WO2010047378A1 - 荷電粒子線装置 - Google Patents

荷電粒子線装置 Download PDF

Info

Publication number
WO2010047378A1
WO2010047378A1 PCT/JP2009/068214 JP2009068214W WO2010047378A1 WO 2010047378 A1 WO2010047378 A1 WO 2010047378A1 JP 2009068214 W JP2009068214 W JP 2009068214W WO 2010047378 A1 WO2010047378 A1 WO 2010047378A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged particle
particle beam
stage
rotation
beam apparatus
Prior art date
Application number
PCT/JP2009/068214
Other languages
English (en)
French (fr)
Inventor
正 大高
博之 伊藤
良一 石井
学 矢野
源 川野
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008273986A external-priority patent/JP5222091B2/ja
Priority claimed from JP2008277122A external-priority patent/JP5325531B2/ja
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to US13/124,599 priority Critical patent/US8334520B2/en
Publication of WO2010047378A1 publication Critical patent/WO2010047378A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20214Rotation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2809Scanning microscopes characterised by the imaging problems involved
    • H01J2237/2811Large objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Definitions

  • the present invention relates to a charged particle beam apparatus or an optical wafer inspection apparatus for inspecting an object to be inspected.
  • the semiconductor wafer size currently has a radius of 300 [mm], but a larger diameter is being studied to 450 [mm] in the near future.
  • the design rule of the semiconductor device is 35 [nm] or less, and these dimensional inspections and pattern defect inspections require more accurate measurement, and it is desired to increase the resolution of the charged particle beam apparatus. .
  • the positioning of the image acquisition position in such various charged particle beam apparatuses or optical inspection apparatuses is performed using an XY stage that moves the stage in two axial directions orthogonal to X and Y.
  • the XY stage when the wafer is increased in size, it is necessary to proportionally increase the movement strokes in both the X and Y directions, and the installation area of the apparatus increases. Therefore, not only the apparatus becomes large and expensive, but also image resolution of the charged particle beam apparatus is further improved, and image degradation due to slight vibration of the sample stage is also a problem.
  • the clean room in which the charged particle beam apparatus is installed is very expensive for further cleaning and prevention of floor vibration, and it is desired to reduce the cost of the charged particle beam apparatus.
  • Patent Document 1 discloses that an exhaust preliminary chamber is provided in the movement range of the sample stage, and the necessity of separately providing a sample moving means between the exhaust preliminary chamber and the sample chamber is eliminated, thereby reducing the size.
  • the illustrated charged particle beam apparatus is disclosed.
  • Patent Document 2 adopts a so-called biaxial rotating stage mechanism that supports a rotatable sample stage with a rotating arm, and enables the entire sample stage to be rotated, thereby reducing the size of the sample stage.
  • a charged particle beam apparatus that can be miniaturized as a whole is disclosed.
  • Patent Document 2 does not disclose any technical knowledge in terms of improving the inspection accuracy in accordance with the miniaturization of the pattern of the semiconductor wafer, and the two-axis rotary stage that can be miniaturized. It could not be said that the advantages of the mechanism were fully utilized.
  • An object of the present invention is to realize a charged particle beam apparatus that is small and inexpensive, but has improved inspection accuracy corresponding to pattern miniaturization of an inspection object.
  • the present invention is configured as follows.
  • a charged particle beam apparatus or an optical wafer inspection apparatus includes a two-axis rotation including a rotation stage that rotates a sample such as an object to be inspected or an object to be measured, and a rotation arm that moves the rotation stage in an arc shape.
  • the plurality of inspection mechanisms are arranged on a locus drawn by the rotation center of the rotary stage according to the rotation of the rotary arm.
  • a charged particle optical column having a function of irradiating an image acquisition position with a primary charged particle beam, detecting a generated secondary charged particle, and outputting a signal
  • an image acquisition position A dark-field optical microscope with the function of detecting the scattered light by irradiating the light and outputting the signal, and a bright-field optical microscope that acquires the image by irradiating the image acquisition position with light and forming an image of the reflected light, Or the incidental apparatus etc. which are required for image acquisition, such as a static eliminator and a flood gun, correspond.
  • the rotation center of the rotary stage is always located directly under the inspection mechanism, making coordinate calculation for wafer movement control or correction calculation in the event of rotational deviation much easier.
  • the burden on the arithmetic unit used for stage control is reduced.
  • An inspection apparatus can be realized.
  • FIG. 1 is a schematic configuration diagram of an entire system of a charged particle beam apparatus according to an embodiment of the present invention.
  • This charged particle beam apparatus is for a large-diameter wafer and is formed of a rotary arm mechanism and a rotary stage mechanism. And a two-axis rotary stage mechanism.
  • various feature quantities of the sample surface are detected by detecting and analyzing secondary signals generated by irradiating the primary charged particle beam from above while keeping the sample chamber 101 in a high vacuum. To do. For this reason, the charged particle apparatus according to the present embodiment irradiates the wafer with the primary charged particle beam and detects a secondary particle (secondary electron or reflected electron) generated. (Not shown) and an optical microscope (not shown) for acquiring a wide area image for roughly determining the irradiation position of the primary charged particle beam. A plurality of charged particle optical barrels and optical microscopes may be provided.
  • a structure provided in the upper part of the rotary stage, which is a component necessary for realizing the function of the charged particle beam apparatus is referred to as an “inspection mechanism”.
  • a length measurement SEM, a defect review SEM, and an EB appearance inspection device are devices that acquire images at a plurality of positions on a wafer with high accuracy. In these apparatuses, it is necessary to acquire images having different visual field sizes because of the requirement of positioning accuracy of the image acquisition position, and a plurality of inspection mechanisms are always used.
  • the sample chamber 101 incorporates a two-axis rotary stage mechanism composed of a rotary arm 102 and a rotary stage 103, and these are controlled by a control computer 104.
  • the rotating arm 102 has a rotating shaft supported by a bearing in a vacuum and can rotate.
  • the end of the rotating arm 102 opposite to the end where the rotating shaft is formed is configured by a piezoelectric element. It is configured to be driven and rotated by a driven motor (not shown).
  • the rotation shaft is provided with a rotation angle detector (not shown).
  • the end of the rotary arm 102 opposite to the end where the rotation axis is formed is guided by a guide mechanism that supports this end, and the rotary arm 102 is cantilevered. Instead, it is supported by both ends, is strong against external vibration, and is rotationally driven in an arc shape without rattling.
  • the rotary stage 103 supported by the rotary arm is rotationally driven by a drive motor (not shown) constituted by a piezoelectric element.
  • the designated wafer is taken out by the wafer transfer robot 109 from the pod 112 placed on the load port 111.
  • the wafer transfer unit 108 in which the wafer transfer robot 109 is installed is a typical sample wafer transfer mechanism that maintains a high cleanliness state in order to prevent foreign matter from adhering to the sample wafer.
  • the gate valve 110 is opened and placed directly on the rotary stage 103. Thereafter, the gate valve 110 is closed, the sample chamber 101 is evacuated again to form a high vacuum state, and charged particles are inspected and measured.
  • the man-machine interface 105 has an input mechanism 107 or a communication function corresponding to the input mechanism 107, and can input design information and shot arrangement information of a semiconductor chip formed on the sample wafer. These information are held in the storage device 106.
  • FIG. 2 is an explanatory diagram showing the conversion from the wafer coordinate system 201 to the stage coordinate system 202 of the biaxial rotating stage mechanism assuming a 450 mm wafer.
  • the control computer 104 executes the following operations such as coordinate transformation.
  • FIG. 2A the distance from the rotation arm rotation center 204 to the rotation center of the rotation stage 103, that is, the rotation radius is R1
  • the rotation radius (rotation stage radius) with respect to the rotation stage rotation center 205 is R2.
  • FIG. 2B shows the arrangement of the wafer and the rotary stage when the wafer is placed on the stage in a state where the center of the wafer is deviated from the rotation center of the rotary stage. The schematic diagram of was shown.
  • the inspection mechanism described above is arranged on a locus drawn by the rotation center of the rotation stage along the rotation of the rotation arm.
  • the biaxial rotating stage mechanism does not have a moving mechanism in the radial direction, and all the movements of the charged particle beam irradiation position on the wafer can be performed only by rotating operation.
  • the inspection mechanism is arranged on the trajectory, the rotation center of the rotary stage is always located immediately below each inspection mechanism no matter how the rotary arm rotates. Therefore, by arranging the inspection mechanism on the trajectory described above, the coordinate calculation for wafer movement control or the correction calculation in the case of rotational deviation becomes much easier compared to other arrangement forms, and the wafer It is possible to quickly move the desired position immediately below the inspection mechanism.
  • the area swept by the rotary stage and the quadrilateral necessary to store the rotary arm are the quadrilateral 209 indicated by the dotted line (occupation of the biaxial rotary stage mechanism)
  • the area is indicated by a quadrilateral shape because the shape of the sample chamber for storing the stage is usually a rectangular parallelepiped).
  • the area of the quadrilateral 209 is determined by the rotation angle of the rotary arm and the area occupied by the drive mechanism of the rotary arm. Since the area occupied by the drive mechanism of the rotary arm is a fixed value, in order to observe (or inspect) the entire wafer surface having the radius R2, if the minimum rotation angle that the rotary arm must rotate is obtained, The area occupied by the minimum biaxial rotation stage mechanism necessary for image acquisition is determined. In the following description, this minimum rotation angle is referred to as a minimum required rotation angle.
  • a rotation axis of the rotary arm is R1 and a rotation radius of the rotary stage is R2, and a biaxial rotary stage is arranged.
  • the distance between the rotation stage center position 203 at the rotation origin and the rotation stage center position 210 after S1 rotation is assumed to be wr.
  • the inspection mechanism is located immediately above the position 203. Therefore, if the rotary stage is rotated in this state, the charged particle beam apparatus sets the rotation center 210 at the position 210.
  • a charged particle beam device capable of inspecting, observing, or measuring the entire surface of the wafer is realized by providing a rotating arm having a minimum movable range such that the distance is at least the radius of the wafer to be inspected or the wafer to be measured. .
  • control accuracy of the rotary arm and the rotary stage is finite, and in an actual apparatus, rotational shake due to a mechanical error or the like always occurs. Further, there may be a position shift due to a conveyance error when placing the wafer on the stage.
  • a control method for the biaxial rotary stage in consideration of the occurrence of errors such as rotational shake and displacement will be described.
  • the rotation arm rotation angle S1 and the rotation stage rotation angle S2 for moving to the position 203 can be determined as follows.
  • the coordinates of the wafer coordinate system 201 are converted into polar coordinates from the wafer center. Considering the case where the radius of the sample wafer is 450 [mm], the converted polar coordinates (wr, wS) are expressed by the following equations (2-1) to (2-4).
  • wx-225 wr ⁇ cos (ws) (2-1)
  • wy ⁇ 225 wr ⁇ sin (ws) (2-2)
  • wr ⁇ ⁇ (wx ⁇ 225) 2+ (wy ⁇ 225) 2 ⁇ (2-3)
  • wS tan-1 ⁇ (wy-225) / (wx-225) ⁇ (2-4) Since the rotation arm rotation angle S1 is determined only by wr, the following equation (3) is obtained.
  • the assumed deviation amount is on the order of several [mm].
  • the charged particle beam apparatus includes a biaxial rotation stage having a rotation arm having a movable range equal to or larger than the minimum required rotation angle S1min and a rotation angle margin S1mrg, whereby the wafer center and the rotation stage are provided. It is possible to prevent the occurrence of the outer dead zone due to the shift of the rotation center 205.
  • the rotation angle margin S1mrg can be expressed by the following equation (7).
  • the provision of the inspection mechanism installation position margin 206 by the rotation angle margin S1mrg means that the deviation amount with respect to the circumferential direction when the inspection mechanism is installed on the circumference of the rotation stage rotation center 205 with respect to the rotation arm rotation center 204. It is how much you admit.
  • the inspection mechanism attachment position 208 can be provided at another point.
  • the inspection mechanism attachment position 208 is provided at a position rotated by S1min + S1mrg or more in the circumferential direction of the rotation arm with respect to the inspection mechanism attachment position 203. Since the inspection mechanism attachment position 208 needs to reverse the control of the rotary arm 102 to the inspection mechanism attachment position 203, the setting of the installation position to be S1min + S1mrg or more can prevent the occurrence of an unobservable region outside. it can.
  • the inspection mechanism installation margin can be realized by setting the movable range of the rotary arm larger by an angle corresponding to the desired inspection mechanism installation margin.
  • the inspection mechanism attachment position (2) 302 corresponds to the position at which the end face of the sample wafer is observed when the center of the sample wafer is observed at the inspection mechanism attachment position (1) 301 or the inspection mechanism attachment position (3) 303. Assuming that the stage position corresponding to the inspection mechanism attachment position (1) 301 is the sample carry-in / out position, the inspection mechanism attachment position (2) 302 is observing the wafer end face when carrying the sample.
  • the gate valve 110 is closed after the sample is loaded by installing a low-magnification optical microscope that includes this or combining it with the rotational operation of the rotary stage 103. It is possible to perform misalignment correction amount calculation (pre-alignment) in parallel during the evacuation waiting time. Note that the pre-alignment here is a calculation of a correction amount for a positional deviation between the rotation stage rotation center 205 and the sample wafer center. Such a sequence of parallel control of pre-alignment and vacuum transfer is executed by the control computer 104.
  • the entire surface of the sample wafer can be covered no matter where the inspection mechanism is attached. Therefore, an auxiliary device peculiar to the inspection of the semiconductor device, for example, a device for measuring the charged electric field on the surface of the sample wafer is attached to the position 307 on the circumference, and a device for removing the electric field is attached to the position 308, thereby inspecting performance. It can be expected to improve. Moreover, it can be expected that the inspection performance can be improved by attaching the outer periphery exclusive inspection mechanism to the position 309.
  • Auxiliary device attachment positions relative to the inspection mechanism attachment positions 301 to 303 and 307 to 309 can be moved only by driving the rotary arm 102, and charge measurement and charge removal operations are dynamically performed at inspection points on the sample wafer. Therefore, the accuracy can be improved as compared with the conventional processing for the entire surface.
  • processing on the entire surface is necessary, by combining the driving of the rotating arm 102 and the driving of the rotating stage 103 and applying mechanical scanning such as linear scanning on the sample surface and spiral scanning, processing on the entire surface of the sample wafer is performed. Can be done.
  • Such a mechanical scan is executed by controlling a scanning deflector provided in the charged particle optical column, and is controlled by the control computer 104 as in the case of stage control.
  • S1min 60.0 °
  • S1max 120.0 °.
  • the rotation arm rotation center 204 always coincides with the outer periphery of the sample wafer regardless of the rotation arm angle S1. This position can be used as the position for attaching the inspection mechanism for the outer periphery of the sample wafer 404.
  • pre-alignment with respect to each inspection mechanism attachment position is necessary due to the blurring of the rotation center of the rotation arm, pre-alignment with a low-magnification optical microscope attached to the outer circumference exclusive inspection mechanism attachment position 404 becomes possible.
  • 401, 402, and 403 are inspection mechanism attachment positions.
  • the eccentricity correction function of the rotary stage will be described.
  • the amount of shake of the rotation center axis is measured using a mark having the directionality stamped at the center of the rotary stage 103, for example, a mark having a shape such as an arrow or a cross mark. This measurement is performed by acquiring an image of the mark using any one of the inspection mechanisms having an image detection function.
  • an image that includes the mark in the field of view is acquired while rotating the rotation stage 103 from the rotation origin, and a change in the rotation center position of the rotation stage 103 is detected by image processing of the control computer 104. This series of processing is performed until the rotary stage rotates 360 °.
  • FIG. 5A is a diagram showing a movement locus of the actual center of rotation, and is drawn around the center of gravity of the locus.
  • the rotation angle of the rotation stage is a certain value, the rotation stage rotates around the position of the mark at the angle.
  • the mark shown in FIG. 5A is continuously extracted by image processing simultaneously with the start of rotation, and data of a mark locus 501 accompanying the rotation is generated.
  • the trajectory data is represented, for example, by a deviation amount from an ideal value of the rotation center with respect to the rotation stage rotation angle S2 (an X-direction shake amount 502 and a Y-direction shake amount 503 from the ideal rotation center).
  • the deviation amount is calculated from the acquired image by pixel calculation.
  • the deviation amount 504 of the rotation amount with respect to the specified rotation stage rotation angle is measured from the direction of the mark. Since the mark has directionality, if there is no deviation in the amount of rotation, the image is measured when the mark is rotated by the specified rotation angle of the rotary stage and the rotation stage is rotated by the specified rotation angle. The directions of the landmarks obtained from ⁇ should match. Therefore, by comparing the reference image obtained by rotating the pixel data corresponding to the mark in the computer with the image of the mark actually measured, the shift amount of the rotation amount can be obtained.
  • the deviation amount and the deviation amount of the rotation amount are calculated by the control computer 104 and stored in the storage device 106 in association with the rotation stage rotation angle S2.
  • the stored deviation amount and deviation amount of rotation amount are used as a correction amount for rotation stage control.
  • the trajectory data stored as described above is the shake amount of the rotation stage rotation center 205, and the inside of the trajectory is an unobservable region.
  • the amount of blurring according to the rotation angle S2 of the rotary stage 103 can be estimated by referring to the trajectory data.
  • the rotation angle S2 is determined by the above equation (5), and the amount of axial blur caused by this is added to the wafer coordinate system, and the calculation is performed again from the rotation arm rotation angle S1 using the above equation (2).
  • irradiation position adjustment is performed using a charged particle beam device.
  • the upper limit value that can be corrected by adjusting the irradiation position is about ⁇ 15 [micrometers], and is determined depending on the performance of the charged particle optical column. Therefore, the amount of rotational axis shake due to eccentricity is within the possible range of image shift. It must be corrected to fit. For this reason, it is necessary to accurately measure how much the rotation stage rotation center is displaced with respect to the observation center of the inspection mechanism.
  • the control computer 104 calculates the position information of the trajectory, and the difference value between the coordinates of the observation center and the barycentric coordinates may be calculated.
  • the calculation processing and the difference calculation of the barycentric coordinates are executed by the control computer 104, and the calculated positional deviation amount of the rotation center with respect to the observation center is recorded in the storage device 106.
  • the circumferential deviation of the rotation arm 102 in the direction of the rotation angle S1 is used for positioning calculation as an adjustment amount for the control amount S1 of the rotation arm 102.
  • the shift amount 603 in the rotation arm axial direction generated at the rotation center 602 after the S1 adjustment with respect to the rotation stage rotation center 601 before the adjustment is an inner observation impossible region.
  • This deviation amount is used as a movement amount used for visual field movement by irradiation position adjustment (image shift) by the charged particle beam apparatus. Since the upper limit of the distance that the visual field can be moved by image shift is determined depending on the charged particle optical column as described above, it must be adjusted so that the observation center deviation amount falls within the range.
  • the axial movement of the rotation stage rotation center 205 and the deviation amount of the rotation stage rotation center 205 with respect to the observation center are measured at the time of maintenance of the apparatus, and follow changes with time of the fluctuation amount and deviation amount.
  • the misalignment measurement is performed using a low-magnification observation device, such as an optical microscope or a CCD camera, provided at the outer periphery exclusive inspection mechanism attachment position 309 shown in FIG.
  • a low-magnification observation device such as an optical microscope or a CCD camera
  • the sample wafer is arranged on the rotation stage 103 in an arbitrary direction or an arbitrary position having a certain likelihood.
  • the control computer 104 After the sample wafer is placed on the rotary stage 103, the rotary stage 103 is rotated at a constant speed by the control computer 104, and an image of the outer peripheral edge of the wafer is acquired by the optical microscope or CCD camera.
  • the control computer 104 analyzes the moving image data obtained from the observation apparatus, and detects a portion where the end surface of the sample wafer is not a curve, that is, a V-shaped notch portion. Once detected, the rotary stage 103 is temporarily stopped, and the rotary stage 103 is rotated and stopped so that the V-shaped notch portion at the stopped position is aligned with the 270 ° direction of the sample chamber 101, that is, the direction opposite to the gate valve 110. To do.
  • the rotation stage angle information at that time is stored in the storage device 106.
  • the control computer 104 calculates a wafer center misalignment amount 702 from the in-screen position 701 of the V-shaped notch aligned with the 270 ° direction, and from the rotation stage angle at this time, the rotation stage The amount of shaft shake is added and subtracted and stored in the storage device 106.
  • the angle of the rotary stage 103 when the sample wafer is loaded is matched and stored.
  • the rotation origin is set.
  • the loading position is restored by using the stored rotation stage angle.
  • the positional relationship between the X and Y positions of the sample wafer with respect to the pod 112 depends on the rotation angle of the rotary stage 103, such as when the position deviation of the center of the sample wafer becomes large due to the deterioration of the position adjustment of the wafer transfer robot 109 and the load port 111.
  • the sample wafer interferes and collides with the pod 112.
  • FIG. 8 is a side sectional view of the charged particle beam apparatus shown in FIG. 3 as viewed from the side, and shows the correspondence between the mounting position of the inspection mechanism and the inspection mechanism.
  • reference numbers 901 to 903 are inspection mechanisms
  • 901 is an optical inspection apparatus
  • 902 is an optical microscope
  • 903 is a charged particle optical column.
  • the charge measuring device 904, the charge removal device 905, and the outer periphery dedicated inspection mechanism 906 are disposed on the upper surface portion of the sample chamber 101.
  • the optical inspection device 901 is attached at a position corresponding to the attachment position 301
  • the optical microscope 902 is attached at a position corresponding to the attachment position 302
  • the charged particle optical column 903 is attached at a position corresponding to the attachment position 303. It has been.
  • the charge measuring device 904 is attached at a position corresponding to the attachment position 307
  • the static eliminator 905 is attached at a position corresponding to the attachment position 308, and the outer periphery dedicated inspection mechanism 906 is located at a position corresponding to the attachment position 309. It is attached.
  • FIG. 9 is a block diagram of a processing unit that performs the positioning process of the biaxial rotation stage based on each correction amount acquired as described above, and is implemented in the control computer 104 shown in FIG.
  • the implementation form there are both hardware implementation for realizing each functional block shown in FIG. 9 by a dedicated chip and software implementation for configuring the functional block by a program and causing the arithmetic unit in the control computer 104 to execute it.
  • the software is implemented.
  • the positioning process is roughly divided into a wafer coordinate system ⁇ polar coordinate conversion processing unit 801 and a polar coordinate ⁇ biaxial rotation stage coordinate conversion processing unit 802.
  • the wafer coordinate system ⁇ polar coordinate conversion processing 801 executes the calculation of the above equation (2), and the polar coordinate ⁇ biaxial rotation stage coordinate conversion processing unit 802 executes the calculation of the above equations (3) to (5).
  • the wafer coordinates 808 of the image acquisition position input by the operator or read from the recipe file must be corrected for the deviation of the wafer center before performing the polar coordinate conversion process. Therefore, the wafer center deviation amount (X, Y) data 803 calculated in advance is added to the input coordinates 808 (subtraction depending on the quadrant of the XY coordinate system).
  • Step 802 adds to or subtracts from the calculated rotation stage rotation angle.
  • each inspection mechanism attachment position 810 is stored in the storage device 106 as an offset of the rotation arm rotation angle information, and is selected according to the operating inspection mechanism.
  • the operating inspection mechanism For example, in the case of a charged particle beam apparatus, when positioning the image acquisition position, a low-magnification image is acquired by an optical microscope, and the irradiation position of the charged particle beam is determined using the low-magnification image. Positioning is performed, and two inspection mechanisms are used in this order: optical microscope ⁇ charged particle optical column. Depending on the type of inspection / measurement, incidental devices such as flood guns and static eliminators may be used. The inspection mechanism to be used is automatically selected when setting the inspection recipe or measurement recipe, and the inspection mechanism designation 809 is input by reading the recipe file. The above inspection recipe or measurement recipe is set through the man-machine interface 105.
  • the control computer 104 rotationally drives the rotating arm in accordance with the order of executing the image acquisition sequence, and moves the image acquisition position directly below the inspection mechanism to be used.
  • the selected offset value is read from the storage device 106 and used when the arm is rotationally driven.
  • the rotation arm control angle is determined by adding the rotation arm rotation angle calculated by the biaxial rotation stage coordinate conversion processing unit 802 to the rotation arm rotation angle for each of the inspection mechanisms 901 to 906 determined in this way.
  • the rotation stage angle data calculated by the biaxial rotation stage coordinate conversion processing unit 802 is obtained by adding / subtracting the wafer center deviation amount (S) data 804, and then correcting the rotation amount deviation amount data 806 that has been measured. To determine the rotation stage control angle.
  • the amount of the shake is calculated from the data 807 of the stage center shake (X, Y) accompanying the measured rotation, and is calculated with respect to the wafer coordinate system.
  • the control amount it is possible to determine the control amount to be balanced by performing feedback.
  • the pattern on the sample wafer is determined so that the rotary arm 102 and the rotary stage 103 operate as much as possible.
  • the biaxial rotating mechanism stage it is satisfied by selecting any three points arranged at both ends on the diameter passing through the vicinity of the center of the sample wafer.
  • control computer 104 uses the data created by the operator via the man-machine interface, or the semiconductor design data obtained by the input mechanism 107 or a communication function corresponding thereto, to any arbitrary lined up at both ends on the diameter passing through the vicinity of the center.
  • Three in-chip patterns are automatically determined, the in-chip pattern is detected by image processing before the inspection process in each inspection mechanism is started, and the positional deviation amount of the wafer center is minutely corrected based on the detected position. To do.
  • This correction can also be performed by correcting the semiconductor arrangement information on the sample wafer. Further, when the semiconductor arrangement is distorted, higher accuracy can be expected by determining the chip on the circumference of the end of the sample wafer.
  • the semiconductor array information correction data on the sample wafer created in the above procedure may be reused for the same product and the same process sample wafer in the development of high precision technology accompanying recent miniaturization of semiconductors. It can be considered very expensive.
  • the semiconductor arrangement information correction data is stored in the storage device 106 in association with an identification code such as a wafer lot number, wafer ID, or process number that can identify the semiconductor product and process. It is possible to improve the throughput of the charged particle inspection apparatus by omitting the positioning step by using it when inspecting the process.
  • the semiconductor alignment information correction data can be corrected and learned from time to time based on position information recognized by processing in the inspection process, for example, length measurement position detection or defect pattern detection, so that the alignment accuracy can be kept uniform. Is possible.
  • the semiconductor array information correction data is erased by instructing from the man-machine interface 105 when mechanical adjustment is performed by regular maintenance, and the semiconductor array information correction data is re-created by the positioning process. It becomes possible.
  • the amount of movement of the rotary arm can cover the entire range of the wafer by using the rotary stage in combination with the rotary stage with a stroke of about half of the wafer diameter.
  • the inspection position (wafer coordinate system) of the sample to be inspected is converted into the arrangement position (stage coordinate system (polar coordinate system)) of the inspection mechanism, and the rotary arm 102 is rotated.
  • the rotary stage 103 is rotated to move the inspection position of the sample to be inspected to the arrangement position of the inspection mechanism.
  • a charged particle beam apparatus capable of performing a plurality of types of inspections while being small in size is provided. Can be realized.
  • the stage is miniaturized, the sample chamber surrounding it can be miniaturized.
  • high-speed evacuation and low cost can be realized by miniaturizing the vacuum volume.
  • the calculated particle amount is corrected as the rotation angle correction, and the scanning particle beam is always corrected.
  • An erect image can be obtained in a direction determined on the notch side or the like.
  • the required amount of operation of the rotation amount S1 of the rotary arm 102 is defined from the turning radius R1 of the rotary arm 102 and the rotation radius R2 of the rotary stage 103, and this is expanded to provide an installation margin for the inspection apparatus. Provided. By further increasing the installation margin, it is possible to extend the position where a typical inspection mechanism can be attached and to correct misalignment with the rotation amount S1 of the rotary arm.
  • FIG. 10 is a schematic configuration diagram of the charged particle beam apparatus according to the present embodiment, and is used as, for example, a length measurement SEM or a defect review SEM.
  • the embodiment of the present embodiment will be described by taking an electron beam apparatus as an example.
  • a semiconductor wafer will be mainly described as an object to be inspected (target sample).
  • a liquid crystal panel, a stepper mask, a general analysis sample, and the like can be applied.
  • an electron gun 1001, a converging lens 1002, and an objective lens 1003 are controlled by a lens / deflector control unit 1104, and an electron beam is finely converged on a wafer 1008 and supported by a deflector 1004 on a wafer support 1009.
  • the wafer 1008 is scanned, and the generated electrons are detected by the detection system 1105.
  • the detected signal is signal-processed by the detection system control unit 1103 and processed by the system control / image processing apparatus 1106 to display an image on the screen 1107 and to measure the size of the fine pattern from the detected electronic profile signal. It can also be used to improve the yield of semiconductor processes such as inspecting pattern defects.
  • the sample stage 1010 on which the sample support base 1009 is arranged is driven by a stage driving unit 1101, and the stage driving unit 1101 is controlled by the stage control unit 1102.
  • a load lock chamber 1006 is connected to the sample chamber 1005, and a gate valve 1007 is disposed between the sample chamber 1005 and the load lock chamber 1006.
  • an X, Y orthogonal coordinate system stage is generally used as a sample stage, and a wafer can be moved in a horizontal plane.
  • the stage of the X, Y orthogonal coordinate system has a structure in which a moving mechanism to the other is stacked on a moving mechanism to either the X direction or the Y direction, and the length in the height direction is large. Since the required stroke amount in the horizontal direction increases as the wafer diameter increases, the sample chamber tends to be large.
  • FIG. 11 is a plan view of the stage system of the present embodiment.
  • the stage system of this embodiment includes a biaxial rotary stage mechanism, and the basic configuration is a configuration in which a rotary stage 1011 is arranged on a rotary arm 1012.
  • the rotary stage 1011 On the rotary stage 1011, there is a wafer support 1009, on which a wafer 1008 is arranged.
  • One end of the rotating arm 1012 is supported by a rotating arm support shaft 1012-a shown in FIG. 12, and an arc guide 1013 that supports the lower surface portion of the other end of the arm 1012 with the support shaft 1012-a as a rotation center. Turn up.
  • each stage moving mechanism is all arranged on the same plane, a plurality of moving mechanisms are stacked unlike an ordinary XY stage. There is no need. Therefore, it can be made thinner (reduced in length in the height direction) than the XY stage.
  • the rotation arm 1012 is driven by an ultrasonic motor 1014 that is in contact with the tip of the rotation arm 1012 (the side surface at the other end).
  • a rotation angle detector 1016 is provided around the support shaft 1012-a of the rotation arm 1012, and the rotation angle of the rotation arm 1012 can be detected.
  • a high-precision rotation angle detector can detect rotation angles that have moved in 0.2 seconds or less.
  • the ultrasonic drive motor 1014 is pulse driven and can feed several nm per pulse, and can step-feed the rotating arm 1012 with extremely high accuracy.
  • the ultrasonic drive motor 1014 is fixed by a ceramic plate 1012-b in the cross-sectional view of the stage shown in FIG. 12, and improves the wear resistance and has high rigidity in driving the ultrasonic motor 1014. , Enabling stable driving.
  • the rotating arm 1012 is supported by the rotation support bearings 1015 (1015-a, 1015-b) and rotates. However, the rotating arm 1012 is cantilevered in the vertical direction of the wafer 1008, and the rigidity is lowered. Is configured such that the other end of the rotary arm 1012 is rotationally driven to improve rigidity and prevent vertical play.
  • the eccentricity can be 0.5 micrometer or less, and the repeated position reproduction accuracy in the horizontal plane is 0.5 micrometer. A good value can be obtained.
  • the sample stage 1010 is configured by the rotation stage 1011, the rotation arm 1012, the support shaft 1012-a, the arc guide 1013, the ultrasonic motor 1014, and the like.
  • Reference numeral 1017 denotes a lead wire
  • 1018 denotes a wiring connector.
  • the rotating arm 1012 rotates around the rotating arm support shaft 1012-a provided inside the sample chamber 1005, and the tip of the arm 1012 is directly connected to the ultrasonic drive motor 1014. It is to drive with.
  • the drive source of the rotary arm is provided not on the support shaft side but on the tip end side (side on which the rotary stage is placed) of the rotary arm and is driven to rotate along the arc guide. This has the effect that the control accuracy is low.
  • a non-backlash motor such as an ultrasonic motor as a drive source, it is possible to realize a rotating arm that can be driven with extremely high accuracy without causing backlash.
  • the rotation angle detector 1016 is directly provided on the rotating shaft 1012-a, the influence of the torsion of the shaft generated in the case of a conventional general structure having a driving system outside the vacuum, the coupling system, the O-ring, or the magnetic field.
  • the backlash generated by a sealing mechanism for sealing a vacuum such as a fluid seal can be reduced, and an extremely precise motor direct drive type rotating arm can be realized.
  • the mechanism part constituted by the rotary arm 1012 and the rotary stage 1011 has a feature that can be further reduced in size (thinned). Therefore, the sample chamber 1005 can also be made thin.
  • the X and Y stages in the prior art are about 250 to 300 mm in height even if they are for 8 inches, so there is a problem that the sample chamber becomes larger in the depth direction, and there are five thick walls on the bottom and four sides.
  • the sample chamber was created by joining materials (plate materials) by welding and brazing with a technique called oven brazing.
  • sample chamber 1005 is a vacuum vessel, a large pressure is applied to each side wall of the sample chamber 1005 and the sample chamber 1005 is slightly deformed in a vacuum state. In order to reduce this, a very thick material with a plate thickness of 25 to 30 mm and its processing were required.
  • the sample chamber 1005 can be made of thick iron, permalloy material, invar material, or aluminum alloy (a carbon nanotube is contained in aluminum). It is only necessary to create a space in which the stage mechanism moves by cutting (boring) directly from a block of monolithic material such as the sample chamber 1005. It is possible to construct a minimal vacuum sample chamber that is extremely rigid and has no wasted space.
  • a sample chamber can be manufactured by boring processing of 150 to 200 mm even with a 450 mm sample stage.
  • the tip portion of the rotating arm 1012 is supported by the arc guide 1013, the rigidity is high, and an effect that it can be extremely strong against external vibrations, particularly sound wave vibrations can be obtained.
  • a motor for driving the rotary stage 1011 and wiring to the rotation angle detector are wired along this arm, and a wiring lead-out portion is provided at the center of the rotary arm support shaft 1012-a.
  • FIG. 13 which is a detailed sectional view of the rotary stage 1011
  • the rotary stage 1011 is provided with an ultrasonic motor (R) 1011 -g for driving the rotary stage 1011. e is fixed. Since this rotary stage base 1011-e is fixed to the rotary arm 1012, most of the heat generated from the ultrasonic motor (R) 1011-g is transmitted to the rotary arm 1012.
  • the temperature of the rotating arm 1012 is unavoidable due to continuous driving of the stage.
  • the linear expansion coefficient is about 2 ⁇ 10 ⁇ 5
  • a change of 1 ° C. is about 10 micrometers.
  • the length will change.
  • a temperature sensor 1019 is attached to the rotary arm 1012, the temperature is detected based on the measured value, and the distance R1 to the rotation center of the rotary stage 1011 is calculated and corrected by calculating the amount of expansion / contraction due to temperature change.
  • an accurate arm length can be obtained.
  • the measurement result of the temperature sensor 1019, the value of the linear expansion coefficient, and the length R10 of the rotating arm at the reference temperature are used.
  • the length R1 of the rotating arm is calculated.
  • the calculated length of R1 is stored in the memory and used for the rotation control and error correction control described in the first embodiment or later described in the present embodiment.
  • the calculation processing for calculating R1 described above is executed by, for example, the stage control unit 1102, and the memory for storing numerical data such as the linear expansion coefficient, R10, and calculated R1 is also arranged in the stage control unit 1102. .
  • the temperature sensor 1019 is preferably a sensor made of a non-magnetic material.
  • cooling by a Peltier element, or circulating a refrigerant inside a flexible cooling tube and using it as a cooling means, cooling while feeding back the measured value of the previous temperature sensor, can be considered a method of keeping temperature change to a minimum .
  • the rotary stage 1011 is disposed on the rotary arm 1012.
  • a roller guide (a) 1011-b (inner ring) is coupled to the rotary shaft 1011-a.
  • the roller guide 1011-b is made of a ceramic material so that it can be rotated with high accuracy. This is because a rigid and hard material is desirable.
  • the rotating shaft 1011-a rotates with the roller 1011-d sandwiched between the roller guide 1011-b and the roller guide 1011-c (outer ring).
  • a cylindrical body 1011-h is connected to the rotating shaft 1011-a, and an ultrasonic drive motor (R) 1011-g is disposed on the outer periphery of the cylindrical body 1011-h.
  • the ultrasonic drive motor (R) 1011-g is a drive motor based on the principle of expansion and contraction by the voltage of the piezo element, like the ultrasonic drive motor 1014 described above, and has been rapidly applied in recent years. This is an expanding motor, and documents such as “Tribology® Series, Triborogical® Research” and “Design” for “Engneering® Systems” (2003), 461-468, “Applications of Alumina to Ultrasonic Motors for Electron Beam Exposure Equipment, Ceramics, 37 (2001), 39-41 ".
  • the ultrasonic drive motor (R) 1011-g is engaged with or contacted with the cylinder 1011-h and is driven by the drive power supply 1011-i.
  • the ultrasonic drive motor 1011-g gives a driving force to the other object in the left direction and the right direction.
  • the driving force of the ultrasonic drive motor is a cylinder. It is transmitted to the body 1011-h as a rotational motion.
  • a rotation angle detector (R) 1011-f configured by an encoder or the like is provided below the cylinder 1011-h to detect the rotation angle of the cylinder 1011-h.
  • the rotary stage base 1011-e is a pedestal plate serving as a base of the rotary stage 1011 and is fixed on the rotary arm 1012.
  • a wafer support base 9 is fixed to the rotating shaft 1011-a, and a wafer 1008 is disposed thereon. Since the cylinder body 1011-h is also fixed to the rotating shaft 1011-a, an ultrasonic drive motor (R ) Since the driving force of 1011-g is transmitted directly from the cylinder 1011-h to the rotating shaft 1011-a without any play, the wafer support 1009 and the wafer 1008 can be rotated with extremely high accuracy. .
  • the position of the rotary arm 1012 is detected by attaching an angle scale 1020 (shown in FIG. 18) having a low thermal expansion material centered on the rotary arm support shaft 1012-a and having a line engraved with a laser or the like at a pitch of about 20 micrometers.
  • the rotation detector 1016 incorporates a light emitting unit such as a semiconductor laser and a light receiving unit that receives the reflected light through a diffraction grating. The light of the rotation detector 1016 is applied to the line of the angle scale 1020, the line is read with the reflected light, and the angular position is detected.
  • the tape scale 1021 (shown in FIG. 18) obtained by processing the angle scale 1020 into a tape shape is attached on the arc of the rotary arm 1012 and read by the rotation detector 1016, so that the angle accuracy can be further improved.
  • the configuration described above relates only to the biaxial rotary stage mechanism. Therefore, unlike the first embodiment, the above-described operational effects are not arranged on the rotation trajectory of the rotary arm. Even in cases, it is feasible. Similarly, similar effects can be realized even when applied to an optical wafer inspection apparatus.
  • This irradiation positioning is calculated and controlled by the system control and image processing calculation unit 1106.
  • FIG. 14 is an explanatory diagram for performing the above positioning under the charged particle beam optical system by the rotation of the rotary arm 1012 and the rotation of the rotary stage 1011.
  • R1 is the radius of rotation of the rotating arm 1012
  • R2 is the radius of the semiconductor wafer.
  • the pattern on the wafer of the semiconductor process is patterned in the X and Y coordinate systems, and the pattern shape and coordinate position are determined as CAD information from the design stage.
  • FIG. 15 is an explanatory diagram of an expression representing control amounts of the rotation angle S1 and the rotation angle S2.
  • control amount S1 of the rotating arm 1012 with respect to the distance Wr from the wafer center at the target irradiation position of the charged particle beam can be expressed by the following equation (8).
  • correction can be performed by raster rotation with visual field rotation, but the correction amount is (S1-S2). Can be calculated.
  • FIG. 16 is a flowchart showing a specific positioning operation sequence when the charged particle beam apparatus of the present embodiment is applied to a length measurement SEM.
  • step 1600 CAD data is given in the (X, Y) coordinate system for the pattern on the wafer.
  • the (X, Y) coordinates are converted into stage coordinates by S1 and S2, and the stage is moved (step 1601).
  • the rotation angle of the wafer when it is an erect image from S1 and S2 is calculated (step 1602), and the rotation angle correction is performed on the deflector 1004 of the particle beam optical system (step 1603).
  • the display image can be an erect image.
  • the primary positioning is completed (step 1604).
  • the reason for the description of the primary positioning is that at this stage, the rotation angle detectors 1011-f and 1016 provided on the rotation shafts 1011-a and 1012-a are detected by S1 and S2, respectively,
  • the rotational positioning accuracy of each of the shafts 1011-a and 1012-a depends on error factors such as the misalignment of the rotation due to the roundness of the rotational shaft of each shaft and the rotational angle detector error. Deviations of 0.5 to several micrometers occur, and positioning in the submicron order becomes difficult.
  • step 1605 in the image magnified with a charged particle beam device at a high magnification, the display figure drawn based on the pattern data created by CAD and the actual pattern image are displayed, and by pattern matching technology, A positional deviation is detected (step 1605).
  • the pixel is 10 nm per pixel, and the positional deviation can be detected with a positional accuracy of nearly 10 nm by pattern matching.
  • the amount of deviation is corrected by image shift of the particle beam device (step 1606), and an enlarged image of the target pattern is displayed, or shape measurement, dimension measurement, etc. are executed. (Step 1607).
  • step 1607 If there are many measurement points on the wafer, the process returns from step 1607 to step 1600, and this is repeated n times, so that the pattern position is reached one after another for observation and measurement.
  • the defect coordinates acquired by the appearance inspection apparatus are converted into polar coordinates in step 1601. Further, in step 1605, the positional deviation is detected using only the actual image so that the defect position included in the actual image becomes the center of the visual field, not the pattern matching between the pattern data generated from the CAD data and the actual image. .
  • This method is characterized in that an optical microscope is arranged on a trajectory rotated by a rotary arm 1012 with respect to the center D of the particle beam optical system.
  • FIG. 17 is a diagram showing an example of the arrangement of the optical microscope.
  • a low-magnification optical microscope position A
  • a high-magnification microscope position B
  • a deflection microscope position C
  • the optical microscope a microscope having a large field of view is arranged, and the periphery of the wafer and the notch position can be detected by aligning the periphery of the wafer with the center of the field of view by the rotating arm 1012 and then rotating the rotating stage 1011.
  • a high-magnification optical microscope is placed at position B, and wafer alignment can be performed with higher accuracy.
  • the rotary stage 1011 is moved to the position D, and if necessary, more accurate alignment can be performed under the center of the visual field of the particle beam optical system.
  • the film quality is difficult to see with a general optical microscope, and a deflection microscope may be used. However, it may be arranged at the position C and used depending on the purpose.
  • the global alignment can be quickly performed by the optical microscope and can be moved under the particle beam optical system, so that it can be performed in a short time and the throughput can be improved.
  • the image data of the observation position existing on the wafer can be acquired one after another only by the rotation of the rotary stage 1011, and the position accuracy is high and the effect can be obtained at high speed. The same effect can be obtained even if this is used for the length measurement SEM.
  • the path of the observation points for defects existing on the wafer (review path) or the path of the measurement points that should be measured (length measurement path) is set in a concentric circle that includes all the observation points or measurement points. Then, the rotating stage is rotated while moving the wafer in the radial direction of the wafer little by little from the outermost peripheral part or the central part of the wafer by the rotating arm, and the image data is acquired by rotating the rotating stage concentrically. As a result, wafer peripheral data can be acquired one after another efficiently and at high speed.
  • Defects detected on the wafer are often distributed concentrically in the radial direction from the center, and it is said that there are many defects particularly in the periphery of the wafer. Therefore, the route setting method as described above is particularly effective when applied to the defect review SEM, and can realize a highly preferable system with high throughput.
  • the coordinates of all image acquisition positions on the wafer are converted into polar coordinates, and the defect position coordinates are grouped according to the radial position (R component of polar coordinates).
  • the S component of the defect position coordinate for each group is the rotation angle of the rotary stage as it is, and the rotation angle of the rotary arm is calculated from the radial distance between the groups.
  • the arithmetic processing for path setting described above is executed by the system control / image processing apparatus 1106, and the set path information is transmitted to the stage control unit 1102 and used for stage control.
  • the path movement is switched to image shift and image acquisition is executed.
  • the path information calculated by the system control / image processing apparatus 1106 (the coordinate information of the position where the image is currently acquired and the coordinate information of the position where the image is to be acquired next) is used as the lens / deflector control unit. 1104, and the lens / deflector control unit 1104 calculates the image shift amount to control the deflector 4. Therefore, the stage control unit 1102 stores the coordinate information of the inner dead zone boundary, determines whether the current image acquisition position is within the boundary, and the determination result together with the above-described path information to the lens / deflection. To the controller 110. At the same time, the drive of the rotary stage and the rotary arm is stopped. The lens / deflector control unit 1104 starts image acquisition by image shift based on the determination information from the stage control unit 1102.
  • the position B of the optical microscope and the position D of the charged particle beam optical system correspond one-to-one at a fixed position, and without making a mistake in a place where the defect detected by the optical microscope is to be reviewed.
  • the review can be accurately performed under the SEM at the position D.
  • the defect image obtained by the optical microscope is stored in the image memory, and then the charged particle beam image of the corresponding location is stored in the image memory, and these are compared and analyzed later, the defect area can be further improved. It can be grasped correctly.
  • the rotating shaft 1012-a of the rotating arm 1012 is supported by the bearings 1015-a and 1015-b in a vacuum, and this shaft 1012-a includes the rotating angle detector 16, and the arc at the tip of the rotating arm 1012. Since the unit is directly driven by the ultrasonic drive motor 1014, it can be driven with high accuracy without play.
  • a guide mechanism 1013 that supports a part of the rotating arm 1012 is arranged near the tip of the rotating arm 1012, and is rotated along the guide mechanism 1013. Since the extended rotating arm 1012 is not cantilevered, it can have a high resonance frequency that is strong against external vibrations, and a highly rigid rotation driving mechanism can be obtained.
  • the moving amount of the rotating arm 1012 is a stroke of about half of the wafer diameter, and the entire range of the wafer can be covered by using it together with the rotating stage 1011. Therefore, the entire sample stage 1010 can be miniaturized. it can.
  • the sample stage 1010 Since the sample stage 1010 is downsized, the sample chamber 1005 surrounding the sample stage 1010 can also be downsized, the rigidity of the sample chamber 1005 itself can be improved against external vibration, and high-speed evacuation can be achieved by downsizing the vacuum volume. Also, low cost can be realized.
  • positioning with respect to the fine pattern processed on the wafer is performed by the rotating shaft 1012-a of the rotating arm 1012 and a stage system that drives the rotating stage 1011.
  • These are coordinate information by CAD data of the wafer pattern. To do.
  • This CAD information is made up of an X and Y coordinate system, which is converted into a rotation coordinate system by two rotations (rotation of the rotary arm 1012 and rotation of the rotary stage 1011), and each axis 1011-a, 1012 is converted.
  • Position a by rotationally driving a.
  • the angle of the rotation axis direction of the wafer deviates from the scanning direction of the charged particle beam apparatus. Therefore, if the calculated rotation angle amount is given as the rotation angle correction amount in the scanning direction of the scanning particle beam of the apparatus, An upright image can always be obtained in a predetermined direction such as the notch side of the wafer.
  • the configuration described in the first embodiment or the second embodiment is basically applicable to an optical wafer inspection apparatus except for the portion related to the control of charged particle beams.
  • Optical wafer inspection equipment has both a device that inspects in a vacuum sample chamber and a device that inspects in the atmosphere (and therefore has no vacuum sample chamber), but an optical wafer inspection that does not have a vacuum sample chamber. Even in the case of an apparatus, there is an advantage that the installation area of the apparatus can be reduced by introducing a biaxial rotary stage mechanism. Therefore, by applying each configuration described in the present embodiment, it is possible to realize an optical wafer inspection apparatus having a small space and high inspection accuracy.
  • Polar coordinate ⁇ Two-axis rotation stage coordinate change Processing unit, 803..., Wafer center displacement data, 804... Wafer center displacement data, 805... 806... Rotation amount deviation amount data 807... Stage center shift (X, Y) data accompanying rotation, 808... Input coordinates, 809. ..Each inspection mechanism mounting position (rotating arm angle), 901... Optical inspection device, 902... Optical microscope, 903... Charged particle beam inspection device, 904. Static eliminator, 906 ... Inspection mechanism dedicated to outer circumference

Abstract

本発明の荷電粒子線装置は、被検査試料の検査位置(ウェーハ座標系)を検査機構の配置位置(ステージ座標系(極座標系))に変換し、回転アーム(102、1012)を回転させると共に、回転ステージ(103、1011)を回転させて、検査機構の配置位置に、被検査試料の検査位置を移動させる。このとき、回転アームの回転により描かれる回転ステージの中心の移動軌跡上に、複数の検査装置を配置する構成とする。また、回転ステージの中心のずれ量等を算出して補正する機能を設ける。これにより、2軸回転ステージ機構を有する荷電粒子線装置において検査精度が向上され、小型かつステージ制御の容易な荷電粒子線装置を実現することができる。

Description

荷電粒子線装置
 本発明は、被検査体の検査等を行なう荷電粒子線装置または光学式のウェーハ検査装置に関する。
 近年、半導体プロセスの微細化、半導体ウェーハの大口径化により、荷電粒子画像あるいは光学画像を用いてウェーハ上の微細パターンの寸法検査や微細欠陥の検査を行う検査装置が多用されている。
 半導体ウェーハサイズは現在、半径300[mm]であるが、近い将来450[mm]へと大口径化が検討されている。
 また、半導体デバイスのデザインルールも35[nm]以下となり、これらの寸法検査やパターンの欠陥検査も、より高精度な計測が必要となり、荷電粒子線装置の分解能も高くすることが望まれている。
 一方、こうした各種の荷電粒子線装置あるいは光学式検査装置での画像取得位置の位置決めは、X、Yの直交する2軸方向にステージを移動させるXYステージを用いて行われている。XYステージでは、ウェーハが大型化すると、X、Yの両方向の移動ストロークをそれに比例して大きくする必要があり、装置の設置面積が増大してしまう。従って、装置が大型化し高コストになるばかりでなく、荷電粒子線装置の像分解能を更に向上させる上で、試料ステージの微振動による像劣化も問題となっている。
 更に、荷電粒子線装置を設置するクリーンルームは、一層のクリーン化や床振動防止などのために非常に高価になっており、荷電粒子線装置のローコスト化が望まれる。
 こうした問題に対して、特許文献1には、試料ステージの移動範囲に排気予備室を設け、排気予備室と試料室と間の試料移動手段を、別途設ける必要性を無くすことにより、小型化を図った荷電粒子線装置が開示されている。
 また、特許文献2には、回転可能な試料ステージを回転アームにより支持する、いわゆる2軸回転ステージ機構を採用し、試料ステージ全体を回転駆動可能とすることにより、試料ステージを小型化でき、結果的に全体を小型化可能な荷電粒子線装置が開示されている。
特許第3389788号明細書 特開平8-162057号公報
 しかしながら、特許文献2に記載された技術は、半導体ウェーハのパターン微細化に応じた検査精度の向上という点では、何の技術的知見も開示しておらず、小型化が可能という2軸回転ステージ機構の利点を十分生かしているとは言えなかった。
 本発明の目的は、小型で低価格でありながら、検査対象のパターン微細化に対応した検査精度が向上された荷電粒子線装置を実現することである。
 上記目的を達成するため、本発明は以下のように構成される。
 本発明による荷電粒子線装置または光学式ウェーハ検査装置は、被検査対象物または被計測物などの試料を回転させる回転ステージと当該回転ステージを円弧状に移動させる回転アームとを備えた2軸回転ステージ機構と、この2軸回転ステージ機構の上部に設けられた、上記被検査・計測物の画像を取得するための複数の検査機構と、上記2軸回転ステージ機構を制御する制御手段とを有しており、上記複数の検査機構が、回転ステージの回転中心が回転アームの回転に応じて描く軌跡上に配置されている。
 上記の検査機構としては、例えば、1次荷電粒子線を画像取得位置に照射して、発生する2次荷電粒子を検出して信号出力する機能を備えた荷電粒子光学鏡筒や、画像取得位置に光を照射して散乱光を検出して信号出力する機能を備えた暗視野光学顕微鏡、画像取得位置に光を照射して反射光を結像させることにより画像を取得する明視野光学顕微鏡、あるいは除電器やフラッドガンなど画像取得のために必要となる付帯装置などが該当する。
 回転アームの回転位置によらず、回転ステージの回転中心が常に検査機構の直下に位置することになるため、ウェーハ移動制御のための座標計算あるいは回転ずれが生じた場合の補正計算が格段に楽になり、ステージ制御に使用される演算装置の負担が減る。その結果、所望の画像位置をすばやく検査機構の直下に移動させることが可能となり、小型で低価格という2軸回転ステージ機構の利点と検査精度の向上とを両立する荷電粒子線装置あるいは光学式ウェーハ検査装置を実現することが可能となる。
本発明の一実施形態である荷電粒子線装置の全体システム概略構成図である。 ウェーハ座標系からの2軸回転ステージ機構のステージ座標系への変換説明図である。 検査機構設置余裕を大きく設定した場合の例の説明図である。 構成を拡張して、R1=R2とする場合の構成説明図である。 回転中心軸ぶれの説明図である。 観察中心に対する回転ステージ回転中心ずれ計測の説明図である。 回転ステージ回転中心に対するウェーハ中心ずれ計測の説明図である。 図3に示した検査機構等の取り付け位置と、検査機構等との対応関係の説明図である。 本発明の一実施形態における2軸回転ステージの位置決め処理を行う処理部のブロック図である。 本発明が適用される測長SEMや欠陥レビューSEMなどの荷電粒子線装置の概略構成図である。 本発明の一実施形態におけるステージシステムの平面図である。 本発明の一実施形態におけるステージシステムの断面図である。 本発明の一実施形態における回転ステージの断面図である。 本発明の一実施形態における回転ステージの位置決めの説明図である。 本発明の一実施形態における回転軸制御量の説明図である。 本発明の一実施形態における位置決めのシーケンスを説明するフローチャートである。 本発明の一実施形態において、光学顕微鏡等の搭載配置の一例を示す図である。 本発明の一実施形態において、回転角度検出器の設置位置の説明図である。
 以下、本発明の一実施形態について、添付図面を参照して説明する。
 図1は、本発明の一実施形態である荷電粒子線装置の全体システム概略構成図であり、この荷電粒子線装置は、大口径ウェーハ対応型であり、回転アーム機構と回転ステージ機構とから形成される2軸回転ステージ機構を有する。
荷電粒子線装置においては、試料室101を高真空に保ち、1次荷電粒子線を上方から照射することによって発生する2次信号を検出、解析することで、試料表面の様々な特徴量を検出する。このため、本実施例の荷電粒子装置は、上記の1次荷電粒子線をウェーハに対して照射し、発生する2次粒子(2次電子あるいは反射電子)を検出するための荷電粒子光学鏡筒(図示せず)や上記1次荷電粒子線の照射位置を大まかに定めるための広域画像を取得するための光学顕微鏡(図示せず)などを備える。荷電粒子光学鏡筒や光学顕微鏡は複数備えられていてもよい。
 以降、本実施例では、荷電粒子線装置の機能を実現するために必要な構成要素で、回転ステージの上部に設けられる構造を「検査機構」と称する。荷電粒子線装置の範疇に含まれる装置のうち、測長SEMや欠陥レビューSEM、EB式外観検査装置は、ウェーハ上の複数位置の画像を高精度で取得する装置である。これらの装置では、画像取得位置の位置決め精度の要求上、視野サイズの異なる画像を取得する必要があり、必ず複数の検査機構が用いられる。
 試料室101は、回転アーム102と回転ステージ103で構成される2軸回転ステージ機構を内蔵しており、これらは制御コンピュータ104によって制御される。
 回転アーム102は、真空内ベアリングで支持された回転軸を有し、回転可能となっており、回転アーム102の回転軸が形成された端部とは反対側の端部が、圧電素子によって構成された駆動モータ(図示せず)で駆動され、回転されるように構成される。この回転軸には、回転角度検出器(図示せず)が備えられている。また、回転アーム102の回転軸が形成された端部とは反対側の端部は、この端部を支持するガイド機構により、ガイドされる構成となっており、回転アーム102は、片持ち支持ではなく、両持ち支持となっており、外部振動に強く、ガタツキなく円弧状に回転駆動される。
 回転アームに支持された回転ステージ103は、圧電素子によって構成された駆動モータ(図示せず)により回転駆動される。
 オペレータはマンマシンインターフェース105から検査すべき試料ウェーハを指定すると、ロードポート111上に載置されたポッド112から指定されたウェーハがウェーハ搬送ロボット109によって取り出される。
 ウェーハ搬送ロボット109が設置されているウェーハ搬送ユニット108は、試料ウェーハに異物が付着すること避けるために高クリーン度状態を維持する典型的な試料ウェーハ搬送機構である。試料室101を大気パージした後にゲートバルブ110を開け、回転ステージ103上に直接載置する。その後、ゲートバルブ110を閉じ、再び試料室101を真空排気することによって高真空状態を形成し、荷電粒子を照射することで検査、計測を行う。
 マンマシンインターフェース105は入力機構107若しくはそれに順ずる通信機能を有し、試料ウェーハに形成した半導体チップの設計情報やショット配列情報を入力することが可能であり、これら情報は記憶装置106に保持される。
 以上のような構成において、一例として、図2に、450[mm]のウェーハを想定したウェーハ座標系201からの2軸回転ステージ機構のステージ座標系202への変換についての説明図を示す。なお、以下の座標変換等の演算は、制御コンピュータ104が実行する。
 図2の(A)には、回転アーム回転中心204から回転ステージ103の回転中心までの距離、つまり回転半径をR1とし、回転ステージ回転中心205に対する回転半径(回転ステージの半径)をR2とした場合における2軸回転ステージの全体配置図、図2(B)には、ウェーハの中心が回転ステージの回転中心に対してずれた状態でステージ上に載置された場合のウェーハと回転ステージの配置の模式図を示した。
 本実施例の荷電粒子線装置においては、上述の検査機構は、回転ステージの回転中心が回転アームの回転に沿って描く軌跡上に配置されている。通常、2軸回転ステージ機構は半径方向への移動機構を持たず、ウェーハ上の荷電粒子線照射位置の移動を全て回転動作だけでまかなう。上記の軌跡上に検査機構を配置すれば、回転アームがどのように回転しても各検査機構の直下には常に回転ステージの回転中心が位置することになる。従って、上記の軌跡上に検査機構を配置することにより、それ以外の配置形態に比べて、ウェーハ移動制御のための座標計算あるいは回転ずれが生じた場合の補正計算が格段に楽になり、ウェーハ上の所望の位置をすばやく検査機構の直下に移動させることが可能となる。
 なお、角度を示す符号として図には、ギリシャ文字のシータを用いるが、本明細書中には、ギリシャ文字のシータに代えてSを使用する。
 次に、回転アームの回転に沿って回転ステージの回転中心が描く軌跡上に検査機構が配置されているという上の拘束条件の下で、2軸回転ステージ機構の占有面積がどの程度になるかを考察する。回転半径(回転ステージに載置可能な最大ウェーハの半径)がR2の回転ステージが、回転半径がR1の回転アーム上に保持されている図2(A)のような配置を考えた場合、回転アームが所定角度、例えばS1だけ回転した場合に回転ステージが掃く面積と回転アームを格納するために必要な四辺形は点線で示された四辺形209のようになる(2軸回転ステージ機構の占有面積を四辺形形状で示しているのは、ステージを格納する試料室の形状は、通常は直方体であるからである)。
 図2(A)から明らかなように、回転半径R2が与えられれば、四辺形209の面積は回転アームの回転角度と回転アームの駆動機構の占有面積で定まる。回転アームの駆動機構の占有面積は固定値であるから、半径R2のウェーハ全面を観察(あるいは検査)するために、回転アームが回転しなければならない最小限の回転角度を求めれば、ウェーハ全面の画像取得のために最小限必要な2軸回転ステージ機構の占有面積が定まることになる。以下の説明では、この最小限の回転角度を最小必要回転角度と称することにする。
 次に、最小必要回転角度がどのように定まるかについて、基本的な考え方を説明する。図2(A)に示すように、回転アームの回転半径がR1で、回転ステージの回転半径がR2である2軸回転ステージの配置を想定する。回転アームが適当な回転原点からS1だけ回転した場合を考え、回転原点における回転ステージの中心位置203とS1回転後の回転ステージの中心位置210との距離がwrであるものとする。回転ステージの回転中心が位置210にある状態を考えると、検査機構は位置203の直上に位置しているので、この状態で回転ステージを回転させれば、荷電粒子線装置は、回転中心210を中心とする半径wrの円周上の画像を検査機構で取得することが可能である。このことから、回転ステージの回転によりウェーハ全面の画像を取得するためには、回転アームの可動範囲として0≦wr≦R2が必要であることがわかる。従って、最小必要回転角は、wr=R2である場合のS1(以下、S1minで表す)を考えればよいことになる。
 ここで、図2(A)の配置に対して簡単な三角形の相似の条件を考えると、次式(1a)が成立する。
 wr=2・R1sin(S1/2)   ・・・(1a)
 回転アームの回転誤差を無視すれば、wr=R2となる場合のS1が、最小必要回転角度S1minであるから、上記の式(0)にwr=R2、S1=S1minを代入すれば、以下の式(1)が得られる。
 S1min=2・sin-1{R2/(2R1)}   ・・・(1)
回転アームが上の式(1)の範囲で可動する場合に、回転半径R2の回転ステージが掃く面積を格納可能な四辺形(前述の面積の外接四辺形)が、試料室(直方体形状を想定)の最小面積である。
 一方、wr<R2であった場合、回転ステージを回転させても位置203の直下に位置させることのできない領域(いわゆる不感帯)がウェーハの外周部に存在することになる。
 以上のように、回転ステージの回転中心が回転アームの回転に沿って描く軌跡上に検査機構を配置した構成の荷電粒子線装置においては、回転アームの可動範囲での回転ステージの最大回転中心間距離が、少なくとも被検査ウェーハまたは被計測ウェーハの半径以上となるような最小可動範囲を持つ回転アームを備えることにより、ウェーハ全面の検査・観察・あるいは計測が可能な荷電粒子線装置が実現される。
 実際には、回転アームや回転ステージの制御精度は有限であり、実際の装置においては、機械誤差などに起因する回転ぶれが必ず生じる。また、ウェーハをステージに載置する際の搬送誤差による位置ずれが生じる場合もある。以下では、回転ぶれや位置ずれなどの誤差が発生することを考慮した2軸回転ステージの制御方法について説明する。
 検査機構設置位置203を回転アーム回転量が0のときの回転ステージ回転中心205に一致するように設置したとして、ウェーハ座標系201にて指定した任意の検査点(wx,wy)を検査機構設置位置203に移動するための回転アーム回転角度S1と回転ステージ回転角度S2は以下のように決定することができる。
 まず、ウェーハ座標系201の座標をウェーハ中心からの極座標に変換する。試料ウェーハの半径が450[mm]である場合を考えると、変換された極座標(wr,wS)は、次式(2-1)~(2-4)となる。
 wx-225=wr・cos(ws)   ・・・(2-1)
 wy-225=wr・sin(ws)   ・・・(2-2)
 wr=√{(wx-225)2+(wy-225)2}   ・・・(2-3)
 wS=tan-1{(wy-225)/(wx-225)}  ・・・(2-4)
 回転アーム回転角度S1はwrによってのみ決定されるので、次式(3)となる。
 S1=2・sin-1{wr/(2R1)}   ・・・(3)
 回転アームを角度S1だけ回転させたことによって生じた視野ずれ角度をScorとすると、このScorは次式(4)で表される。
 Scor=S1-cos-1{R1・sin(S1)/wr}   ・・・(4)
 以上の結果より、回転ステージ回転角度S2はウェーハ座標から算出した角度成分wsとScorとから、次式(5)で表すことができる。
 S2=-wS+Scor   ・・・(5)
 2回転軸ステージでは指定した検査点(wx,wy)を、後述する検査機構の取り付け位置203直下に移動した際、試料角度が変化してしまっている。このため、荷電粒子線装置を検査機構取り付け位置203に設置している場合などは、よく知られているラスターローテーション機能を使用して、次式(6)に示す、Srだけ視野回転補正を行うことで正方向の画像を得ることができる。
 Sr=S1-S2   ・・・(6)
 ウェーハ座標系201と2軸回転ステージの座標系202における位置ずれの要因として最も明瞭なものは、ウェーハ中心と回転ステージ回転中心205のずれを挙げることができる。
 プリアライメント処理を介さずに回転ステージ103に被検査試料(ウェーハ)を直接載置した場合、想定されるずれ量は数[mm]オーダーになると考えてよい。
 回転アーム102の最小必要回転角度S1minを式(1)に示した通りで構築すると、このずれ量は試料ウェーハの外側に観察が不可能な領域を生じさせることになる。そこで、回転アームの可動範囲を最小必要回転角度S1min分だけではなく、許容すべきずれ量を考慮した回転角度余裕S1mrgを加えた範囲に設定することで、上記のような外側不感帯の発生を防止することが可能となる。すなわち、荷電粒子線装置が、上記最小必要回転角度S1minに加えて回転角度余裕S1mrgを加えた角度以上の可動範囲を持つ回転アームを備えた2軸回転ステージを備えることにより、ウェーハ中心と回転ステージ回転中心205のずれによる外側不感帯の発生を防止することが可能となる。
 許容されるずれ量をΔwrmaxとした場合、回転角度余裕S1mrgは、次式(7)で示すことができる。
 S1mrg=(Δwrmax/R1) [rad]   ・・・(7)
 逆に、ウェーハ中心と回転ステージ回転中心205とのずれが、ほぼ0である場合、回転角度余裕S1mrgによって検査機構設置位置余裕206を設けることができる。検査機構取り付け位置203の観察中心に対する回転ステージ回転中心205のずれは、観察中心近傍に試料ウェーハ内側の観察不可能領域を生じさせることになる。
 回転角度余裕S1mrgによって検査機構設置位置余裕206を設けるということは、回転アーム回転中心204に対する、回転ステージ回転中心205の円周上に検査機構を設置するに当って、円周方向に対する、ずれ量をどのくらい認めるかということである。
 つまり、検査機構設置位置余裕206の範囲内であれば、検査機構をどの位置に設置されてもウェーハ内周側の観察不可能領域の発生を防止することが可能である。図2に示す2軸回転ステージ機構では、もう1点別に検査機構取り付け位置208を設けることが可能である。
 検査機構取り付け位置208は、検査機構取り付け位置203に対して、回転アーム円周方向にS1min+S1mrg以上回転した位置に設ける。検査機構取り付け位置208は回転アーム102の制御を、検査機構取り付け位置203とは逆にする必要があるため、設置位置をS1min+S1mrg以上にすることによって、外側観察不可能領域の発生を防止することができる。
 図3に、更に構成を拡張して、検査機構設置余裕206を大きく設定し(余裕304)、S1mrg=S1minとした構成を示す。S1mrg=S1minとすることで、3点の代表的な検査機構取り付け位置(1)301から検査機構取り付け位置(3)303を結ぶ円周上が全て検査機構設置余裕となる。検査機構設置余裕は、回転アームの可動範囲を所望の検査機構設置余裕に対応する角度分だけ大きく設定することにより実現することができる。
 図3に示した例は、R1=300[mm]、R2=225[mm]とした場合の例であり、この場合、S1min=44.048626°、S1max=は88.0973°となる構成である。この例は、チャンバーが出来るだけ正方形になるようにR1を選んだ例であり、X=Y=750[mm]を最小値として試料室101内部を構成し、約7.5[mm]の余裕を設けることができる。この余裕は検査機構取り付け位置(2)302に対して有効な検査機構設置余裕(2)305であり、その他の取り付け位置についてはS1mrg=44.048626°分の余裕301、303を設ける構成となる。
 検査機構取り付け位置(2)302は、検査機構取り付け位置(1)301、もしくは検査機構取り付け位置(3)303における、試料ウェーハ中心観察時に試料ウェーハ端面を観察する位置に対応する。検査機構取り付け位置(1)301に対応するステージ位置を試料搬出入位置とすると、検査機構取り付け位置(2)302は試料搬入時にウェーハ端面を観察していることになる。
 荷電粒子線装置では低倍率像観察のために光学顕微鏡を搭載している構成が良く見られるが、それを検査機構取り付け位置(2)302に配置することでプリアライメントに用いることが可能となる。試料ウェーハ搬入の位置ずれ量が数[mm]あるとして、これを包含する程度の低倍率光学顕微鏡を設置、もしくは回転ステージ103の回転動作と組み合わせることで、試料搬入後、ゲートバルブ110の閉鎖、真空排気待ち時間中に並行して位置ずれ補正量算出(プリアライメント)を行うことが可能となる。なお、ここでのプリアライメントとも、回転ステージ回転中心205と試料ウェーハ中心の位置ずれに対する補正量算出である。このようなプリアライメントと真空搬送との並行制御のシーケンスは、制御コンピュータ104により実行される。
 図3における検査機構取り付け位置(1)から(3)を結ぶ円周上は、どこに検査機構を取り付けても試料ウェーハ全面を網羅することが可能であることになる。そこで、この円周上に半導体デバイスの検査に特有の補助装置、たとえば試料ウェーハ表面の帯電電界を測定する装置を位置307に取り付け、同電界を除去する装置を位置308に取り付けることで、検査性能の向上を図ることが期待できる。また、外周専用検査機構を位置309に取り付けることで、検査性能の向上を図ることが期待できる。
 各検査機構取り付け位置301~303、307~309に対する、補助装置の取り付け位置は、回転アーム102の駆動のみで移動可能であり、試料ウェーハ上の検査点についてダイナミックに帯電計測や帯電除去操作を行うことが可能であり、従来の全面に対する処理に比べ、精度を上げることが可能となる。また全面に対する処理が必要な場合は、回転アーム102の駆動と回転ステージ103の駆動を組み合わせることによって、試料面上の直線走査、渦巻き走査などのメカニカルスキャンを適用することで、試料ウェーハ全面に対する処理を行うことが可能である。このようなメカニカルスキャンは荷電粒子光学鏡筒内に設けられた走査偏向器を制御することにより実行されるものであり、ステージ制御と同様、制御コンピュータ104により制御される。
 図4は、更に構成を拡張して、R1=R2とする場合の構成説明図である。図4に示した例は、R1=225[mm]、R2=225[mm]とした場合であり、この場合、S1min=60.0°、S1max=は120.0°となる構成である。この構成とすることで回転アーム回転中心204は、回転アーム角度S1に関わらず、常に試料ウェーハ外周と一致することになる。この位置を、試料ウェーハの外周専用検査機構取り付け位置404として活用することが可能となる。例えば、低倍率の光学顕微鏡を、外周専用検査機構取り付け位置404に取り付けることで、回転ステージ回転中心205と試料ウェーハ中心との位置ずれに対する補正量算出、プリアライメントが可能になる。
 更に、回転アーム回転中心のブレなどにより、各検査機構取り付け位置に対するプリアライメントが必要な場合においても、外周専用検査機構取り付け位置404に取り付けた低倍率の光学顕微鏡でのプリアライメントが可能となる。
 また、近年注目されている試料ウェーハ外周の品質管理を行うための専用検査機構を取り付け、試料ウェーハ側面の異物検査、膜はがれなどの観察を専門的に行うことが可能となる。また、外周専用検査機構取り付け位置404は、全く理想的にずれの無い状態にある場合は、唯一メカニカルローテーションによる試料回転が可能であり、斜め配置した検査機構と組み合わせることで、検査用途は多いに拡大する。
 なお、401、402、403は、検査機構取り付け位置である。
 次に、回転ステージの偏心補正機能について説明する。以上で説明した2軸回転ステージ機構を用いて位置決め制御を行うには、回転ステージ103の偏心、つまり回転中心軸のぶれがどの程度あるのかを正確に計測しておく必要がある。そこで、回転ステージ103の中央に刻印した方向性を持つ目印、例えば矢印や十字マークなどの形状を持つ目印を用いて回転中心軸のぶれ量を計測する。この計測は、各検査機構のうち画像検出機能を持つ検査機構のいずれかひとつを用いて、上記の目印の画像を取得することにより行われる。すなわち、回転ステージ103を回転原点から回転させながら上記目印を視野に含むような画像を取得し、制御コンピュータ104の画像処理により、回転ステージ103の回転中心位置の変化を検出する。この一連の処理を回転ステージが360°回転するまで行う。
 図5(A)~(D)を用いて、回転中心軸ぶれについて説明する。図5(A)は、実際の回転中心の移動の軌跡を示す図であり、軌跡の重心を中心として描いてある。回転ステージの回転角度がある値の時には、回転ステージは当該角度での目印の位置を中心として回転している。図5(A)に示される目印を回転開始と同時に画像処理で連続抽出し、回転に伴う目印の軌跡501のデータを生成する。軌跡データとは、例えば、回転ステージ回転角度S2に対する回転中心の理想値からの偏差量(理想的な回転中心からのX方向ぶれ量502およびY方向ぶれ量503)で表される。取得した画像から画素演算により上記の偏差量が算出される。
 また、このとき同時に、指定した回転ステージ回転角度に対する回転量のずれ量504を目印の方向から計測する。目印は方向性を持っているので、回転量にずれが無ければ目印を回転ステージの指定回転角度だけ回転させた場合の方向と、回転ステージを指定回転角度だけ回転させた状態で計測される画像から求まる目印の方向は一致する筈である。よって、目印に相当する画素データを計算機内で回転させることにより得られる参照画像と実際に計測される目印の画像とを比較演算することにより、上記の回転量のずれ量を求めることができる。
 上記の偏差量と回転量のずれ量とは、制御コンピュータ104により算出され、回転ステージ回転角度S2と対応させて記憶装置106に記憶される。記憶された偏差量と回転量のずれ量は、回転ステージ制御の補正量として使用される。
 上述のようにして記憶した軌跡データが回転ステージ回転中心205のぶれ量であり、軌跡の内側は観察不可能領域である。一度軌跡データを計測しておけば、軌跡データを参照することにより、回転ステージ103の回転角度S2に応じた上記のぶれ量を推定することができる。回転角度S2は上記(5)式によって決定するが、これによって生じる軸ぶれ量をウェーハ座標系に加算し、再度、上記式(2)を用いて回転アーム回転角度S1から計算を行う。
 この演算は回転角度検出分解能程度で振動することになるので、計算結果の差異が設定閾値以下となったことを検出して処理を終了とするか、もしくは経験的に収束する計算回数が自明である場合は固定回数演算を繰り返して、S1、S2を決定する。以上の演算処理も制御コンピュータ104により実行される。
 観察不可能領域の観察時には荷電粒子線装置による照射位置調整(イメージシフト)が行われる。照射位置調整で補正できる上限値は、およそ±15[マイクロメータ]程度であり、荷電粒子光学鏡筒の性能に依存して決まるため、偏心による回転軸ぶれ量は、イメージシフトの可能範囲内に収まるよう補正されなくてはならない。そのため、検査機構の観察中心に対して回転ステージ回転中心の位置ずれがどの程度あるのかを正確に計測する必要がある。
 そこで、回転ステージ回転中心205のぶれ量を示す軌跡の重心が、その視野における観察中心からどの程度ずれているのかを計測する。観察中心の座標情報は既に与えられているので、軌跡の位置情報から重心座標を算出し、観察中心の座標と重心座標の差分値を計算すればよい。これらの重心座標の算出処理と差分計算とは制御コンピュータ104により実行され、算出された観察中心に対する回転中心の位置ずれ量は記憶装置106に記録する。
 回転アーム102の回転角度S1方向の円周上のずれは、回転アーム102の制御量S1に対する調整量として位置決め演算に使用する。
 図6に示すように、調整前の回転ステージ回転中心601に対して、S1調整後の回転中心602に生じている回転アーム軸方向のずれ量603は、即ち、内側観察不可能領域である。このずれ量は荷電粒子線装置による照射位置調整(イメージシフト)による視野移動の際に用いる移動量として使用する。イメージシフトで視野移動できる距離の上限値は、上述の通り荷電粒子光学鏡筒に依存して決まるため、観察中心ずれ量がその範囲内に収まるよう調整されなくてはならない。
 以上、回転ステージ回転中心205の軸ぶれ、および観察中心に対する回転ステージ回転中心205のずれ量は、装置メンテナンス時に測定作業を行い、ぶれ量、ずれ量の経時変化に追従する。
 次に、回転ステージ回転中心205に対するウェーハ中心の位置ずれを正確に計測する手法について説明する。位置ずれ計測は、図3に示す外周専用検査機構取り付け位置309に設けた低倍率の観察装置、例えば光学顕微鏡やCCDカメラ等を用いて行う。本実施例の一実施形態では、ある一定の尤度をもった任意方向あるいは任意位置に試料ウェーハを回転ステージ103上に配置している。計測は、試料ウェーハを回転ステージ103上に設置後、制御コンピュータ104により回転ステージ103を一定速度で回転させ、上記光学顕微鏡やCCDカメラでウェーハ外周端の画像を取得する。
 制御コンピュータ104は観察装置から得られる動画像データを解析し、試料ウェーハ端面が曲線でない部分、つまりV字型ノッチ部を検出する。検出したら、一旦、回転ステージ103を停止し、停止した位置におけるV字型ノッチ部を試料室101の270°方向、つまりゲートバルブ110と反対側の方向へあわせるように回転ステージ103を回転し停止する。
 その時の回転ステージ角度情報を、記憶装置106に保存しておく。制御コンピュータ104は、図7に示すように、270°方向にあわせたV字型ノッチの画面内位置701から、ウェーハ中心の位置ずれ量702を算出し、この際の回転ステージ角度から、回転ステージ軸ぶれ量を加減算して、記憶装置106に保存しておく。
 このとき、試料ウェーハが搬入されたときの回転ステージ103の角度を合わせて保存しておくこととする。およそ回転原点とするのが一般的である。試料ウェーハ搬出時は記憶しておいた回転ステージ角度にすることで、搬入位置の復元を行う。ウェーハ搬送ロボット109やロードポート111の位置調整の劣化に伴い、試料ウェーハ中心の位置ずれが大きくなってしまった場合など、回転ステージ103の回転角度によってポッド112に対する試料ウェーハのX、Y位置関係がずれてしまい、これに起因してポッド112への試料ウェーハの干渉、衝突の原因となる。試料ウェーハ搬入位置を復元することで、このような事故発生の可能性を軽減することが可能となる。
 図8は、図3に示した荷電粒子線装置を横側からみた側面断面図であり、検査機構等の取り付け位置と、検査機構等との対応関係を示している。図8において、引出番号901~903は検査機構であり、901が光学検査装置、902が光学顕微鏡、903が荷電粒子光学鏡筒である。帯電計測機器904、除電装置905、外周専用検査機構906は、試料室101の上面部に配置されている。光学検査装置901は、取り付け位置301に対応する位置に取り付けられ、光学顕微鏡902は、取り付け位置302に対応する位置に取り付けられ、荷電粒子光学鏡筒903は、取り付け位置303に対応する位置に取り付けられている。
 また、帯電計測機器904は、取り付け位置307に対応する位置に取り付けられ、除電装置905は、取り付け位置308に対応する位置に取り付けられ、外周専用検査機構906は、取り付け位置309に対応する位置に取り付けられている。
 図9は、上述のようにして取得した各補正量を基に2軸回転ステージの位置決め処理を行う処理部のブロック図であり、図1に示される制御コンピュータ104内に実装されている。実装形態としては、図9に示される各機能ブロックを専用チップで実現するハードウェア実装と、機能ブロックをプログラムで構成し、制御コンピュータ104内の演算装置に実行させるソフトウェア実装の両方があるが、以下では、ソフトウェア実装されているものとして説明を行う。
 図9において、位置決め処理は、大きく分けてウェーハ座標系→極座標変換処理部801と、極座標→2軸回転ステージ座標変換処理部802との2つで構成されている。
 ウェーハ座標系→極座標変換処理801は、上記式(2)の演算を実行し、極座標→2軸回転ステージ座標変換処理部802は、上記式(3)~(5)の演算を実行する。作業者が入力、あるいはレシピファイルから読み込まれた画像取得位置のウェーハ座標808は、極座標変換処理を行う前にウェーハ中心のずれ量を補正しなくてはならない。そこで、あらかじめ算出しておいたウェーハ中心のずれ量(X,Y)データ803を入力座標808に対して加算(XY座標系の象限によっては減算となる)する。ウェーハ中心のずれ量(S)データ804は、V字型ノッチ部を試料室101の270°方向へ合わせるために回転した回転ステージ角度であるので、これは極座標→2軸回転ステージ座標変換処理部802が算出した回転ステージ回転角度に加減算する。
 一方、各検査機構取り付け位置810は、回転アーム回転角度情報のオフセットとして記憶装置106に記憶されており、動作する検査機構に応じて選択される。例えば、荷電粒子線装置の場合であれば、画像取得位置の位置決めを行う際に、光学顕微鏡により低倍画像を取得し、当該低倍画像を用いて荷電粒子線の照射位置定めるという2段階の位置決めを行っており、検査機構としては、光学顕微鏡→荷電粒子光学鏡筒の2つがこの順序で使用される。検査・計測の種類によっては、フラッドガンや除電器などの付帯装置が使用される場合もある。使用される検査機構は、検査レシピないし計測レシピ設定の際に自動的に選択され、レシピファイルを読み出すことにより検査機構指定809が入力される。上記の検査レシピないし計測レシピは、マンマシンインターフェース105を介して設定される。
 制御コンピュータ104は、画像取得のシーケンスを実行する順序に従って回転アームを回転駆動させ、使用される検査機構の直下に画像取得位置を移動させる。選択されたオフセット値は、アームを回転駆動させる際に記憶装置106から読み出され、使用される。
 各検査機構901~906の観察中心に対して、回転ステージ回転中心の位置ずれを持つので、回転アーム回転方向に対して補正可能な視野中心に対する回転ステージ回転中心ずれ量のデータ805を加減算することで視野中心ずれ補正を行う。回転アーム軸方向のずれについては、2軸回転ステージによる補正は不可能であるので、別途、照射位置調整(イメージシフト)による補正によって吸収する。
 このように決定した各検査機構901~906に対する回転アーム回転角度に、2軸回転ステージ座標変換処理部802によって算出した回転アーム回転角度を加算して回転アーム制御角度を決定する。
 また、2軸回転ステージ座標変換処理部802によって算出した回転ステージ角度データはウェーハ中心のずれ量(S)データ804を加減算した後、計測しておいた回転量のずれ量のデータ806分の補正を行い、回転ステージ制御角度を決定する。
 更に、ここで決定した回転ステージ制御角度に対してステージ中心ぶれが発生するので、そのぶれ量を計測した回転に伴うステージ中心ぶれ(X,Y)のデータ807から算出し、ウェーハ座標系に対してフィードバックを行うことで平衡する制御量を決定することが可能となる。
 さらに、半導体設計パターンの位置を正確に計測することによって位置決めを高精度化する必要がある。回転アーム102および回転ステージ103が最大限動作するように試料ウェーハ上のパターンを決定する。2軸回転機構ステージにおいては、試料ウェーハの中心近傍を通る直径上の両端に並んだ任意の3点を選ぶことで満足する。
 そこで、制御コンピュータ104はマンマシンインターフェースを介して作業者が作成したデータ、もしくは入力機構107もしくはそれに順ずる通信機能によって入手した半導体設計データから、中心近傍を通る直径上の両端に並んだ任意の3点のチップ内パターンを自動的に決定し、各検査機構における検査工程開始前に、チップ内パターンを画像処理によって検出し、その検出位置に基づいてウェーハ中心の位置ずれ量を微小補正することで行う。
 この補正は試料ウェーハ上での半導体の配列情報に補正をかけることでも可能である。さらに半導体配列に歪があるような場合は、さらに試料ウェーハの端の円周上にチップを決定することで、さらに高精度化を期待できる。
 以上の手順にて作成した試料ウェーハ上の半導体配列情報補正データは、近年の半導体の微細化に伴う高精度化技術の発達において、同一製品、同一工程の試料ウェーハに対して再利用可能性が非常に高いと考えてよい。
 そこで、半導体配列情報補正データを、その半導体製品および工程を識別できるコード、例えばウェーハのロット番号やウェーハIDあるいはプロセス番号などの識別コードに関連付けて記憶装置106に記憶し、次回以降、その製品、工程の検査を行う際にはそれを利用することとして、位置決め工程を省略することで、荷電粒子検査装置のスループット向上を可能にする。
 ただし、この半導体配列情報補正データは検査工程における処理、たとえば測長位置の検出や欠陥パターンの検出によって認識した位置情報に基づいて随時修正、学習することで、位置合わせ精度を均一に維持することが可能となる。また、半導体配列情報補正データは定期メンテナンスによるメカ調整などを実施した際に、マンマシンインターフェース105から指示をすることによって学習情報を消去し、位置決め工程による半導体配列情報補正データの再作成を実施することが可能となる。この回転アームの移動量は、ウェーハ径の約半分のストロークで回転ステージとの併用により、ウェーハの全範囲をカバーすることができる。
 以上のように、本実施例によれば、被検査試料の検査位置(ウェーハ座標系)を検査機構の配置位置(ステージ座標系(極座標系))に変換し、回転アーム102を回転させると共に、回転ステージ103を回転させて、検査機構の配置位置に、被検査試料の検査位置を移動させる。このとき、回転ステージ103の中心のずれ量等を算出して、補正することを可能としたので、2軸回転ステージ機構を有する荷電粒子線装置において、検査対象のパターン微細化に対応して、検査精度を向上することができる。
 また、回転アーム102の回転により描かれる回転ステージ103の中心の移動軌跡上に、複数の検査装置を配置する構成としたので、小型でありながら、複数種類の検査が可能な荷電粒子線装置を実現することができる。
 更には、ステージが小型化されるので、これを囲む試料室も小型化でき、合成の向上による外部振動防止のほか、真空容積の小型化による高速真空排気、ローコスト化が実現できる。
 具体的に説明すると、位置決めしたとき、ウェーハの回転方向の角度は、荷電粒子線装置の走査方向とずれるので、演算された角度分を回転角度補正として走査粒子線に補正を与え、常にウェーハのノッチ側などに決められた方向に対して正立像を得ることができる。
 本実施例においては、回転アーム102の回転量S1の必要動作量を回転アーム102の旋回半径R1と回転ステージ103の回転半径R2から規定し、それを拡張することで、検査装置の設置余裕を設けている。この設置余裕をさらに大きくすることで、代表的な検査機構の取り付け可能位置を拡張すると共に、位置ずれ補正を回転アームの回転量S1で補正することができる。
 さらに、各検査装置における位置ずれの原因となる特徴量として、回転ステージ103の中心軸ぶれ量、観察中心に対する回転ステージ103の中心のズレ量、回転ステージ103の中心に対する試料ウェーハ中心のずれ量、試料ウェーハに対する加工された微細パターンのずれ量を、制御コンピュータ104により演算し、演算した情報から2つの回転座標系に変換して位置決めする際の補正を行っている。
 次に、本発明の別の実施形態について説明する。
 図10は、本実施形態の荷電粒子線装置の概略構成図であり、例えば、測長SEMや欠陥レビューSEMなどとして利用される。なお、説明の都合上、本実施例の実施形態について、電子線装置を例にして説明する。以下、被検査物(対象試料)として半導体ウェーハを主として説明するが、液晶パネル、ステッパー用マスク、また、一般の分析用試料等でも適応が可能である。
 図10において、レンズ・偏向器制御部1104によって電子銃1001、収束レンズ1002、対物レンズ1003が制御され、電子線はウェーハ1008上に細く収束され、偏向器1004でウェーハ支持台1009上に支持されたウェーハ1008上を走査し、発生した電子を検出系1105により検出する。検出した信号は検出系制御部1103により信号処理され、システム制御・画像処理装置1106によって処理を行い、画面1107に像を表示すると共に検出した電子プロファイル信号より微細パターンの寸法を計測することが出来、パターンの欠陥を検査するなど半導体プロセスの歩止まり向上にも用いることができる。
 試料支持台1009が配置された試料ステージ1010は、ステージ駆動部1101により駆動され、このステージ駆動部1101は、ステージ制御部1102により制御される。試料室1005は、ロードロック室1006が接続され、試料室1005とロードロック室1006との間には、ゲートバルブ1007が配置されている。
 半導体ウェーハ1008上に形成された微細パターンの寸法や欠陥の検査を行う場合、試料ステージ1010によってウェーハ支持台1009の上に配置されているウェーハ1008を移動させ、ウェーハ上の測定したいパターン位置を電子ビーム照射位置の下に移動させる。従来、荷電粒子線装置を用いた半導体計測装置や検査装置では、試料ステージとして、一般的にX、Y直交座標系のステージが用いられており、水平面内でのウェーハの移動が可能である。このX、Y直交座標系のステージは、X方向またはY方向どちらか一方への移動機構上にもう一方への移動機構が積層された構造を有しており、高さ方向の長さが大きくなりやすく、かつまたウェーハ径の増大と共に水平方向の必要ストローク量も増大するところから、試料室が大型化しやすいという問題があった。
 図11は本実施形態のステージシステムの平面図である。図11に示されるように、本実施形態のステージシステムは、2軸回転ステージ機構を備えており、基本的な構成は、回転アーム1012上に回転ステージ1011を配置した構成である。回転ステージ1011上には、ウェーハ支持台1009があり、この上にウェーハ1008が配置される。回転アーム1012は、一方端が、図12に示す回転アーム支持軸1012-aにより支持され、この支持軸1012-aを回転中心として、アーム1012の他方端部の下面部を支持する円弧ガイド1013上を旋回する。
 本実施例の荷電粒子線装置で採用している2軸回転ステージ機構は、各ステージ移動機構が全て同一平面上に配置されるため、通常のXYステージとは異なり、複数の移動機構を積層する必要がない。従って、XYステージと比較して薄く(高さ方向の長さを小さくする)ことが可能である。
 回転アーム1012の駆動は、回転アーム1012の先端(他方端の側面部)に接触している超音波モータ1014によって駆動される。回転アーム1012の支持軸1012-aの回りには回転角度検出器1016が設けられ、回転アーム1012の回転角度を検出することが出来る。
 高い精度の回転角度検出器では、0.2秒以下で移動した回転角度まで検出することが可能である。
 超音波駆動モータ1014は、パルス駆動で、1パルス当たり数nmの送りが可能であり、回転アーム1012を極めて精度良く、ステップ送りすることが可能である。
 尚、超音波駆動モータ1014は、図12に示すステージの断面図のセラミックプレート1012-bで固定されており、超音波モータ1014の駆動において、耐摩耗性を向上させるとともに、高い剛性を有し、安定した駆動を可能にする。
 回転アーム1012は回転支持ベアリング1015(1015-a、1015-b)により支持され回転するが、ウェーハ1008の上下方向に対して片持ちとなり、剛性が低下するので、円弧ガイド1013を設け、この上を回転アーム1012の他方端が回転駆動するように構成し、剛性を向上させており、上下方向のガタを防止することができる。
 回転支持ベアリング1015-a、1015-bは、超精密レベルのものを用いれば偏心量は0.5マイクロメータ以下が可能であり、水平面内における繰り返しの位置再現精度は、0.5マイクロメータより良い値を得ることが可能となる。
 回転ステージ1011、回転アーム1012、支持軸1012-a、円弧ガイド1013、超音波モータ1014等により、試料ステージ1010が構成されている。なお、1017はリード線であり、1018は配線コネクタである。
 この試料ステージ1010の構成で重要なことは、回転アーム1012が試料室1005内部に設けられた回転アーム支持軸1012-aを中心として回転し、このアーム1012の先端を直接、超音波駆動モータ1014で駆動することである。すなわち、回転アームの駆動源を支持軸側ではなく回転アームの先端部側(回転ステージを載置している側)に設け、円弧ガイドに沿って回転駆動させるので、駆動源に要求される回転制御精度が低くてもすむという効果を有する。また、超音波モータなどのノンバックラッシュモータを駆動源として使用することで、バックラッシュが発生する要因の無い、きわめて高精度に駆動可能な回転アームが実現可能となる。
 また、回転軸1012-a上に回転角度検出器1016が直接設けられるので、真空外に駆動系を有する従来の一般的な構造の場合に生ずる軸のねじれの影響や連結系あるいはOリングあるいは磁気流体シールなど真空をシールするためのシール機構などから、それぞれ発生するガタを低減することができ、極めて精密なモータ直接駆動型回転アームを実現することができる。
 また、図11、図12に示したステージ構造のように、回転アーム1012と回転ステージ1011で構成された機構部は、さらに小型化(薄型化)することが出来得る特徴がある。従って、試料室1005も薄型にすることが可能となる。従来技術におけるX、Yステージでは8インチ用のものであっても250~300mm程度の高さとなるため試料室はさらに深さ方向に大きく成る問題があり、底面、四側面の5枚の厚肉材料(板材)を溶接で接合し、オーブンブレージングと呼ばれる技法でロー付けを行うことで、試料室を作成していた。
 試料室1005は真空容器であることから、真空となった状態では、試料室1005の各側壁に大きな圧力がかかり微小変形する。これを小さくするためにも、板厚は25~30mmの非常に厚肉の材料とその加工が必要であった。
 ところが、溶接あるいは、オーブンブレージング法であっても、完全なボイドがなく接合することは難しく、一部強度が弱くなるところも生じ、外部の微振動にも弱くなる。
 一方、本実施形態の2軸回転ステージ機構は、試料ステージ1010そのものを薄型にし、小型化できるので試料室1005を厚肉の鉄、パーマロイ材、インバー材あるいは、アルミニウム合金(アルミニウムにカーボンナノチューブを含有させたものを含む)などの一体材料のブロックから直接に切削(中ぐり)加工を施して、ステージの機構が移動する空間を作れば良いので、試料室1005が単に小型になるだけでなく、極めて剛性の高い、そして無駄な空間のない最小真空試料室を構成することが出来る。
 このことは、同じ真空排気速度の真空ポンプを用いても、それだけ高い到達真空度が実現できることを意味し、従って、真空雰囲気をよりクリーンにすることができる。また剛性が高いので真空を引いたときの変形も小さく、外部振動にも強くすることが出来る。
 具体的には、450mmの試料ステージであっても150~200mmの中ぐり加工で試料室を製作することができるという効果がある。
 更には回転アーム1012の先端部は、円弧ガイド1013で支持されるので剛性が高く、外部からの振動、特に音波振動などに対して極めて強くすることができるという効果が得られる。
 また、回転ステージ1011を駆動するためのモータや、回転角度検出器への配線などを、このアームに沿って配線し、回転アーム支持軸1012-aの中央に配線引き出し部を設け、中央部からこの配線を引き出すようにすると、回転アーム1012が旋回した時に、配線の振れ回りは皆無となり、配線が、摩擦により導線がアースに地落するなどの事故もなく、極めて信頼性の高いステージシステムとすることができる。
 次に、図11、図12、図13を用いて、本実施形態の超音波駆動モータ1014の発熱の影響について説明する。
 まず、図11において、超音波駆動モータ1014は、試料室1005の底部に固定されるので、このモータ1014で発生する熱は、その多くが試料室1005の壁に伝達され、回転アーム1012への伝達は無視でき、熱による影響はない。
 一方、回転ステージ1011の詳細断面図である図13に示すように、回転ステージ1011においては、その回転駆動のために超音波モータ(R)1011-gが設けられており、回転ステージ台1011-eに固定されている。この回転ステージ台1011-eは回転アーム1012に固定されるので超音波モータ(R)1011-gから発生した熱の多くが、回転アーム1012に伝達される。
 したがって、回転アーム1012は、ステージの連続的な駆動により、温度上昇は避けられない。もし、アルミニウム合金材料を回転アーム1012に使用した場合を考えると、その線膨張率は約2×10-5であり、アーム1012の長さが500mmでは1°Cの変化が10マイクロメータ程度の長さの変化となる。そのために、回転アーム1012には、温度センサ1019を取り付け、その測定値により温度を検出し、回転ステージ1011の回転中心までの距離R1を、温度変化によって伸縮する量を算出して、補正することにより、正確なアーム長さとすることができる。温度検出により回転アーム長さを補正するには、温度センサ1019の測定結果と線膨張率の値および基準温度(例えば、0°C)での回転アームの長さR10を用いて、測定温度における回転アームの長さR1を算出する。算出されたR1の長さはメモリに格納され、実施例1で説明したあるいは本実施例で後述する回転制御や誤差の補正制御などに使用される。上で説明したR1算出の演算処理は、例えばステージ制御部1102で実行され、上記線膨張率やR10、算出されたR1などの数値データを格納するためのメモリもステージ制御部1102に配置される。
 この際、レンズ等からの漏れ磁場の変化を防ぐために、温度センサ1019としては、非磁性材料からなる素材のセンサが良い。
 回転アーム1012の温度上昇に対する他の手段としては、回転アーム1012に対して、他の温度制御手段を付加し、温度上昇を防止することによって、その影響をなくすことが出来る。例えば、ペルチェ素子による冷却や、フレキシブル冷却チューブの内部に冷媒を循環させて冷却手段として用い、先の温度センサの計測値をフィードバックさせながら、冷却し、温度変化を最小限に留める方法が考えられる。
 次に、回転ステージ1011について、図13を参照して、さらに詳細に説明する。
 図13において、回転アーム1012の上に回転ステージ1011が配置されている。回転軸1011-aには、コロガイド(a)1011-b(内輪)が結合されている。このコロガイド1011-bには、精度高く回転できるようにするためにセラミック材が用いられる。これは、剛性が高く、固い材料が望ましいからである。
 コロガイド1011-bとコロガイド1011-c(外輪)とによりコロ1011-dを挟んで、回転軸1011-aは回転する。回転軸1011-aには筒体1011-hが連結されており、この筒体1011-hの外周には超音波駆動モータ(R)1011-gが配置されている。
 超音波駆動モータ(R)1011-gは、先に述べた超音波駆動モータ1014と同様に、ピエゾ素子の電圧による伸縮を原理として、これを駆動モータとしたもので、近年、急速に応用が拡大しているモータであり、文献“Tribology Series・Triborogical Research and Design for Engneering Systems (2003),461-468”や、「アルミナの電子ビーム露光装置用超音波モータへの応用、日本セラミック協会誌、セラミックス、37(2001),39-41」などに記載されている。
 これらの文献には、非磁性で、微小量の連続移動ができ、特に真空中においても、高精度に動作させることができる特徴がある種々の超音波モータが提案されている。
 超音波駆動モータ(R)1011-gは、筒体1011-hと噛み合い、又は接触され、駆動電源1011-iによって駆動される。超音波駆動モータ1011-gは、左方向、右方向に相手の物体に対して、駆動力を与えるが、筒体1011-hが回転体であるために、超音波駆動モータの駆動力は筒体1011-hに回転運動として伝達される。
 筒体1011-hの下部には、エンコーダーなどにより構成された回転角度検出器(R)1011-fが設けられ筒体1011-hの回転角度を検出する。尚、回転ステージ台1011-eは、回転ステージ1011のベースとなる台座プレートであり回転アーム1012上に固定される。
 回転軸1011-aにはウェーハ支持台9が固定され、その上にウェーハ1008が配置されており、筒体1011-hも回転軸1011-aに固定されているので、超音波駆動モータ(R)1011-gの駆動力がそのまま直接的にガタがなく筒体1011-hから回転軸1011-aに伝達されるので、極めて高精度に、ウェーハ支持台1009及びウェーハ1008を回転させることができる。
 次に、エンコーダーを用いた、回転アーム1012の回転角度を測定する方法について説明する。
 回転アーム1012の位置検出は、回転アーム支持軸1012-aを中心に低熱膨張の素材で外周にレーザー等で20マイクロメータ程度のピッチでラインを刻んだ角度スケール1020(図18に示す)を取付ける。回転検出器1016には半導体レーザー等の発光部とその反射光を回折格子を通して受ける受光部が組み込まれている。角度スケール1020のラインに回転検出器1016の光りを当て、その反射光でラインを読み取り角度位置を検出する。
 この角度スケール1020をテープ状に加工したテープスケール1021(図18に示す)を回転アーム1012の円弧上に貼り付け、回転検出器1016で読み取ることで更に角度精度を上げることが可能である。なお、以上説明してきた構成は、2軸回転ステージ機構のみに関わるものであり、従って、以上説明した作用効果は、実施例1と異なり、検査機構が回転アームの回転軌道上に配置されていない場合であっても実現可能である。同様に、光学式のウェーハ検査装置に適用した場合であっても、同様の効果を実現できる。
 次に、上述したステージ系において、ウェーハへの荷電粒子線の照射位置決め方法について詳述する。この照射位置決めは、システム制御及び画像処理演算部1106により、演算及び動作制御が行われる。
 図14は回転アーム1012の回転と、回転ステージ1011の回転とによって、荷電粒子線光学系のもとで、上記位置決めを行うための説明図である。図14において、R1は、回転アーム1012の回転半径であり、R2は、半導体ウェーハの半径である。
 半導体プロセスのウェーハ上へのパターンは、X、Y座標系でパターン化されており、設計段階からCAD情報として、パターン形状、座標位置が決められている。
 したがって、(X,Y)座標系の位置情報を回転アーム1012の回転による角度S1と回転ステージ1011の回転によるS2で極座標変換する必要がある。
 図15は、回転角度S1と回転角度S2の制御量を表す式の説明図である。
 結論的には、荷電粒子線の目標照射位置の、ウェーハ中心からの距離Wrに対する回転アーム1012の制御量S1は、次式(8)で表せる。
 S1=2×sin-1(Wr/(2R1)   ・・・(8)
 そして、回転ステージ1011の制御量S2は、次式(9)で表せる。
 S2=-wS+Scor   ・・・(9)
 ここで、上記wS、Scorは、次式(10)、(11)で表せる。
 wS=tan-1((Wy-225)/(Wx-225))   ・・・(10)
 Scor=S1-cos-1(x/Wr)   ・・・(11)
 ただし、(x=R1・sinS1)である。
 更に、荷電粒子線光学系のもとで、視野回転のない正立像とするためには、視野回転を行うラスターローテーションで補正を行うことができるが、その補正量は(S1-S2)を実行すれば算出することができる。
 図16は、本実施例の荷電粒子線装置を測長SEMに適用した場合の具体的な位置決めの動作シーケンスを示すフローチャートである。
 図16において、まず、ステップ1600で、ウェーハ上のパターンについて、(X,Y)座標系でCADデータが与えられる。この(X,Y)座標をS1、S2によるステージ座標に極座標変換し、ステージ移動を行う(ステップ1601)。
 次に、S1、S2から正立像とした時のウェーハの回転角度を計算し(ステップ1602)、粒子線光学系の偏向器1004に対して、回転角度補正を行う(ステップ1603)。これによって表示像は正立像とすることが出来る。
 この段階で第一次の位置決めが終了する(ステップ1604)。
 第一次の位置決めと述べた理由は、この段階で、S1、S2によって各回転軸1011-a、1012-aに設けてある回転角度検出器1011-f、1016によって検出し、各モータ1011-g、1014により駆動するが、各軸1011-a、1012-aの回転位置決め精度は、各軸の回転軸の真円度による回転の芯ズレや、回転角度検出器誤差などの誤差要因により、0.5~数ミクロンメータのズレが発生し、サブミクロンオーダでの位置決めは難しくなる。
 そこで第二段階として、荷電粒子線装置で高倍率に拡大した画像において、CADで作られているパターンデータに基づいて描かれている表示図形と実パターン像とを表示し、パターンマッチング技術によって、位置ズレを検出するようにする(ステップ1605)。
 例えば、実画像の視野が10μm角とし、X、Y共に1000画素とした場合、一画素当たり10nmとなり、パターンマッチングによって10nm近くの位置精度で位置ズレを検出することが出来る。ズレ量が検出出来た後、粒子線装置のイメージシフトでズレ量を補正し(ステップ1606)、その上で目的とするパターンの拡大像を表示、あるいは形状測定、寸法測定などを実行すれば良い(ステップ1607)。
 尚、ウェーハ上で多くの測定点があれば、ステップ1607からステップ1600に戻り、これをn回繰り返すことにより、次々とパターン位置に至達し、観察、測定を行うことが出来る。
 なお、欠陥レビューSEMの場合には、外観検査装置によりウェーハ上の観察位置は既に大まかにはわかっているため、外観検査装置で取得された欠陥座標をステップ1601で極座標に変換する。また、ステップ1605では、CADデータから生成されるパターンデータと実画像のパターンマッチングではなく、実画像に含まれる欠陥位置が視野の中心になるように、実画像のみを用いて位置ズレを検出する。
 以上の方法により、任意のウェーハ上のパターンに対し、全自動で測定したいパターンに至達し、測定をすることが可能となる。
 次に、ウェーハのノッチ検出や、グローバルアライメントを実行する方法に関して説明する。この方法の特徴とするところは粒子線光学系の中心Dに対して回転アーム1012によって回転する軌道上に光学顕微鏡を配置するものである。
 図17は、光学顕微鏡の配置の一例を示す図である。
 図17において、粒子線光学系の中心Dに対して、回転アーム1012の移動に沿って回転ステージの回転中心が描く軌道上に低倍率の光学顕微鏡(位置A)、高倍率の顕微鏡(位置B)、更には偏向顕微鏡(位置C)を配置する。光学顕微鏡は視野の大きな顕微鏡を配置しており、回転アーム1012でウェーハ周辺を視野中心に合わせ、次に回転ステージ1011によって回転することによりウェーハ外周およびノッチ位置を検出することが出来る。
 Bの位置には高倍率の光学顕微鏡を配置し、更に精度良くウェーハアライメントが実施できる。次に回転ステージ1011は、Dの位置に移動し、粒子線光学系の視野中心のもとで、必要あれば更に高精度のアライメントが実施できる。
 一般の光学顕微鏡では見えにくい膜質の場合もあり、偏向顕微鏡を用いることもあるが、それをCの位置に配置し、目的に応じて使いわけても良い。
 いずれの場合においても、光学顕微鏡により素早くグローバルアライメントが実行でき、粒子線光学系のもとに移動できるので、短時間で実行でき、スループットを向上することができる。
 また、図17に示した構成において、光学顕微鏡の位置Bにウェーハエッジ部を回転アーム1012によって合わせ、その位置で回転ステージ1011により360°回転していくと、次々とエッジ部の欠陥等を検出し、次に荷電粒子線光学系の位置Dに回転アーム1012によって移動させ、その位置で回転ステージ1011により360°回転していき、光学顕微鏡で得られた欠陥等をレビューすることが出来る。
 つまり、ウェーハ上に存在する観測位置の画像のデータを、回転ステージ1011の回転だけで次々と取得することが可能であり、しかも、位置精度が高く、かつ高速に実施できるという効果が得られる。これは、測長SEMに用いても同じ効果が得られる。
 詳述すると、ウェーハ上に存在する欠陥の観測点の経路(レビュー経路)あるいは測長を行うべき計測点の経路(測長経路)を各観測点あるいは計測点を全て含むような同心円状に設定し、回転アームによりウェーハの最外周部あるいは中心部から少しずつウェーハの動径方向にウェーハを移動しながら回転ステージを回転させ、同心円状に回転させて画像データを取得する。これにより、ウェーハ周辺部のデータを次々と効率良く、高速に取得することができる。
 ウェーハ上に検出される欠陥は、その中心から半径方向に同心円状に分布することが多く、特にウェーハの周辺部での欠陥が多いと言われている。従って、上のような経路設定方法は、欠陥レビューSEMに適用した場合に特に効果が大きく、スループットの高い、極めて好ましいシステムを実現することができる。
 上の経路設定方法は、まず、ウェーハ上の全画像取得位置の座標を極座標変換し、欠陥位置座標を半径位置(極座標のR成分)に応じてグルーピングする。各グループ毎の欠陥位置座標のS成分がそのまま回転ステージの回転角であり、回転アームの回転角度は各グループ間の動径方向の間隔から算出される。以上の経路設定のための演算処理はシステム制御・画像処理装置1106により実行され、設定された経路情報はステージ制御部1102に伝達され、ステージ制御に用いられる。
 また、上記同心円状のレビュー経路あるいは測長経路が実施例1で説明した内側不感帯の内部に入った場合には、経路移動をイメージシフトに切り替えて画像取得を実行する。この制御は、システム制御・画像処理装置1106で算出された経路情報(現時点で画像を取得している位置の座標情報と次に画像を取得すべき位置の座標情報)をレンズ・偏向器制御部1104に伝達し、レンズ・偏向器制御部1104がイメージシフト量を計算して、偏向器4を制御することにより実行される。このため、ステージ制御部1102は、内側不感帯の境界の座標情報を記憶しておき、現在の画像取得位置が境界内に入ったかどうかを判断して、判断結果を上記の経路情報と共にレンズ・偏向器制御部110に伝達する。同時に、回転ステージおよび回転アームの駆動を停止する。レンズ・偏向器制御部1104は、ステージ制御部1102からの判断情報に基づき、イメージシフトによる画像取得を開始する。
 また、光学顕微鏡の位置Bと、荷電粒子線光学系の位置Dは固定的な位置で一対一に対応しており、光学顕微鏡で検出された欠陥等のレビューしたい場所を、ミスすることなく、例えば位置DでSEMのもとで正確にレビューすることできる。
 さらには、光学顕微鏡による欠陥画像を画像メモリに保存し、次にそれに対応した場所の荷電粒子線画像を画像メモリに保存し、後でこれらを比較解析するように構成すれば、より欠陥部位に対して正しく捉えることができる。
 以上のように、本実施例の一実施形態によれば、微細化に対応し、位置決め精度が高く、外部振動にも強く、かつローコストなステージシステムを有する荷電粒子線装置を実現することができる。
 つまり、回転アーム1012の回転軸1012-aは、真空内でベアリング1015-a、1015-bで支持され、この軸1012-aには回転角度検出器16を備え、回転アーム1012の先端の円弧部は超音波駆動モータ1014で直接駆動されるので、ガタもなく精度の良い駆動が可能になる。
 また、この回転アーム1012の先端付近には、回転アーム1012の一部を支持するガイド機構1013を配置して、このガイド機構1013に沿って回転させるようにすることにより、回転軸1012-aから伸びた回転アーム1012の片持ち支持がなくなり外部振動にも強い、高い共振周波数にすることができ、剛性の高い回転駆動機構にすることができる。
 また、この回転アーム1012の移動量は、ウェーハ直径の約半分のストロークで、回転ステージ1011との併用により、ウェーハの全範囲をカバーすることができるので、試料ステージ1010全体を小形化することができる。
 試料ステージ1010が小形化されるので、これを囲む試料室1005も小形化でき、試料室1005そのものの剛性の向上による外部振動に対する強化が図られ、真空容積の小形化による高速な真空排気ができ、ローコスト化も実現できる。
 一方、ウェーハ上に加工された微細パターンに対する位置決めは、この回転アーム1012の回転軸1012-aと、回転ステージ1011を駆動するステージシステムで行われるが、これらはウェーハパターンのCADデータによる座標情報を用いて行う。このCAD情報は、X,Y座標系で出来ており、これを2つの回転(回転アーム1012の回転、回転ステージ1011の回転)による回転座標系に変換して、各軸1011-a、1012-aを回転駆動させて位置決めする。
 位置決めした時、ウェーハの回転軸方向の角度は荷電粒子線装置の走査方向とは、ずれが生ずるので、演算された回転角度量を装置の走査粒子線の走査方向に回転角度補正量として与えれば、常にウェーハのノッチ側など、決められた方向に対して、正立像を得ることが出来る。
 以上、実施例1または実施例2で説明してきた構成は、荷電粒子線の制御に関する部分を除けば、基本的には光学式ウェーハ検査装置に対しても適用可能である。光学式ウェーハ検査装置は、真空試料室内で検査を行う装置と大気中で検査を行う装置(従って真空試料室を持たない)の両方があるが、真空試料室を持たないタイプの光学式ウェーハ検査装置であっても、2軸回転ステージ機構を導入することにより、装置の設置面積が小型化されるという利点がある。従って、本実施例で説明した各構成の適用により、省スペースで高い検査精度を備えた光学式ウェーハ検査装置を実現することが可能となる。
 101・・・試料室、102・・・回転アーム、103・・・回転ステージ、104・・・制御コンピュータ、105・・・マンマシンインターフェース、106・・・記憶装置、107・・・入力装置、108・・・ウェーハ搬送ユニット、109・・・ウェーハ搬送ロボット、110・・・ゲートバルブ、111・・・ロードポート、112・・・ポッド、201・・・ウェーハ座標系、202・・・ステージ座標系、203・・・検査機構設置位置、204・・・回転アーム回転中心、205・・・回転ステージ回転中心、206・・・検査機構取り付け位置余裕、207・・・外側観察不可能領域、208、301~303、401~403・・・検査機構設置位置、304~306・・・余裕、307・・・帯電計測機器取り付け位置、308・・・除電装置取り付け位置、309、404・・・外周専用検査機構取り付け位置、501・・・回転に伴うステージ中心目印の軌跡、502、503・・・回転に伴うステージ中心ぶれ(X、Y)、504・・・回転量のずれ量、601・・・視野中心に対する回転ステージ回転中心、602・・・S1調整後の回転ステージ回転中心、603・・・回転アーム軸方向のずれ量、701・・・V字型ノッチの画面内位置、702・・・ウェーハ中心のずれ量、801・・・ウェーハ座標系→極座標変換処理部、802・・・極座標→2軸回転ステージ座標変処理部、803・・・ウェーハ中心のずれ量のデータ、804・・・ウェーハ中心のずれ量のデータ、805・・・視野中心に対する回転ステージ回転中心ずれ量のデータ、806・・・回転量のずれ量のデータ、807・・・回転に伴うステージ中心ぶれ(X、Y)のデータ、808・・・入力座標、809・・・検査機構指定、810・・・各検査機構取り付け位置(回転アーム角度)、901・・・光学検査装置、902・・・光学顕微鏡、903・・・荷電粒子線検査装置、904・・・帯電計測機器、905・・・除電装置、906・・・外周専用検査機構

Claims (19)

  1. 対象試料が載置された状態で所定の回転中心回りに前記試料を回転させる回転ステージ(103、1010)と、当該回転ステージを支持し円弧状に移動させる回転アーム(102、1012)と、前記回転ステージを回転駆動する手段(1101)および前記回転アームを駆動する手段(1014)とを備えた2軸回転ステージ機構と、
     前記対象試料に対し1次荷電粒子線を照射して2次粒子画像を取得するための荷電粒子光学鏡筒(1001、1002)を含む複数の検査機構とを備え、
    前記2次粒子画像を用いて前記試料の検査または計測を行う荷電粒子線装置において、
    前記複数の検査機構が、それぞれ前記回転ステージの回転中心が前記回転アームの回転に応じて描く軌跡上に配置されていることを特徴とする荷電粒子線装置。
  2. 請求項1に記載の荷電粒子線装置において、
    前記回転アームの最小可動範囲が、当該可動範囲における前記回転ステージの最大回転中心間距離が前記試料半径よりも大きくなるように設定されていることを特徴とする荷電粒子線装置。
  3. 請求項2に記載の荷電粒子線装置において、
    前記回転アームの最小可動範囲が、前記検査機構の配置位置誤差あるいは回転アームの回転誤差により発生する、許容すべきずれ量分だけ更に大きくなるように設定されていることを特徴とする荷電粒子線装置。
  4. 請求項1に記載の荷電粒子線装置において、
     前記試料上の画像取得位置の直交座標値を極座標値に変換して、前記回転ステージ及び前記回転アームの動作を制御するステージ制御部(1102)を備えたことを特徴とする荷電粒子線装置。
  5. 請求項1に記載の荷電粒子線装置において、
    前記複数の検査機構として、前記荷電粒子光学鏡筒に加えて光学顕微鏡を備えることを特徴とする荷電粒子線装置。
  6. 請求項5に記載の荷電粒子線装置において、
    前記複数の検査機構として、表面電界計測計(904)または除電器(905)を含むことを特徴とする荷電粒子線装置。
  7. 請求項1記載の荷電粒子線装置において、
    前記回転アームの回転半径Rおよび前記回転ステージの回転半径Rが略等しく、前記回転アームの移動軌跡に沿った概略円周上に外周検査手段(906)が配置されていることを特徴とする荷電粒子線装置。
  8. 請求項1記載の荷電粒子線装置において、
    前記回転ステージの偏心補正手段(104、1106)を備えたことを特徴とする荷電粒子線装置。
  9. 請求項8記載の荷電粒子線装置において、
    前記回転ステージの回転に伴い当該回転ステージの回転中心が描く軌跡の情報から、理想的な回転中心と現実の回転中心との偏差量を算出し、前記偏心補正のための補正量を算出するステージ制御部(1102)を備えたことを特徴とする荷電粒子線装置。
  10. 請求項1に記載の荷電粒子線装置において、
    前記試料上における前記2次粒子画像の取得位置を結ぶ経路を同心円状の経路に設定する制御手段(1106)を備えたことを特徴とする荷電粒子線装置。
  11. 請求項10に記載の荷電粒子線装置において、
    前記設定経路が装置上の不感帯に入った場合には、イメージシフトにより画像を取得することを特徴とする荷電粒子線装置。
  12. 対象試料が載置された状態で所定の回転中心回りに前記試料を回転させる回転ステージ(103、1010)と、当該回転ステージを支持し円弧状に移動させる回転アーム(102、1012)と、前記回転ステージを回転駆動する手段(1101)および前記回転アームを駆動する手段(1014)とを備えた2軸回転ステージ機構と、
     前記対象試料に対し1次荷電粒子線を照射して2次粒子画像を取得するための荷電粒子光学鏡筒(1001、1002)を含む複数の検査機構とを備え、
     前記2次粒子画像を用いて前記試料の検査または計測を行う荷電粒子線装置において、
     前記2軸回転ステージ機構は、
     前記回転アーム上の前記回転ステージの支持位置とは逆側の端部に設けられ、当該回転アームの回転中心となる支持軸(1012-a)と、
     前記中心軸とは逆側の端部の底面部を支持するガイド機構(1013)と、
    当該ガイド機構に沿って前記回転アームを移動させる駆動源(1014)とを備えたことを特徴とする荷電粒子線装置。
  13. 請求項12に記載の荷電粒子線装置において、
    前記駆動源がノンバックラッシュモータであることを特徴とする荷電粒子線装置。
  14. 請求項13に記載の荷電粒子線装置において、
    前記回転アームの回転角度を計測する回転角度検出器(1016)を備えたことを特徴とする荷電粒子線装置。
  15. 請求項14に記載の荷電粒子線装置において、
    前記回転アーム駆動源および前記回転角度検出器の配線は回転アームに沿って配線され、
     更に、前記回転アームの支持軸近傍に前記配線の引き出し部(1017、1018)を備えたことを特徴とする荷電粒子線装置。
  16. 請求項12に記載の荷電粒子線装置において、
    前記回転アームの温度を測定する温度センサ(1019)を備え、
    当該温度センサにより計測された温度データから前記回転アームの回転半径を計算し、当該計算された回転半径の大きさから前記回転アームまたは回転ステージの回転制御量を計算する演算手段(1102)を備えたことを特徴とする荷電粒子線装置。
  17. 請求項12に記載の荷電粒子線装置において、
    前記回転アームの温度を測定する温度センサ(1019)と、
    前記回転アームの温度を調整する温度調整手段と、
    当該温度センサにより計測された温度データを用いて前記温度制御手段の動作を制御する演算手段とを備えたことを特徴とする荷電粒子線装置。
  18. 請求項12に記載の荷電粒子線装置において、
    前記回転ステージまたは回転アームの駆動手段として、圧電素子を用いた駆動モータまたは超音波モータを備えたことを特徴とする荷電粒子線装置
  19. 対象試料が載置された状態で所定の回転中心回りに前記試料を回転させる回転ステージ(103、1010)と、当該回転ステージを支持し円弧状に移動させる回転アーム(102、1012)と、前記回転ステージを回転駆動する手段(1101)および前記回転アームを駆動する手段(1014)とを備えた2軸回転ステージ機構と、
     前記対象試料に対し1次荷電粒子線を照射して2次粒子画像を取得するための荷電粒子光学鏡筒(1001、1002)を含む複数の検査機構とを備えた荷電粒子線装置を用いた荷電粒子画像の取得方法において、
     前記試料上の画像取得位置を前記検査機構の直下に移動させるに際して、
    前記回転アーム上の、前記回転ステージの支持位置とは逆側の端部を動かすことにより、当該回転アームを回転させることを特徴とする荷電粒子画像の取得方法。
PCT/JP2009/068214 2008-10-24 2009-10-22 荷電粒子線装置 WO2010047378A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/124,599 US8334520B2 (en) 2008-10-24 2009-10-22 Charged particle beam apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-273986 2008-10-24
JP2008273986A JP5222091B2 (ja) 2008-10-24 2008-10-24 荷電粒子線装置
JP2008-277122 2008-10-28
JP2008277122A JP5325531B2 (ja) 2008-10-28 2008-10-28 荷電粒子線装置

Publications (1)

Publication Number Publication Date
WO2010047378A1 true WO2010047378A1 (ja) 2010-04-29

Family

ID=42119416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068214 WO2010047378A1 (ja) 2008-10-24 2009-10-22 荷電粒子線装置

Country Status (2)

Country Link
US (1) US8334520B2 (ja)
WO (1) WO2010047378A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169505A1 (ja) * 2011-06-09 2012-12-13 株式会社日立ハイテクノロジーズ ステージ装置およびステージ装置の制御方法
JP2020177924A (ja) * 2020-07-22 2020-10-29 株式会社日立ハイテク 荷電粒子ビーム装置

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3557956A1 (en) 2004-07-21 2019-10-23 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
EP2389981A3 (en) 2005-11-18 2012-03-07 Still River Systems, Inc. Charged particle radiation therapy
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
KR101711193B1 (ko) * 2010-06-04 2017-02-28 삼성전자 주식회사 웨이퍼 검사 방법 및 웨이퍼 검사 시스템
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
EP2901822B1 (en) 2012-09-28 2020-04-08 Mevion Medical Systems, Inc. Focusing a particle beam
TW201433331A (zh) 2012-09-28 2014-09-01 Mevion Medical Systems Inc 線圈位置調整
JP6121545B2 (ja) 2012-09-28 2017-04-26 メビオン・メディカル・システムズ・インコーポレーテッド 粒子ビームのエネルギーの調整
TW201422278A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 粒子加速器之控制系統
TW201424466A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 磁場再生器
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
ES2768659T3 (es) 2013-09-27 2020-06-23 Mevion Medical Systems Inc Exploración de haces de partículas
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
KR102175021B1 (ko) * 2014-02-12 2020-11-06 케이엘에이 코포레이션 웨이퍼 노치 검출
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
CN106158715B (zh) * 2015-04-24 2021-04-02 上海微电子装备(集团)股份有限公司 用于晶圆的预对准装置及方法
JP6539109B2 (ja) * 2015-05-18 2019-07-03 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び試料昇降装置
US9911574B2 (en) * 2015-08-14 2018-03-06 The Trustees of Princeton University, Office of Technology and Trademark Licensing Scanning probe lithography methods utilizing an enclosed sinusoidal pattern
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US10872744B2 (en) 2016-06-17 2020-12-22 Hitachi High-Tech Corporation Charged particle beam apparatus
EP3906968A1 (en) 2016-07-08 2021-11-10 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
WO2019006253A1 (en) 2017-06-30 2019-01-03 Mevion Medical Systems, Inc. CONFIGURABLE COLLIMATOR CONTROLLED BY LINEAR MOTORS
WO2020185544A1 (en) 2019-03-08 2020-09-17 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor
US10825646B2 (en) * 2019-03-28 2020-11-03 Fei Company Actuator-assisted positioning systems and methods
CN110501028A (zh) * 2019-09-16 2019-11-26 哈尔滨工程大学 一种用于双轴旋转mems-sins的十六位置旋转调制方法
JP7360978B2 (ja) * 2020-03-18 2023-10-13 株式会社日立ハイテクサイエンス 荷電粒子ビーム装置
JP7433180B2 (ja) * 2020-09-23 2024-02-19 東京エレクトロン株式会社 搬送装置およびロボットアームのティーチング方法
US11749495B2 (en) * 2021-10-05 2023-09-05 KLA Corp. Bandpass charged particle energy filtering detector for charged particle tools

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162057A (ja) * 1994-12-07 1996-06-21 Hitachi Ltd 荷電粒子線装置
JP2000207028A (ja) * 1998-07-10 2000-07-28 Nanometrics Inc ステ―ジ回転を補償するために極座標ステ―ジ及び連続画像回転を用いる装置及びその装置による測定方法
JP3389788B2 (ja) * 1996-09-05 2003-03-24 株式会社日立製作所 荷電粒子線装置
JP2007059640A (ja) * 2005-08-25 2007-03-08 Olympus Corp 外観検査装置
JP2008024457A (ja) * 2006-07-22 2008-02-07 Tekkusu Iijii:Kk 搬送装置
JP2008305905A (ja) * 2007-06-06 2008-12-18 Hitachi High-Technologies Corp 異物・欠陥検査・観察システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7295314B1 (en) 1998-07-10 2007-11-13 Nanometrics Incorporated Metrology/inspection positioning system
JP5690086B2 (ja) * 2010-07-02 2015-03-25 株式会社キーエンス 拡大観察装置
JP5517790B2 (ja) * 2010-07-02 2014-06-11 株式会社キーエンス 拡大観察装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162057A (ja) * 1994-12-07 1996-06-21 Hitachi Ltd 荷電粒子線装置
JP3389788B2 (ja) * 1996-09-05 2003-03-24 株式会社日立製作所 荷電粒子線装置
JP2000207028A (ja) * 1998-07-10 2000-07-28 Nanometrics Inc ステ―ジ回転を補償するために極座標ステ―ジ及び連続画像回転を用いる装置及びその装置による測定方法
JP2007059640A (ja) * 2005-08-25 2007-03-08 Olympus Corp 外観検査装置
JP2008024457A (ja) * 2006-07-22 2008-02-07 Tekkusu Iijii:Kk 搬送装置
JP2008305905A (ja) * 2007-06-06 2008-12-18 Hitachi High-Technologies Corp 異物・欠陥検査・観察システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169505A1 (ja) * 2011-06-09 2012-12-13 株式会社日立ハイテクノロジーズ ステージ装置およびステージ装置の制御方法
JP2012256516A (ja) * 2011-06-09 2012-12-27 Hitachi High-Technologies Corp ステージ装置およびステージ装置の制御方法
CN103608890A (zh) * 2011-06-09 2014-02-26 株式会社日立高新技术 台装置以及台装置的控制方法
US8907303B2 (en) 2011-06-09 2014-12-09 Hitachi High-Technologies Corporation Stage device and control method for stage device
CN103608890B (zh) * 2011-06-09 2015-01-28 株式会社日立高新技术 台装置以及台装置的控制方法
JP2020177924A (ja) * 2020-07-22 2020-10-29 株式会社日立ハイテク 荷電粒子ビーム装置
JP7041207B2 (ja) 2020-07-22 2022-03-23 株式会社日立ハイテク 荷電粒子ビーム装置

Also Published As

Publication number Publication date
US8334520B2 (en) 2012-12-18
US20110260057A1 (en) 2011-10-27

Similar Documents

Publication Publication Date Title
WO2010047378A1 (ja) 荷電粒子線装置
JP7428406B2 (ja) 顕微鏡検査において大面積の撮像を容易にするためのカメラと検体の整列
JP5325681B2 (ja) 荷電粒子線装置
US9136091B2 (en) Electron beam apparatus for inspecting a pattern on a sample using multiple electron beams
US7888639B2 (en) Method and apparatus for processing a micro sample
US5641960A (en) Circuit pattern inspecting device and method and circuit pattern arrangement suitable for the method
JP5193112B2 (ja) 半導体ウエーハ外観検査装置の検査条件データ生成方法及び検査システム
US7321108B2 (en) Dynamic focusing method and apparatus
JP5066393B2 (ja) 異物・欠陥検査・観察システム
US20090218509A1 (en) Charged particle beam apparatus
JP4413746B2 (ja) 荷電粒子ビーム装置
JPH1048145A (ja) 微小異物検出方法及びその検出装置
JP2007059640A (ja) 外観検査装置
JP5325531B2 (ja) 荷電粒子線装置
JP5222091B2 (ja) 荷電粒子線装置
JP2005044817A (ja) 微小試料加工観察方法及び装置
JP2009052966A (ja) 基板検査装置
TWI776355B (zh) 荷電粒子線裝置、荷電粒子線裝置的試料對準方法
JP2019129210A (ja) ステージ装置、及び処理装置
JP4867219B2 (ja) 検査装置及び検査装置の位置決め方法
WO2020200745A1 (en) Multi-beam inspection apparatus with single-beam mode
JP4477573B2 (ja) 基板検査装置
US20040179096A1 (en) Imaging system using theta-theta coordinate stage and continuous image rotation to compensate for stage rotation
JP2008139050A (ja) 線幅測定装置
KR20060035159A (ko) 반도체 기판 검사 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13124599

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09822075

Country of ref document: EP

Kind code of ref document: A1