CN111712298B - 放射疗法系统 - Google Patents

放射疗法系统 Download PDF

Info

Publication number
CN111712298B
CN111712298B CN201880088672.9A CN201880088672A CN111712298B CN 111712298 B CN111712298 B CN 111712298B CN 201880088672 A CN201880088672 A CN 201880088672A CN 111712298 B CN111712298 B CN 111712298B
Authority
CN
China
Prior art keywords
therapy
radiation therapy
particle
photon
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880088672.9A
Other languages
English (en)
Other versions
CN111712298A (zh
Inventor
詹姆士·F·登普西
I·卡瓦利科夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ViewRay Technologies Inc
Original Assignee
ViewRay Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ViewRay Technologies Inc filed Critical ViewRay Technologies Inc
Priority to CN202310263048.0A priority Critical patent/CN116036499A/zh
Publication of CN111712298A publication Critical patent/CN111712298A/zh
Application granted granted Critical
Publication of CN111712298B publication Critical patent/CN111712298B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1071Monitoring, verifying, controlling systems and methods for verifying the dose delivered by the treatment plan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1039Treatment planning systems using functional images, e.g. PET or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • A61N5/1067Beam adjustment in real time, i.e. during treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1055Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using magnetic resonance imaging [MRI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1071Monitoring, verifying, controlling systems and methods for verifying the dose delivered by the treatment plan
    • A61N2005/1072Monitoring, verifying, controlling systems and methods for verifying the dose delivered by the treatment plan taking into account movement of the target
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N2005/1074Details of the control system, e.g. user interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1094Shielding, protecting against radiation

Abstract

光子疗法递送系统可以通过光子束将放射疗法递送给患者。该系统可以利用被配置为促进通过光子束以及粒子束的放射疗法的递送的控制器。这可以包括接收用于利用粒子束和光子束对患者进行放射疗法治疗的放射疗法束信息。另外,可以在放射疗法治疗期间接收患者磁共振成像(MRI)数据。利用患者MRI数据,可以考虑粒子束通过的软组织的相互作用特性,确定粒子束和光子束的剂量沉积位置的实时计算。

