JP2000513696A - 低欠陥密度の空孔優勢シリコン - Google Patents

低欠陥密度の空孔優勢シリコン

Info

Publication number
JP2000513696A
JP2000513696A JP10543181A JP54318198A JP2000513696A JP 2000513696 A JP2000513696 A JP 2000513696A JP 10543181 A JP10543181 A JP 10543181A JP 54318198 A JP54318198 A JP 54318198A JP 2000513696 A JP2000513696 A JP 2000513696A
Authority
JP
Japan
Prior art keywords
ingot
axially symmetric
wafer
symmetric region
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10543181A
Other languages
English (en)
Other versions
JP3544676B2 (ja
Inventor
ファルステル,ロベルト
マークグラフ,スティーブ・エイ
マクエイド,シームス・エイ
ホルザー,ジョゼフ・シー
ムッティ,パオロ
ジョンソン,ベヤード・ケイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SunEdison Inc
Original Assignee
MEMC Electronic Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=21918645&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2000513696(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by MEMC Electronic Materials Inc filed Critical MEMC Electronic Materials Inc
Publication of JP2000513696A publication Critical patent/JP2000513696A/ja
Application granted granted Critical
Publication of JP3544676B2 publication Critical patent/JP3544676B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/206Controlling or regulating the thermal history of growing the ingot
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank

Abstract

(57)【要約】 本発明は、空孔が優勢な真性点欠陥の、凝集空孔真性点欠陥を実質的に有さない軸対称領域を含んで成り、該第一軸対称領域は、中心軸を含んで成るかまたは少なくとも約15mmの幅を有するインゴットまたはウエハ形態の単結晶シリコン、およびその製造方法に関する。

Description

【発明の詳細な説明】 低欠陥密度の空孔優勢シリコン発明の背景 本発明は一般に、電子部品の製造に使用される半導体級単結晶シリコンの製造 に関する。特に、本発明は、凝集真性点欠陥(agglomerated intrinsic point d efects)を有さない、空孔優勢材(空格子点優勢材)(vacancy dominated mate trial)の軸対称領域を有する、単結晶シリコンインゴットおよびウエハ、およ びそれらの製造方法に関する。 大部分の半導体電子部品製造方法の出発物質である単結晶シリコンは、一般に 、いわゆるチョクラルスキー(Cz)法によって製造される。この方法において は、多結晶シリコン(ポリシリコン)をルツボに装填し、溶融し、種結晶を溶融 シリコンと接触させ、単結晶を遅い引き上げ(extraction)によって成長させる 。ネック(neck)の形成後、所望される、または目的とする直径に到達するまで 、引き上げ速度および/または溶融温度を低下させることによって、結晶の直径 を大きくする。次に、メルト水位の低下を補いながら、引き上げ速度および溶融 温度を調節することによって、ほぼ一定の直径を有する結晶の筒状本体を成長さ せる。成長プロセスの終了近くであるが、ルツボから溶融シリコンがなくなる前 に、結晶直径を徐々に減少させて、エンドコーン(end-cone)を形成しなければ ならない。一般に、エンドコーンは、結晶引き上げ速度およびルツボに供給され る熱を、増加させることによって形成される。直径が充分に小さくなったときに 、結晶をメルトから分離する。 単結晶シリコンにおける多くの欠陥が、凝固後に結晶が冷却する際に、結晶成 長室において形成されることが最近確認された。そのような欠陥は、一部は、空 孔(vacancies)および自己格子間物(self-interstitials)として既知の、過 剰の(即ち、溶解極限より以上の濃度)真性点欠陥の存在によって生じる。メル トから成長するシリコン結晶は一般に、結晶格子空孔(V)またはシリコン自己 格子間物(I)の、どちらか一方のタイプの過剰の真性点欠陥を有して成長する 。シリコンにおけるこれらの点欠陥のタイプおよび初期濃度が凝固時に測定され 、 これらの濃度がシステムにおいて臨界的過飽和のレベルに達し、点欠陥の可動性 が充分に高い場合は、反応または凝集事象が起こる可能性があることが報告され ている。シリコンにおける凝集真性点欠陥は、複雑な高度集積回路の製造におい て、材料の歩留り可能性に大きな影響を与えうる。 空孔タイプの欠陥は、D欠陥、フローパターン(FPD)欠陥、ゲートオキシ ドインテグリティ(GOI)欠陥、クリスタルオリジネーテッドパーティクル( COP)欠陥、クリスタルオリジネーテッドライトポイント(LPD)欠陥、お よび、赤外線散乱法、例えば、走査赤外線鏡検法およびレーザー走査断層撮影法 によって観察されるある種のバルク欠陥(bulk defects)のような、観察可能な 結晶欠陥の原因であることが確認されている。環酸化誘導堆積欠陥(ring oxida tion induced stacking faults)(OISF)の核として作用する欠陥も、過剰 空孔の領域に存在する。この特定の欠陥は、過剰空孔の存在によって引き起こさ れる高温有核酸素凝集塊であると考えられる。 自己格子間物に関係する欠陥は、あまり研究されていない。それらは一般に、 低密度の格子間物タイプのディスロケーション(転位)のループまたはネットワ ークであると考えられている。そのような欠陥は、重要なウエハ性能規準である ゲートオキシドインテグリティ欠陥の原因ではないが、電流漏出問題に一般に関 係する他のタイプのデバイス欠陥の原因であることが広く認識されている。 チョクラルスキーシリコンにおける、そのような空孔および自己格子間物の凝 集欠陥の密度は通常、約1*103/cm3〜約1*107/cm3の範囲である。 これらの数値は比較的低いが、凝集真性点欠陥は、デバイス製造者にとって重大 性が急激に高まっており、事実上、デバイス製造プロセスにおける歩留り制限要 因であると今や考えられている。 現在のところ、凝集真性点欠陥の問題を扱う主に3つの方法が一般に存在する 。第一の方法は、結晶引き上げ方法に焦点を当てて、インゴットにおける凝集真 性点欠陥の数密度(number density)を減少させる方法を包含する。この方法は 、空格子点優勢材の形成を生じる結晶引き上げ条件を有する方法、および、自己 格子間物優勢材料の形成を生じる結晶引き上げ条件を有する方法に、さらに分け ることができる。例えば、(i)v/GOを調節して、結晶格子空孔が優勢な真 性 点欠陥である結晶を成長させ、および(ii)結晶引き上げプロセスの間に、約 1100℃から約1050℃へのシリコンインゴットの冷却速度を変化させて( 一般に遅くする)凝集欠陥の核形成速度に影響を与える、ことによって凝集欠陥 の数密度を減少させることが提案されている。この方法は凝集欠陥の数密度を減 少させるが、それらの形成を防止することはできない。デバイス製造者に課せら れる要求がますます厳しいものになっているので、これらの欠陥の存在は大きな 問題になっている。 結晶本体の成長の間に、引き上げ速度を、約0.4mm/分未満に減少させる ことも提案されている。しかし、そのような遅い引き上げ速度は、各結晶引き上 げ器の処理量を減少させるので、この提案も充分なものではない。さらに重大な ことに、そのような引き上げ速度は、高度に集中した自己格子間物を有する単結 晶シリコンの形成に導く。このような高度の集中は、結果的に、凝集自己格子間 物欠陥の形成、およびそのような欠陥に伴って生じる全ての問題を生じる。 凝集真性点欠陥の問題を扱う第二の方法は、凝集真性点欠陥を、それらの形成 後に、溶解または消滅(annihilation)することに焦点を当てる方法を包含する 。一般に、これは、ウエハ形態のシリコンの高温熱処理を使用することによって 行われる。例えば、Fusegawaらは、ヨーロッパ特許出願第503816A1号に おいて、0.8mm/分より速い成長速度においてシリコンインゴットを成長さ せ、インゴットからスライスされるウエハを1150℃〜1280℃の温度で熱 処理して、ウエハ表面付近の薄い領域における欠陥密度を減少させることを開示 している。必要とされる特定の処理は、ウエハにおける凝集真性点欠陥の集中お よび位置に依存して変化する。そのような欠陥の均一な軸方向集中を有さない結 晶からカットされる種々のウエハは、種々の成長後の処理条件を必要とする。さ らに、そのようなウエハ熱処理は、相対的にコストが高く、金属性不純物をシリ コンウエハに導入する可能性があり、結晶に関係する全てのタイプの欠陥に全般 的に有効ではない。 凝集真性点欠陥の問題を扱う第三の方法は、単結晶シリコンウエアの表面にお ける、シリコンの薄い結晶質層のエピタキシャル付着である。この方法は、凝集 真性点欠陥を実質的に有さない表面を有する単結晶シリコンウエハを提供する。 しかし、エピタキシャル付着は、ウエハのコストを顕著に増加させる。 これらの事情に鑑みて、凝集真性点欠陥を形成する凝集反応を抑制することに よって、凝集真性点欠陥の形成を防止する役割を果たす、単結晶シリコンの製造 方法が今なお必要とされている。単に、そのような欠陥が形成される速度を制限 するか、または、それらが形成された後にその欠陥のいくらかを消滅させるより むしろ、凝集反応を抑制する役割を果たす方法によって、凝集真性点欠陥を実質 的に有さないシリコン基板を得ることができる。そのような方法は、エピタキシ ャル法に伴う高いコストを必要とせずに、1つのウエハについて得られる集積回 路の数において、エピ様の(epi-like)歩留り可能性を有する単結晶シリコンウ エハを提供することもできる。発明の要旨 従って、本発明の目的は、結晶格子空孔またはシリコン自己格子間物の凝集か ら生じる欠陥を実質的に有さない、実質的半径方向幅の軸対称領域を有する、イ ンゴットまたはウエハ形態の単結晶シリコンの提供;および、空孔および自己格 子間物の集中が制御されて、インゴットが凝固温度から冷却する際に、インゴッ トの直径一定部分の軸対称領域における真性点欠陥の凝集を防止する、単結晶シ リコンインゴットの製造方法を提供することである。 従って、簡単に言えば、本発明は、中心軸、中心軸にほぼ垂直な前面および後 面、周囲縁、および中心軸からウエハの周囲縁に延在する半径、を有する単結晶 シリコンウエハに関する。空孔が優勢な真性点欠陥の、凝集空孔真性点欠陥を実 質的に有さない第一軸対称領域を、ウエハが含んで成り、該第一軸対称領域は、 中心軸を含んで成るかまたは少なくとも約15mmの幅を有する。 本発明は、中心軸、シードコーン(seed-cone)、エンドコーン、ならびに、 周囲縁、および中心軸から周囲縁に延在する半径を有するシードコーンとエンド コーンの間の直径一定部分、を有する単結晶シリコンインゴットにも関する。単 結晶シリコンインゴットの特徴は、インゴットが成長し凝固温度から冷却した後 に、直径一定部分が第一軸対称領域を有し、該領域において空孔が優勢な真性点 欠陥であり、および、該領域は実質的に凝集真性点欠陥を有さず、該第一軸対称 領域は、中心軸を含んで成るかまたは少なくとも約15mmの幅を有し、該中心 軸に沿って測定した場合にインゴットの直径一定部分の長さの少なくとも約20 %の長さであることである。 本発明は、中心軸、シードコーン、エンドコーン、ならびに、周囲縁、および 中心軸から周囲縁に延在する半径を有するシードコーンとエンドコーンの間の直 径一定部分、を含んで成る単結晶シリコンインゴットを成長させる方法にも関す る。この方法においては、インゴットを、チョクラルスキー法よって、シリコン メルトから成長させ、次に、凝固温度から冷却する。この方法は、凝固温度〜約 1325℃以上の温度範囲において、結晶の直径一定部分が成長する間に、成長 速度vおよび平均軸温度勾配GOを調節して、第一軸対称領域を形成させること を含んで成る方法であって、該領域において、インゴットを凝固温度から冷却す る際に、空孔が優勢な真性点欠陥であり、該領域は、凝集真性点欠陥を実質的に 有さず、該第一軸対称領域が少なくとも約15mmの幅を有するかまたは中心軸 を有する方法である。 本発明の他の目的および特徴は、一部は明らかであり、一部は下記に記載され る。図面の簡単な説明 図1は、自己格子間物[I]および空孔[V]の初期濃度が、比率v/GO[ vは成長速度であり、GOは平均軸温度勾配である。]の数値の増加に伴って、 変化する例を示すグラフである。 図2は、自己格子間物[I]の所定初期濃度に関して温度Tが低下するに伴っ て、凝集格子間欠陥の形成に必要とされる自由エネルギーの変化ΔGIが増加す る例を示すグラフである。 図3は、GOの数値の増加によって比率v/GOの数値が減少するに伴って、自 己格子間物[I]および空孔[V]の初期濃度が、ウエハのインゴットの半径に 沿って変化する例を示すグラフである。 図4は、それぞれ優勢材料の空孔Vおよび自己格子間物Iの領域、ならびそれ らの間に存在するV/I境界を示す単結晶シリコンインゴットまたはウエハの正 面図である。 図5は、インゴットの直径一定部分の軸対称領域を詳細に示す、単結晶シリコ ンインゴットの縦断面図である。 図6は、空孔優勢材料のほぼ筒状の領域、自己格子間優勢材料のほぼ環状の軸 対称領域、それらの間に存在するV/I境界、および凝集格子間欠陥の領域を詳 細に示す、一連の酸素析出熱処理後のインゴットの軸方向カットの少数担体寿命 のスキャンによって得られる画像である。 図7は、引き上げ速度が、結晶の長さの一部において線状に減少することを示 す、結晶の長さの関数としての引き上げ速度(即ち、種の引き上げ)のグラフで ある。 図8は、実施例1に記載のような、一連の酸素析出熱処理後の、インゴットの 軸方向カットの少数担体寿命のスキャンによって得られる画像である。 図9は、実施例1に記載のような、v*(Z)で示される曲線を得るために使 用される、それぞれ1〜4で示される4つの単結晶シリコンにおける、結晶の長 さの関数としての引き上げ速度のグラフである。 図10は、実施例2に記載の2種類の場合における、半径方向位置の関数とし ての、メルト/固体界面GOにおける平均軸方向温度勾配のグラフである。 図11は、実施例2に記載の2種類の場合における、半径方向位置の関数とし ての、空孔「V」および自己格子間物「I」の初期濃度のグラフである。 図12は、実施例3に記載の2種類の場合における、インゴットにおける軸方 向温度輪郭を示す、軸方向位置の関数としての温度のグラフである。 図13は、図12に示され、実施例3にさらに詳しく記載される2種類の冷却 条件から得られる自己格子間物濃度のグラフである。 図14は、実施例4に記載のような、一連の酸素析出熱処理後の、全インゴッ トの軸方向カットの少数担体寿命のスキャンによって得られる画像である。 図15は、実施例5に記載のような、単結晶シリコンインゴットの長さの関数 としての、V/I境界の位置を示すグラフである。 図16aは、実施例6に記載のような、一連の酸素析出熱処理後の、インゴッ トのショルダーから約100mm〜約250mmにわたるインゴットのセグメン トの軸方向カットの少数担体寿命のスキャンによって得られる画像である。 図16bは、実施例6に記載のような、一連の酸素析出熱処理後の、インゴッ トのショルダーから約250mm〜約400mmにわたるインゴットのセグメン トの軸方向カットの少数拒体寿命のスキャンによって得られる画像である。 図17は、実施例7に記載のような、インゴットの種々の軸方向位置における 、軸方向温度勾配GOのグラフである。 図18は、実施例7に記載のような、インゴットの種々のものにおける、平均 軸方向温度勾配GOにおける半径方向変化のグラフである。 図19は、実施例7に記載のような、軸対称領域の幅と冷却速度の関係を示す グラフである。 図20は、実施例7に記載のような、銅装飾(copper decoration)および欠 陥ディリニエーションエッチング(defect−delineating etch)後の、インゴッ トのショルダーから約235mm〜約350mmにわたるインゴットのセグメン トの軸方向カットの写真である。 図21は、実施例7に記載のような、銅装飾および欠陥輪郭エッチング後の、 インゴットのショルダーから約305mm〜約460mmにわたるインゴットの セグメントの軸方向カットの写真である。 図22は、実施例7に記載のような、銅装飾および欠陥輪郭エッチング後の、 インゴットのショルダーから約140mm〜約275mmにわたるインゴットの セグメントの軸方向カットの写真である。 図23は、実施例7に記載のような、銅装飾および欠陥輪郭エッチング後の、 インゴットのショルダーから約600mm〜約730mmにわたるインゴットの セグメントの軸方向カットの写真である。 図24は、種々の形態のホットゾーン(hot zones)において生じる平均軸方 向温度勾配GO(r)における半径方向変化を示すグラフである。 図25は、4種類のホットゾーン形態におけるインゴットの軸方向温度輪郭を 示すグラフである。好適な実施形態の詳細な説明 今日までの実験的証拠に基づいて、真性の点欠陥の種類および初期濃度を、イ ンゴットが凝固温度(すなわち、約1410℃)から1300℃よりも高い温度 (すなわち、少なくとも約1325℃、あるいは少なくとも約1350℃、ある いは少なくとも約1375℃でさえもの温度)に冷却されるときに最初に決定し た。すなわち、このような欠陥の種類および初期濃度は、比v/GOによって制 御される(vは成長速度であり、GOはこの温度範囲での平均軸温度勾配である )。 図1を参照して、v/GO値の増加に関して、漸減的な自己格子間物優勢成長 から漸増的な空格子点優勢成長への転移がv/GOの臨界値の近くで生じる。こ の臨界値は、現在入手できる情報に基づき、約2.1×10-5cm2/sKであ るようである。この場合、GOは、軸温度勾配が上記の温度範囲内で一定である 条件下で測定される。この臨界値において、これらの真性の点欠陥は平衡してい る。 v/GO値が臨界値を超えると、空格子点濃度は増加する。同様に、v/GO値 が臨界値よりも小さくなると、自己格子間物濃度は増加する。これらの濃度が系 の臨界的な過飽和レベルに達する場合、および点欠陥の移動性が充分に高い場合 、反応または凝集事象が生じ得る。シリコンにおいて凝集した真性の点欠陥は、 複雑な高集積度回路の製造における材料の予想される収量に重大な影響を与え得 る。 本発明により、シリコンマトリックス内の空格子点が反応して、凝集した空格 子点欠陥を生成する反応、およびシリコンマトリックス内の自己格子間物が反応 して、凝集した格子間欠陥を生成する反応が抑制され得ることが発見された。何 らかの特定の理論にとらわれることなく、空格子点および自己格子間物の濃度は 、本発明のプロセスにおいて結晶インゴットの成長および冷却が行われている間 においては、系の自由エネルギーの変化が、凝集反応が自発的に起こり、凝集し た空格子点欠陥または格子間欠陥が生成する臨界値を決して超えないように制御 されていると考えられる。 一般に、単結晶シリコンにおいて、凝集した空格子点欠陥が空格子点の点欠陥 から形成される反応、または凝集した格子間欠陥が自己格子間原子から形成され る反応を駆動させるために利用可能な系の自由エネルギーの変化は、下記の式( 1)によって支配される: [上式において、 ΔGV/Iは、凝集した空格子点欠陥を形成する反応、または格子間欠陥を形成 する反応に関する自由エネルギーの変化であり、 kは、ボルツマン定数であり、 Tは、K単位での温度であり、 [V/I]は、単結晶シリコンにおける空間および時間の1点において適用さ れる空格子点または格子間物の濃度であり、 [V/I]eqは、[V/I]が存在する空間および時間における同じ点におい て、温度Tで適用される空格子点または格子間物の平衡濃度である。] この式により、空格子点の所与濃度[V]に関して、温度Tが低下すると、一 般に、ΔGVは、温度とともに[V]eqが急激に低下するために増大する。同様 に、格子間物の所与濃度[I]に関して、温度Tが低下すると、一般に、ΔGI は、温度とともに[I]eqが急激に低下するために増大する。 図2は、ΔGIの変化を模式的に例示し、そしてシリコン自己格子間物の濃度 を抑制するためにいくつかの手段を同時に用いることなく、凝固温度から冷却さ れるインゴットに関するシリコン自己格子間物の濃度を模式的に例示する。イン ゴットが冷えると、ΔGIは、[I]の過飽和度が増大するために、式(1)に 従って増大し、凝集した格子間欠陥の生成に関するエネルギー障壁に近づく。冷 却が続くと、このエネルギー障壁を事実上超え、このときに反応が生じる。この 反応の結果、凝集した格子間欠陥が生成し、過飽和した系が緩和されるように、 すなわち、[I]濃度が低下するように、ΔGIの低下が伴う。 同様に、空格子点濃度を抑制するためにいくつかの手段を同時に用いることな く、インゴットが凝固温度から冷却されると、ΔGVは、[V]の過飽和度が増 大するために、式(1)に従って増大し、凝集した空格子点欠陥の生成に関する エネルギー障壁に近づく。冷却が続くと、このエネルギー障壁を事実上超え、こ のときに反応が生じる。この反応の結果、凝集した空格子点欠陥が生成し、過飽 和した系が緩和されるように、ΔGVの低下が伴う。 空格子点および格子間物の凝集は、凝集反応が生じる値よりも小さい値に空格 子点系および格子間物系の自由エネルギーを維持することによってインゴットが 凝固温度から冷却されると、それぞれ、空格子点優勢材および格子間物優勢材の 領域において回避することができる。すなわち、系は、空格子点または格子間物 が臨界的に過飽和に決してならないように制御することができる。これは、臨界 的な過飽和が決して達成されないように充分に低い(下記に定義されているよう にv/GO(r)によって制御される)空格子点および格子間物の初期濃度を確 立することによって達成することができる。しかし、実際には、そのような濃度 は、結晶半径の全体を通して達成することは困難である。従って、一般には、臨 界的な過飽和は、結晶凝固の後に、すなわち、v/GO(r)によって決定され る初期濃度を確立した後に初期の空格子点濃度および初期の格子間物濃度を抑制 することによって回避することができる。 驚くべきことに、一般的には約10-4cm2/秒である自己格子間物の比較的 大きな移動性のために、そしてより小さい程度に、空格子点の移動性のために、 比較的大きな距離、すなわち、約5cm〜約10cm以上の距離にわたる格子間 物および空格子点は、自己格子間物を、結晶表面に位置するシンク(sinks)に 対して、または結晶内に位置する空格子点優勢領域に対して半径方向に拡散させ ることによって抑制できることが見出された。充分な時間が初期濃度の真性の点 欠陥を半径方向に拡散させることが可能であるならば、半径方向の拡散は、自己 格子間物および空格子点の濃度を抑制するために効果的に使用することができる 。一般に、拡散時間は、自己格子間物および空格子点の初期濃度における半径方 向の変化に依存する。半径方向の変化が小さいほど、拡散時間は短い。 平均軸方向温度勾配GOは、典型的には、チョクラルスキー法に従って成長す る単結晶シリコンに関して、半径の増大とともに大きくなる。このことは、v/ GO値は、典型的には、インゴットの半径の端から端まで特異的でないことを意 味する。このような変化の結果として、真性の点欠陥の種類および初期濃度は一 定していない。図3および図4においてV/I境界2と記されているv/GOの 臨界値がインゴットの半径4に沿ったある点で達成される場合、この材料は、空 格子点優勢から自己格子間物優勢に変わる。さらに、インゴットは、自己格子間 物優勢材6(この場合、シリコンの自己格子間物の初期濃度は半径の増大ととも に増大する)の軸対称領域を含有し、この領域は、空格子点優勢材8(この場合 、空格子点の初期濃度は、半径の増大とともに減少する)の一般には円筒状領域 を囲む。 V/I境界を含有するインゴットが凝固温度から冷却されるとき、格子間原子 および空格子点の半径方向の拡散は、自己格子間物と空格子点との再結合のため にV/I境界を半径方向に内側に移動させる。さらに、自己格子間物の結晶表面 への半径方向の拡散は、結晶が冷えるときに生じる。結晶表面は、結晶が冷える ときにほぼ平衡した点欠陥濃度を維持することができる。点欠陥の半径方向の拡 散は、V/I境界の外側での自己格子間物の濃度、およびV/I境界の内側での 空格子点の濃度を低下させる傾向がある。従って、充分な時間が拡散のために可 能であるならば、あらゆる場所における空格子点および格子間物の濃度は、ΔGV およびΔGIが、空格子点の凝集反応および格子間物の凝集反応が生じる臨界値 よりも小さくなるようにすることができる。 図5を参照すると、本発明の方法の第1の態様において、単結晶シリコンイン ゴット10が、チョクラルスキー法に従って成長する。この単結晶シリコンイン ゴットは、中心軸12、シードコーン14、エンドコーン16、およびシードコ ーンとエンドコーンとの間の直径一定部分18を含む。直径一定部分は、円周方 向の端部20を有し、そして中心軸12から円周方向の端部20まで拡がる半径 4を有する。 例えば成長速度v、平均軸温度勾配GOおよび冷却速度を含む結晶成長条件は 、好ましくは、格子間物優勢材6の軸対称領域および空格子点優勢材8の一般に は円筒領域が形成するように制御される。空格子点優勢材8は凝集した真性点無 欠陥材料9の軸対称領域を有する。軸対称領域9は、V/I境界2から軸12ま で拡がる半径4に沿って測定される幅を有する。本発明の態様の1つにおいて、 少 なくとも15mmの幅を有し、好ましくは、インゴットの直径一定部分の半径の 少なくとも約7.5%、より好ましくは少なくとも約15%、さらにより好まし くは少なくとも約25%、最も好ましくは少なくとも約50%の幅を有する。特 に好ましい実施形態において、軸対称領域9はインゴットの軸12を含み、すな わち、軸対称領域9および一般には円筒状の領域8は一致する。言い換えれば、 インゴット10は、空格子点優勢材8の一般には円筒状領域を含み、その少なく とも一部は、凝集した欠陥を含まない。さらに、軸対称領域9は、インゴットの 直径一定部分の長さの少なくとも約20%、好ましくは少なくとも約40%、よ り好ましくは少なくとも約60%、さらにより好ましくは少なくとも約80%の 長さにわたって拡がる。 軸対称領域6(存在する場合)は、円周方向の端部20から中心軸12に向か って半径方向に内側に測定される幅を一般に有し、この幅は、インゴットの直径 一定部分の半径の少なくとも約30%であり、いくつかの実施形態においては、 その少なくとも約40%であり、あるいは少なくとも約60%であり、あるいは 少なくとも約80%でさえある。さらに、軸対称領域は、一般に、インゴットの 直径一定部分の長さの少なくとも約20%、好ましくは少なくとも約40%、よ り好ましくは少なくとも約60%、さらにより好ましくは少なくとも約80%の 長さにわたって拡がる。 軸対称領域6および9の幅は、中心軸12の長さに沿っていくらかの変化を有 し得る。従って、所与の長さの軸対称領域に関して、軸対称領域6の幅は、イン ゴット10の円周方向の端20から半径方向に、中心軸から最も離れた点に向か って距離を測定することによって決定される。すなわち、その幅は、軸対称領域 6の所与の長さにおける最少の距離を決定するように測定される。同様に、軸対 称領域9の幅は、V/I境界2から半径方向に、中心軸から最も離れた点に向か って距離を測定することによって決定される。すなわち、その幅は、軸対称領域 9の所与の長さにおける最少の距離を決定するように測定される。 (前記のように定義される)成長速度vおよび平均軸温度勾配GOは、典型的 には、比v/GOが、v/GO臨界値の約0.5倍〜約2.5倍の値の範囲である ように制御される(すなわち、v/GO臨界値に関して現在入手可能な情報に 基づき、約1×10-5cm2/sK〜約5×10-5cm2/sK)。この比v/GO は、好ましくは、v/GO臨界値の約0.6倍〜約1.5倍の値の範囲である( すなわち、v/GO臨界値に関して現在入手可能な情報に基づき、約1.3×1 0-5cm2/sK〜約3×10-5cm2/sK)。この比v/GOは、最も好まし くは、v/GO臨界値の約0.75倍〜約1.25倍の値の範囲である(すなわ ち、v/GO臨界値に関して現在入手可能な情報に基づき、約1.6×10-5c m2/sK〜約2.1×10-5cm2/sK)。1つの特に好ましい実施形態にお いて、軸対称領域8におけるv/GOは、v/GO臨界値と、v/GO臨界値の1 .1倍との間に含まれる値を有する。 軸対称領域9の幅を最大にするためには、インゴットを凝固温度から、約10 50℃を超える温度にまで、下記の時間をかけて冷却することが好ましい: (i)150mmの公称直径のシリコン結晶に関して、少なくとも約5時間、好 ましくは少なくとも約10時間、より好ましくは少なくとも約15時間、(ii )200mmの公称直径のシリコン結晶に関して、少なくとも約5時間、好まし くは少なくとも約10時間、より好ましくは少なくとも約20時間、さらにより 好ましくは少なくとも約25時間、最も好ましくは少なくとも約30時間、およ び(iii)200mmを超える公称直径を有するシリコン結晶をに関して、少 なくとも約20時間、好ましくは少なくとも約40時間、より好ましくは少なく とも約60時間、最も好ましくは少なくとも約75時間。冷却速度の制御は、熱 移動を最小限にするためにこの分野で現在知られている任意の手段を使用するこ とによって行うことができる。このような手段には、断熱材、ヒーター、輻射遮 蔽材および磁場の使用が含まれる。 平均軸温度勾配GOの制御は、結晶引き上げ装置の「ホットゾーン」の設計、 すなわち、特に、ヒーター、断熱材、熱および輻射遮蔽材を作製するグラファイ ト(または、他の材料)の設計を行うことにより達成され得る。個々の設計は、 結晶引き上げ装置の構造および型式に依存して変化し得るが、一般に、GOは、 溶融/固体の界面での熱移動を制御するためにこの分野で現在知られている任意 の手段を使用して行うことができる。このような手段には、反射材、輻射遮蔽材 、パージ管、光パイプおよびヒーターが含まれる。一般に、GOの半径方向の変 化 は、そのような装置を溶融/固体の界面上方の約1結晶直径以内に配置すること によって最小にされる。GOは、溶融および結晶に対して、装置の位置を調節す ることによってさらに制御することができる。これは、ホットゾーンにおける装 置の位置を調節することによって、あるいはホットゾーンにおける溶融表面の位 置を調節することによって達成される。さらに、ヒーターが用いられる場合、GO は、ヒーターに供給される出力を調節することによってさらに調節することが できる。これらの方法のいずれかまたはすべてを、溶融容量がそのプロセスの間 になくなる回分式のチョクラルスキープロセスを行っているときに使用すること ができる。 平均軸温度勾配GOが、インゴットの直径の関数として比較的一定しているこ とは本発明のいくつかの実施形態に一般に好ましいことである。しかし、ホット ゾーン機構はGOの変化を最小にするように改善されるので、一定の成長速度を 維持することに伴う機械的な問題はますます重要な因子になることに注意しなけ ればならない。このために、成長プロセスは、成長速度vにも同様に直接的な影 響を与える引き上げ速度における何らかの変化に対してより一層敏感になる。プ ロセス制御に関して、これは、インゴットの半径とは異なるGO値を有すること が好ましいことを意味する。しかし、GO値の大きな差により、ウエハ端に向か ってほぼ増大する自己格子間物の大きな濃度が生じ、それにより、凝集した真性 の点欠陥の生成を回避することがますます困難になり得る。 前記を参照して、GOの制御には、GOの半径方向の変化を最小にすることと、 好ましいプロセス制御条件の維持とのバランスが含まれる。従って、典型的には 、約1直径分の結晶長後の引き上げ速度は、約0.2mm/分〜約0.8mm/ 分の範囲である。引き上げ速度は、好ましくは、約0.25mm/分〜約0.6 mm/分の範囲であり、より好ましくは約0.3mm/分〜約0.5mm/分の 範囲である。引き上げ速度は、結晶の直径および結晶引き上げ設計の両方に依存 することに注意しなければならない、上記の範囲は、直径が200mmの結晶に は典型的である。一般に、引き上げ速度は、結晶の直径が大きくなると低下する 。しかし、結晶引き上げ装置は、引き上げ速度を本明細書に記載される速度を超 えるように設計することができる。結果として、最も好ましくは、結晶引き上げ 装 置は、本発明によって、軸対称領域の形成を依然として可能にしたままで、引き 上げ速度をできる限り早くするように設計される。 自己格子間物の拡散量は、商業的に実用的なプロセスに関して、インゴットが 凝固温度(約1410℃)から、シリコンの自己格子間物が不動化する温度にま で冷却されるときの冷却速度を制御することによって制御される。シリコンの自 己格子間物は、シリコンの凝固温度(すなわち、約1410℃)付近の温度で極 端に移動し得るようである。しかし、この移動性は、単結晶シリコンインゴット の温度が低下すると減少する。一般に、自己格子間物の拡散速度は、それらが、 約700℃未満の温度で、そしておそらくは、800℃、900℃、1000℃ もの温度で、あるいは1050℃でさえもの温度で、商業的に実用的な時間で本 質的に移動し得ないようなかなりの大きさを示す。 このことに関して、自己格子間物の凝集反応が理論的に生じる温度は、広範囲 の温度にわたり変化するが、実際上、この範囲は、従来のチョクラルスキー成長 シリコンに関しては比較的狭いことに注意しなければならない。これは、チョク ラルスキー法によって成長させたシリコンにおいて典型的に得られる自己格子間 物の初期濃度が比較的狭い範囲であるという結果である。従って、一般に、自己 格子間物の凝集反応が、生じるとすれば、約1100℃〜約800℃の範囲内の 温度で、典型的には約1050℃の温度で起こり得る。 自己格子間物が移動し得ることが考えられる温度範囲において、ホットゾーン での温度に依存して、冷却速度は、典型的には、約0.1℃/分〜約3℃/分の 範囲である。冷却速度は、好ましくは、約0.1℃/分〜約1.5℃/分の範囲 であり、より好ましくは約0.1℃/分〜約1℃/分の範囲であり、さらにより 好ましくは約0.1℃/分〜約0.5℃/分の範囲である。 自己格子間物が移動し得ることが考えられる温度範囲にインゴットの冷却速度 を制御することによって、自己格子間物は数倍になり、結晶表面に位置するシン クに、あるいは空格子点優勢領域に拡散することができ、そこでそれらは消滅し 得る。従って、そのような格子間物の濃度は抑制され、凝集事象が生じないよう に作用する。冷却速度を制御することによる格子間物の拡散係数の利用は、凝集 した欠陥を含まない軸対称領域を得るために必要とされ得るその他の点での厳し いv/GO条件を緩和させるように作用する。言い換えれば、格子間物を数倍拡 散させることを可能にするために、冷却速度が制御され得るという事実の結果と して、臨界値に対して大きな範囲のv/GO値が、凝集した欠陥を含まない軸対 称領域を得るために許容され得る。 結晶の直径一定部分のかなりの長さにわたってそのような冷却速度を達成する ために、検討を、インゴットのエンドコーンの成長プロセスに対しても、エンド コーンの成長が終了したときのインゴットの処理に対するのと同様に行わなけれ ばならない。典型的には、インゴットの直径一定部分の成長が完了したとき、引 き上げ速度は、エンドコーンを形成させるために必要な先細り化を始めるために 大きくされる。しかし、引き上げ速度のそのような増大により、直径一定部分の 下側領域は、上記のように、格子間物が充分に移動し得る温度範囲内において一 層早く冷却される。結果として、これらの格子間物は、消滅し得るシンクに拡散 するのに充分な時間を有さない。すなわち、この下側領域における濃度は充分な 程度に抑制され得ず、格子間欠陥が凝集し得る。 従って、そのような欠陥の形成がインゴットのこの下部領域において生じない ようにするためには、インゴットの直径一定部分が、チョクラルスキー法に従っ て均一な熱履歴を有することが好ましい。均一な熱履歴は、直径一定部分の成長 を行っているときだけでなく、結晶のエンドコーンの成長を行っているときにお いて、そして可能であれば、エンドコーンの成長の後も、比較的一定した速度で インゴットをシリコン溶融から引き上げることによって達成することができる。 比較的一定の速度は、例えば、下記により達成することができる:(i)結晶の 直径一定部分の成長を行っているときのるつぼおよび結晶の回転速度に対して、 エンドコーンの成長を行っているときのるつぼおよび結晶の回転速度を低下させ ること、および/または(ii)エンドコーンの成長を行っているときに従来の ように供給される出力に対して、エンドコーンの成長を行っているときにシリコ ン溶融物を加熱するために使用されるヒーターに供給される出力を増加させるこ と。プロセス変数のこれらのさらなる調整は、個々にあるいは組み合わせて行う ことができる。 エンドコーンの成長を始めるとき、エンドコーンの引き上げ速度は下記のよう に確立される。約1050℃を超える温度に留まっているインゴットの直径一定 部分の任意の領域は、凝集した真性の点欠陥を含まない軸対称領域を含有し、約 1050℃よりも低い温度に既に冷却されたインゴットの直径が一定した他の領 域と同じ熱履歴を経るようにされている。 前記のように、空格子点優勢領域の最小半径が存在し、このために、凝集した 格子間欠陥は抑制され得る。最小半径の値は、v/GO(r)および冷却速度に 依存する。結晶引き上げ装置およびホットゾーンの機構が変化するように、v/ GO(r)に関して上記に示した範囲、引き上げ速度および冷却速度もまた変化 する。同様に、これらの条件は、成長する結晶の長さに沿って変化し得る。上記 のように、凝集した格子間欠陥を含まない格子間物優勢領域の幅は、好ましくは 最大にされる。従って、この領域の幅を、結晶の半径と、所与の引き上げ装置に おける成長中の結晶の長さに沿った空格子点優勢領域の最小半径との差にできる 限り近い値で、その値を超えない値に維持することが望まれる。 軸対称領域6および9の最適な幅、ならびに所与の結晶引き上げ装置のホット ゾーン機構に必要とされる最適な結晶引き上げ速度特性は、実験的に決定するこ とができる。一般的には、このような実験的な方法には、特定の結晶引き上げ装 置で成長させたインゴットに関する軸方向の温度特性、ならびに同じ引き上げ装 置で成長させたインゴットの平均軸温度勾配における半径方向の変化に対する容 易に入手できるデータを最初に得ることが含まれる。まとめると、このようなデ ータを使用して、1つまたは複数の単結晶シリコンインゴットを引き上げ、次い でこのインゴットを、凝集した格子間欠陥の存在について分析する。このように 、最適な引き上げ速度特性を決定することができる。 図6は、欠陥分布パターンを明らかにする一連の酸素析出熱処理を行った後の 直径が200mmのインゴットの軸切断面の少数キャリア寿命を走査することに よって得られる像である。図16は、最適に近い引き上げ速度特性が、所与の結 晶引き上げ装置のホットゾーン機構に用いられている例を示す。この例において 、(凝集した格子間欠陥28の領域の生成をもたらす)格子間物優勢領域の最大 幅が超えるv/GO(r)から、軸対称領域が最大幅を有する最適なv/GO(r )までの転移が生じている。 インゴットの半径にわたってGOが増大することから生じるv/GOの半径方向 の変化に加えて、v/GOはまた、vが変化する結果として、あるいはチョクラ ルスキープロセスによるGOにおける自然の変化の結果として軸方向に変化し得 る。標準的なチョクラルスキープロセスに関して、vは、インゴットを一定の直 径で維持するために、引き上げ速度が成長周期全体で調節されるように変更され る。引き上げ速度におけるこれらの調節または変化は、次いで、v/GOを、イ ンゴットの直径一定部分の長さにわたって変化させる。従って、本発明のプロセ スにより、引き上げ速度は、インゴットの軸対称領域の幅を最大にするために制 御される。しかし、結果として、インゴットの半径は変化し得る。従って、得ら れるインゴットが一定の直径を有することを確実にするために、インゴットは、 所望される直径よりも大きい直径に成長させることが好ましい。次いで、インゴ ットは、この分野で標準的なプロセスに供され、表面から余分な材料が除かれる 。このように、直径一定部分を有するインゴットが確実に得られる。 一般に、軸温度勾配GO(r)の半径方向の変化が最小にされる場合、凝集し た欠陥を含まない空格子点優勢材を作製する方が容易である。図25を参照して 、4つの離れたホットゾーン位置に関する軸温度特性を例示する。図24は、結 晶の中心から結晶半径の1/2までの軸温度勾配GO(r)の変化を表す:これ は、凝固温度からx軸に示された温度までの勾配を平均することによって決定さ れる。結晶が、Ver.1およびVer.4と記された、GO(r)でのより大 きな半径方向の変化を有するホットゾーンにおいて引き出された場合、凝集した 欠陥を含まない空格子点優勢材を中心から任意の軸長の端までに有する結晶を得 ることができなかった。しかし、結晶が、Ver.2およびVer.3と記され た、GO(r)でのより小さな半径方向の変化を有するホットゾーンにおいて引 き出された場合には、結晶のいくつかの軸長に関して凝集した欠陥を含まない空 格子点優勢材を中心から端までに有する結晶を得ることができた。 本発明の方法にしたがって製造され、V/I境界を有するインゴット、すなわ ち、空格子点優勢材を有するインゴットにとって、経験からわかるように、低い 酸素含有材料、すなわち、約13PPMA(100万原子に対する部、ASTM 標準F−121−83)未満が好ましい。さらに好ましくは、単結晶シリコンが 約12PPMA未満の酸素、なおさらに好ましくは約11PPMA未満の酸素、 最も好ましくは約10PPMA未満の酸素を有する。これは、中程度から高い酸 素含有のウエハ、すなわち14PPMA〜18PPMAで、酸素誘導堆積欠陥お よびV/I境界の内側での増分化酸素クラスター化のバンドの形成がより著しい からである。これらは、一定の回路の組立て工程における問題の潜在的な源とな る。 増分化酸素クラスター化の効果は、単独でまたは組み合わせて使用される多く の方法によって、さらに減少されてよい。例えば、酸素析出核形成中心は、約3 50〜750℃の範囲の温度でアニールされたシリコンに形成する。用途によっ て、それゆえに、結晶は「短い」結晶である、シードエンドがシリコンの凝固温 度(約1410℃)から約750℃に冷却され、その後インゴットが迅速に冷却 されるまでチョクラルスキー法で成長した結晶であることが好ましい。この方法 において、核中心形成のための臨界温度範囲に保たれる時間を最小にし、酸素析 出核形成中心は、結晶引き上げ装置内で形成するほど十分な時間を有さない。 好ましくは、しかしながら、単結晶の成長の間に形成された酸素析出核中心は 、単結晶シリコンをアニールすることによって溶解される。安定熱処理に付され ない場合、酸素析出核形成中心は、シリコンを少なくとも約875℃の温度に、 好ましくは少なくとも1000℃に、少なくとも1100℃またはそれ以上温度 を連続増加して急速に加熱することによって、シリコンの中からアニールするこ とができる。シリコンが1000℃に達成するまで、そのような欠陥の実質的す べて(例えば>99%)がアニールされる。ウエハはこれらの温度に急速に加熱 されること、すなわち温度上昇の速度が、少なくとも約10℃/分、好ましくは 少なくとも約50℃/分であることが重要である。さもなければ、ある程度また はすべての酸素析出核形成中心は、熱処理によって安定化されてよい。平衡は、 比較的短い期間で、約60秒またはそれ未満のオーダーで達成するようにみられ る。したがって、単結晶シリコン中の酸素析出核形成中心を、少なくとも約5秒 、好ましくは少なくとも約10分間、少なくとも約875℃、好ましくは約95 0℃、さらに好ましくは約1100℃でアニールすることによって溶解してよい 。 溶解は、従来の炉中でまたは急速熱アニーリング(RTA)系において行って よい。シリコンの急速熱アニーリング処理は、ウエハが列をなす高出力光源の列 によって個々に加熱される多数の市販の急速熱アニーリング(「RTA」)処理 炉内で行われてよい。RTA炉は、シリコンウエハを急速に加熱でき、例えば数 秒間で室温から1200℃に加熱できる。そのような市販のRTA炉の1つとし ては、AG Associates(Mountain View,CA)から入手できるモデル610炉がある 。さらに、溶解は、シリコンインゴットまたはシリコンウエハ上、好ましくはウ エハ上で行われうる。 本発明のプロセスの1つの実施形態において、シリコン自己格子間原子の初期 濃度が、インゴット10の軸対称の自己格子間物優勢領域6で制御される。再度 、図1を参照して、一般に、シリコン自己格子間原子の初期濃度の制御は、結晶 成長速度vおよび平均軸温度勾配GOが、V/I境界が生じるこの比の臨界値の 比較的近いところに比v/GOの値があるように制御されることによって行われ る。さらに、平均軸温度勾配GOは、インゴットの半径を関数として、GO(およ び従って、v/GO)の変化としてのGO、すなわちGO(r)(および従って、 v/GO(r))の変化も同様に制御されるように確立され得る。 本発明の別の実施形態において、v/GOは、V/I境界がインゴットの長さ の少なくとも一部に関して半径に沿って存在しないように制御される。この長さ において、シリコンは、中心から円周方向の端まで空格子点優勢であり、凝集し た空格子点欠陥が、主としてV/GOを制御することによって、インゴットの円 周方向の端から内側に向かって半径方向に拡がる軸対称領域において避けられる 。すなわち、成長条件を制御し、その結果、v/GOは、v/GO臨界値とv/GO 臨界値の1.1倍との間に含まれる値を有する。 本発明によって製造されるウエハは、エピタキシャル層が堆積した基材として 使用するのに適していることに気づくべきである。エピタキシャル層は従来から 知られている手段によって行われてよい。 さらに、本発明によって製造されるウエハは、水素またはアルゴンアニーリン グ処理、例えばヨーロッパ特許出願第503816A1号に記載される処理と組 み合わせての使用に適している。凝集した欠陥の目視による検出 凝集した欠陥は、多数の異なる技法により検出することができる。例えば、フ ローパターン欠陥またはD欠陥は、典型的には、単結晶シリコンサンプルをセコ ー(Secco)エッチング液中で約30分間選択的にエッチングし、次いでサンプ ルを顕微鏡検査に供することにより検出される(例えば、H.Yamagishi他、Semi cond.Sci.Technol.7、A135(1992)を参照のこと)。この方法は、凝集した 空格子点欠陥を検出するには標準的ではあるが、この方法はまた、凝集した格子 間欠陥を検出するために使用することができる。この技法を使用する場合、その ような欠陥は、存在する場合にはサンプル表面での大きなくぼみとして現れる。 凝集した欠陥はまた、レーザー散乱トモグラフィーなどのレーザー散乱技法を 使用して検出することができる。レーザー散乱技法は、典型的には、他のエッチ ング技法よりも低い欠陥密度の検出限界を有する。 さらに、凝集した真性の点欠陥は、熱を加えたときに単結晶シリコンマトリッ クス内に拡散し得る金属でこれらの欠陥を装飾することによって視覚的に検出す ることができる。具体的には、ウエハ、スラグまたはスラブなどの単結晶シリコ ンサンプルは、硝酸銅の濃厚溶液などのこれらの欠陥を装飾し得る金属を含有す る組成物で、サンプルの表面を最初にコーティングすることによってそのような 欠陥の存在について目視検査を行うことができる。次いで、コーティングされた サンプルは、金属をサンプル内に拡散させるために、約900℃〜約1000℃ の間の温度で約5分間〜約15分間加熱される。次いで、加熱処理されたサンプ ルを室温に冷却する。このように、金属を臨界的に過飽和にして、欠陥が存在す るサンプルマトリックス内の部位に析出させる。 冷却後、まず、表面残渣および析出化剤を除くために、サンプルを活性なエッ チング溶液で約8分間〜約12分間処理することによる無欠陥ディリニエーショ ン・エッチングにサンプルを供する。代表的な活性なエッチング溶液は、約55 %の硝酸(70重量%溶液)、約20%のフッ化水素酸(49重量%溶液)およ び約25%の塩酸(濃溶液)を含む。 次いで、サンプルを脱イオン水で洗浄し、サンプルを、約35分間〜約55分 間、セコー(Secco)エッチング液またはライト(Wright)エッチング液に浸す か、それで処理することによる第2のエッチング工程に供する。典型的には、サ ンプルは、約1:2の比の0.15M二クロム酸カリウムおよびフッ化水素酸( 49重量%溶液)を含むセコーエッチング液を使用してエッチングされる。この エッチング工程は、存在し得る凝集した欠陥を明らかにするように、すなわち輪 郭化するように作用する。 一般に、凝集した欠陥を含まない格子間物優勢材および空格子点優勢材の領域 は、上記の銅装飾技法によって互いに区別することができ、そして凝集した欠陥 を含有する材料から区別することができる。欠陥を含まない格子間物優勢材の領 域は、エッチングによって明らかにされる装飾された特徴を含有しないが、(上 記の高温の酸素核溶解処理を行う前の)欠陥を含まない空格子点優勢材の領域は 、酸素核の銅装飾によるエッチングされた小さなくぼみを含有する。定義 本明細書中で使用されているように、下記の表現または用語は、下記の意味を 有するものとする。「凝集した真性の点欠陥」は、下記によって生じる欠陥を意 味する:(i)空格子点が凝集して、D欠陥、フローパターン欠陥、ゲート(ga te)酸化物、保全性欠陥(integrity defect)、結晶起源の粒子欠陥、結晶起源 の光点欠陥、および他のそのような空格子点に関連する欠陥を生成する反応、ま たは(ii)自己格子間物が凝集して、転移ループおよび転移ネットワーク、な らびに他のそのような自己格子間物に関連する欠陥を生成する反応。「凝集した 格子間欠陥」は、シリコン自己格子間原子が凝集する反応によって生じる凝集し た真性の点欠陥を意味するものとする。「凝集した空格子点欠陥」は、結晶格子 の空格子点が凝集する反応によって生じる凝集した空格子点を意味するものとす る。「半径」は、中心軸から、ウエハまたはインゴットの円周端まで測定される 距離を意味する。「凝集した真性の点欠陥を実質的に含まない」は、凝集した欠 陥の濃度がこれらの欠陥の検出限界未満であることを意味するものとする(検出 限界は、現在、約103欠陥/cm3である)。「V/I境界」は、インゴットま たはウエハの半径に沿った位置で、材料が空格子点優勢から自己格子間優勢 に変化する位置を意味する。「空格子点優勢」および「自己格子間物優勢」は、 真性の点欠陥が、それぞれ、空格子点または自己格子間物である材料を意味する 。実施例 以下の実施例が示すように、本発明は、単結晶シリコーンインゴットを製造す る方法であって、インゴットがチョクラルスキー法によって凝集温度から冷却す るにときに、真性点欠陥の凝集が、インゴットの直径一定部分の軸対称領域内で 、ウエハがスライスされることを妨げる方法を提供する。 以下の実施例は、所望の結果を達成するために使用される条件の1つを示して いる。別のアプローチは、特定の結晶引き上げ装置のための最適な引き上げ速度 輪郭を決定するためにある。例えば、さまざまな引き上げ速度で一連のインゴッ トを成長させるよりむしろ、結晶の長さに沿って増大または減少させる引き上げ 速度で単結晶を成長させることができる;このアプローチにおいて、凝集した自 己格子間物欠陥が単結晶の成長の間の多くの時間に現れたり、消えたりする。最 適な引き上げ速度は、多数の異なる結晶位置に対して決定できた。したがって、 以下の実施例は、限定を意図するものではない。 実施例1 所定のホットゾーン機構を有する結晶引き上げ装置の最適化手順 最初の200mmの単結晶シリコンインゴットを、結晶の長さに関して、引き 上げ速度を0.75mm/分から約0.35mm/分に直線的に変化させた条件 下で成長させた。図7は、結晶の長さを関数とする引き上げ速度を示す。結晶引 き上げ装置内における成長中の200mmインゴットの以前に確立された軸温度 特性と、平均軸温度勾配GO、すなわち、溶融/固体界面での軸温度勾配におけ る以前に確立された半径方向の変化とを考慮して、このような引き上げ速度を選 択して、インゴットが、中心からインゴットの一方の末端の縁まで空格子点優勢 材であり、そして中心からインゴットのもう一方の末端の縁まで格子間物優勢材 であることを確実にした。成長したインゴットを長さ方向にスライスし、凝集し た格子間欠陥の生成がどこから始まっているかを決定するために分析した。 図8は、欠陥分布パターンを明らかにする一連の酸素析出熱処理を行った後の インゴットの肩から約635mm〜約760mmの範囲の断面に関して、インゴ ットの軸切断面の少数キャリア寿命を走査することによって得られた像である。 約680mmの結晶位置で、凝集した格子間欠陥28のバンドを認めることがで きる。この位置は、v*(680mm)=0.33mm/分の臨界引き上げ速度 に対応する。この点において、軸対称領域6(格子間物優勢材であるが、凝集し た格子間欠陥を有さない領域)の幅はその最大値である;空格子点優勢領域8の 幅RV *(680)は約35mmであり、軸対称領域の幅RI *(680)は約65 mmである。 次いで、一連の4個の単結晶シリコンインゴットを、最初の200mmインゴ ットの軸対称領域の最大幅が得られた引き上げ速度よりも若干大きな定常的な引 き上げ速度、およびそれよりも若干小さい定状的な引き上げ速度で成長させた。 図9は、1〜4とそれぞれ記された4個の各結晶の結晶の長さを関数とする引き 上げ速度を示す。次いで、これらの4個の結晶を分析して、凝集した格子間欠陥 が最初に現れるかまたは消失する軸位置(および対応する引き上げ速度)を決定 した。これらの4つの実験的に決定された点(「*」を付ける)を図9に示す。 これらの点からの内挿および外挿によって、図9においてv*(Z)と印を付け た曲線が得られる。この曲線は、最初の近似に対して、軸対称領域がその最大幅 である結晶引き上げ装置における長さを関数とする200mm結晶に関する引き 上げ速度を表す。 他の引き上げ速度でのさらなる結晶の成長およびこのような結晶のさらなる分 析により、v*(Z)の実験的な定義をさらに精密化する。 実施例2 GO(r)における半径方向の低下 図10および図11は、溶融/固体界面での軸温度勾配GO(r)の半径方向 の減少によって達成され得る品質の改善を例示する。空格子点および格子間物の (溶融/固体界面から約1cmでの)初期濃度を、2つの場合について、異なる GO(r)を用いて計算した:(1)GO(r)=2.65+5×10-42(K /mm)および(2)GO(r)=2.65+5×10-52(K/mm)。それ ぞれの場合について、引き上げ速度を、空格子点が多いシリコンと格子間物が多 いシリコンとの境界が3cmの半径のところに位置するように調節した。場合1 および場合2のために使用した引き上げ速度は、それぞれ、0.4mm/分およ び0.35mm/分であった。図11から、結晶の格子間物が多い部分における 格子間物の初期濃度は、初期軸温度勾配の半径方向の変化が減少すると、劇的に 減少することが明らかである。これにより、格子間物の過飽和による格子間欠陥 クラスターの生成を回避することがより容易になるために材料品質は改善される 。 実施例3 格子間物に関する増加した外方拡散時間 図12および図13は、格子間物の外方拡散に必要な時間を増大させることに よって達成され得る品質の改善を例示する。格子間物の初期濃度を、2つの場合 について、結晶において異なる軸温度特性dT/dzを用いて計算した。溶融/ 固体界面での軸温度勾配は両方の場合について同じであり、その結果、格子間物 の(溶融/固体界面から約1cmでの)初期濃度は両方の場合について同じであ る。本実施例において、引き上げ速度を、結晶全体が、格子間物が多くなるよう に調節した。引き上げ速度は、両方の場合について同じであり、0.32mm/ 分であった。場合2における格子間物の外方拡散に必要な時間が長いほど、格子 間物濃度の全体的な減少が得られる。これにより、格子間物の過飽和による格子 間欠陥クラスターの生成を回避することがより容易になるために材料品質は改善 される。 実施例4 長さが700mmで、直径が150mmの結晶を、様々な引き上げ速度で成長 させた。引き上げ速度を、段部での約1.2mm/分から、段部から430mm のところでの約0.4mm/分までほぼ直線的に変化させ、次いで、段部から7 00mmのところでの約0.65mm/分にまでほぼ直線的に戻した。この特定 の結晶引き上げ装置におけるこのような条件下において、半径全体を、結晶の段 部から約320mm〜約525mmの範囲の結晶の長さにわたって、格子間物が 多い条件下で成長させた。図14を参照して、約525mmの軸位置および約0 .47mm/分の引き上げ速度で、結晶は、直径全体にわたって、凝集した真性 の点欠陥クラスターを含まない。言い換えれば、軸対称領域の幅、すなわち、凝 集した欠陥を実質的に含まない領域の幅がインゴットの半径に等しい結晶の小さ な部分が存在する。 実施例5 実施例1に示すように、一連の単結晶シリコンインゴットを様々な引き上げ速 度で成長させ、次いで、凝集した格子間欠陥が最初に現れるか消失する軸位置( および対応する引き上げ速度)を決定するために分析した。軸位置に対して引き 上げ速度をグラフにプロットしたこれらの点からの内挿および外挿によって、第 1の近似に対して、軸対称領域がその最大幅である結晶引き上げ装置における長 さを関数とする200mmの結晶に関する引き上げ速度を示す曲線が得られた。 次いで、さらなる結晶を他の引き上げ速度で成長させ、これらの結晶のさらなる 分析を使用して、この実験的に決定した最適な引き上げ速度特性の精度を上げた 。 この結果を使用し、そしてこの最適な引き上げ速度特性に従って、長さが約1 000mmで、直径が約200mmの結晶を成長させた。次いで、成長させた結 晶の、様々な軸位置から得られたスライス物を、(i)凝集した格子間欠陥が生 成しているかどうかを決定するために、そして(ii)スライス物の半径を関数 としてV/I境界の位置を決定するために、この分野で標準的な酸素析出法を使 用して分析した。このように、軸対称領域の存在を、結晶の長さまたは位置を関 数としてこの領域の幅と同様に決定した。 インゴットの肩から約200mm〜約950mmの範囲の軸位置に関して得ら れた結果を図15のグラフに示す。これらの結果は、引き上げ速度特性が、単結 晶シリコンインゴットの成長に関して、インゴットの直径一定部分が、直径一定 部分の半径の少なくとも約40%の長さである幅(円周方向の端からインゴット の中心軸に向かって半径方向に測定される)を有する軸対称領域を含有するよう に決定され得ることを示す。さらに、これらの結果は、この軸対称領域が、イン ゴットの直径一定部分の長さの約75%の長さである長さ(インゴットの中心軸 に沿って測定される)を有し得ることを示す。 実施例6 長さが約1100mmで、直径が約150mmの単結晶シリコンインゴットを 、引き上げ速度を低下させて成長させた。インゴットの直径一定部分の肩での引 き上げ速度は約1mm/分であった。引き上げ速度を、肩から約200mmの軸 位置に対応する約0.4mm/分にまで指数関数的に低下させた。次いで、引き 上げ速度を、約0.3mm/分の速度がインゴットの直径一定部分の終端付近で 得られるまで直線的に低下させた。 この特定のホットゾーン配置でのこのようなプロセス条件下において、得られ たインゴットは、軸対称領域が、インゴットの半径にほぼ等しい幅を有する領域 を含有した。次に、一連の酸素析出熱処理を行った後のインゴットの一部の軸切 断面の少数キャリア寿命を走査することによって得られた像である図16aおよ び図16bを参照して、軸位置が約100mm〜約250mmおよび約250m m〜約400mmの範囲であるインゴットの連続領域が存在する。軸位置が肩か ら約170mm〜約290mmの範囲にあり、直径全体にわたって凝集した真性 の点欠陥を含まない領域がインゴット内に存在することがこれらの図から認める ことができる。言い換えれば、軸対称領域の幅、すなわち、凝集した格子間欠陥 を実質的に含まない領域の幅がインゴットの半径にほぼ等しい領域がインゴット 内に存在する。 さらに、軸位置から、約125mm〜約170mmの範囲および約290mm 〜400mmを超える部分の範囲の領域において、凝集した真性の点欠陥を含ま ず、凝集した真性の点欠陥を同様に含まない空格子点優勢材の一般には円筒状コ アを囲む格子間物優勢材の軸対称領域が存在する。 最後に、軸位置から、約100mm〜約125mmの範囲の領域において、凝 集した欠陥を含まず、空格子点優勢材の一般には円筒状コアを囲む格子間物優勢 材の軸対称領域が存在する。空格子点優勢材の内部において、凝集した欠陥を含 まず、凝集した空格子点欠陥を含有するコアを囲む軸対称領域が存在する。 実施例7 冷却速度およびV/I境界の位置 一連の単結晶シリコンインゴット(150mmおよび200mmの公称直径) を、チョクラルスキー法に従って、約1050℃を超える温度でシリコンの滞留 時間に影響を与える異なるホットゾーン配置(この分野での一般的な手段により 設計)を使用して成長させた。各インゴットの引き上げ速度特性をインゴットの 長さに沿って変化させ、凝集した空格子点の点欠陥領域から凝集した格子間点欠 陥領域に転移させることを試みた。 一旦成長させ、インゴットを、成長方向に平行する中心軸に沿って長さ方向に 切断し、次いで、それぞれが約2mmの厚さの部分にさらに分割した。次いで、 前記の銅装飾技法を使用して、そのような長さ方向の部分の1組を加熱し、銅を わざと混入させた。加熱条件は、高濃度の銅格子間物を溶解させるのに適してい た。次いで、このような熱処理の後に、サンプルを急冷した。この間に、銅不純 物は、酸化物クラスター、または存在する場合には、凝集した格子間欠陥の部位 で外方拡散するかまたは析出した。標準的な欠陥輪郭化エッチングを行った後に 、サンプルを析出不純物について目視で検査した;そのような析出不純物を含ま ないそのような領域は、凝集した格子間欠陥を含まない領域に対応した。 長さ方向の部分の別組を、キャリア寿命マッピングの前に新しい酸化物クラス ターの核形成および成長を行うために一連の酸素析出熱処理に供した。寿命マッ ピングにおける明確なバンドを、各インゴットにおける様々な軸位置での瞬間的 な溶融/固体界面の形状の決定および測定を行うために利用した。次いで、溶融 /固体界面の形状に関する情報を使用して、下記においてさらに考察するように 、平均軸温度勾配GOの絶対値およびその半径方向の変化を推定した。この情報 はまた、引き上げ速度とともにv/GOの半径方向の変化を推定するために使用 された。 単結晶シリコンインゴットの得られる品質に対する成長条件の効果をより詳細 に調べるために、今日までの実験的証拠に基づいて妥当と考えられるいくつかの 仮定を行った。最初に、格子間欠陥の凝集が生じる温度にまで冷却するのに要し た時間に関する熱履歴の処理を単純化するために、約1050℃は、シリコン自 己格子間物の凝集が生じる温度に関して合理的な近似であると仮定した。この温 度は、異なる冷却速度が用いられる実験を行っているときに観測された凝集した 格子点間物の欠陥密度での変化と一致するようである。上記のように、凝集が生 じるかどうかは、格子間物濃度の因子でもあるが、凝集は、約1050℃を超え る温度では生じないと考えられる。なぜなら、格子間物濃度の範囲がチョクラル スキー型の成長プロセスに典型的であるならば、この系は、この温度より高い温 度で、格子点間物により臨界的に過飽和にならないと仮定することは妥当である からである。言い換えれば、チョクラルスキー型の成長プロセスに典型的な格子 間物濃度に関して、系は約1050℃を超える温度で臨界的に過飽和にならない 、従って、凝集事象は生じないと仮定することは妥当である。 単結晶シリコンの品質に対する成長条件の効果をパラメーター化するために行 った第2の仮定は、シリコン自己格子間物の拡散係数の温度依存性は無視できる ということである。言い換えれば、自己格子間物は、約1400℃と約1050 ℃との間のすべての温度で同じ速度で拡散すると仮定する。約1050℃は、凝 集の温度に関して妥当な近似と見なされると理解すると、この仮定の本質的な点 は、融点からの冷却曲線の細部は問題とならないということである。拡散距離は 、融点から約1050℃までの冷却に費やされた総時間にだけに依存する。 各ホットゾーン機構に関する軸温度特性データおよび特定のインゴットに関す る実際の引き上げ速度特性を使用して、約1400℃から約1050℃までの総 冷却時間を計算することができる。温度は各ホットゾーンに関して変化する速度 はかなり均一であったことに注意しなければならない。この均一性は、凝集した 格子間欠陥に必要な核形成温度(すなわち、約1050℃)の選択における何ら かの誤差は、議論の余地はあるが、計算された冷却時間における誤差を比例的に 増減させるだけであることを意味する。 インゴットの空格子点優勢領域の半径方向の拡がり(Rvacancy)、あるいは 軸対称領域の幅を決定するために、空格子点優勢コアの半径は、寿命マッピング によって決定されるように、v/GO=v/GO臨界である凝固での点に等し いとさらに仮定した。言い換えれば、軸対称領域の幅は、一般的には、室温に冷 却した後のV/I境界の位置に基づくと仮定した。これは、上記のように、イン ゴットが冷えると、空格子点とシリコン自己格子間物との再結合が生じ得るので 注目される。再結合が生じるとき、V/I境界の実際の位置は、インゴットの中 心軸に向かって内側に移動する。本明細書で示されているのはこの最終的な位置 である。 凝固時の結晶における平均軸温度勾配GOの計算を単純化するために、溶融/ 固体界面の形状は融点等温線であると仮定した。結晶の表面温度を、有限要素モ デル化(FEA)技法およびホットゾーン機構の細部を使用して計算した。結晶 内の全体の温度場、従ってGOを、ラプラス式を適切な境界条件、すなわち、溶 融/固体界面に沿った融点および結晶軸に沿った表面温度に関するFEA結果を 用いて解くことによって得た。調製および評価を行ったインゴットの1つから様 々な軸位置で得られる結果を図17に示す。 格子間物の初期濃度に対するGOの半径方向の効果を評価するために、半径方 向の位置R’、すなわち、V/I境界と結晶表面との間の途中の位置は、シリコ ン自己格子間物がインゴットにおいてシンクを形成し得る最も遠い点であると仮 定したが、そのようなシンクは、空格子点優勢領域に存在するか、または結晶表 面に存在するかにはよらない。上記のインゴットに関する成長速度およびGOデ ータを使用することによって、位置R’で計算されたv/GOとV/I境界での v/GO(すなわち、臨界v/GO値)との差は、過剰な格子間物が結晶表面上の シンクまたは空格子点優勢領域でのシンクに達し得ることに対するこの効果と同 様に格子間物の初期濃度での半径方向の変化を示す。 この特定のデータ組に関して、結晶の品質は、全体的には、v/GOでの半径 方向の変化に依存していないようである。図18から明らかであり得るように、 インゴットにおける軸依存性はこのサンプルで最小である。この実験系列に含ま れる成長条件は、GOの半径方向の変化においてかなり狭い範囲を示す。結果と して、このデータ組は狭すぎて、GOの半径方向の変化に対する品質(すなわち 、凝集した真性の点欠陥の有無)の認識可能な依存性を解明することができない 。 上記のように、調製した各インゴットのサンプルを、凝集した格子間欠陥の有 無について様々な軸位置で評価した。調べた各軸位置に関して、サンプルの品質 と軸対称領域の幅との間に相関が存在し得る。次に、図19を参照して、サンプ ルが、そのような特定の軸位置において、凝固から約1050℃に冷却された時 間に対する所与サンプルの品質を比較するグラフを得ることができる。予想され るように、このグラフは、軸対称領域の幅(すなわち、Rcrystal−Rvacancy) が、この特定の温度範囲におけるサンプルの冷却履歴に強く依存していることを 示す。軸対称領域の幅が大きくなるに従って、より長い拡散時間またはより遅い 冷却速度が必要であるという傾向が示唆される。 このグラフに示されるデータに基づいて、この特定の温度範囲内における所与 インゴット直径に可能な冷却速度の関数として、「良好」(すなわち、無欠陥) から「不良」(すなわち、欠陥含有)までのシリコンの品質での転移を一般的に 示す最良の近似線を計算することができる。軸対称領域の幅と冷却速度との間の 一般的な関係は、下記の式で表すことができる: (Rcrystal−Rtransition)2=Deff *1050 上式において、 Rcrystalは、インゴットの半径であり、 Rtransitionは、無欠陥部から欠陥含有部まで、あるいはその逆の格子間物優 勢材において転移が生じるサンプルの軸位置での軸対称領域の半径であり、 Deffは、格子間物拡散係数の平均時間および温度を表す定数で、約9.3*1 0-4cm2sec-1であり、そして t1050 は、サンプルの所与の軸位置が凝固から約1050℃に冷却されるの に必要な時間である。 再度、図19を参照して、所与のインゴット直径に関して、冷却時間を、所望 する直径の軸対称領域を得るために推定できることが理解され得る。例えば、約 150mmの直径を有するインゴットに関して、インゴットの半径にほぼ等しい 幅を有する軸対称領域は、約1400℃〜約1050℃の温度範囲域を、インゴ ットのこの特定部分が約10時間〜約15時間で冷却される場合に得ることがで きる。同様に、約200mmの直径を有するインゴットに関して、インゴットの 半径にほぼ等しい幅を有する軸対称領域は、この温度範囲域を、インゴットのこ の特定部分が約25時間〜約35時間で冷却される場合に得ることができる。こ の線がさらに外挿される場合、約65時間〜約75時間の冷却時間が、約300 mmの直径を有するインゴットの半径にほぼ等しい幅を有する軸対称領域を得る ために必要とされ得る。この点に関して、インゴットの直径が大きくなるに従っ て、格子間物がインゴット表面または空格子点コアでシンクに達するために拡散 しなければならない距離が増大するために、さらなる冷却速度が必要であること に注意しなければならない。 次に、図20、図21、図22および図23を参照して、様々なインゴットに 関する冷却時間の増加による効果を認めることができる。これらの図のそれぞれ は、凝固温度から1050℃までの冷却時間が図20から図23まで段階的に増 大した公称直径が200mmのインゴットの一部を示す。 図20を参照して、軸位置が肩から約235mm〜約350mmの範囲にある インゴットの一部を示す。約255mmの軸位置において、凝集した格子間欠陥 を含まない軸対称領域の幅は最大であり、インゴットの半径の約45%である。 この領域を超えると、そのような欠陥を含まない領域から、そのような欠陥が存 在する領域への転移が生じる。 次に、図21を参照して、軸位置が肩から約305mm〜約460mmの範囲 にあるインゴットの一部を示す。約360mmの軸位置において、凝集した格子 間欠陥を含まない軸対称領域の幅は最大であり、インゴットの半径の約65%で ある。この領域を超えると、欠陥生成が始まる。 次に、図22を参照して、軸位置が肩から約140mm〜約275mmの範囲 にあるインゴットの一部を示す。約210mmの軸位置において、軸対称領域の 幅は、インゴットの半径にほぼ等しい;すなわち、この範囲内のインゴットの小 部分は、凝集した真性の点欠陥を含まない。 次に、図23を参照して、軸位置が肩から約600mm〜約730mmの範囲 にあるインゴットの一部を示す。約640mm〜約665mmの範囲の軸位置に 関して、軸対称領域の幅は、インゴットの半径にほぼ等しい。さらに、軸対称領 域の幅がインゴットの半径にほぼ等しいインゴット領域の長さは、図22のイン ゴットに関連して認められる長さよりも大きい。 従って、図20、図21、図22および図23を組み合わせて見た場合、これ らの図は、1050℃への冷却時間の欠陥を含まない軸対称領域の幅および長さ に対する効果を明らかにしている。一般に、凝集した格子間欠陥を含有する領域 が、結晶のそのような部分の冷却時間に関して低下させるには大きすぎる格子間 物の初期濃度を導く結晶の引き上げ速度の連続的な低下の結果として生じた。軸 対称領域の長さが大きくなることは、より大きな範囲の引き上げ速度(すなわち 、格子間物の初期濃度)を、欠陥を含まないそのような材料に関して得ることが できることを意味する。冷却時間の増大は、格子間物のより大きな初期濃度を可 能にする。なぜなら、半径方向の拡散に充分な時間が達成され、その濃度を格子 間欠陥の凝集に必要とされる臨界濃度よりも低く抑えることができるからである 。言い換えれば、冷却時間が長くなることに関して、引き上げ速度(従って、格 子間物のより大きな初期濃度)を少し低くしても、依然として最大の軸対称領域 6が得られる。従って、冷却時間を長くすると、最大の軸対称領域の直径に必要 とされる条件について許容可能な引き上げ速度の変化を大きくし、プロセス制御 に対する制限を緩くする。結果として、インゴットのより大きな長さにわたる軸 対称領域に関する制御が一層容易になる。 再度、図23を参照すると、結晶の肩の約665mmから730mmを超える ところまでの範囲の軸位置に関して、凝集した欠陥を含まない空格子点優勢材の 領域が存在し、その領域におけるその領域の幅はインゴットの半径に等しい。 上記の結果から明らかであり得るように、冷却速度を制御することにより、自 己格子間物濃度は、それらが消滅し得る領域に格子間物が拡散するのにより多く の時間を可能にすることによって抑制され得る。結果として、凝集した格子間欠 陥の形成が、単結晶シリコンインゴットの大部分において防止される。 上記を参照して、本発明のいくつかの目的が達成されることが理解される。 様々な変化を、本発明の範囲から逸脱することなく、上記の構成およびプロセ スにおいて行うことできるので、上記の説明に含まれるすべての事項は、例示と して解釈されるものであり、限定する意味で解釈されるものではない。
【手続補正書】 【提出日】平成12年4月6日(2000.4.6) 【補正内容】 次の箇所を補正します。 I.明細書 (1)第1頁第15行、「水位」とあるを、「液位」と補正。 (2)第10頁下から第1行、「半径の端から端まで特異的」とあるを、「半 径を横切って単一」と補正。 (3)第11頁第22〜23行、第11頁第23行、および第12頁第11行 、「円周方向の端部」とあるを、「周囲縁」と補正。 (4)第13頁第17行、「結晶をに」とあるを、「結晶に」と補正。 (5)第17頁第13行、「その値」とあるを、「その差」と補正。 (6)第17頁下から第3〜2行、「最大幅が」とあるを、「最大幅を」と補 正。 (7)第22頁第17行、「酸化物、」とあるを、「酸化物の」と補正。 (8)第22頁第19行、「転移ループおよび転移ネットワーク」とあるを、 「転位ループおよび転位ネットワーク」と補正。 (9)第28頁第21行、「明確な」とあるを、「コントラスト」と補正。 (10)第32頁第8行、「冷却速度」とあるを、「冷却時間」と補正。 II.請求の範囲 別紙の通り。 請求の範囲 1.単結晶シリコンインゴットからスライスされており、チョクラルスキー法 によって成長されており、 中心軸、中心軸にほぼ垂直な前面および後面、周囲縁 、および中心軸からウエハの周囲縁に延在する半径を有する単結晶シリコンウエ ハであって、空孔が優勢な真性点欠陥であり、凝集空孔真性点欠陥を実質的に有 さない第一軸対称領域を、ウエハが有して成り、該第一軸対称領域は、中心軸を 有して成るかまたは少なくとも約15mmの幅を有するウエハ。 2.シリコン自己格子間原子が優勢な真性点欠陥であり、凝集シリコン自己格 子間の真性点欠陥を実質的に有さない第二軸対称領域を、ウエハが有する請求項 1に記載のウエハ。 3.第一軸対称領域の幅が、半径の少なくとも約15%である請求項1に記載 のウエハ。 4.シリコン自己格子間原子が優勢な真性点欠陥であり、凝集シリコン自己格 子間の真性点欠陥を実質的に有さない第二軸対称領域を、ウエハが有する請求項 3に記載のウエハ。 5.第一軸対称領域の幅が、半径の少なくとも約25%である請求項1に記載 のウエハ。 6.シリコン自己格子間原子が優勢な真性点欠陥であり、凝集シリコン自己格 子間の真性点欠陥を実質的に有さない第二軸対称領域を、ウエハが有する請求項 5に記載のウエハ。 7.第一軸対称領域の幅が、半径の少なくとも約50%である請求項1に記載 のウエハ。 8.ウエハが第二軸対称領域を有して成り、該領域においてシリコン自己格子 間原子が優勢な真性点欠陥であり、該領域が凝集シリコン自己格子間の真性点欠 陥を実質的に有さない請求項7に記載のウエハ。 9.第一軸対称領域が中心軸を有して成る請求項1に記載のウエハ。 10.ウエハが第二軸対称領域を有して成り、該領域においてシリコン自己格 子間原子が優勢な真性点欠陥であり、該領域が凝集シリコン自己格子間の真性点 欠陥を実質的に有さない請求項9に記載のウエハ。 11.約13PPMA未満である酸素含量を有する請求項1に記載のウエハ。 12.約11PPMA未満である酸素含量を有する請求項1に記載のウエハ。 13.酸素析出核形成中心が存在しない請求項1に記載のウエハ。 14.チョクラルスキー法によって成長されており、中心軸、シードコーン、 エンドコーン、ならびに、周囲縁、および中心軸から周囲縁に延在する半径を有 するシードコーンとエンドコーンの間の直径一定部分を有する単結晶シリコンイ ンゴットであって、単結晶シリコンインゴットが、インゴットが成長し凝固温度 から冷却した後に、直径一定部分が第一軸対称領域を有し、該領域において、空 孔が優勢な真性点欠陥であり、および該領域は実質的に凝集真性点欠陥を有さず 、該第一軸対称領域は、中心軸を有して成るかまたは少なくとも約15mmの幅 を有し、該中心軸に沿って測定した場合にインゴットの直径一定部分の長さの少 なくとも約20%の長さであることを特徴とする単結晶シリコンインゴット。 15.インゴットが、第一軸対称領域と同心である第二軸対称領域を有し、第 二軸対称領域が、優勢な真性点欠陥として自己格子間原子を有し、凝集シリコン 自己格子間の真性点欠陥を実質的に有さない請求項14に記載の単結晶シリコン インゴット。 16.軸対称領域の長さが、インゴットの直径一定部分の長さの少なくとも4 0%である請求項14に記載の単結晶シリコンインゴット。 17.インゴットが、第一軸対称領域と同心である第二軸対称領域を有し、第 二軸対称領域が、優勢な真性点欠陥として自己格子間原子を有し、凝集シリコン 自己格子間の真性点欠陥を実質的に有さない請求項16に記載の単結晶シリコン インゴット。 18.第一軸対称領域の幅が、半径の少なくとも約15%である請求項16に 記載の単結晶シリコンインゴット。 19.第一軸対称領域の幅が、半径の少なくとも約25%である請求項16に 記載の単結晶シリコンインゴット。 20.第一軸対称領域の長さが、インゴットの直径一定部分の長さの少なくと も60%である請求項16の単結晶シリコンインゴット。 21.中心軸、シードコーン、エンドコーン、ならびに、周囲縁、および中心 軸がら周囲縁に延在する半径を有するシードコーンとエンドコーンの間の直径一 定部分を有して成る単結晶シリコンインゴットを成長させる方法であって、 インゴットを、チョクラルスキー法によって、シリコンメルトから成長させ、 次に、凝固温度から冷却し、 該方法は、凝固温度〜約1325℃以上の温度範囲において、結晶の直径一定 部分が成長する間に、成長速度vおよび平均軸温度勾配GO制御して、比v/ Oがv/GOの臨界値の約0.5〜約2.5倍の値になるようにし、 第一軸対称領域 を形成させることを含んで成り、該領域において、インゴットを凝固温度か ら冷却する際に、空孔が優勢な真性点欠陥であり、該領域は、凝集真性点欠陥を 実質的に有さず、該第一軸対称領域が少なくとも約15mmの幅を有するかまた は中心軸を有する方法。 22.第一軸対称領域が、インゴットの直径一定部分の長さの少なくとも40 %の長さを有する請求項21に記載の方法。 23.第一軸対称領域の長さが、インゴットの直径一定部分の長さの少なくと も60%である請求項21に記載の方法。 24.第一軸対称領域が、インゴットの直径一定部分の半径の長さの少なくと も約25%である幅を有する請求項21に記載の方法。 25.第一軸対称領域が、インゴットの直径一定部分の長さの少なくとも40 %の長さを有する請求項24に記載の方法。 26.第一軸対称領域の長さが、インゴットの直径一定部分の長さの少なくと も60%である請求項24に記載の方法。 27.インゴットは、第1軸対称領域と同心円状である第2軸対称領域を有し 、第2軸対称領域は、優勢な真性点欠陥として自己格子間原子を有し、凝集した シリコン自己格子間の点欠陥を実質的に有しない請求項21に記載の方法。 28.成長速度vおよび平均軸温度勾配GOは、比v/GOがv/GOの臨界値 の約0.75〜約1.25倍である値にあるように制御されている請求項21に 記載の方法。 29.インゴットの公称直径が約150mmであり、方法が、インゴットが少 なくとも約10時間にわたって凝固温度から約1050℃に冷却するようにイン ゴットの冷却速度を制御することを含んでなる請求項21に記載の方法。 30.インゴットの公称直径が約200mmであり、方法が、インゴットが少 なくとも約20時間にわたって凝固温度から約1050℃に冷却するようにイン ゴットの冷却速度を制御することを含んでなる請求項21に記載の方法。 31.インゴットの公称直径が200mmよりも大きく、方法が、インゴット が少なくとも約40時間にわたって凝固温度から約1050℃に冷却するように インゴットの冷却速度を制御することを含んでなる請求項21に記載の方法。 32.中心軸、シードコーン、エンドコーン、ならびに周囲縁、および中心軸 から周囲縁に延在する半径を有するシードコーンとエンドコーンの間の直径一定 部分を有して成る単結晶シリコンインゴットを成長させる方法であって、 インゴットを、チョクラルスキー法によって、シリコンメルトから成長させ、 次に、凝固温度から冷却し、 該方法は、凝固温度〜約1325℃以上の温度範囲において、結晶の直径一定 部分が成長する間に、成長速度vおよび平均軸温度勾配GOを制御して、第一軸 対称セグメントを形成させることを含んで成り、該セグメントにおいて、インゴ ットを凝固温度から冷却する際に、空孔が優勢な真性点欠陥であり、該セグメン トは、凝集真性点欠陥を実質的に有さず、該第一軸対称領域が少なくとも約15 mmの幅を有するかまたは中心軸を有する方法。 33.ウエハが150mmまたは200mmの公称直径を有する請求項1に記 載のウエハ。 34.インゴットが150mmまたは200mmの公称直径を有する請求項1 4に記載のインゴット。 35.インゴットが150mmまたは200mmの公称直径を有する請求項2 1または32に記載の方法。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 マクエイド,シームス・エイ アメリカ合衆国63105ミズーリ州セント・ ルイス、ノースウッド・アベニュー6220 番、アパートメント15 (72)発明者 ホルザー,ジョゼフ・シー アメリカ合衆国63304ミズーリ州セント・ チャールズ,グタームス・ロード5234番 (72)発明者 ムッティ,パオロ イタリア、イ―39012メラノ、ビア・サン タ・カテリーナ7番 (72)発明者 ジョンソン,ベヤード・ケイ アメリカ合衆国63367ミズーリ州レイク・ セント・ルイス、ニコル・コート78番

Claims (1)

  1. 【特許請求の範囲】 1.中心軸、中心軸にほぼ垂直な前面および後面、周囲縁、および中心軸から ウエハの周囲縁に延在する半径を有する単結晶シリコンウエハであって、空孔が 優勢な真性点欠陥であり、凝集空孔真性点欠陥を実質的に有さない第一軸対称領 域を、ウエハが有して成り、該第一軸対称領域は、中心軸を有して成るかまたは 少なくとも約15mmの幅を有するウエハ。 2.シリコン自己格子間原子が優勢な真性点欠陥であり、凝集シリコン自己格 子間物真性点欠陥を実質的に有さない第二軸対称領域を、ウエハが有する請求項 1に記載のウエハ。 3.第一軸対称領域の幅が、半径の少なくとも約15%である請求項1に記載 のウエハ。 4.シリコン自己格子間原子が優勢な真性点欠陥であり、凝集シリコン自己格 子間物真性点欠陥を実質的に有さない第二軸対称領域を、ウエハが有する請求項 3に記載のウエハ。 5.第一軸対称領域の幅が、半径の少なくとも約25%である請求項1に記載 のウエハ。 6.シリコン自己格子間原子が優勢な真性点欠陥であり、凝集シリコン自己格 子間物真性点欠陥を実質的に有さない第二軸対称領域を、ウエハが有する請求項 5に記載のウエハ。 7.第一軸対称領域の幅が、半径の少なくとも約50%である請求項1に記載 のウエハ。 8.ウエハが第二軸対称領域を有して成り、該領域においてシリコン自己格子 間原子が優勢な真性点欠陥であり、該領域が凝集シリコン自己格子間物真性点欠 陥を実質的に有さない請求項7に記載のウエハ。 9.第一軸対称領域が中心軸を有して成る請求項1に記載のウエハ。 10.ウエハが第二軸対称領域を有して成り、該領域においてシリコン自己格 子間原子が優勢な真性点欠陥であり、該領域が凝集シリコン自己格子間物真性点 欠陥を実質的に有さない請求項9に記載のウエハ。 11.約13PPMA未満である酸素含量を有する請求項1に記載のウエハ。 12.約11PPMA未満である酸素含量を有する請求項1に記載のウエハ。 13.酸素析出核形成中心が存在しない請求項1に記載のウエハ。 14.中心軸、シードコーン、エンドコーン、ならびに、周囲縁、および中心 軸から周囲縁に延在する半径を有するシードコーンとエンドコーンの間の直径一 定部分を有する単結晶シリコンインゴットであって、単結晶シリコンインゴット が、インゴットが成長し凝固温度から冷却した後に、直径一定部分が第一軸対称 領域を有し、該領域において、空孔が優勢な真性点欠陥であり、および該領域は 実質的に凝集真性点欠陥を有さず、該第一軸対称領域は、中心軸を有して成るか または少なくとも約15mmの幅を有し、該中心軸に沿って測定した場合にイン ゴットの直径一定部分の長さの少なくとも約20%の長さであることを特徴とす る単結晶シリコンインゴット。 15.インゴットが、第一軸対称領域と同心である第二軸対称領域を有し、第 二軸対称領域が、優勢な真性点欠陥として自己格子間原子を有し、凝集シリコン 自己格子間真性点欠陥を実質的に有さない請求項14に記載の単結晶シリコンイ ンゴット。 16.軸対称領域の長さが、インゴットの直径一定部分の長さの少なくとも4 0%である請求項14に記載の単結晶シリコンインゴット。 17.インゴットが、第一軸対称領域と同心である第二軸対称領域を有し、第 二軸対称領域が、優勢な真性点欠陥として自己格子間原子を有し、凝集シリコン 自己格子間真性点欠陥を実質的に有さない請求項16に記載の単結晶シリコンイ ンゴット。 18.第一軸対称領域の幅が、半径の少なくとも約15%である請求項16に 記載の単結晶シリコンインゴット。 19.第一軸対称領域の幅が、半径の少なくとも約25%である請求項16に 記載の単結晶シリコンインゴット。 20.第一軸対称領域の長さが、インゴットの直径一定部分の長さの少なくと も60%である請求項16の単結晶シリコンインゴット。 21.中心軸、シードコーン、エンドコーン、ならびに、周囲縁、および中心 軸から周囲縁に延在する半径を有するシードコーンとエンドコーンの間の直径一 定部分を有して成る単結晶シリコンインゴットを成長させる方法であって、イン ゴットを、チョクラルスキー法よって、シリコンメルトから成長させ、次に、凝 固温度から冷却する方法であって、該方法は、凝固温度〜約1325℃以上の温 度範囲において、結晶の直径一定部分が成長する間に、成長速度vおよび平均軸 温度勾配GOを調節して、第一軸対称セグメントを形成させることを含んで成り 、該セグメントにおいて、インゴットを凝固温度から冷却する際に、空孔が優勢 な真性点欠陥であり、該領域は、凝集真性点欠陥を実質的に有さず、該第一軸対 称領域が少なくとも約15mmの幅を有するかまたは中心軸を有する方法。 22.第一軸対称領域が、インゴットの直径一定部分の長さの少なくとも40 %の長さを有する請求項21に記載の方法。 23.第一軸対称領域の長さが、インゴットの直径一定部分の長さの少なくと も60%である請求項21に記載の方法。 24.第一軸対称領域が、インゴットの直径一定部分の半径の長さの少なくと も60%である幅を有する請求項21に記載の方法。
JP54318198A 1997-04-09 1998-04-09 単結晶シリコンインゴットの製造方法 Expired - Fee Related JP3544676B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US4184597P 1997-04-09 1997-04-09
US60/041,845 1997-04-09
PCT/US1998/007304 WO1998045508A1 (en) 1997-04-09 1998-04-09 Low defect density, vacancy dominated silicon

