WO1992003028A1 - Synchrotronstrahlungsquelle - Google Patents

Synchrotronstrahlungsquelle Download PDF

Info

Publication number
WO1992003028A1
WO1992003028A1 PCT/DE1990/000605 DE9000605W WO9203028A1 WO 1992003028 A1 WO1992003028 A1 WO 1992003028A1 DE 9000605 W DE9000605 W DE 9000605W WO 9203028 A1 WO9203028 A1 WO 9203028A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchrotron radiation
radiation source
source according
magnet
path
Prior art date
Application number
PCT/DE1990/000605
Other languages
English (en)
French (fr)
Inventor
Frank Anton
Andreas Jahnke
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/DE1990/000605 priority Critical patent/WO1992003028A1/de
Priority to JP2510803A priority patent/JPH06501334A/ja
Priority to EP90911616A priority patent/EP0542737A1/de
Publication of WO1992003028A1 publication Critical patent/WO1992003028A1/de
Priority to US08/014,401 priority patent/US5341104A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/04Synchrotrons

Definitions

  • the invention relates to a sy ⁇ chrotron radiation source with a beam guidance system for accelerating and storing a particle beam of electrons or positrons on a closed path.
  • Synchrotron radiation sources of this type using, inter alia, magnets formed from superconducting winding arrangements, are not only intended for a variety of applications in physical research, but are also used as X-ray sources for the purposes of lithography, in particular in semiconductor chip production.
  • Synchrotron radiation arises when a particle beam of electrons or positrons is deflected from a straight path.
  • the particle beam is guided (stored) in a beam guidance system on a closed path, and the synchrotron radiation that is generated in the deflection magnets necessary for the curvature of the path is used.
  • the path should be curved with the smallest possible radius of curvature; this requires relatively high magnetic fields, which can only be produced economically with superconducting magnets.
  • Sy ⁇ chrotron radiation sources with superconducting magnets are, for. B. described in EP-C-0 208 163, EP-A-0 277 521 and DE-A-31 48 100.
  • the synchrotron radiation source consists of an electron storage ring with a superconducting magnet system.
  • Such a synchrotron radiation source is particularly compact, but the actual implementation is difficult due to the very limited space. Accordingly, EP-A-0 208 163 proposes that
  • Beam guidance system for the electron beam not ring-shaped form, but to provide two spaced apart superconducting deflection magnets, whereby the
  • Particle track receives a "racetrack" shape with two straight track sections in which devices for accelerating as well as for injecting and / or extracting the particles can be arranged. Further developments of such a synchrotron radiation source can be found, for example, in EP-A-0 277 521.
  • DE-A-31 48 100 and EP-A-0 277 521 are also references to the formation of a synchrotron radiation source for use in processes such as X-ray lithography and X-ray microscopy, in particular with regard to the choice of the energy of the particles to be stored and the corresponding design of the magnets , refer to.
  • a synchrotron radiation source for use in processes such as X-ray lithography and X-ray microscopy, in particular with regard to the choice of the energy of the particles to be stored and the corresponding design of the magnets , refer to.
  • the use of synchrotron radiation sources for the production of integrated circuits or the like with structures in the submicron range is an important industrial area of application.
  • the problematic handling of the superconducting magnets can be seen as possibly disadvantageous in the known configurations;
  • the mechanical design of the magnets has to meet the highest requirements, which entails correspondingly high manufacturing costs
  • the superconducting magnets are subjected to current which varies over time (such as is necessary when accelerating a particle beam to a predetermined energy ), very difficult, among other things due to the resulting eddy currents in the holding structures of the magnets.
  • Deflection magnets which can also be called mirror magnets, are used e.g. B. described in the article "Achromatic Magnetic Mirror for Ion Bea s" by H. A. Enge, Rev. Be. Instr. 34. (1963) 385.
  • a beam guidance system according to the
  • GB-A-2 015 821 is not suitable for storing a particle beam for long periods of time; the particle beam is lost in the beam guidance system after a few revolutions, if it has not previously been extracted for transmission.
  • the object of the present invention is to provide a synchrotron radiation source with a beam guiding system which both accelerates and stores a particle beam of electrons or for a longer period of time
  • a synchrotron radiation source which has a beam guiding system for storing a particle beam of electrons or positrons on a closed path, the beam guiding system containing at least one approximately achromatic mirror magnet which is formed from superconducting winding arrangements and in which the path is approximately 270 ° is curved.
  • the use of superconductors can be limited to those components of the beam guidance system which are provided specifically for the purpose of generating synchrotron radiation;
  • the synchrotron radiation source according to the invention contains at least one mirror magnet which has winding arrangements of superconducting strands and in which the web is curved by approximately 270 °, where it intersects itself at a cross point whose position is largely independent of the energy of the particle beam passing through the web (this property establishes the attribute "achromatic").
  • a synchrotron radiation source During the acceleration of a particle beam injected into the beam guidance system to a predetermined final energy, the electrical current passing through an achromatic mirror magnet need not be changed; When operating a synchrotron radiation source according to the invention, essentially all of the problems associated with the change in the magnetic excitation of a superconducting magnet can be avoided.
  • the large deflection angle of the mirror magnet of 270 ° results in a large angular range in which the synchrotron radiation generated is emitted; consequently, a synchrotron radiation source according to the invention can be used by many users simultaneously.
  • the rest of the beam guidance system of a synchrotron radiation source according to the invention can be constructed using conventional technology, deflection magnets (dipoles) and focusing magnets (quadrupoles) can be combined with one another in accordance with the relevant knowledge. It may be advantageous to choose the minimum radius of curvature of each deflecting magnet larger than the minimum radius of curvature of the mirror magnet; this reduces the generation of synchrotron radiation in the deflection magnets. This means a reduction in the requirements for the performance of the acceleration devices to be provided in the beam guiding system, which have to compensate for the energy loss in the circulating beams caused by the generation of the synchrotron radiation, and also lower requirements for the shielding of the deflecting magnets required for radiation protection reasons.
  • the magnetic field that can be generated in the mirror magnet is characterized by a field index that is between approximately 0.8 and approximately 1.5.
  • Magnetic field in a mirror magnet is along a first one Direction constant, and it is variable in a second direction perpendicular to the first direction such that it is proportional to a certain power of the depth of penetration, measured along the second direction from the entry point.
  • the field index is the exponent that designates this power - further explanations can be found in the article by HA Enge mentioned.
  • the properties of achromaticity can be achieved most favorably with a field index of the size mentioned; in particular, a completely afocal mirror magnet can be obtained with such a field index.
  • the mirror magnet with at least one beam tube for coupling out the synchrotron radiation.
  • the synchrotron radiation can be guided safely from the sy ⁇ chrotron radiation source to its destination.
  • Synchrotron radiation for use in X-ray lithography and the like is advantageously generated by a particle beam which is generated from electrons or positrons with kinetic energy of between approximately 400 MeV and approximately 2000 MeV.
  • the radius of curvature of a deflection magnet not specifically intended for generating synchrotron radiation in the context of a synchrotron radiation source for purposes of X-ray lithography or the like a value of approximately 1 m should be mentioned.
  • the synchrotron radiation generated in the deflection magnets can be kept at an intensity that is particularly harmless for reasons of radiation protection, so that simple
  • the use of ferro-magnetic yokes in the area of the curved particle path in the interior of the mirror magnet is omitted in the mirror magnet, and ferromagnetic components are used for shielding purposes at most.
  • Ferromagnetic components show significant saturation phenomena even in moderately high magnetic fields, so that the magnetic field strength in arrangements with such components must be limited to values of at most about 2 Tesla;
  • the design of a mirror magnet without ferromagnetic components enables particularly high fields, thus particularly small radii of curvature and particularly high yield of synchrotron radiation.
  • Figure 1 is a schematic representation of the synchrotron radiation source according to the invention.
  • Figure 1 shows schematically the overall design of the synchrotron radiation source according to the invention.
  • the path 1 along which the electrons or positrons to be accelerated and / or stored move is determined by the various components of the beam guidance system.
  • the beam guidance system includes, in particular, the mirror magnet 2, in which the particle path is deflected by 270 ° and guided in a loop, as well as deflection magnets 3, 4 and focusing magnets 5, 6.
  • the deflection magnets 3, 4 essentially produce magnetic dipole fields for the curvature of the path 1 ; they can be designed both as one-piece deflection magnets 3 and as combinations of a plurality of deflection magnets 4, it being possible, if appropriate, to combine special focusing magnets 5.
  • the selection of the deflection magnets 3, 4 is to be adapted to the respective requirements of the individual case; the number of deflection magnets 3, 4 to be provided, as well as the deflection angle of each deflection magnet, can be freely arranged. Furthermore, the beam guidance system has focusing magnets 5, 6 which are used to shape the cross section of the
  • paired focusing magnets 6 and / or focusing magnets 5 connected to deflection magnets 4 are used.
  • further components can be included in the beam guidance system, for example devices for position control of the particle beam in a plane perpendicular to the respective beam direction.
  • Devices for building up the particle beam for example a beam injector 13, and devices for accelerating the particles and for compensating for their energy loss caused by the generation of the synchrotron radiation 15, for example a high-frequency resonator 14, are customary 7 fed to the respective use.
  • FIG. 2 shows a winding arrangement 8 made of superconducting windings 10, as used to form a mirror magnet 2 could be used.
  • the illustration is merely to be regarded as a sketch; the specific design of the windings 10 is to be adapted to the requirements to be made of the mirror magnet 2 using customary methods.
  • Each winding 10 has a main section 11 which is arranged parallel to the plane containing the web 1, above the region of the mirror magnet 2 containing the web 1.
  • the main sections 11 are arranged at certain intervals from one another, so that the desired field is achieved in the plane of the web 1.
  • the windings 10 are closed by means of return sections 12, which are arranged in regions away from the web 1 in the mirror magnet.
  • shielding elements 16 are shown, which on the one hand shield the web 1 outside the mirror magnet 2 from its magnetic field and on the other hand keep the field generated by the return sections 12 away from the web 1.
  • FIG. 3 shows the spatial arrangement of two winding arrangements 8, 9 to form a mirror magnet.
  • the upper winding arrangement 8 and the lower winding arrangement 9 are arranged essentially congruently with a certain distance above one another, and the particles move approximately in the plane lying centrally between the upper winding arrangement 8 and the lower winding arrangement 9.
  • the shielding element 16 has an opening 17 through which a particle enters the magnetic field generated by the winding arrangements 8, 9.
  • the return sections 12 of the winding arrangements 8, 9 are each combined to form compact return rods; the mechanical requirements for superconducting magnet arrangements can thus be optimally taken into account.
  • the synchrotron radiation source is easy to handle and enables the generation of synchrotron radiation with long-term constant, particularly favorable parameters.

Abstract

Die Erfindung betrifft eine Synchrotronstrahlungsquelle mit einem Strahlführungssystem zur Beschleunigung und Speicherung eines Teilchenstrahls aus Elektronen oder Positronen auf einer geschlossenen Bahn (1), wobei das Strahlführungssystem zur Erzeugung der Synchrotronstrahlung (15) mindestens einen etwa achromatischen Spiegelmagneten (2) aufweist, der aus supraleitfähigen Wicklungsanordnungen (8, 9) gebildet ist und in dem die Bahn (1) um etwa 270° gekrümmt ist. Weitere Bestandteile des Strahlführungssystems wie Ablenkmagnete (3; 4) und Fokussierungsmagnete (5; 6) müssen nicht unbedingt aus supraleitfähigen Komponenten aufgebaut sein. Die erfindungsgemäße Synchrotronstrahlungsquelle gestattet die Nutzung sämtlicher Vorteile der Supraleiter unter weitestgehender Vermeidung der damit verbundenen Nachteile, da die Verwendung supraleitender Komponenten auf die speziell auf die Erzeugung der Synchrotronstrahlung (15) zugeschnittenen Bestandteile beschränkbar ist.

Description

Synchrotronstrahlungsquelle
Die Erfindung betrifft eine Syπchrotronstrahlungsquelle mit einem Strahlführungssystem zur Beschleunigung und Speicherung eines Teilchenstrahls aus Elektronen oder Positronen auf einer geschlossenen Bahn.
Synchrotronstrahlungsquellen dieser Art, wobei unter anderem aus supraleitfähigen Wicklungsanordnungen gebildete Magneten verwendet werden, sind nicht nur für vielerlei Anwendungen in der physikalischen Forschung bestimmt, sondern sie werden auch als Röntgenquellen zu Zwecken der Lithographie, insbesondere bei der Halbleiterchipherstellung, eingesetzt.
Die Synchrotronstrahlung entsteht dann, wenn ein Teilchenstrahl aus Elektronen oder Positronen von einer geraden Bahn abgelenkt wird. In der Regel wird der Teilchenstrahl in einem Strahlführungssystem auf einer geschlossenen Bahn geführt (gespeichert), und es wird die Synchrotronstrahlung verwendet, die in den zur Krümmung der Bahn notwendigen Ablenkmagneteπ entsteht. Für besonders effiziente Erzeugung von Synchrotronstrahlung sollte die Bahn mit möglichst kleinem Krümmungsradius gekrümmt sein; dazu sind relativ hohe Magnetfelder erforderlich, die in wirtschaftlicher Weise praktisch nur mit supraleitfähigen Magneten erzeugbar sind.
Syπchrotronstrahlungsquellen mit supraleitfähigen Magneten werden z. B. in der EP-C-0 208 163, der EP-A-0 277 521 sowie der DE-A-31 48 100 beschrieben. Im einfachsten Fall, siehe DE-A-31 48 100, besteht die Synchrotronstrahlungsquelle aus einem Elektronen-Speicherring mit supraleitfähigem Magnetsystem. Eine derartige Synchrotronstrahlungsquelle ist besonders kompakt, jedoch ist die tatsächliche Realisierung aufgrund der sehr beengten Platzverhältnisse schwierig. Entsprechend wird in der EP-A-0 208 163 vorgeschlagen, das
Strahlführungssystem für den Elektronenstrahl nicht ringförmig auszubilden, sondern zwei beabstandet voneinander angeordnete supraleitende Ablenkmagnete vorzusehen, wodurch die
Teilchenbahn eine "Rennbahn"-Form erhält mit zwei geraden Bahnabschnitten, in denen Einrichtungen zur Beschleunigung sowie zur Injektion und/oder Extraktion der Teilchen angeordnet werden können. Weiterbildungen einer derartigen Synchrotron- strahluπgsquelle sind beispielsweise der EP-A-0 277 521 entnehmbar.
Der DE-A-31 48 100 und der EP-A-0 277 521 sind auch Hinweise zur Ausbildung einer Synchrotronstrahlungsquelle zur Verwendung bei Prozessen wie Röntgenlithographie und Röntgenmikroskopie, insbesondere unter dem Aspekt der Wahl der Energie der einzuspeichernden Teilchen und der entsprechenden Auslegung der Magnete, zu entnehmen. Speziell die Verwendung von Synchrotron¬ strahlungsquellen zur Herstellung integrierter Schaltkreise oder dergleichen mit Strukturen im Submikrometerbereich ist ein wichtiges industrielles Anwendungsgebiet.
Als unter Umständen nachteilig an den bekannten Konfigurationen ist die problematische Handhabung der supraleitenden Magneten zu sehen; einerseits sind an die mechanische Auslegung der Magneten höchste Anforderungen zu stellen, was entsprechend hohe Herstellungskosten nach sich zieht, und andererseits ist die Beaufschlagung supraleitender Magnete mit zeitlich vari¬ ierendem Strom (wie z. B. erforderlich bei der Beschleunigung eines Teilchenstrahls auf eine vorgegebene Energie), unter anderem aufgrund der dabei entstehenden Wirbelströme in den Haltestrukturen der Magnete, sehr schwierig. Darüber hinaus ist es in der Regel wünschenswert, in einem Strahlführungssystem zur Speicherung eines Teilchenstrahls Einrichtungen zur Fokussierung des Teilchenstrahls vorzusehen, um gute Strahleigenschaften über längere Zeiträume hinweg zu sichern und Intensitätsverluste nach Möglichkeit zu vermeiden. Aus der GB-A-2 015 821 geht ein Strahlführungssystem hervor, das mit vier achromatischen Ablenkmagneten aufgebaut ist und keinerlei Fokussierungseinrichtungen enthält. Achromatische
Ablenkmagnete, die auch als Spiegelmagnete bezeichnet werden können, werden z. B. beschrieben in dem Aufsatz "Achromatic Magnetic Mirror for Ion Bea s" von H. A. Enge, Rev . Sei. Instr..34. (1963) 385. Ein Strahlführungssystem gemäß der
GB-A-2 015 821 ist zur Speicherung eines Teilchenstrahls über längere Zeiträume hinweg nicht geeignet; der Teilchenstrahl geht nach wenigen Umläufen in dem Strahlführungssystem verloren, wenn er vorher nicht zur Weiterleitung extrahiert wird.
Aufgabe der vorliegenden Erfindung ist die Schaffung einer Synchrotronstrahlungsquelle mit einem Strahlführungssystem, das sowohl die Beschleunigung als auch die längerfristige Speicherung eines Teilchenstrahls aus Elektronen oder
Positronen erlaubt und in dem die Verwendung supraleitender Magnete weitestgehend einschränkbar ist.
Zur Lösung dieser Aufgabe wird eine Synchrotronstrahlungsquelle angegeben, die ein Strahlführungssystem zur Speicherung eines Teilchenstrahls aus Elektronen oder Positronen auf einer geschlossenen Bahn aufweist, wobei das Strahlführuπgssyste mindestens einen etwa achromatischen Spiegelmagneten enthält, der aus supraleitfähigen Wicklungsanordnungen gebildet ist und in dem die Bahn um etwa 270° gekrümmt ist.
Gemäß der Erfindung kann die Verwendung von Supraleitern beschränkt werden auf diejenigen Komponenten des Strahlführuπgssystems, die speziell zum Zwecke der Synchrotronstrahlungserzeugung vorgesehen sind; konkret enthält die erfiπdungsgemäße Synchrotronstrahlungsquelle zumindest einen Spiegelmagneten, der Wicklungsanordnungen aus supraleitfähigen Strängen aufweist und in dem die Bahn um etwa 270° gekrümmt ist, wobei sie sich selbst in einem Kreuzuπgspunkt kreuzt, dessen Lage weitgehend unabhängig von der Energie des die Bahn durchlaufenden Teilchenstrahls ist (diese Eigenschaft begründet das Attribut "achromatisch").
Während der Beschleunigung eines in das Strahlführungssystεm injizierten Teilchenstrahls auf eine vorgegebene Endenergie braucht der einen achromatischen Spiegelmagneten durchsetzende elektrische Strom nicht verändert zu werden; beim Betrieb einer erfinduπgsgemäßen Synchrotronstrahlungsquelle können daher im wesentlichen alle Probleme vermieden werden, die mit der Veränderung der magnetischen Erregung eines supraleitenden Magneten verbunden sind. Durch den großen Ablenkwinkel des Spiegelmagneten von 270 ° ergibt sich ein großer Winkelbereich, in den die erzeugte Synchrotronstrahlung abgestrahlt wird; mithin kann eine Synchrotronstrahlungsquelle gemäß der Erfindung von vielen Benutzern gleichzeitig in Anspruch genommen werden.
Das übrige Strahlführungssystem einer erfindungsgemäßen Synchrotronstrahlungsquelle kann in konventioneller Technik aufgebaut werden, wobei Ablenkmagnete (Dipole) und Fokussierungsmagnete (Quadrupole) entsprechend einschlägiger Kenntnis beliebig miteinander kombiniert werden können. Dabei ist es unter Umständen vorteilhaft, den minimalen Krümmungsradius jedes Ablenkmagneten größer zu wählen als den minimalen Krümmungsradius des Spiegelmagneten; damit wird die Erzeugung von Synchrotronstrahlung in den Ablenkmagneten reduziert. Dies bedeutet eine Verringerung der Anforderungen an die Leistungsfähigkeit der in dem Strahlführungssystem vorzusehenden Beschleunigungseinrichtungen, die den durch die Erzeugung der Synchrotronstrahlung bedingten Energieverlust in den umlaufenden Strahlen kompensieren müssen, und auch kleinere Anforderungen an die aus Strahlenschutzgründen erforderlichen Abschirmungen der Ablenkmagnete.
In günstiger Weiterbildung der Erfindung ist das in dem Spiegelmagnet erzeugbare Magnetfeld gekennzeichnet durch einen Feldindex, der zwischen etwa 0,8 und etwa 1,5 liegt. Das
Magnetfeld in einem Spiegelmagneten ist entlang einer ersten Richtung konstant, und es ist veränderlich in einer zweiten Richtung senkrecht zur ersten Richtung derart, daß es zu einer bestimmten Potenz der Eindringtiefe, gemessen entlang der zweiten Richtung vom Eintrittspunkt an, proportional ist. Der Feldindex ist dabei der diese Potenz bezeichnende Exponent - weitere Ausführungen hierzu sind dem erwähnten Aufsatz von H. A. Enge zu entnehmen. Mit einem Feldindex der genannten Größe sind die Eigenschaften der Achromatizität am günstigsten erzielbar; insbesondere kann mit einem solchen Feldindex ein vollkommen afokaler Spiegelmagnet erhalten werden.
Günstig ist es weiterhin, den Spiegelmagneten so auszulegen, daß die Bahn in dem Spiegelmagneten um 270° gekrümmt wird.
Vorteilhaft ist es weiterhin im Rahmen sämtlicher Ausgestaltung der Erfindung, den Spiegelmagneten mit mindestens einem Strahlrohr zur Auskopplung der Synchrotronstrahlung zu versehen. Mittels eines solchen Strahlrohrs kann die Synchrotronstrahlung sicher aus der Syπchrotronstrahlungsquelle zu ihrem Bestimmungsort geführt werden.
Synchrotronstrahlung zur Verwendung im Rahmen der Röntgenlithographie und dergleichen wird günstigerweise erzeugt von einem Teilchenstrahl, der aus Elektronen oder Positronen mit kinetischer Energie zwischen jeweils etwa 400 MeV und etwa 2000 MeV erzeugt wird.
Als untere Grenze für den Krümmungsradius eines nicht speziell zur Erzeugung von Synchrotroπstrahlung bestimmten Ablenkmagneten im Rahmen einer Synchrotronstrahlungsquelle für Zwecke der Röntgenlithographie oder dergleichen ist ein Wert von etwa 1 m zu nennen. Durch ausreichend hohe Krümmungsradien kann die in den Ablenkmagneteπ erzeugte Synchrotroπstrahlung auf einer insbesondere aus Strahlenschutzgründen unbedenklichen Intensität gehalten werden, so daß durch einfache
Abschirmmaßnahmen ein wirksamer Strahlenschutz erzielbar ist. Selbstverständlich ergeben sich durch Ablenkmagnete mit großen Krümmungsradien gewisse Einbußen an die Kompaktheit der Synchrotronstrahlungsquelle; zur Anpassung des Strahlführungs¬ systems an konkrete räumliche Gegebenheiten (unter Umständen eine dreidimensionale Strahlführung) steht jedoch eine Fülle gestalterischer Möglichkeiten zur Verfügung, die im Rahmen vollständig supraleitender Synchrotronstrahlungsquellen in solcher Freiheit praktisch unrealisierbar wären.
in günstiger Ausbildung der Erfindung unterbleibt in dem Spiegelmagneten die Verwendung ferro agnetischer Joche im Bereich der gekrümmten Teilchenbahn im Inneren des Spiegelmagneten, und es werden ferromagnetische Bauteile allenfalls zu Abschirmzwecken eingesetzt. Ferromagnetische Bauteile zeigen bereits in moderat hohen Magnetfeldern deutliche Sättigungserscheinungen, so daß die Magnetfeldstärke in Anordnungen mit solchen Bauteilen auf Werte von höchstens etwa 2 Tesla beschränkt werden muß; die Auslegung eines Spiegelmagneten ohne ferromagnetische Bestandteile ermöglicht besonders hohe Felder, damit besonders kleine Krümmungsradien und besonders hohe Ausbeute an Synchrotronstrahlung.
Die weitere Erläuterung der Erfindung erfolgt anhand der in der Zeichnung dargestellten Ausführungsbeispiele. Im einzelnen zeigen:
Figur 1 eine schematische Darstellung der Synchrotronstrah¬ lungsquelle nach der Erfindung; Figur 2 und Figur 3 Skizzen zur Auslegung der Wicklungsanordnungen in einem Spiegelmagneten zur Verwendung gemäß der Erfindung.
Figur 1 zeigt schematisiert die Gesamtauslegung der erfindungsgemäßen Synchrotronstrahlungsquelle. Die Bahn 1, entlang der die zu beschleunigenden und/oder zu speichernden Elektronen oder Positronen sich bewegen, wird bestimmt durch die verschiedenen Komponenten des Strahlführungssystems. Zu dem Strahlführungssystem gehören insbesondere der Spiegelmagnet 2, in dem die Teilchenbahn um 270° abgelenkt und in einer Schleife geführt wird, sowie Ablenkmagnete 3, 4 und Fokussierungsmagnete 5, 6. Die Ablenkmagnete 3, 4 produzieren im wesentlichen magnetische Dipolfelder zur Krümmung der Bahn 1; sie können ausgeführt werden sowohl als einteilige Ablenkmagnete 3 als auch als Kombinationen mehrerer Ablenkmagnete 4, wobei gegebenenfalls besondere Fokussierungsmagnete 5 hinzukombiniert werden können. Die Auswahl der Ablenkmagnete 3, 4 ist den jeweiligen Erfordernissen des Einzelfalls anzupassen; dabei kann über die Zahl der vorzusehenden Ablenkmagnete 3, 4, wie auch über den Ablenkwinkel jedes Ablenkmagneten, frei verfügt werden. Weiterhin weist das Strahlführungssystem Fokussierungs- magnete 5, 6 auf, die der Formung des Querschnitts des
Teilchenstrahls dienen und Intensitätsverlusten entgegenwirken. Dies ist um so mehr erforderlich, als eine industrielle Anwendung der Synchrotronstrahlungsquelle die Bereitstellung von Synchrotronstrahlung 15 in langfristig möglichst gleich- bleibender Art und Stärke erfordert. Je nach Anforderung werden gepaarte Fokussierungsmagnete 6 und/oder in Verbindung mit Ablenkmagneten 4 stehende Fokussierungsmagnete 5 eingesetzt. Selbstverständlich können in das Strahlführungssystem weitere Komponenten einbezogen werden, beispielsweise Einrichtungen zur Lageregelung des Teilchenstrahls in einer Ebene senkrecht zur jeweiligen Strahlrichtung. Üblich sind Einrichtungen zum Aufbau des Teilchenstrahls, beispielsweise ein Strahlinjektor 13, sowie Einrichtungen zur Beschleunigung der Teilchen und zur Kompensation ihres durch Erzeugung der Synchrotronstrahlung 15 eintretenden Energieverlustes, beispielsweise ein Hochfrequenz- Resonator 14. Synchrotroπstrahlung 15 wird erfindungsgemäß aus dem Spiegelmagneten 2 ausgekoppelt und durch Strahlrohre 7 der jeweiligen Verwendung zugeführt.
Figur 2 zeigt eine Wicklungsanordnung 8 aus supraleitfähigen Wicklungen 10, wie sie zur Bildung eines Spiegelmagπeten 2 eingesetzt werden könnte. Die Darstellung ist lediglich als Skizze zu betrachten-, die konkrete Auslegung der Wicklungen 10 ist mit üblichen Methoden den an den Spiegelmagneten 2 zu stellenden Anforderungen anzupassen. Jede Wicklung 10 weist einen Hauptabschnitt 11 auf, der parallel zu der die Bahn 1 enthaltenden Ebene, über dem die Bahn 1 enthaltenden Bereich des Spiegelmagneten 2, angeordnet ist. Die Hauptabschnitte 11 sind in gewissen Abständen voneinander angeordnet, so daß das gewünschte Feld in der Ebene der Bahn 1 erzielt wird. Die Wicklungen 10 sind geschlossen mittels Rückführabschnitten 12, die in abseits von der Bahn 1 liegenden Bereichen im Spiegelmagneten angeordnet sind. Zusätzlich zu der Wicklungsanordnung 8 sind Abschirmelemente 16 dargestellt, die einerseits die Bahn 1 außerhalb des Spiegelmagneten 2 von dessen Magnetfeld abschirmen und andererseits das durch die Rückführabschnitte 12 erzeugte Feld von der Bahn 1 fernhalten.
Figur 3 zeigt die räumliche Anordnung zweier Wicklungsanord¬ nungen 8, 9 zur Bildung eines Spiegelmagneten. Der Aufbau der Wicklungsanordnungen 8, 9 mit Hauptabschnitten 11 und
Rückführabschnitten 12 wurde bereits erläutert; die obere Wicklungsanordnung 8 und die untere Wicklungsanordnung 9 sind im wesentlichen deckungsgleich mit gewissem Abstand übereinander angeordnet, und die Teilchen bewegen sich etwa in der mittig zwischen oberer Wicklungsanordnung 8 und unterer Wicklungsanordnung 9 liegenden Ebene. Das Abschirmelement 16 weist eine Öffnung 17 auf, durch die ein Teilchen in das von den Wicklungsanordnungen 8, 9 erzeugte Magnetfeld eintritt. Die Rückführabschnitte 12 der Wicklungsanordnungen 8, 9 sind jeweils zusammengefaßt zu kompakten Rückführstäben; damit kann den mechanischen Anforderungen an supraleitende Magnetanordnungen optimal Rechnung getragen werden.
Die Erfindung liefert eine Synchrotronstrahlungsquelle, die unter Nutzung sämtlicher Vorteile der Supraleiter deren
Nachteile weitestgehend vermeidet. Die Synchrotronstrahlungs- quelle ist leicht handhabbar und ermöglicht die Erzeugung von Synchrotronstrahlung mit langfristig konstanten, besonders günstigen Parametern.

Claims

Patentansprüche
1. Synchrotronstrahlungsquelle mit einem Strahlführungssystem zur Speicherung eines Teilcheπstrahls aus Elektronen oder Positronen auf einer geschlossenen Bahn (1), wobei das Strahlführungssystem mindestens einen etwa achromatischen Spiegelmagneten (2) aufweist, der aus supraleitfähigen Wicklungsanordnungen (8, 9) gebildet ist und in dem die Bahn (1) um etwa 270° gekrümmt ist.
2. Synchrotronstrahlungsquelle nach Anspruch 1, wobei das Strahlführungssystem Ablenkmagnete (3; 4) und/oder Fokussierungsmagnete (5; 6) aufweist, die aus nicht supraleitfähigen Wicklungsanordnungen gebildet sind.
3. Synchrotronstrahlungsquelle nach Anspruch 1 oder 2, wobei die Bahn (1) in jedem Ablenkmagneten (3, 4) und in dem Spiegelmagneten (2) jeweils einen minimalen Krümmungsradius aufweist und der minimale Krümmungsradius der Bahn (1) in dem Spiegelmagneten (2) kleiner ist als der minimale
Krümmungsradius der Bahn (1) in jedem Ablenkmagneten (3, 4).
4. Synchrotronstrahlungsquelle nach einem der vorhergehenden Ansprüche, wobei der Spiegelmagnet (2) einen Feldindex zwischen etwa 0,8 und etwa 1,5 aufweist.
5. Synchrotronstrahlungsquelle nach einem der vorhergehenden Ansprüche, wobei in dem Spiegelmagneten (2) die Bahn (1) um 270° gekrümmt ist.
6. Synchrotronstrahlungsquelle nach einem der vorhergehenden Ansprüche, wobei der Spiegelmagnet (2) mit mindestens einem Strahlrohr (7) zur Auskoppluπg von Synchrotronstrahlung (15) versehen ist.
7. Synchrotronstrahlungsquelle nach einem der vorhergehenden Ansprüche, wobei die Bahn (1) durch eine Einrichtung für die Zuführung von Energie in den Teilchenstrahl, insbesondere einen Hochfrequenz-Resonator (14), geführt ist.
8. Synchrotronstrahlungsquelle nach einem der vorhergehenden Ansprüche, wobei in dem Strahlführungssystem Elektronen oder Positronen mit kinetischer Energie zwischen jeweils etwa 400 MeV und etwa 2000 MeV speicherbar sind.
9. Synchrotronstrahlungsquelle nach Anspruch 8, wobei jeder Ablenkmagnet (3, 4) einen Krümmungsradius hat, der größer als etwa 1 m ist.
10. Synchrotronstrahlungsquelle nach einem der vorhergehenden Ansprüche, wobei der Spiegelmagnet (2) keine ferromagnetischen
Bestandteile im Bereich der Bahn (1) im Inneren des Spiegelmagneten (2) aufweist.
11. Synchrotronstrahlungsquelle nach Anspruch 10, wobei a) der Spiegelmagnet (2) zwei einander kongruente Wicklungs¬ anordnungen (8, 9) aufweist, die einander im wesentlichen deckungsgleich gegenüberliegend und voneinander beabstandet angeordnet sind und zwischen denen die Bahn (1) verläuft; b) in jeder Wicklungsanordnung (8, 9) eine Vielzahl von Wicklungen (10) vorliegt, deren jede einen etwa geraden
Hauptabschnitt (11) aufweist; c) alle Hauptabschnitte (11) jeder Wicklungsanordnung (8, 9) im wesentlichen parallel zueinander und beabstandet voneinander angeordnet sind.
12 . Synchrotronstrahlungsquelle nach Anspruch 11 , wobe i a) in jeder Wicklungsanordnung (8 , 9) jede Wicklung (10) einen etwa geraden R ückführabschnitt (12) aufweist ; b ) alle Rückführabschnitte (12) jeder Wicklungsanordnung (8 , 9) zu einem Rückführstab vereinigt sind .
13. Synchrotronstrahlungsquelle nach Anspruch 11 oder 12, wobei jede Wicklungsanordnung (8, 9) etwa eben ist.
14. Verwendung einer Synchrotroπstrahlungsquelle nach einem der vorhergehenden Ansprüche zur Erzeugung von Röntgenstrahlung für einen Prozeß der Röntgenlithographie oder Röntgenmikroskopie.
PCT/DE1990/000605 1990-08-06 1990-08-06 Synchrotronstrahlungsquelle WO1992003028A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/DE1990/000605 WO1992003028A1 (de) 1990-08-06 1990-08-06 Synchrotronstrahlungsquelle
JP2510803A JPH06501334A (ja) 1990-08-06 1990-08-06 シンクロトロン放射源
EP90911616A EP0542737A1 (de) 1990-08-06 1990-08-06 Synchrotronstrahlungsquelle
US08/014,401 US5341104A (en) 1990-08-06 1993-02-05 Synchrotron radiation source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/DE1990/000605 WO1992003028A1 (de) 1990-08-06 1990-08-06 Synchrotronstrahlungsquelle
US08/014,401 US5341104A (en) 1990-08-06 1993-02-05 Synchrotron radiation source

Publications (1)

Publication Number Publication Date
WO1992003028A1 true WO1992003028A1 (de) 1992-02-20

Family

ID=25956101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1990/000605 WO1992003028A1 (de) 1990-08-06 1990-08-06 Synchrotronstrahlungsquelle

Country Status (4)

Country Link
US (1) US5341104A (de)
EP (1) EP0542737A1 (de)
JP (1) JPH06501334A (de)
WO (1) WO1992003028A1 (de)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449673A (en) * 1992-08-13 1995-09-12 G. D. Searle & Co. 10,11-dihydro-10-(3-substituted-1-oxo-2-propyl, propenyl or propynyl)dibenz[b,f][1,4] oxazepine prostaglandin antagonists
US5488046A (en) * 1993-11-03 1996-01-30 G. D. Searle & Co. Carbamic acid derivatives of substituted dibenzoxazepine compounds, pharmaceutical compositions and methods of use
US8907311B2 (en) 2005-11-18 2014-12-09 Mevion Medical Systems, Inc. Charged particle radiation therapy
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8941083B2 (en) 2007-10-11 2015-01-27 Mevion Medical Systems, Inc. Applying a particle beam to a patient
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US8970137B2 (en) 2007-11-30 2015-03-03 Mevion Medical Systems, Inc. Interrupted particle source
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US20200077507A1 (en) * 2017-04-21 2020-03-05 Massachusetts Institute Of Technology DC Constant-Field Synchrotron Providing Inverse Reflection of Charged Particles
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005003695A1 (de) 2005-01-26 2006-07-27 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Schleudern von Textilien nach einem Imprägniervorgang
EP1764132A1 (de) * 2005-09-16 2007-03-21 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Einstellung eines Strahlpfades einer Partikeltherapieanlage
US8749179B2 (en) 2012-08-14 2014-06-10 Kla-Tencor Corporation Optical characterization systems employing compact synchrotron radiation sources
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
EP3953695A4 (de) * 2019-05-30 2023-01-18 KLA Corporation Optische etendue-abgleichsverfahren für extreme uv-messtechnik
CN113709957B (zh) * 2021-08-27 2022-04-01 泛华检测技术有限公司 一种小型高能x射线装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3781732A (en) * 1971-02-18 1973-12-25 H Wollnik Coil arrangement for adjusting the focus and/or correcting the aberration of streams of charged particles by electromagnetic deflection, particularly for sector field lenses in mass spectrometers
GB2015821A (en) * 1978-02-28 1979-09-12 Radiation Dynamics Ltd Racetrack linear accelerators
GB2109989A (en) * 1981-11-19 1983-06-08 Varian Associates Stepped gap achromatic bending magnet
DE3704442A1 (de) * 1986-02-12 1987-08-13 Mitsubishi Electric Corp Ladungstraegerstrahlvorrichtung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867635A (en) * 1973-01-22 1975-02-18 Varian Associates Achromatic magnetic beam deflection system
DE3148100A1 (de) * 1981-12-04 1983-06-09 Uwe Hanno Dr. 8050 Freising Trinks "synchrotron-roentgenstrahlungsquelle"
US4641103A (en) * 1984-07-19 1987-02-03 John M. J. Madey Microwave electron gun
GB8421867D0 (en) * 1984-08-29 1984-10-03 Oxford Instr Ltd Devices for accelerating electrons
EP0208163B1 (de) * 1985-06-24 1989-01-04 Siemens Aktiengesellschaft Magnetfeldeinrichtung für eine Anlage zur Beschleunigung und/oder Speicherung elektrisch geladener Teilchen
JPS62217600A (ja) * 1986-03-19 1987-09-25 富士通株式会社 Sor装置
JPS62217599A (ja) * 1986-03-19 1987-09-25 富士通株式会社 シンクロトロン放射光用ストレ−ジリング装置
US4806871A (en) * 1986-05-23 1989-02-21 Mitsubishi Denki Kabushiki Kaisha Synchrotron
EP0277521B1 (de) * 1987-01-28 1991-11-06 Siemens Aktiengesellschaft Synchrotronstrahlungsquelle mit einer Fixierung ihrer gekrümmten Spulenwicklungen
JP2667832B2 (ja) * 1987-09-11 1997-10-27 株式会社日立製作所 偏向マグネット
US5006759A (en) * 1988-05-09 1991-04-09 Siemens Medical Laboratories, Inc. Two piece apparatus for accelerating and transporting a charged particle beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3781732A (en) * 1971-02-18 1973-12-25 H Wollnik Coil arrangement for adjusting the focus and/or correcting the aberration of streams of charged particles by electromagnetic deflection, particularly for sector field lenses in mass spectrometers
GB2015821A (en) * 1978-02-28 1979-09-12 Radiation Dynamics Ltd Racetrack linear accelerators
GB2109989A (en) * 1981-11-19 1983-06-08 Varian Associates Stepped gap achromatic bending magnet
DE3704442A1 (de) * 1986-02-12 1987-08-13 Mitsubishi Electric Corp Ladungstraegerstrahlvorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION - B vol. 30, no. 1, Februar 1988, AMSTERDAM Seiten 105 - 109; MOSER H O ET AL: "NONLINEAR BEAM OPTICS WITH REAL FIELDS IN COMPACT STORAGE RINGS" siehe Seite 105; Figur 1 siehe Seite 106, rechte Spalte; Figuren 3-5 *

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449673A (en) * 1992-08-13 1995-09-12 G. D. Searle & Co. 10,11-dihydro-10-(3-substituted-1-oxo-2-propyl, propenyl or propynyl)dibenz[b,f][1,4] oxazepine prostaglandin antagonists
US5488046A (en) * 1993-11-03 1996-01-30 G. D. Searle & Co. Carbamic acid derivatives of substituted dibenzoxazepine compounds, pharmaceutical compositions and methods of use
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
USRE48047E1 (en) 2004-07-21 2020-06-09 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US10722735B2 (en) 2005-11-18 2020-07-28 Mevion Medical Systems, Inc. Inner gantry
US9925395B2 (en) 2005-11-18 2018-03-27 Mevion Medical Systems, Inc. Inner gantry
US8916843B2 (en) 2005-11-18 2014-12-23 Mevion Medical Systems, Inc. Inner gantry
US8907311B2 (en) 2005-11-18 2014-12-09 Mevion Medical Systems, Inc. Charged particle radiation therapy
US9452301B2 (en) 2005-11-18 2016-09-27 Mevion Medical Systems, Inc. Inner gantry
US10279199B2 (en) 2005-11-18 2019-05-07 Mevion Medical Systems, Inc. Inner gantry
US8941083B2 (en) 2007-10-11 2015-01-27 Mevion Medical Systems, Inc. Applying a particle beam to a patient
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
USRE48317E1 (en) 2007-11-30 2020-11-17 Mevion Medical Systems, Inc. Interrupted particle source
US8970137B2 (en) 2007-11-30 2015-03-03 Mevion Medical Systems, Inc. Interrupted particle source
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US9706636B2 (en) 2012-09-28 2017-07-11 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US10368429B2 (en) 2012-09-28 2019-07-30 Mevion Medical Systems, Inc. Magnetic field regenerator
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US10155124B2 (en) 2012-09-28 2018-12-18 Mevion Medical Systems, Inc. Controlling particle therapy
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US10456591B2 (en) 2013-09-27 2019-10-29 Mevion Medical Systems, Inc. Particle beam scanning
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US10434331B2 (en) 2014-02-20 2019-10-08 Mevion Medical Systems, Inc. Scanning system
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US11717700B2 (en) 2014-02-20 2023-08-08 Mevion Medical Systems, Inc. Scanning system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US11213697B2 (en) 2015-11-10 2022-01-04 Mevion Medical Systems, Inc. Adaptive aperture
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US11786754B2 (en) 2015-11-10 2023-10-17 Mevion Medical Systems, Inc. Adaptive aperture
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US20200077507A1 (en) * 2017-04-21 2020-03-05 Massachusetts Institute Of Technology DC Constant-Field Synchrotron Providing Inverse Reflection of Charged Particles
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor
US11311746B2 (en) 2019-03-08 2022-04-26 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system
US11717703B2 (en) 2019-03-08 2023-08-08 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor

Also Published As

Publication number Publication date
US5341104A (en) 1994-08-23
EP0542737A1 (de) 1993-05-26
JPH06501334A (ja) 1994-02-10

Similar Documents

Publication Publication Date Title
WO1992003028A1 (de) Synchrotronstrahlungsquelle
EP0348403B1 (de) Magnetisches ablenksystem für geladene teilchen
DE3928037C2 (de) Vorrichtung zum Beschleunigen und Speichern von geladenen Teilchen
DE102007050035B4 (de) Vorrichtung und Verfahren zur Ablenkung eines Strahls elektrisch geladener Teilchen auf eine gekrümmte Teilchenbahn
DE60219283T2 (de) Vorrichtung zum Erzeugen und zum Auswählen von Ionen, die in einer Schwerionen-Krebstherapie-Anlage verwendet werden
DE10358225B3 (de) Undulator und Verfahren zu dessen Betrieb
DE3242852A1 (de) Bestrahlungsgeraet mit beschleuniger sowie ablenkungssystem dafuer
DE2819883A1 (de) Beschleunigeranordnung fuer schwere ionen
EP0193837A2 (de) Magnetfelderzeugende Einrichtung für eine Teilchenbeschleuniger-Anlage
DE2730985C2 (de) Bestrahlungsvorrichtung unter Verwendung geladener Teilchen
EP3115082B1 (de) Teilchenstrahl-therapieanlage mit solenoid-magneten
DE1245506B (de) Vorrichtung zum Einschiessen und Einfangen von Elektronen in einem Magnetfeld
DE2609485A1 (de) Verfahren und vorrichtung zur magnetfeldtrimmung in einem isochron-zyclotron
DE3235068A1 (de) Varioformstrahl-ablenkobjektiv fuer neutralteilchen und verfahren zu seinem betrieb
DE102007046508A1 (de) Bestrahlungsanlage mit einem Strahlführungsmagneten
DE1906951C3 (de) Verfahren und Vorrichtung zur Erzeugung einer Schar von Elektronenstrahlen
DE2754791A1 (de) Rennbahn-mikrotron
DE3020281C2 (de) Vorrichtung zur Doppelablenk-Abtastung eines Partikelstrahls
DE1809899A1 (de) Elektronenbeschleuniger
DE1098625B (de) Magnetisches Buendelungssystem zur gebuendelten Fuehrung einer (mehrerer) Elektronenstroemung (en) mittels eines homogenen Magnetfeldes laengs einer groesseren Wegstrecke, insbesondere fuer Wanderfeldroehren
DE2720514B2 (de)
DE3242853A1 (de) Transportanordnung fuer einen strahl geladener teilchen
DE2533347A1 (de) Magnetisches buendelablenksystem
EP0577874A1 (de) Wiggler mit Spulenanordnungen mit konzentrischen Spulen
DE3842792C2 (de)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990911616

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08014401

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1990911616

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1990911616

Country of ref document: EP