Description

放射疗法系统
相关申请
本申请要求于2017年12月6日提交的美国临时申请号62/595,478的优先权和权益,该临时申请的全部内容通过引用合并于此。
背景技术
放射疗法使用放射束杀死细胞以治疗疾病,通常是增殖性组织疾病,例如癌症。放射疗法可用于治疗需要一定剂量的电离放射以达到疗效的患者的靶标,例如总体上可观察到的肿瘤、包含微观疾病或潜在疾病扩散的解剖区域或包括运动和/或递送不确定性裕度的区域。放射疗法束递送的电离放射会破坏患病细胞的DNA和其他重要组成,并阻止细胞复制。
典型的放射疗法涉及治疗计划,以确定如何将处方规定的放射剂量递送至靶标,同时通过将剂量限制在可接受的阈值以下以防止致命或使人衰弱的副作用,从而使附近的健康组织免受破坏。
发明内容
公开了放射疗法系统(例如,光子疗法递送系统),用于将放射疗法(例如,通过光子束)递送给患者。某些实施例可以包括控制器,该控制器被配置为促进通过光子束以及还通过粒子束的放射疗法的递送。
可以在无需移动患者的情况下完成利用光子束的放射疗法的递送和通过粒子束的放射治疗的递送。光子疗法递送系统可以被配置为通过来自多个方向的光子束将放射疗法递送给患者。而且,该系统可以包括磁共振成像系统(MRI),该磁共振成像系统被配置为在放射疗法的施用期间获取患者的图像。
还公开了计算机程序产品,该计算机程序产品允许接收放射疗法束信息以利用粒子束和光子束对患者进行放射疗法治疗。可以在放射疗法治疗期间接收患者磁共振成像(MRI)数据。此外,可以考虑到粒子束通过的软组织的相互作用特性,利用患者MRI数据对粒子束和光子束的剂量沉积位置执行实时计算。
在某些实施例中,在执行剂量沉积位置的实时计算时,还可以考虑由MRI系统产生的磁场对粒子束和光子束的影响。患者MRI数据和放射疗法束信息可用于在放射疗法治疗期间计算对患者的累积剂量沉积。可选地,可以基于计算的剂量沉积来重新优化放射疗法治疗。
还公开了另一种计算机程序产品,其使得能够接收患者放射疗法处方信息并接收患者磁共振成像(MRI)数据。可以确定包括结合了光子束递送和粒子束递送的放射疗法治疗计划。放射疗法治疗计划的确定可以利用患者放射疗法处方信息和MRI数据。
当前主题的实施方式可以包括但不限于与本文提供的描述一致的方法以及包括有形地实现的机器可读介质的物品,所述有形地实现的机器可读介质可操作成使得一个或多个机器(例如,计算机等)产生实现一个或多个描述的特征的操作。类似地,也设想了计算机系统,其可以包括一个或多个处理器和耦接到一个或多个处理器的一个或多个存储器。可以包括计算机可读存储介质的存储器可以包括、编码、存储使得一个或多个处理器执行本文描述的一个或多个操作的一个或多个程序,或者对所述一个或多个程序进行其他操作。与本主题的一个或多个实施方案一致的计算机实施的方法可以通过驻存在单个计算系统或多个计算系统之间的一个或多个数据处理器实施。这样的多计算系统可以经由一个或多个连接、经由多计算系统中的一个或多个之间的直接连接等被连接并且可以交换数据和/或命令或其他指令等,所述一个或多个连接包括但不限于通过网络(例如,互联网、无线广域网、局域网、有线网络等)的连接。
在附图和以下描述中阐述了本文描述的主题的一个或多个变型的细节。从说明书和附图以及从权利要求书中,本文描述的主题的其他特征和优点将是显而易见的。尽管出于与特定实现有关的说明性目的描述了当前公开的主题的某些特征,但是应当容易理解,这些特征并非旨在进行限制。本公开之后的权利要求旨在限定受保护主题的范围。
附图说明
结合在本说明书中并构成本说明书的一部分的附图示出了本文所公开的主题的某些方面,并且与说明书一起,有助于解释与所公开的实施方式相关联的一些原理。在附图中:
图1是示出了进入人体组织的放射疗法的各种示例性形式的穿透深度的曲线图;
图2是利用MRI数据的用于粒子放射疗法的放射疗法治疗计划的方法的流程图,该方法可以由软件实现;
图3是具有与本说明书一致的一个或多个特征的放射疗法系统的图示;
图4是具有与本说明书一致的一个或多个特征的放射疗法系统的图示;
图5A-5B示出了用于屏蔽例如粒子疗法系统的剂量测定系统的一部分的屏蔽系统,该屏蔽系统具有与本说明书一致的一个或多个特征;
图6是具有与本说明书一致的一个或多个要素的粒子放射疗法治疗的方法的流程图;
图7是具有与本说明书一致的一个或多个特征的组合放射疗法系统的图示;
图8是具有与本说明书一致的一个或多个特征的组合放射疗法系统的图示;和
图9是具有与本说明书一致的一个或多个特征的组合放射疗法系统的图示。
具体实施方式
本文公开了用于执行放射疗法的系统、方法和计算机软件,该放射疗法可以利用由光子束(例如,X射线)以及由粒子束提供的疗法。如本文所述,可以结合磁共振成像来利用这样的方法。
下面的公开内容首先介绍与粒子疗法、粒子疗法的治疗计划以及利用磁共振成像的粒子疗法有关的特定概念。接着这些的是可以将粒子疗法与光子束疗法相结合的疗法的描述。可以想到并理解,所描述的与粒子疗法有关的大多数概念类似地适用于粒子疗法与光子束疗法的组合。
粒子疗法是使用高能粒子束治疗疾病(例如癌症)的放射疗法的一种形式。粒子束可以瞄准患者体内的靶标,并可以导致靶标细胞的DNA和其他重要细胞组成受损,最终导致细胞死亡。癌细胞比非癌细胞具有更弱的修复放射损伤的能力,因此特别容易受到粒子疗法的影响。取决于上下文,“粒子疗法”有时用于指利用强子(例如质子、中子、反质子、介子等)的疗法,同时也可以指利用离子或原子核(例如锂离子,氦气)的疗法。尽管没有精确限定“轻离子”和“重离子”之间的界线,但通常说利用诸如碳离子的离子的疗法是“重离子疗法”。如本文所用,术语粒子疗法、粒子放射疗法、粒子束等是指利用强子以及原子核(或离子)的疗法。该术语特别地排除诸如光子疗法或电子束疗法之类的疗法。
图1是曲线图100,其示出了进入人体组织的放射疗法的各种形式的穿透深度。对于给定的能量,与其他放射疗法形式相比,电子束具有进入人体组织的低穿透深度(如迹线102所示)。X射线束穿透人体组织的深度大于电子,但组织吸收的剂量随X射线的穿透深度而降低,如迹线104所示。粒子疗法束在其范围的末端将其更多的能量沉积在进入患者组织的特定深度处,如迹线108所示。在其范围的末端附近的该深度可称为布拉格峰(BraggPeak),示为108。粒子疗法提供的益处是较少的能量被沉积到靶标外的健康组织中,从而降低了损伤健康组织的可能性。另外,与X射线束相比,超过布拉格峰,沉积的剂量非常小。
在可以进行粒子放射疗法之前,必须产生治疗计划。本公开设想到以特定方式在产生治疗计划时可选地使用磁共振成像(MRI)数据,该治疗计划将具有与递送给患者的实际剂量紧密匹配且与期望剂量紧密匹配的预测剂量沉积。X射线计算机断层扫描(CT)成像数据还可用于确定例如患者组织的质量密度,以及患者的包含低密度和高密度组织的区域或诸如肺、空气和骨骼的区域。可以对所有粒子束路径执行分析。
可以采用磁共振成像系统来获得MRI数据,当对该MRI数据进行分析时,可以更准确地确定沿着到达和穿过靶标的束路径的软组织的类型。然后,可以从MRI数据确定粒子的相互作用特性,从而允许更准确地确定递送到患者组织和靶标的剂量。另外,MRI数据可以使得能够更准确地确定粒子束疗法的生物学有效性。
本公开内容设想到MRI数据可以与X射线CT数据结合(例如,通过使用可变形图像配准)以提高化学组成和质量密度确定的准确性,从而改善粒子疗法剂量的确定。如果X射线CT数据不可用,则可以通过超短回波时间(TE)MR成像来确定包含骨骼的区域,而肺和空气可以从质子密度加权MR成像来确定。
X射线CT非常适合产生人体中的电子密度图,并且由于光子的主要相互作用概率与电子密度成比例,因此可用于确定由光子束放射疗法递送的剂量。电子密度也与质量密度密切相关,这是由于以下事实:对于人体组织,原子序数较低,而原子核的中子与质子比率相当恒定。CT霍恩斯菲尔德数(Hounsfield number)反映了人体组织对X射线的衰减系数。因此,对于元素组成、元素重量和质量密度的各种不同组合,霍恩斯菲尔德数可以是相同的,更不用说由于像束硬化效应和其他伪像,所测量的霍恩斯菲尔德数可能是不准确的。使用X射线CT限定组织时引入的元素组成的不确定性和霍恩斯菲尔德数可能导致所确定的粒子束范围明显错误。该错误可能直接导致剂量计算错误,例如,因为需要粒子阻挡本领(stopping power)来准确地建模沿高能粒子路径的剂量沉积并确定粒子到达其范围末端的位置。如图1所示,阻挡本领的不确定性直接转化为布拉格峰108位置的不确定性,这可能会使大剂量区域脱离靶标和肿瘤,从而无法将有效剂量递送给治疗靶标,而是将粒子放射疗法递送到应被屏蔽为不接收高剂量的粒子放射的健康组织。
与用X射线CT上成像相比,当用MRI系统进行成像时,软组织具有更好的对比度和清晰度。如前所述,由于X射线CT的低或高的对比度以及低或高的霍恩斯菲尔德数,X射线CT在确定密度非常不同的组织的质量密度以及限定包含空气或皮质骨的区域方面非常出色。但是,许多软组织的密度非常相似,具有非常不同的元素组成。例如,组织在具有非常相似的质量密度的同时可以具有脂肪(fat-like)样(或脂肪样(adipose-like))性质或水样(或肌肉样)性质,因此很难用X射线CT数据对它们区分。X射线CT数据中的图像噪声、伪影和低对比度共同导致使用当前方法常常会误识别组织类型。就阻挡本领而言,除去任何密度依赖性,脂肪样组织(CH2)或水样组织(OH2)之间的阻挡本领差异主要由O和C之间的原子序数差异决定。对于高于数10MeV/核子的能量,如在粒子疗法中使用时,阻挡本领之比很显著(significant)。
利用仅对水或仅对脂肪敏感的脉冲序列来获取MRI数据,允许通过例如Dixon方法或夹层回波(sandwich echo)确定组织的水脂比。然后,可以将所确定的在治疗靶标附近的水脂比用于改善对软组织的元素组成的了解。MRI可以通过在不同时间和/或以不同方式读取激发质子的信号获得不同的“对比度”(取决于氢所附着的分子类型,信号不同地衰减)。因此,可以更好地区分不同的组织类型并利用MRI推断化学组成。
粒子束与粒子束通过的组织的相互作用(相互作用的频率和类型)取决于许多因素,包括束粒子的类型、粒子能量以及组织的质量密度和化学组成。至少对于带电粒子而言,粒子相互作用包括库仑相互作用(即电磁相互作用)。库仑相互作用几乎总是导致入射粒子的能量损失小和/或方向的偏转小。导致束扩散的偏转称为库仑散射。每单位长度的能量损失量可以称为阻挡本领。粒子在库仑相互作用中经历的小能量损失是由于组织的原子和分子的电离和激发所致。这样的相互作用的频率决定了沿着粒子路径的电离密度。电离密度越高,细胞受损的概率越高。通常用称为线性能量传递(linear energy transfer,LET)的量来对其进行测量。
粒子相互作用还包括核相互作用,其与库仑相互作用相比较不频繁,但灾难性要大得多。它们往往会导致原子核被击中分解成碎片(例如单个质子和中子、氘核、氚核、锂、α等)。这样的碎片的类型和数量取决于入射粒子的类型和能量以及被击中的原子核。核相互作用还留下放射性核,其会衰变并沉积额外的剂量。
核相互作用和库仑散射高度依赖于核的原子序数。它们都导致布拉格峰的变宽。对于离子而言,核相互作用也是造成超过布拉格峰沉积的剂量尾部的原因。当光路中存在异质性(例如,气腔、骨头)时,库仑散射会导致异质性后面的复杂的剂量沉积结构。
当在本文中使用术语相互作用特性时,它是指相互作用特性(例如上述库仑相互作用和核相互作用)的任何组合。用于例如放射疗法的治疗计划或实时MRI引导的本公开的一些实施例将利用在确定患者组织中剂量沉积的位置和数量时所需要的尽可能多的相互作用特性。
诸如碳离子之类的“重离子”往往比质子对细胞具有大得多的破坏性作用。它们的核相互作用碎片(fragment)具有较高的LET,并且倾向于将其能量局部地沉积在相互作用部位周围。这是导致碳离子具有比质子高得多的“生物学有效性”的主要机理。与光子、电子甚至质子相比,对于离子来说这导致更多的细胞被杀死(或损伤)沉积在组织中的更多的每单位能量。沉积在组织中的能量称为吸收剂量,以戈瑞(Gray(Gy))为单位进行测量。由于生物学有效性的差异,从碳离子束吸收1Gy的剂量将比从光子或电子束吸收1Gy的剂量杀死的细胞多3-12倍。
对于粒子束疗法,生物学有效性的确定对于正确治疗是有益的甚至是必需的。有许多不同的方法可以确定生物学有效性。例如,生物学有效剂量(BED)的确定旨在定量地指示特定放射疗法治疗的生物学效果,其中考虑到多个因素,例如疗法类型、每分次剂量、剂量率等。此外,相对生物学有效性(RBE)是将特定疗法模式的吸收剂量与光子疗法的吸收剂量进行比较的比率,其中,每种剂量导致相同的生物学效果。
对于质子,多年来一直假设RBE恒定在1.1左右,但是有人认为这会导致次优的计划结果。由于质子的RBE非常接近1.0,因此忽略执行这种生物学有效性计算可能不会对疗法产生太大的影响,但是对于中子、离子、介子等,RBE会高得多并且如果不被考虑在内的话会对疗法具有非常大的影响。
为了确定生物学有效性,需要知道入射束的能量谱以及束通过的材料或组织的相互作用特性。因此,对组织化学组成的精确了解对于准确确定生物学有效性绝对至关重要。确定入射粒子束损失大部分能量的位置(即布拉格峰)也很重要。另外,由于核反应、组织的活化、时间剂量分次以及细胞损伤与恢复的关系而对剂量分布的贡献可以被纳入生物学有效性的确定中。由于这些原因,患者MRI数据在确定生物学有效性度量时很重要,类似于其在剂量计算和治疗计划中的重要性。
MRI数据可以类似地用于允许组织元素组成的评估和准确的剂量计算,以用于评估递送前的递送计划的质量。如果要递送的剂量质量不足,则可以使用在设置(setup)时收集的数据在递送之前重新优化粒子疗法治疗计划。这可以就在递送疗法之前、当患者在治疗卧榻上时、或在患者到达以进行实际治疗之前执行。
图2是利用MRI数据的用于粒子放射疗法的放射疗法治疗计划的方法200的流程图,该方法200可以由软件实现,该方法具有与本说明书一致的一个或多个特征。可以使用可以是系统控制器一部分的一个或多个数据处理器来实现该软件。该软件可以包括机器可读指令,该机器可读指令在由一个或多个数据处理器执行时可以使一个或多个数据处理器执行一个或多个操作。
在图2中,在202处,可以接收患者放射疗法处方信息。患者放射疗法处方信息可以包括诸如靶标肿瘤所需的最小剂量、附近感兴趣的器官所允许的最大剂量等数据。本文所述的患者放射疗法处方信息并非旨在进行限制。在放射疗法治疗计划系统处接收的患者放射疗法处方信息可以包括一般用于放射疗法治疗计划的处方信息。
在204处,可以接收患者MRI数据。在一些变型中,可以从与粒子疗法系统集成的磁共振成像设备接收患者MRI数据。患者MRI数据可以涵盖要治疗的感兴趣区域,包括例如患者的靶标治疗区域以及放射疗法束可能通过并且应当对其进行放射剂量监测的周围组织。可以在治疗之前从与治疗本身不同的位置获取MRI数据,或者可以在MRI与粒子放射疗法系统集成的治疗台上获取MRI数据。
在206处,可以确定放射疗法治疗计划以与粒子束一起使用。放射疗法治疗计划可以利用患者放射治疗处方信息并利用患者MRI数据以考虑到粒子束通过的患者中的软组织的相互作用特性。放射疗法治疗计划可以包括,例如,要利用的束的数量、束将被递送的方向、束的能量、准直仪配置等。
放射疗法治疗计划的确定还可以考虑MRI的磁场对粒子束的影响。这涉及包括MRI的强磁场对患者体内电离放射沉积剂量传输(transport)的影响。相互作用的横截面不受自旋极化的强烈影响,因为它们与热效应竞争(例如,在体温下,每百万个自旋中只有约四分之一的自旋在1特斯拉磁场中对齐),但是磁场会对运动带电粒子施加外部洛伦兹力,可以将其考虑在内以产生更准确的剂量计算。
放射疗法治疗计划的确定还可以包括通过利用患者磁共振成像数据来确定通过粒子束递送到患者的软组织的剂量的生物学有效性。
图3是具有与本说明书一致的一个或多个特征的粒子疗法系统300的图示。为了激励粒子,首先通过粒子加速器302使粒子加速。粒子加速器可以是同步加速器、回旋加速器、线性加速器等。同步加速器可以由低能回旋加速器或低能线性加速器供给。在任何下游调整之前,粒子束304的能量确定被激励的粒子进入患者306的穿透深度。粒子加速器通常产生具有限定的能量的被激励的粒子束。在一些变型中,可以例如通过使束穿过衰减介质来降低粒子的能量。由于次级中子会增加对患者的不必要的剂量,因此可以远离患者这样做。衰减介质可以是轮子或线性驱动器上的楔形材料,其可以被旋转以增加或减少能量。通过在束中不施加任何衰减材料来获得最大能量。通过在束中施加最厚量的衰减材料来获得最小值。对于已知的材料,可以确定厚度,该厚度将阻止所有被激励的粒子到达患者,以停止或中断束而无需停用系统。
同步加速器还可被配置为通过增加或减少通过同步加速器环中的加速元件的通过次数来控制束能量。原则上,线性加速器还可以在一定范围内将加速单元的数量改变为几个固定能量。使用适当的设备,脉冲到脉冲的能量变化也是可能的。
在一些变型中,粒子疗法机架(gantry)312可以用于将被激励的粒子束304引导至患者306。患者306可以定位在粒子疗法机架312的中心内的卧榻(couch)314上。粒子疗法机架312可包括机架电磁体316,其被配置为通过剂量测定系统318将束引向患者306。
粒子疗法机架312可以被配置为旋转以促进以不同角度进行粒子疗法的递送。在一些变型中,粒子疗法机架312可以被配置为旋转360度。可以采用一个或多个滑环(slipring)来促进向布置在粒子疗法机架312上的电磁体其他组件的电力输送。在一些变型中,粒子疗法机架312可以被配置为以大约360度的旋转域进行旋转。在这样的变型中,粒子疗法机架312可以在一个方向上旋转直至其将能够移动的极限,然后在另一方向上回转直至其将能够移动的极限。围绕患者306旋转粒子疗法机架312可以促进以不同角度将被激励的粒子束304递送到靶标,从而改善了健康组织的免受损伤和治疗计划的质量。
粒子疗法机架312可包括扫描束磁体320。扫描束磁体320可包括例如成对的电磁体。成对电磁体可以布置成使其磁场在彼此正交的平面内。扫描束磁体320可以被配置为操纵被激励的粒子束304的方向。在一些变型中,扫描束磁体320可以被配置为以扫描运动的方式在患者的治疗靶标上来回引导被激励的粒子束。
在一些变型中,该系统可以包括固定的束线(beamline)322。固定的束线322可以被配置为通过剂量测定系统318将被激励的粒子直接递送给患者,而无需机架。该系统还可以包括一个或多个扫描束电磁体320,其被配置为修改固定线束的被激励粒子的方向。
粒子疗法系统还可包括散射器(scatter)。该散射器可以被配置成使被激励的粒子束304向外散射。该系统还可以包含一个束摇摆器(wobbler)或光栅(raster)扫描机构以使束扩展。该系统还可以包括准直仪。准直仪可以是包括多个薄金属叶片的多叶准直仪。薄金属叶片可以是可移动的,其位置可以由计算机控制。薄金属叶片可以被配置为吸收高能粒子。薄金属叶片可以由控制器布置成使得它们形成的孔的形状与患者体内的靶标互补。以这种方式,准直仪可以促进屏蔽靶标周围的健康组织,同时允许被激励的粒子穿透到靶标。在一些变型中,可以使用雕刻成永久形状的准直仪。类似地,可以在被激励的粒子束304的路径中定位团块(bolus),其可以由对被激励的粒子半透的材料形成,并且可以被雕刻以补充肿瘤的形状。
图4是具有与本公开一致的一个或多个特征的粒子疗法递送系统400的图示。粒子疗法递送系统400可具有与图3中所示的系统300的元件相似的一个或多个元件。根据本公开,粒子疗法系统400可包括用于通过粒子束向患者递送放射疗法的粒子疗法递送系统;磁共振成像系统402,其被配置为在放射疗法期间获得患者磁共振成像(MRI)数据;以及控制器424,其配置为在放射治疗期间接收患者MRI数据,并利用患者MRI数据对粒子束的剂量沉积位置执行实时计算,这考虑了粒子束通过的患者中的软组织的相互作用特性。
粒子疗法递送系统400可以包括分裂磁体(split magnet)MRI 402。分裂磁体MRI402可以包括两个分裂主磁体404和406。放射疗法系统可以包括等中心407。两个分裂主磁体404和406可以由多个支柱(buttress)408分开。多个支柱408可以离等中心407不超过两个分裂主磁体404和406的外周边。虽然将两个分裂主磁体404和406均称为单个磁体,但该术语并非旨在进行限制。为了获得患者的MRI数据,两个分裂主磁体404和406可各自包括多个磁体。
在图4中示出了分裂MRI系统,这仅出于说明目的。所使用的MRI系统可以是任何类型的MRI系统。例如,主磁体可包括垂直开放磁体、短孔磁体、具有门形或薄截面的磁体等。
卧榻410可以设置在分裂MRI系统402内。分裂MRI系统402可以被配置为通过两个分裂主磁体404和406的内部孔接收在卧榻410上的患者412。
分裂磁体MRI系统402、卧榻410和患者412都可以设置在粒子疗法机架内,例如图3中所示的机架312。粒子疗法机架可以被配置为围绕患者412旋转,从而从多个角度向患者递送疗法。
多个支柱408可以设置在两个主MRI磁体404和406之间,并位于两个主MRI磁体404和406的外周边内,以便不进一步增加MRI系统的整体直径。作为示例,该系统可以包括围绕两个主MRI磁体404和406以相等角度间隔开的三个支柱408。该系统可以被操作为使得粒子束在分裂磁体之间引向患者,并且是以它不将穿过任何支撑408的方式引向患者。
粒子疗法系统可以被配置为便于将被激励的粒子递送给患者,使得被激励的粒子被引导到两个主MRI磁体404和406之间的间隙419中。
粒子疗法递送系统400可以包括用于监测对患者的放射疗法的剂量测定系统416。剂量测定系统416还可包括一个或多个组件,以例如通过向控制器提供反馈来促进向患者递送粒子疗法。
粒子疗法递送系统400可以包括一个或多个屏蔽结构420,该屏蔽结构420可以例如包围剂量测定系统的至少一部分。屏蔽结构420可以被配置为容纳电子设备,否则这些电子设备将受到射频干扰或主MRI磁体404和406产生的磁场的不利影响。
图5A-5B示出了示例性的屏蔽结构500,该屏蔽结构500用于屏蔽粒子疗法递送系统的剂量测定系统502的至少一部分,该屏蔽结构具有与本公开一致的一个或多个特征。屏蔽结构500可以包括多个壳。该多个壳可以由一系列同心屏蔽罩(shield)形成,该同心屏蔽罩被配置为屏蔽由分裂磁体MRI系统402产生的磁场,如图4所示。同心屏蔽罩可以被配置为包围剂量测定系统502的至少一部分。本公开进一步设想到可以包括一层或多层RF吸收材料或RF反射材料或两者的组合的屏蔽结构,以例如使在本公开的某些方面中利用的线性加速器发出的RF放射的潜在不利影响最小化。
屏蔽结构500可以包括第一屏蔽容器504。第一屏蔽容器504可以包括圆柱体部分506和跨过圆柱体部分的一端设置的环形盘508。环形盘508可包括孔510,以允许粒子不受阻碍地通过。在一些变型中,第一屏蔽容器504可具有大约十七英寸的直径。可以选择第一屏蔽容器504的直径以充分容纳剂量测定系统502的至少一部分组件。
屏蔽结构500可以包括多个壳。例如,图5B中的504、512和514等。多个壳504、512、514可以嵌套在一起。多个壳中的至少一个包括环形盘516、518等。
屏蔽结构500可以相对于分裂磁体MRI系统402定位在固定位置,或者可以被配置为与机架(例如图3中所示的机架312)一起旋转。可以相对地设置一个或多个结构或在分裂磁体MRI系统402的周围设置一个或多个结构,并且将其配置为模仿屏蔽结构500的磁特性,以最小化对MRI磁场的均匀性的干扰。
图6是利用MRI数据的、用于粒子放射疗法的放射疗法治疗的方法600的流程图,该方法可以由软件来实现,该方法具有与本说明书一致的一个或多个特征。可以使用一个或多个数据处理器来实现该软件。该软件可以包括机器可读指令,该机器可读指令在由一个或多个数据处理器执行时可以使一个或多个数据处理器执行一个或多个操作。如本文所讨论的,方法600是可以由控制器424执行的操作的示例。
在602处,可以接收用于利用粒子束对患者进行放射疗法治疗的放射疗法束信息。放射疗法束信息可以包括粒子束的一个或多个特性。该一个或多个特性可以包括粒子束的穿透能力的指示、粒子束的扩展特性、粒子束的数量等。
在604处,可以在放射疗法治疗期间接收患者磁共振成像(MRI)数据。
在606处,如本文所讨论的,可以考虑到粒子束通过的患者体内的软组织的相互作用特性,将患者MRI数据用于对粒子束的剂量沉积位置执行实时计算。如上所述,在执行对剂量沉积位置的实时计算时,还可以考虑由MRI系统产生的磁场对粒子束的影响。并且,还可以结合实时剂量计算来执行通过利用患者磁共振成像数据确定由粒子束递送至软组织的剂量的生物学有效性。
在608处,如果对剂量沉积位置的实时计算指示沉积发生在靶标外,则可以中断粒子束。
在一些变型中,如果对剂量沉积位置的实时计算指示沉积发生在靶标外,则可以调整粒子束的能量。在其他变型中,可以利用患者MRI数据以及对剂量沉积位置的实时计算来修改粒子束的方向,以便跟踪靶标。
如本文中进一步详述,关于图6的放射疗法的示例性方法描述的概念也可以用于将粒子疗法与光子疗法结合的系统、方法和计算机软件中。
在本公开的某些实施方式中,粒子疗法递送系统可以与光子疗法递送系统结合,并且系统控制器可以被配置为促进粒子束和光子束两者的递送。例如,粒子疗法(例如质子疗法)可以与来自被配置成递送X射线束的线性加速器的疗法相结合地递送。组合的系统可以被配置为使得粒子疗法和光子疗法在治疗时段期间被择一地递送,但是不需要在治疗类型之间移动患者。患者优选相对于由粒子疗法系统和光子疗法系统两者共享的等中心位于卧榻上(尽管在本公开的精神内可以设想到小的患者运动)。
在组合的粒子/光子疗法系统中,粒子疗法系统可以被配置为具有单个固定束线、多个固定束线或机架系统,并且光子疗法系统可以被配置为从多个角度递送光子束(例如,通过旋转机架、机器人臂等)。
本公开的优选实施例消除了对粒子疗法机架系统的需要,取而代之的是从一个或较少量的固定束线递送粒子疗法,并且用可以从更多数量的教导被递送的光子束疗法来补充这样的疗法。这样的组合疗法系统可以产生更高质量的治疗计划,例如,该治疗计划可以改善治疗靶标周围的健康组织的免受损伤。
图7示出了示例性的放射疗法系统,其结合了光子疗法递送系统702和粒子疗法递送系统704(在图中仅示出了其一部分)的各个方面。图7示例中的光子疗法系统702是被配置为产生x射线束的线性加速器,但是,本公开内容设想了包括放射性同位素等的替代性光子疗法系统。也可以使用电子束系统。
图7描绘了光子疗法递送系统702的一种特定实施方式,其中,线性加速器的一些部分设置在机架706周围。这样的部分可以分离到机架706上的不同位置,并且可以利用RF波导708彼此连接。本公开还预期光子疗法系统的一个或多个部分可以被包含在屏蔽结构710内,该屏蔽结构可以采取与以上关于图5讨论的屏蔽结构类似的形式。
机架706还可以包括附加的空屏蔽结构712,该空屏蔽结构712被配置为屏蔽粒子疗法系统704的剂量测定系统416的至少一部分。这样的空屏蔽结构712可以类似地采用上面参考图5进行了讨论的任何屏蔽结构的形式。尽管图7中所示的实施例示出了安装在机架上的空屏蔽结构712,但是还可以想到,粒子疗法剂量测定系统的屏蔽结构可以独立于机架安装,例如,直接安装到地板上,邻近光子疗法系统702及其机架706。
在操作中,光子疗法递送系统702被配置为从各种角度向患者递送光子束714,并且可以利用组合的放射系统以图8和图9中部分描绘的示例性方式递送粒子疗法。在这种示例性的操作方式中,可以旋转机架706,以使空屏蔽结构712与粒子疗法束线716对准,如图8所示。之后,可以利用束线延伸器(beam line extender)718来将粒子疗法系统的剂量测定系统416延伸到至少部分位于空屏蔽结构712内的位置,如图9所示。伸缩式真空室是束线延伸器的一个示例,但是可以考虑采用改变粒子疗法系统的剂量测定元件的位置的其他方法。
如上所述,本公开还设想了其中粒子剂量测定系统的屏蔽结构位于机架之外的实施例。在这样的实施例中,可以不需要束线延伸器。另外,在机架706上可以不需要空屏蔽结构,取而代之的是,机架706可以简单地旋转到将确保光子疗法系统设备对粒子疗法束的干扰最小的位置。
在本公开的一些实施方式中,某些粒子疗法递送系统组件可以有利地位于远离光子疗法递送系统的位置。在一个示例中,粒子疗法系统的偏转/弯曲磁体可以远离光子疗法系统放置,或者甚至位于患者疗法库(vault)之外。边缘屏蔽(fringe shielding)可用于将此类组件720与光子疗法递送系统702隔离,并且可包括例如RF屏蔽722和/或磁屏蔽724。此类边缘屏蔽还可用于将此类组件720与可以与组合的光子/粒子疗法系统一起使用的磁共振成像系统隔离。
本公开的组合的光子和粒子疗法系统可以与磁共振成像系统一起使用,如上面关于粒子疗法先前所述。例如,图4中描绘的磁共振成像系统402可以与组合的粒子/光子系统结合使用,其示例在图7中示出。在这样的示例中,光子疗法系统702及其机架706可以设置在图4的磁共振成像系统402的间隙419内。
如以上关于粒子疗法所讨论的,将磁共振成像与组合的粒子/光子疗法系统的集成类似地导致实现许多益处。本公开内容设想了通过组合的粒子/光子系统实现以上讨论的每个适用的益处,包括但不限于该系统在治疗期间接收患者磁共振成像(MRI)数据并利用这种数据来执行粒子束和光子束的剂量沉积位置的实时计算的能力。此外,如果对剂量沉积位置的实时计算指示剂量沉积发生在靶标之外,则系统控制器可以被配置为中断粒子束和/或光子束。而且,该系统可以被配置为在放射疗法治疗期间计算对患者的累积剂量沉积,并且基于计算的剂量沉积来重新优化治疗。
本公开设想本文的实施例中公开的计算可以以应用本文教导的同一概念的众多方式来执行,并且这些计算等价于公开的实施例。
本文描述的主题的一个或多个方面或特征可以实现在数字电子电路、集成电路、特别设计的专用集成电路(ASIC)、现场可编程门阵列(FPGA)计算机硬件、固件、软件和/或其组合中。这些各种方面或特征可以包括实现在一个或多个计算机程序中,计算机程序可以在可编程系统上执行和/或解释,可编程系统包括至少一个可编程处理器,其可以是专用或通用目的,可编程处理器耦接为从存储系统、至少一个输入设备以及至少一个输出设备接收数据和指令和向它们发送数据和指令。可编程系统或计算系统可以包括客户端和服务器。一般来说,客户端和服务器彼此远离,并且通常通过通信网络交互。通过运行在各个计算机并且彼此具有客户端-服务器关系的计算机程序而形成的客户端和服务器的关系。
这些计算机程序(也可以称为程序、软件、软件应用、应用、部件或者代码)可以包括用于可编程处理器的机器指令,并且可以以高级程序化语言、面向对象编程语言、函数式程序语言、逻辑编程语言和/或以汇编/机器语言来实现。如本文所使用的,术语“机器可读介质”(或“计算机可读介质”)指任何计算机程序制品、装置和/或设备,例如磁盘、光盘、存储器和可编程逻辑器件(PLD),其用于为可编程处理器提供机器指令和/或数据,包括将机器指令作为机器可读信号接收的机器可读介质。术语“机器可读信号”(或“计算机可读信号”)指用于为可编程处理器提供机器指令和/或数据的任何信号。机器可读介质可以非临时地存储这些机器指令,例如非临时性固态存储器或磁盘硬驱动器或者任何等价存储介质那样。机器可读介质可以替代地或额外地以临时的方式存储这些机器指令,例如处理器缓存或与一个或多个物理处理器核心相关的其他随机存取存储器。
为了提供与用户的交互,本文描述的主题的一个或多个方面或特征可以实现在具有显示设备和键盘和指针设备的计算机上,显示设备例如用于为用户显示信息的阴极射线管(CRT)或液晶显示(LCD)或发光二极管(LED)监视器上,键盘和指针设备例如鼠标或轨迹球,用户可以通过其为计算机提供输入。其他类型的设备也可以用于提供与用户的交互。例如,提供给用户的反馈可以是任何形式的感知反馈,例如视觉反馈、音频反馈或触觉反馈;并且来自用户的输入可以以任何形式被接收,包括但不限于声音、说话或触觉输入。其他可能的输入设备包括但不限于:触摸屏或者其他触觉灵敏的设备,例如单点或多点电阻式或电容式触控板、声音识别硬件和软件、光学扫描仪、光学指向器、数字图像捕获设备以及相关的解释软件及类似设备。
在上述说明书以及权利要求中,诸如“至少一个”或“一个或多个”的词组后面可以跟随元件或特征的连接词列表。术语“和/或”也可以出现在两个或多个元件或特征的列表中。队非与其使用的上下文暗示地或明确地矛盾,这种词组用于指独立列出的元件或特征中的任意一个,或者引述的元件或特征中的任意一个以及其他引述的元件或特征中的任何一个。例如,词组“A和B中的至少一个”,“A和B中的一个或多个”以及“A和/或B”均指“单指A、单指B或A和B一起”。类似地解释也适用于包括三个或多个项的列表。例如,词组“A、B和C中的至少一个”,“A、B和C中的一个或多个”以及“A、B和/或C”均指“单指A、单指B、单指C、A和B一起、A和C一起、B和C一起或者A和B和C一起”。上文和权利要求中的术语“基于”的使用旨在指“至少部分基于”,从而未引述的特征或元件也是可允许的。
根据期望的配置,本文描述的主题可以实施在系统、装置、方法、计算机程序和/或物品中。附图中描绘的和/或本文描述的任何方法或逻辑流程不一定需要所示出的特定顺序或者连续顺序来实现期望的结果。前述说明书中列出的实施不代表与本文描述的主题一致的所有实施。相反,它们仅仅是与描述的主题相关的方面一致的一些实例。尽管上文详细描述了一些变化,但其他改进或添加是可能的。具体地,除了本文列出的特征和变化,可以提供其他特征和/或变化。上文描述的实施方式可以涉及公开的特征的各种组合和子组合和/或上文提及的其他特征的组合和子组合。此外,上述优势不用于将任何公开的权利要求的应用限制于完成任意或全部优势的处理或结构。
此外,分段标题不应该限制或表征可能由本公开发布的任何权利要求中所列出的发明。此外,“背景技术”中的技术的描述不应该解释为承认技术是本公开中任何发明的现有技术。“发明内容”也不应该被认为是公开的权利要求中列出的发明的表征。此外,对本公开的大体上的任何引用或者词语“发明”的单数使用不用于暗示下文列出的权利要求的范围的任何限制。多项发明可以根据从本公开发布的多个权利要求的限制来列出,并且这些权利要求相应地限定发明及其等价物(它们也由此被保护)。

Claims (11)

1.一种放射疗法系统,包括:
光子疗法递送系统,用于通过光子束将放射疗法递送给患者,所述光子疗法递送系统至少部分地安装在机架上,并且所述光子疗法递送系统的至少一部分包含在屏蔽结构内,所述光子疗法递送系统被配置为通过来自多个方向的光子束将放射疗法递送给患者;
控制器,被配置为促进通过光子束以及还通过粒子束的放射疗法的递送;和
安装在所述机架上并被配置为屏蔽粒子疗法剂量测定系统的至少一部分的第二屏蔽结构。
2.根据权利要求1所述的放射疗法系统,其中,通过光子束的放射疗法的递送和通过粒子束的放射疗法的递送都能够在不必移动患者的情况下完成。
3.根据权利要求1所述的放射疗法系统,其中,所述光子疗法递送系统是线性加速器,并且所述光子束是X射线束。
4.根据权利要求1所述的放射疗法系统,还包括束线延伸器,所述束线延伸器被配置为:便于从至少部分地在被配置为屏蔽粒子疗法剂量测定系统的至少一部分的所述第二屏蔽结构内的位置处,重新定位所述粒子疗法剂量测定系统,以递送疗法。
5.根据权利要求4所述的放射疗法系统,还包括粒子疗法递送系统。
6.根据权利要求5所述的放射疗法系统,其中,所述粒子疗法递送系统是质子疗法系统,并且所述粒子束是质子束。
7.根据权利要求5所述的放射疗法系统,还包括边缘场屏蔽。
8.根据权利要求1所述的放射疗法系统,还包括:
磁共振成像系统,被配置为在放射疗法的施用期间获取患者的图像。
9.根据权利要求1所述的放射疗法系统,其中,所述第二屏蔽结构包括多个壳。
10.根据权利要求9所述的放射疗法系统,还包括跨过所述多个壳中的至少一个壳的一端设置的环形盘,所述环形盘包括孔,所述孔被配置为允许所述粒子束的粒子通过。
11.根据权利要求4所述的放射疗法系统,其中,所述束线延伸器是伸缩式真空室。
CN201880088672.9A 2017-12-06 2018-11-29 放射疗法系统 Active CN111712298B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310263048.0A CN116036499A (zh) 2017-12-06 2018-11-29 多模态放射疗法的优化

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762595478P 2017-12-06 2017-12-06
US62/595,478 2017-12-06
PCT/US2018/063108 WO2019112880A1 (en) 2017-12-06 2018-11-29 Optimization of multimodal radiotherapy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310263048.0A Division CN116036499A (zh) 2017-12-06 2018-11-29 多模态放射疗法的优化

Publications (2)

Publication Number Publication Date
CN111712298A CN111712298A (zh) 2020-09-25
CN111712298B true CN111712298B (zh) 2023-04-04

Family

ID=64734174

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310263048.0A Pending CN116036499A (zh) 2017-12-06 2018-11-29 多模态放射疗法的优化
CN201880088672.9A Active CN111712298B (zh) 2017-12-06 2018-11-29 放射疗法系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202310263048.0A Pending CN116036499A (zh) 2017-12-06 2018-11-29 多模态放射疗法的优化

Country Status (5)

Country Link
US (1) US11033758B2 (zh)
EP (1) EP3710112A1 (zh)
JP (2) JP7127126B2 (zh)
CN (2) CN116036499A (zh)
WO (1) WO2019112880A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946339A (zh) 2004-02-20 2007-04-11 佛罗里达大学研究基金会公司 用于提供适形放射治疗同时对软组织进行成像的系统
AU2010273298B2 (en) 2009-07-15 2014-10-23 Viewray Technologies, Inc. Method and apparatus for shielding a linear accelerator and a magnetic resonance imaging device from each other
US9446263B2 (en) 2013-03-15 2016-09-20 Viewray Technologies, Inc. Systems and methods for linear accelerator radiotherapy with magnetic resonance imaging
JP6351164B2 (ja) * 2014-06-12 2018-07-04 国立研究開発法人量子科学技術研究開発機構 ビーム照射対象確認装置、ビーム照射対象確認プログラム、および阻止能比算出プログラム
EP3423153B1 (en) 2016-03-02 2021-05-19 ViewRay Technologies, Inc. Particle therapy with magnetic resonance imaging
KR20190043129A (ko) 2016-06-22 2019-04-25 뷰레이 테크놀로지스 인크. 약한 필드 강도에서의 자기 공명 영상화
WO2018053654A1 (en) * 2016-09-26 2018-03-29 Alberta Health Services Magnetic resonance guided stereotactic radiosurgery
CN116036499A (zh) 2017-12-06 2023-05-02 优瑞技术公司 多模态放射疗法的优化
US11209509B2 (en) 2018-05-16 2021-12-28 Viewray Technologies, Inc. Resistive electromagnet systems and methods
WO2023238121A1 (en) * 2022-06-06 2023-12-14 P-Cure Ltd. Installation of proton therapy equipment in existing radiotherapy treatment vaults

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472830A (zh) * 2009-07-15 2012-05-23 微雷公司 用于使直线性加速器和磁共振成像设备彼此屏蔽的方法和装置
CN102939607A (zh) * 2010-06-11 2013-02-20 皇家飞利浦电子股份有限公司 针对放射治疗处置规划的同时多模态逆向优化
CN105073192A (zh) * 2013-03-15 2015-11-18 优瑞公司 利用磁共振成像的线性加速器放射治疗的系统和方法

Family Cites Families (401)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1014630A (en) 1964-11-06 1965-12-31 Mullard Ltd Improvements in and relating to adjustable couches
US3569823A (en) 1968-10-18 1971-03-09 Perkin Elmer Corp Nuclear magnetic resonance apparatus
US3735306A (en) 1970-10-22 1973-05-22 Varian Associates Magnetic field shim coil structure utilizing laminated printed circuit sheets
US4233662A (en) 1973-04-25 1980-11-11 Emi Limited Radiography
DE2455447C3 (de) 1974-11-22 1981-02-05 Siemens Ag, 1000 Berlin Und 8000 Muenchen Patientenlagerungsvorrichtung eines Röntgengerätes
DE3121728A1 (de) 1981-06-01 1982-12-16 Siemens AG, 1000 Berlin und 8000 München Patienten-lagerungsvorrichtung mit einer drehbaren lagerstatt
JPS59147061A (ja) 1983-02-14 1984-08-23 Nissan Motor Co Ltd 燃料タンク用防錆剤
US4581580A (en) 1983-12-14 1986-04-08 General Electric Company Intentionally non-orthogonal correction coils for high-homogeneity magnets
US4642569A (en) 1983-12-16 1987-02-10 General Electric Company Shield for decoupling RF and gradient coils in an NMR apparatus
SE462013B (sv) 1984-01-26 1990-04-30 Kjell Olov Torgny Lindstroem Behandlingsbord foer radioterapi av patienter
JPS60189905A (ja) 1984-03-09 1985-09-27 Mitsubishi Electric Corp 高均一磁界発生装置
US4694837A (en) 1985-08-09 1987-09-22 Picker International, Inc. Cardiac and respiratory gated magnetic resonance imaging
US4740753A (en) 1986-01-03 1988-04-26 General Electric Company Magnet shimming using information derived from chemical shift imaging
US4771785A (en) 1986-07-25 1988-09-20 Resonex, Inc. Magnetic resonance imaging apparatus and three-axis patient positioning assembly for use therewith
JPS63294839A (ja) 1987-05-27 1988-12-01 Nec Corp 放射線治療用ctシミュレ−タ
DE3844716C2 (de) 1987-08-24 2001-02-22 Mitsubishi Electric Corp Partikelstrahlmonitorvorrichtung
US5027818A (en) 1987-12-03 1991-07-02 University Of Florida Dosimetric technique for stereotactic radiosurgery same
EP0371303B1 (de) 1988-11-29 1994-04-27 Varian International AG. Strahlentherapiegerät
US4851778A (en) 1988-12-15 1989-07-25 The Regents Of The University Of California Enhanced S/N MRI for short TR nutation sequences
US5117829A (en) 1989-03-31 1992-06-02 Loma Linda University Medical Center Patient alignment system and procedure for radiation treatment
US5006804A (en) 1989-12-04 1991-04-09 General Electric Company Method of optimizing shim coil current selection in magnetic resonance magnets
US5094837A (en) 1990-01-22 1992-03-10 Wayne State University Method for use of magnetic resonance imaging to image pancreas using secretin
ATE179894T1 (de) 1991-01-19 1999-05-15 Meito Sangyo Kk Ultrafeine magnetische metalloxideteilchen enthaltende zusammensetzung
US6405072B1 (en) 1991-01-28 2002-06-11 Sherwood Services Ag Apparatus and method for determining a location of an anatomical target with reference to a medical apparatus
EP0531081A1 (en) 1991-09-03 1993-03-10 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency fields
US5734384A (en) 1991-11-29 1998-03-31 Picker International, Inc. Cross-referenced sectioning and reprojection of diagnostic image volumes
US5621324A (en) 1992-03-18 1997-04-15 Sumitomo Special Metals Company Limited Magnetic field generator for MRI
US5394452A (en) 1992-03-19 1995-02-28 Wisconsin Alumni Research Foundation Verification system for radiation therapy
US5317616A (en) 1992-03-19 1994-05-31 Wisconsin Alumni Research Foundation Method and apparatus for radiation therapy
US5332908A (en) 1992-03-31 1994-07-26 Siemens Medical Laboratories, Inc. Method for dynamic beam profile generation
US5216255A (en) 1992-03-31 1993-06-01 Siemens Medical Laboratories Beam profile generator for photon radiation
US5382904A (en) 1992-04-15 1995-01-17 Houston Advanced Research Center Structured coil electromagnets for magnetic resonance imaging and method for fabricating the same
DE4217496C2 (de) 1992-05-27 1994-06-16 Bruker Analytische Messtechnik Shim-Verfahren
US5331552A (en) 1992-07-14 1994-07-19 General Electric Company Method and apparatus for projecting diagnostic images from non-isotropic volumed diagnostic data
US5295488A (en) 1992-08-05 1994-03-22 General Electric Company Method and apparatus for projecting diagnostic images from volumed diagnostic data
US5280428A (en) 1992-07-14 1994-01-18 General Electric Company Method and apparatus for projecting diagnostic images from volumed diagnostic data accessed in data tubes
US5760582A (en) 1992-07-23 1998-06-02 Fonar Corporation Optimized gradient coils and shim coils for magnetic resonance scanning systems
JPH0654916A (ja) 1992-08-06 1994-03-01 Mitsubishi Electric Corp 呼吸モニタ治療方式
US5596619A (en) 1992-08-21 1997-01-21 Nomos Corporation Method and apparatus for conformal radiation therapy
US5391139A (en) 1992-09-03 1995-02-21 William Beaumont Hospital Real time radiation treatment planning system
US5647361A (en) 1992-09-28 1997-07-15 Fonar Corporation Magnetic resonance imaging method and apparatus for guiding invasive therapy
US6005916A (en) 1992-10-14 1999-12-21 Techniscan, Inc. Apparatus and method for imaging with wavefields using inverse scattering techniques
IT1266276B1 (it) 1993-02-26 1996-12-27 C A T Di Corsini Giuseppe E C Tavolo porta-paziente per l'effettuazione di esami medici.
US5361763A (en) 1993-03-02 1994-11-08 Wisconsin Alumni Research Foundation Method for segmenting features in an image
US5553618A (en) 1993-03-12 1996-09-10 Kabushiki Kaisha Toshiba Method and apparatus for ultrasound medical treatment
US5307812A (en) 1993-03-26 1994-05-03 General Electric Company Heat surgery system monitored by real-time magnetic resonance profiling
DE69425762T2 (de) 1993-06-09 2001-04-26 Wisconsin Alumni Res Found System zur Strahlungstherapie
US5373844A (en) 1993-06-14 1994-12-20 The Regents Of The University Of California Inverse treatment planning method and apparatus for stereotactic radiosurgery
DE4333440C1 (de) 1993-09-30 1995-04-06 Siemens Ag Verfahren zur Shimmung eines Magnetfeldes in einem Untersuchungsraum eines Kernspinresonanzgerätes
US5378989A (en) 1993-11-02 1995-01-03 General Electric Company Open gradient coils for magnetic resonance imaging
US5547454A (en) 1993-11-02 1996-08-20 Sandia Corporation Ion-induced nuclear radiotherapy
US5365927A (en) 1993-11-02 1994-11-22 General Electric Company Magnetic resonance imaging system with pointing device
US5458125A (en) 1994-01-28 1995-10-17 Board Of Directors Of The Leland Standford Jr. University Treatment planning method and apparatus for radiosurgery and radiation therapy
US5538494A (en) 1994-03-17 1996-07-23 Hitachi, Ltd. Radioactive beam irradiation method and apparatus taking movement of the irradiation area into consideration
US5537452A (en) 1994-05-10 1996-07-16 Shepherd; Joseph S. Radiation therapy and radiation surgery treatment system and methods of use of same
US5602982A (en) 1994-09-23 1997-02-11 Kelly Properties, Inc. Universal automated training and testing software system
US5443068A (en) 1994-09-26 1995-08-22 General Electric Company Mechanical positioner for magnetic resonance guided ultrasound therapy
US5513238A (en) 1994-10-11 1996-04-30 Radionics, Inc. Automatic planning for radiation dosimetry
DE4437443C2 (de) 1994-10-19 1996-09-12 Siemens Ag Verfahren zum Betrieb eines Kernspintomographiegerätes mit dynamisch lokalisierter Shimmung des Grundmagnetfeldes
US5511549A (en) 1995-02-13 1996-04-30 Loma Linda Medical Center Normalizing and calibrating therapeutic radiation delivery systems
US5555283A (en) 1995-06-07 1996-09-10 Board Of Regents Of The University Of Texas System Computer-controlled miniature multileaf collimator
US5585724A (en) 1995-06-12 1996-12-17 Picker International, Inc. Magnetic resonance gradient coils with interstitial gap
US6351659B1 (en) 1995-09-28 2002-02-26 Brainlab Med. Computersysteme Gmbh Neuro-navigation system
GB9520564D0 (en) 1995-10-07 1995-12-13 Philips Electronics Nv Apparatus for treating a patient
JPH09154961A (ja) 1995-12-07 1997-06-17 Toshiba Medical Eng Co Ltd 放射線治療計画法
US6260005B1 (en) 1996-03-05 2001-07-10 The Regents Of The University Of California Falcon: automated optimization method for arbitrary assessment criteria
US5602892A (en) 1996-03-21 1997-02-11 Llacer; Jorge Method for optimization of radiation therapy planning
US5675305A (en) 1996-07-17 1997-10-07 Picker International, Inc. Multiple driven C magnet
US5851182A (en) 1996-09-11 1998-12-22 Sahadevan; Velayudhan Megavoltage radiation therapy machine combined to diagnostic imaging devices for cost efficient conventional and 3D conformal radiation therapy with on-line Isodose port and diagnostic radiology
SE9603535D0 (sv) 1996-09-27 1996-09-27 Siemens Elema Ab Undersökningsbord
JP2001507954A (ja) 1996-10-24 2001-06-19 ノモス・コーポレーシヨン 放射照射線量決定の立案法およびその装置
US5757881A (en) 1997-01-06 1998-05-26 Siemens Business Communication Systems, Inc. Redundant field-defining arrays for a radiation system
DE19715202B4 (de) 1997-04-11 2006-02-02 Brainlab Ag Referenzierungsvorrichtung mit einem Mundstück
SE512603C2 (sv) 1997-06-19 2000-04-10 Elekta Ab Metod och anordning för automatiserad dosplanering
US6157278A (en) 1997-07-23 2000-12-05 Odin Technologies Ltd. Hybrid magnetic apparatus for use in medical applications
BE1012534A3 (fr) 1997-08-04 2000-12-05 Sumitomo Heavy Industries Systeme de lit pour therapie par irradiation.
JP3519248B2 (ja) 1997-08-08 2004-04-12 住友重機械工業株式会社 放射線治療用回転照射室
JP3203211B2 (ja) 1997-08-11 2001-08-27 住友重機械工業株式会社 水ファントム型線量分布測定装置及び放射線治療装置
US6052430A (en) 1997-09-25 2000-04-18 Siemens Medical Systems, Inc. Dynamic sub-space intensity modulation
US6526123B2 (en) 1997-09-29 2003-02-25 Moshe Ein-Gal Multiple layer multileaf collimator
US6129670A (en) 1997-11-24 2000-10-10 Burdette Medical Systems Real time brachytherapy spatial registration and visualization system
US6198957B1 (en) 1997-12-19 2001-03-06 Varian, Inc. Radiotherapy machine including magnetic resonance imaging system
US5952830A (en) 1997-12-22 1999-09-14 Picker International, Inc. Octapole magnetic resonance gradient coil system with elongate azimuthal gap
US6240162B1 (en) 1998-01-15 2001-05-29 Siemens Medical Systems, Inc. Precision dosimetry in an intensity modulated radiation treatment system
US6083167A (en) 1998-02-10 2000-07-04 Emory University Systems and methods for providing radiation therapy and catheter guides
US6327490B1 (en) 1998-02-27 2001-12-04 Varian Medical Systems, Inc. Brachytherapy system for prostate cancer treatment with computer implemented systems and processes to facilitate pre-implantation planning and post-implantation evaluations with storage of multiple plan variations for a single patient
US6487435B2 (en) 1998-04-10 2002-11-26 Wisconsin Alumni Research Foundation Magnetic resonance angiography using undersampled 3D projection imaging
US6381486B1 (en) 1999-01-08 2002-04-30 Wisconsin Alumni Research Foundation Magnetic resonance angiography with vessel segmentation
US6125335A (en) 1998-04-10 2000-09-26 Sun Nuclear Corporation Wide field calibration of a multi-sensor array
US6175761B1 (en) 1998-04-21 2001-01-16 Bechtel Bwxt Idaho, Llc Methods and computer executable instructions for rapidly calculating simulated particle transport through geometrically modeled treatment volumes having uniform volume elements for use in radiotherapy
US6393096B1 (en) 1998-05-27 2002-05-21 Nomos Corporation Planning method and apparatus for radiation dosimetry
US7096055B1 (en) 1998-06-24 2006-08-22 Achim Schweikard Method to control delivery of radiation therapy
DE19829224B4 (de) 1998-06-30 2005-12-15 Brainlab Ag Verfahren zur Lokalisation von Behandlungszielen im Bereich weicher Körperteile
US6311389B1 (en) 1998-07-01 2001-11-06 Kabushiki Kaisha Toshiba Gradient magnetic coil apparatus and method of manufacturing the same
EP1102610B1 (en) 1998-08-06 2007-01-17 Wisconsin Alumni Research Foundation Apparatus for preparing a radiation therapy plan
EP1102611B1 (en) 1998-08-06 2006-05-03 Wisconsin Alumni Research Foundation Delivery modification system for radiation therapy
US6600810B1 (en) 1998-08-10 2003-07-29 Siemens Medical Solutions Usa, Inc. Multiple layer multileaf collimator design to improve resolution and reduce leakage
US6112112A (en) 1998-09-18 2000-08-29 Arch Development Corporation Method and system for the assessment of tumor extent in magnetic resonance images
DE19848765C2 (de) 1998-10-22 2000-12-21 Brainlab Med Computersyst Gmbh Positionsverifizierung in Kamerabildern
US6980679B2 (en) 1998-10-23 2005-12-27 Varian Medical System Technologies, Inc. Method and system for monitoring breathing activity of a subject
US6937696B1 (en) 1998-10-23 2005-08-30 Varian Medical Systems Technologies, Inc. Method and system for predictive physiological gating
US6621889B1 (en) 1998-10-23 2003-09-16 Varian Medical Systems, Inc. Method and system for predictive physiological gating of radiation therapy
US6241671B1 (en) 1998-11-03 2001-06-05 Stereotaxis, Inc. Open field system for magnetic surgery
US6591127B1 (en) 1999-03-15 2003-07-08 General Electric Company Integrated multi-modality imaging system and method
US6144875A (en) 1999-03-16 2000-11-07 Accuray Incorporated Apparatus and method for compensating for respiratory and patient motion during treatment
US6778850B1 (en) 1999-03-16 2004-08-17 Accuray, Inc. Frameless radiosurgery treatment system and method
US6501981B1 (en) 1999-03-16 2002-12-31 Accuray, Inc. Apparatus and method for compensating for respiratory and patient motions during treatment
ATE289844T1 (de) 1999-04-02 2005-03-15 Wisconsin Alumni Res Found Megavolt-computertomographie während der strahlentherapie
DE19917867B4 (de) 1999-04-20 2005-04-21 Brainlab Ag Verfahren und Vorrichtung zur Bildunterstützung bei der Behandlung von Behandlungszielen mit Integration von Röntgenerfassung und Navigationssystem
US6459769B1 (en) 1999-05-03 2002-10-01 Sherwood Services Ag Movable miniature multi-leaf collimator
US6512813B1 (en) 1999-05-03 2003-01-28 Franz Krispel Rotating stereotactic treatment system
JP3530072B2 (ja) 1999-05-13 2004-05-24 三菱電機株式会社 放射線治療用の放射線照射装置の制御装置
US6278891B1 (en) 1999-08-25 2001-08-21 Echo Medical Systems, Llc Nuclear magnetic resonance method and apparatus for bone analysis and imaging
DE19944516B4 (de) 1999-09-16 2006-08-17 Brainlab Ag Dreidimensionale Formerfassung mit Kamerabildern
DE19953177A1 (de) 1999-11-04 2001-06-21 Brainlab Ag Exakte Patientenpositionierung durch Vergleich von rekonstruierten und Linac-Röntgenbildern
US6546073B1 (en) 1999-11-05 2003-04-08 Georgia Tech Research Corporation Systems and methods for global optimization of treatment planning for external beam radiation therapy
US7046762B2 (en) 1999-11-05 2006-05-16 Georgia Tech Research Corporation Systems and methods for global optimization of treatment planning for external beam radiation therapy
US6542767B1 (en) 1999-11-09 2003-04-01 Biotex, Inc. Method and system for controlling heat delivery to a target
US6349129B1 (en) 1999-12-08 2002-02-19 Siemens Medical Solutions Usa, Inc. System and method for defining radiation treatment intensity maps
US6314159B1 (en) 1999-12-08 2001-11-06 Siemens Medical Systems, Inc. System and method for optimizing radiation treatment with an intensity modulating multi-leaf collimator
DE19959720B4 (de) 1999-12-10 2005-02-24 Siemens Ag Verfahren zum Betrieb eines Magnetresonanztomographiegeräts
DE19964016B4 (de) 1999-12-30 2005-06-23 Brainlab Ag Verfahren und Vorrichtung zur Positionierung eines Körpers mit einem Lagesensor zur Bestrahlung
DE10000937B4 (de) 2000-01-12 2006-02-23 Brainlab Ag Intraoperative Navigationsaktualisierung
AU2001228205A1 (en) * 2000-01-14 2001-07-24 Neutron Therapy And Imaging Inc. Linac neutron therapy and imaging
US6725078B2 (en) 2000-01-31 2004-04-20 St. Louis University System combining proton beam irradiation and magnetic resonance imaging
AU2001247704A1 (en) 2000-03-21 2001-10-15 Bechtel Bwxt Idaho, Llc Methods and computer readable medium for improved radiotherapy dosimetry planning
GB0007018D0 (en) 2000-03-22 2000-05-10 Akguen Ali Magnetic resonance imaging apparatus and method
EP1142536B1 (de) 2000-04-05 2002-07-31 BrainLAB AG Referenzierung eines Patienten in einem medizinischen Navigationssystem mittels aufgestrahlter Lichtpunkte
US6373250B1 (en) 2000-05-19 2002-04-16 Ramot University Authority For Applied Research And Industrial Development Ltd. Method of magnetic resonance imaging
US6636645B1 (en) 2000-06-29 2003-10-21 Eastman Kodak Company Image processing method for reducing noise and blocking artifact in a digital image
DE10033063A1 (de) 2000-07-07 2002-01-24 Brainlab Ag Verfahren zur atmungskompensierten Strahlenbehandlung
US6594516B1 (en) 2000-07-18 2003-07-15 Koninklijke Philips Electronics, N.V. External patient contouring
US6466813B1 (en) 2000-07-22 2002-10-15 Koninklijke Philips Electronics N.V. Method and apparatus for MR-based volumetric frameless 3-D interactive localization, virtual simulation, and dosimetric radiation therapy planning
US6757355B1 (en) 2000-08-17 2004-06-29 Siemens Medical Solutions Usa, Inc. High definition radiation treatment with an intensity modulating multi-leaf collimator
US8565860B2 (en) 2000-08-21 2013-10-22 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system
US20030011451A1 (en) 2000-08-22 2003-01-16 Ehud Katznelson Permanent magnet assemblies for use in medical applications
US6330300B1 (en) 2000-08-23 2001-12-11 Siemens Medical Solutions Usa, Inc. High definition intensity modulating radiation therapy system and method
ATE221686T1 (de) 2000-09-01 2002-08-15 Brainlab Ag Stufenfreie darstellung von zwei- oder dreidimensionalen datensätzen durch krümmungsminimierende verschiebung von pixelwerten
US6885886B2 (en) 2000-09-11 2005-04-26 Brainlab Ag Method and system for visualizing a body volume and computer program product
US6504899B2 (en) 2000-09-25 2003-01-07 The Board Of Trustees Of The Leland Stanford Junior University Method for selecting beam orientations in intensity modulated radiation therapy
US6719683B2 (en) 2000-09-30 2004-04-13 Brainlab Ag Radiotherapy treatment planning with multiple inverse planning results
DE10051370A1 (de) 2000-10-17 2002-05-02 Brainlab Ag Verfahren und Vorrichtung zur exakten Patientenpositionierung in der Strahlentherapie und Radiochirurgie
BR0115093A (pt) 2000-11-03 2004-06-15 Elliot Lach Sistema para tratar uma condição de um paciente e método de usar um sistema de tratamento de uma condição
US6411675B1 (en) 2000-11-13 2002-06-25 Jorge Llacer Stochastic method for optimization of radiation therapy planning
US6570475B1 (en) 2000-11-20 2003-05-27 Intermagnetics General Corp. Split type magnetic resonance imaging magnet
EP1208796B1 (de) 2000-11-22 2003-03-05 BrainLAB AG Verfahren zur Bestimmung der Lungenfüllung
US6414487B1 (en) 2000-11-22 2002-07-02 Philips Medical Systems (Cleveland), Inc. Time and memory optimized method of acquiring and reconstructing multi-shot 3D MRI data
EP1208808B1 (de) 2000-11-24 2003-06-18 BrainLAB AG Vorrichtung und Verfahren zur Navigation
US20030028090A1 (en) 2000-12-20 2003-02-06 Image-Guided Neurologics, Inc. Method for dynamic characterization of density fields in a compound structure
JP2002186676A (ja) 2000-12-22 2002-07-02 Hitachi Medical Corp 絞り装置および該絞り装置を用いた放射線治療装置
US6564084B2 (en) 2001-03-02 2003-05-13 Draeger Medical, Inc. Magnetic field shielding and detecting device and method thereof
ATE261745T1 (de) 2001-03-05 2004-04-15 Brainlab Ag Verfahren zur erstellung bzw. aktualisierung eines bestrahlungsplans
EP1238684B1 (de) 2001-03-05 2004-03-17 BrainLAB AG Verfahren zur Erstellung bzw. Aktualisierung eines Bestrahlungsplans
US6661870B2 (en) 2001-03-09 2003-12-09 Tomotherapy Incorporated Fluence adjustment for improving delivery to voxels without reoptimization
US7046831B2 (en) 2001-03-09 2006-05-16 Tomotherapy Incorporated System and method for fusion-aligned reprojection of incomplete data
US7054413B2 (en) 2001-03-15 2006-05-30 Siemens Medical Solutions Usa, Inc. Rotatable multi-element beam shaping device
US6708054B2 (en) 2001-04-12 2004-03-16 Koninklijke Philips Electronics, N.V. MR-based real-time radiation therapy oncology simulator
EP1260179B1 (de) 2001-05-22 2003-03-26 BrainLAB AG Röntgenbildregistrierungseinrichtung mit einem medizinischen Navigationssystem
US20020193685A1 (en) 2001-06-08 2002-12-19 Calypso Medical, Inc. Guided Radiation Therapy System
US20030068097A1 (en) 2001-06-15 2003-04-10 Massachusetts Institute Of Technology Adaptive mean estimation and normalization of data
US20030083901A1 (en) 2001-06-22 2003-05-01 Bosch Juan P. Process for providing dialysis and other treatments
JP2003024296A (ja) 2001-07-04 2003-01-28 Ge Medical Systems Global Technology Co Llc 静磁界調整方法およびmri装置
GB2382512A (en) 2001-07-20 2003-05-28 Elekta Oncology Syst Ltd MRI in guided radiotherapy and position verification
US6690166B2 (en) 2001-09-26 2004-02-10 Southwest Research Institute Nuclear magnetic resonance technology for non-invasive characterization of bone porosity and pore size distributions
US6810108B2 (en) 2001-11-02 2004-10-26 Siemens Medical Solutions Usa, Inc. System and method for positioning an electronic portal imaging device
EP1460938A4 (en) 2001-11-05 2006-07-26 Computerized Med Syst Inc DEVICE AND METHOD FOR DISPLAYING, LEADING AND OBJECTING AN EXTERNAL RADIOTHERAPY
US6664879B2 (en) 2001-12-04 2003-12-16 Nmr Holdings No. 2 Pty Limited Asymmetric tesseral shim coils for magnetic resonance
US7092573B2 (en) 2001-12-10 2006-08-15 Eastman Kodak Company Method and system for selectively applying enhancement to an image
DE50101677D1 (de) 2001-12-18 2004-04-15 Brainlab Ag Projektion von Patientenbilddaten aus Durchleuchtungs- bzw. Schichtbilderfassungsverfahren auf Videobilder
US7221733B1 (en) 2002-01-02 2007-05-22 Varian Medical Systems Technologies, Inc. Method and apparatus for irradiating a target
US6657391B2 (en) 2002-02-07 2003-12-02 Siemens Medical Solutions Usa, Inc. Apparatus and method for establishing a Q-factor of a cavity for an accelerator
WO2003076003A2 (en) 2002-03-06 2003-09-18 Tomotherapy Incorporated Method for modification of radiotherapy treatment delivery
DE10211244A1 (de) 2002-03-13 2003-10-23 Lactec Ges Fuer Moderne Lackte Lackieranlage zum Aufbringen von flüssigem Beschichtungsmaterial
US20030181804A1 (en) 2002-03-20 2003-09-25 Koninklijke Philips Electronics N.V. Distributed diagnostic imaging systems
US6630829B1 (en) 2002-04-22 2003-10-07 Ge Medical Systems Global Technology Co., Llc Gradient coil set capable of producing a variable field of view
JP3920140B2 (ja) 2002-05-13 2007-05-30 株式会社東芝 Mri装置及びフロー定量化装置
FR2839894A1 (fr) 2002-05-21 2003-11-28 Chabunda Christophe Mwanza Procedes, appareils de cyclotherapie image-guidee et mode d'obtention d'images scanographiques diagnostiques instantanees pour la planification et la dosimetrie en ligne
US6735277B2 (en) 2002-05-23 2004-05-11 Koninklijke Philips Electronics N.V. Inverse planning for intensity-modulated radiotherapy
US6728336B2 (en) 2002-07-12 2004-04-27 General Hospital Corporation Arrangements and methods for treating a subject
US7162005B2 (en) 2002-07-19 2007-01-09 Varian Medical Systems Technologies, Inc. Radiation sources and compact radiation scanning systems
GB2393373A (en) 2002-09-13 2004-03-24 Elekta Ab MRI in guided radiotherapy and position verification
US6853704B2 (en) 2002-09-23 2005-02-08 Siemens Medical Solutions Usa, Inc. System providing multiple focused radiation beams
US7227925B1 (en) 2002-10-02 2007-06-05 Varian Medical Systems Technologies, Inc. Gantry mounted stereoscopic imaging system
US7289599B2 (en) 2002-10-04 2007-10-30 Varian Medical Systems Technologies, Inc. Radiation process and apparatus
US7657304B2 (en) 2002-10-05 2010-02-02 Varian Medical Systems, Inc. Imaging device for radiation treatment applications
US6961405B2 (en) 2002-10-07 2005-11-01 Nomos Corporation Method and apparatus for target position verification
EP1573896A4 (en) 2002-10-16 2008-08-20 Varian Med Sys Tech Inc METHOD AND DEVICE FOR CORRECTING SIGNAL EXCESSES IN IMAGING DEVICE
US7260426B2 (en) 2002-11-12 2007-08-21 Accuray Incorporated Method and apparatus for tracking an internal target region without an implanted fiducial
WO2004046745A1 (en) 2002-11-20 2004-06-03 Koninklijke Philips Electronics N.V. Self-shielded gradient field coil for magnetic resonance imaging
US20040106869A1 (en) 2002-11-29 2004-06-03 Ron-Tech Medical Ltd. Ultrasound tracking device, system and method for intrabody guiding procedures
US7317782B2 (en) 2003-01-31 2008-01-08 Varian Medical Systems Technologies, Inc. Radiation scanning of cargo conveyances at seaports and the like
US20050143965A1 (en) 2003-03-14 2005-06-30 Failla Gregory A. Deterministic computation of radiation doses delivered to tissues and organs of a living organism
US20040254448A1 (en) 2003-03-24 2004-12-16 Amies Christopher Jude Active therapy redefinition
GB2401946B (en) 2003-03-25 2006-10-04 Siemens Ag Generator for time-variable magnetic fields of a magnetic resonance instrument and magnetic resonance instrument with the generator
US7570987B2 (en) 2003-04-04 2009-08-04 Brainlab Ag Perspective registration and visualization of internal areas of the body
US20110142887A1 (en) 2009-12-15 2011-06-16 Immunovative Therapies Ltd. Methods and compositions for liquidation of tumors
US6788060B1 (en) 2003-05-28 2004-09-07 Ge Medical Systems Global Technology Co., Inc. Imaging system with homogeneous magnetic field
US7542622B1 (en) 2003-06-02 2009-06-02 The Trustees Of Columbia University In The City Of New York Spatio-temporal treatment of noisy images using brushlets
US7171257B2 (en) 2003-06-11 2007-01-30 Accuray Incorporated Apparatus and method for radiosurgery
US7778691B2 (en) 2003-06-13 2010-08-17 Wisconsin Alumni Research Foundation Apparatus and method using synchronized breathing to treat tissue subject to respiratory motion
US7412029B2 (en) 2003-06-25 2008-08-12 Varian Medical Systems Technologies, Inc. Treatment planning, simulation, and verification system
GB2403884B (en) 2003-07-08 2006-03-01 Elekta Ab Multi-leaf collimator
US7266175B1 (en) 2003-07-11 2007-09-04 Nomos Corporation Planning method for radiation therapy
WO2005010711A2 (en) 2003-07-21 2005-02-03 Johns Hopkins University Robotic 5-dimensional ultrasound
US7463823B2 (en) 2003-07-24 2008-12-09 Brainlab Ag Stereoscopic visualization device for patient image data and video images
US7015692B2 (en) 2003-08-07 2006-03-21 Ge Electric Company Apparatus for active cooling of an MRI patient bore in cylindrical MRI systems
US7187792B2 (en) 2003-08-29 2007-03-06 Accuray, Inc. Apparatus and method for determining measure of similarity between images
US20050053267A1 (en) 2003-09-05 2005-03-10 Varian Medical Systems Technologies, Inc. Systems and methods for tracking moving targets and monitoring object positions
US8571639B2 (en) 2003-09-05 2013-10-29 Varian Medical Systems, Inc. Systems and methods for gating medical procedures
US6999555B2 (en) 2003-09-15 2006-02-14 Varian Medical Systems Imaging Laboratory Gmbh Systems and methods for processing data
US7315636B2 (en) 2003-09-18 2008-01-01 Accuray, Inc. Generation of reconstructed images
US7343192B2 (en) 2003-09-23 2008-03-11 Echo Medical Systems, Llc Magnetic resonance imaging method and apparatus for body composition analysis
EP1673146B1 (en) 2003-09-30 2012-11-14 Koninklijke Philips Electronics N.V. Target tracking apparatus for radiation treatment planning and delivery
US7053617B2 (en) 2003-10-01 2006-05-30 General Electric Co. Integrated electronic RF shielding apparatus for an MRI magnet
US6906606B2 (en) 2003-10-10 2005-06-14 General Electric Company Magnetic materials, passive shims and magnetic resonance imaging systems
US7589326B2 (en) 2003-10-15 2009-09-15 Varian Medical Systems Technologies, Inc. Systems and methods for image acquisition
US7002408B2 (en) 2003-10-15 2006-02-21 Varian Medical Systems Technologies, Inc. Data signal amplifier and processor with multiple signal gains for increased dynamic signal range
US7154991B2 (en) 2003-10-17 2006-12-26 Accuray, Inc. Patient positioning assembly for therapeutic radiation system
US20070197908A1 (en) 2003-10-29 2007-08-23 Ruchala Kenneth J System and method for calibrating and positioning a radiation therapy treatment table
WO2005047919A1 (en) 2003-11-12 2005-05-26 Invivo Corporation Method for generating fast magnetic resonance images
WO2005058385A2 (en) 2003-12-12 2005-06-30 Philometron, Inc. Multiple section parenteral drug delivery apparatus
GB2409521B (en) 2003-12-22 2007-04-18 Ge Med Sys Global Tech Co Llc Gradient coil apparatus and method of assembly thereof
US20050207531A1 (en) 2004-01-20 2005-09-22 University Of Florida Research Foundation, Inc. Radiation therapy system using interior-point methods and convex models for intensity modulated fluence map optimization
US7230429B1 (en) 2004-01-23 2007-06-12 Invivo Corporation Method for applying an in-painting technique to correct images in parallel imaging
EP1563799B2 (de) 2004-02-11 2012-11-28 BrainLAB AG Verstellbare Markeranordnung
CN1946339A (zh) 2004-02-20 2007-04-11 佛罗里达大学研究基金会公司 用于提供适形放射治疗同时对软组织进行成像的系统
US7423273B2 (en) 2004-03-01 2008-09-09 Varian Medical Systems Technologies, Inc. Object examination by delayed neutrons
US7477776B2 (en) 2004-03-01 2009-01-13 Brainlab Ag Method and apparatus for determining a plane of symmetry of a three-dimensional object
CN1669599A (zh) 2004-03-16 2005-09-21 上海英迈吉东影图像设备有限公司 三维适形放射治疗剂量计划方法
JP4392280B2 (ja) 2004-03-26 2009-12-24 株式会社日立製作所 放射性同位元素製造装置および放射性薬剤製造装置
US7046765B2 (en) 2004-03-31 2006-05-16 Accuray, Inc. Radiosurgery x-ray system with collision avoidance subsystem
US7166852B2 (en) 2004-04-06 2007-01-23 Accuray, Inc. Treatment target positioning system
WO2005096788A2 (en) 2004-04-08 2005-10-20 University Of Florida Research Foundation, Inc. Field splitting for intensity modulated fields of large size
ITSV20040016A1 (it) 2004-04-13 2004-07-13 Esaote Spa Macchina per risonanza magnetico nucleare
WO2005115544A1 (en) * 2004-05-24 2005-12-08 University Of Virginia Patent Foundation System and method for temporally precise intensity modulated radiation therapy (imrt)
US7130372B2 (en) 2004-06-08 2006-10-31 Siemens Medical Solutions Usa, Inc. Linear accelerator with X-ray imaging elements mounted on curved support
US20060017411A1 (en) 2004-06-17 2006-01-26 Accsys Technology, Inc. Mobile/transportable PET radioisotope system with omnidirectional self-shielding
US7327865B2 (en) 2004-06-30 2008-02-05 Accuray, Inc. Fiducial-less tracking with non-rigid image registration
US7522779B2 (en) 2004-06-30 2009-04-21 Accuray, Inc. Image enhancement method and system for fiducial-less tracking of treatment targets
US7366278B2 (en) 2004-06-30 2008-04-29 Accuray, Inc. DRR generation using a non-linear attenuation model
US7426318B2 (en) 2004-06-30 2008-09-16 Accuray, Inc. Motion field generation for non-rigid image registration
US7231076B2 (en) 2004-06-30 2007-06-12 Accuray, Inc. ROI selection in image registration
EP1623738B1 (de) 2004-08-06 2007-09-12 BrainLAB AG Volumetrische Bildgebung an einem Strahlentherapiegerät
US7634122B2 (en) 2004-08-25 2009-12-15 Brainlab Ag Registering intraoperative scans
US20060058636A1 (en) 2004-09-13 2006-03-16 Wemple Charles A Method for tracking the movement of a particle through a geometric model for use in radiotherapy
US7012385B1 (en) 2004-09-24 2006-03-14 Viara Research, Llc Multi-channel induction accelerator with external channels
US7302038B2 (en) 2004-09-24 2007-11-27 Wisconsin Alumni Research Foundation Correction of patient rotation errors in radiotherapy using couch translation
US7298819B2 (en) 2004-09-30 2007-11-20 Accuray Incorporated Flexible treatment planning
US8989349B2 (en) 2004-09-30 2015-03-24 Accuray, Inc. Dynamic tracking of moving targets
US7471813B2 (en) 2004-10-01 2008-12-30 Varian Medical Systems International Ag Systems and methods for correction of scatter in images
US7415095B2 (en) 2004-10-01 2008-08-19 Siemens Aktiengesellschaft System and method utilizing adaptive radiation therapy framework
US7505037B2 (en) 2004-10-02 2009-03-17 Accuray, Inc. Direct volume rendering of 4D deformable volume images
EP1645241B1 (de) 2004-10-05 2011-12-28 BrainLAB AG Positionsmarkersystem mit Punktlichtquellen
WO2006047580A2 (en) 2004-10-26 2006-05-04 Univ California System and method for providing a rotating magnetic field
US8014625B2 (en) 2004-11-10 2011-09-06 Agfa Healthcare Method of performing measurements on digital images
US20080108894A1 (en) 2004-11-15 2008-05-08 Elgavish Gabriel A Methods and Systems of Analyzing Clinical Parameters and Methods of Producing Visual Images
JP3983759B2 (ja) 2004-11-26 2007-09-26 株式会社日立メディコ 核磁気共鳴撮像装置
DE102004061509B4 (de) 2004-12-21 2007-02-08 Siemens Ag Verfahren und Gerät zur beschleunigten Spiral-kodierten Bildgebung in der Magnetresonanztomographie
US20060170679A1 (en) 2005-02-01 2006-08-03 Hongwu Wang Representing a volume of interest as boolean combinations of multiple simple contour sets
US7957507B2 (en) 2005-02-28 2011-06-07 Cadman Patrick F Method and apparatus for modulating a radiation beam
GB2424281A (en) 2005-03-17 2006-09-20 Elekta Ab Radiotherapeutic Apparatus with MRI
WO2006097864A1 (en) 2005-03-17 2006-09-21 Koninklijke Philips Electronics, N.V. Minimum energy shim coils for magnetic resonance
US8295577B2 (en) 2005-03-31 2012-10-23 Michael Zarkh Method and apparatus for guiding a device in a totally occluded or partly occluded tubular organ
US7983380B2 (en) 2005-04-29 2011-07-19 Varian Medical Systems, Inc. Radiation systems
US7379531B2 (en) 2005-06-13 2008-05-27 Siemens Medical Solutions Health Services Corporation Beam therapy treatment user interface monitoring and recording system
US20070016014A1 (en) 2005-06-15 2007-01-18 Kenji Hara Radio therapy apparatus and operating method of the same
US7349522B2 (en) 2005-06-22 2008-03-25 Board Of Trustees Of The University Of Arkansas Dynamic radiation therapy simulation system
EP1907055A2 (en) 2005-07-14 2008-04-09 Koninklijke Philips Electronics N.V. Method of accounting for tumor motion in radiotherapy treatment
EP1907065B1 (en) 2005-07-22 2012-11-07 TomoTherapy, Inc. Method and system for adapting a radiation therapy treatment plan based on a biological model
EP1907981A4 (en) 2005-07-22 2009-10-21 Tomotherapy Inc METHOD AND SYSTEM FOR DOSE EVALUATION ADMINISTERED
US8406851B2 (en) 2005-08-11 2013-03-26 Accuray Inc. Patient tracking using a virtual image
US20070083114A1 (en) 2005-08-26 2007-04-12 The University Of Connecticut Systems and methods for image resolution enhancement
JP4386288B2 (ja) 2005-08-31 2009-12-16 株式会社日立製作所 放射線治療装置の位置決めシステム及び位置決め方法
DE602005021356D1 (de) 2005-09-03 2010-07-01 Bruker Biospin Ag Matrix-Shimsystem mit Gruppen von Spulen
US7266176B2 (en) 2005-09-28 2007-09-04 Accuray Incorporated Workspace optimization for radiation treatment delivery system
US7295649B2 (en) * 2005-10-13 2007-11-13 Varian Medical Systems Technologies, Inc. Radiation therapy system and method of using the same
CA2626538C (en) 2005-10-17 2018-01-23 Alberta Cancer Board Integrated external beam radiotherapy and mri system
US8073102B2 (en) 2005-10-17 2011-12-06 Alberta Health Services Real-time dose reconstruction using dynamic simulation and image guided adaptive radiotherapy
US7977942B2 (en) 2005-11-16 2011-07-12 Board Of Regents, The University Of Texas System Apparatus and method for tracking movement of a target
US8041103B2 (en) 2005-11-18 2011-10-18 Kla-Tencor Technologies Corp. Methods and systems for determining a position of inspection data in design data space
EP2389978B1 (en) 2005-11-18 2019-03-13 Mevion Medical Systems, Inc. Charged particle radiation therapy
EP1818078A1 (en) 2006-02-09 2007-08-15 DKFZ Deutsches Krebsforschungszentrum Inverse treatment planning method
EP2001367A4 (en) 2006-03-14 2010-11-24 Univ Johns Hopkins DEVICE FOR USING A MEDICAL DEVICE IN A BODY DURING A MEDICAL IMAGING METHOD AND CORRESPONDING DEVICE AND METHOD
DE112007000801T5 (de) 2006-03-28 2009-02-12 Hampton University Hadronen-Behandlungsplanung mit adäquater biologischer Gewichtung
US7907772B2 (en) 2006-03-30 2011-03-15 Accuray Incorporated Delineation on three-dimensional medical image
US7902530B1 (en) 2006-04-06 2011-03-08 Velayudhan Sahadevan Multiple medical accelerators and a kV-CT incorporated radiation therapy device and semi-automated custom reshapeable blocks for all field synchronous image guided 3-D-conformal-intensity modulated radiation therapy
US7605589B2 (en) 2006-04-10 2009-10-20 Bruker Biospin Ag Method for automatic shimming for nuclear magnetic resonance spectroscopy
US7532705B2 (en) 2006-04-10 2009-05-12 Duke University Systems and methods for localizing a target for radiotherapy based on digital tomosynthesis
US7840045B2 (en) 2006-04-21 2010-11-23 The University Of Utah Research Foundation Method and system for parallel reconstruction in the K-space domain for application in imaging systems
US8073104B2 (en) 2006-05-25 2011-12-06 William Beaumont Hospital Portal and real time imaging for treatment verification
WO2008013598A2 (en) 2006-05-25 2008-01-31 William Beaumont Hospital Real-time, on-line and offline treatment dose tracking and feedback process for volumetric image guided adaptive radiotherapy
US7610079B2 (en) 2006-07-25 2009-10-27 Ast Gmbh Shock wave imaging system
EP2081494B1 (en) 2006-11-16 2018-07-11 Vanderbilt University System and method of compensating for organ deformation
CN100380406C (zh) 2006-12-29 2008-04-09 四川大学 放射治疗计划系统中获得三维解剖结构投影轮廓线的方法
JP5209277B2 (ja) 2007-01-17 2013-06-12 株式会社東芝 傾斜磁場コイルユニット、mri装置用ガントリ、及びmri装置
US8460195B2 (en) 2007-01-19 2013-06-11 Sunnybrook Health Sciences Centre Scanning mechanisms for imaging probe
KR101517252B1 (ko) 2007-01-19 2015-05-04 써니브룩 헬스 사이언시즈 센터 영상 탐침 장치의 스캐닝 메카니즘
US7602183B2 (en) 2007-02-13 2009-10-13 The Board Of Trustees Of The Leland Stanford Junior University K-T sparse: high frame-rate dynamic magnetic resonance imaging exploiting spatio-temporal sparsity
DE102008007245B4 (de) 2007-02-28 2010-10-14 Siemens Aktiengesellschaft Kombiniertes Strahlentherapie- und Magnetresonanzgerät
US20080235052A1 (en) 2007-03-19 2008-09-25 General Electric Company System and method for sharing medical information between image-guided surgery systems
US8155417B2 (en) 2007-03-27 2012-04-10 Hologic, Inc. Post-acquisition adaptive reconstruction of MRI data
EP2135107B1 (en) 2007-04-04 2015-07-29 Koninklijke Philips N.V. Pet/mri hybrid system using a split gradient coil
US7489131B2 (en) 2007-04-23 2009-02-10 General Electric Co. System and apparatus for direct cooling of gradient coils
US7898192B2 (en) 2007-06-06 2011-03-01 Siemens Medical Solutions Usa, Inc. Modular linac and systems to support same
CN101688916B (zh) 2007-07-02 2013-05-01 皇家飞利浦电子股份有限公司 用于混合pet-mr系统的热稳定的pet探测器
WO2009029896A1 (en) 2007-08-31 2009-03-05 The Regents Of The University Of California Adjustable permanent magnet assembly for nmr and mri
US7791338B2 (en) 2007-09-07 2010-09-07 The Board Of Trustees Of The Leland Stanford Junior University MRI method of determining time-optimal gradient waveforms with gradient amplitude as a function of arc-length in k-space
US8315689B2 (en) 2007-09-24 2012-11-20 MRI Interventions, Inc. MRI surgical systems for real-time visualizations using MRI image data and predefined data of surgical tools
EP2050395A1 (en) 2007-10-18 2009-04-22 Paracelsus Medizinische Privatuniversität Methods for improving image quality of image detectors, and systems therefor
CN101452065B (zh) 2007-12-04 2011-10-19 西门子(中国)有限公司 磁共振设备中的局部线圈、磁共振设备以及成像方法
US7801271B2 (en) 2007-12-23 2010-09-21 Oraya Therapeutics, Inc. Methods and devices for orthovoltage ocular radiotherapy and treatment planning
US8238516B2 (en) 2008-01-09 2012-08-07 Kabushiki Kaisha Toshiba Radiotherapy support apparatus
JP5197026B2 (ja) 2008-01-09 2013-05-15 株式会社東芝 放射線治療システム、放射線治療支援装置及び放射線治療支援プログラム
US8547100B2 (en) 2008-02-25 2013-10-01 Koninklijke Philips N.V. Magnetic resonance gradient coil iso-plane backbone for radiation detectors of 511Kev
US20110118588A1 (en) 2008-03-12 2011-05-19 Giora Komblau Combination MRI and Radiotherapy Systems and Methods of Use
US7741624B1 (en) 2008-05-03 2010-06-22 Velayudhan Sahadevan Single session interactive ultra-short duration super-high biological dose rate radiation therapy and radiosurgery
US8325878B2 (en) 2008-05-08 2012-12-04 The Johns Hopkins University Real-time dose computation for radiation therapy using graphics processing unit acceleration of the convolution/superposition dose computation method
WO2009142545A2 (en) * 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Charged particle cancer therapy patient positioning method and apparatus
US8487278B2 (en) * 2008-05-22 2013-07-16 Vladimir Yegorovich Balakin X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
EP2294312B1 (en) 2008-06-24 2016-04-27 Alberta Health Services Radiation therapy system
US7659718B1 (en) 2008-07-31 2010-02-09 The Board Of Trustees Of The Leland Stanford Junior University Blip design for random sampling compressed sensing of flyback 3D-MRSI
CA2638996C (en) 2008-08-20 2013-04-30 Imris Inc. Mri guided radiation therapy
EP2196240A1 (en) 2008-12-12 2010-06-16 Koninklijke Philips Electronics N.V. Therapeutic apparatus
DE112008004206B4 (de) 2008-12-24 2013-06-20 Mitsubishi Electric Corp. Teilchenstrahl-Therapiesystem mit Bestätigung der Formgebung eines variablen Kollimators auch während eines Bestrahlungsvorganges
US8310233B2 (en) 2009-02-18 2012-11-13 Mayo Foundation For Medical Education And Research Method for image reconstruction from undersampled medical imaging data
US20120150017A1 (en) 2009-03-12 2012-06-14 National Institute Of Radiological Sciences Open pet/mri hybrid machine
US8331531B2 (en) 2009-03-13 2012-12-11 The Board Of Trustees Of The Leland Stanford Junior University Configurations for integrated MRI-linear accelerators
EP2230530A1 (en) 2009-03-20 2010-09-22 Koninklijke Philips Electronics N.V. A tesseral shim coil for a magnetic resonance system
US9724538B2 (en) 2009-04-02 2017-08-08 Koninklijke Philips N.V. Automated anatomy delineation for image guided therapy planning
WO2010125486A1 (en) 2009-04-28 2010-11-04 Koninklijke Philips Electronics N.V. Interventional mr imaging with motion compensation
JP2010269067A (ja) 2009-05-25 2010-12-02 Hitachi Medical Corp 治療支援装置
US20120157402A1 (en) 2009-05-27 2012-06-21 Liangxian Cao Methods for treating brain tumors
US9259290B2 (en) 2009-06-08 2016-02-16 MRI Interventions, Inc. MRI-guided surgical systems with proximity alerts
EP2443590B1 (en) 2009-06-19 2023-06-14 ViewRay Technologies, Inc. System and method for performing tomographic image reconstruction
US8139714B1 (en) 2009-06-25 2012-03-20 Velayudhan Sahadevan Few seconds beam on time, breathing synchronized image guided all fields simultaneous radiation therapy combined with hyperthermia
JP5732065B2 (ja) 2009-11-20 2015-06-10 ビューレイ・インコーポレイテッドViewRay Incorporated 自己遮蔽型傾斜コイル
US8173983B1 (en) * 2010-01-07 2012-05-08 Velayudhan Sahadevan All field simultaneous radiation therapy
US9694205B2 (en) 2010-02-12 2017-07-04 Elekta Ab (Publ) Radiotherapy and imaging apparatus
EP2538840B1 (en) 2010-02-24 2019-04-03 ViewRay Technologies, Inc. Split magnetic resonance imaging system
EP2569054A4 (en) 2010-05-11 2013-10-02 Hampton University Office Of General Counsel DEVICE, METHOD AND SYSTEM FOR MEASURING PROMPT GAMMA OR OTHER RADIATION-INDUCED RADIATION DURING HADRONTHERAPY TREATMENTS FOR DOSAGE AND RANGE TESTING USES BY IONIZATION RADIATION RECOGNITION
EP2400314A1 (en) 2010-06-14 2011-12-28 Agilent Technologies U.K. Limited Superconducting magnet arrangement and method of mounting thereof
DE102010032080B4 (de) 2010-07-23 2012-09-27 Siemens Aktiengesellschaft Getriggerte Magnetresonanzbildgebung auf der Grundlage einer partiellen parallelen Akquisition (PPA)
US8637841B2 (en) 2010-08-23 2014-01-28 Varian Medical Systems, Inc. Multi level multileaf collimators
KR101930436B1 (ko) 2010-10-05 2018-12-18 알버타 헬스 서비시즈 화상 안내 방사선 치료 시스템 및 이 시스템에 사용하기 위한 차폐된 고주파 검출기 코일
WO2012063162A1 (en) 2010-11-09 2012-05-18 Koninklijke Philips Electronics N.V. Magnetic resonance imaging and radiotherapy apparatus with at least two-transmit-and receive channels
WO2012080894A2 (en) 2010-12-13 2012-06-21 Koninklijke Philips Electronics N.V. Therapeutic apparatus comprising a radiotherapy apparatus, a mechanical positioning system, and a magnetic resonance imaging system
CA2822287C (en) 2010-12-22 2020-06-30 Viewray Incorporated System and method for image guidance during medical procedures
US8565377B2 (en) 2011-03-07 2013-10-22 Dalhousie University Methods and apparatus for imaging in conjunction with radiotherapy
EP2500909A1 (en) 2011-03-16 2012-09-19 Deutsches Krebsforschungszentrum Stiftung des Öffentlichen Rechts Position sensoring method and system for a multi-leaf collimator
US9254112B2 (en) 2011-03-23 2016-02-09 Siemens Corporation Respiratory interval-based correlation and processing of dynamic imaging data
DE102011006582A1 (de) 2011-03-31 2012-10-04 Siemens Aktiengesellschaft Strahlentherapieanlage mit Hochfrequenzschirmung
JP5701671B2 (ja) 2011-04-27 2015-04-15 住友重機械工業株式会社 荷電粒子線照射装置
WO2012164527A1 (en) 2011-05-31 2012-12-06 Koninklijke Philips Electronics N.V. Correcting the static magnetic field of an mri radiotherapy apparatus
US20130066135A1 (en) 2011-08-29 2013-03-14 Louis Rosa Neutron irradiation therapy device
US20130086163A1 (en) 2011-10-04 2013-04-04 Siemens Medical Solutions Usa, Inc. Healthcare Information System Interface Supporting Social Media and Related Applications
US9789337B2 (en) 2011-10-07 2017-10-17 Siemens Medical Solutions Usa, Inc. Combined imaging modalities for radiation treatment planning
US8981779B2 (en) 2011-12-13 2015-03-17 Viewray Incorporated Active resistive shimming fro MRI devices
JP2013138774A (ja) 2012-01-04 2013-07-18 Hitachi Ltd 放射線治療システム
US9119550B2 (en) 2012-03-30 2015-09-01 Siemens Medical Solutions Usa, Inc. Magnetic resonance and ultrasound parametric image fusion
US10561861B2 (en) 2012-05-02 2020-02-18 Viewray Technologies, Inc. Videographic display of real-time medical treatment
US20130345545A1 (en) 2012-06-21 2013-12-26 Siemens Medical Solutions Usa, Inc. Ultrasound Enhanced Magnetic Resonance Imaging
US8993898B2 (en) 2012-06-26 2015-03-31 ETS-Lindgren Inc. Movable EMF shield, method for facilitating rapid imaging and treatment of patient
JP6382208B2 (ja) 2012-10-26 2018-08-29 ビューレイ・テクノロジーズ・インコーポレイテッドViewRay Technologies, Inc. システム及びコンピュータプログラム製品
GB2507585B (en) 2012-11-06 2015-04-22 Siemens Plc MRI magnet for radiation and particle therapy
GB2507792B (en) 2012-11-12 2015-07-01 Siemens Plc Combined MRI and radiation therapy system
WO2014121991A1 (en) 2013-02-06 2014-08-14 Koninklijke Philips N.V. Active compensation for field distorting components in a magnetic resonance imaging system with a gantry
US9404983B2 (en) 2013-03-12 2016-08-02 Viewray, Incorporated Radio frequency transmit coil for magnetic resonance imaging system
US9289626B2 (en) 2013-03-13 2016-03-22 Viewray Incorporated Systems and methods for improved radioisotopic dose calculation and delivery
US9675271B2 (en) 2013-03-13 2017-06-13 Viewray Technologies, Inc. Systems and methods for radiotherapy with magnetic resonance imaging
US8952346B2 (en) 2013-03-14 2015-02-10 Viewray Incorporated Systems and methods for isotopic source external beam radiotherapy
US10762167B2 (en) * 2013-09-27 2020-09-01 Varian Medical Systems International Ag Decision support tool for choosing treatment plans
WO2015055473A1 (en) 2013-10-17 2015-04-23 Koninklijke Philips N.V. Medical apparatus with a radiation therapy device and a radiation detection system
WO2015073048A1 (en) 2013-11-18 2015-05-21 Varian Medical Systems, Inc. Cone-beam computed tomography imaging devices, systems, and methods
CN110136176B (zh) 2013-12-03 2022-12-09 优瑞技术公司 确定与医学图像的位移的系统
CA2942393A1 (en) 2014-03-14 2015-09-17 The General Hospital Corporation System and method for free radical imaging
US9931521B2 (en) 2014-03-25 2018-04-03 Varian Medical Systems, Inc. Multi level multileaf collimator leaf tip shape effects and penumbra optimization
EP3160585B1 (en) 2014-06-27 2019-02-27 Koninklijke Philips N.V. Charged particle beam therapy and magnetic resonance imaging
CN106572835A (zh) * 2014-08-25 2017-04-19 万应医疗技术私营有限公司 具有机载立体定向成像系统的放射治疗设备
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US11045108B2 (en) 2014-11-26 2021-06-29 Viewray Technologies, Inc. Magnetic resonance imaging receive coil assembly
US9874620B2 (en) 2015-02-05 2018-01-23 Ohio State Innovation Foundation Low field magnetic resonance imaging (MRI) scanner for cardiac imaging
CN107530026B (zh) 2015-05-12 2021-10-01 海珀菲纳股份有限公司 射频线圈方法和装置
JP7014707B2 (ja) * 2015-07-22 2022-02-01 ビューレイ・テクノロジーズ・インコーポレイテッド 放射線測定のためのイオンチャンバ
WO2017091621A1 (en) 2015-11-24 2017-06-01 Viewray Technologies, Inc. Radiation beam collimating systems and methods
US10441816B2 (en) 2015-12-31 2019-10-15 Shanghai United Imaging Healthcare Co., Ltd. Radiation therapy system
EP3423153B1 (en) * 2016-03-02 2021-05-19 ViewRay Technologies, Inc. Particle therapy with magnetic resonance imaging
US9849306B2 (en) * 2016-03-21 2017-12-26 Varian Medical Systems International Ag Systems and methods for generating beam-specific planning target volume design outputs
KR20190043129A (ko) 2016-06-22 2019-04-25 뷰레이 테크놀로지스 인크. 약한 필드 강도에서의 자기 공명 영상화
US10307615B2 (en) * 2016-09-19 2019-06-04 Varian Medical Systems International Ag Optimization of radiation treatment plans for optimal treatment time in external-beam radiation treatments
US10143859B2 (en) * 2016-09-22 2018-12-04 Varian Medical Systems International Ag Controlling and shaping the dose distribution outside treatment targets in external-beam radiation treatments
CN110088640A (zh) 2016-12-15 2019-08-02 皇家飞利浦有限公司 与带电粒子加速器系统兼容的磁共振天线
US10485988B2 (en) * 2016-12-30 2019-11-26 Varian Medical Systems International Ag Interactive dose manipulation using prioritized constraints
US10166406B2 (en) * 2017-02-24 2019-01-01 Varian Medical Systems International Ag Radiation treatment planning and delivery using collision free regions
US10775460B2 (en) 2017-06-28 2020-09-15 Alberta Health Services Image guided radiation therapy system
CN109420259A (zh) 2017-08-24 2019-03-05 上海联影医疗科技有限公司 治疗系统和使用治疗系统的方法
US10661097B2 (en) * 2017-09-21 2020-05-26 Varian Medical Systems, Inc. VMAT treatment planning using multicriteria optimization and a progressive optimization scheme
EP3460500A1 (de) 2017-09-26 2019-03-27 Siemens Healthcare GmbH Medizinisches bildgebungsgerät zur kombinierten magnetresonanzbildgebung und bestrahlung und verfahren zur bestimmung der bestückung von shim-einheiten
CN116036499A (zh) 2017-12-06 2023-05-02 优瑞技术公司 多模态放射疗法的优化
US11209509B2 (en) 2018-05-16 2021-12-28 Viewray Technologies, Inc. Resistive electromagnet systems and methods
EP3866919B1 (en) 2018-11-14 2023-09-20 Shanghai United Imaging Healthcare Co., Ltd. Radiation therapy system
WO2020155137A1 (en) 2019-02-02 2020-08-06 Shanghai United Imaging Healthcare Co., Ltd. Radiation therapy system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472830A (zh) * 2009-07-15 2012-05-23 微雷公司 用于使直线性加速器和磁共振成像设备彼此屏蔽的方法和装置
CN102939607A (zh) * 2010-06-11 2013-02-20 皇家飞利浦电子股份有限公司 针对放射治疗处置规划的同时多模态逆向优化
CN105073192A (zh) * 2013-03-15 2015-11-18 优瑞公司 利用磁共振成像的线性加速器放射治疗的系统和方法

Also Published As

Publication number Publication date
WO2019112880A1 (en) 2019-06-13
CN116036499A (zh) 2023-05-02
EP3710112A1 (en) 2020-09-23
JP2022166206A (ja) 2022-11-01
US11033758B2 (en) 2021-06-15
JP7127126B2 (ja) 2022-08-29
JP7408743B2 (ja) 2024-01-05
US20190168028A1 (en) 2019-06-06
JP2021505243A (ja) 2021-02-18
CN111712298A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
CN111712298B (zh) 放射疗法系统
US11351398B2 (en) Particle therapy with magnetic resonance imaging
USRE46383E1 (en) Deceleration of hadron beams in synchrotrons designed for acceleration
JP6082764B2 (ja) 外部ビーム放射線治療とmriとの統合システム
KR101803346B1 (ko) 자기장을 이용한 종양표면선량 강화 방사선 치료장치
US10555709B2 (en) Charged particle tomography scanner for real-time volumetric radiation dose monitoring and control
Ramsey et al. A comparison of beam characteristics for gated and nongated clinical x‐ray beams
Fiedler et al. Online irradiation control by means of PET
Schardt Hadrontherapy
US20240100365A1 (en) Method and system for monitoring a hadron beam during hadron-therapy treatment of a subject
AjayKumar A Study on Physical and Dosimetric Aspects of image Guided Radiation Therapy
Jaafar Sidek Monte Carlo investigations of radiotherapy beams: studies of conventional, stereotactic and unflattened beams
Andreassen et al. Fast IMRT with narrow high energy scanned photon beams
Naceur et al. Extending deterministic transport capabilities for very-high and ultra-high energy electron beams
SPIGA Accurate dosimetry for microbeam radiation therapy
Schellhammer et al. Dosimetric evidence confirms computational model for magnetic field induced dose distortions of therapeutic proton beams
CN114206439A (zh) 用于监视用粒子对患者身体部位的治疗的装置和方法
Madaleno In vivo dosimetry to narrow down proton range uncertainties
Sellner Real-Time Imaging of the Annihilation Vertex Distributions for Antiprotons Stopping in Biological Targets
Shahrestanaky Skin Dose in Longitudinal and Transverse Linac-MRIs using Monte-Carlo and realistic 3D MRI field models

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant