JP3125805B2 - 円形加速器 - Google Patents

円形加速器

Info

Publication number
JP3125805B2
JP3125805B2 JP03267351A JP26735191A JP3125805B2 JP 3125805 B2 JP3125805 B2 JP 3125805B2 JP 03267351 A JP03267351 A JP 03267351A JP 26735191 A JP26735191 A JP 26735191A JP 3125805 B2 JP3125805 B2 JP 3125805B2
Authority
JP
Japan
Prior art keywords
electromagnet
tune
bump
orbit
charged particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03267351A
Other languages
English (en)
Other versions
JPH05109499A (ja
Inventor
和夫 平本
政嗣 西
明史 板野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03267351A priority Critical patent/JP3125805B2/ja
Priority to US07/857,660 priority patent/US5285166A/en
Publication of JPH05109499A publication Critical patent/JPH05109499A/ja
Application granted granted Critical
Publication of JP3125805B2 publication Critical patent/JP3125805B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/10Arrangements for ejecting particles from orbits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、荷電粒子を出射する円
加速器に関する。
【0002】
【従来の技術】従来、円形加速器では、加速した電子や
イオンを加速器から出射し、物理実験や医療等に使用し
てきた。この加速器からの出射方法については、エー・
アイ・ピー・コンファレンス・プロシーディングNo.1
27(1983年)(AIPConference Proceedings)
の第53頁から第61頁において論じられているよう
に、ベータトロン振動の3次共鳴もしくは半整数共鳴が
用いられてきた。
【0003】図2に従来の加速器の一例を示す。偏向電
磁石3と収束用4極電磁石5,非収束用4極電磁石7の
効果により、入射用インフレクター15から入射された
荷電粒子は、平衡軌道(荷電粒子が安定して運動するこ
とができる一周で閉じたループ)1のまわりを安定にベ
ータトロン振動しながら周回する。また、加速空洞8を
通過する際に荷電粒子はエネルギーが与えられる。この
ような加速過程では、荷電粒子のチューン、即ち、加速
器1周あたりのベータトロン振動数は、収束4極電磁石
5及び非収束4極電磁石7を用い、水平,垂直両方向と
も通常、整数±1/4に設定される。
【0004】加速終了後、荷電粒子のビームを出射する
段階では、ベータトロン振動に前述の共鳴を励起させる
ため、図2中の4極電磁石5,7を用い、ビームを水平
方向に取り出す場合は水平方向チューンを、ビームを垂
直方向に取り出す場合は垂直方向チューンを次のように
調整する。即ち、半整数共鳴の場合は、チューンを整数
±1/2に近づけ、3次共鳴の場合は、チューンを整数
±1/3に近づける。この状況で、半整数共鳴を励起す
る場合は、加速器にあらかじめ設置した8極電磁石を励
磁し、また、3次共鳴を励起する場合は6極電磁石を励
磁する(図2には6極電磁石9を図示)。以上により、
ベータトロン振動に共鳴が励起され、安定限界をこえた
粒子は、ベータトロン振動の変化が大きくなっていく。
また、この状況でビームがダクトに衝突し失われること
を防止するため、図2に示す2極バンプ電磁石10,1
1を励磁し、出射用デフレクター13の前後で平衡軌道
を出射用デフレクター側にずらしたバンプ軌道(局所的
に歪ませた軌道)12を作っておく。
【0005】この時のビームの挙動を図3の位相空間を
使って説明する。図3は、3次共鳴励起出射時における
図2の出射用デフレクター位置での出射初期と末期の位
相空間で、横軸はビームの水平方向変位x、縦軸はビー
ムの軌道勾配x′(=dx/ds、sは進行方向距離)
を表わす。3次共鳴励起時には、図3のΔABCのよう
に三角形状のセパラトリックス(安定限界)が存在す
る。3次共鳴の場合、チューンはほぼ整数±1/3であ
るから、3回に一度ほぼ同じ状態になる。すなわち、各
々の荷電粒子は出射位置において3つの状態をとりう
る。図3における黒丸印の3つの流れは、セパラトリッ
クスの外側の荷電粒子の3つの状態の遷移を示したもの
である。例えば、図3(a)において、a1 の状態をと
った荷電粒子は、一周後b1 、更に一周後c1 または更
にa2 ……といった遷移をし、最終的には出射器である
出射用デフレクター13の変位xd に到達し、外部に出
射される。
【0006】周回している荷電粒子にはベータトロン振
動の振幅の大きいものもあり、小さいものもある。荷電
粒子を徐々に出射させるために、ベータトロン振動の振
幅の大きいものが順に取り出す。このため、出射初期は
セパラトリックスを図3(a)のように比較的大きくし、
その後時間とともに小さくしていく。この操作を図2の
補助の4極電磁石14を用いるか、もしくは、多数ある
4極電磁石5,7のうち1組の4極電磁石5,7に設け
た補助コイルを用いて行なう。すなわち、補助4極電磁
石、あるいは補助コイルを有する4極電磁石でチューン
をさらに整数±1/3に近づけセパラトリックスを図3
のΔA′,B′,C′のように小さくし、ビームを出射
するようにしている。
【0007】
【発明が解決しようとする課題】上記のようにして荷電
粒子ビームを出射すると、図3の位相空間の粒子軌跡か
ら分かるように、出射初期、即ち、セパラトリックスが
ΔABCのように大きい場合と、出射末期のセパラトリ
ックスがΔA′,B′,C′のように小さい場合では、
出射ビームの軌道勾配が変化し、出射ビームを多く取り
出せないという問題が生じていた。
【0008】また、近年、加速器をより小型化し、工業
用あるいは医療用として使用する必要が生じているが、
上記従来技術のように荷電粒子ビーム出射時のチューン
の微調を補助4極電磁石14により行なおうとすると、
補助4極電磁石と他の機器との干渉等の問題により、小
型化が阻害されるおそれがあった。
【0009】本発明の目的は、小型で、大電流の出射が
可能な円形加速器を提供することにある。
【0010】
【0011】
【0012】
【課題を解決するための手段】上記目的を達成する本発
明の特徴は、荷電粒子に周回軌道を採らせる偏向電磁石
と、荷電粒子のベータトロン振動に共鳴を励起するため
の共鳴励起電磁石と、共鳴を起こした荷電粒子を前記周
回軌道から取り出す出射口と、荷電粒子の平衡軌道を移
動させる2つのバンプ電磁石とを有する円形加速器にお
いて、前記2つのバンプ電磁石の間に前記偏向電磁石或
いは6極以上の多極電磁石が配置され、前記2つのバン
プ電磁石は、前記共鳴励起電磁石によって共鳴が励起さ
れているときに、2つのバンプ電磁石の間に配置された
前記偏向電磁石及び前記多極電磁石における荷電粒子の
平衡軌道を移動させて、荷電粒子のチューンを変化させ
ることにある。
【0013】
【0014】
【作用】従来、補助4極電磁石あるいは補助コイルを有
する4極電磁石でチューンそのものを変えていたのに対
し、本発明では偏向電磁石又は6極以上の多極電磁石に
おける荷電粒子の平衡軌道を移動させることによりチュ
ーンを変化させる。
【0015】また、出射位置にバンプ軌道を作り、チュ
ーンの変化による出射口における荷電粒子ビームの軌道
勾配の変化をバンプ軌道の勾配で補正すれば、出射口に
おける荷電粒子ビームの軌道勾配の変化を小さく抑える
ことができる。
【0016】更に、前記荷電粒子の平衡軌道の移動を前
記バンプ電磁石や荷電粒子を加速するための高周波加速
空洞などの他の用途に用いられる機器で実現することに
より、チューン補正用4極電磁石14が不要となり加速
器を小型化できる。