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2002303232A Division JP4299523B2 (ja) 1997-04-09 2002-10-17 低欠陥密度の空孔優勢シリコン
JP2004054483A Division JP4274973B2 (ja) 1997-04-09 2004-02-27 低欠陥密度の空孔優勢シリコンウエハおよびインゴット

Publications (2)

Publication Number Publication Date
JP2000513696A true JP2000513696A (ja) 2000-10-17
JP3544676B2 JP3544676B2 (ja) 2004-07-21

Family

ID=21918645

Family Applications (9)

Application Number Title Priority Date Filing Date
JP54318198A Expired - Fee Related JP3544676B2 (ja) 1997-04-09 1998-04-09 単結晶シリコンインゴットの製造方法
JP54318298A Expired - Fee Related JP3449730B2 (ja) 1997-04-09 1998-04-09 単結晶シリコンインゴットを製造する方法
JP54318998A Expired - Lifetime JP3449731B2 (ja) 1997-04-09 1998-04-09 単結晶シリコンインゴットを製造する方法
JP2002303232A Expired - Fee Related JP4299523B2 (ja) 1997-04-09 2002-10-17 低欠陥密度の空孔優勢シリコン
JP2002303272A Expired - Fee Related JP3782387B2 (ja) 1997-04-09 2002-10-17 低欠陥密度の自己格子間物優勢シリコンを製造する方法
JP2002303285A Expired - Lifetime JP4291559B2 (ja) 1997-04-09 2002-10-17 低欠陥密度シリコン
JP2004054483A Expired - Fee Related JP4274973B2 (ja) 1997-04-09 2004-02-27 低欠陥密度の空孔優勢シリコンウエハおよびインゴット
JP2005309456A Expired - Lifetime JP4313356B2 (ja) 1997-04-09 2005-10-25 低欠陥密度シリコン
JP2005318604A Expired - Fee Related JP4477569B2 (ja) 1997-04-09 2005-11-01 低欠陥密度の空孔優勢シリコンウエハおよびインゴット

Family Applications After (8)

Application Number Title Priority Date Filing Date
JP54318298A Expired - Fee Related JP3449730B2 (ja) 1997-04-09 1998-04-09 単結晶シリコンインゴットを製造する方法
JP54318998A Expired - Lifetime JP3449731B2 (ja) 1997-04-09 1998-04-09 単結晶シリコンインゴットを製造する方法
JP2002303232A Expired - Fee Related JP4299523B2 (ja) 1997-04-09 2002-10-17 低欠陥密度の空孔優勢シリコン
JP2002303272A Expired - Fee Related JP3782387B2 (ja) 1997-04-09 2002-10-17 低欠陥密度の自己格子間物優勢シリコンを製造する方法
JP2002303285A Expired - Lifetime JP4291559B2 (ja) 1997-04-09 2002-10-17 低欠陥密度シリコン
JP2004054483A Expired - Fee Related JP4274973B2 (ja) 1997-04-09 2004-02-27 低欠陥密度の空孔優勢シリコンウエハおよびインゴット
JP2005309456A Expired - Lifetime JP4313356B2 (ja) 1997-04-09 2005-10-25 低欠陥密度シリコン
JP2005318604A Expired - Fee Related JP4477569B2 (ja) 1997-04-09 2005-11-01 低欠陥密度の空孔優勢シリコンウエハおよびインゴット

Country Status (10)

Country Link
US (11) US6254672B1 (ja)
EP (7) EP1209259B1 (ja)
JP (9) JP3544676B2 (ja)
KR (6) KR20040065306A (ja)
CN (7) CN1280454C (ja)
DE (7) DE69806137T2 (ja)
MY (6) MY127383A (ja)
SG (3) SG165151A1 (ja)
TW (3) TW577939B (ja)
WO (3) WO1998045509A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179889A (ja) * 1997-07-09 1999-03-23 Shin Etsu Handotai Co Ltd 結晶欠陥が少ないシリコン単結晶の製造方法、製造装置並びにこの方法、装置で製造されたシリコン単結晶とシリコンウエーハ
JP2006117524A (ja) * 2004-10-19 2006-05-11 Siltron Inc 高品質単結晶及びその成長方法
JP2006143582A (ja) * 2004-11-23 2006-06-08 Siltron Inc シリコン単結晶の成長方法,成長装置及びそれから製造されたシリコンウエハ
JP2007194232A (ja) * 2006-01-17 2007-08-02 Shin Etsu Handotai Co Ltd シリコン単結晶ウエーハの製造方法
JP2007534579A (ja) * 2003-07-08 2007-11-29 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 安定化された理想的酸素析出シリコンウエハを製造する方法
JP2009029703A (ja) * 2001-01-26 2009-02-12 Memc Electron Materials Inc 酸化誘起積層欠陥を実質的に有さない空孔優勢コアを有する低欠陥密度シリコン

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503594B2 (en) 1997-02-13 2003-01-07 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects and slip
US6485807B1 (en) 1997-02-13 2002-11-26 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects, and methods of preparing the same
US6045610A (en) * 1997-02-13 2000-04-04 Samsung Electronics Co., Ltd. Methods of manufacturing monocrystalline silicon ingots and wafers by controlling pull rate profiles in a hot zone furnance
SG64470A1 (en) 1997-02-13 1999-04-27 Samsung Electronics Co Ltd Methods of manufacturing monocrystalline silicon ingots and wafers by controlling pull rate profiles in a hot zone furnace and ingots and wafers manufactured thereby
US5994761A (en) * 1997-02-26 1999-11-30 Memc Electronic Materials Spa Ideal oxygen precipitating silicon wafers and oxygen out-diffusion-less process therefor
SG165151A1 (en) 1997-04-09 2010-10-28 Memc Electronic Materials Low defect density silicon
EP1146150B1 (en) 1997-04-09 2010-06-09 MEMC Electronic Materials, Inc. Low defect density, ideal oxygen precipitating silicon
US6379642B1 (en) * 1997-04-09 2002-04-30 Memc Electronic Materials, Inc. Vacancy dominated, defect-free silicon
WO1999010570A1 (fr) * 1997-08-26 1999-03-04 Sumitomo Metal Industries, Ltd. Cristal unique de silicium de grande qualite et procede de fabrication
US6340392B1 (en) 1997-10-24 2002-01-22 Samsung Electronics Co., Ltd. Pulling methods for manufacturing monocrystalline silicone ingots by controlling temperature at the center and edge of an ingot-melt interface
JP3346249B2 (ja) * 1997-10-30 2002-11-18 信越半導体株式会社 シリコンウエーハの熱処理方法及びシリコンウエーハ
JP3407629B2 (ja) * 1997-12-17 2003-05-19 信越半導体株式会社 シリコン単結晶ウエーハの熱処理方法ならびにシリコン単結晶ウエーハ
JP3955375B2 (ja) * 1998-01-19 2007-08-08 信越半導体株式会社 シリコン単結晶の製造方法およびシリコン単結晶ウエーハ
JPH11349393A (ja) * 1998-06-03 1999-12-21 Shin Etsu Handotai Co Ltd シリコン単結晶ウエーハおよびシリコン単結晶ウエーハの製造方法
JP3943717B2 (ja) * 1998-06-11 2007-07-11 信越半導体株式会社 シリコン単結晶ウエーハ及びその製造方法
WO2000000674A2 (en) 1998-06-26 2000-01-06 Memc Electronic Materials, Inc. Process for growth of defect free silicon crystals of arbitrarily large diameters
CN1155074C (zh) * 1998-09-02 2004-06-23 Memc电子材料有限公司 从低缺陷密度的单晶硅上制备硅-绝缘体结构
KR100957729B1 (ko) 1998-09-02 2010-05-12 엠이엠씨 일렉트로닉 머티리얼즈 인코포레이티드 이상적 산소 침전 실리콘 웨이퍼의 제조 방법
DE69928434T2 (de) * 1998-09-02 2006-07-27 Memc Electronic Materials, Inc. Wärmebehandelte siliziumplättchen mit verbesserter eigengetterung
EP1125008B1 (en) 1998-10-14 2003-06-18 MEMC Electronic Materials, Inc. Thermally annealed, low defect density single crystal silicon
US6312516B2 (en) 1998-10-14 2001-11-06 Memc Electronic Materials, Inc. Process for preparing defect free silicon crystals which allows for variability in process conditions
US6284039B1 (en) 1998-10-14 2001-09-04 Memc Electronic Materials, Inc. Epitaxial silicon wafers substantially free of grown-in defects
JP4233651B2 (ja) * 1998-10-29 2009-03-04 信越半導体株式会社 シリコン単結晶ウエーハ
JP2000154070A (ja) * 1998-11-16 2000-06-06 Suminoe Textile Co Ltd セラミックス三次元構造体及びその製造方法
TW505710B (en) 1998-11-20 2002-10-11 Komatsu Denshi Kinzoku Kk Production method for silicon single crystal and production device for single crystal ingot, and heat treating method for silicon single crystal wafer
US6284384B1 (en) * 1998-12-09 2001-09-04 Memc Electronic Materials, Inc. Epitaxial silicon wafer with intrinsic gettering
WO2000041227A1 (fr) * 1998-12-28 2000-07-13 Shin-Etsu Handotai Co.,Ltd. Procede de recuit thermique d'une plaquette de silicium, et plaquette de silicium
JP3601340B2 (ja) * 1999-02-01 2004-12-15 信越半導体株式会社 エピタキシャルシリコンウエーハおよびその製造方法並びにエピタキシャルシリコンウエーハ用基板
US6458202B1 (en) * 1999-09-02 2002-10-01 Memc Electronic Materials, Inc. Process for preparing single crystal silicon having uniform thermal history
US6391662B1 (en) 1999-09-23 2002-05-21 Memc Electronic Materials, Inc. Process for detecting agglomerated intrinsic point defects by metal decoration
US6635587B1 (en) 1999-09-23 2003-10-21 Memc Electronic Materials, Inc. Method for producing czochralski silicon free of agglomerated self-interstitial defects
KR100745311B1 (ko) 1999-09-23 2007-08-01 엠이엠씨 일렉트로닉 머티리얼즈 인코포레이티드 냉각 속도를 제어함으로써 단결정 실리콘을 성장시키는초크랄스키 방법
JP4103391B2 (ja) * 1999-10-14 2008-06-18 信越半導体株式会社 Soiウエーハの製造方法及びsoiウエーハ
JP2001118801A (ja) * 1999-10-18 2001-04-27 Mitsubishi Materials Silicon Corp エピタキシャルウェーハ用基板およびこれを用いた半導体装置
WO2002002852A1 (fr) * 2000-06-30 2002-01-10 Shin-Etsu Handotai Co., Ltd. Plaquette en silicium monocristallin et procede de fabrication
KR100374703B1 (ko) * 2000-09-04 2003-03-04 주식회사 실트론 단결정 실리콘 웨이퍼,잉곳 및 그 제조방법
EP1669478B1 (en) * 2000-09-19 2010-03-17 MEMC Electronic Materials, Inc. Nitrogen-doped silicon substantially free of oxidation induced stacking faults
KR100816207B1 (ko) * 2000-09-19 2008-03-21 엠이엠씨 일렉트로닉 머티리얼즈 인코포레이티드 산화 유발 적층 흠이 거의 없는 질소 도핑 실리콘
US6663708B1 (en) * 2000-09-22 2003-12-16 Mitsubishi Materials Silicon Corporation Silicon wafer, and manufacturing method and heat treatment method of the same
KR20020024368A (ko) * 2000-09-25 2002-03-30 가와이 겐이찌 실리콘 웨이퍼
DE10066099B4 (de) * 2000-09-25 2008-11-20 Mitsubishi Materials Silicon Corp. Wärmebehandlungsverfahren für einen Siliciumwafer
US6689209B2 (en) * 2000-11-03 2004-02-10 Memc Electronic Materials, Inc. Process for preparing low defect density silicon using high growth rates
CN1280456C (zh) * 2000-11-03 2006-10-18 Memc电子材料有限公司 生产低缺陷密度硅的方法
US7105050B2 (en) 2000-11-03 2006-09-12 Memc Electronic Materials, Inc. Method for the production of low defect density silicon
US6858307B2 (en) * 2000-11-03 2005-02-22 Memc Electronic Materials, Inc. Method for the production of low defect density silicon
US8529695B2 (en) 2000-11-22 2013-09-10 Sumco Corporation Method for manufacturing a silicon wafer
WO2002044446A2 (en) * 2000-11-30 2002-06-06 Memc Electronic Materials, Inc. Process for controlling thermal history of vacancy-dominated, single crystal silicon
US20040055527A1 (en) * 2000-11-30 2004-03-25 Makoto Kojima Process for controlling thermal history of vacancy-dominated, single crystal silicon
US7008874B2 (en) * 2000-12-19 2006-03-07 Memc Electronics Materials, Inc. Process for reclaiming semiconductor wafers and reclaimed wafers
JP3624827B2 (ja) 2000-12-20 2005-03-02 三菱住友シリコン株式会社 シリコン単結晶の製造方法
JP3994665B2 (ja) * 2000-12-28 2007-10-24 信越半導体株式会社 シリコン単結晶ウエーハおよびシリコン単結晶の製造方法
US20020084451A1 (en) * 2000-12-29 2002-07-04 Mohr Thomas C. Silicon wafers substantially free of oxidation induced stacking faults
JP4554886B2 (ja) * 2001-01-02 2010-09-29 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 向上したゲート酸化物完全性を有する単結晶シリコンの製造方法
US6743495B2 (en) 2001-03-30 2004-06-01 Memc Electronic Materials, Inc. Thermal annealing process for producing silicon wafers with improved surface characteristics
US6649883B2 (en) * 2001-04-12 2003-11-18 Memc Electronic Materials, Inc. Method of calibrating a semiconductor wafer drying apparatus
WO2003001583A2 (en) * 2001-06-22 2003-01-03 Memc Electronic Materials, Inc. Process for producing silicon on insulator structure having intrinsic gettering by ion implantation
EP1710830A3 (en) * 2001-06-22 2007-11-28 MEMC Electronic Materials, Inc. Silicon on insulator structure having intrinsic gettering
WO2003016598A1 (en) * 2001-08-15 2003-02-27 Memc Electronic Materials, Inc. Controlled crown growth process for czochralski single crystal silicon
US20030047130A1 (en) * 2001-08-29 2003-03-13 Memc Electronic Materials, Inc. Process for eliminating neck dislocations during czochralski crystal growth
JP4567251B2 (ja) * 2001-09-14 2010-10-20 シルトロニック・ジャパン株式会社 シリコン半導体基板およびその製造方法
US6866713B2 (en) * 2001-10-26 2005-03-15 Memc Electronic Materials, Inc. Seed crystals for pulling single crystal silicon
US6669775B2 (en) 2001-12-06 2003-12-30 Seh America, Inc. High resistivity silicon wafer produced by a controlled pull rate czochralski method
JP4092946B2 (ja) * 2002-05-09 2008-05-28 信越半導体株式会社 シリコン単結晶ウエーハ及びエピタキシャルウエーハ並びにシリコン単結晶の製造方法
AU2003301326A1 (en) * 2002-10-18 2004-05-04 Sumitomo Mitsubishi Silicon Corporation Method of measuring point defect distribution of silicon single crystal ingot
EP1560950B1 (en) * 2002-11-12 2008-09-17 MEMC Electronic Materials, Inc. A crystal puller and method for growing a monocrystalline ingot
CN1324166C (zh) * 2002-11-12 2007-07-04 Memc电子材料有限公司 利用坩锅旋转以控制温度梯度的制备单晶硅的方法
JP4382438B2 (ja) * 2002-11-14 2009-12-16 株式会社東芝 半導体ウェーハの検査方法、半導体装置の開発方法、半導体装置の製造方法、および半導体ウェーハ処理装置
JP2004172391A (ja) * 2002-11-20 2004-06-17 Sumitomo Mitsubishi Silicon Corp シリコンウェーハおよびその製造方法
US6916324B2 (en) * 2003-02-04 2005-07-12 Zimmer Technology, Inc. Provisional orthopedic prosthesis for partially resected bone
KR100782662B1 (ko) * 2003-02-25 2007-12-07 가부시키가이샤 섬코 실리콘 웨이퍼 및 soi 기판
JP4151474B2 (ja) * 2003-05-13 2008-09-17 信越半導体株式会社 単結晶の製造方法及び単結晶
US7559326B2 (en) 2003-06-18 2009-07-14 Resmed Limited Vent and/or diverter assembly for use in breathing apparatus
JP2005015313A (ja) * 2003-06-27 2005-01-20 Shin Etsu Handotai Co Ltd 単結晶の製造方法及び単結晶
KR100531552B1 (ko) 2003-09-05 2005-11-28 주식회사 하이닉스반도체 실리콘 웨이퍼 및 그 제조방법
JP4432458B2 (ja) * 2003-10-30 2010-03-17 信越半導体株式会社 単結晶の製造方法
US7074271B2 (en) * 2004-02-23 2006-07-11 Sumitomo Mitsubishi Silicon Corporation Method of identifying defect distribution in silicon single crystal ingot
KR100709798B1 (ko) * 2004-10-19 2007-04-23 주식회사 실트론 고품질 단결정 성장 방법
KR100788018B1 (ko) 2004-11-29 2007-12-21 주식회사 실트론 실리콘 단결정 잉곳 및 그로부터 제조된 실리콘 웨이퍼
GB0424505D0 (en) * 2004-11-05 2004-12-08 Gr Advanced Materials Ltd Emulsion ink
KR100714215B1 (ko) 2004-11-23 2007-05-02 주식회사 실트론 고품질 실리콘 단결정 잉곳 및 그로부터 제조된 고 품질 실리콘 웨이퍼
US20060138601A1 (en) * 2004-12-27 2006-06-29 Memc Electronic Materials, Inc. Internally gettered heteroepitaxial semiconductor wafers and methods of manufacturing such wafers
KR100840751B1 (ko) * 2005-07-26 2008-06-24 주식회사 실트론 고품질 실리콘 단결정 잉곳 제조 방법, 성장 장치 및그로부터 제조된 잉곳 , 웨이퍼
JP4743010B2 (ja) * 2005-08-26 2011-08-10 株式会社Sumco シリコンウェーハの表面欠陥評価方法
KR100831044B1 (ko) * 2005-09-21 2008-05-21 주식회사 실트론 고품질 실리콘 단결정 잉곳의 성장장치, 그 장치를 이용한성장방법
US7633307B2 (en) * 2005-12-16 2009-12-15 Freescale Semiconductor, Inc. Method for determining temperature profile in semiconductor manufacturing test
US7427325B2 (en) 2005-12-30 2008-09-23 Siltron, Inc. Method for producing high quality silicon single crystal ingot and silicon single crystal wafer made thereby
JP4853027B2 (ja) * 2006-01-17 2012-01-11 信越半導体株式会社 シリコン単結晶ウエーハの製造方法
KR101385810B1 (ko) * 2006-05-19 2014-04-16 엠이엠씨 일렉트로닉 머티리얼즈, 인크. Cz 성장 동안에 실리콘 단결정의 측면에 의해 유도되는 응집된 점 결함 및 산소 클러스터 형성을 제어하는 방법
DE102006034786B4 (de) 2006-07-27 2011-01-20 Siltronic Ag Monokristalline Halbleiterscheibe mit defektreduzierten Bereichen und Verfahren zur Ausheilung GOI-relevanter Defekte in einer monokristallinen Halbleiterscheibe
US7560355B2 (en) * 2006-10-24 2009-07-14 Vishay General Semiconductor Llc Semiconductor wafer suitable for forming a semiconductor junction diode device and method of forming same
JP2009292662A (ja) * 2008-06-03 2009-12-17 Sumco Corp シリコン単結晶育成における肩形成方法
JP2009292663A (ja) * 2008-06-03 2009-12-17 Sumco Corp シリコン単結晶の育成方法
JP2010040587A (ja) * 2008-07-31 2010-02-18 Covalent Materials Corp シリコンウェーハの製造方法
IL204034A (en) * 2009-02-24 2015-05-31 Schott Ag Photovoltaic device with central optics
KR101275418B1 (ko) * 2010-03-16 2013-06-14 주식회사 엘지실트론 단결정 잉곳 제조방법 및 이에 의해 제조된 웨이퍼
CN101824649A (zh) * 2010-04-30 2010-09-08 中山大学 自动化光电晶体炉的生长前阶段控制方法
JP2012166979A (ja) * 2011-02-14 2012-09-06 Sumco Corp 多結晶シリコンの電磁鋳造方法および電磁鋳造装置
JP5733245B2 (ja) 2012-03-16 2015-06-10 信越半導体株式会社 シリコン単結晶ウェーハの製造方法
CN102978688B (zh) * 2012-11-16 2015-07-08 晶科能源有限公司 一种直拉单晶法的冷却工艺
FR3005966B1 (fr) * 2013-05-27 2016-12-30 Commissariat Energie Atomique Procede de fabrication d'un lingot de silicium par reprise sur germes en four de solidification dirigee
FR3005967B1 (fr) * 2013-05-27 2017-06-02 Commissariat Energie Atomique Procede de fabrication d'un lingot de silicium dote de joints de grains symetriques
US9634098B2 (en) 2013-06-11 2017-04-25 SunEdison Semiconductor Ltd. (UEN201334164H) Oxygen precipitation in heavily doped silicon wafers sliced from ingots grown by the Czochralski method
US20150243494A1 (en) * 2014-02-25 2015-08-27 Texas Instruments Incorporated Mechanically robust silicon substrate having group iiia-n epitaxial layer thereon
KR102384041B1 (ko) 2014-07-31 2022-04-08 글로벌웨이퍼스 씨오., 엘티디. 질소 도핑 및 공공 지배 실리콘 잉곳 및 그로부터 형성된, 반경방향으로 균일하게 분포된 산소 석출 밀도 및 크기를 갖는 열 처리 웨이퍼
DE102015224983B4 (de) 2015-12-11 2019-01-24 Siltronic Ag Halbleiterscheibe aus einkristallinem Silizium und Verfahren zu deren Herstellung
DE102015226399A1 (de) 2015-12-22 2017-06-22 Siltronic Ag Siliciumscheibe mit homogener radialer Sauerstoffvariation
CN109346433B (zh) 2018-09-26 2020-10-23 上海新傲科技股份有限公司 半导体衬底的键合方法以及键合后的半导体衬底
KR20210150510A (ko) 2019-04-11 2021-12-10 글로벌웨이퍼스 씨오., 엘티디. 말기 본체 길이에서 감소된 왜곡을 갖는 잉곳을 준비하기 위한 프로세스
JP2022529451A (ja) 2019-04-18 2022-06-22 グローバルウェーハズ カンパニー リミテッド 連続チョクラルスキー法を用いる単結晶シリコンインゴットの成長方法
KR102647797B1 (ko) 2019-09-13 2024-03-15 글로벌웨이퍼스 씨오., 엘티디. 연속 쵸크랄스키 방법을 사용하여 질소 도핑된 단결정 실리콘 잉곳을 성장시키기 위한 방법들 및 이 방법에 의해 성장되는 단결정 실리콘 잉곳
EP3929334A1 (de) 2020-06-23 2021-12-29 Siltronic AG Verfahren zur herstellung von halbleiterscheiben
EP3940124B1 (de) 2020-07-14 2024-01-03 Siltronic AG Kristallstück aus monokristallinem silizium
JP7441942B2 (ja) * 2020-07-21 2024-03-01 ワッカー ケミー アクチエンゲゼルシャフト シリコン中の微量金属の定量方法
KR102255421B1 (ko) * 2020-08-11 2021-05-24 충남대학교산학협력단 단결정 산화갈륨의 결함 평가방법
CN113138195A (zh) * 2021-04-16 2021-07-20 上海新昇半导体科技有限公司 晶体缺陷的监控方法及晶棒生长方法
CN113703411B (zh) * 2021-08-31 2022-08-30 亚洲硅业(青海)股份有限公司 多晶硅生长过程监测系统、方法及多晶硅生产系统
WO2023125206A1 (zh) * 2021-12-27 2023-07-06 中环领先半导体材料有限公司 单晶体的制备方法及硅晶体
CN115233296A (zh) * 2022-07-25 2022-10-25 北京麦竹吉科技有限公司 一种加热器、拉晶炉和消除大直径单晶硅自我间隙缺陷的方法
EP4321656A1 (de) 2022-08-09 2024-02-14 Siltronic AG Verfahren zum herstellen eines monokristallinen kristalls aus silizium

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US622164A (en) * 1899-03-28 Carl august pfenning
US548735A (en) * 1895-10-29 Pile carpet
GB1456050A (en) * 1974-05-13 1976-11-17 British Aluminium Co Ltd Production of metallic articles
US3997368A (en) 1975-06-24 1976-12-14 Bell Telephone Laboratories, Incorporated Elimination of stacking faults in silicon devices: a gettering process
JPS583375B2 (ja) 1979-01-19 1983-01-21 超エル・エス・アイ技術研究組合 シリコン単結晶ウエハ−の製造方法
US4350560A (en) * 1981-08-07 1982-09-21 Ferrofluidics Corporation Apparatus for and method of handling crystals from crystal-growing furnaces
US4473795A (en) * 1983-02-23 1984-09-25 International Business Machines Corporation System for resist defect measurement
JPS59190300A (ja) 1983-04-08 1984-10-29 Hitachi Ltd 半導体製造方法および装置
JPS62105998A (ja) 1985-10-31 1987-05-16 Sony Corp シリコン基板の製法
CN86104069A (zh) * 1986-06-09 1987-02-11 电子工业部第四十四研究所 硅的多重吸杂技术及多重吸杂硅片
JPS63215041A (ja) 1987-03-04 1988-09-07 Toshiba Corp 結晶欠陥評価用エツチング液
US5264189A (en) * 1988-02-23 1993-11-23 Mitsubishi Materials Corporation Apparatus for growing silicon crystals
US4981549A (en) * 1988-02-23 1991-01-01 Mitsubishi Kinzoku Kabushiki Kaisha Method and apparatus for growing silicon crystals
JPH02137524A (ja) 1988-11-18 1990-05-25 Matsushita Electric Ind Co Ltd 電子チューナ
JPH02180789A (ja) 1989-01-05 1990-07-13 Kawasaki Steel Corp Si単結晶の製造方法
JPH0633235B2 (ja) 1989-04-05 1994-05-02 新日本製鐵株式会社 酸化膜耐圧特性の優れたシリコン単結晶及びその製造方法
JPH0633236B2 (ja) 1989-09-04 1994-05-02 新日本製鐵株式会社 シリコン単結晶の熱処理方法および装置ならびに製造装置
JPH0729878B2 (ja) 1990-06-07 1995-04-05 三菱マテリアル株式会社 シリコンウエーハ
JPH04108682A (ja) 1990-08-30 1992-04-09 Fuji Electric Co Ltd 化合物半導体単結晶製造装置および製造方法
JPH06103714B2 (ja) 1990-11-22 1994-12-14 信越半導体株式会社 シリコン単結晶の電気特性検査方法
JPH08760B2 (ja) 1991-03-14 1996-01-10 信越半導体株式会社 シリコンウェーハの品質検査方法
JP2613498B2 (ja) 1991-03-15 1997-05-28 信越半導体株式会社 Si単結晶ウエーハの熱処理方法
JP3016897B2 (ja) * 1991-03-20 2000-03-06 信越半導体株式会社 シリコン単結晶の製造方法及び装置
JP2758093B2 (ja) * 1991-10-07 1998-05-25 信越半導体株式会社 半導体ウェーハの製造方法
JPH0684925A (ja) 1992-07-17 1994-03-25 Toshiba Corp 半導体基板およびその処理方法
WO1994016124A1 (fr) * 1993-01-06 1994-07-21 Nippon Steel Corporation Procede et appareil pour prevoir la qualite du cristal d'un semi-conducteur monocristallin
JPH0741383A (ja) 1993-07-29 1995-02-10 Nippon Steel Corp 半導体単結晶およびその製造方法
JPH07158458A (ja) 1993-12-10 1995-06-20 Mitsubishi Motors Corp 多気筒内燃エンジンの吸気制御装置
IT1280041B1 (it) * 1993-12-16 1997-12-29 Wacker Chemitronic Procedimento per il tiraggio di un monocristallo di silicio
DE4414947C2 (de) * 1993-12-16 1998-12-17 Wacker Siltronic Halbleitermat Verfahren zum Ziehen eines Einkristalls aus Silicium
JP3276500B2 (ja) 1994-01-14 2002-04-22 ワッカー・エヌエスシーイー株式会社 シリコンウェーハとその製造方法
US5474020A (en) 1994-05-06 1995-12-12 Texas Instruments Incorporated Oxygen precipitation control in czochralski-grown silicon cyrstals
JP3552278B2 (ja) * 1994-06-30 2004-08-11 三菱住友シリコン株式会社 シリコン単結晶の製造方法
KR960005669A (ko) 1994-07-21 1996-02-23 이헌조 흑백브라운관의 형광막 형성방법 및 장치
JP2874834B2 (ja) * 1994-07-29 1999-03-24 三菱マテリアル株式会社 シリコンウェーハのイントリンシックゲッタリング処理法
JP3285111B2 (ja) * 1994-12-05 2002-05-27 信越半導体株式会社 結晶欠陥の少ないシリコン単結晶の製造方法
US5966282A (en) * 1994-12-20 1999-10-12 A. C. Data Systems, Inc. Power surge protection assembly
JPH08208374A (ja) 1995-01-25 1996-08-13 Nippon Steel Corp シリコン単結晶およびその製造方法
US5593494A (en) * 1995-03-14 1997-01-14 Memc Electronic Materials, Inc. Precision controlled precipitation of oxygen in silicon
JP2826589B2 (ja) 1995-03-30 1998-11-18 住友シチックス株式会社 単結晶シリコン育成方法
JP3085146B2 (ja) * 1995-05-31 2000-09-04 住友金属工業株式会社 シリコン単結晶ウェーハおよびその製造方法
JPH08337490A (ja) 1995-06-09 1996-12-24 Shin Etsu Handotai Co Ltd 結晶欠陥の少ないシリコン単結晶及びその製造方法
JP3006669B2 (ja) 1995-06-20 2000-02-07 信越半導体株式会社 結晶欠陥の均一なシリコン単結晶の製造方法およびその製造装置
JP4020987B2 (ja) * 1996-01-19 2007-12-12 信越半導体株式会社 ウエーハ周辺部に結晶欠陥がないシリコン単結晶およびその製造方法
US5958133A (en) * 1996-01-29 1999-09-28 General Signal Corporation Material handling system for growing high-purity crystals
JP3417515B2 (ja) 1996-03-22 2003-06-16 信越半導体株式会社 シリコン単結晶基板の結晶欠陥評価方法
DE19613282A1 (de) * 1996-04-03 1997-10-09 Leybold Ag Vorrichtung zum Ziehen von Einkristallen
DE19637182A1 (de) 1996-09-12 1998-03-19 Wacker Siltronic Halbleitermat Verfahren zur Herstellung von Halbleiterscheiben aus Silicium mit geringer Defektdichte
JPH10152395A (ja) 1996-11-21 1998-06-09 Komatsu Electron Metals Co Ltd シリコン単結晶の製造方法
US5789309A (en) 1996-12-30 1998-08-04 Memc Electronic Materials, Inc. Method and system for monocrystalline epitaxial deposition
KR100237829B1 (ko) 1997-02-06 2000-01-15 윤종용 웨이퍼의 결함 분석방법
SG64470A1 (en) * 1997-02-13 1999-04-27 Samsung Electronics Co Ltd Methods of manufacturing monocrystalline silicon ingots and wafers by controlling pull rate profiles in a hot zone furnace and ingots and wafers manufactured thereby
US6045610A (en) 1997-02-13 2000-04-04 Samsung Electronics Co., Ltd. Methods of manufacturing monocrystalline silicon ingots and wafers by controlling pull rate profiles in a hot zone furnance
US5994761A (en) * 1997-02-26 1999-11-30 Memc Electronic Materials Spa Ideal oxygen precipitating silicon wafers and oxygen out-diffusion-less process therefor
DE19711922A1 (de) 1997-03-21 1998-09-24 Wacker Siltronic Halbleitermat Vorrichtung und Verfahren zum Ziehen eines Einkristalls
EP1146150B1 (en) 1997-04-09 2010-06-09 MEMC Electronic Materials, Inc. Low defect density, ideal oxygen precipitating silicon
US6379642B1 (en) * 1997-04-09 2002-04-30 Memc Electronic Materials, Inc. Vacancy dominated, defect-free silicon
SG165151A1 (en) 1997-04-09 2010-10-28 Memc Electronic Materials Low defect density silicon
JPH1179889A (ja) 1997-07-09 1999-03-23 Shin Etsu Handotai Co Ltd 結晶欠陥が少ないシリコン単結晶の製造方法、製造装置並びにこの方法、装置で製造されたシリコン単結晶とシリコンウエーハ
US5942032A (en) 1997-08-01 1999-08-24 Memc Electronic Materials, Inc. Heat shield assembly and method of growing vacancy rich single crystal silicon
US5922127A (en) 1997-09-30 1999-07-13 Memc Electronic Materials, Inc. Heat shield for crystal puller
JP3919308B2 (ja) 1997-10-17 2007-05-23 信越半導体株式会社 結晶欠陥の少ないシリコン単結晶の製造方法ならびにこの方法で製造されたシリコン単結晶およびシリコンウエーハ
JP3596257B2 (ja) 1997-11-19 2004-12-02 三菱住友シリコン株式会社 シリコン単結晶ウェーハの製造方法
US6245430B1 (en) * 1997-12-12 2001-06-12 Sumitomo Sitix Corporation Silicon single crystal wafer and manufacturing method for it
JP3634133B2 (ja) 1997-12-17 2005-03-30 信越半導体株式会社 結晶欠陥の少ないシリコン単結晶の製造方法及びシリコン単結晶ウエーハ
JP4147599B2 (ja) 1997-12-26 2008-09-10 株式会社Sumco シリコン単結晶及びその製造方法
JP3627498B2 (ja) 1998-01-19 2005-03-09 信越半導体株式会社 シリコン単結晶の製造方法
JP3955375B2 (ja) 1998-01-19 2007-08-08 信越半導体株式会社 シリコン単結晶の製造方法およびシリコン単結晶ウエーハ
DE19823962A1 (de) 1998-05-28 1999-12-02 Wacker Siltronic Halbleitermat Verfahren zur Herstellung eines Einkristalls
US6077343A (en) 1998-06-04 2000-06-20 Shin-Etsu Handotai Co., Ltd. Silicon single crystal wafer having few defects wherein nitrogen is doped and a method for producing it
US6093913A (en) 1998-06-05 2000-07-25 Memc Electronic Materials, Inc Electrical heater for crystal growth apparatus with upper sections producing increased heating power compared to lower sections
CN1155074C (zh) 1998-09-02 2004-06-23 Memc电子材料有限公司 从低缺陷密度的单晶硅上制备硅-绝缘体结构
EP1125008B1 (en) * 1998-10-14 2003-06-18 MEMC Electronic Materials, Inc. Thermally annealed, low defect density single crystal silicon
US6284039B1 (en) * 1998-10-14 2001-09-04 Memc Electronic Materials, Inc. Epitaxial silicon wafers substantially free of grown-in defects
US20020084451A1 (en) * 2000-12-29 2002-07-04 Mohr Thomas C. Silicon wafers substantially free of oxidation induced stacking faults

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179889A (ja) * 1997-07-09 1999-03-23 Shin Etsu Handotai Co Ltd 結晶欠陥が少ないシリコン単結晶の製造方法、製造装置並びにこの方法、装置で製造されたシリコン単結晶とシリコンウエーハ
JP2009029703A (ja) * 2001-01-26 2009-02-12 Memc Electron Materials Inc 酸化誘起積層欠陥を実質的に有さない空孔優勢コアを有する低欠陥密度シリコン
JP4644729B2 (ja) * 2001-01-26 2011-03-02 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 酸化誘起積層欠陥を実質的に有さない空孔優勢コアを有する低欠陥密度シリコン
JP2007534579A (ja) * 2003-07-08 2007-11-29 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 安定化された理想的酸素析出シリコンウエハを製造する方法
JP4733029B2 (ja) * 2003-07-08 2011-07-27 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 安定化された理想的酸素析出シリコンウエハを製造する方法
JP2006117524A (ja) * 2004-10-19 2006-05-11 Siltron Inc 高品質単結晶及びその成長方法
JP2006143582A (ja) * 2004-11-23 2006-06-08 Siltron Inc シリコン単結晶の成長方法,成長装置及びそれから製造されたシリコンウエハ
JP2007194232A (ja) * 2006-01-17 2007-08-02 Shin Etsu Handotai Co Ltd シリコン単結晶ウエーハの製造方法

Also Published As

Publication number Publication date
CN1253610C (zh) 2006-04-26
DE69831618T2 (de) 2006-06-29
SG105510A1 (en) 2004-08-27
DE69801903T2 (de) 2002-03-28
EP1209259A3 (en) 2003-08-20
JP2006062960A (ja) 2006-03-09
CN101070621A (zh) 2007-11-14
JP4313356B2 (ja) 2009-08-12
JP3782387B2 (ja) 2006-06-07
JP4299523B2 (ja) 2009-07-22
WO1998045510A1 (en) 1998-10-15
US20050205000A1 (en) 2005-09-22
EP1118697A2 (en) 2001-07-25
CN100547122C (zh) 2009-10-07
JP2003192492A (ja) 2003-07-09
JP4477569B2 (ja) 2010-06-09
WO1998045508A1 (en) 1998-10-15
KR20010006182A (ko) 2001-01-26
KR20050049561A (ko) 2005-05-25
US6632278B2 (en) 2003-10-14
US20020170485A1 (en) 2002-11-21
MY127594A (en) 2006-12-29
US20020007779A1 (en) 2002-01-24
US20010025597A1 (en) 2001-10-04
CN1261928A (zh) 2000-08-02
US6287380B1 (en) 2001-09-11
DE69807676T2 (de) 2003-04-24
US20020139294A1 (en) 2002-10-03
TW577939B (en) 2004-03-01
JP3449731B2 (ja) 2003-09-22
CN1854353A (zh) 2006-11-01
DE69806137T2 (de) 2002-11-21
EP1118697B1 (en) 2003-04-02
EP0972094B1 (en) 2001-10-04
DE69801903D1 (de) 2001-11-08
EP0973963A1 (en) 2000-01-26
CN101070621B (zh) 2012-09-05
CN1257556A (zh) 2000-06-21
EP0972094A1 (en) 2000-01-19
EP1273684A3 (en) 2003-11-26
DE69840690D1 (de) 2009-05-07
JP4291559B2 (ja) 2009-07-08
US6254672B1 (en) 2001-07-03
MY132874A (en) 2007-10-31
SG105509A1 (en) 2004-08-27
EP1118697A3 (en) 2001-09-05
US20010020437A1 (en) 2001-09-13
CN1280454C (zh) 2006-10-18
DE69824647T2 (de) 2005-06-09
US6638357B2 (en) 2003-10-28
MY120036A (en) 2005-08-30
MY127584A (en) 2006-12-29
JP3544676B2 (ja) 2004-07-21
KR100508048B1 (ko) 2005-08-17
EP0973963B1 (en) 2002-06-19
CN100595351C (zh) 2010-03-24
US6409827B2 (en) 2002-06-25
JP2003192490A (ja) 2003-07-09
CN1255169A (zh) 2000-05-31
CN1936113A (zh) 2007-03-28
DE69807676D1 (de) 2002-10-10
KR20010006229A (ko) 2001-01-26
US6605150B2 (en) 2003-08-12
DE69831618D1 (de) 2005-10-20
DE69813041T2 (de) 2004-01-15
MY120441A (en) 2005-10-31
US20040070012A1 (en) 2004-04-15
SG165151A1 (en) 2010-10-28
KR20060002028A (ko) 2006-01-06
US20040089224A1 (en) 2004-05-13
KR20010006227A (ko) 2001-01-26
EP0973964A1 (en) 2000-01-26
TW494146B (en) 2002-07-11
TWI257962B (en) 2006-07-11
CN1936112B (zh) 2011-05-11
EP1273684A2 (en) 2003-01-08
CN1936112A (zh) 2007-03-28
EP1209258A3 (en) 2002-08-28
EP1209258B1 (en) 2004-06-16
CN1280455C (zh) 2006-10-18
EP1273684B1 (en) 2005-09-14
KR20040065306A (ko) 2004-07-21
WO1998045509A1 (en) 1998-10-15
EP1209258A2 (en) 2002-05-29
EP1209259A2 (en) 2002-05-29
DE69813041D1 (de) 2003-05-08
JP2003192493A (ja) 2003-07-09
US6409826B2 (en) 2002-06-25
US5919302A (en) 1999-07-06
DE69824647D1 (de) 2004-07-22
JP2004155655A (ja) 2004-06-03
EP0973964B1 (en) 2002-09-04
MY127383A (en) 2006-11-30
JP2001518874A (ja) 2001-10-16
EP1209259B1 (en) 2009-03-25
JP2001500468A (ja) 2001-01-16
JP2006056779A (ja) 2006-03-02
JP3449730B2 (ja) 2003-09-22
JP4274973B2 (ja) 2009-06-10
DE69806137D1 (de) 2002-07-25

Similar Documents

Publication Publication Date Title
JP2000513696A (ja) 低欠陥密度の空孔優勢シリコン
JP4875800B2 (ja) 単結晶シリコンウエハの製造方法
JP2003197625A (ja) 低欠陥密度の理想的酸素析出シリコン
JP3904832B2 (ja) 結晶成長導入欠陥を実質的に有さないエピタキシャルシリコンウエハ
US20050238905A1 (en) Vacancy-dominated, defect-free silicon
JP2002524845A (ja) 欠陥密度が低い単結晶シリコンから得られるシリコン・オン・インシュレーター構造体
JP2004521853A (ja) 低欠陥密度シリコンの製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees