) | 2007-09-20 |
US20060201854A1 (en) | 2006-09-14 |
PL2735601T3 (pl) | 2021-12-27 |
IN2008DE07704A (en) | 2008-10-24 |
MX2008011734A (es) | 2009-04-23 |
CA2646492A1 (en) | 2007-09-20 |
WO2007106783A3 (en) | 2007-11-22 |
PL1999233T3 (pl) | 2019-10-31 |
ES2875011T3 (es) | 2021-11-08 |
MX340029B (es) | 2016-06-22 |
KR101515850B1 (ko) | 2015-04-29 |
EP1999233B1 (en) | 2019-04-24 |
CA2646492C (en) | 2018-11-27 |
RU2008140315A (ru) | 2010-04-20 |
CN101405370A (zh) | 2009-04-08 |
JP2009541499A (ja) | 2009-11-26 |
US20090310435A1 (en) | 2009-12-17 |
EP1999233A2 (en) | 2008-12-10 |
JP5437789B2 (ja) | 2014-03-12 |
KR20080113228A (ko) | 2008-12-29 |
US10941353B2 (en) | 2021-03-09 |
EP1999233A4 (en) | 2011-04-13 |
EP2735601A1 (en) | 2014-05-28 |
TWI360571B (en) | 2012-03-21 |
TW200734443A (ru) | 2007-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2426589C2 (ru) | Способы и системы смешивания для введения предшественника катализатора в сырье, содержащее тяжелую нефть | |
JP5318409B2 (ja) | コロイドまたは分子触媒を使用して重油をアップグレードする水素化処理方法およびシステム | |
JP5318411B2 (ja) | 固定床水素化処理方法およびシステムならびに既存の固定床システムをアップグレードする方法 | |
US8034232B2 (en) | Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker | |
JP5318410B2 (ja) | 沸騰床水素化処理方法およびシステムならびに既存の沸騰床システムをアップグレードする方法 | |
JP6204471B2 (ja) | 触媒ハイドロクラッキングおよびサーマルコーキングによって重油を改質するための方法およびシステム | |
US9790440B2 (en) | Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker | |
CN117651754A (zh) | 包括将重质烃原料与包含有机添加剂的催化剂前体混合的所述原料的浆态床加氢转化 | |
CN117616104A (zh) | 包括将重质烃原料与有机添加剂预混合的所述原料的浆态床加氢转化 |