【0017】次に何故、平衡軌道を制御することにより
チューンの調整が可能となるかを説明する。
【0018】まず、偏向電磁石の場合について説明す
る。図4のように偏向電磁石での座標系をとり、ビーム
の変位をx、軌道勾配をx′とすると偏向電磁石部での
ベータトロン振動の方程式は次のように書き表わせる。
【0019】
【数1】
【0020】
【数2】
【0021】(数1),(数2)から分かるように、x
やx′が小さい場合あるいは曲率半径ρが大きい場合に
は、(数1),(数2)の右辺最終項は各々無視するこ
とができる。その結果、変位xは、次の線形振動の方程
式により書き表わせる。
【0022】
【数3】
【0023】従って、チューンは、xやx′の大きさに
依存しない。一方、xやx′の大きい場合あるいは曲率
半径ρが小さい場合は、(数1),(数2)の右辺第2
項の影響により、変位xの振動方程式は、次式で表わさ
れる非風形方程式となる。
【0024】
【数4】
【0025】従って、上式右辺第2項,第3項,第4項
の影響により、チューンは変位x,x′の大きさにより
変化する。従来のρが大きな加速器ではあらわれなかっ
たこの効果を、本発明では利用し、チューンの変化、セ
パラトリックスの大きさ制御等に用いるものである。
【0026】次に、平衡軌道が6極以上の多極電磁石部
で変化した時のチューン変化を6極電磁石の場合を例に
とって説明する。6極電磁石部を通過する際の変位xは
次式で表わされる。
【0027】
【数5】
【0028】係数Sx は、6極電磁石の励磁量により決
まる値で、この係数Sx が正の場合には変位xが正の時
にチューンが増加し、変位xが負の場合にはチューンは
減少する。また、係数Sx が負の時には、変位xが正の
時、チューンは減少し、変位xが負の場合にはチューン
は増加する。
【0029】以上、述べたように、偏向電磁石又は6極
以上の多極電磁石における荷電粒子の平衡軌道を移動さ
せることによって、チューンを変化させることができ、
また、出射の際のセパラトリックスの大きさを調整でき
る。なお、出射口におけるバンプ軌道を調整することに
より荷電粒子ビームの軌道勾配を調整できる。
【0030】
【実施例】以下、本発明を実施例により詳細に説明す
る。
【0031】(実施例1)図1は、本発明の実施例を示
す医療用の円形加速器で、全周をほぼ正六角形をした6
超周期で構成し、周長は37mである。図1に示すよう
に荷電粒子を出射する加速器では、4極電磁石5及び7
は幾何学的に対称に配置されている。エネルギー10M
eVのプロトンビームを、入射用インフレクター15か
ら入射し、曲率半径2.0m で長さ2.1m の偏向電磁
石3,長さ0.2m の非収束4極電磁石7,長さ0.2
m の収束4極電磁石5を用いてエミッタンス40πmm
・mradのビームを周回させる。ビームは図1の1に示す
平衡軌道のまわりをベータトロン振動しながら周回し、
8の高周波加速空胴により加速される。この時、偏向電
磁石3や4極収束電磁石5,4極非収束電磁石7の励磁
量は、加速に伴うビームの運動量増加分に比例して励磁
量を増加させる。この加速のプロセスでは、ビームの水
平方向のチューンを1.75 、垂直方向のチューンを
1.25 にするように、4極電磁石5,7を励磁する。
【0032】このようにして加速し、ビームが最高エネ
ルギー100MeVに達すると、加速によりビームのエ
ミッタンスは12πmm・mradとなる。ここで偏向電磁石
3の励磁量は0.7T で一定に保つ一方、8の空胴から
高周波を印加することを停止する。その結果、高周波印
加時にはバンチを形成して周回していたビームは、連続
ビームとなって周回する。また、この状態で4極収束電
磁石5と4極非収束電磁石7は、水平方向チューンが
1.75,垂直方向チューンが1.25となるように励磁
する。
【0033】ビームの出射は、図1の出射用デフレクタ
ー13で行なうため、デフレクター13の上流側と下流
側にバンプ電磁石10,11を設置している。バンプ電
磁石10,11を励磁することにより、バンプ軌道12
が偏向電磁石3を通るため、下記の理由によりチューン
が変化する。
【0034】図5は図1の加速器のGH間を模式的に示
す図である。本実施例ではビームの平衡軌道1をずらし
てバンプ軌道12を作り、かつバンプ軌道12を偏向電
磁石3(あるいは6極電磁石9の部分)を通るようにし
ている。ここで、6極電磁石9は、ビームの運動量が設
計値からずれた場合に生じるチューンの変化、即ち、ク
ロマティシティを補正するために用いているもので従来
の加速器でも用いられる場合がある。バンプ軌道12
は、例えば2極バンプ電磁石10,11で作ることがで
きる。バンプ軌道12が偏向電磁石3(あるいは6極電
磁石9)を通過するようにすれば、前述した理由により
チューンが変化する。そこで、出射前にバンプ電磁石1
0の磁束密度が0.3T,バンプ電磁石11の磁束密度
が0.36Tとなるように各々を励磁し、バンプ軌道を
作っておく。このバンプ軌道を作ると同時に、4極収束
電磁石5の磁場勾配を0.60T/m 4極収束電磁石7
の磁場勾配を2.09T/m となるように調整する。こ
の調整により、垂直方向チューンは、1.25 のまま
で、水平方向チューンが3次共鳴状態に近い1.67 と
なっている(バンプ電磁石10,11の励磁量を各々1
/3にすると水平方向チューンは、ちょうど5/3とな
る。)。
【0035】この段階で長さ0.2m の共鳴励起用の6
極電磁石9を励磁し、磁界強度を18T/m2 とする
と、3次共鳴により、振幅が最も大きいエミッタンス1
0πmm・mradのビームの振幅が徐々に大きくなってい
く。図6,図5の出射用デフレクター13が設置されて
いるDの位置でのビームの位相空間上の軌跡を示す。出
射用のデフレクター13は、水平方向位置100mmの位
置に設置し、図6から分るように、ビームは、およそ1
50ターン後に勾配6mradでデフレクター13に入り、
加速器から出射される。
【0036】次に、バンプ電磁石10,11の励磁量を
0.1 秒をかけ減少させて、バンプ電磁石10の磁束密
度を0.1T 、バンプ電磁石11の磁束密度を0.12
Tとする。これにより、水平方向チューンは1.67 か
ら5/3に近づいていく。その結果、安定限界は徐々に
小さくなり、図7に示すようにベータトロン振動の振幅
の小さい粒子については軌道勾配がおよそ4mradで出射
できる。
【0037】さらに、この過程で、安定限界の中心のバ
ンプ軌道勾配を減少させていく効果により、安定限界を
小さくしていく際の出射ビームの軌道勾配の増加(図3
参照)を抑制する。その結果、図6と図7の比較から分
かるように出射中のビームの軌道勾配の変化を出射用デ
フレクターの偏向角を調整することなしに、およそ2mr
adに抑えることができる。
【0038】以上説明したように、本実施例は、バンプ
電磁石6の励磁量を変えることにより、従来技術では図
2の補正用4極電磁石14により行なっていたチューン
の微調が可能となり、これらのチューン補正用4極電磁
石14が不要となる。このように、バンプ電磁石の励磁
量を変えることにより、チューンを変えセパラトリック
スを小さくしベータトロン振動の振幅の小さな粒子を出
射できる一方、出射位置でのバンプ軌道勾配、即ち、図
3の位相空間でのセパラトリックスの出射位置での軌道
勾配を変えることができる。
【0039】即ち、本実施例では、偏向電磁石あるいは
6極電磁石の位置の平衡軌道を移動させることによりチ
ューンを変化させ図3の位相空間のセパラトリックスを
小さくしていくと共に、出射ビームの軌道勾配が出射初
期から末期へと変化する方向(図3では正の方向に増
加)と逆の方向にバンプ軌道勾配を変化させ、出射ビー
ムの軌道勾配の変化を小さく抑えるものである。尚、図
2の例で説明すると、従来、チューン補正用4極電磁石
14で行なっていたチューン微調整と出射軌道勾配の調
整をバンプ電磁石10,11のみを用いて行なうことに
なる。
【0040】以上、本実施例によれば、出射軌道用のバ
ンプ電磁石により偏向電磁石(あるいは6極電磁石)に
おける荷電粒子の平衡軌道を変えることでチューンを変
化させることができる。また、バンプ軌道勾配を調整す
ることにより、荷電粒子ビームの出射軌道の変化を2mr
adに抑えることができる。更に、チューン補正用4極電
磁石が不要なので小型な加速器を提供できる。
【0041】(実施例2)次に、本発明の第2の実施例
を図8に示す。図8は、パルス状イオンビームを蓄積し
た後、イオンビームを連続的に出射する装置で、全周3
7mで、全体を6超周期で構成する。入射用インフレク
ター15から、エネルギー50MeVのパルス状プロト
ンビームを入射する。このプロトンビームは、エミッタ
ンスが10πmm・mrad、パルス長およそ100μsで図
9に示すように1秒間に2回ライナックより入射され
る。また、入射ビームは、運動量幅が±0.1% で、蓄
積リングからの出射時には、いずれの運動量のビームも
連続的に出射する。
【0042】インフレクター15から入射したビーム
は、曲率半径2.0m の偏向電磁石3,収束4極電磁石
5,非収束4極電磁石7により、蓄積リング内を安定に
周回する。この状況では、水平方向チューンが1.67
垂直方向チューンが1.25 となるように4極電磁石5
及び7の磁場勾配を各々0.42T/m,1.46T/m
となるようにしておく。また、偏向電磁石の磁場は、
0.6T とし、ビームの曲率半径ρを2mとなるように
しておく。また、入射ビームは、運動量幅を持っている
ため、運動量変化に起因するチューンの変化を補正する
ため、収束用6極電磁石16と非収束用6極電磁石17
を、図8のように各直線部に配置し、16の磁場強度を
2.8T/m2,17の磁場強度を3.6T/m2とする。
【0043】一方、平衡軌道を移動させるバンプ電磁石
10と11は入射前に、各々0.2T,0.24T に励
磁しておき、バンプ軌道12が偏向電磁石3と6極電磁
石16,17を通るようにしておく。さらに、共鳴励起
用6極電磁石9は、磁場強度を12T/m2 となるよう
にあらかじめ励磁しておく。この段階ではチューンが、
共鳴状態からおよそ0.01 離れているためにビームは
安定に周回しており、次に、バンプ電磁石10と11の
磁場強度を図9に示すように0.5 秒間で各々0.07
Tと0.08Tに減少すると、この時、水平方向チュー
ンは、図9に示すように0.5 秒間で1.666 …とな
る。その結果、図10及び図11に、図8の出射用デフ
レクター13位置における位相空間を示すように、ベー
タトロン振幅の大きな粒子から振幅の小さな粒子へと出
射でき、かつ、出射ビームの勾配がほぼ一定に保てるこ
とが分かる。
【0044】以上の2実施例では、いずれもバンプ軌道
で偏向電磁石あるいは6極以上の多極電磁石における荷
電粒子の平衡軌道を移軌させているが、他の方法で前記
電磁石におけめ平衡軌道を変えてもよい。例えば、高周
加速空胴の加速周波数の関係を調整することで前記平衡
軌道を変えることもできる。また、専用に前記平衡軌道
移動用の空胴を周回軌道に設けてもよい。
【0045】
【発明の効果】本発明によれば、偏向電磁石あるいは6
極以上の多極電磁石における荷電粒子の平衡軌道を移動
させることによりチューンを調整することが可能とな
る。更にチューンを変化させる際、出射ビームの軌道勾
配を一定に保つようにすることにより、ビーム出射の制
御が容易になり、大電流の出射が可能な加速器を提供で
きる。
【0046】また、出射時に使用していたチューン調整
用補助4極電磁石が不要となるため、小型な加速器を提
供できる。
【図面の簡単な説明】
【図1】本発明の実施例1を示す図。
【図2】従来の加速器を示す図。
【図3】(a),(b)は、共鳴時の位相空間を示す
図。
【図4】座標系を示す図。
【図5】本発明の概要を示す図。
【図6】各々実施例1の出射時の位相空間を示す図。
【図7】各々実施例1の出射時の位相空間を示す図。
【図8】実施例2を示す図。
【図9】(a),(b),(c)は入力ビーム電流,バン
プ電磁石励磁量,出射電流の時間変化を示す図。
【図10】各々、実施例2の出射時の位相空間を示す
図。
【図11】各々、実施例2の出射時の位相空間を示す
図。
【符号の説明】
1…平衡軌道、3…偏向電磁石、4…6極電磁石、5…
収束用4極電磁石、7…非収束用4極電磁石、8…高周
波加速空胴、9…共鳴励起用6極電磁石、10,11…
バンプ電磁石、12…バンプ軌道、13…出射用デフレ
クター、14…チューン補正用4極電磁石、15…入射
用インフレクター、16…収束用6極電磁石、17…非
収束用6極電磁石。
フロントページの続き (72)発明者 板野 明史 千葉県千葉市穴川四丁目9番1号 放射 線医学総合研究所内 (56)参考文献 特開 昭61−116800(JP,A) 特開 平3−263800(JP,A) (58)調査した分野(Int.Cl.7,DB名) H05H 13/04 H05H 7/10

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】荷電粒子に周回軌道を採らせる偏向電磁石
    と、荷電粒子のベータトロン振動に共鳴を励起するため
    の共鳴励起電磁石と、共鳴を起こした荷電粒子を前記周
    回軌道から取り出す出射口と、荷電粒子の平衡軌道を移
    動させる2つのバンプ電磁石とを有する円形加速器にお
    いて、 前記2つのバンプ電磁石の間に前記偏向電磁石或いは6
    極以上の多極電磁石が配置され、前記2つのバンプ電磁
    石は、前記共鳴励起電磁石によって共鳴が励起されてい
    るときに、2つのバンプ電磁石の間に配置された前記偏
    向電磁石及び前記多極電磁石における荷電粒子の平衡軌
    道を移動させて、荷電粒子のチューンを変化させること
    を特徴とする円形加速器。
JP03267351A 1991-10-16 1991-10-16 円形加速器 Expired - Lifetime JP3125805B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP03267351A JP3125805B2 (ja) 1991-10-16 1991-10-16 円形加速器
US07/857,660 US5285166A (en) 1991-10-16 1992-03-26 Method of extracting charged particles from accelerator, and accelerator capable of carrying out the method, by shifting particle orbit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03267351A JP3125805B2 (ja) 1991-10-16 1991-10-16 円形加速器

Publications (2)

Publication Number Publication Date
JPH05109499A JPH05109499A (ja) 1993-04-30
JP3125805B2 true JP3125805B2 (ja) 2001-01-22

Family

ID=17443610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03267351A Expired - Lifetime JP3125805B2 (ja) 1991-10-16 1991-10-16 円形加速器

Country Status (2)

Country Link
US (1) US5285166A (ja)
JP (1) JP3125805B2 (ja)

Families Citing this family (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576602A (en) * 1993-08-18 1996-11-19 Hitachi, Ltd. Method for extracting charged particle beam and small-sized accelerator for charged particle beam
JP3307059B2 (ja) * 1994-03-17 2002-07-24 株式会社日立製作所 加速器及び医療用装置並びに出射方法
JP2600109B2 (ja) * 1994-09-05 1997-04-16 高エネルギー物理学研究所長 正イオン、負イオン両用入射装置
RU2152142C1 (ru) * 1999-10-13 2000-06-27 Богомолов Алексей Сергеевич Способ и устройство получения ускоренных заряженных частиц
DE202004009421U1 (de) * 2004-06-16 2005-11-03 Gesellschaft für Schwerionenforschung mbH Teilchenbeschleuniger für die Strahlentherapie mit Ionenstrahlen
EP2259664B1 (en) * 2004-07-21 2017-10-18 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
EP2389983B1 (en) * 2005-11-18 2016-05-25 Mevion Medical Systems, Inc. Charged particle radiation therapy
US7432516B2 (en) * 2006-01-24 2008-10-07 Brookhaven Science Associates, Llc Rapid cycling medical synchrotron and beam delivery system
JP4650382B2 (ja) * 2006-09-12 2011-03-16 三菱電機株式会社 荷電粒子ビーム加速器及びその荷電粒子ビーム加速器を用いた粒子線照射システム
JP4742328B2 (ja) * 2006-12-20 2011-08-10 独立行政法人放射線医学総合研究所 シンクロトロン加速器の制御方法、シンクロトロン加速器、並びに、シンクロトロン加速器を制御するためのコンピュータプログラム及びコンピュータ読み取り可能な記憶媒体
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) * 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US8378311B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Synchrotron power cycling apparatus and method of use thereof
US8144832B2 (en) * 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
AU2009249863B2 (en) * 2008-05-22 2013-12-12 Vladimir Yegorovich Balakin Multi-field charged particle cancer therapy method and apparatus
US9044600B2 (en) * 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
US8129699B2 (en) * 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
WO2009142545A2 (en) * 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Charged particle cancer therapy patient positioning method and apparatus
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US7940894B2 (en) * 2008-05-22 2011-05-10 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US8901509B2 (en) * 2008-05-22 2014-12-02 Vladimir Yegorovich Balakin Multi-axis charged particle cancer therapy method and apparatus
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
US8378321B2 (en) * 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US7939809B2 (en) * 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9056199B2 (en) * 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
NZ589387A (en) 2008-05-22 2012-11-30 Vladimir Yegorovich Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8374314B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US8288742B2 (en) * 2008-05-22 2012-10-16 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US8642978B2 (en) * 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US8309941B2 (en) * 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US8710462B2 (en) * 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8198607B2 (en) * 2008-05-22 2012-06-12 Vladimir Balakin Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8637833B2 (en) * 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US8896239B2 (en) * 2008-05-22 2014-11-25 Vladimir Yegorovich Balakin Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
US9981147B2 (en) * 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
US8624528B2 (en) * 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
JP5450602B2 (ja) 2008-05-22 2014-03-26 エゴロヴィチ バラキン、ウラジミール シンクロトロンによって加速された荷電粒子を用いて腫瘍を治療する腫瘍治療装置
US8975600B2 (en) * 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US8519365B2 (en) * 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
US8129694B2 (en) * 2008-05-22 2012-03-06 Vladimir Balakin Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system
US7953205B2 (en) * 2008-05-22 2011-05-31 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US8188688B2 (en) * 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US8045679B2 (en) * 2008-05-22 2011-10-25 Vladimir Balakin Charged particle cancer therapy X-ray method and apparatus
US20090314960A1 (en) * 2008-05-22 2009-12-24 Vladimir Balakin Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8487278B2 (en) * 2008-05-22 2013-07-16 Vladimir Yegorovich Balakin X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
US8598543B2 (en) * 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US8373145B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US8399866B2 (en) 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
US8569717B2 (en) * 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US7943913B2 (en) * 2008-05-22 2011-05-17 Vladimir Balakin Negative ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US8178859B2 (en) * 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
WO2009142544A2 (en) 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Charged particle cancer therapy beam path control method and apparatus
US8373146B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8093564B2 (en) * 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
US8436327B2 (en) * 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
US8373143B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US8229072B2 (en) 2008-07-14 2012-07-24 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
US8627822B2 (en) * 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
CN101631422B (zh) * 2009-01-12 2012-05-23 中国科学院近代物理研究所 非对称磁聚焦结构的同步加速器
MX2011009222A (es) 2009-03-04 2011-11-02 Protom Aozt Metodo y aparato para terapia de cancer con particulas cargadas de campos multiples.
WO2011019036A1 (ja) * 2009-08-11 2011-02-17 国立大学法人群馬大学 パルス電圧を用いた荷電粒子ビームの取り出し方法
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
ES2739634T3 (es) 2012-09-28 2020-02-03 Mevion Medical Systems Inc Control de terapia de partículas
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
CN105103662B (zh) 2012-09-28 2018-04-13 梅维昂医疗系统股份有限公司 磁场再生器
TW201422279A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 聚焦粒子束
WO2014052722A2 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
TW201424467A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 一粒子束之強度控制
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
EP2900324A1 (en) 2012-09-28 2015-08-05 Mevion Medical Systems, Inc. Control system for a particle accelerator
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
CN110237447B (zh) 2013-09-27 2021-11-02 梅维昂医疗系统股份有限公司 粒子治疗系统
US9408290B2 (en) * 2013-11-30 2016-08-02 Jefferson Science Associates, Llc Method and apparatus for recirculation with control of synchrotron radiation
JP6341655B2 (ja) * 2013-12-09 2018-06-13 株式会社東芝 円形加速器及び重粒子線治療装置
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof
JP7059245B2 (ja) 2016-07-08 2022-04-25 メビオン・メディカル・システムズ・インコーポレーテッド 治療計画の決定
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
WO2019006253A1 (en) 2017-06-30 2019-01-03 Mevion Medical Systems, Inc. CONFIGURABLE COLLIMATOR CONTROLLED BY LINEAR MOTORS
CN108112154B (zh) * 2017-12-13 2020-05-15 惠州离子科学研究中心 一种重离子同步加速器
EP3934752A1 (en) 2019-03-08 2022-01-12 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3328708A (en) * 1965-03-04 1967-06-27 Bob H Smith Method and apparatus for accelerating ions of any mass
US4870287A (en) * 1988-03-03 1989-09-26 Loma Linda University Medical Center Multi-station proton beam therapy system

Also Published As

Publication number Publication date
JPH05109499A (ja) 1993-04-30
US5285166A (en) 1994-02-08

Similar Documents

Publication Publication Date Title
JP3125805B2 (ja) 円形加速器
JP3246364B2 (ja) シンクロトロン型加速器及びそれを用いた医療用装置
US5568109A (en) Normal conducting bending electromagnet
JP3307059B2 (ja) 加速器及び医療用装置並びに出射方法
JP2596292B2 (ja) 円形加速器及びその運転方法並びに医療システム
JPH05198398A (ja) 円形加速器及び円形加速器のビーム入射方法
JP3116737B2 (ja) 加速器とそのビーム出射方法並びに医療用装置
JP3435926B2 (ja) 円形加速器
JP3956285B2 (ja) ウィグラリング
JPS62213099A (ja) 加速器
JPH1064699A (ja) 円形加速器
JPH11176596A (ja) 荷電粒子ビーム装置
JP2892562B2 (ja) 円形加速器とその運転方法
JP3650354B2 (ja) 電子加速装置
JPH08148298A (ja) 加速器及びその運転方法
JP3007544B2 (ja) 偏向電磁石
JPH1174100A (ja) 周回型加速器とその運転方法
JPH0935899A (ja) 荷電粒子ビームの取り出し方法
JP2935082B2 (ja) 常電導磁石型電子蓄積リング
JPH09115699A (ja) 円形加速器およびビームの出射方法
JPS63266800A (ja) 荷電粒子加速蓄積装置
JPH05215900A (ja) 電子加速器の多極電磁石
JPH0448600A (ja) シンクロトロン放射装置
JP2001043998A (ja) 電磁石、及びそれを用いた円形加速器と円形加速器システム
JPH0521197A (ja) 二極電磁石

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term