ES2594619T3 - Radioterapia con partículas cargadas - Google Patents

Radioterapia con partículas cargadas Download PDF

Info

Publication number
ES2594619T3
ES2594619T3 ES06838033.6T ES06838033T ES2594619T3 ES 2594619 T3 ES2594619 T3 ES 2594619T3 ES 06838033 T ES06838033 T ES 06838033T ES 2594619 T3 ES2594619 T3 ES 2594619T3
Authority
ES
Spain
Prior art keywords
patient
portico
accelerator
rotation
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES06838033.6T
Other languages
English (en)
Inventor
Kenneth Gall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mevion Medical Systems Inc
Original Assignee
Mevion Medical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38067813&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2594619(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mevion Medical Systems Inc filed Critical Mevion Medical Systems Inc
Application granted granted Critical
Publication of ES2594619T3 publication Critical patent/ES2594619T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/02Synchrocyclotrons, i.e. frequency modulated cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/04Synchrotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • H05H2007/043Magnet systems, e.g. undulators, wigglers; Energisation thereof for beam focusing

Abstract

Un aparato que comprende: un soporte del paciente (170), un acelerador (10; 502) que comprende una carcasa del acelerador, estando configurado el acelerador (10; 502) para producir un haz de protones o iones que tenga un nivel de energía de al menos 150 MeV, y un pórtico (504) sobre el cual se monta el acelerador (10, 502) para permitir que el acelerador (10; 502) se mueva a lo largo de un intervalo (520) de posiciones alrededor de un paciente sobre el soporte del paciente (170), teniendo el haz de protones o iones un nivel de energía suficiente para alcanzar cualquier diana arbitraria en el paciente, desde posiciones dentro del intervalo (520), en el que el pórtico (504) está soportado para la rotación sobre dos lados del soporte del paciente y está limitado a rotar dentro de un intervalo (520) de posiciones de aproximadamente 180 grados a aproximadamente 330 grados, el haz de protones o iones está adaptado para pasar esencialmente directamente desde la carcasa del acelerador hasta el paciente sobre el soporte del paciente (170).

Description

5
10
15
20
25
30
35
40
45
50
DESCRIPCION
Radioterapia con partmulas cargadas Antecedentes
La presente descripcion se refiere a radioterapia con partmulas cargadas (por ejemplo, proton o ion).
La energfa de un haz de protones o iones para terapia necesita ser alta en comparacion con la energfa de un haz de electrones usado en radioterapia convencional. Un haz de protones, por ejemplo, que tiene un intervalo residual de aproximadamente 32 cm en agua, se considera adecuado para tratar cualquier diana tumoral en la poblacion humana. Cuando la asignacion se hace para la reduccion en el intervalo residual que resulta de laminas dispersoras usadas para difundir el haz, se necesita una energfa de haces de protones inicial de 250 MeV para lograr el intervalo residual de 32 cm.
Pueden usarse varios tipos de aceleradores de partmulas para producir un haz de protones de 250 MeV a una corriente de haces suficiente (por ejemplo, aproximadamente 10 nA) para radioterapia, que incluye aceleradores lineales, sincrotones y ciclotrones.
El diseno de un sistema de radioterapia de protones o iones para un entorno clmico debe tener en cuenta el tamano global, coste y complejidad. El espacio disponible esta normalmente limitado en entornos clmicos atestados. El menor coste permite que se desplieguen mas sistemas para alcanzar una poblacion de pacientes mas ancha. Menos complejidad reduce los costes de operacion y hace que el sistema sea mas fiable para uso clmico rutinario.
Otras consideraciones tambien pesan sobre el diseno de un sistema de terapia tal. Configurando el sistema para aplicar el tratamiento a pacientes que se mantienen en una posicion reproducible estable (por ejemplo, tumbados de espaldas sobre una mesa plana), el medico puede relocalizar con mas precision la diana prevista, con respecto a la anatoirna del paciente, en cada tratamiento. La reproduccion fiable de la posicion del paciente para cada tratamiento tambien puede ayudarse usando moldes personalizados y soportes ajustados al paciente. Con un paciente en una posicion fija estable, el haz de radioterapia puede ser dirigido al paciente desde una sucesion de angulos, de manera que, durante el transcurso del tratamiento, la dosis de radiacion a la diana se potencie, mientras que la dosis de radiacion externa se difunde sobre los tejidos no diana.
Tradicionalmente, un portico isocentrico se gira alrededor del paciente en posicion supina para dirigir el haz de radiacion a lo largo de trayectorias sucesivas que se encuentran en un intervalo de angulos en un plano vertical comun hacia un unico punto (llamado un isocentro) dentro del paciente. Girando la mesa sobre la que esta tumbado el paciente alrededor de un eje vertical, el haz puede dirigirse al paciente a lo largo de diferentes trayectorias. Se han usado otras tecnicas para variar la posicion de la fuente de radiacion alrededor del paciente, que incluyen manipulacion robotica. Y se han usado otras formas de mover o recolocar al paciente.
En la terapia de haces de rayos X de alta energfa, el haz de rayos X puede dirigirse hacia el isocentro de un acelerador lineal de electrones montado sobre el portico o brazo robotico.
En la terapia con haces de protones tfpica, el acelerador de partmulas circular que produce el haz es demasiado grande para ser montado sobre el portico. En su lugar, el acelerador se monta en una posicion fija y el haz de partmulas se redirige mediante un portico giratorio usando elementos de direccion de haces magneticos.
El documento DE 4411171 (A1) desvela un dispositivo para dirigir un haz de partmulas cargadas desde una fuente usando un acelerador que puede girar alrededor de un eje.
El documento US 4705955 ensena un aparato para irradiar un paciente usando una fuente que puede girarse alrededor de un eje horizontal.
SUMARIO
La invencion se define en las reivindicaciones adjuntas.
En general, en un aspecto, un acelerador esta montado sobre un portico para permitir que el acelerador se mueva a traves de un intervalo de posiciones alrededor de un paciente sobre un soporte del paciente. El acelerador esta configurado para producir un haz de protones o de iones que tiene un nivel de energfa suficiente para alcanzar cualquier diana arbitraria en el paciente de posiciones dentro del intervalo. El haz de protones o de iones pasa esencialmente directamente de la carcasa del acelerador al paciente.
Las implementaciones pueden incluir una o mas de las siguientes caractensticas. El portico esta soportado para rotacion sobre rodamientos en dos lados del soporte del paciente. El portico tiene dos patas que se extienden desde un eje de rotacion y un armazon entre las dos patas sobre el que esta montado el acelerador. El portico esta limitado a girar dentro de un intervalo de posiciones que es mas pequeno de 360 grados, al menos de hasta 180 grados y en algunas implementaciones en el intervalo de aproximadamente 180 grados a aproximadamente 330 grados. (Un intervalo de rotacion de 180 grados es suficiente para proporcionar todos los angulos de aproximacion en un
2
5
10
15
20
25
30
35
40
45
50
55
paciente en posicion supina.) Las paredes radio-protectoras incluyen al menos una pared que no esta en lmea con el haz de protones o de iones del acelerador en cualquiera de las posiciones dentro del intervalo; esa pared se construye para proporcionar la misma radio-proteccion con menos masa. El soporte del paciente esta montado en un area que es accesible a traves de un espacio definido por un intervalo de posiciones a las que el portico esta limitado para no girar. El soporte del paciente es movil con respecto al portico que incluye rotacion alrededor de un eje de rotacion del paciente que es vertical. El eje de rotacion del paciente contiene un isocentro en la proximidad de un paciente sobre el soporte del paciente. El eje de rotacion del portico es horizontal y contiene el isocentro. El acelerador pesa menos de 40 toneladas y en implementaciones tfpicas dentro de un intervalo de 5 a 30 toneladas, ocupa un volumen inferior a 4,5 metros cubicos y normalmente en un intervalo de 0,7 a 4,5 metros cubicos, y produce un haz de protones o de iones que tiene un nivel de energfa de al menos 150 MeV y en un intervalo de 150 a 300 MeV, por ejemplo, 250 MeV.
El acelerador puede ser un sincrociclotron con una estructura de iman que tiene la intensidad de campo de al menos 6 Tesla y puede ser de 6 a 20 Tesla. La estructura de iman incluye bobinados superconductores que se enfnan por crio-refrigeradores. El haz de protones o de iones pasa directamente del acelerador al area general de la postura del paciente. Una camara protectora que contiene el soporte del paciente, el portico y el acelerador incluye al menos una pared de la camara que es mas delgada que las otras paredes de la camara. Una porcion de la camara puede estar incorporada dentro de la tierra.
En general, en un aspecto, un acelerador esta configurado para producir un haz de protones o de iones que tiene un nivel de energfa suficiente para alcanzar cualquier diana arbitraria en un paciente. El acelerador es suficientemente pequeno y suficientemente ligero de peso para ser montado sobre un portico giratorio en una orientacion para permitir que el haz de protones o de iones pase esencialmente directamente de la carcasa del acelerador al paciente.
En general, en un aspecto, un sincrociclotron medico tiene un estructura electromagnetica superconductora que genera la intensidad de campo de al menos 6 Tesla, produce un haz de partmulas, tales como protones, que tiene un nivel de energfa de al menos 150 MeV, tiene un volumen no superior a 4,5 metros cubicos, y tiene un peso inferior a 30 toneladas.
En general, en un aspecto, un paciente esta soportado dentro de un espacio de tratamiento, un haz de protones o iones pasa en una direccion en lmea recta de una salida de un acelerador a cualquier diana arbitraria dentro del paciente, y se hace que la direccion en lmea recta se vane a traves de un intervalo de direcciones alrededor del paciente.
En general, en un aspecto, una estructura incluye un soporte del paciente y un portico sobre el que un acelerador esta montado para permitir que el acelerador se mueva a traves de un intervalo de posiciones alrededor de un paciente sobre el soporte del paciente. El acelerador esta configurado para producir un haz de protones o de iones que tiene un nivel de energfa suficiente para alcanzar cualquier diana arbitraria en el paciente de posiciones dentro del intervalo. Un recinto cercado contiene el soporte del paciente, el portico y el acelerador. En algunos ejemplos, mas de la mitad de la superficie del recinto cercado esta incorporada dentro de la tierra.
Otros aspectos incluyen otras combinaciones de los aspectos y caractensticas tratados anteriormente y otras caractensticas expresadas como aparatos, sistemas, metodos, productos de software, metodos de negocio, y en otras formas.
Generando el campo magnetico de aproximadamente 10 Tesla, el tamano del acelerador se aproxima a 1,5 metros y la masa se reduce a aproximadamente 15 a 20 toneladas. El peso dependera del campo magnetico de dispersion que va a permitir cerca del acelerador. Incluso pesos y tamanos mas pequenos pueden ser posibles. Esto permite colocar el ciclotron sobre un portico, con el haz de salida dirigido directamente al isocentro, y girado alrededor del paciente, simplificando asf la administracion de radioterapia de haces de protones o de iones. Todos los elementos de focalizacion y conduccion del haz extrafdo se incorporan dentro del acelerador o inmediatamente adyacentes a el. El montaje directo del acelerador sobre el portico elimina los elementos de transporte del haz que de otro modo se requerinan para transportar el haz del acelerador al volumen diana dentro del paciente. El tamano, la complejidad y el coste de un sistema de terapia de haces de protones o de iones se reducen y mejora su rendimiento. El reducir el intervalo de rotacion del portico para que sea inferior a 360 grados en el plano vertical reduce el espesor de la barrera protectora que debe proporcionarse en localizaciones a las que el haz nunca se dirige. Tambien permite la facilidad de acceso al espacio de tratamiento del paciente. El sincrociclotron puede aumentarse a campos arbitrariamente altos sin comprometer el haz que enfoca durante la aceleracion. La eliminacion de bobinas refrigeradas por lfquido criogenico reduce el riesgo al cirujano y al paciente si el lfquido criogenico vaporizado se liberara durante una condicion defectuosa tal como una extincion magnetica.
Otras ventajas y caractensticas seran evidentes de la siguiente descripcion y de las reivindicaciones.
Descripcion de los dibujos
La Figura 1 es una vista en perspectiva de un sistema de terapia.
5
10
15
20
25
30
35
40
45
50
La Figura 2 es una vista en perspectiva en despiece ordenado de componentes de un sincrociclotron.
Las Figuras 3, 4, y 5 son vistas en seccion transversal de un sincrociclotron.
La Figura 6 es una vista en perspectiva de un sincrociclotron.
La Figura 7 es una vista en seccion transversal de una porcion de un carrete invertido y bobinados.
La Figura 8 es una vista en seccion transversal de un conductor de material compuesto de cable en canal.
La Figura 9 es una vista en seccion transversal de una fuente de iones.
La Figura 10 es una vista en perspectiva de una placa en D y una D simulada.
La Figura 11 es una vista en perspectiva de una camara acorazada.
La Figura 12 es una vista en perspectiva de una sala de tratamiento con una camara acorazada.
La Figura 13 muestra un perfil de una mitad de un perfil simetrico de una cara polar y una pieza polar.
Descripcion detallada
Como se muestra en la Figura 1, un sistema de radioterapia con partfculas cargadas 500 incluye un acelerador de partfculas productor de haces 502 que tiene un peso y tamano suficientemente pequenos para permitir que se monte sobre un portico giratorio 504 con su salida dirigida recta (es decir, esencialmente directamente) de la carcasa del acelerador hacia un paciente 506. El tamano y coste del sistema de terapia son significativamente reducidos y pueden aumentar la fiabilidad y precision del sistema.
En algunas implementaciones, el portico de acero tiene dos patas 508, 510 montadas para la rotacion sobre dos rodamientos 512, 514 respectivos que se encuentran sobre lados opuestos del paciente. El acelerador esta soportado por un armazon de acero 516 que es lo suficientemente largo para abarcar un area de tratamiento 518 en la que el paciente esta tumbado (por ejemplo, dos veces mas larga que una persona alta, para permitir que la persona sea completamente girada dentro del espacio quedando cualquier area diana deseada del paciente en la imea del haz) y esta unido establemente en ambos extremos a las patas giratorias del portico.
En algunos ejemplos, la rotacion del portico esta limitada a un intervalo 520 de menos de 360 grados, por ejemplo, aproximadamente 180 grados, para permitir que un suelo 522 se extienda desde una pared de la camara acorazada 524 que aloja el sistema de terapia hasta el area de tratamiento del paciente. El intervalo de rotacion limitado del portico tambien reduce el espesor requerido de algunas de las paredes (que nunca reciben directamente el haz, por ejemplo, la pared 530) que proporciona proteccion de la radiacion de personas fuera del area de tratamiento. Un intervalo de 180 grados de rotacion del portico es suficiente para cubrir todos los angulos de aproximacion del tratamiento, pero proporcionar un mayor intervalo de desplazamiento puede ser util. Por ejemplo, el intervalo de rotacion puede estar utilmente entre 180 y 330 grados y todavfa dejar espacio libre para el espacio del suelo de terapia. Cuando el intervalo de desplazamiento es grande, el portico puede oscilar a posiciones que son peligrosas para las personas o equipo dispuestos en una porcion del espacio de terapia.
El eje de rotacion horizontal 532 del portico esta localizado nominalmente un metro por encima del suelo en el que el paciente y el terapeuta interaccionan con el sistema de terapia. Este suelo esta aproximadamente 3 metros por encima del suelo inferior de la camara acorazada protegida del sistema de terapia. El acelerador puede oscilar bajo el suelo elevado para la administracion de haces de tratamiento de por debajo del eje de rotacion. La camilla del paciente se mueve y gira en un plano sustancialmente horizontal paralelo al eje rotacional del portico. La camilla puede girar a traves de un intervalo 534 de aproximadamente 270 grados en el plano horizontal con esta configuracion. Esta combinacion de portico e intervalos de rotacion del paciente y grados de libertad permite al terapeuta seleccionar practicamente cualquier angulo de aproximacion para el haz. Si se necesita, el paciente puede colocarse sobre la camilla en la orientacion opuesta y entonces pueden usarse todos los angulos posibles.
En algunas implementaciones, el acelerador usa una configuracion de sincrociclotron que tiene una estructura electromagnetica superconductora de campo magnetico muy alto. Debido a que el radio de curvatura de una partfcula cargada de una energfa cinetica dada se reduce en proporcion directa a un aumento en el campo magnetico aplicado a ella, la estructura magnetica superconductora de campo magnetico muy alto permite que el acelerador se haga mas pequeno y mas ligero.
Para una intensidad promedio del campo magnetico superior a aproximadamente 5 Tesla, es poco practico usar un ciclotron isocrono (en el que el iman se construye para hacer el campo magnetico mas fuerte cerca de la circunferencia que en el centro para compensar los aumentos de masa y mantener una frecuencia de revolucion constante) para lograr protones de 250 MeV. Esto es debido a que la variacion angular en el campo magnetico usado para mantener el foco del haz en el ciclotron isocrono no puede hacerse lo suficientemente grande usando bisel perfilado de cara polar de hierro.
5
10
15
20
25
30
35
40
45
50
55
El acelerador descrito aqu es un sincrociclotron. El sincrociclotron usa el campo magnetico que es de angulo de rotacion uniforme y disminuye en intensidad al aumentar el radio. Una forma de campo tal puede lograrse independientemente de la magnitud del campo magnetico, por lo que en teona no hay lfmite superior a la intensidad del campo magnetico (y, por tanto, la energfa de partfculas resultante a un radio fijo) que puede usarse en un sincrociclotron.
Ciertos materiales superconductores empiezan a perder sus propiedades superconductoras en presencia de campos magneticos muy altos. Se usan bobinados de hilo superconductores de alto rendimiento para permitir lograr campos magneticos muy altos.
Los materiales superconductores normalmente necesitan enfriarse a temperaturas bajas para que se realicen sus propiedades superconductoras. En algunos ejemplos descritos aqm, se usan crio-refrigeradores para llevar los bobinados de la bobina superconductora a temperaturas proximas al cero absoluto. Usando crio-refrigeradores, en vez de refrigerar en bano los bobinados en helio lfquido, se reduce la complejidad y el coste.
El sincrociclotron esta soportado sobre el portico de manera que el haz se genere directamente en lmea con el paciente. El portico permite la rotacion del ciclotron alrededor de un eje de rotacion horizontal que contiene un punto (isocentro 540) dentro de o cerca del paciente. El armazon partido que es paralelo al eje de rotacion soporta el ciclotron en ambos lados.
Debido a que el intervalo de rotacion del portico esta limitado, un area de soporte del paciente puede acomodarse en una amplia area alrededor del isocentro. Debido a que el suelo puede extenderse ampliamente alrededor del isocentro, una mesa de soporte del paciente puede estar dispuesta para moverse con respecto a y a girar alrededor de un eje vertical a traves del isocentro de manera que, por una combinacion de rotacion del portico y movimiento de la mesa y rotacion, pueda lograrse cualquier angulo de la direccion del haz dentro de cualquier parte del paciente. Los dos brazos del portico estan separados mas de dos veces la altura de un paciente alto, permitiendo que la camilla con el paciente gire y se traslade en un plano horizontal por encima del suelo elevado.
La limitacion del angulo de rotacion del portico permite una reduccion en el espesor de al menos una de las paredes que rodean la sala de tratamiento. Paredes gruesas, normalmente construidas de hormigon, proporcionan proteccion de la radiacion a individuos fuera de la sala de tratamiento. Una pared aguas debajo de un haz de protones de parada necesita ser aproximadamente dos veces tan gruesa como una pared en el extremo opuesto de la sala para proporcionar un nivel de proteccion equivalente. La limitacion del intervalo de rotacion del portico permite que la sala de tratamiento este situada por debajo del nivel de la tierra sobre tres lados, mientras que permite un area ocupada adyacente a la pared mas delgada que reduce el coste de construccion de la sala de tratamiento.
En la implementacion de ejemplo mostrada en la Figura 1, el sincrociclotron superconductor 502 opera con un campo magnetico pico en un hueco polar del sincrociclotron de 8,8 Tesla. El sincrociclotron produce un haz de protones que tienen una energfa de 250 MeV. En otras implementaciones, la intensidad de campo podna estar en el intervalo de 6 a 20 Tesla y la energfa de los protones podna estar en el intervalo de 150 a 300 MeV.
El sistema de radioterapia descrito en este ejemplo se usa para radioterapia con protones, pero pueden aplicarse los mismos principios y detalles en sistemas analogos para su uso en sistemas de tratamiento con iones pesados (iones).
Como se muestra en las Figuras 2, 3, 4, 5 y 6, un sincrociclotron 10 de ejemplo (502 en la Figura 1) incluye un sistema de iman 12 que contiene una fuente de iones 90, un sistema de conduccion de radiofrecuencia 91 y un sistema de extraccion de haces 38. El campo magnetico establecido por el sistema de iman tiene una forma apropiada para mantener el enfoque de un haz de protones contenido usando una combinacion de un par separado de bobinas superconductoras anulares 40, 42 y un par de caras polares 44, 46 ferromagneticas formadas (por ejemplo, acero de bajo carbono).
Las dos bobinas de iones superconductores estan centradas en un eje comun 47 y estan separadas a lo largo del eje. Como se muestra en las Figuras 7 y 8, las bobinas estan formadas por hebras 48 de 0,6 mm de diametro basadas en superconductores de Nb3Sn (que inicialmente comprenden un nucleo de niobio-estano rodeado por una vaina de cobre) utilizadas en una geometna de conductor de canal en cable de Rutherford. Despues de disponerse seis hebras individuales en un canal de cobre 50, se calientan para producir una reaccion que forma el material final (fragil) del bobinado. Despues de haber reaccionado el material, los hilos se sueldan dentro del canal de cobre (dimensiones externas 3,02 x 1,96 mm y dimensiones internas 2,05 x 1,27 mm) y se cubren con aislamiento 52 (en este ejemplo, un material de fibra de vidrio tejido). El canal de cobre que contiene los hilos 53 se enrolla entonces en una bobina que tiene una seccion transversal rectangular de 6,0 cm x 15,25 cm, que tiene 30 capas y 47 giros por capa. La bobina enrollada se impregna entonces a vacfo con un compuesto de epoxi. Las bobinas acabadas se montan sobre un carrete invertido de acero inoxidable anular 56. Se mantiene una manta termica 55 contra la cara interior del carrete y los bobinados para proteger el ensamblaje en el caso de una extincion magnetica. En una version alternativa, la bobina superconductora puede estar formada de hebras basadas en Nb3Sn de 0,8 mm de diametro. Estas hebras pueden utilizarse en un cable de 4 hebras, tratarse termicamente para formar la matriz superconductora y soldarse dentro de un canal de cobre de dimension externa 3,19 por 2,57 mm. El conducto de
5
10
15
20
25
30
35
40
45
50
55
60
cable en canal integrado puede aislarse con cinta de fibra de vidrio tejida superpuesta y entonces enrollarse en bobinas de 49 giros y 26 capas de profundidad con una seccion transversal rectangular de 79,79 mm por 180,5 mm y radio interno de 374,65 mm. La bobina enrollada se impregna entonces a vado con un compuesto de epoxi. La bobina entera puede entonces cubrirse con hojas de cobre para proporcionar conductividad termica y estabilidad mecanica y luego contenerse en una capa adicional de epoxi. La precompresion de la bobina puede proporcionarse calentando el carrete invertido de acero inoxidable y ajustando las bobinas dentro del carrete invertido. El diametro interno del carrete invertido se elige de manera que cuando la masa entera se enfne a 4 K, el carrete invertido permanezca en contacto con la bobina y proporcione alguna compresion. El calentar el carrete invertido de acero inoxidable a aproximadamente 50 °C y ajustar las bobinas a temperatura ambiente (20 °C) puede lograr esto.
La geometna de la bobina se mantiene montando las bobinas en un carrete rectangular "invertido" 56 e incorporando una camara de acero inoxidable de pre-compresion 58 entre cada bobina y una cara interior 57 del carrete para ejercer una fuerza restauradora 60 que funciona contra la fuerza de distorsion producida cuando las bobinas estan energizadas. La camara se pre-comprime despues de que las bobinas y la manta termica se ensamblen sobre el carrete, inyectando epoxi dentro de la camara y dejando que endurezca. La fuerza de precompresion de la camara se establece para minimizar la deformacion en la matriz superconductora de Nb3Sn fragil a traves de todas las fases de enfriamiento y energizacion magnetica.
Como se muestra en la Figura 5, la posicion de la bobina se mantiene con respecto al yugo magnetico y criostato usando un conjunto de correas de soporte de caliente a fno 402, 404, 406. El soportar la masa fna con correas delgadas minimiza la fuga de calor conferida a la masa fna por el sistema de soporte ngido. Las correas estan dispuestas para resistir la fuerza de la gravedad variable sobre la bobina a medida que el iman gira a bordo del portico. Resisten los efectos combinados de la gravedad y la gran fuerza de descentramiento realizada por la bobina cuando es perturbada desde una posicion perfectamente simetrica con respecto al yugo magnetico. Adicionalmente, los enlaces actuan para minimizar las fuerzas dinamicas conferidas sobre la bobina a medida que el portico acelera y desacelera cuando se cambia la posicion. Cada soporte de caliente a fno incluye 3 enlaces de fibra de vidrio S2. Dos enlaces se soportan a traves de pernos entre el yugo caliente y una temperatura intermedia (50 - 70 K), y un enlace esta soportado a traves del perno de temperatura intermedia y un perno unido a la masa fna. Cada enlace tiene 10,2 cm de longitud (centro de perno a centro de perno) y tiene 20 mm de ancho. El espesor del enlace es 1,59 mm. Cada perno esta hecho de acero inoxidable y tiene 47,7 mm de diametro.
Como se muestra en la Figura 3, el perfil de intensidad del campo en funcion del radio se determina en gran medida por la eleccion de la geometna de la bobina; las caras polares 44, 46 del material del yugo permeable pueden estar contorneadas para ajustarse a la forma del campo magnetico para asegurar que el haz de partfculas siga focalizado durante la aceleracion.
Las bobinas superconductoras se mantienen a temperaturas proximas al cero absoluto (por ejemplo, aproximadamente 4 grados Kelvin) encerrando el ensamblaje de bobina (las bobinas y el carrete) dentro de una camara criostatica de aluminio o acero inoxidable anular evacuada 70 que proporciona un espacio libre alrededor de la estructura de la bobina, excepto en un conjunto limitado de puntos de soporte 71, 73. En una version alternativa, la pared externa del criostato puede hacerse de acero de bajo carbono para proporcionar una trayectoria de flujo de retorno adicional para el campo magnetico. La temperatura proxima al cero absoluto se logra y se mantiene usando dos crio-refrigeradores de Gifford-McMahon 72, 74 que estan dispuestos en diferentes posiciones sobre el ensamblaje de bobina. Cada crio-refrigerador tiene un extremo fno 76 en contacto con el ensamblaje de bobina. Las cabezas del crio-refrigerador 78 se suministran con helio comprimido de un compresor 80. Estan dispuestos otros dos crio-refrigeradores de Gifford-McMahon 77, 79 para enfriar derivaciones 81 de alta temperatura (por ejemplo, 60 - 80 grados Kelvin) que suministran corriente a los bobinados superconductores.
El ensamblaje de bobina y las camaras criostaticas estan montados dentro y completamente encerrados por dos mitades 81, 83 de un yugo magnetico en forma de casquete 82. En este ejemplo, el diametro interno del ensamblaje de bobina es aproximadamente 140 cm. El yugo de hierro 82 proporciona una trayectoria para el flujo del campo magnetico de retorno 84 y protege magneticamente el volumen 86 entre las caras polares 44, 46 para prevenir que las influencias magneticas externas perturben la forma del campo magnetico dentro de ese volumen. El yugo tambien sirve para reducir el campo magnetico de dispersion en la proximidad del acelerador.
Como se muestra en la Figura 3 y 9, el sincrociclotron incluye una fuente de iones 90 de una geometna de calibre de ion de Penning localizada cerca del centro geometrico 92 de la estructura de iman 82. La fuente de iones se alimenta de un suministro 99 de hidrogeno a traves de una lrnea de gas 101 y el tubo 194 que suministra hidrogeno gaseoso. Los cables electricos 94 llevan una corriente electrica de una fuente de corriente 95 para estimular la descarga de electrones de los catodos 192, 194 que estan alineados con el campo magnetico, 200.
Los electrones descargados ionizan el gas que sale a traves de un orificio pequeno del tubo 194 para crear un suministro de iones positivos (protones) para la aceleracion por una placa de radiofrecuencia (en forma de D) semicircular 100 que abarca la mitad del espacio encerrado por la estructura de iman y una placa en D simulada 102. Como se muestra en la Figura 10, la placa en D 100 es una estructura metalica hueca que tiene dos superficies semicirculares 103, 105 que encierran un espacio 107 en el que los protones son acelerados durante la mitad de su rotacion alrededor del espacio encerrado por la estructura de iman. Una abertura de conducto 109 dentro del
5
10
15
20
25
30
35
40
45
50
55
espacio 107 se extiende a traves del yugo a una localizacion externa de la que puede unirse una bomba de vacm 111 para evacuar el espacio 107 y el resto del espacio dentro de una camara de vado 119 en la que tiene lugar la aceleracion. La D simulada 102 comprende un anillo metalico rectangular que esta separado cerca del borde expuesto de la placa en D. La D simulada esta conectada a tierra a la camara de vado y yugo magnetico. La placa en D 100 es impulsada por una senal de radiofrecuencia que se aplica al final de una lmea de transmision de radiofrecuencia para conferir un campo electrico en el espacio 107. El campo electrico de radiofrecuencia se hace para variar en el tiempo a medida que el haz de partmulas acelerado aumenta en distancia desde el centro geometrico.
Para que el haz que emerge de la fuente de iones centralmente localizada limpie la estructura de fuente de iones a medida que empieza a girar en espiral hacia afuera, se requiere una gran diferencia de voltaje a traves de las placas de radiofrecuencia. Se aplican 20.000 voltios a traves de las placas de radiofrecuencia. En algunas versiones pueden aplicarse de 8.000 a 20.000 voltios a traves de las placas de radiofrecuencia. Para reducir la potencia requerida para conducir este gran voltaje, la estructura de iman esta dispuesta para reducir la capacitancia entre las placas de radiofrecuencia y la tierra. Esto se hace formando orificios con espacio libre suficiente de las estructuras de radiofrecuencia a traves del yugo externo y la carcasa del criostato y creando espacio suficiente entre las caras polares del iman.
El potencial alterno de alto voltaje que conduce la placa en D tiene una frecuencia que es barrida hacia abajo durante el ciclo de aceleracion para explicar la creciente masa relativista de los protones y el campo magnetico decreciente. La D simulada no requiere una estructura semicilmdrica hueca ya que esta a potencial de tierra junto con las paredes de la camara de vado. Podnan usarse otras disposiciones de placa tales como mas de un par de electrodos de aceleracion conducidos con diferentes fases electricas o multiplos de la frecuencia fundamental. La estructura de RF puede ajustarse para mantener la Q alta durante el barrido de frecuencia requerido usando, por ejemplo, un condensador giratorio que tiene palas giratorias y estacionarias engranadas. Durante cada engranaje de las palas, la capacitancia aumenta, reduciendose asf la frecuencia resonante de la estructura de RF. Las palas pueden formarse para crear un barrido de frecuencia precisa requerido. Un motor de accionamiento para el condensador giratorio puede bloquearse en fase para el generador de RF para el control preciso. Un grupo de partmulas se acelera durante cada engranaje de las palas del condensador giratorio.
La camara de vado 119 en la que se produce la aceleracion es un recipiente generalmente cilmdrico que es mas delgado en el centro y mas grueso en el borde. La camara de vado encierra las placas de RF y la fuente de iones y se evacua por la bomba de vado 111. El mantenimiento de un alto vado asegura que los iones que se aceleran no se pierden por colisiones con moleculas de gas y permite mantener el voltaje de RF a un mayor nivel sin formar arco electrico a tierra.
Los protones atraviesan una trayectoria generalmente en espiral que empieza en la fuente de iones. En la mitad de cada bucle de la trayectoria en espiral, los protones ganan energfa a medida que pasan a traves del campo electrico de RF en el espacio 107. A medida que los iones ganan energfa, el radio de la orbita central de cada bucle sucesivo de su trayectoria en espiral es superior al bucle previo hasta que el radio del bucle alcanza el radio maximo de la cara polar. En esa localizacion, una perturbacion del campo magnetico y electrico dirige a los iones dentro de un area en la que el campo magnetico disminuye rapidamente, y los iones se separan del area de campo magnetico alto y se dirigen a traves de un tubo evacuado 38 para salir del yugo del ciclotron. Los iones que salen del ciclotron tenderan a dispersarse a medida que entran en el area de campo magnetico notablemente reducido que existe en la sala alrededor del ciclotron. Los elementos de moldeo del haz 107, 109 en el canal de extraccion 38 redirigen los iones de manera que permanezcan en un haz recto de grado espacial limitado.
El campo magnetico dentro del hueco polar necesita tener ciertas propiedades para mantener el haz dentro de la camara evacuada a medida que se acelera. El mdice de campo magnetico
n - -(r/B)dB/dr
debe mantenerse positivo para mantener esta focalizacion "debil". Aqrn, r es el radio del haz y B es el campo magnetico. Adicionalmente, el mdice de campo necesita mantenerse por debajo de 0,2, debido a que a este valor la periodicidad de las oscilaciones radiales y las oscilaciones verticales del haz coincide en una resonancia Vr = 2 vz. Las frecuencias de betatron se definen por Vr = (1-n)1/2 y Vz = n1/2. La cara polar ferromagnetica se disena para formar el campo magnetico generado por las bobinas de manera que el mdice de campo n se mantenga positivo e inferior a 0,2 en el diametro mas pequeno de acuerdo con un haz de 250 MeV en el campo magnetico dado.
A medida que el haz sale del canal de extraccion, pasa a traves de un sistema de formacion de haces 125 que puede estar programablemente controlado para crear una combinacion deseada de angulo de dispersion y modulacion de intervalo para el haz. Ejemplos de sistemas de formacion de haces utiles para ese fin se describen en la patente de Estados Unidos N.° US 7.208.748, titulada “A Programmable Particle Scatterer for Radiation Therapy Beam Formation”, presentada el 24 de septiembre de 2004.
5
10
15
20
25
30
35
40
45
50
Durante la operacion, las placas absorben energfa del campo de radiofrecuencia aplicado como resultado de la resistencia conductora a lo largo de las superficies de las placas. Esta energfa aparece como calor y se elimina de las placas usando lmeas de refrigeracion con agua 108 que liberan el calor en un intercambiador de calor 113.
Los campos magneticos de dispersion que salen del ciclotron estan limitados por tanto el yugo de iman del casquete (que tambien sirve de proteccion) como una proteccion magnetica separada 114. La proteccion magnetica separada incluye una capa 117 de material ferromagnetico (por ejemplo, acero o hierro) que encierra el yugo de casquete, separado por un espacio 116. Esta configuracion que incluye un emparedado de un yugo, un espacio y una proteccion logra proteccion adecuada para un campo magnetico de fuga dada a menor peso.
Como se ha mencionado, el portico permite que el sincrociclotron gire alrededor del eje de rotacion horizontal 532. La estructura de armazon 516 tiene dos tramos generalmente paralelos 580, 582. El sincrociclotron se sostiene entre los tramos aproximadamente a mitad de camino entre las patas. El portico se equilibra para el giro alrededor de los rodamientos usando contrapesos 122, 124 montados sobre los extremos de las patas opuestas al armazon.
El portico es accionado para girar por un motor electrico montado en una de las patas del portico y esta conectado a la carcasa de los rodamientos por engranajes de accionamiento y correas o cadenas. La posicion de giro del portico se deriva de senales proporcionadas por codificadores del angulo de rotacion incorporados dentro de los motores de accionamiento del portico y los engranajes de accionamiento.
En la localizacion en la que el haz de iones sale del ciclotron, el sistema de formacion de haces 125 actua sobre el haz de iones para darle propiedades adecuadas para el tratamiento del paciente. Por ejemplo, el haz puede difundirse y variarse su profundidad de penetracion para proporcionar radiacion uniforme a traves de un volumen diana dado. El sistema de formacion de haces puede incluir elementos de dispersion pasivos, ademas de elementos de barrido activos.
Todos los sistemas activos del sincrociclotron (las bobinas superconductoras accionadas por corriente, las placas accionadas por RF, las bombas de vacro para la camara de aceleracion a vado y para la camara de refrigeracion de las bobinas superconductoras, la fuente de iones accionada por corriente, la fuente de gas hidrogeno y los refrigeradores de placas de RF, por ejemplo), estan controlados por electronica de control del sincrociclotron apropiada (no mostrada).
El control del portico, el soporte del paciente, los elementos de moldeo del haz activos y el sincrociclotron para realizar una sesion de terapia se logran por electronica de control de terapia apropiada (no mostrada).
Como se muestra en las Figuras 1, 11 y 12, los rodamientos del portico estan soportados por las paredes de una camara acorazada de ciclotron 524. El portico permite que el ciclotron oscile a traves de un intervalo 520 de 180 grados (o mas), que incluye posiciones por encima, al lado y por debajo del paciente. La camara acorazada es lo suficientemente alta para mantener despejado el portico en los extremos superior e inferior de su movimiento. Un laberinto 146 rodeado por paredes 148, 150 proporciona una via de entrada y salida para terapeutas y pacientes. Debido a que al menos una pared 152 nunca esta en lrnea con el haz de protones directamente del ciclotron, puede hacerse relativamente delgada y todavfa realizar su funcion protectora. Las otras tres paredes laterales 154, 156, 150/148 de la sala, que pueden necesitar estar mucho mas protegidas, pueden estar enterradas dentro de una montana de arcilla (no mostrada). El espesor requerido de las paredes 154, 156 y 158 puede reducirse, debido a que la tierra puede ella misma proporcionar algo de la proteccion necesaria.
Por motivos de seguridad y esteticos, una sala de terapia 160 se construye dentro de la camara acorazada. La sala de terapia arranca en voladizo desde las paredes 154, 156, 150 y la base 162 de la sala contenedora dentro del espacio entre las patas del portico de un modo que despeje el portico oscilante y tambien maximice el grado del espacio del suelo 164 de la sala de terapia. La puesta en servicio periodica del acelerador puede llevarse a cabo en el espacio por debajo del suelo elevado. Cuando el acelerador gira a la posicion inferior sobre el portico, es posible el acceso completo al acelerador en un espacio separado del area de tratamiento. Los suministros de potencia, equipo de refrigeracion, bombas de vacro y otro equipo de soporte pueden localizarse debajo del suelo elevado en este espacio separado.
Dentro de la sala de tratamiento, el soporte del paciente 170 puede montarse en una variedad de formas que permiten que el soporte sea subido y bajado y el paciente gire y se mueva a una variedad de posiciones y orientaciones.
Informacion adicional referente al diseno del acelerador puede encontrarse en la patente de EE.UU. N.° 7.656.258, titulada MAGNET STRUCTURE FOR PARTICLE ACCELERATION (T. Antaya, et al.), presentada el 9 de agosto de 2006.

Claims (10)

  1. 5
    10
    15
    20
    25
    30
    REIVINDICACIONES
    1. Un aparato que comprende:
    un soporte del paciente (170),
    un acelerador (10; 502) que comprende una carcasa del acelerador, estando configurado el acelerador (10; 502) para producir un haz de protones o iones que tenga un nivel de energfa de al menos 150 MeV, y
    un portico (504) sobre el cual se monta el acelerador (10, 502) para permitir que el acelerador (10; 502) se mueva a lo largo de un intervalo (520) de posiciones alrededor de un paciente sobre el soporte del paciente (170), teniendo el haz de protones o iones un nivel de energfa suficiente para alcanzar cualquier diana arbitraria en el paciente, desde posiciones dentro del intervalo (520), en el que el portico (504) esta soportado para la rotacion sobre dos lados del soporte del paciente y esta limitado a rotar dentro de un intervalo (520) de posiciones de aproximadamente 180 grados a aproximadamente 330 grados,
    el haz de protones o iones esta adaptado para pasar esencialmente directamente desde la carcasa del acelerador hasta el paciente sobre el soporte del paciente (170).
  2. 2. El aparato de la reivindicacion 1, en el que el portico (504) esta soportado para la rotacion sobre los rodamientos (512, 514) en los dos lados del soporte del paciente (170).
  3. 3. El aparato de la reivindicacion 1, en el que el portico (504) comprende dos brazos (508, 510) que se extienden desde un eje de rotacion del portico (504) y un armazon (516) entre los dos brazos (508, 510) sobre el cual se monta el acelerador (10, 502).
  4. 4. El aparato de la reivindicacion 1, que tambien incluye unas paredes radio-protectoras (148, 150, 152, 154, 156), al menos una de las cuales (152) esta adaptada para no recibir directamente el haz de protones o iones del acelerador (10, 502), estando construida la pared (152) con menos masa que las otras paredes (148, 150, 154, 156) para proporcionar la misma radio-proteccion que las otras paredes (148, 150, 154, 156).
  5. 5. El aparato de la reivindicacion 1, en que el soporte del paciente (170) esta montado sobre un area de soporte del paciente que es accesible a traves de un espacio definido por un intervalo de posiciones al que esta limitado la rotacion del portico (504).
  6. 6. El aparato de la reivindicacion 1, en el que el soporte del paciente (170) se puede mover con relacion al portico (504).
  7. 7. El aparato de la reivindicacion 1, en el que el soporte del paciente (170) esta configurado para la rotacion en torno a un eje de rotacion del paciente.
  8. 8. El aparato de la reivindicacion 7, en el que el eje de rotacion del paciente (542) es vertical.
  9. 9. El aparato de la reivindicacion 1, en el que el portico esta configurado para la rotacion del acelerador (10, 502) en torno a un eje de rotacion del portico.
  10. 10. El aparato de la reivindicacion 9, en el que el eje de rotacion del portico (532) es horizontal.
ES06838033.6T 2005-11-18 2006-11-17 Radioterapia con partículas cargadas Active ES2594619T3 (es)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US73840405P 2005-11-18 2005-11-18
US738404P 2005-11-18
PCT/US2006/044853 WO2007061937A2 (en) 2005-11-18 2006-11-17 Charged particle radiation therapy

Publications (1)

Publication Number Publication Date
ES2594619T3 true ES2594619T3 (es) 2016-12-21

Family

ID=38067813

Family Applications (3)

Application Number Title Priority Date Filing Date
ES11177602T Active ES2730108T3 (es) 2005-11-18 2006-11-17 Radioterapia de partículas cargadas
ES11177607.6T Active ES2587982T3 (es) 2005-11-18 2006-11-17 Radioterapia con partículas cargadas
ES06838033.6T Active ES2594619T3 (es) 2005-11-18 2006-11-17 Radioterapia con partículas cargadas

Family Applications Before (2)

Application Number Title Priority Date Filing Date
ES11177602T Active ES2730108T3 (es) 2005-11-18 2006-11-17 Radioterapia de partículas cargadas
ES11177607.6T Active ES2587982T3 (es) 2005-11-18 2006-11-17 Radioterapia con partículas cargadas

Country Status (7)

Country Link
US (10) US7728311B2 (es)
EP (8) EP2389978B1 (es)
JP (5) JP5368103B2 (es)
CN (1) CN101361156B (es)
CA (1) CA2629333C (es)
ES (3) ES2730108T3 (es)
WO (1) WO2007061937A2 (es)

Families Citing this family (184)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946339A (zh) 2004-02-20 2007-04-11 佛罗里达大学研究基金会公司 用于提供适形放射治疗同时对软组织进行成像的系统
EP1790203B1 (en) 2004-07-21 2015-12-30 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
US9077022B2 (en) * 2004-10-29 2015-07-07 Medtronic, Inc. Lithium-ion battery
EP2389978B1 (en) 2005-11-18 2019-03-13 Mevion Medical Systems, Inc. Charged particle radiation therapy
US7656258B1 (en) 2006-01-19 2010-02-02 Massachusetts Institute Of Technology Magnet structure for particle acceleration
EP2190269B1 (en) 2006-01-19 2017-03-15 Massachusetts Institute of Technology Magnet structure for particle acceleration
DE202006019307U1 (de) * 2006-12-21 2008-04-24 Accel Instruments Gmbh Bestrahlungsvorrichtung
JP4228018B2 (ja) * 2007-02-16 2009-02-25 三菱重工業株式会社 医療装置
US8093568B2 (en) * 2007-02-27 2012-01-10 Wisconsin Alumni Research Foundation Ion radiation therapy system with rocking gantry motion
US20090154645A1 (en) * 2007-05-24 2009-06-18 Leon Lifshitz Teletherapy treatment center
DE102007032025A1 (de) * 2007-07-10 2008-12-18 Siemens Ag Partikeltherapie-Anlage
DE102007033894B3 (de) * 2007-07-20 2008-12-11 Siemens Ag Partikelstrahlapplikationsvorrichtung, Bestrahlungsvorrichtung sowie Verfahren zur Führung eines Partikelstrahls
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8111025B2 (en) * 2007-10-12 2012-02-07 Varian Medical Systems, Inc. Charged particle accelerators, radiation sources, systems, and methods
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
EP2363171B1 (en) * 2007-11-30 2013-09-25 Mevion Medical Systems, Inc. Inner gantry
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US8373145B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US8378321B2 (en) * 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US8642978B2 (en) * 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US9058910B2 (en) * 2008-05-22 2015-06-16 Vladimir Yegorovich Balakin Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8569717B2 (en) 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US8598543B2 (en) * 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US20090314960A1 (en) * 2008-05-22 2009-12-24 Vladimir Balakin Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8436327B2 (en) 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
US8309941B2 (en) 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US8374314B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US8198607B2 (en) 2008-05-22 2012-06-12 Vladimir Balakin Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8519365B2 (en) * 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
US8624528B2 (en) * 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
US8129694B2 (en) * 2008-05-22 2012-03-06 Vladimir Balakin Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system
US7939809B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8144832B2 (en) * 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
WO2009142550A2 (en) 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
US8957396B2 (en) * 2008-05-22 2015-02-17 Vladimir Yegorovich Balakin Charged particle cancer therapy beam path control method and apparatus
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
EP2283713B1 (en) * 2008-05-22 2018-03-28 Vladimir Yegorovich Balakin Multi-axis charged particle cancer therapy apparatus
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
EP2283710B1 (en) * 2008-05-22 2018-07-11 Vladimir Yegorovich Balakin Multi-field charged particle cancer therapy apparatus
US9044600B2 (en) * 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US8710462B2 (en) * 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
US8487278B2 (en) * 2008-05-22 2013-07-16 Vladimir Yegorovich Balakin X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
WO2009142545A2 (en) 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Charged particle cancer therapy patient positioning method and apparatus
US8373146B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US8288742B2 (en) * 2008-05-22 2012-10-16 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US8896239B2 (en) * 2008-05-22 2014-11-25 Vladimir Yegorovich Balakin Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8188688B2 (en) * 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US8378311B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Synchrotron power cycling apparatus and method of use thereof
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
US8373143B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US9155911B1 (en) * 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US8093564B2 (en) 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
US8399866B2 (en) 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
US8229072B2 (en) * 2008-07-14 2012-07-24 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8627822B2 (en) * 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8208601B2 (en) * 2008-08-13 2012-06-26 Oncology Tech Llc Integrated shaping and sculpting unit for use with intensity modulated radiation therapy (IMRT) treatment
US8394007B2 (en) 2008-10-31 2013-03-12 Toby D Henderson Inclined beamline motion mechanism
DE102009007370A1 (de) * 2009-02-04 2010-08-12 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Strahlentherapiegeräts
GB2467595B (en) * 2009-02-09 2011-08-24 Tesla Engineering Ltd Cooling systems and methods
US8053745B2 (en) * 2009-02-24 2011-11-08 Moore John F Device and method for administering particle beam therapy
JP2012519532A (ja) 2009-03-04 2012-08-30 ザクリトエ アクツィアニェールナエ オーブシチェストヴォ プロトム 多方向荷電粒子線癌治療方法及び装置
US8106370B2 (en) * 2009-05-05 2012-01-31 General Electric Company Isotope production system and cyclotron having a magnet yoke with a pump acceptance cavity
US8106570B2 (en) * 2009-05-05 2012-01-31 General Electric Company Isotope production system and cyclotron having reduced magnetic stray fields
US8153997B2 (en) * 2009-05-05 2012-04-10 General Electric Company Isotope production system and cyclotron
WO2010149740A1 (en) 2009-06-24 2010-12-29 Ion Beam Applications S.A. Device and method for particle beam production
US8374306B2 (en) 2009-06-26 2013-02-12 General Electric Company Isotope production system with separated shielding
AU2010273298B2 (en) 2009-07-15 2014-10-23 Viewray Technologies, Inc. Method and apparatus for shielding a linear accelerator and a magnetic resonance imaging device from each other
EP2308561B1 (en) * 2009-09-28 2011-06-15 Ion Beam Applications Compact gantry for particle therapy
WO2011060133A1 (en) * 2009-11-12 2011-05-19 Oncology Tech Llc Beam modifying devices for use with particle beam therapy systems
KR101284171B1 (ko) * 2009-12-18 2013-07-10 한국전자통신연구원 양성자를 이용한 치료 장치 및 이를 이용한 치료 방법
WO2011100577A2 (en) * 2010-02-12 2011-08-18 Procure Treatment Centers, Inc. Robotic mobile anesthesia system
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US9693443B2 (en) 2010-04-19 2017-06-27 General Electric Company Self-shielding target for isotope production systems
JPWO2012014705A1 (ja) 2010-07-28 2013-09-12 住友重機械工業株式会社 荷電粒子線照射装置
US8755489B2 (en) 2010-11-11 2014-06-17 P-Cure, Ltd. Teletherapy location and dose distribution control system and method
US8653762B2 (en) * 2010-12-23 2014-02-18 General Electric Company Particle accelerators having electromechanical motors and methods of operating and manufacturing the same
JP5744578B2 (ja) 2011-03-10 2015-07-08 住友重機械工業株式会社 荷電粒子線照射システム、及び中性子線照射システム
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US8981779B2 (en) 2011-12-13 2015-03-17 Viewray Incorporated Active resistive shimming fro MRI devices
US10561861B2 (en) 2012-05-02 2020-02-18 Viewray Technologies, Inc. Videographic display of real-time medical treatment
US8975836B2 (en) 2012-07-27 2015-03-10 Massachusetts Institute Of Technology Ultra-light, magnetically shielded, high-current, compact cyclotron
WO2014052721A1 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Control system for a particle accelerator
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
TW201424466A (zh) * 2012-09-28 2014-06-16 Mevion Medical Systems Inc 磁場再生器
EP2901820B1 (en) * 2012-09-28 2021-02-17 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
JP6523957B2 (ja) 2012-09-28 2019-06-05 メビオン・メディカル・システムズ・インコーポレーテッド 磁場を変更するための磁性シム
EP3581242B1 (en) 2012-09-28 2022-04-06 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
WO2014052718A2 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Focusing a particle beam
TW201424467A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 一粒子束之強度控制
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
JP6382208B2 (ja) 2012-10-26 2018-08-29 ビューレイ・テクノロジーズ・インコーポレイテッドViewRay Technologies, Inc. システム及びコンピュータプログラム製品
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
JP6138466B2 (ja) * 2012-12-03 2017-05-31 住友重機械工業株式会社 サイクロトロン
JP5662502B2 (ja) * 2013-03-07 2015-01-28 メビオン・メディカル・システムズ・インコーポレーテッド インナーガントリー
JP5662503B2 (ja) * 2013-03-07 2015-01-28 メビオン・メディカル・システムズ・インコーポレーテッド インナーガントリー
US9446263B2 (en) 2013-03-15 2016-09-20 Viewray Technologies, Inc. Systems and methods for linear accelerator radiotherapy with magnetic resonance imaging
CN103228093A (zh) * 2013-04-20 2013-07-31 胡明建 一种超导体聚焦同步回旋加速器的设计方法
US8791656B1 (en) * 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) * 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
WO2015042525A1 (en) * 2013-09-20 2015-03-26 ProNova Solutions, LLC Treatment theater for proton therapy
WO2015048468A1 (en) * 2013-09-27 2015-04-02 Mevion Medical Systems, Inc. Particle beam scanning
WO2015070865A1 (en) * 2013-11-14 2015-05-21 Danfysik A/S Particle therapy system
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US9661736B2 (en) * 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
DE102014003536A1 (de) * 2014-03-13 2015-09-17 Forschungszentrum Jülich GmbH Fachbereich Patente Supraleitender Magnetfeldstabilisator
WO2015161036A1 (en) * 2014-04-16 2015-10-22 The Board Of Regents Of The University Of Texas System Radiation therapy systems that include primary radiation shielding, and modular secondary radiation shields
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
WO2016051550A1 (ja) * 2014-10-01 2016-04-07 株式会社日立製作所 粒子線治療装置ならびにその運転方法
US10548212B2 (en) * 2014-12-08 2020-01-28 Hitachi, Ltd. Accelerator and particle beam irradiation system
JP6085070B1 (ja) * 2015-04-09 2017-02-22 三菱電機株式会社 治療計画装置および粒子線治療装置
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
EP3423153B1 (en) 2016-03-02 2021-05-19 ViewRay Technologies, Inc. Particle therapy with magnetic resonance imaging
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US10037863B2 (en) * 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof
US20170348547A1 (en) * 2016-05-27 2017-12-07 W. Davis Lee Ion beam kinetic energy dissipater apparatus and method of use thereof
KR20190043129A (ko) 2016-06-22 2019-04-25 뷰레이 테크놀로지스 인크. 약한 필드 강도에서의 자기 공명 영상화
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US20180122544A1 (en) 2016-11-03 2018-05-03 Mevion Medical Systems, Inc. Superconducting coil configuration
EP3554635B1 (en) 2016-12-13 2021-01-20 ViewRay Technologies, Inc. Radiation therapy systems
US10617886B2 (en) * 2016-12-22 2020-04-14 Hitachi, Ltd. Accelerator and particle therapy system
JP6529524B2 (ja) * 2017-01-05 2019-06-12 住友重機械工業株式会社 粒子線治療設備
US11103730B2 (en) * 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US10603518B2 (en) * 2017-03-14 2020-03-31 Varian Medical Systems, Inc. Rotatable cantilever gantry in radiotherapy system
EP3603351A1 (en) 2017-03-24 2020-02-05 Mevion Medical Systems, Inc. Coil positioning system
JP6739393B2 (ja) * 2017-04-18 2020-08-12 株式会社日立製作所 粒子線加速器および粒子線治療装置
US10984935B2 (en) * 2017-05-02 2021-04-20 Hefei Institutes Of Physical Science, Chinese Academy Of Sciences Superconducting dipole magnet structure for particle deflection
CN107174742A (zh) * 2017-05-02 2017-09-19 深圳磁实科技有限公司 用于肿瘤治疗的超导强磁场装置
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US10039935B1 (en) * 2017-10-11 2018-08-07 HIL Applied Medical, Ltd. Systems and methods for providing an ion beam
CN116036499A (zh) 2017-12-06 2023-05-02 优瑞技术公司 多模态放射疗法的优化
US11209509B2 (en) 2018-05-16 2021-12-28 Viewray Technologies, Inc. Resistive electromagnet systems and methods
NL2021421B1 (en) 2018-08-03 2020-02-12 Itrec Bv Proton Therapy Gantry
CN109224321B (zh) * 2018-10-29 2019-08-02 合肥中科离子医学技术装备有限公司 一种基于同步回旋加速器的质子重离子治疗系统
KR102608858B1 (ko) 2018-12-14 2023-11-30 래드 테크놀로지 메디컬 시스템스, 엘엘씨 차폐 시설 및 그 제조 방법
CN113474040A (zh) 2019-01-10 2021-10-01 普罗诺瓦解决方案有限责任公司 紧凑型质子治疗系统和方法
WO2020185543A1 (en) 2019-03-08 2020-09-17 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system
GB2583140B (en) * 2019-04-18 2023-08-30 Muir Ip Ltd Radiation therapy system
JP7352412B2 (ja) * 2019-08-28 2023-09-28 住友重機械工業株式会社 サイクロトロン
CN116421899B (zh) * 2023-04-28 2024-04-09 杭州嘉辐科技有限公司 超导重离子旋转机架

Family Cites Families (634)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US774018A (en) 1901-07-29 1904-11-01 Caspar Wuest-Kunz Alternating-current motor.
US2280606A (en) * 1940-01-26 1942-04-21 Rca Corp Electronic reactance circuits
US2615129A (en) 1947-05-16 1952-10-21 Edwin M Mcmillan Synchro-cyclotron
US2492324A (en) 1947-12-24 1949-12-27 Collins Radio Co Cyclotron oscillator system
US2659000A (en) 1951-04-27 1953-11-10 Collins Radio Co Variable frequency cyclotron
US2789222A (en) 1954-07-21 1957-04-16 Marvin D Martin Frequency modulation system
US2958327A (en) 1957-03-29 1960-11-01 Gladys W Geissmann Foundation garment
GB957342A (en) 1960-08-01 1964-05-06 Varian Associates Apparatus for directing ionising radiation in the form of or produced by beams from particle accelerators
US3360647A (en) 1964-09-14 1967-12-26 Varian Associates Electron accelerator with specific deflecting magnet structure and x-ray target
US3175131A (en) * 1961-02-08 1965-03-23 Richard J Burleigh Magnet construction for a variable energy cyclotron
US3432721A (en) * 1966-01-17 1969-03-11 Gen Electric Beam plasma high frequency wave generating system
US3358463A (en) 1966-07-15 1967-12-19 Lockheed Aircraft Corp Integrated superconducting magnetcryostat system
JPS4323267Y1 (es) 1966-10-11 1968-10-01
JPS4728762Y1 (es) 1967-04-21 1972-08-30
NL7007871A (es) 1970-05-29 1971-12-01
US3679899A (en) * 1971-04-16 1972-07-25 Nasa Nondispersive gas analyzing method and apparatus wherein radiation is serially passed through a reference and unknown gas
JPS4728762U (es) 1971-04-23 1972-12-01
US3757118A (en) 1972-02-22 1973-09-04 Ca Atomic Energy Ltd Electron beam therapy unit
JPS5036158Y2 (es) 1972-03-09 1975-10-21
US3867635A (en) * 1973-01-22 1975-02-18 Varian Associates Achromatic magnetic beam deflection system
US3944679A (en) 1973-04-13 1976-03-16 The Japan Tobacco & Salt Public Corporation Process for imparting a coumarin-like aroma and flavor to tobacco, foods and drinks
CA966893A (en) * 1973-06-19 1975-04-29 Her Majesty In Right Of Canada As Represented By Atomic Energy Of Canada Limited Superconducting cyclotron
US4047068A (en) 1973-11-26 1977-09-06 Kreidl Chemico Physical K.G. Synchronous plasma packet accelerator
US3992625A (en) 1973-12-27 1976-11-16 Jersey Nuclear-Avco Isotopes, Inc. Method and apparatus for extracting ions from a partially ionized plasma using a magnetic field gradient
US3886367A (en) 1974-01-18 1975-05-27 Us Energy Ion-beam mask for cancer patient therapy
US3958327A (en) * 1974-05-01 1976-05-25 Airco, Inc. Stabilized high-field superconductor
US4129784A (en) 1974-06-14 1978-12-12 Siemens Aktiengesellschaft Gamma camera
US3925676A (en) 1974-07-31 1975-12-09 Ca Atomic Energy Ltd Superconducting cyclotron neutron source for therapy
US3955089A (en) 1974-10-21 1976-05-04 Varian Associates Automatic steering of a high velocity beam of charged particles
US4230129A (en) 1975-07-11 1980-10-28 Leveen Harry H Radio frequency, electromagnetic radiation device having orbital mount
ZA757266B (en) * 1975-11-19 1977-09-28 W Rautenbach Cyclotron and neutron therapy installation incorporating such a cyclotron
SU569635A1 (ru) 1976-03-01 1977-08-25 Предприятие П/Я М-5649 Магнитный сплав
US4038622A (en) * 1976-04-13 1977-07-26 The United States Of America As Represented By The United States Energy Research And Development Administration Superconducting dipole electromagnet
US4112306A (en) 1976-12-06 1978-09-05 Varian Associates, Inc. Neutron irradiation therapy machine
DE2759073C3 (de) 1977-12-30 1981-10-22 Siemens AG, 1000 Berlin und 8000 München Elektronentubus
GB2015821B (en) 1978-02-28 1982-03-31 Radiation Dynamics Ltd Racetrack linear accelerators
US4197510A (en) * 1978-06-23 1980-04-08 The United States Of America As Represented By The Secretary Of The Navy Isochronous cyclotron
JPS5924520B2 (ja) 1979-03-07 1984-06-09 理化学研究所 等時性サイクロトロンの磁極の構造とそれの使用方法
US4239772A (en) 1979-05-30 1980-12-16 International Minerals & Chemical Corp. Allyl and propyl zearalenone derivatives and their use as growth promoting agents
FR2458201A1 (fr) * 1979-05-31 1980-12-26 Cgr Mev Systeme resonnant micro-onde a double frequence de resonance et cyclotron muni d'un tel systeme
DE2926873A1 (de) * 1979-07-03 1981-01-22 Siemens Ag Strahlentherapiegeraet mit zwei lichtvisieren
US4293772A (en) 1980-03-31 1981-10-06 Siemens Medical Laboratories, Inc. Wobbling device for a charged particle accelerator
US4342060A (en) 1980-05-22 1982-07-27 Siemens Medical Laboratories, Inc. Energy interlock system for a linear accelerator
US4336505A (en) * 1980-07-14 1982-06-22 John Fluke Mfg. Co., Inc. Controlled frequency signal source apparatus including a feedback path for the reduction of phase noise
JPS57162527A (en) 1981-03-31 1982-10-06 Fujitsu Ltd Setting device for preset voltage of frequency synthesizer
JPS57162527U (es) 1981-04-07 1982-10-13
US4425506A (en) * 1981-11-19 1984-01-10 Varian Associates, Inc. Stepped gap achromatic bending magnet
DE3148100A1 (de) 1981-12-04 1983-06-09 Uwe Hanno Dr. 8050 Freising Trinks "synchrotron-roentgenstrahlungsquelle"
JPS58107060A (ja) 1981-12-18 1983-06-25 Fuji Electric Co Ltd 緊急放圧装置つき超電導回転子
JPS58141000A (ja) 1982-02-16 1983-08-20 住友重機械工業株式会社 サイクロトロン
US4507616A (en) * 1982-03-08 1985-03-26 Board Of Trustees Operating Michigan State University Rotatable superconducting cyclotron adapted for medical use
JPS58141000U (ja) 1982-03-15 1983-09-22 和泉鉄工株式会社 上下反転積込排出装置
US4490616A (en) 1982-09-30 1984-12-25 Cipollina John J Cephalometric shield
JPS5964069A (ja) 1982-10-04 1984-04-11 バリアン・アソシエイツ・インコ−ポレイテツド 電子アーク治療用視準装置のための遮蔽物保持装置
US4507614A (en) * 1983-03-21 1985-03-26 The United States Of America As Represented By The United States Department Of Energy Electrostatic wire for stabilizing a charged particle beam
JPS59208795A (ja) 1983-05-12 1984-11-27 Toshiba Corp 極低温装置
US4736173A (en) * 1983-06-30 1988-04-05 Hughes Aircraft Company Thermally-compensated microwave resonator utilizing current-null segmentation
JPS6030971U (ja) 1983-08-08 1985-03-02 カルソニックカンセイ株式会社 異形管エバポレ−タ
JPS6076717A (ja) 1983-10-03 1985-05-01 Olympus Optical Co Ltd 内視鏡装置
DE3344046A1 (de) 1983-12-06 1985-06-20 Brown, Boveri & Cie Ag, 6800 Mannheim Kuehlsystem fuer indirekt gekuehlte supraleitende magnete
SE462013B (sv) * 1984-01-26 1990-04-30 Kjell Olov Torgny Lindstroem Behandlingsbord foer radioterapi av patienter
FR2560421B1 (fr) 1984-02-28 1988-06-17 Commissariat Energie Atomique Dispositif de refroidissement de bobinages supraconducteurs
US4865284A (en) 1984-03-13 1989-09-12 Siemens Gammasonics, Inc. Collimator storage device in particular a collimator cart
US4641104A (en) * 1984-04-26 1987-02-03 Board Of Trustees Operating Michigan State University Superconducting medical cyclotron
GB8421867D0 (en) 1984-08-29 1984-10-03 Oxford Instr Ltd Devices for accelerating electrons
US4651007A (en) * 1984-09-13 1987-03-17 Technicare Corporation Medical diagnostic mechanical positioner
JPS6180800U (es) 1984-10-30 1986-05-29
US4641057A (en) * 1985-01-23 1987-02-03 Board Of Trustees Operating Michigan State University Superconducting synchrocyclotron
DE3506562A1 (de) * 1985-02-25 1986-08-28 Siemens AG, 1000 Berlin und 8000 München Magnetfeldeinrichtung fuer eine teilchenbeschleuniger-anlage
EP0193837B1 (de) 1985-03-08 1990-05-02 Siemens Aktiengesellschaft Magnetfelderzeugende Einrichtung für eine Teilchenbeschleuniger-Anlage
NL8500748A (nl) 1985-03-15 1986-10-01 Philips Nv Collimator wisselsysteem.
DE3511282C1 (de) * 1985-03-28 1986-08-21 Brown, Boveri & Cie Ag, 6800 Mannheim Supraleitendes Magnetsystem fuer Teilchenbeschleuniger einer Synchrotron-Strahlungsquelle
JPS61225798A (ja) 1985-03-29 1986-10-07 三菱電機株式会社 プラズマ発生装置
US4705955A (en) 1985-04-02 1987-11-10 Curt Mileikowsky Radiation therapy for cancer patients
US4633125A (en) 1985-05-09 1986-12-30 Board Of Trustees Operating Michigan State University Vented 360 degree rotatable vessel for containing liquids
LU85895A1 (fr) 1985-05-10 1986-12-05 Univ Louvain Cyclotron
US4628523A (en) 1985-05-13 1986-12-09 B.V. Optische Industrie De Oude Delft Direction control for radiographic therapy apparatus
GB8512804D0 (en) * 1985-05-21 1985-06-26 Oxford Instr Ltd Cyclotrons
EP0208163B1 (de) 1985-06-24 1989-01-04 Siemens Aktiengesellschaft Magnetfeldeinrichtung für eine Anlage zur Beschleunigung und/oder Speicherung elektrisch geladener Teilchen
US4726046A (en) * 1985-11-05 1988-02-16 Varian Associates, Inc. X-ray and electron radiotherapy clinical treatment machine
JPS62150804A (ja) 1985-12-25 1987-07-04 Sumitomo Electric Ind Ltd シンクロトロン軌道放射システムの荷電粒子偏向装置
JPS62186500A (ja) 1986-02-12 1987-08-14 三菱電機株式会社 荷電ビ−ム装置
US4737727A (en) * 1986-02-12 1988-04-12 Mitsubishi Denki Kabushiki Kaisha Charged beam apparatus
US4783634A (en) 1986-02-27 1988-11-08 Mitsubishi Denki Kabushiki Kaisha Superconducting synchrotron orbital radiation apparatus
JPS62150804U (es) 1986-03-14 1987-09-24
US4754147A (en) * 1986-04-11 1988-06-28 Michigan State University Variable radiation collimator
US4739173A (en) * 1986-04-11 1988-04-19 Board Of Trustees Operating Michigan State University Collimator apparatus and method
JPS62186500U (es) 1986-05-20 1987-11-27
US4763483A (en) 1986-07-17 1988-08-16 Helix Technology Corporation Cryopump and method of starting the cryopump
US4868843A (en) 1986-09-10 1989-09-19 Varian Associates, Inc. Multileaf collimator and compensator for radiotherapy machines
US4736106A (en) 1986-10-08 1988-04-05 Michigan State University Method and apparatus for uniform charged particle irradiation of a surface
US4808941A (en) * 1986-10-29 1989-02-28 Siemens Aktiengesellschaft Synchrotron with radiation absorber
JP2670670B2 (ja) 1986-12-12 1997-10-29 日鉱金属 株式会社 高力高導電性銅合金
DE3644536C1 (de) 1986-12-24 1987-11-19 Basf Lacke & Farben Vorrichtung fuer eine Wasserlackapplikation mit Hochrotationszerstaeubern ueber Direktaufladung oder Kontaktaufladung
GB8701363D0 (en) 1987-01-22 1987-02-25 Oxford Instr Ltd Magnetic field generating assembly
EP0276360B1 (de) 1987-01-28 1993-06-09 Siemens Aktiengesellschaft Magneteinrichtung mit gekrümmten Spulenwicklungen
DE3865977D1 (de) * 1987-01-28 1991-12-12 Siemens Ag Synchrotronstrahlungsquelle mit einer fixierung ihrer gekruemmten spulenwicklungen.
JP2543869B2 (ja) 1987-02-12 1996-10-16 株式会社東芝 超電導回転子
DE3705294A1 (de) * 1987-02-19 1988-09-01 Kernforschungsz Karlsruhe Magnetisches ablenksystem fuer geladene teilchen
JPS63218200A (ja) 1987-03-05 1988-09-12 Furukawa Electric Co Ltd:The 超伝導sor発生装置
JPS63226899A (ja) 1987-03-16 1988-09-21 Ishikawajima Harima Heavy Ind Co Ltd 超電導ウイグラ−
JPH0517318Y2 (es) 1987-03-24 1993-05-10
US4767930A (en) 1987-03-31 1988-08-30 Siemens Medical Laboratories, Inc. Method and apparatus for enlarging a charged particle beam
JPH0546928Y2 (es) 1987-04-01 1993-12-09
US4812658A (en) * 1987-07-23 1989-03-14 President And Fellows Of Harvard College Beam Redirecting
JPS6435838A (en) 1987-07-31 1989-02-06 Jeol Ltd Charged particle beam device
DE3844716C2 (de) * 1987-08-24 2001-02-22 Mitsubishi Electric Corp Partikelstrahlmonitorvorrichtung
JP2667832B2 (ja) * 1987-09-11 1997-10-27 株式会社日立製作所 偏向マグネット
JPS6489621A (en) 1987-09-30 1989-04-04 Nec Corp Frequency synthesizer
US4796432A (en) 1987-10-09 1989-01-10 Unisys Corporation Long hold time cryogens dewar
GB8725459D0 (en) 1987-10-30 1987-12-02 Nat Research Dev Corpn Generating particle beams
US4945478A (en) 1987-11-06 1990-07-31 Center For Innovative Technology Noninvasive medical imaging system and method for the identification and 3-D display of atherosclerosis and the like
JPH02503521A (ja) * 1987-12-03 1990-10-25 ユニヴァーシティ オブ フロリダ 定位法放射線治療に用いられる装置
US4803433A (en) 1987-12-21 1989-02-07 Montefiore Hospital Association Of Western Pennsylvania, Inc. Method and apparatus for shimming tubular supermagnets
US4870287A (en) 1988-03-03 1989-09-26 Loma Linda University Medical Center Multi-station proton beam therapy system
US4845371A (en) 1988-03-29 1989-07-04 Siemens Medical Laboratories, Inc. Apparatus for generating and transporting a charged particle beam
US4917344A (en) * 1988-04-07 1990-04-17 Loma Linda University Medical Center Roller-supported, modular, isocentric gantry and method of assembly
JP2645314B2 (ja) 1988-04-28 1997-08-25 清水建設株式会社 磁気遮蔽器
US4905267A (en) * 1988-04-29 1990-02-27 Loma Linda University Medical Center Method of assembly and whole body, patient positioning and repositioning support for use in radiation beam therapy systems
US5006759A (en) 1988-05-09 1991-04-09 Siemens Medical Laboratories, Inc. Two piece apparatus for accelerating and transporting a charged particle beam
JPH079839B2 (ja) 1988-05-30 1995-02-01 株式会社島津製作所 高周波多重極線型加速器
JPH078300B2 (ja) 1988-06-21 1995-02-01 三菱電機株式会社 荷電粒子ビームの照射装置
GB2223350B (en) * 1988-08-26 1992-12-23 Mitsubishi Electric Corp Device for accelerating and storing charged particles
GB8820628D0 (en) * 1988-09-01 1988-10-26 Amersham Int Plc Proton source
US4880985A (en) 1988-10-05 1989-11-14 Douglas Jones Detached collimator apparatus for radiation therapy
EP0371303B1 (de) * 1988-11-29 1994-04-27 Varian International AG. Strahlentherapiegerät
US5117212A (en) * 1989-01-12 1992-05-26 Mitsubishi Denki Kabushiki Kaisha Electromagnet for charged-particle apparatus
JPH0834130B2 (ja) * 1989-03-15 1996-03-29 株式会社日立製作所 シンクロトロン放射光発生装置
US5117829A (en) * 1989-03-31 1992-06-02 Loma Linda University Medical Center Patient alignment system and procedure for radiation treatment
US5017789A (en) 1989-03-31 1991-05-21 Loma Linda University Medical Center Raster scan control system for a charged-particle beam
US5010562A (en) 1989-08-31 1991-04-23 Siemens Medical Laboratories, Inc. Apparatus and method for inhibiting the generation of excessive radiation
US5046078A (en) 1989-08-31 1991-09-03 Siemens Medical Laboratories, Inc. Apparatus and method for inhibiting the generation of excessive radiation
JP2896188B2 (ja) * 1990-03-27 1999-05-31 三菱電機株式会社 荷電粒子装置用偏向電磁石
US5072123A (en) 1990-05-03 1991-12-10 Varian Associates, Inc. Method of measuring total ionization current in a segmented ionization chamber
JP2593576B2 (ja) * 1990-07-31 1997-03-26 株式会社東芝 放射線位置決め装置
WO1992003028A1 (de) * 1990-08-06 1992-02-20 Siemens Aktiengesellschaft Synchrotronstrahlungsquelle
JPH0494198A (ja) 1990-08-09 1992-03-26 Nippon Steel Corp 電磁気シールド用材料
JP2896217B2 (ja) 1990-09-21 1999-05-31 キヤノン株式会社 記録装置
JP2529492B2 (ja) 1990-08-31 1996-08-28 三菱電機株式会社 荷電粒子偏向電磁石用コイルおよびその製造方法
JP3215409B2 (ja) 1990-09-19 2001-10-09 セイコーインスツルメンツ株式会社 光弁装置
US5097132A (en) * 1990-11-21 1992-03-17 Picker International, Inc. Nuclear medicine camera system with improved gantry and patient table
JP2786330B2 (ja) 1990-11-30 1998-08-13 株式会社日立製作所 超電導マグネットコイル、及び該マグネットコイルに用いる硬化性樹脂組成物
JPH087998Y2 (ja) 1990-12-28 1996-03-06 株式会社小松製作所 プレス機械のブレークスルー緩衝装置
DE4101094C1 (en) 1991-01-16 1992-05-27 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De Superconducting micro-undulator for particle accelerator synchrotron source - has superconductor which produces strong magnetic field along track and allows intensity and wavelength of radiation to be varied by conrolling current
IT1244689B (it) 1991-01-25 1994-08-08 Getters Spa Dispositivo per eliminare l'idrogeno da una camera a vuoto, a temperature criogeniche,specialmente in acceleratori di particelle ad alta energia
JPH04258781A (ja) 1991-02-14 1992-09-14 Toshiba Corp ガンマカメラ
JPH04273409A (ja) 1991-02-28 1992-09-29 Hitachi Ltd 超電導マグネツト装置及び該超電導マグネツト装置を使用した粒子加速器
DE69226553T2 (de) 1991-03-13 1998-12-24 Fujitsu Ltd Vorrichtung und Verfahren zur Belichtung mittels Ladungsträgerstrahlen
JP2556057Y2 (ja) 1991-05-11 1997-12-03 ケージーパック株式会社 義歯の一時保管用袋
JPH04337300A (ja) 1991-05-15 1992-11-25 Res Dev Corp Of Japan 超電導偏向マグネット
JP2540900Y2 (ja) 1991-05-16 1997-07-09 株式会社シマノ スピニングリールのストッパ装置
JPH05154210A (ja) * 1991-12-06 1993-06-22 Mitsubishi Electric Corp 放射線治療装置
US5148032A (en) 1991-06-28 1992-09-15 Siemens Medical Laboratories, Inc. Radiation emitting device with moveable aperture plate
WO1993002537A1 (en) 1991-07-16 1993-02-04 Sergei Nikolaevich Lapitsky Superconducting electromagnet for charged-particle accelerator
FR2679509B1 (fr) * 1991-07-26 1993-11-05 Lebre Charles Dispositif de serrage automatique, sur le mat d'un diable a fut, de l'element de prise en suspension du fut.
US5166531A (en) 1991-08-05 1992-11-24 Varian Associates, Inc. Leaf-end configuration for multileaf collimator
JP3125805B2 (ja) * 1991-10-16 2001-01-22 株式会社日立製作所 円形加速器
US5240218A (en) * 1991-10-23 1993-08-31 Loma Linda University Medical Center Retractable support assembly
JPH0636893Y2 (ja) 1991-11-16 1994-09-28 三友工業株式会社 連続加熱成形装置
BE1005530A4 (fr) * 1991-11-22 1993-09-28 Ion Beam Applic Sa Cyclotron isochrone
US5374913A (en) 1991-12-13 1994-12-20 Houston Advanced Research Center Twin-bore flux pipe dipole magnet
NL9200286A (nl) 1992-02-17 1993-09-16 Sven Ploem Botsvrij besturingssysteem voor een meerassig bestuurbare manipulator.
US5260581A (en) 1992-03-04 1993-11-09 Loma Linda University Medical Center Method of treatment room selection verification in a radiation beam therapy system
US5382914A (en) * 1992-05-05 1995-01-17 Accsys Technology, Inc. Proton-beam therapy linac
JPH05341352A (ja) 1992-06-08 1993-12-24 Minolta Camera Co Ltd カメラ及び交換レンズのバヨネットマウント用キャップ
JPH0636893A (ja) 1992-06-11 1994-02-10 Ishikawajima Harima Heavy Ind Co Ltd 粒子加速器
US5336891A (en) * 1992-06-16 1994-08-09 Arch Development Corporation Aberration free lens system for electron microscope
JP2824363B2 (ja) 1992-07-15 1998-11-11 三菱電機株式会社 ビーム供給装置
US5401973A (en) 1992-12-04 1995-03-28 Atomic Energy Of Canada Limited Industrial material processing electron linear accelerator
JP3121157B2 (ja) 1992-12-15 2000-12-25 株式会社日立メディコ マイクロトロン電子加速器
US5394130A (en) 1993-01-07 1995-02-28 General Electric Company Persistent superconducting switch for conduction-cooled superconducting magnet
JPH06233831A (ja) 1993-02-10 1994-08-23 Hitachi Medical Corp 定位的放射線治療装置
US5440133A (en) 1993-07-02 1995-08-08 Loma Linda University Medical Center Charged particle beam scattering system
US5464411A (en) * 1993-11-02 1995-11-07 Loma Linda University Medical Center Vacuum-assisted fixation apparatus
US5549616A (en) 1993-11-02 1996-08-27 Loma Linda University Medical Center Vacuum-assisted stereotactic fixation system with patient-activated switch
US5463291A (en) 1993-12-23 1995-10-31 Carroll; Lewis Cyclotron and associated magnet coil and coil fabricating process
JPH07191199A (ja) 1993-12-27 1995-07-28 Fujitsu Ltd 荷電粒子ビーム露光システム及び露光方法
US5410286A (en) 1994-02-25 1995-04-25 General Electric Company Quench-protected, refrigerated superconducting magnet
JPH07260939A (ja) 1994-03-17 1995-10-13 Hitachi Medical Corp シンチレーションカメラのコリメータ交換台車
JP3307059B2 (ja) 1994-03-17 2002-07-24 株式会社日立製作所 加速器及び医療用装置並びに出射方法
JPH07263196A (ja) 1994-03-18 1995-10-13 Toshiba Corp 高周波加速空洞
JP3079346B2 (ja) * 1994-03-18 2000-08-21 住友重機械工業株式会社 3次元粒子線照射装置
DE4411171A1 (de) 1994-03-30 1995-10-05 Siemens Ag Vorrichtung zur Bereitstellung eines Strahls aus geladenen Teilchen, der eine Achse auf einer diese schneidenden Zielgeraden anfliegt, sowie ihre Verwendung
US5485730A (en) 1994-08-10 1996-01-23 General Electric Company Remote cooling system for a superconducting magnet
AU691028B2 (en) 1994-08-19 1998-05-07 Amersham International Plc Superconducting cyclotron and target for use in the production of heavy isotopes
IT1281184B1 (it) * 1994-09-19 1998-02-17 Giorgio Trozzi Amministratore Apparecchiatura per la radioterapia intraoperatoria mediante acceleratori lineari utilizzabili direttamente in sala operatoria
DE69528509T2 (de) 1994-10-27 2003-06-26 Gen Electric Stromzuleitung von supraleitender Keramik
US5633747A (en) 1994-12-21 1997-05-27 Tencor Instruments Variable spot-size scanning apparatus
JP3629054B2 (ja) 1994-12-22 2005-03-16 北海製罐株式会社 溶接缶サイドシームの外面補正塗装方法
US5511549A (en) * 1995-02-13 1996-04-30 Loma Linda Medical Center Normalizing and calibrating therapeutic radiation delivery systems
US5585642A (en) * 1995-02-15 1996-12-17 Loma Linda University Medical Center Beamline control and security system for a radiation treatment facility
US5510357A (en) * 1995-02-28 1996-04-23 Eli Lilly And Company Benzothiophene compounds as anti-estrogenic agents
JP3023533B2 (ja) 1995-03-23 2000-03-21 住友重機械工業株式会社 サイクロトロン
WO1996032987A1 (en) * 1995-04-18 1996-10-24 Loma Linda University Medical Center System and method for multiple particle therapy
US5668371A (en) 1995-06-06 1997-09-16 Wisconsin Alumni Research Foundation Method and apparatus for proton therapy
BE1009669A3 (fr) * 1995-10-06 1997-06-03 Ion Beam Applic Sa Methode d'extraction de particules chargees hors d'un cyclotron isochrone et dispositif appliquant cette methode.
GB9520564D0 (en) 1995-10-07 1995-12-13 Philips Electronics Nv Apparatus for treating a patient
JPH09162585A (ja) 1995-12-05 1997-06-20 Kanazawa Kogyo Univ 磁気シールドルーム及びその組立方法
JP3472657B2 (ja) * 1996-01-18 2003-12-02 三菱電機株式会社 粒子線照射装置
JP3121265B2 (ja) * 1996-05-07 2000-12-25 株式会社日立製作所 放射線遮蔽体
US5811944A (en) 1996-06-25 1998-09-22 The United States Of America As Represented By The Department Of Energy Enhanced dielectric-wall linear accelerator
US5821705A (en) 1996-06-25 1998-10-13 The United States Of America As Represented By The United States Department Of Energy Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators
US5726448A (en) * 1996-08-09 1998-03-10 California Institute Of Technology Rotating field mass and velocity analyzer
DE69729151T2 (de) 1996-08-30 2005-05-04 Hitachi, Ltd. Vorrichtung für einen geladenen Teilchenstrahl
JPH1071213A (ja) 1996-08-30 1998-03-17 Hitachi Ltd 陽子線治療システム
US5851182A (en) 1996-09-11 1998-12-22 Sahadevan; Velayudhan Megavoltage radiation therapy machine combined to diagnostic imaging devices for cost efficient conventional and 3D conformal radiation therapy with on-line Isodose port and diagnostic radiology
US5727554A (en) * 1996-09-19 1998-03-17 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus responsive to movement of a patient during treatment/diagnosis
US6111749A (en) 1996-09-25 2000-08-29 International Business Machines Corporation Flexible cold plate having a one-piece coolant conduit and method employing same
US5672878A (en) 1996-10-24 1997-09-30 Siemens Medical Systems Inc. Ionization chamber having off-passageway measuring electrodes
US5778047A (en) * 1996-10-24 1998-07-07 Varian Associates, Inc. Radiotherapy couch top
US5920601A (en) 1996-10-25 1999-07-06 Lockheed Martin Idaho Technologies Company System and method for delivery of neutron beams for medical therapy
US5825845A (en) 1996-10-28 1998-10-20 Loma Linda University Medical Center Proton beam digital imaging system
US5784431A (en) 1996-10-29 1998-07-21 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus for matching X-ray images with reference images
JP3841898B2 (ja) 1996-11-21 2006-11-08 三菱電機株式会社 深部線量測定装置
WO1998023330A1 (fr) 1996-11-26 1998-06-04 Mitsubishi Denki Kabushiki Kaisha Procede d'obtention de rayonnement d'energie
JP3246364B2 (ja) 1996-12-03 2002-01-15 株式会社日立製作所 シンクロトロン型加速器及びそれを用いた医療用装置
US5998889A (en) 1996-12-10 1999-12-07 Nikon Corporation Electro-magnetic motor cooling system
EP0864337A3 (en) 1997-03-15 1999-03-10 Shenzhen OUR International Technology & Science Co., Ltd. Three-dimensional irradiation technique with charged particles of Bragg peak properties and its device
JPH10300899A (ja) * 1997-04-22 1998-11-13 Mitsubishi Electric Corp 放射線治療装置
US5841237A (en) 1997-07-14 1998-11-24 Lockheed Martin Energy Research Corporation Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources
BE1012534A3 (fr) 1997-08-04 2000-12-05 Sumitomo Heavy Industries Systeme de lit pour therapie par irradiation.
US5846043A (en) 1997-08-05 1998-12-08 Spath; John J. Cart and caddie system for storing and delivering water bottles
JP3532739B2 (ja) 1997-08-07 2004-05-31 住友重機械工業株式会社 放射線の照射野形成部材固定装置
US5931638A (en) 1997-08-07 1999-08-03 United Technologies Corporation Turbomachinery airfoil with optimized heat transfer
US5963615A (en) 1997-08-08 1999-10-05 Siemens Medical Systems, Inc. Rotational flatness improvement
JP3519248B2 (ja) 1997-08-08 2004-04-12 住友重機械工業株式会社 放射線治療用回転照射室
JP3203211B2 (ja) * 1997-08-11 2001-08-27 住友重機械工業株式会社 水ファントム型線量分布測定装置及び放射線治療装置
JPH11102800A (ja) 1997-09-29 1999-04-13 Toshiba Corp 超電導高周波加速空胴および粒子加速器
EP0943148A1 (en) * 1997-10-06 1999-09-22 Koninklijke Philips Electronics N.V. X-ray examination apparatus including adjustable x-ray filter and collimator
JP3577201B2 (ja) 1997-10-20 2004-10-13 三菱電機株式会社 荷電粒子線照射装置、荷電粒子線回転照射装置、および荷電粒子線照射方法
JPH11142600A (ja) * 1997-11-12 1999-05-28 Mitsubishi Electric Corp 荷電粒子線照射装置及び照射方法
JP3528583B2 (ja) 1997-12-25 2004-05-17 三菱電機株式会社 荷電粒子ビーム照射装置および磁界発生装置
EP1049475A4 (en) * 1998-01-08 2003-06-04 Univ California MODULATORS OF THE KINESINE ENGINE DERIVED FROM THE SEA SPONGE $ i (ADOCIA)
EP1047337B1 (en) 1998-01-14 2007-10-10 Leonard Reiffel System to stabilize an irradiated internal target
AUPP156698A0 (en) 1998-01-30 1998-02-19 Pacific Solar Pty Limited New method for hydrogen passivation
JPH11243295A (ja) 1998-02-26 1999-09-07 Shimizu Corp 磁気シールド方法及び磁気シールド構造
JPH11253563A (ja) * 1998-03-10 1999-09-21 Hitachi Ltd 荷電粒子ビーム照射方法及び装置
JP3053389B1 (ja) 1998-12-03 2000-06-19 三菱電機株式会社 動体追跡照射装置
JPH11288809A (ja) 1998-03-31 1999-10-19 Toshiba Corp 超電導マグネット装置
GB2361523B (en) 1998-03-31 2002-05-01 Toshiba Kk Superconducting magnet apparatus
JPH11329945A (ja) 1998-05-08 1999-11-30 Nikon Corp 荷電粒子ビーム転写方法及び荷電粒子ビーム転写装置
CA2241116C (en) 1998-06-19 2009-08-25 Liyan Zhang Radiation (e.g. x-ray pulse) generator mechanisms
US6376943B1 (en) 1998-08-26 2002-04-23 American Superconductor Corporation Superconductor rotor cooling system
JP2000070389A (ja) 1998-08-27 2000-03-07 Mitsubishi Electric Corp 照射線量値計算装置、照射線量値計算方法および記録媒体
DE69841746D1 (de) * 1998-09-11 2010-08-12 Gsi Helmholtzzentrum Schwerionenforschung Gmbh Ionenstrahl-Therapieanlage und Verfahren zum Betrieb der Anlage
WO2000020795A2 (en) 1998-09-14 2000-04-13 Massachusetts Institute Of Technology Superconducting apparatuses and cooling methods
SE513192C2 (sv) 1998-09-29 2000-07-24 Gems Pet Systems Ab Förfarande och system för HF-styrning
US6369585B2 (en) 1998-10-02 2002-04-09 Siemens Medical Solutions Usa, Inc. System and method for tuning a resonant structure
US6621889B1 (en) 1998-10-23 2003-09-16 Varian Medical Systems, Inc. Method and system for predictive physiological gating of radiation therapy
US6279579B1 (en) 1998-10-23 2001-08-28 Varian Medical Systems, Inc. Method and system for positioning patients for medical treatment procedures
US6241671B1 (en) 1998-11-03 2001-06-05 Stereotaxis, Inc. Open field system for magnetic surgery
US6441569B1 (en) 1998-12-09 2002-08-27 Edward F. Janzow Particle accelerator for inducing contained particle collisions
BE1012358A5 (fr) 1998-12-21 2000-10-03 Ion Beam Applic Sa Procede de variation de l'energie d'un faisceau de particules extraites d'un accelerateur et dispositif a cet effet.
BE1012371A5 (fr) 1998-12-24 2000-10-03 Ion Beam Applic Sa Procede de traitement d'un faisceau de protons et dispositif appliquant ce procede.
JP2000237335A (ja) 1999-02-17 2000-09-05 Mitsubishi Electric Corp 放射線治療方法及びそのシステム
DE19907121A1 (de) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zur Überprüfung der Strahlführung eines Ionenstrahl-Therapiesystems
DE19907097A1 (de) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zum Betreiben eines Ionenstrahl-Therapiesystems unter Überwachung der Bestrahlungsdosisverteilung
DE19907205A1 (de) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zum Betreiben eines Ionenstrahl-Therapiesystems unter Überwachung der Strahlposition
DE19907138A1 (de) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zur Überprüfung der Strahlerzeugungsmittel und der Strahlbeschleunigungsmittel eines Ionenstrahl-Therapiesystems
DE19907774A1 (de) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zum Verifizieren der berechneten Bestrahlungsdosis eines Ionenstrahl-Therapiesystems
DE19907065A1 (de) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zur Überprüfung eines Isozentrums und einer Patientenpositionierungseinrichtung eines Ionenstrahl-Therapiesystems
DE19907098A1 (de) 1999-02-19 2000-08-24 Schwerionenforsch Gmbh Ionenstrahl-Abtastsystem und Verfahren zum Betrieb des Systems
US6144875A (en) 1999-03-16 2000-11-07 Accuray Incorporated Apparatus and method for compensating for respiratory and patient motion during treatment
US6501981B1 (en) * 1999-03-16 2002-12-31 Accuray, Inc. Apparatus and method for compensating for respiratory and patient motions during treatment
EP1041579A1 (en) 1999-04-01 2000-10-04 GSI Gesellschaft für Schwerionenforschung mbH Gantry with an ion-optical system
DE60042321D1 (de) 1999-04-07 2009-07-16 Univ Loma Linda Med System zur überwachung von patientenbewegungen bei der protonentherapie
JP2000294399A (ja) 1999-04-12 2000-10-20 Toshiba Corp 超電導高周波加速空胴及び粒子加速器
JP3530072B2 (ja) 1999-05-13 2004-05-24 三菱電機株式会社 放射線治療用の放射線照射装置の制御装置
SE9902163D0 (sv) 1999-06-09 1999-06-09 Scanditronix Medical Ab Stable rotable radiation gantry
JP2001006900A (ja) 1999-06-18 2001-01-12 Toshiba Corp 放射光発生装置
JP4920845B2 (ja) * 1999-06-25 2012-04-18 パウル・シェラー・インスティトゥート 陽子療法を実施する装置
JP2001009050A (ja) 1999-06-29 2001-01-16 Hitachi Medical Corp 放射線治療装置
EP1069809A1 (en) 1999-07-13 2001-01-17 Ion Beam Applications S.A. Isochronous cyclotron and method of extraction of charged particles from such cyclotron
CA2374326A1 (en) 1999-07-14 2001-01-25 Christopher Mark Rey Superconducting coil assembly
JP2001029490A (ja) * 1999-07-19 2001-02-06 Hitachi Ltd 混合照射評価支援システム
NL1012677C2 (nl) 1999-07-22 2001-01-23 William Van Der Burg Inrichting en werkwijze voor het plaatsen van een informatiedrager.
US6380545B1 (en) 1999-08-30 2002-04-30 Southeastern Universities Research Association, Inc. Uniform raster pattern generating system
US6420917B1 (en) 1999-10-01 2002-07-16 Ericsson Inc. PLL loop filter with switched-capacitor resistor
US6713773B1 (en) 1999-10-07 2004-03-30 Mitec, Inc. Irradiation system and method
AU8002500A (en) 1999-10-08 2001-04-23 Advanced Research And Technology Institute, Inc. Apparatus and method for non-invasive myocardial revascularization
JP4185637B2 (ja) 1999-11-01 2008-11-26 株式会社神鋼エンジニアリング&メンテナンス 粒子線治療用回転照射室
JP2001137372A (ja) * 1999-11-10 2001-05-22 Mitsubishi Electric Corp 放射線照射装置の照射室内設置方法及び照射室
US6803585B2 (en) 2000-01-03 2004-10-12 Yuri Glukhoy Electron-cyclotron resonance type ion beam source for ion implanter
US6366021B1 (en) 2000-01-06 2002-04-02 Varian Medical Systems, Inc. Standing wave particle beam accelerator with switchable beam energy
JP4128717B2 (ja) 2000-01-26 2008-07-30 古河電気工業株式会社 床暖房パネル
JP3927348B2 (ja) * 2000-03-15 2007-06-06 三菱電機株式会社 回転照射装置
US6498444B1 (en) 2000-04-10 2002-12-24 Siemens Medical Solutions Usa, Inc. Computer-aided tuning of charged particle accelerators
AU2001274814B2 (en) 2000-04-27 2004-04-01 Loma Linda University Nanodosimeter based on single ion detection
JP2001346893A (ja) 2000-06-06 2001-12-18 Ishikawajima Harima Heavy Ind Co Ltd 放射線治療装置
DE10031074A1 (de) 2000-06-30 2002-01-31 Schwerionenforsch Gmbh Vorrichtung zur Bestrahlung eines Tumorgewebes
JP3705091B2 (ja) 2000-07-27 2005-10-12 株式会社日立製作所 医療用加速器システム及びその運転方法
US6914396B1 (en) * 2000-07-31 2005-07-05 Yale University Multi-stage cavity cyclotron resonance accelerator
US7041479B2 (en) 2000-09-06 2006-05-09 The Board Of Trustess Of The Leland Stanford Junior University Enhanced in vitro synthesis of active proteins containing disulfide bonds
JP2002102198A (ja) 2000-09-22 2002-04-09 Ge Medical Systems Global Technology Co Llc Mr装置
CA2325362A1 (en) 2000-11-08 2002-05-08 Kirk Flippo Method and apparatus for high-energy generation and for inducing nuclear reactions
DE10057664A1 (de) 2000-11-21 2002-05-29 Siemens Ag Supraleitungseinrichtung mit einem thermisch an eine rotierende,supraleitende Wicklung angekoppelten Kaltkopf einer Kälteeinheit
JP3633475B2 (ja) 2000-11-27 2005-03-30 鹿島建設株式会社 すだれ型磁気シールド方法及びパネル並びに磁気暗室
US6714694B1 (en) * 2000-11-27 2004-03-30 Xerox Corporation Method for sliding window image processing of associative operators
AU3071802A (en) 2000-12-08 2002-06-18 Univ Loma Linda Med Proton beam therapy control system
US6492922B1 (en) 2000-12-14 2002-12-10 Xilinx Inc. Anti-aliasing filter with automatic cutoff frequency adaptation
JP2002210028A (ja) 2001-01-23 2002-07-30 Mitsubishi Electric Corp 放射線照射システム及び放射線照射方法
US6407505B1 (en) 2001-02-01 2002-06-18 Siemens Medical Solutions Usa, Inc. Variable energy linear accelerator
JP3995089B2 (ja) 2001-02-05 2007-10-24 ジー エス アイ ゲゼルシャフト フュア シュベールイオーネンフォルシュンク エム ベー ハー 重イオンビームアプリケーションシステムにおいて使用されるイオンビームを予備加速する装置
WO2002069350A1 (en) * 2001-02-06 2002-09-06 Gesellschaft für Schwerionenforschung mbH Beam scanning system for a heavy ion gantry
US6493424B2 (en) 2001-03-05 2002-12-10 Siemens Medical Solutions Usa, Inc. Multi-mode operation of a standing wave linear accelerator
JP2002263090A (ja) 2001-03-07 2002-09-17 Mitsubishi Heavy Ind Ltd 検査治療装置
JP4115675B2 (ja) 2001-03-14 2008-07-09 三菱電機株式会社 強度変調療法用吸収線量測定装置
US6646383B2 (en) 2001-03-15 2003-11-11 Siemens Medical Solutions Usa, Inc. Monolithic structure with asymmetric coupling
US6708054B2 (en) * 2001-04-12 2004-03-16 Koninklijke Philips Electronics, N.V. MR-based real-time radiation therapy oncology simulator
US6465957B1 (en) 2001-05-25 2002-10-15 Siemens Medical Solutions Usa, Inc. Standing wave linear accelerator with integral prebunching section
EP1265462A1 (fr) * 2001-06-08 2002-12-11 Ion Beam Applications S.A. Dispositif et méthode de régulation de l'intensité d'un faisceau extrait d'un accélérateur de particules
US6853703B2 (en) * 2001-07-20 2005-02-08 Siemens Medical Solutions Usa, Inc. Automated delivery of treatment fields
US6986739B2 (en) 2001-08-23 2006-01-17 Sciperio, Inc. Architecture tool and methods of use
EP2305350A1 (en) 2001-08-24 2011-04-06 Mitsubishi Heavy Industries, Ltd. Radiation treatment apparatus
JP2003086400A (ja) * 2001-09-11 2003-03-20 Hitachi Ltd 加速器システム及び医療用加速器施設
JP3948511B2 (ja) * 2001-10-26 2007-07-25 独立行政法人科学技術振興機構 電磁石と永久磁石を縦方向に組み合わせた磁界発生装置
EP1446989B1 (en) 2001-10-30 2007-03-21 Loma Linda University Medical Center Device for aligning a patient for delivering radiotherapy
US6519316B1 (en) * 2001-11-02 2003-02-11 Siemens Medical Solutions Usa, Inc.. Integrated control of portal imaging device
US6777689B2 (en) 2001-11-16 2004-08-17 Ion Beam Application, S.A. Article irradiation system shielding
US7221733B1 (en) 2002-01-02 2007-05-22 Varian Medical Systems Technologies, Inc. Method and apparatus for irradiating a target
US6593696B2 (en) 2002-01-04 2003-07-15 Siemens Medical Solutions Usa, Inc. Low dark current linear accelerator
JP3750930B2 (ja) 2002-01-17 2006-03-01 三菱電機株式会社 荷電粒子照射装置
DE10205949B4 (de) 2002-02-12 2013-04-25 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Verfahren und Vorrichtung zum Steuern einer nach dem Rasterscanverfahren arbeitenden Bestrahlungseinrichtung für schwere Ionen oder Protonen mit Strahlextraktion
JP4337300B2 (ja) 2002-02-28 2009-09-30 日立金属株式会社 希土類系永久磁石の製造方法
JP4072359B2 (ja) 2002-02-28 2008-04-09 株式会社日立製作所 荷電粒子ビーム照射装置
JP3691020B2 (ja) 2002-02-28 2005-08-31 株式会社日立製作所 医療用荷電粒子照射装置
DE50211712D1 (de) * 2002-03-12 2008-03-27 Deutsches Krebsforsch Vorrichtung zur durchführung und verifikation einer therapeutischen behandlung sowie zugehöriges computerprogramm
JP3801938B2 (ja) 2002-03-26 2006-07-26 株式会社日立製作所 粒子線治療システム及び荷電粒子ビーム軌道の調整方法
EP1358908A1 (en) * 2002-05-03 2003-11-05 Ion Beam Applications S.A. Device for irradiation therapy with charged particles
DE10221180A1 (de) * 2002-05-13 2003-12-24 Siemens Ag Patientenlagerungsvorrichtung für eine Strahlentherapie
US6735277B2 (en) 2002-05-23 2004-05-11 Koninklijke Philips Electronics N.V. Inverse planning for intensity-modulated radiotherapy
EP1531902A1 (en) 2002-05-31 2005-05-25 Ion Beam Applications S.A. Apparatus for irradiating a target volume
US6777700B2 (en) 2002-06-12 2004-08-17 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation apparatus
US6865254B2 (en) * 2002-07-02 2005-03-08 Pencilbeam Technologies Ab Radiation system with inner and outer gantry parts
US7162005B2 (en) 2002-07-19 2007-01-09 Varian Medical Systems Technologies, Inc. Radiation sources and compact radiation scanning systems
US7103137B2 (en) * 2002-07-24 2006-09-05 Varian Medical Systems Technology, Inc. Radiation scanning of objects for contraband
DE10241178B4 (de) 2002-09-05 2007-03-29 Mt Aerospace Ag Isokinetische Gantry-Anordnung zur isozentrischen Führung eines Teilchenstrahls und Verfahren zu deren Auslegung
WO2004026401A1 (de) 2002-09-18 2004-04-01 Paul Scherrer Institut Anordnung zur durchführung einer protonentherapie
JP3748426B2 (ja) * 2002-09-30 2006-02-22 株式会社日立製作所 医療用粒子線照射装置
JP3961925B2 (ja) * 2002-10-17 2007-08-22 三菱電機株式会社 ビーム加速装置
US6853142B2 (en) * 2002-11-04 2005-02-08 Zond, Inc. Methods and apparatus for generating high-density plasma
US7446490B2 (en) 2002-11-25 2008-11-04 Ion Beam Appliances S.A. Cyclotron
EP1429345A1 (fr) 2002-12-10 2004-06-16 Ion Beam Applications S.A. Dispositif et procédé de production de radio-isotopes
DE10261099B4 (de) 2002-12-20 2005-12-08 Siemens Ag Ionenstrahlanlage
US6822244B2 (en) 2003-01-02 2004-11-23 Loma Linda University Medical Center Configuration management and retrieval system for proton beam therapy system
WO2004062800A1 (en) * 2003-01-06 2004-07-29 The Johns Hopkins University Hydroxyl free radical-induced decontamination of airborne spores, viruses and bacteria in a dynamic system
EP1439566B1 (en) 2003-01-17 2019-08-28 ICT, Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam apparatus and method for operating the same
US7814937B2 (en) * 2005-10-26 2010-10-19 University Of Southern California Deployable contour crafting
JP4186636B2 (ja) * 2003-01-30 2008-11-26 株式会社日立製作所 超電導磁石
WO2004073364A1 (ja) 2003-02-17 2004-08-26 Mitsubishi Denki Kabushiki Kaisha 荷電粒子加速器
US6812462B1 (en) 2003-02-21 2004-11-02 Kla-Tencor Technologies Corporation Dual electron beam instrument for multi-perspective
JP3748433B2 (ja) 2003-03-05 2006-02-22 株式会社日立製作所 ベッド位置決め装置及びその位置決め方法
JP3859605B2 (ja) 2003-03-07 2006-12-20 株式会社日立製作所 粒子線治療システム及び粒子線出射方法
JP4347847B2 (ja) 2003-03-17 2009-10-21 鹿島建設株式会社 開放型磁気シールド構造及びその磁性体フレーム
JP3655292B2 (ja) 2003-04-14 2005-06-02 株式会社日立製作所 粒子線照射装置及び荷電粒子ビーム照射装置の調整方法
JP2004321408A (ja) 2003-04-23 2004-11-18 Mitsubishi Electric Corp 放射線照射装置および放射線照射方法
WO2004101070A1 (en) 2003-05-13 2004-11-25 Ion Beam Applications Sa Method and system for automatic beam allocation in a multi-room particle beam treatment facility
EP1477206B2 (en) 2003-05-13 2011-02-23 Hitachi, Ltd. Particle beam irradiation apparatus and treatment planning unit
AU2004246641B2 (en) 2003-06-02 2009-03-12 Fox Chase Cancer Center High energy polyenergetic ion beam systems
JP2005027681A (ja) 2003-07-07 2005-02-03 Hitachi Ltd 荷電粒子治療装置及び荷電粒子治療システム
CA2535121C (en) 2003-08-12 2021-03-23 Loma Linda University Medical Center Patient positioning system for radiation therapy system
ATE547048T1 (de) 2003-08-12 2012-03-15 Univ Loma Linda Med Modulares patientenunterstützungssystem
KR20050021733A (ko) 2003-08-25 2005-03-07 삼성전자주식회사 디스크의 복제방지를 위한 데이터를 기록한 기록매체,변조방법, 기록장치 및 재생장치
JP4323267B2 (ja) 2003-09-09 2009-09-02 株式会社ミツトヨ 形状測定装置、形状測定方法、形状解析装置、形状解析プログラムおよび記録媒体
JP3685194B2 (ja) 2003-09-10 2005-08-17 株式会社日立製作所 粒子線治療装置,レンジモジュレーション回転装置及びレンジモジュレーション回転装置の取り付け方法
US20050058245A1 (en) * 2003-09-11 2005-03-17 Moshe Ein-Gal Intensity-modulated radiation therapy with a multilayer multileaf collimator
JP4129768B2 (ja) 2003-10-02 2008-08-06 株式会社山武 検出装置
JP4177740B2 (ja) 2003-10-10 2008-11-05 株式会社日立製作所 Mri用超電導磁石
US7557360B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US7557358B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US7554096B2 (en) 2003-10-16 2009-06-30 Alis Corporation Ion sources, systems and methods
US7786451B2 (en) 2003-10-16 2010-08-31 Alis Corporation Ion sources, systems and methods
US7557361B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US7557359B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US7554097B2 (en) 2003-10-16 2009-06-30 Alis Corporation Ion sources, systems and methods
US7786452B2 (en) 2003-10-16 2010-08-31 Alis Corporation Ion sources, systems and methods
US7154991B2 (en) 2003-10-17 2006-12-26 Accuray, Inc. Patient positioning assembly for therapeutic radiation system
CN1537657A (zh) * 2003-10-22 2004-10-20 高春平 手术中放射治疗装置
US7295648B2 (en) 2003-10-23 2007-11-13 Elektra Ab (Publ) Method and apparatus for treatment by ionizing radiation
JP4114590B2 (ja) 2003-10-24 2008-07-09 株式会社日立製作所 粒子線治療装置
JP3912364B2 (ja) 2003-11-07 2007-05-09 株式会社日立製作所 粒子線治療装置
EP1690113B1 (en) 2003-12-04 2012-06-27 Paul Scherrer Institut An inorganic scintillating mixture and a sensor assembly for charged particle dosimetry
JP3643371B1 (ja) 2003-12-10 2005-04-27 株式会社日立製作所 粒子線照射装置及び照射野形成装置の調整方法
JP4443917B2 (ja) 2003-12-26 2010-03-31 株式会社日立製作所 粒子線治療装置
US7710051B2 (en) 2004-01-15 2010-05-04 Lawrence Livermore National Security, Llc Compact accelerator for medical therapy
US7173385B2 (en) * 2004-01-15 2007-02-06 The Regents Of The University Of California Compact accelerator
JP4273409B2 (ja) 2004-01-29 2009-06-03 日本ビクター株式会社 ウォームギア装置及びそのウォームギア装置を備える電子機器
JP2005251745A (ja) 2004-02-23 2005-09-15 Zyvex Corp 荷電粒子ビーム装置プローブ操作
DE102004012452A1 (de) 2004-03-13 2005-10-06 Bruker Biospin Gmbh Supraleitendes Magnetsystem mit Pulsrohr-Kühler
EP1584353A1 (en) 2004-04-05 2005-10-12 Paul Scherrer Institut A system for delivery of proton therapy
US7860550B2 (en) 2004-04-06 2010-12-28 Accuray, Inc. Patient positioning assembly
US8160205B2 (en) 2004-04-06 2012-04-17 Accuray Incorporated Robotic arm for patient positioning assembly
JP4257741B2 (ja) 2004-04-19 2009-04-22 三菱電機株式会社 荷電粒子ビーム加速器、荷電粒子ビーム加速器を用いた粒子線照射医療システムおよび、粒子線照射医療システムの運転方法
DE102004027071A1 (de) 2004-05-19 2006-01-05 Gesellschaft für Schwerionenforschung mbH Strahlzuteilungsvorrichtung und Strahlzuteilungsverfahren für medizinische Teilchenbeschleuniger
DE102004028035A1 (de) * 2004-06-09 2005-12-29 Gesellschaft für Schwerionenforschung mbH Vorrichtung und Verfahren zur Kompensation von Bewegungen eines Zielvolumens während einer Ionenstrahl-Bestrahlung
DE202004009421U1 (de) * 2004-06-16 2005-11-03 Gesellschaft für Schwerionenforschung mbH Teilchenbeschleuniger für die Strahlentherapie mit Ionenstrahlen
US7073508B2 (en) 2004-06-25 2006-07-11 Loma Linda University Medical Center Method and device for registration and immobilization
US7135678B2 (en) 2004-07-09 2006-11-14 Credence Systems Corporation Charged particle guide
US7208748B2 (en) * 2004-07-21 2007-04-24 Still River Systems, Inc. Programmable particle scatterer for radiation therapy beam formation
EP1790203B1 (en) 2004-07-21 2015-12-30 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
US6965116B1 (en) 2004-07-23 2005-11-15 Applied Materials, Inc. Method of determining dose uniformity of a scanning ion implanter
JP4489529B2 (ja) 2004-07-28 2010-06-23 株式会社日立製作所 粒子線治療システム及び粒子線治療システムの制御システム
GB2418061B (en) 2004-09-03 2006-10-18 Zeiss Carl Smt Ltd Scanning particle beam instrument
JP2006128087A (ja) 2004-09-30 2006-05-18 Hitachi Ltd 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
DE102004048212B4 (de) * 2004-09-30 2007-02-01 Siemens Ag Strahlentherapieanlage mit Bildgebungsvorrichtung
JP3806723B2 (ja) 2004-11-16 2006-08-09 株式会社日立製作所 粒子線照射システム
US7265356B2 (en) * 2004-11-29 2007-09-04 The University Of Chicago Image-guided medical intervention apparatus and method
DE102004057726B4 (de) 2004-11-30 2010-03-18 Siemens Ag Medizinische Untersuchungs- und Behandlungseinrichtung
CN100561332C (zh) * 2004-12-09 2009-11-18 Ge医疗系统环球技术有限公司 X射线辐照器和x射线成像设备
US7994664B2 (en) 2004-12-10 2011-08-09 General Electric Company System and method for cooling a superconducting rotary machine
US7122966B2 (en) 2004-12-16 2006-10-17 General Electric Company Ion source apparatus and method
DE102004061869B4 (de) 2004-12-22 2008-06-05 Siemens Ag Einrichtung der Supraleitungstechnik und Magnetresonanzgerät
EP1842079A4 (en) 2004-12-30 2010-07-07 Crystalview Medical Imaging Lt WIRRWARR SUPPRESSION IN ULTRASONIC IMAGING SYSTEMS
US7349730B2 (en) 2005-01-11 2008-03-25 Moshe Ein-Gal Radiation modulator positioner
WO2006076545A2 (en) 2005-01-14 2006-07-20 Indiana University Research And Technology Corporation Automatic retractable floor system for a rotating gantry
US7193227B2 (en) * 2005-01-24 2007-03-20 Hitachi, Ltd. Ion beam therapy system and its couch positioning method
US7468506B2 (en) 2005-01-26 2008-12-23 Applied Materials, Israel, Ltd. Spot grid array scanning system
CN101031336B (zh) 2005-02-04 2011-08-10 三菱电机株式会社 粒子射线照射方法及该方法中使用的粒子射线照射装置
CN1980709A (zh) 2005-02-04 2007-06-13 三菱电机株式会社 粒子射线照射方法及使用该方法的粒子射线照射装置
GB2422958B (en) * 2005-02-04 2008-07-09 Siemens Magnet Technology Ltd Quench protection circuit for a superconducting magnet
JP4219905B2 (ja) 2005-02-25 2009-02-04 株式会社日立製作所 放射線治療装置の回転ガントリー
EP1871477B1 (en) * 2005-03-09 2011-03-23 Paul Scherrer Institut System for taking wide-field beam-eye-view (bev) x-ray-images simultaneously to the proton therapy delivery
JP4363344B2 (ja) * 2005-03-15 2009-11-11 三菱電機株式会社 粒子線加速器
GB0505903D0 (en) 2005-03-23 2005-04-27 Siemens Magnet Technology Ltd A cryogen tank for cooling equipment
JP4751635B2 (ja) 2005-04-13 2011-08-17 株式会社日立ハイテクノロジーズ 磁界重畳型電子銃
JP4158931B2 (ja) 2005-04-13 2008-10-01 三菱電機株式会社 粒子線治療装置
US7420182B2 (en) 2005-04-27 2008-09-02 Busek Company Combined radio frequency and hall effect ion source and plasma accelerator system
US7014361B1 (en) 2005-05-11 2006-03-21 Moshe Ein-Gal Adaptive rotator for gantry
WO2006126075A2 (en) * 2005-05-27 2006-11-30 Ion Beam Applications, S.A. Device and method for quality assurance and online verification of radiation therapy
US7575242B2 (en) * 2005-06-16 2009-08-18 Siemens Medical Solutions Usa, Inc. Collimator change cart
GB2427478B (en) 2005-06-22 2008-02-20 Siemens Magnet Technology Ltd Particle radiation therapy equipment and method for simultaneous application of magnetic resonance imaging and particle radiation
US7436932B2 (en) 2005-06-24 2008-10-14 Varian Medical Systems Technologies, Inc. X-ray radiation sources with low neutron emissions for radiation scanning
JP3882843B2 (ja) * 2005-06-30 2007-02-21 株式会社日立製作所 回転照射装置
CA2614773C (en) * 2005-07-13 2014-10-07 Crown Equipment Corporation Pallet clamping device
EP1907064B1 (en) 2005-07-22 2011-06-08 TomoTherapy, Inc. Method of defining a region of interest using a dose volume histogram
EP1907065B1 (en) 2005-07-22 2012-11-07 TomoTherapy, Inc. Method and system for adapting a radiation therapy treatment plan based on a biological model
US7839972B2 (en) 2005-07-22 2010-11-23 Tomotherapy Incorporated System and method of evaluating dose delivered by a radiation therapy system
WO2007014092A2 (en) 2005-07-22 2007-02-01 Tomotherapy Incorporated Method of placing constraints on a deformation map and system for implementing same
EP1907984A4 (en) 2005-07-22 2009-10-21 Tomotherapy Inc METHOD AND SYSTEM FOR DATA PROCESSING IN THE CONTEXT OF A RADIATION THERAPY TREATMENT PLAN
EP1907981A4 (en) * 2005-07-22 2009-10-21 Tomotherapy Inc METHOD AND SYSTEM FOR DOSE EVALUATION ADMINISTERED
AU2006272730A1 (en) 2005-07-22 2007-02-01 Tomotherapy Incorporated Method of and system for predicting dose delivery
JP2009502255A (ja) 2005-07-22 2009-01-29 トモセラピー・インコーポレーテッド 治療プランのデリバリにおける品質保証基準を評価するための方法およびシステム
KR20080044250A (ko) * 2005-07-23 2008-05-20 토모테라피 인코포레이티드 갠트리 및 진료대의 조합된 움직임을 이용하는 방사선치료의 영상화 및 시행
DE102006033501A1 (de) * 2005-08-05 2007-02-15 Siemens Ag Gantry-System für eine Partikeltherapieanlage
DE102005038242B3 (de) 2005-08-12 2007-04-12 Siemens Ag Vorrichtung zur Aufweitung einer Partikelenergieverteilung eines Partikelstrahls einer Partikeltherapieanlage, Strahlüberwachungs- und Strahlanpassungseinheit und Verfahren
EP1752992A1 (de) 2005-08-12 2007-02-14 Siemens Aktiengesellschaft Vorrichtung zur Anpassung mindestens eines Partikelstrahlparameters eines Partikelstrahls einer Partikelbeschleunigeranlage und Partikelbeschleunigeranlage mit einer derartigen Vorrichtung
WO2007020785A1 (ja) * 2005-08-18 2007-02-22 Konica Minolta Medical & Graphic, Inc. 放射線画像変換パネル
DE102005041122B3 (de) * 2005-08-30 2007-05-31 Siemens Ag Gantry-System für eine Partikeltherapieanlage, Partikeltherapieanlage und Bestrahlungsverfahren für eine Partikeltherapieanlage mit einem derartigen Gantry-System
US20070061937A1 (en) * 2005-09-06 2007-03-22 Curle Dennis W Method and apparatus for aerodynamic hat brim and hat
JP5245193B2 (ja) 2005-09-07 2013-07-24 株式会社日立製作所 荷電粒子ビーム照射システム及び荷電粒子ビーム出射方法
DE102005044409B4 (de) 2005-09-16 2007-11-29 Siemens Ag Partikeltherapieanlage und Verfahren zur Ausbildung eines Strahlpfads für einen Bestrahlungsvorgang in einer Partikeltherapieanlage
DE102005044408B4 (de) 2005-09-16 2008-03-27 Siemens Ag Partikeltherapieanlage, Verfahren und Vorrichtung zur Anforderung eines Partikelstrahls
US7465928B2 (en) * 2005-09-29 2008-12-16 Siemens Medical Solutions Usa, Inc. Apparatus and methods for guiding cables around a rotating gantry of a nuclear medicine camera
US7295649B2 (en) 2005-10-13 2007-11-13 Varian Medical Systems Technologies, Inc. Radiation therapy system and method of using the same
US7658901B2 (en) 2005-10-14 2010-02-09 The Trustees Of Princeton University Thermally exfoliated graphite oxide
AU2006342150A1 (en) * 2005-10-24 2007-10-25 Lawrence Livermore National Security, Llc. Optically- initiated silicon carbide high voltage switch
WO2007051312A1 (en) 2005-11-07 2007-05-10 Fibics Incorporated Apparatus and method for surface modification using charged particle beams
DE102005053719B3 (de) 2005-11-10 2007-07-05 Siemens Ag Partikeltherapieanlage, Therapieplan und Bestrahlungsverfahren für eine derartige Partikeltherapieanlage
AU2006342170A1 (en) 2005-11-14 2007-10-25 Lawrence Livermore National Security, Llc Cast dielectric composite linear accelerator
US7616083B2 (en) 2005-11-14 2009-11-10 Siemens Magnet Technology Ltd. Resin-impregnated superconducting magnet coil comprising a cooling layer
EP2389978B1 (en) 2005-11-18 2019-03-13 Mevion Medical Systems, Inc. Charged particle radiation therapy
US7459899B2 (en) 2005-11-21 2008-12-02 Thermo Fisher Scientific Inc. Inductively-coupled RF power source
EP1795229A1 (en) 2005-12-12 2007-06-13 Ion Beam Applications S.A. Device and method for positioning a patient in a radiation therapy apparatus
US7298821B2 (en) 2005-12-12 2007-11-20 Moshe Ein-Gal Imaging and treatment system
DE102005063220A1 (de) 2005-12-22 2007-06-28 GSI Gesellschaft für Schwerionenforschung mbH Vorrichtung zum Bestrahlen von Tumorgewebe eines Patienten mit einem Teilchenstrahl
US7656258B1 (en) 2006-01-19 2010-02-02 Massachusetts Institute Of Technology Magnet structure for particle acceleration
EP2190269B1 (en) 2006-01-19 2017-03-15 Massachusetts Institute of Technology Magnet structure for particle acceleration
US7432516B2 (en) 2006-01-24 2008-10-07 Brookhaven Science Associates, Llc Rapid cycling medical synchrotron and beam delivery system
JP4696965B2 (ja) 2006-02-24 2011-06-08 株式会社日立製作所 荷電粒子ビーム照射システム及び荷電粒子ビーム出射方法
JP4310319B2 (ja) * 2006-03-10 2009-08-05 三菱重工業株式会社 放射線治療装置制御装置および放射線照射方法
DE102006011828A1 (de) 2006-03-13 2007-09-20 Gesellschaft für Schwerionenforschung mbH Bestrahlungsverifikationsvorrichtung für Strahlentherapieanlagen und Verfahren zur Handhabung derselben
DE102006012680B3 (de) 2006-03-20 2007-08-02 Siemens Ag Partikeltherapie-Anlage und Verfahren zum Ausgleichen einer axialen Abweichung in der Position eines Partikelstrahls einer Partikeltherapie-Anlage
JP4644617B2 (ja) 2006-03-23 2011-03-02 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP4762020B2 (ja) 2006-03-27 2011-08-31 株式会社小松製作所 成形方法及び成形品
JP4730167B2 (ja) 2006-03-29 2011-07-20 株式会社日立製作所 粒子線照射システム
US7507975B2 (en) * 2006-04-21 2009-03-24 Varian Medical Systems, Inc. System and method for high resolution radiation field shaping
US8426833B2 (en) 2006-05-12 2013-04-23 Brookhaven Science Associates, Llc Gantry for medical particle therapy facility
US8173981B2 (en) 2006-05-12 2012-05-08 Brookhaven Science Associates, Llc Gantry for medical particle therapy facility
US7582886B2 (en) 2006-05-12 2009-09-01 Brookhaven Science Associates, Llc Gantry for medical particle therapy facility
US7466085B2 (en) 2007-04-17 2008-12-16 Advanced Biomarker Technologies, Llc Cyclotron having permanent magnets
US7476883B2 (en) * 2006-05-26 2009-01-13 Advanced Biomarker Technologies, Llc Biomarker generator system
US7402822B2 (en) 2006-06-05 2008-07-22 Varian Medical Systems Technologies, Inc. Particle beam nozzle transport system
US7817836B2 (en) 2006-06-05 2010-10-19 Varian Medical Systems, Inc. Methods for volumetric contouring with expert guidance
JP5116996B2 (ja) 2006-06-20 2013-01-09 キヤノン株式会社 荷電粒子線描画方法、露光装置、及びデバイス製造方法
US7990524B2 (en) 2006-06-30 2011-08-02 The University Of Chicago Stochastic scanning apparatus using multiphoton multifocal source
JP4206414B2 (ja) 2006-07-07 2009-01-14 株式会社日立製作所 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
CN101610811A (zh) 2006-07-28 2009-12-23 断层放疗公司 用于校准放射治疗处理系统的方法和设备
DE102006035094B3 (de) 2006-07-28 2008-04-10 Siemens Ag Magnet mit einer supraleitenden Wicklung und einer zugeordneten Kühlvorrichtung
JP4872540B2 (ja) 2006-08-31 2012-02-08 株式会社日立製作所 回転照射治療装置
JP4881677B2 (ja) 2006-08-31 2012-02-22 株式会社日立ハイテクノロジーズ 荷電粒子線走査方法及び荷電粒子線装置
US7701677B2 (en) 2006-09-07 2010-04-20 Massachusetts Institute Of Technology Inductive quench for magnet protection
JP4365844B2 (ja) 2006-09-08 2009-11-18 三菱電機株式会社 荷電粒子線の線量分布測定装置
EP2069702A1 (en) 2006-09-13 2009-06-17 ExxonMobil Chemical Patents Inc. Quench exchanger with extended surface on process side
US9451928B2 (en) * 2006-09-13 2016-09-27 Elekta Ltd. Incorporating internal anatomy in clinical radiotherapy setups
US7950587B2 (en) 2006-09-22 2011-05-31 The Board of Regents of the Nevada System of Higher Education on behalf of the University of Reno, Nevada Devices and methods for storing data
DE102006046688B3 (de) 2006-09-29 2008-01-24 Siemens Ag Kälteanlage mit einem warmen und einem kalten Verbindungselement und einem mit den Verbindungselementen verbundenen Wärmerohr
DE102006048426B3 (de) * 2006-10-12 2008-05-21 Siemens Ag Verfahren zur Bestimmung der Reichweite von Strahlung
DE202006019307U1 (de) 2006-12-21 2008-04-24 Accel Instruments Gmbh Bestrahlungsvorrichtung
DE602006014454D1 (de) 2006-12-28 2010-07-01 Fond Per Adroterapia Oncologic Ionenbeschleunigungssystem für medizinische und/oder andere anwendungen
JP4655046B2 (ja) 2007-01-10 2011-03-23 三菱電機株式会社 線形イオン加速器
FR2911843B1 (fr) 2007-01-30 2009-04-10 Peugeot Citroen Automobiles Sa Systeme de chariots pour le transport et la manipulation de bacs destines a l'approvisionnement en pieces d'une ligne de montage de vehicules
JP4228018B2 (ja) * 2007-02-16 2009-02-25 三菱重工業株式会社 医療装置
JP4936924B2 (ja) 2007-02-20 2012-05-23 稔 植松 粒子線照射システム
US8093568B2 (en) 2007-02-27 2012-01-10 Wisconsin Alumni Research Foundation Ion radiation therapy system with rocking gantry motion
WO2008106492A1 (en) 2007-02-27 2008-09-04 Wisconsin Alumni Research Foundation Scanning aperture ion beam modulator
WO2008106483A1 (en) * 2007-02-27 2008-09-04 Wisconsin Alumni Research Foundation Ion radiation therapy system with distal gradient tracking
US7397901B1 (en) 2007-02-28 2008-07-08 Varian Medical Systems Technologies, Inc. Multi-leaf collimator with leaves formed of different materials
US7453076B2 (en) 2007-03-23 2008-11-18 Nanolife Sciences, Inc. Bi-polar treatment facility for treating target cells with both positive and negative ions
US7778488B2 (en) 2007-03-23 2010-08-17 Varian Medical Systems International Ag Image deformation using multiple image regions
US8041006B2 (en) 2007-04-11 2011-10-18 The Invention Science Fund I Llc Aspects of compton scattered X-ray visualization, imaging, or information providing
DE102007020599A1 (de) 2007-05-02 2008-11-06 Siemens Ag Partikeltherapieanlage
DE102007021033B3 (de) 2007-05-04 2009-03-05 Siemens Ag Strahlführungsmagnet zur Ablenkung eines Strahls elektrisch geladener Teilchen längs einer gekrümmten Teilchenbahn und Bestrahlungsanlage mit einem solchen Magneten
US7668291B2 (en) * 2007-05-18 2010-02-23 Varian Medical Systems International Ag Leaf sequencing
JP5004659B2 (ja) 2007-05-22 2012-08-22 株式会社日立ハイテクノロジーズ 荷電粒子線装置
US7947969B2 (en) 2007-06-27 2011-05-24 Mitsubishi Electric Corporation Stacked conformation radiotherapy system and particle beam therapy apparatus employing the same
DE102007036035A1 (de) 2007-08-01 2009-02-05 Siemens Ag Steuervorrichtung zur Steuerung eines Bestrahlungsvorgangs, Partikeltherapieanlage sowie Verfahren zur Bestrahlung eines Zielvolumens
US7770231B2 (en) 2007-08-02 2010-08-03 Veeco Instruments, Inc. Fast-scanning SPM and method of operating same
DE102007037406A1 (de) 2007-08-08 2009-06-04 Neoplas Gmbh Verfahren und Vorrichtung zur plasmagestützten Oberflächenbehandlung
US20090038318A1 (en) 2007-08-10 2009-02-12 Telsa Engineering Ltd. Cooling methods
JP4339904B2 (ja) 2007-08-17 2009-10-07 株式会社日立製作所 粒子線治療システム
CN101815470A (zh) 2007-09-04 2010-08-25 断层放疗公司 患者支承装置
DE102007042340C5 (de) 2007-09-06 2011-09-22 Mt Mechatronics Gmbh Partikeltherapie-Anlage mit verfahrbarem C-Bogen
US7848488B2 (en) 2007-09-10 2010-12-07 Varian Medical Systems, Inc. Radiation systems having tiltable gantry
WO2009035080A1 (ja) 2007-09-12 2009-03-19 Kabushiki Kaisha Toshiba 粒子線ビーム照射装置および粒子線ビーム照射方法
US7582866B2 (en) 2007-10-03 2009-09-01 Shimadzu Corporation Ion trap mass spectrometry
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
DE102007050035B4 (de) * 2007-10-17 2015-10-08 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Ablenkung eines Strahls elektrisch geladener Teilchen auf eine gekrümmte Teilchenbahn
DE102007050168B3 (de) 2007-10-19 2009-04-30 Siemens Ag Gantry, Partikeltherapieanlage sowie Verfahren zum Betreiben einer Gantry mit beweglichem Stellelement
JP2011500293A (ja) * 2007-10-25 2011-01-06 トモセラピー・インコーポレーテッド 放射線療法線量の分割を適応させるための方法
EP2363171B1 (en) 2007-11-30 2013-09-25 Mevion Medical Systems, Inc. Inner gantry
CN103252024B (zh) 2007-11-30 2016-02-10 梅维昂医疗系统股份有限公司 粒子束治疗系统
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8581523B2 (en) * 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
TWI448313B (zh) 2007-11-30 2014-08-11 Mevion Medical Systems Inc 具有一內部起重機龍門架之系統
JP2009146934A (ja) 2007-12-11 2009-07-02 Hitachi Ltd 超電導電磁石用クライオスタット
US8085899B2 (en) 2007-12-12 2011-12-27 Varian Medical Systems International Ag Treatment planning system and method for radiotherapy
ATE521979T1 (de) 2007-12-17 2011-09-15 Zeiss Carl Nts Gmbh Rasterabtaststrahlen geladener teilchen
US7914734B2 (en) 2007-12-19 2011-03-29 Singulex, Inc. Scanning analyzer for single molecule detection and methods of use
JP5074915B2 (ja) * 2007-12-21 2012-11-14 株式会社日立製作所 荷電粒子ビーム照射システム
DE102008005069B4 (de) * 2008-01-18 2017-06-08 Siemens Healthcare Gmbh Positioniervorrichtung zum Positionieren eines Patienten, Partikeltherapieanlage sowie Verfahren zum Betreiben einer Positioniervorrichtung
JP2009192244A (ja) 2008-02-12 2009-08-27 Toyota Motor Corp 運転補助装置
DE102008014406A1 (de) 2008-03-14 2009-09-24 Siemens Aktiengesellschaft Partikeltherapieanlage und Verfahren zur Modulation eines in einem Beschleuniger erzeugten Partikelstrahls
US7919765B2 (en) 2008-03-20 2011-04-05 Varian Medical Systems Particle Therapy Gmbh Non-continuous particle beam irradiation method and apparatus
JP5143606B2 (ja) 2008-03-28 2013-02-13 住友重機械工業株式会社 荷電粒子線照射装置
JP5107113B2 (ja) 2008-03-28 2012-12-26 住友重機械工業株式会社 荷電粒子線照射装置
DE102008018417A1 (de) 2008-04-10 2009-10-29 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Erstellen eines Bestrahlungsplans
JP4719241B2 (ja) 2008-04-15 2011-07-06 三菱電機株式会社 円形加速器
US7759642B2 (en) 2008-04-30 2010-07-20 Applied Materials Israel, Ltd. Pattern invariant focusing of a charged particle beam
JP4691574B2 (ja) 2008-05-14 2011-06-01 株式会社日立製作所 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
US7943913B2 (en) 2008-05-22 2011-05-17 Vladimir Balakin Negative ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US8288742B2 (en) 2008-05-22 2012-10-16 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US8093564B2 (en) 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
US8188688B2 (en) 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US7940894B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US8144832B2 (en) 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8399866B2 (en) 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US8373143B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US8373145B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US8569717B2 (en) 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US8198607B2 (en) 2008-05-22 2012-06-12 Vladimir Balakin Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US8378321B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US8487278B2 (en) 2008-05-22 2013-07-16 Vladimir Yegorovich Balakin X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8309941B2 (en) 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
US7834336B2 (en) 2008-05-28 2010-11-16 Varian Medical Systems, Inc. Treatment of patient tumors by charged particle therapy
US7987053B2 (en) 2008-05-30 2011-07-26 Varian Medical Systems International Ag Monitor units calculation method for proton fields
US7801270B2 (en) 2008-06-19 2010-09-21 Varian Medical Systems International Ag Treatment plan optimization method for radiation therapy
DE102008029609A1 (de) 2008-06-23 2009-12-31 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Vermessung eines Strahlflecks eines Partikelstrahls sowie Anlage zur Erzeugung eines Partikelstrahls
US8227768B2 (en) 2008-06-25 2012-07-24 Axcelis Technologies, Inc. Low-inertia multi-axis multi-directional mechanically scanned ion implantation system
US7809107B2 (en) 2008-06-30 2010-10-05 Varian Medical Systems International Ag Method for controlling modulation strength in radiation therapy
DE102008033467B4 (de) 2008-07-16 2010-04-08 Siemens Aktiengesellschaft Kryostat für supraleitende MR-Magnete
JP4691587B2 (ja) * 2008-08-06 2011-06-01 三菱重工業株式会社 放射線治療装置および放射線照射方法
US7796731B2 (en) 2008-08-22 2010-09-14 Varian Medical Systems International Ag Leaf sequencing algorithm for moving targets
US8330132B2 (en) 2008-08-27 2012-12-11 Varian Medical Systems, Inc. Energy modulator for modulating an energy of a particle beam
US7835494B2 (en) 2008-08-28 2010-11-16 Varian Medical Systems International Ag Trajectory optimization method
US7817778B2 (en) 2008-08-29 2010-10-19 Varian Medical Systems International Ag Interactive treatment plan optimization for radiation therapy
US8334520B2 (en) 2008-10-24 2012-12-18 Hitachi High-Technologies Corporation Charged particle beam apparatus
US7609811B1 (en) 2008-11-07 2009-10-27 Varian Medical Systems International Ag Method for minimizing the tongue and groove effect in intensity modulated radiation delivery
US7839973B2 (en) 2009-01-14 2010-11-23 Varian Medical Systems International Ag Treatment planning using modulability and visibility factors
US8350214B2 (en) 2009-01-15 2013-01-08 Hitachi High-Technologies Corporation Charged particle beam applied apparatus
GB2467595B (en) 2009-02-09 2011-08-24 Tesla Engineering Ltd Cooling systems and methods
US7835502B2 (en) 2009-02-11 2010-11-16 Tomotherapy Incorporated Target pedestal assembly and method of preserving the target
US7986768B2 (en) 2009-02-19 2011-07-26 Varian Medical Systems International Ag Apparatus and method to facilitate generating a treatment plan for irradiating a patient's treatment volume
US8053745B2 (en) 2009-02-24 2011-11-08 Moore John F Device and method for administering particle beam therapy
US8063381B2 (en) * 2009-03-13 2011-11-22 Brookhaven Science Associates, Llc Achromatic and uncoupled medical gantry
US8238988B2 (en) 2009-03-31 2012-08-07 General Electric Company Apparatus and method for cooling a superconducting magnetic assembly
US8257649B2 (en) * 2009-04-27 2012-09-04 Hgi Industries, Inc. Hydroxyl generator
US7934869B2 (en) 2009-06-30 2011-05-03 Mitsubishi Electric Research Labs, Inc. Positioning an object based on aligned images of the object
US7894574B1 (en) 2009-09-22 2011-02-22 Varian Medical Systems International Ag Apparatus and method pertaining to dynamic use of a radiation therapy collimator
US8009803B2 (en) 2009-09-28 2011-08-30 Varian Medical Systems International Ag Treatment plan optimization method for radiosurgery
EP2308561B1 (en) * 2009-09-28 2011-06-15 Ion Beam Applications Compact gantry for particle therapy
US8009804B2 (en) 2009-10-20 2011-08-30 Varian Medical Systems International Ag Dose calculation method for multiple fields
US8382943B2 (en) 2009-10-23 2013-02-26 William George Clark Method and apparatus for the selective separation of two layers of material using an ultrashort pulse source of electromagnetic radiation
JP4532606B1 (ja) 2010-01-28 2010-08-25 三菱電機株式会社 粒子線治療装置
JP5463509B2 (ja) 2010-02-10 2014-04-09 株式会社東芝 粒子線ビーム照射装置及びその制御方法
JP2011182987A (ja) 2010-03-09 2011-09-22 Sumitomo Heavy Ind Ltd 加速粒子照射設備
EP2365514B1 (en) 2010-03-10 2015-08-26 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Twin beam charged particle column and method of operating thereof
US9234691B2 (en) 2010-03-11 2016-01-12 Quantum Design International, Inc. Method and apparatus for controlling temperature in a cryocooled cryostat using static and moving gas
EP2579265B1 (en) 2010-05-27 2015-12-02 Mitsubishi Electric Corporation Particle beam irradiation system
JPWO2012014705A1 (ja) 2010-07-28 2013-09-12 住友重機械工業株式会社 荷電粒子線照射装置
US8416918B2 (en) 2010-08-20 2013-04-09 Varian Medical Systems International Ag Apparatus and method pertaining to radiation-treatment planning optimization
JP5670126B2 (ja) 2010-08-26 2015-02-18 住友重機械工業株式会社 荷電粒子線照射装置、荷電粒子線照射方法及び荷電粒子線照射プログラム
US8445872B2 (en) 2010-09-03 2013-05-21 Varian Medical Systems Particle Therapy Gmbh System and method for layer-wise proton beam current variation
US8472583B2 (en) 2010-09-29 2013-06-25 Varian Medical Systems, Inc. Radiation scanning of objects for contraband
US8374663B2 (en) 2011-01-31 2013-02-12 General Electric Company Cooling system and method for cooling superconducting magnet devices
WO2012111125A1 (ja) 2011-02-17 2012-08-23 三菱電機株式会社 粒子線治療装置
JP5744578B2 (ja) * 2011-03-10 2015-07-08 住友重機械工業株式会社 荷電粒子線照射システム、及び中性子線照射システム
US8653314B2 (en) 2011-05-22 2014-02-18 Fina Technology, Inc. Method for providing a co-feed in the coupling of toluene with a carbon source
DK2637181T3 (en) 2012-03-06 2018-06-14 Tesla Engineering Ltd Multi-orientable cryostats
US8581525B2 (en) 2012-03-23 2013-11-12 Massachusetts Institute Of Technology Compensated precessional beam extraction for cyclotrons
US10254739B2 (en) * 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
TW201424467A (zh) * 2012-09-28 2014-06-16 Mevion Medical Systems Inc 一粒子束之強度控制
WO2014052721A1 (en) * 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Control system for a particle accelerator
JP6523957B2 (ja) * 2012-09-28 2019-06-05 メビオン・メディカル・システムズ・インコーポレーテッド 磁場を変更するための磁性シム
WO2014052718A2 (en) * 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Focusing a particle beam
TW201424466A (zh) * 2012-09-28 2014-06-16 Mevion Medical Systems Inc 磁場再生器
EP3581242B1 (en) * 2012-09-28 2022-04-06 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9545528B2 (en) * 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
EP2901820B1 (en) * 2012-09-28 2021-02-17 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
GB201217782D0 (en) 2012-10-04 2012-11-14 Tesla Engineering Ltd Magnet apparatus
JP5662502B2 (ja) 2013-03-07 2015-01-28 メビオン・メディカル・システムズ・インコーポレーテッド インナーガントリー
JP5662503B2 (ja) 2013-03-07 2015-01-28 メビオン・メディカル・システムズ・インコーポレーテッド インナーガントリー
US8791656B1 (en) * 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
JP6180800B2 (ja) 2013-06-06 2017-08-16 サッポロビール株式会社 梱包箱及び梱包体
US9730308B2 (en) * 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
WO2015048468A1 (en) * 2013-09-27 2015-04-02 Mevion Medical Systems, Inc. Particle beam scanning
GB2519595B (en) * 2013-10-28 2015-09-23 Elekta Ab Image guided radiation therapy apparatus
US9962560B2 (en) * 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US9661736B2 (en) * 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) * 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
TWI693405B (zh) 2015-03-24 2020-05-11 美商克萊譚克公司 用於具有改良之影像光束穩定性及詢問之帶電粒子顯微鏡之方法及系統

Also Published As

Publication number Publication date
JP6591519B2 (ja) 2019-10-16
US20080093567A1 (en) 2008-04-24
ES2730108T3 (es) 2019-11-08
US20120126140A1 (en) 2012-05-24
EP2389979A3 (en) 2012-02-29
CN101361156A (zh) 2009-02-04
WO2007061937A9 (en) 2007-08-16
EP2389982A2 (en) 2011-11-30
EP2389983A2 (en) 2011-11-30
JP2013154225A (ja) 2013-08-15
US20170001040A1 (en) 2017-01-05
US9925395B2 (en) 2018-03-27
CN101361156B (zh) 2012-12-12
JP2014223555A (ja) 2014-12-04
US20090200483A1 (en) 2009-08-13
EP2389983A3 (en) 2012-07-11
EP2389978B1 (en) 2019-03-13
EP2389978A3 (en) 2012-07-04
JP2016168480A (ja) 2016-09-23
EP1949404A4 (en) 2009-06-10
EP2389980A3 (en) 2012-03-14
US8344340B2 (en) 2013-01-01
EP1949404A2 (en) 2008-07-30
EP2389981A3 (en) 2012-03-07
EP2389982A3 (en) 2012-03-07
JP5695122B2 (ja) 2015-04-01
EP2389977A3 (en) 2012-01-25
US20100230617A1 (en) 2010-09-16
US20190232088A1 (en) 2019-08-01
EP2389979A2 (en) 2011-11-30
EP2389977A2 (en) 2011-11-30
JP5368103B2 (ja) 2013-12-18
JP2018075402A (ja) 2018-05-17
US20130053616A1 (en) 2013-02-28
EP2389983B1 (en) 2016-05-25
WO2007061937A2 (en) 2007-05-31
US7728311B2 (en) 2010-06-01
US10722735B2 (en) 2020-07-28
CA2629333A1 (en) 2007-05-31
EP2389978A2 (en) 2011-11-30
EP2389980A2 (en) 2011-11-30
EP2389981A2 (en) 2011-11-30
ES2587982T3 (es) 2016-10-28
US20150148584A1 (en) 2015-05-28
JP6431874B2 (ja) 2018-11-28
US20170028224A1 (en) 2017-02-02
US20180169442A1 (en) 2018-06-21
US8916843B2 (en) 2014-12-23
JP6235440B2 (ja) 2017-11-22
EP1949404B1 (en) 2016-06-29
JP2009515671A (ja) 2009-04-16
US8907311B2 (en) 2014-12-09
US10279199B2 (en) 2019-05-07
CA2629333C (en) 2013-01-22
US9452301B2 (en) 2016-09-27
WO2007061937A3 (en) 2008-01-03

Similar Documents

Publication Publication Date Title
ES2594619T3 (es) Radioterapia con partículas cargadas
ES2546676T3 (es) Pórtico interior
ES2625350T3 (es) Sincrociclotrón que produce partículas cargadas que tienen energías variables
ES2739830T3 (es) Ajuste de energía de un haz de partículas
ES2739634T3 (es) Control de terapia de partículas