WO2011092815A1 - 粒子線治療装置 - Google Patents

粒子線治療装置 Download PDF

Info

Publication number
WO2011092815A1
WO2011092815A1 PCT/JP2010/051121 JP2010051121W WO2011092815A1 WO 2011092815 A1 WO2011092815 A1 WO 2011092815A1 JP 2010051121 W JP2010051121 W JP 2010051121W WO 2011092815 A1 WO2011092815 A1 WO 2011092815A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
particle beam
scanning electromagnet
position coordinates
target
Prior art date
Application number
PCT/JP2010/051121
Other languages
English (en)
French (fr)
Inventor
泰三 本田
原田 久
越虎 蒲
雄一 山本
高明 岩田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP10844578.4A priority Critical patent/EP2529791B1/en
Priority to CN201080062466.4A priority patent/CN102740929B/zh
Priority to JP2010511404A priority patent/JP4532606B1/ja
Priority to PCT/JP2010/051121 priority patent/WO2011092815A1/ja
Priority to US12/864,002 priority patent/US8405042B2/en
Priority to TW099131413A priority patent/TWI398239B/zh
Publication of WO2011092815A1 publication Critical patent/WO2011092815A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods

Definitions

  • the present invention relates to a particle beam therapy apparatus used for medical use and research, and more particularly to a scanning particle beam therapy apparatus such as spot scanning or raster scanning.
  • a particle beam therapy system is connected to a beam generator for generating a charged particle beam, an accelerator for accelerating the generated charged particle beam, and a charge emitted after being accelerated to an energy set by the accelerator.
  • a beam transport system that transports a particle beam, and a particle beam irradiation device that is installed downstream of the beam transport system and that irradiates a target with a charged particle beam.
  • the particle beam irradiation device is large, so that the charged particle beam is scattered and expanded by a scatterer, and the expanded charged particle beam is matched to the shape of the irradiation target to form an irradiation field, and to match the shape of the irradiation target
  • scanning irradiation methods spot scanning, raster scanning, etc. in which an irradiation field is formed by scanning a thin pencil beam.
  • the broad irradiation method forms an irradiation field that matches the shape of the affected area using a collimator or a bolus.
  • An irradiation field that matches the shape of the affected area is formed to prevent unnecessary irradiation of normal tissue. This is the most widely used irradiation method. However, it is necessary to manufacture a bolus for each patient or to deform the collimator according to the affected area.
  • the scanning irradiation method is a highly flexible irradiation method that does not require a collimator or a bolus.
  • these components that prevent irradiation of normal tissues other than the affected part are not used, higher beam irradiation position accuracy than that of the broad irradiation method is required.
  • Patent Document 1 discloses the following invention for the purpose of providing a particle beam therapy apparatus capable of accurately irradiating an affected area.
  • the scanning amount of the charged particle beam by the scanning device and the beam position of the charged particle beam detected by the beam position detector at that time are stored in a storage device, and the stored scanning amount and beam position are stored.
  • the scanning amount of the scanning device is set according to the beam position based on the treatment plan information by the control device. Since the relationship between the scanning amount obtained by actual irradiation and the beam position is stored in the storage device, it can be expected that the affected area is irradiated accurately.
  • a conversion table is created based on actual data of the scanning amount and beam position of a charged particle beam obtained by actual irradiation, and a scanning electromagnet is created using this conversion table.
  • the set current value is calculated.
  • the excitation pattern which is the increase / decrease pattern of the scanning magnet current value in the main irradiation that actually irradiates the affected area, is different from the excitation pattern of the scanning electromagnet in the irradiation when the conversion table is created. There was a problem that the affected area could not be irradiated.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a particle beam therapy system that reduces the influence of hysteresis of a scanning electromagnet and realizes high-precision beam irradiation.
  • An irradiation management device that controls the scanning electromagnet based on the target irradiation position coordinates of the charged particle beam, and a position monitor that measures the measurement position coordinates of the charged particle beam. That outputs the control input to the scanning electromagnet based on the correction data generated based on the measurement position coordinates and the target irradiation position coordinates measured by the position monitor and the target irradiation position coordinates in the pre-irradiation that is the same as the plan Has a value generator.
  • the excitation pattern of the scanning electromagnet is the same in the pre-irradiation and the main irradiation plan, and the control input to the scanning electromagnet is corrected based on the result obtained by the pre-irradiation.
  • the influence of the hysteresis of the scanning electromagnet can be eliminated, and high-precision beam irradiation can be realized.
  • Embodiment 3 is a flowchart showing an irradiation procedure in the first embodiment. It is a schematic block diagram of the irradiation control computer of FIG. It is a timing diagram of signal generation in the irradiation control device of FIG. It is a figure explaining the correction method of command current. It is a flowchart which shows the irradiation procedure in Embodiment 2 of this invention.
  • FIG. 1 is a schematic configuration diagram of a particle beam therapy system according to Embodiment 1 of the present invention.
  • the particle beam therapy system includes a beam generation device 51, an accelerator 52, a beam transport device 53, a beam accelerated transport control device 50, a particle beam irradiation device 54, a treatment planning device 55, and a patient file server 56.
  • the beam generator 51 generates the charged particle beam 1 by accelerating the charged particles generated by the ion source.
  • the accelerator 52 is connected to the beam generator 51 and accelerates the generated charged particle beam 1 to a predetermined energy.
  • the beam transport device 53 transports the charged particle beam 1 emitted after being accelerated to the energy set by the accelerator 52.
  • the beam accelerated transport control device 50 controls each of the beam generating device 51, the accelerator 52, and the beam transport device 53.
  • the particle beam irradiation device 54 is installed downstream of the beam transport system 53 and irradiates the irradiation target 15 with the charged particle beam 1.
  • the treatment planning device 55 determines the irradiation target 15 of the patient from image information obtained by X-ray CT or the like, and sets the target irradiation position coordinate Pi0, the target dose Di0, the target beam size Si0, which are the treatment plan data F0 for the irradiation target 15.
  • a target accelerator setting Bi0, a range shifter insertion amount Ri0, and the like are generated.
  • the target accelerator setting Bi0 includes the set values of the beam energy and beam current of the accelerator 52.
  • the patient file server 56 stores the treatment plan data F0 generated for each patient by the treatment plan device 55.
  • the particle beam irradiation device 54 includes a beam transport duct 2 that transports the incident charged particle beam 1a incident from the beam transport device 53, and incident charged particle beams in the X direction and the Y direction that are perpendicular to the incident charged particle beam 1a.
  • Scanning electromagnets 3a and 3b that scan 1a, a position monitor 7, a preamplifier 9 that amplifies the signal of the position monitor 7, a position monitor unit 8, a dose monitor 11, and a preamplifier 13 that amplifies the signal of the dose monitor 11
  • the traveling direction of the incident charged particle beam 1a is the Z direction.
  • the scanning electromagnet 3a is an X-direction scanning electromagnet that scans the incident charged particle beam 1a in the X direction
  • the scanning electromagnet 3b is a Y-direction scanning electromagnet that scans the incident charged particle beam 1a in the Y direction.
  • the position monitor 7 detects the passing position (center of gravity position) and the beam size through which the outgoing charged particle beam 1b deflected by the scanning electromagnets 3a and 3b passes.
  • the preamplifier 9 amplifies the passage position and beam size analog data detected by the position monitor 7.
  • the beam size is an area passing through the XY plane perpendicular to the Z direction of the outgoing charged particle beam 1b.
  • the position monitor unit 8 receives the passing position and beam size detected by the position monitor 7 via the preamplifier 9, converts the passing position and beam size into digital data, and generates the measurement position coordinates Ps and the measurement beam size Ss. .
  • the dose monitor 11 detects the dose of the outgoing charged particle beam 1b.
  • the preamplifier 13 amplifies the analog data of the dose detected by the dose monitor 11.
  • the dose monitor unit 12 receives the dose detected by the dose monitor 11 via the preamplifier 13, converts the dose into digital data, and generates a measured dose Ds.
  • the beam expanding device 16 expands the beam size of the outgoing charged particle beam 1b.
  • the vacuum duct 19 secures a vacuum region through which the outgoing charged particle beam 1b passes.
  • the bellows 18 connects the beam transport duct 2 and the vacuum duct 19 so as to extend and contract, and extends the vacuum region to the irradiation target 15.
  • the ripple filter 20 is also called a ridge filter, and has a convex shape.
  • the ripple filter 20 causes an energy loss to the charged particle beam 1 which is a monochromatic beam having almost a single energy sent from the accelerator 52, and gives a width to the energy.
  • Control of the position coordinate in the depth direction (Z direction) of the irradiation object 15 is performed by changing the acceleration energy of the accelerator 52 to change the energy of the incident charged particle beam 1a and the energy of the outgoing charged particle beam 1b by the range shifter 21. It is done by changing.
  • the range shifter 21 adjusts the range of the charged particle beam 1 in small increments. A significant range change of the charged particle beam 1 is performed by changing the acceleration energy of the accelerator 52, and a range change of the small charged particle beam 1 is performed by changing the setting of the range shifter 21.
  • the irradiation management device 32 includes an irradiation control device 5 and an irradiation control computer 22.
  • the irradiation control computer 22 reads the treatment plan data F0 from the patient file server 56, and generates setting data Fi rearranged in the irradiation order of irradiation spots that are irradiation units divided to control the irradiation dose. That is, the setting data Fi is sequenced treatment plan data. Based on the setting data Fi, the data is output to setting data Fo which is a command to each device.
  • the elements of the setting data Fi are the target irradiation position coordinates Pi, the target dose Di, the target beam size Si, the target accelerator setting Bi, and the range shifter insertion amount Ri, and each element of the setting data Fi is a target that is an element of the treatment plan data F0.
  • This is data in which irradiation position coordinates Pi0, target dose Di0, target beam size Si0, target accelerator setting Bi0, and range shifter insertion amount Ri0 are sequenced.
  • the setting data Fo includes an accelerator setting command Bo, a range shifter command Ro, a command current Io, a command current Ir, a beam size command So, and a target dose Do.
  • the irradiation control computer 22 receives irradiation records such as the measurement position coordinates Ps, the measurement dose Ds, and the measurement beam size Ss in the pre-irradiation performed without a patient, and evaluates the irradiation records.
  • the irradiation control computer 22 generates a command current Ir obtained by correcting the command current Io based on the measurement position coordinate Ps, and transmits the command current Io or the command current Ir to the scanning electromagnet power source 4.
  • the irradiation control computer 22 receives irradiation records such as measurement position coordinates Ps, measurement dose Ds, and measurement beam size Ss in the main irradiation actually irradiated on the patient, and stores the irradiation records in the main irradiation in the patient file server 56. To do.
  • the irradiation control device 5 outputs a trigger signal sigc, a count start signal sig, a beam supply command Con, and a beam stop command Coff, and controls the irradiation spot and irradiation dose in the irradiation target 15.
  • the irradiation control device 5 changes the setting of each device for each irradiation spot by the trigger signal sigc, starts measurement of the irradiation dose of the irradiation spot by the count start signal sig, and when the measured dose Ds reaches the target dose Do, the next
  • a beam stop command Coff is output to the beam accelerated transport control device 50, and the charged particle beam Stop.
  • the scanning electromagnet power source 4 changes the set current of the scanning electromagnets 3a and 3b based on the command current Io (Ir) which is a control input to the scanning electromagnet 3 output from the irradiation controller 5.
  • the beam expansion control device 17 outputs a beam size command So for setting the beam size in the position monitor 7 to the beam expansion device 16.
  • the range shifter unit 23 outputs a range shifter command Ro for changing the energy of the outgoing charged particle beam 1b to the range shifter 21.
  • FIG. 2 is a flowchart showing the irradiation procedure in the first embodiment.
  • the irradiation control computer 22 reads the treatment plan data F0 from the patient file server 56 and generates setting data Fo.
  • the setting data Fo is output to the beam acceleration transport control device 50, the scanning electromagnet power supply 4, the beam expansion control device 17, the range shifter unit 23, the position monitor unit 8, and the dose monitor unit 12, and is stored in each memory.
  • the beam acceleration transport control device 50 stores an accelerator setting command Bo.
  • the scanning electromagnet power source 4 stores a command current Io.
  • a beam size command So is stored in the beam expansion control device 17.
  • the range shifter unit Ro stores a range shifter command Ro.
  • the position monitor unit 8 stores a target irradiation position coordinate Pi and a target beam size Si.
  • the dose monitor unit 12 stores the target dose Do (step S001).
  • the irradiation controller 5 outputs a trigger signal sigc for each spot, and sequentially changes the command current Io, beam size command So, accelerator setting command Bo, and range shifter command Ro based on the setting data Fo, and performs pre-irradiation (step S002). ).
  • the irradiation control computer 22 collects irradiation records such as the measurement position coordinates Ps, the measurement dose Ds, and the measurement beam size Ss in the pre-irradiation (step S003).
  • the irradiation control computer 22 generates current correction data Ia for correcting the command current Io based on the measurement position coordinate Ps (step S004).
  • the irradiation control computer 22 corrects the command current Io based on the current correction data Ia, and generates a corrected command current Ir.
  • the command current Ir is output to the scanning electromagnet power source 4 and is overwritten and stored in the memory (step S005).
  • the irradiation control device 5 outputs the trigger signal sigc, sequentially changes the corrected command current Ir, beam size command So, accelerator setting command Bo, and range shifter command Ro, and confirms prior irradiation and correction (step S006).
  • the irradiation control device 5 outputs the trigger signal sigc, sequentially changes the corrected command current Ir, beam size command So, accelerator setting command Bo, and range shifter command Ro, and performs the main irradiation. (Step S007).
  • FIG. 3 is a schematic configuration diagram of a setting data generation unit that generates setting data Fo in the irradiation control computer 22.
  • the irradiation control computer 22 includes a setting data generator 29, a scanning electromagnet command value generator 6, a command value generator 25, and a correction data generator 30.
  • FIG. 4 is a timing diagram of signal generation in the irradiation control device 5.
  • the irradiation spot is divided into a slice that is a layer divided in the Z direction and an XY direction in each slice, and the charged particle beam 1 is stopped when changing the slice, and the charged particle is used when irradiating the same slice.
  • a description will be given of an irradiation method in which the beam 1 is continuously irradiated.
  • the scanning electromagnet 3 is excited to the saturation magnetic flux density.
  • the setting data generator 29 reads the treatment plan data F0 from the patient file server 56.
  • the correction data generator 30 outputs the pre-irradiation current correction data Ia to the command value generator 25 (step S101). Since the command current Io is not corrected at the time of preliminary irradiation, the current correction data Ia for preliminary irradiation is zero.
  • the setting data generator 29 outputs the target irradiation position coordinates Pi (xi, yi) rearranged in the irradiation order of irradiation spots, which are divided irradiation units, to the scanning electromagnet command value generator 6.
  • the setting data generator 29 includes an accelerator setting command Bo, a range shifter command Ro, a beam size command So, a target dose Do, a target irradiation position coordinate Pi, a target beam size, which are rearranged in the irradiation order of irradiation spots that are divided irradiation units.
  • Si is output to each of the beam accelerated transport control device 50, the range shifter unit 23, the beam expansion control device 17, the dose monitor unit 12, and the position monitor unit 8 (step S102).
  • the scanning electromagnet command value generator 6 generates a basic command current Ig (Ixg, Iyg) from the target irradiation position coordinates Pi (xi, yi) (step S103).
  • the command value generator 25 outputs the basic command current Ig as the command current Io (Ixo, Iyo) to the scanning electromagnet power supply 4 (step S104).
  • the irradiation control device 5 outputs the trigger signal sigc to the beam accelerated transport control device 50, the scanning electromagnet power source 4, the beam expansion control device 17, the range shifter unit 23, the dose monitor unit 12, and the position monitor unit 8, and the irradiation order is 1. Setting for the second irradiation spot is started (step S105).
  • each irradiation spot is represented by a slice number and a division number in each slice.
  • a pulse c1 (1) of the trigger signal sigc for the first irradiation spot in slice 1 (first slice) is output.
  • the beam accelerated transport control device 50 outputs a pulse of a completion signal siga to the irradiation control device 5.
  • the scanning electromagnet power source 4, the beam expansion control device 17, the range shifter unit 23, the dose monitor unit 12, and the position monitor unit 8 output a pulse of the device completion signal sigb to the irradiation control device 5 when the respective settings are completed.
  • the device completion signal sigb is shown to avoid complication, and in FIG. 1, the device completion signal sigb is omitted.
  • the irradiation control device 5 receives the pulse of the completion signal siga and the pulse b1 (1) of the equipment completion signal sigb, and outputs a pulse of the count start signal sig to instruct the start of dose measurement to the dose monitor unit 12 and the position monitor unit 8 Then, the beam acceleration command controller 50 outputs a pulse of a beam supply command Con for instructing the generation of the beam.
  • the beam accelerated transport control device 50 controls the beam generating device 51, the accelerator 52, and the beam transport device 53, and starts irradiation with a charged particle beam (step S106).
  • the position monitor unit 8 receives the pulse of the count start signal “sign”, compares the measurement position coordinate Ps and the measurement beam size Ss at that time with the target irradiation position coordinate Pi and the target beam size Si, and also measures the measurement position coordinate Ps and the measurement beam.
  • the size Ss is stored in the memory.
  • the interlock is activated to stop irradiation.
  • the measured dose Ds of the emitted charged particle beam 1b measured by the dose monitor 11 is compared with the target dose Do and the measured dose Ds by the dose monitor unit 12, and the dose is expired when the measured dose Ds exceeds the target dose Do.
  • the pulse d1 (1) of the signal sigd is output to the irradiation control device 5 and the position monitor unit 8.
  • the dose monitor 11 stores the measured dose Ds when the pulse of the dose expiration signal sigd is output in the memory (step S107).
  • step S108 the setting for the irradiation spot with the second irradiation order is started (step S108).
  • a pulse c1 (2) of the trigger signal sigc for the second irradiation spot in the slice 1 is output. Since the irradiation spot is in the same slice, the accelerator setting command Bo and the range shifter command Ro are not changed.
  • the scanning electromagnet power source 4, the beam expansion control device 17, the dose monitor unit 12, and the position monitor unit 8 output a pulse b 1 (2) of the device completion signal sigb to the irradiation control device 5 when the respective settings are completed.
  • the irradiation control device 5 receives the pulse b1 (2) of the device completion signal sigb, and outputs a pulse of the count start signal sig instructing the start of dose measurement to the dose monitor unit 12 and the position monitor unit 8.
  • the dose monitor unit 12 measures the irradiation dose of the second irradiation spot (step S109).
  • the dose monitor unit 12 has a spot counter for measuring the irradiation dose of each irradiation spot and an inter-spot counter for measuring the irradiation dose while moving the spot.
  • the measured dose from when the pulse of the dose expiration signal sigd is output until the pulse of the count start signal sig is received corresponds to the irradiation dose (inter-spot irradiation dose) during which the charged particle beam 1 is moving to the next spot.
  • This spot-to-spot irradiation dose is recorded in the memory upon receiving a pulse of the count start signal “sign”.
  • the position monitor unit 8 receives the pulse of the count start signal “sign”, compares the measurement position coordinate Ps and the measurement beam size Ss at that time with the target irradiation position coordinate Pi and the target beam size Si, and also measures the measurement position coordinate Ps and the measurement beam.
  • the size Ss is stored in the memory.
  • the interlock is activated to stop irradiation.
  • the measured dose Ds of the emitted charged particle beam 1b measured by the dose monitor 11 is compared with the target dose Do and the measured dose Ds by the dose monitor unit 12, and the dose is expired when the measured dose Ds exceeds the target dose Do.
  • the pulse d1 (2) of the signal sigd is output to the irradiation control device 5 and the position monitor unit 8.
  • the dose monitor 11 stores the measured dose Ds when the pulse of the dose expiration signal sigd is output in the memory (step S110).
  • the irradiation order is sequentially changed, and step S108 to step S110 are repeated until the last irradiation spot (number n) of the slice (step S111).
  • the dose monitor 11 receives the pulse c1 (n) of the trigger signal sigc and outputs the pulse of the slice final signal sigs to the irradiation controller 5.
  • the dose monitor 11 can detect that the last irradiation spot of the slice is set based on the information on the number of spots for each slice number.
  • the irradiation control device 5 When receiving the pulse of the slice final signal sigs and the pulse d1 (n) of the dose expiration signal sigd, the irradiation control device 5 outputs a bee beam stop command Coff that instructs the beam accelerated transport control device 50 to stop the beam. Also, a pulse c2 (1) of the trigger signal sigc for the first irradiation spot in the second slice is output (step S112).
  • Step S006 to Step S112 are repeated to irradiate each slice (Step S113).
  • the pulse of the trigger signal sigc is not output at the last irradiation spot in the last slice (numbered q).
  • the irradiation control computer 22 collects the measured dose Ds from the dose monitor unit 12 when receiving the pulse of the irradiation end signal size. Further, the irradiation control computer 22 collects the measurement position coordinates Ps (xs, ys) and the measurement beam size Ss of the emitted charged particle beam 1b from the position monitor unit 8 (step S114).
  • the setting data generator 29 reads the treatment plan data F0 from the patient file server 56. Note that when the treatment plan data F0 is stored in the irradiation control computer 22, the stored data may be used.
  • the correction data generator 30 generates current correction data Ia for main irradiation (step S115). A method for generating current correction data Ia for correcting the command current Io will be described later.
  • the setting data generator 29 outputs the target irradiation position coordinates Pi (xi, yi) rearranged in the irradiation order of irradiation spots which are divided irradiation units to the scanning electromagnet command value generator 6.
  • the setting data generator 29 includes an accelerator setting command Bo, a range shifter command Ro, a beam size command So, a target dose Do, a target irradiation position coordinate Pi, a target beam size that are rearranged in the irradiation order of irradiation spots that are divided irradiation units.
  • Si is output to each of the beam accelerated transport control device 50, the range shifter unit 23, the beam expansion control device 17, the dose monitor unit 12, and the position monitor unit 8 (step S116).
  • the scanning electromagnet command value generator 6 generates a basic command current Ig (Ixg, Iyg) from the target irradiation position coordinates Pi (xi, yi) (step S117).
  • the command value generator 25 outputs the command current Ig-Ia obtained by correcting the basic command current Ig with the current correction data Ia to the scanning electromagnet power supply 4 as the command current Ir (Ixr, Iyr) (step S118). Subsequent operations are the same as steps S105 to S114, replacing the command current Io with the command current Ir.
  • FIG. 5 is a diagram for explaining a method of correcting the command current.
  • the BL product for the current I output to the scanning electromagnet 3 is measured by the command current Io to the scanning electromagnet power source 4.
  • the BL product is a product of the magnetic field strength B and the effective length L of the magnetic pole of the scanning electromagnet 3.
  • the maximum hysteresis curve ⁇ passing through the saturation magnetic flux density is drawn.
  • the average of the current increasing direction and the current decreasing direction of the maximum hysteresis curve ⁇ is taken to determine the center line ⁇ of the hysteresis loop.
  • the current value I (id) set by the command current Io is the irradiation position from the target irradiation position coordinate Pi, which is the planned irradiation position, the center line ⁇ of the hysteresis loop, the energy of the emitted charged particle beam 1b, and the installation position of the scanning electromagnet 3. It is obtained by the distance to.
  • the BL product value can be obtained from the position coordinates of the charged particle beam 1 in consideration of the Lorentz force (Fleming's left-hand rule) acting on the charged particle beam 1.
  • the command current Io corresponds to a current I (id) at an intersection P ′ (not shown) between the ideal BL product value BL (id) calculated from the target irradiation position coordinate Pi and the center line ⁇ of the hysteresis loop. It is a command value.
  • This BL (id) is the expected value BL (ex) of the BL product value to be measured.
  • the value BL (me) of the BL product is calculated from the measured measurement position coordinates Ps.
  • the point P in FIG. 5 is an actual measurement value.
  • the current is corrected by shifting by ⁇ BL using a straight line having a tangential slope K at the intersection P ′ where the command current Io is obtained.
  • the correction may be performed by obtaining a current value I1 at which the BL product becomes BL (ex). If the current value I1 is obtained, the command current Ir to be set to the current value I1 that becomes BL (id) can be generated.
  • a dashed line ⁇ is a straight line having the same slope K as the tangent to the center line ⁇ in the current value I (id).
  • the slope K can be expressed as in equation (1)
  • the corrected current value I1 can be expressed as in equation (2).
  • I1 I (id) ⁇ BL / K (2)
  • ⁇ BL is BL (me) ⁇ BL (ex).
  • the correction current value ⁇ I set by the current correction data Ia is ⁇ BL / K.
  • the particle beam therapy system performs the pre-irradiation with the same excitation pattern as the scanning electromagnet excitation pattern in the main irradiation plan based on the setting data Fo based on the treatment plan data F0. Is performed in the same irradiation order as the main irradiation in order to control the irradiation dose, so that the measurement position coordinate Ps of the charged particle beam 1b reflecting the influence of the hysteresis of the scanning electromagnet 3 is acquired. can do.
  • the command current Io is corrected based on the current correction data Ia generated based on the measurement position coordinates Ps of the charged particle beam 1b reflecting the influence of the hysteresis of the scanning electromagnet 3 and the setting data Fo, the hysteresis is caused by the hysteresis of the scanning electromagnet 3.
  • the positional deviation of the charged particle beam 1b can be corrected. Therefore, the influence of the hysteresis of the scanning electromagnet 3 can be reduced, and highly accurate beam irradiation can be realized.
  • the scanning electromagnet 3 is excited to the saturation magnetic flux density as preparation before irradiation, so that the influence of the hysteresis of the scanning electromagnet 3 at the first irradiation spot of the charged particle beam 1 is made substantially the same. be able to.
  • the hysteresis effect of the pre-irradiated scanning electromagnet 3 implemented with the same excitation pattern as the scanning electromagnet excitation pattern in the main irradiation plan can be made substantially the same in all irradiation spots to be irradiated. Therefore, even when the main irradiation is performed a plurality of times with the same excitation pattern, high-accuracy beam irradiation can be realized without correction in advance.
  • the acceleration energy of the accelerator 52 is changed to change the energy of the incident charged particle beam 1a, and the energy of the outgoing charged particle beam 1b is changed by the range shifter 21. Since the position coordinate in the depth direction (Z direction) is controlled, the change of the acceleration energy of the accelerator 52 can be minimized, so that the irradiation time can be shortened and the process time until the main irradiation is shortened. Can do.
  • the irradiation management device 32 that controls the scanning electromagnet 3 based on the target irradiation position coordinates Pi of the charged particle beam 1b, and the measurement position coordinates of the charged particle beam 1b.
  • a position monitor 11 for measuring Ps and the irradiation management device 32 includes a measurement position coordinate Ps and a target irradiation position coordinate measured by the position monitor 11 in advance irradiation in which the excitation pattern of the scanning magnet is the same as the main irradiation plan.
  • the command value generator 25 which outputs the control input Io (Ir) to the scanning electromagnet 3 based on the correction data Ia generated based on Pi and the target irradiation position coordinate Pi, the influence of the hysteresis of the scanning electromagnet 3 And high-precision beam irradiation can be realized.
  • the current correction data Ia is stored in the memory of the irradiation control computer 22 or the patient file server 56, and the stored current correction data Ia is read out to the command value generator 25. You may make it supply. By doing in this way, interruption and resumption can be performed before this irradiation, and an efficient operation of a particle beam therapy system can be performed.
  • FIG. FIG. 6 is a flowchart showing an irradiation procedure in the second embodiment of the present invention.
  • the irradiation procedure of the first embodiment differs from the irradiation procedure in that the irradiation position difference is evaluated by confirming the preliminary irradiation with the command current Io and the correction based on the current correction data Ia is repeated until the irradiation position difference falls within a predetermined allowable range. .
  • steps S001 to S007 are the same as those in the first embodiment, and steps S008 to S012 are added.
  • step S008 based on the verification record collected in step S003, it is determined whether or not the position difference between the measurement position coordinate Ps and the target irradiation position coordinate Pi at each irradiation spot is within an allowable range. If the position difference is within the allowable range, the process proceeds to step S007, where the main irradiation is performed without correction.
  • step S004 current correction data Ia for correcting the command current Io is generated based on the measurement position coordinate Ps.
  • the command current Ir corrected in step S005 is generated, and the command current Ir corrected in step S009, the beam size command So, the accelerator setting command Bo, and the range shifter command Ro are sequentially changed to perform pre-irradiation.
  • the irradiation control computer 22 collects irradiation records such as the measurement position coordinates Ps, the measurement dose Ds, and the measurement beam size Ss in the pre-irradiation.
  • step S011 based on the verification record collected in step S010, it is determined whether or not the position difference between the measurement position coordinate Ps and the target irradiation position coordinate Pi at each irradiation spot is within an allowable range. When the position difference is within the allowable range, the process proceeds to step S007, and the main irradiation is performed without performing the correction again.
  • step S012 If the position difference is not within the allowable range, the process proceeds to step S012, and steps S004 to S011 are repeated based on the irradiation record in step S010.
  • the determination device 40 that performs the determination in step S008 and step S011 is realized by the CPU 41 and the memory 42 of the irradiation control computer 22.
  • the particle beam therapy system evaluates the positional difference in the pre-irradiation based on the command current Io and repeats the correction based on the current correction data Ia until it falls within a predetermined range.
  • the positional deviation of the charged particle beam 1b can be corrected with higher accuracy than in the first embodiment. Therefore, the influence of the hysteresis of the scanning electromagnet 3 can be reduced, and more accurate beam irradiation can be realized. Further, since the correction is not performed when the position difference is within the allowable range in the pre-irradiation by the command current Io, the time for determining the setting data Fo applied to the main irradiation can be shortened.
  • the example of performing the pre-irradiation again before performing the main irradiation has been described.
  • the confirmation irradiation based on the current correction data Ia is performed in the irradiation for confirming the particle beam therapy apparatus, and the step is performed.
  • the procedure of S006 may be omitted.
  • the charged particle beam 1 is stopped when the slice is changed, and the charged particle beam 1 is continuously irradiated when the same slice is irradiated.
  • the irradiation method is not limited to this.
  • the present invention can also be applied to other irradiation methods such as spot scanning in which the charged particle beam 1 stops every time and raster scanning. In the raster scanning, even if there is no irradiation spot as a discrete position where the beam stops, the position of the irradiation target 15 for controlling the irradiation dose can be said to be an irradiation spot for controlling the irradiation dose.
  • the turning point of the charged particle beam 1 is a change point of the current value increase / decrease pattern of the scanning electromagnet 3, and the measurement position coordinates corresponding to the change point of the current value increase / decrease pattern of the scanning electromagnet 3 and
  • the current correction data Ia may be generated based on the target irradiation position coordinates.
  • the particle beam therapy system according to the present invention can be suitably applied to a particle beam therapy system used for medical use or research.

Abstract

 走査電磁石のヒステリシスの影響を低減し、高精度なビーム照射を実現する粒子線治療装置を得ることを目的とする。 荷電粒子ビーム(1b)の目標照射位置座標(Pi)に基づいて走査電磁石(3)を制御する照射管理装置(32)と、荷電粒子ビーム(1b)の測定位置座標(Ps)を測定する位置モニタ(7)とを備え、照射管理装置(32)は、走査電磁石の励磁パターンが本照射の計画と同一である事前照射において位置モニタ(7)により測定された測定位置座標(Ps)及び目標照射位置座標(Pi)に基づいて生成された補正データ(Ia)と目標照射位置座標(Pi)とに基づいて走査電磁石(3)への制御入力(Io(Ir))を出力する指令値生成器(25)を有する。

Description

粒子線治療装置
 この発明は、医療用や研究用に用いられる粒子線治療装置に関し、特にスポットスキャニングやラスタースキャニングといった走査型の粒子線治療装置に関する。
 一般に粒子線治療装置は、荷電粒子ビームを発生するビーム発生装置と、ビーム発生装置につながれ、発生した荷電粒子ビームを加速する加速器と、加速器で設定されたエネルギーまで加速された後に出射される荷電粒子ビームを輸送するビーム輸送系と、ビーム輸送系の下流に設置され、荷電粒子ビームを照射対象に照射するための粒子線照射装置とを備える。粒子線照射装置には大きく、荷電粒子ビームを散乱体で散乱拡大し、拡大した荷電粒子ビームを照射対象の形状にあわせて照射野を形成するブロード照射方式と、照射対象の形状に合わせるように、細いペンシル状のビームを走査して照射野形成するスキャニング照射方式(スポットスキャニング、ラスタースキャニング等)とがある。
 ブロード照射方式は、コリメータやボーラスを用いて患部形状に合う照射野を形成する。患部形状に合う照射野を形成し、正常組織への不要な照射を防いでおり、最も汎用的に用いられている、優れた照射方式である。しかし、患者ごとにボーラスを製作したり、患部に合わせてコリメータを変形させたりする必要がある。
 一方、スキャニング照射方式は、コリメータやボーラスが不要といった自由度の高い照射方式である。しかし、患部以外の正常組織への照射を防ぐこれら部品を用いないため、ブロード照射方式以上に高いビーム照射位置精度が要求される。
 特許文献1には、正確に患部を照射することができる粒子線治療装置を提供することを目的とし、以下の発明が開示されている。特許文献1の発明は、走査装置による荷電粒子ビームの走査量とその際にビーム位置検出器により検出する荷電粒子ビームのビーム位置とを記憶装置に記憶し、この記憶された走査量及びビーム位置を用い、制御装置により治療計画情報に基づくビーム位置に応じて走査装置の走査量を設定する。実際に照射して得られた走査量とビーム位置との関係が記憶装置に記憶されているため、正確に患部を照射することが期待できるものである。
特開2005-296162号公報
 特許文献1に開示された発明においては、実際に照射をして得られた荷電粒子ビームの走査量とビーム位置との実データに基づいて変換テーブルを作成し、この変換テーブルを用いて走査電磁石の設定電流値を演算している。
 しかしながら、実際には走査電磁石の電流と磁場との間にはヒステリシス特性が存在し、電流値が増加しているときと、電流値が減少しているときとでは、異なった磁場となる。実際に患部に照射する本照射における走査電磁石の電流値の増減パターンである励磁パターンは、変換テーブルを作成した際の照射における走査電磁石の励磁パターンとは異なるので、電磁石のヒステリシスの影響により正確に患部を照射することができない問題点があった。
 この発明は上記のような課題を解決するためになされたものであり、走査電磁石のヒステリシスの影響を低減し、高精度なビーム照射を実現する粒子線治療装置を得ることを目的とする。
 荷電粒子ビームの目標照射位置座標に基づいて走査電磁石を制御する照射管理装置と、荷電粒子ビームの測定位置座標を測定する位置モニタとを備え、照射管理装置は、走査電磁石の励磁パターンが本照射の計画と同一である事前照射において位置モニタにより測定された測定位置座標及び目標照射位置座標に基づいて生成された補正データと目標照射位置座標とに基づいて走査電磁石への制御入力を出力する指令値生成器を有する。
 この発明に係る粒子線治療装置は、走査電磁石の励磁パターンが事前照射と本照射の計画とで同一にして、事前照射で得られた結果に基づいて走査電磁石への制御入力を補正するので、走査電磁石のヒステリシスの影響を排除し、高精度なビーム照射を実現することができる。
この発明の実施の形態1における粒子線治療装置の概略構成図である。 実施の形態1における照射手順を示すフローチャートである。 図1の照射制御計算機の概略構成図である。 図1の照射制御装置における信号生成のタイミング図である。 指令電流の補正方法を説明する図である。 この発明の実施の形態2における照射手順を示すフローチャートである。
実施の形態1.
 図1はこの発明の実施の形態1における粒子線治療装置の概略構成図である。粒子線治療装置は、ビーム発生装置51と、加速器52と、ビーム輸送装置53と、ビーム加速輸送制御装置50と、粒子線照射装置54と、治療計画装置55と、患者ファイルサーバ56とを備える。ビーム発生装置51は、イオン源で発生させた荷電粒子を加速して荷電粒子ビーム1を発生させる。加速器52は、ビーム発生装置51に接続され、発生した荷電粒子ビーム1を所定のエネルギーまで加速する。ビーム輸送装置53は、加速器52で設定されたエネルギーまで加速された後に出射される荷電粒子ビーム1を輸送する。ビーム加速輸送制御装置50は、ビーム発生装置51、加速器52、ビーム輸送装置53のそれぞれを制御する。粒子線照射装置54は、ビーム輸送系53の下流に設置され、荷電粒子ビーム1を照射対象15に照射する。治療計画装置55は、X線CT等で撮影した画像情報から患者の照射対象15を決定し、照射対象15に対する治療計画データF0である目標照射位置座標Pi0、目標線量Di0、目標ビームサイズSi0、目標加速器設定Bi0、レンジシフタ挿入量Ri0等を生成する。目標加速器設定Bi0には、加速器52のビームエネルギー及びビーム電流の設定値を含んでいる。患者ファイルサーバ56は、治療計画装置55で患者毎に生成した治療計画データF0を記憶する。
 粒子線照射装置54は、ビーム輸送装置53から入射された入射荷電粒子ビーム1aを輸送するビーム輸送ダクト2と、入射荷電粒子ビーム1aに垂直な方向であるX方向及びY方向に入射荷電粒子ビーム1aを走査する走査電磁石3a、3bと、位置モニタ7と、位置モニタ7の信号を増幅するプレアンプ9と、位置モニタユニット8と、線量モニタ11と、線量モニタ11の信号を増幅するプレアンプ13と、線量モニタユニット12と、照射管理装置32と、走査電磁石電源4と、ビーム拡大装置16と、ビーム拡大制御装置17と、ベローズ18と、真空ダクト19と、リップルフィルタ20と、レンジシフタ21と、レンジシフタユニット23とを備える。なお、図1に示したように入射荷電粒子ビーム1aの進行方向はZ方向である。
 走査電磁石3aは入射荷電粒子ビーム1aをX方向に走査するX方向走査電磁石であり、走査電磁石3bは入射荷電粒子ビーム1aをY方向に走査するY方向走査電磁石である。位置モニタ7は走査電磁石3a、3bで偏向された出射荷電粒子ビーム1bが通過する通過位置(重心位置)及びビームサイズを検出する。プレアンプ9は位置モニタ7で検出した通過位置及びビームサイズのアナログデータを増幅する。ここで、ビームサイズは出射荷電粒子ビーム1bのZ方向に垂直なXY面を通過する面積である。位置モニタユニット8は、位置モニタ7で検出した通過位置及びビームサイズをプレアンプ9を介して受け取り、その通過位置及びビームサイズをデジタルデータに変換し、測定位置座標Ps及び測定ビームサイズSsを生成する。
 線量モニタ11は出射荷電粒子ビーム1bの線量を検出する。プレアンプ13は線量モニタ11で検出した線量のアナログデータを増幅する。線量モニタユニット12は、線量モニタ11で検出した線量をプレアンプ13を介して受け取り、その線量をデジタルデータに変換し、測定線量Dsを生成する。
 ビーム拡大装置16は出射荷電粒子ビーム1bのビームサイズを拡大する。真空ダクト19は出射荷電粒子ビーム1bを通過する真空領域を確保する。ベローズ18はビーム輸送ダクト2と真空ダクト19を伸縮自在に接続し、真空領域を照射対象15へ延長する。リップルフィルタ20はリッジフィルタとも呼ばれ、凸形の形状をしている。リップルフィルタ20は、加速器52から送られてくるほぼ単一のエネルギーを有する単色ビームである荷電粒子ビーム1にエネルギーロスをさせ、エネルギーに幅を持たせる。
 照射対象15における深さ方向(Z方向)の位置座標の制御は、加速器52の加速エネルギーを変更して入射荷電粒子ビーム1aのエネルギーを変更すること及びレンジシフタ21により出射荷電粒子ビーム1bのエネルギーを変更することにより行う。レンジシフタ21は荷電粒子ビーム1の飛程を小刻みに調整する。大幅な荷電粒子ビーム1の飛程変更は加速器52の加速エネルギーの変更で行い、小幅な荷電粒子ビーム1の飛程変更はレンジシフタ21の設定変更で行う。
 照射管理装置32は、照射制御装置5と照射制御計算機22を備える。照射制御計算機22は、患者ファイルサーバ56から治療計画データF0を読み出し、照射線量を制御するために分割された照射単位である照射スポットの照射順番に並べ変えた設定データFiを生成する。すなわち設定データFiはシーケンス化された治療計画データである。設定データFiに基づいて各機器への指令である設定データFoに出力する。
 設定データFiの要素は目標照射位置座標Pi、目標線量Di、目標ビームサイズSi、目標加速器設定Bi、レンジシフタ挿入量Riであり、設定データFiの各要素はそれぞれ治療計画データF0の要素である目標照射位置座標Pi0、目標線量Di0、目標ビームサイズSi0、目標加速器設定Bi0、レンジシフタ挿入量Ri0がシーケンス化されたデータである。設定データFoは、加速器設定指令Bo、レンジシフタ指令Ro、指令電流Io、指令電流Ir、ビームサイズ指令So、目標線量Doである。
 照射制御計算機22は、患者がいない状態で行う事前照射における測定位置座標Ps、測定線量Ds、測定ビームサイズSs等の照射記録を受信し、照射記録の評価を行う。照射制御計算機22は、測定位置座標Psに基づいて、指令電流Ioを補正した指令電流Irを生成し、走査電磁石電源4に指令電流Ioまたは指令電流Irを送信する。また、照射制御計算機22は、患者に実際に照射した本照射における測定位置座標Ps、測定線量Ds、測定ビームサイズSs等の照射記録を受信し、本照射における照射記録を患者ファイルサーバ56に記憶する。
 照射制御装置5は、トリガ信号sigc、カウント開始信号sigh、ビーム供給指令Con、ビーム停止指令Coffを出力し、照射対象15における照射スポット及び照射線量を制御する。照射制御装置5は、トリガ信号sigcにより各照射スポットに対する各機器の設定を変更し、カウント開始信号sighにより照射スポットの照射線量の測定を開始し、測定線量Dsが目標線量Doに達すると次の照射スポットに対する制御を行い、照射対象を複数に分割された照射区分(後述するスライス)のそれぞれに対する照射が終了すると、ビーム加速輸送制御装置50に対してビーム停止指令Coffを出力し、荷電粒子ビームを停止させる。
 走査電磁石電源4は照射制御装置5から出力された走査電磁石3への制御入力である指令電流Io(Ir)に基づいて走査電磁石3a、3bの設定電流を変化させる。ビーム拡大制御装置17はビーム拡大装置16に位置モニタ7におけるビームサイズを設定するビームサイズ指令Soを出力する。レンジシフタユニット23はレンジシフタ21に出射荷電粒子ビーム1bのエネルギーを変更するレンジシフタ指令Roを出力する。
 図2は実施の形態1における照射手順を示すフローチャートである。照射制御計算機22は患者ファイルサーバ56から治療計画データF0を読み出し、設定データFoを生成する。設定データFoは、ビーム加速輸送制御装置50、走査電磁石電源4、ビーム拡大制御装置17、レンジシフタユニット23、位置モニタユニット8、線量モニタユニット12に出力され、それぞれのメモリに記憶される。ビーム加速輸送制御装置50には加速器設定指令Boが記憶される。走査電磁石電源4には指令電流Ioが記憶される。ビーム拡大制御装置17にはビームサイズ指令Soが記憶される。レンジシフタユニット23にはレンジシフタ指令Roが記憶される。位置モニタユニット8には目標照射位置座標Pi及び目標ビームサイズSiが記憶される。線量モニタユニット12には目標線量Doが記憶される(ステップS001)。
 照射制御装置5はスポット毎にトリガ信号sigcを出力し、設定データFoに基づいた指令電流Io、ビームサイズ指令So、加速器設定指令Bo、レンジシフタ指令Roを順次変更し、事前照射を行う(ステップS002)。照射制御計算機22は、事前照射における測定位置座標Ps、測定線量Ds、測定ビームサイズSs等の照射記録を収集する(ステップS003)。
 照射制御計算機22は、測定位置座標Psに基づいて、指令電流Ioを補正する電流補正データIaを生成する(ステップS004)。照射制御計算機22は、電流補正データIaに基づいて指令電流Ioを補正し、補正された指令電流Irを生成する。指令電流Irは走査電磁石電源4に出力され、メモリに上書き保存される(ステップS005)。照射制御装置5はトリガ信号sigcを出力し、補正された指令電流Ir、ビームサイズ指令So、加速器設定指令Bo、レンジシフタ指令Roを順次変更し、事前照射、補正の確認を行う(ステップS006)。補正の結果に問題がなければ、照射制御装置5はトリガ信号sigcを出力し、補正された指令電流Ir、ビームサイズ指令So、加速器設定指令Bo、レンジシフタ指令Roを順次変更し、本照射を行う(ステップS007)。
 図3は照射制御計算機22における設定データFoを生成する設定データ生成部の概略構成図である。照射制御計算機22は、設定データ生成器29、走査電磁石指令値生成器6と、指令値生成器25と、補正データ生成器30とを有する。図4は照射制御装置5における信号生成のタイミング図である。
 照射制御計算機22及び照射制御装置5の動作について説明する。ここでは、照射スポットはZ方向に分割した層であるスライスと各スライスにおけるXY方向に分割され、スライスを変更する際に荷電粒子ビーム1を停止し、同一スライス内を照射する際には荷電粒子ビーム1を照射し続ける照射方法で説明する。まず事前照射の動作について説明する。照射前の準備として走査電磁石3を飽和磁束密度まで励磁する。設定データ生成器29は、患者ファイルサーバ56から治療計画データF0を読み出す。補正データ生成器30は事前照射用の電流補正データIaを指令値生成器25に出力する(ステップS101)。事前照射の際には指令電流Ioを補正しないので、事前照射用の電流補正データIaは0である。設定データ生成器29は、分割された照射単位である照射スポットの照射順番に並べ変えた目標照射位置座標Pi(xi,yi)を走査電磁石指令値生成器6に出力する。設定データ生成器29は、分割された照射単位である照射スポットの照射順番に並べ変えた加速器設定指令Bo、レンジシフタ指令Ro、ビームサイズ指令So、目標線量Do、目標照射位置座標Pi、目標ビームサイズSiを、ビーム加速輸送制御装置50、レンジシフタユニット23、ビーム拡大制御装置17、線量モニタユニット12、位置モニタユニット8のそれぞれに出力する(ステップS102)。
 走査電磁石指令値生成器6は目標照射位置座標Pi(xi,yi)から基礎となる指令電流Ig(Ixg,Iyg)を生成する(ステップS103)。指令値生成器25は、基礎となる指令電流Igを指令電流Io(Ixo,Iyo)として走査電磁石電源4に出力する(ステップS104)。照射制御装置5はトリガ信号sigcを、ビーム加速輸送制御装置50、走査電磁石電源4、ビーム拡大制御装置17、レンジシフタユニット23、線量モニタユニット12、位置モニタユニット8に出力し、照射順番が1番目の照射スポットに対する設定が開始される(ステップS105)。ここで照射スポットはZ方向に分割した層であるスライスと各スライスにおけるXY方向に分割されるので、各照射スポットはスライス番号と各スライスにおける分割番号で表わすことにする。図4に示すように、スライス1(最初のスライス)における最初の照射スポットに対するトリガ信号sigcのパルスc1(1)が出力される。ビーム加速輸送制御装置50は加速器設定指令Boの設定が完了すると完了信号sigaのパルスを照射制御装置5に出力する。走査電磁石電源4、ビーム拡大制御装置17、レンジシフタユニット23、線量モニタユニット12、位置モニタユニット8は、それぞれの設定が完了すると機器完了信号sigbのパルスを照射制御装置5に出力する。なお、図4では複雑化を避けるために、機器完了信号sigbを1つだけ記載し、図1では機器完了信号sigbを省略した。
 照射制御装置5は完了信号sigaのパルス及び機器完了信号sigbのパルスb1(1)を受けて、線量測定の開始を指示するカウント開始信号sighのパルスを線量モニタユニット12及び位置モニタユニット8に出力し、ビーム加速輸送制御装置50にビームの発生を指示するビーム供給指令Conのパルスを出力する。ビーム加速輸送制御装置50は、ビーム発生装置51、加速器52、ビーム輸送装置53を制御し、荷電粒子ビームの照射を開始する(ステップS106)。
 位置モニタユニット8はカウント開始信号sighのパルスを受けて、そのときの測定位置座標Ps及び測定ビームサイズSsを目標照射位置座標Pi及び目標ビームサイズSiと比較し、また測定位置座標Ps及び測定ビームサイズSsをメモリに記憶する。測定位置座標Ps及び測定ビームサイズSsが許容値を超えた時はインターロックを作動させ照射を停止する。線量モニタ11により測定された出射荷電粒子ビーム1bの測定線量Dsは、線量モニタユニット12にて目標線量Doと測定線量Dsを比較し、測定線量Dsが目標線量Doを超えた場合に、線量満了信号sigdのパルスd1(1)を照射制御装置5及び位置モニタユニット8に出力する。線量モニタ11は線量満了信号sigdのパルスを出力した際の測定線量Dsをメモリに記憶する(ステップS107)。
 次に照射順番が2番目の照射スポットに対する設定が開始される(ステップS108)。スライス1における2番目の照射スポットに対するトリガ信号sigcのパルスc1(2)が出力される。同一スライスにおける照射スポットなので、加速器設定指令Bo、レンジシフタ指令Roは変更されない。走査電磁石電源4、ビーム拡大制御装置17、線量モニタユニット12、位置モニタユニット8は、それぞれの設定が完了すると機器完了信号sigbのパルスb1(2)を照射制御装置5に出力する。
 照射制御装置5は機器完了信号sigbのパルスb1(2)を受けて、線量測定の開始を指示するカウント開始信号sighのパルスを線量モニタユニット12及び位置モニタユニット8に出力する。線量モニタユニット12は2番目の照射スポットの照射線量を測定する(ステップS109)。なお、線量モニタユニット12は各照射スポットの照射線量を測定するスポットカウンタとスポットを移動中の照射線量を測定するスポット間カウンタを有している。線量満了信号sigdのパルスを出力してから、カウント開始信号sighのパルスを受けるまでの測定線量は、荷電粒子ビーム1が次のスポットへ移動中の照射線量(スポット間照射線量)に相当する。このスポット間照射線量は、カウント開始信号sighのパルスを受けて、メモリに記録される。
 位置モニタユニット8はカウント開始信号sighのパルスを受けて、そのときの測定位置座標Ps及び測定ビームサイズSsを目標照射位置座標Pi及び目標ビームサイズSiと比較し、また測定位置座標Ps及び測定ビームサイズSsをメモリに記憶する。測定位置座標Ps及び測定ビームサイズSsが許容値を超えた時はインターロックを作動させ照射を停止する。線量モニタ11により測定された出射荷電粒子ビーム1bの測定線量Dsは、線量モニタユニット12にて目標線量Doと測定線量Dsを比較し、測定線量Dsが目標線量Doを超えた場合に、線量満了信号sigdのパルスd1(2)を照射制御装置5及び位置モニタユニット8に出力する。線量モニタ11は線量満了信号sigdのパルスを出力した際の測定線量Dsをメモリに記憶する(ステップS110)。
 照射順番を順次変更し、スライスの最後の照射スポット(番号nとする)まで、ステップS108からステップS110を繰り返す(ステップS111)。なお、スライスの最後の照射スポットにおいて、線量モニタ11は、トリガ信号sigcのパルスc1(n)を受けて、スライス最終信号sigsのパルスを照射制御装置5に出力する。線量モニタ11は、スライス番号毎のスポット数の情報を基にしてスライスの最後の照射スポットに設定されたことを検出することができる。
 照射制御装置5は、スライス最終信号sigsのパルス及び線量満了信号sigdのパルスd1(n)を受けると、ビーム加速輸送制御装置50にビームの停止を指示するビービーム停止指令Coffを出力する。また2番目のスライスにおける最初の照射スポットに対するトリガ信号sigcのパルスc2(1)を出力する(ステップS112)。
 ステップS006からステップS112を繰り返し、各スライスの照射を行う(ステップS113)。なお、最後のスライス(番号qとする)における最後の照射スポット(番号mとする)では、線量モニタ11は、線量満了信号sigdのパルスdq(m)を出力する際に照射終了信号sigeのパルスを照射制御計算機22に出力する。また最後のスライス(番号qとする)における最後の照射スポットでは、トリガ信号sigcのパルスは出力されない。
 照射制御計算機22は照射終了信号sigeのパルスを受けると、線量モニタユニット12から測定線量Dsを収集する。また、照射制御計算機22は、出射荷電粒子ビーム1bの測定位置座標Ps(xs,ys)及び測定ビームサイズSsを、位置モニタユニット8から収集する(ステップS114)。
 次に補正後の指令電流Irを用いた事前照射や本照射の動作について説明する。なお、補正後の指令電流Irを用いた事前照射と本照射は同様の動作なので、本照射として説明する。照射前の準備として走査電磁石3を飽和磁束密度まで励磁する。設定データ生成器29は、患者ファイルサーバ56から治療計画データF0を読み出す。なお、照射制御計算機22に治療計画データF0が保存されている場合には、保存データを使用してもよい。補正データ生成器30は本照射用の電流補正データIaを生成する(ステップS115)。指令電流Ioを補正する電流補正データIaを生成する方法は後述する。設定データ生成器29は、分割された照射単位である照射スポットの照射順番に並べ変えた目標照射位置座標Pi(xi,yi)を走査電磁石指令値生成器6に出力する。設定データ生成器29は、分割された照射単位である照射スポットの照射順番に並べ変えた加速器設定指令Bo、レンジシフタ指令Ro、ビームサイズ指令So、目標線量Do、目標照射位置座標Pi、目標ビームサイズSiを、ビーム加速輸送制御装置50、レンジシフタユニット23、ビーム拡大制御装置17、線量モニタユニット12、位置モニタユニット8のそれぞれに出力する(ステップS116)。
 走査電磁石指令値生成器6は目標照射位置座標Pi(xi,yi)から基礎となる指令電流Ig(Ixg,Iyg)を生成する(ステップS117)。指令値生成器25は、基礎となる指令電流Igを電流補正データIaで補正された指令電流Ig-Iaを指令電流Ir(Ixr,Iyr)として走査電磁石電源4に出力する(ステップS118)。以降の動作は指令電流Ioを指令電流Irと読み替えて、ステップS105からステップS114までと同様である。
 電流補正データIaを生成する方法を説明する。図5は指令電流の補正方法を説明する図である。走査電磁石電源4への指令電流Ioにより走査電磁石3に出力される電流Iに対するBL積を測定する。BL積は磁場の強さBと走査電磁石3の磁極の有効長Lとの積である。飽和磁束密度を通る最大ヒステリシス曲線αを描かせる。最大ヒステリシス曲線αの電流増加方向と電流減少方向の平均を取り、ヒステリシスループの中心線βを求める。
 指令電流Ioにより設定される電流値I(id)は、照射予定位置である目標照射位置座標Pi、ヒステリシスループの中心線β、出射荷電粒子ビーム1bのエネルギー、走査電磁石3の設置位置から照射位置までの距離により求まる。荷電粒子ビーム1に働くローレンツ力(フレミングの左手の法則)を考慮して、荷電粒子ビーム1の位置座標からBL積の値を求めることができる。指令電流Ioは、目標照射位置座標Piから算出される理想のBL積の値BL(id)とヒステリシスループの中心線βとの交点P´(図示せず)における電流I(id)に対応する指令値である。このBL(id)は測定するBL積の値の期待値BL(ex)となる。
 測定された測定位置座標PsからBL積の値BL(me)を算出する。図5のP点が実測値である。測定されたBL積の値BL(me)は期待値BL(ex)からΔBLだけずれが生じている場合を考える。指令電流Ioを求めた交点P´における接線の傾きKを持つ直線を用いてΔBLだけずらして電流を補正する。補正はBL積がBL(ex)となる電流値I1を求めればよい。電流値I1が求まれば、BL(id)となる電流値I1に設定する指令電流Irを生成できる。このような方法によって、走査電磁石のヒステリシスの影響による荷電粒子ビーム1の位置ずれを許容範囲内にすることができる。
 一点鎖線の直線γは電流値I(id)における中心線βの接線と同じ傾きKの直線である。傾きKは(1)式ように表わせ、補正後の電流値I1は(2)式のように表わせる。
Figure JPOXMLDOC01-appb-I000001
 I1=I(id)-ΔBL/K             ・・・(2)
ここでΔBLはBL(me)-BL(ex)である。電流補正データIaにより設定される補正電流値ΔIはΔBL/Kである。
 実施の形態1の粒子線治療装置は、事前照射を治療計画データF0に基づいた設定データFoによる本照射の計画における走査電磁石の励磁パターンと同一の励磁パターンにて実施するので、すなわち、事前照射を、照射線量を制御するための照射スポットの照射順番が本照射と同一の照射順番にて実施するので、走査電磁石3のヒステリシスの影響が反映された荷電粒子ビーム1bの測定位置座標Psを取得することができる。走査電磁石3のヒステリシスの影響が反映された荷電粒子ビーム1bの測定位置座標Psに基づいて生成した電流補正データIa及び設定データFoに基づいて指令電流Ioを補正するので、走査電磁石3のヒステリシスによる荷電粒子ビーム1bの位置ずれを修正することができる。したがって、走査電磁石3のヒステリシスの影響を低減し、高精度なビーム照射を実現することができる。
 実施の形態1の粒子線治療装置は、照射前の準備として走査電磁石3を飽和磁束密度まで励磁するので、荷電粒子ビーム1の最初の照射スポットにおける走査電磁石3のヒステリシスの影響をほぼ同じにすることができる。これにより照射する全照射スポットにおいて、本照射の計画における走査電磁石の励磁パターンと同一の励磁パターンにて実施する事前照射の走査電磁石3のヒステリシスの影響をほぼ同一にすることができる。したがって、同一の励磁パターンで複数回、本照射を行う場合でも、そのつど事前照射にて補正をしなくても高精度なビーム照射を実現することができる。
 実施の形態1の粒子線治療装置は、加速器52の加速エネルギーを変更して入射荷電粒子ビーム1aのエネルギーを変更すること及びレンジシフタ21により出射荷電粒子ビーム1bのエネルギーを変更して、照射対象15における深さ方向(Z方向)の位置座標の制御を行うので、加速器52の加速エネルギーの変更を最小限にできるので、照射時間を短くでき、本照射をするまでの工程の時間を短くすることができる。
 以上のように実施の形態1の粒子線治療装置によれば、荷電粒子ビーム1bの目標照射位置座標Piに基づいて走査電磁石3を制御する照射管理装置32と、荷電粒子ビーム1bの測定位置座標Psを測定する位置モニタ11とを備え、照射管理装置32は、走査電磁石の励磁パターンが本照射の計画と同一である事前照射において位置モニタ11により測定された測定位置座標Ps及び目標照射位置座標Piに基づいて生成された補正データIaと目標照射位置座標Piとに基づいて走査電磁石3への制御入力Io(Ir)を出力する指令値生成器25を有するので、走査電磁石3のヒステリシスの影響を低減し、高精度なビーム照射を実現することができる。
 なお、図2の補正の確認を行うステップS006の後に、電流補正データIaを照射制御計算機22のメモリや患者ファイルサーバ56に保存し、保存した電流補正データIaを読み出して指令値生成器25に供給するようにしても構わない。このようにすることで、本照射前に中断と再開を行うことができ、効率的な粒子線治療装置の運用を行うことができる。
実施の形態2.
 図6は、この発明の実施の形態2における照射手順を示すフローチャートである。実施の形態1の照射手順とは指令電流Ioによる事前照射の確認で照射位置差を評価し、照射位置差が所定の許容範囲内に入るまで、電流補正データIaに基づく補正を繰り返す点で異なる。
 図6においてステップS001からS007は実施の形態1と同様であり、ステップS008からステップS012が追加されている。ステップS008では、ステップS003で収集した照査記録に基づき、各照射スポットにおける測定位置座標Psと目標照射位置座標Piとの位置差が許容範囲内にあるかどうかを判定する。位置差が許容範囲内にある場合にはステップS007に移り、補正を行わずに本照射を行う。
 位置差が許容範囲内にない場合には、ステップS004に移り、測定位置座標Psに基づいて、指令電流Ioを補正する電流補正データIaを生成する。ステップS005で補正された指令電流Irを生成し、ステップS009にて補正された指令電流Ir、ビームサイズ指令So、加速器設定指令Bo、レンジシフタ指令Roを順次変更し、事前照射を行う。ステップS010にて、照射制御計算機22は、事前照射における測定位置座標Ps、測定線量Ds、測定ビームサイズSs等の照射記録を収集する。ステップS011にて、ステップS010で収集した照査記録に基づき、各照射スポットにおける測定位置座標Psと目標照射位置座標Piとの位置差が許容範囲内にあるかどうかを判定する。位置差が許容範囲内にある場合にはステップS007に移り、再度の補正を行わずに本照射を行う。
 位置差が許容範囲内にない場合には、ステップS012に移り、ステップS010の照射記録に基づいて、ステップS004からステップS011を繰り返す。
 ステップS008及びステップS011における判定を行う判定器40は、照射制御計算機22のCPU41及びメモリ42により実現する。
 実施の形態2の粒子線治療装置は、指令電流Ioに基づく事前照射における位置差を評価して所定の範囲内になるまで、電流補正データIaに基づく補正を繰り返すので、走査電磁石3のヒステリシスによる荷電粒子ビーム1bの位置ずれを実施の形態1よりも高精度に修正することができる。したがって、走査電磁石3のヒステリシスの影響を低減し、さらに高精度なビーム照射を実現することができる。また、指令電流Ioによる事前照射において位置差が許容範囲内にある場合には補正を行わないので、本照射に適用する設定データFoを確定する時間を短くすることができる。
 なお、実施の形態1では本照射を行う前に、再度事前照射を行う例で説明したが、粒子線治療装置の確認を行う照射にて電流補正データIaに基づく確認照射を実施して、ステップS006の手順を省略しても構わない。
 また、スライスを変更する際に荷電粒子ビーム1の停止し、同一スライス内を照射する際には荷電粒子ビーム1を照射し続ける照射方法で説明したが、これに限定されることなく、照射スポット毎に荷電粒子ビーム1の停止するスポットスキャニングや、ラスタースキャニング等の他の照射方法にも適用できる。なお、ラスタースキャニングにおいては、ビームが停止する離散的な位置としての照射スポットは存在しなくても、照射線量を制御する照射対象15の位置は照射線量を制御するための照射スポットと言える。また、ラスタースキャニングにおいては、荷電粒子ビーム1の折り返し点等が走査電磁石3の電流値の増減パターンの変化点であり、走査電磁石3の電流値の増減パターンの変化点に対応する測定位置座標及び目標照射位置座標に基づいて電流補正データIaを生成しても構わない。
 この発明に係る粒子線治療装置は、医療用や研究用に用いられる粒子線治療装置に好適に適用できる。
1   電粒子ビーム          1a  入射荷電粒子ビーム
1b  出射荷電粒子ビーム       3   走査電磁石
3a  X方向走査電磁石        3b  Y方向走査電磁石
6   走査電磁石指令値生成器     7   位置モニタ
15  照射対象            25  指令値生成器
30  補正データ生成器        32  照射管理装置
40  判定器             52  加速器
Io  指令電流            Ir  指令電流
Ig  指令電流            Ia  電流補正データ
Pi  目標照射位置座標        Ps  測定位置座標

Claims (4)

  1.  加速器により加速され、走査電磁石で走査された荷電粒子ビームを照射対象に照射する粒子線治療装置であって、
    前記荷電粒子ビームの目標照射位置座標に基づいて前記走査電磁石を制御する照射管理装置と、前記荷電粒子ビームの測定位置座標を測定する位置モニタとを備え、
    前記照射管理装置は、前記走査電磁石の励磁パターンが本照射の計画と同一である事前照射において前記位置モニタにより測定された前記測定位置座標及び前記目標照射位置座標に基づいて生成された補正データと前記目標照射位置座標とに基づいて前記走査電磁石への制御入力を出力する指令値生成器を有することを特徴とする粒子線治療装置。
  2.  前記照射管理装置は、前記測定位置座標及び前記目標照射位置座標に基づいて前記補正データを生成する補正データ生成器と、前記測定位置座標から基礎となる制御入力を生成する走査電磁石指令値生成器とを有し、
    前記指令値生成器は、前記走査電磁石指令値生成器が生成した前記基礎となる制御入力を前記補正データ生成器が生成した前記補正データにより補正した補正制御入力を前記制御入力として出力することを特徴とした請求項1記載の粒子線治療装置。
  3.  前記補正データは、前記事前照射にて測定された前記測定位置座標より算出された前記走査電磁石のBL積の値BL(me)と前記目標照射位置座標より算出された前記走査電磁石のBL積の値BL(ex)との差ΔBLを係数Kで除した値に基づき生成し、
    前記係数Kは、前記走査電磁石のBL積と電流値とのヒステリシスループの中心線における前記BL積の値BL(ex)となる点における接線の傾きであることを特徴とした請求項1または2に記載の粒子線治療装置。
  4.  前記照射管理装置は、前記測定位置座標と前記目標照射位置座標との位置差が所定の許容範囲内にあるかを判定する判定器を有し、
    前記位置差が前記所定の許容範囲内にない場合に前記補正データを生成し、
    前記位置差が前記所定の許容範囲内にある場合に、前記走査電磁石への制御入力を前記事前照射と同じ値にすることを特徴とした請求項1乃至3のいずれか1項に記載の粒子線治療装置。
PCT/JP2010/051121 2010-01-28 2010-01-28 粒子線治療装置 WO2011092815A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10844578.4A EP2529791B1 (en) 2010-01-28 2010-01-28 Particle beam therapy system
CN201080062466.4A CN102740929B (zh) 2010-01-28 2010-01-28 粒子射线治疗装置
JP2010511404A JP4532606B1 (ja) 2010-01-28 2010-01-28 粒子線治療装置
PCT/JP2010/051121 WO2011092815A1 (ja) 2010-01-28 2010-01-28 粒子線治療装置
US12/864,002 US8405042B2 (en) 2010-01-28 2010-01-28 Particle beam therapy system
TW099131413A TWI398239B (zh) 2010-01-28 2010-09-16 粒子射線治療裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051121 WO2011092815A1 (ja) 2010-01-28 2010-01-28 粒子線治療装置

Publications (1)

Publication Number Publication Date
WO2011092815A1 true WO2011092815A1 (ja) 2011-08-04

Family

ID=42767937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051121 WO2011092815A1 (ja) 2010-01-28 2010-01-28 粒子線治療装置

Country Status (6)

Country Link
US (1) US8405042B2 (ja)
EP (1) EP2529791B1 (ja)
JP (1) JP4532606B1 (ja)
CN (1) CN102740929B (ja)
TW (1) TWI398239B (ja)
WO (1) WO2011092815A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145117A1 (ja) * 2012-03-27 2013-10-03 三菱電機株式会社 粒子線治療装置および粒子線治療装置の運転方法
JPWO2013069379A1 (ja) * 2011-11-08 2015-04-02 三菱電機株式会社 粒子線治療システムおよびそのビーム位置補正方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2654328T3 (es) 2004-07-21 2018-02-13 Mevion Medical Systems, Inc. Generador en forma de onda de radio frecuencia programable para un sincrociclotrón
EP2389980A3 (en) 2005-11-18 2012-03-14 Still River Systems, Inc. Charged particle radiation therapy
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
WO2012111125A1 (ja) * 2011-02-17 2012-08-23 三菱電機株式会社 粒子線治療装置
WO2012120677A1 (ja) * 2011-03-10 2012-09-13 三菱電機株式会社 線量監視装置の感度補正方法及び粒子線治療装置
CN102724804A (zh) * 2011-06-20 2012-10-10 广东中能加速器科技有限公司 一种用于术中放射治疗机的电子束偏转方法和装置
CN104067698B (zh) * 2012-01-26 2016-07-06 三菱电机株式会社 带电粒子加速器及粒子射线治疗装置
JP5868249B2 (ja) * 2012-04-10 2016-02-24 株式会社日立製作所 粒子線治療システム
EP2900325B1 (en) 2012-09-28 2018-01-03 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
TW201433331A (zh) 2012-09-28 2014-09-01 Mevion Medical Systems Inc 線圈位置調整
ES2739634T3 (es) 2012-09-28 2020-02-03 Mevion Medical Systems Inc Control de terapia de partículas
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
CN105103662B (zh) 2012-09-28 2018-04-13 梅维昂医疗系统股份有限公司 磁场再生器
TW201422278A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 粒子加速器之控制系統
WO2014052709A2 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
CN104813747B (zh) 2012-09-28 2018-02-02 梅维昂医疗系统股份有限公司 使用磁场颤振聚焦粒子束
CN104918657B (zh) * 2013-01-22 2017-06-16 三菱电机株式会社 粒子射线照射装置及具备该粒子射线照射装置的粒子射线治疗装置
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
CN110237447B (zh) 2013-09-27 2021-11-02 梅维昂医疗系统股份有限公司 粒子治疗系统
JP6109702B2 (ja) * 2013-10-15 2017-04-05 住友重機械工業株式会社 荷電粒子線照射装置
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
KR102472651B1 (ko) * 2015-05-11 2022-11-30 가부시키가이샤 에바라 세이사꾸쇼 전자석 장치, 전자석 제어 장치, 전자석 제어 방법 및 전자석 시스템
CN105288871B (zh) * 2015-11-06 2018-08-31 上海艾普强粒子设备有限公司 一种粒子照射装置和粒子治疗系统
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
CN105277966B (zh) * 2015-11-11 2017-09-29 广东中能加速器科技有限公司 一种束流偏转跟踪检测和校正装置
WO2017221360A1 (ja) * 2016-06-23 2017-12-28 三菱電機株式会社 粒子線治療装置
EP3481503B1 (en) 2016-07-08 2021-04-21 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
CN107158583B (zh) * 2017-06-15 2018-07-31 合肥中科离子医学技术装备有限公司 笔形束适形调强治疗头系统及实现方法
EP3645111A1 (en) 2017-06-30 2020-05-06 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
KR101993050B1 (ko) * 2017-09-28 2019-06-25 고려대학교 세종산학협력단 빔 위치 모니터 신호처리 시스템
US20210299462A1 (en) * 2018-06-18 2021-09-30 National Institutes For Quantum And Radiological Science And Technology Particle beam irradiation system, particle beam irradiation method, irradiatiion planning program, irradiation planning device, electromagnetic field generator, and irradiation device
JP7311620B2 (ja) 2019-03-08 2023-07-19 メビオン・メディカル・システムズ・インコーポレーテッド 粒子線治療システムのためのコリメータおよびエネルギーデグレーダ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257100A (ja) * 2000-03-09 2001-09-21 Hitachi Ltd 加速器用偏向電磁石制御装置
JP2005296162A (ja) * 2004-04-08 2005-10-27 Hitachi Ltd 粒子線治療装置
JP2007132902A (ja) * 2005-11-14 2007-05-31 Hitachi Ltd 粒子線照射システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1155152A (zh) * 1995-12-11 1997-07-23 株式会社日立制作所 带电粒子束装置及其操作方法
DE19907774A1 (de) * 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zum Verifizieren der berechneten Bestrahlungsdosis eines Ionenstrahl-Therapiesystems
ATE302992T1 (de) * 1999-04-12 2005-09-15 Schwerionenforsch Gmbh Vorrichtung und verfahren zur regelung eines rasterscanners in der ionenstrahltherapie
JP3801938B2 (ja) * 2002-03-26 2006-07-26 株式会社日立製作所 粒子線治療システム及び荷電粒子ビーム軌道の調整方法
EP2030650B1 (en) * 2003-05-13 2011-11-30 Hitachi, Ltd. Particle beam irradiation treatment planning unit
AU2004279424A1 (en) * 2003-10-07 2005-04-21 Nomos Corporation Planning system, method and apparatus for conformal radiation therapy
DE102004028035A1 (de) * 2004-06-09 2005-12-29 Gesellschaft für Schwerionenforschung mbH Vorrichtung und Verfahren zur Kompensation von Bewegungen eines Zielvolumens während einer Ionenstrahl-Bestrahlung
JP5245193B2 (ja) * 2005-09-07 2013-07-24 株式会社日立製作所 荷電粒子ビーム照射システム及び荷電粒子ビーム出射方法
EP1795229A1 (en) * 2005-12-12 2007-06-13 Ion Beam Applications S.A. Device and method for positioning a patient in a radiation therapy apparatus
US7636419B1 (en) * 2006-02-21 2009-12-22 Brett Kilgore Nelson Method and apparatus for automated three dimensional dosimetry
JP4378396B2 (ja) * 2007-06-22 2009-12-02 株式会社日立製作所 粒子線照射システム
JP5374731B2 (ja) * 2008-11-26 2013-12-25 独立行政法人日本原子力研究開発機構 レーザー駆動粒子線照射装置およびレーザー駆動粒子線照射装置の動作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257100A (ja) * 2000-03-09 2001-09-21 Hitachi Ltd 加速器用偏向電磁石制御装置
JP2005296162A (ja) * 2004-04-08 2005-10-27 Hitachi Ltd 粒子線治療装置
JP2007132902A (ja) * 2005-11-14 2007-05-31 Hitachi Ltd 粒子線照射システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013069379A1 (ja) * 2011-11-08 2015-04-02 三菱電機株式会社 粒子線治療システムおよびそのビーム位置補正方法
WO2013145117A1 (ja) * 2012-03-27 2013-10-03 三菱電機株式会社 粒子線治療装置および粒子線治療装置の運転方法
JP5705372B2 (ja) * 2012-03-27 2015-04-22 三菱電機株式会社 粒子線治療装置および粒子線治療装置の運転方法
US9067066B2 (en) 2012-03-27 2015-06-30 Mitsubishi Electric Corporation Particle beam therapy device and particle beam therapy device operation method

Also Published As

Publication number Publication date
US8405042B2 (en) 2013-03-26
EP2529791A1 (en) 2012-12-05
JPWO2011092815A1 (ja) 2013-05-30
JP4532606B1 (ja) 2010-08-25
CN102740929A (zh) 2012-10-17
TWI398239B (zh) 2013-06-11
EP2529791A4 (en) 2014-03-05
EP2529791B1 (en) 2016-05-04
TW201125537A (en) 2011-08-01
US20110260074A1 (en) 2011-10-27
CN102740929B (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
JP4532606B1 (ja) 粒子線治療装置
JP5508553B2 (ja) 粒子線治療装置
JP4378396B2 (ja) 粒子線照射システム
JP5390476B2 (ja) 粒子線治療装置
US8598537B2 (en) Particle beam irradiation system and particle beam therapy system
WO2015155868A1 (ja) 粒子線照射装置
JP5707524B1 (ja) 粒子線治療システムおよびプログラムならびに粒子線治療システムの制御方法
JP2011206237A (ja) 荷電粒子ビーム輸送装置及び粒子線治療システム
JP5693876B2 (ja) 粒子線照射装置及び粒子線照射プログラム
JP6266092B2 (ja) 粒子線治療装置
JP5925233B2 (ja) 患者呼吸評価装置
JP6494808B2 (ja) 粒子線治療装置
WO2017221360A1 (ja) 粒子線治療装置
JP7220403B2 (ja) 粒子線治療システム、計測粒子線ct画像生成方法、およびct画像生成プログラム
JP5444097B2 (ja) 粒子線照射装置及び粒子線治療装置
JP2023142817A (ja) 粒子線治療装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080062466.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010511404

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12864002

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844578

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010844578

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE