TW201422279A - 聚焦粒子束 - Google Patents

聚焦粒子束 Download PDF

Info

Publication number
TW201422279A
TW201422279A TW102135151A TW102135151A TW201422279A TW 201422279 A TW201422279 A TW 201422279A TW 102135151 A TW102135151 A TW 102135151A TW 102135151 A TW102135151 A TW 102135151A TW 201422279 A TW201422279 A TW 201422279A
Authority
TW
Taiwan
Prior art keywords
magnetic field
focus
ferromagnetic
shape
particle
Prior art date
Application number
TW102135151A
Other languages
English (en)
Inventor
Gerrit Townsend Zwart
Der Laan Jan Van
Kenneth P Gall
Original Assignee
Mevion Medical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mevion Medical Systems Inc filed Critical Mevion Medical Systems Inc
Publication of TW201422279A publication Critical patent/TW201422279A/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/02Synchrocyclotrons, i.e. frequency modulated cyclotrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/10Arrangements for ejecting particles from orbits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • H05H2007/043Magnet systems, e.g. undulators, wigglers; Energisation thereof for beam focusing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Radiation-Therapy Devices (AREA)
  • Particle Accelerators (AREA)

Abstract

本發明揭示一種實例性粒子加速器,其包含以下各項:一諧振腔,在該諧振腔中使粒子加速,其中該諧振腔具有包含一第一形狀之一背景磁場,且其中該背景磁場係至少6特斯拉(Tesla);及一提取通道,其用於接收自該諧振腔輸出之粒子。該提取通道包括用以聚焦一所接收粒子束之一系列聚焦區域。該等聚焦區域中之至少一者係經組態以在存在由該至少6特斯拉背景磁場自該諧振腔至該提取通道之減少產生之一磁場梯度之情況下將該背景磁場之一形狀更改為實質上與該第一形狀相反之一第二形狀的一聚焦元件。

Description

聚焦粒子束
本發明一般而言係關於在一粒子加速器之一提取通道中聚焦一粒子束。
粒子治療系統利用一粒子加速器來產生用於醫治諸如腫瘤之痛苦之一粒子束。在操作中,使粒子束在粒子加速器之一腔內側加速,且透過一提取通道將該粒子束自該腔移除。該提取通道含有用於聚焦粒子束且使其彎曲之各種結構。在此上下文中,聚焦包含將粒子束塑形以達成一特定剖面大小及/或區。亦在此上下文中,使束彎曲包含使束偏轉以達成一特定退出位置及退出角度。
一種實例性粒子加速器包含以下各項:一諧振腔,在該諧振腔中使粒子加速,其中該諧振腔具有包含一第一形狀之一背景磁場,且其中該背景磁場係至少6特斯拉;及一提取通道,其用於接收自該諧振腔輸出之粒子。該提取通道包括用以聚焦一所接收粒子束之一系列聚焦區域。該等聚焦區域中之至少一者係經組態以在存在由該至少6特斯拉背景磁場自該諧振腔至該提取通道之減少產生之一磁場梯度之情況下將該背景磁場之一形狀更改為實質上與該第一形狀相反之一第二形狀的一聚焦元件。此實例性粒子加速器可單獨地或組合地包含以下特徵中之一或多者。
該聚焦元件可包含鐵磁四極。每一鐵磁四極可具有一實質上直角梯形之一剖面形狀,具有一傾斜表面。該等鐵磁四極可彼此上下相對地配置以使得該等鐵磁四極之傾斜表面部分地面對彼此。該聚焦元件可包含緊鄰該等鐵磁四極水平對準之一磁場減法器以使得該等鐵磁四極之該等傾斜表面對角地面對該磁場減法器之一寬闊表面。該磁場減法器可係經組態以吸入周圍磁場通量以幫助該等鐵磁四極將該背景磁場更改為該第二形狀(例如,有助於將該背景磁場更改為該第二形狀)之一矩形板。
該提取通道可包含一或多個場增加元件,該一或多個場增加元件包含兩個磁場加法器。該等磁場加法器可包含彼此上下且彼此平行地垂直對準以使得一個磁場加法器之一寬闊表面面對另一磁場加法器之一寬闊表面的矩形板。
該提取通道可包含係(例如)磁場減法器之一或多個場減小元件。該等磁場減法器可係緊鄰且平行於彼此水平對準以使得一個磁場減法器之一寬闊表面面對另一磁場減法器之一寬闊表面的矩形板。
該等聚焦區域經配置以使得每一聚焦區域將該所接收粒子束壓縮在一徑向或徑向平面中之完全聚焦之大約1/6。該等聚焦區域中之至少一者係一聚焦空間。該聚焦空間具有實質上類似於該背景磁場之該第一形狀之一磁場形狀。該系列聚焦區域可經配置以使得聚焦元件與聚焦空間交替。
一種實例性質子治療系統包含:前述粒子加速器,其中粒子包括質子;及一龍門架,該粒子加速器安裝於其上。該龍門架可相對於一患者位置旋轉。將質子自該粒子加速器基本上直接輸出至該患者位置。
一種實例性粒子加速器包含以下各項:一線圈,其用以提供一磁場至一諧振腔以使得該諧振腔具有包含一第一形狀之一背景磁場, 且其中該背景磁場係至少6特斯拉;一粒子源,其用以提供一電漿柱至該諧振腔;一電壓源,其用以提供一射頻(RF)電壓至該諧振腔以使粒子自該電漿柱加速,其中該磁場致使自該電漿柱加速之粒子在該諧振腔內沿軌道移動;及一外殼,其含有用於接收自該諧振腔輸出之該等粒子之一提取通道。該提取通道包含用以聚焦一所接收粒子束之一系列聚焦區域。該等聚焦區域中之至少一者係經組態以在存在由該至少6特斯拉背景磁場自該諧振腔至該提取通道之減少產生之一磁場梯度之情況下將該背景磁場之一形狀更改為實質上與該第一形狀相反之一第二形狀的一聚焦元件。該聚焦元件包含鐵磁四極。每一鐵磁四極具有一實質上直角梯形之一剖面形狀,具有一傾斜表面。該等鐵磁四極彼此上下相對地配置以使得該等鐵磁四極之傾斜表面至少部分地面對彼此。此實例性粒子加速器可包含一磁場減法器。該磁場減法器緊鄰該等鐵磁四極水平對準以使得該等鐵磁四極之該等傾斜表面對角地面對該磁場減法器之一寬闊表面。
本發明中所闡述之特徵中之兩者或兩者以上(包含此發明內容中所闡述之彼等特徵)可經組合以形成本文中未具體闡述之實施方案。
可經由一電腦程式產品實施本文中所闡述之各種系統或其部分之控制,該電腦程式產品包含儲存於一或多個非暫時性機器可讀儲存媒體上且可在一或多個處理器件上執行之指令。本文中所闡述之系統或其部分可實施為可包含一或多個處理器件及用以儲存可執行指令之記憶體以實施對所述功能之控制的一裝置、方法或電子系統。
在附圖及下文說明中陳述一或多個實施方案之細節。依據該說明及該等圖式且依據申請專利範圍將明瞭其他特徵、目標及優點。
10‧‧‧實例性同步迴旋加速器/同步迴旋加速器
12‧‧‧磁體系統
38‧‧‧束提取系統/經抽空管/提取通道
40‧‧‧環形超導線圈
42‧‧‧環形超導線圈
44‧‧‧經塑形鐵磁極面/極面
46‧‧‧經塑形鐵磁極面/極面
47‧‧‧共同軸
48‧‧‧股線
52‧‧‧絕緣物
53‧‧‧導線
55‧‧‧毯式加熱器
56‧‧‧環形不銹鋼反向線圈架/「反向」矩形線圈架
60‧‧‧恢復力
70‧‧‧經抽空環形鋁或不銹鋼低溫恒溫室
71‧‧‧支撐點
72‧‧‧吉福特-麥克馬洪低溫冷卻器
73‧‧‧支撐點
74‧‧‧吉福特-麥克馬洪低溫冷卻器
76‧‧‧冷端
77‧‧‧吉福特-麥克馬洪低溫冷卻器
78‧‧‧低溫冷卻器頭部
79‧‧‧吉福特-麥克馬洪低溫冷卻器
80‧‧‧壓縮器
81‧‧‧半體軛
82‧‧‧藥盒形狀之磁軛/鐵軛/磁體結構
83‧‧‧半體軛
84‧‧‧返回磁場通量
86‧‧‧體積
90‧‧‧粒子源
91‧‧‧射頻驅動系統
92‧‧‧幾何中心
94‧‧‧電纜
95‧‧‧電流源
99‧‧‧供應器
100‧‧‧半圓形射頻板/D形狀之射頻板/D形板
101‧‧‧氣體管路
102‧‧‧虛擬D形板/虛擬D形件
103‧‧‧半圓形表面
105‧‧‧半圓形表面
107‧‧‧空間/束塑形元件
108‧‧‧水冷卻管路
109‧‧‧導管/束塑形元件
111‧‧‧真空泵
113‧‧‧熱交換器
114‧‧‧單獨磁屏蔽物
116‧‧‧空間
117‧‧‧層
119‧‧‧真空室
122‧‧‧平衡錘
124‧‧‧平衡錘
125‧‧‧束形成系統
146‧‧‧曲徑
148‧‧‧牆壁/側面牆壁
150‧‧‧牆壁/側面牆壁
152‧‧‧牆壁
154‧‧‧牆壁/側面牆壁
156‧‧‧牆壁/側面牆壁
160‧‧‧治療室
162‧‧‧底座
164‧‧‧地板空間
170‧‧‧患者支架
190‧‧‧陰極
192‧‧‧陰極
194‧‧‧管
200‧‧‧磁場
402‧‧‧暖至冷支撐條帶
404‧‧‧暖至冷支撐條帶
406‧‧‧暖至冷支撐條帶
408‧‧‧S2纖維玻璃連桿
500‧‧‧帶電粒子輻射治療系統
502‧‧‧產生束之粒子加速器/超導同步迴旋加速器
504‧‧‧旋轉龍門架
506‧‧‧患者
508‧‧‧支腿
510‧‧‧支腿
512‧‧‧軸承
514‧‧‧軸承
516‧‧‧鋼桁架/桁架結構
518‧‧‧醫治區
520‧‧‧範圍
522‧‧‧地板
524‧‧‧廳室/迴旋加速器廳室
530‧‧‧牆壁
532‧‧‧水平旋轉軸
534‧‧‧範圍
540‧‧‧等角點
580‧‧‧跨件
582‧‧‧跨件
601‧‧‧內龍門架
602‧‧‧系統
604‧‧‧同步迴旋加速器
605‧‧‧旋轉龍門架
606‧‧‧患者支架
700‧‧‧腔
701‧‧‧粒子源
703‧‧‧提取通道/實例性提取通道
705‧‧‧磁場突增
706‧‧‧線圈架
707‧‧‧剖面
709‧‧‧超導線圈/線圈
710‧‧‧超導線圈/線圈
711‧‧‧聚焦元件/實例性聚焦元件
712‧‧‧背景磁場線/磁場線/背景磁線
713‧‧‧聚焦空間
714‧‧‧第一位置
716‧‧‧第二位置
718‧‧‧磁場
728‧‧‧鐵磁四極
730‧‧‧磁場減法器
732‧‧‧鐵磁四極磁場線
734‧‧‧磁場減法器場線
736‧‧‧聚焦元件磁場線
738‧‧‧粒子
741‧‧‧軸向平面中之完全聚焦點/完全聚焦點
742‧‧‧實例性過聚焦束
751‧‧‧聚焦區域/聚焦元件
752‧‧‧聚焦區域/聚焦空間
753‧‧‧聚焦區域/聚焦元件
754‧‧‧聚焦區域/聚焦空間
755‧‧‧聚焦區域
756‧‧‧聚焦區域
757‧‧‧聚焦區域
758‧‧‧聚焦區域
759‧‧‧聚焦區域
760‧‧‧聚焦區域
(B)‧‧‧磁場
(r)‧‧‧半徑
圖1係一治療系統之一透視圖。
圖2係一同步迴旋加速器之組件之一分解透視圖。
圖3、圖4及圖5係一同步迴旋加速器之剖視圖。
圖6係一同步迴旋加速器之一透視圖。
圖7係一反向線圈架及繞組之一部分之一剖視圖。
圖8係一通道中電纜複合導體之一剖視圖。
圖9係一離子源之一剖視圖。
圖10係一D形板及一虛擬D形件之一透視圖。
圖11係一廳室之一透視圖。
圖12係一醫治室與一廳室之一透視圖。
圖13展示一極面及一極件之一對稱輪廓之一半之一輪廓。
圖14展示一患者定位於一醫治室中之一內龍門架內。
圖15係一實例性加速強及具有多個聚焦區域之提取通道之一俯視圖。
圖16係連同一超導磁體之一低溫恒溫器之一實例性部分之一剖面一起展示磁場強度對距一電漿柱之徑向距離之一圖表。
圖17係一實例性同步迴旋加速器及由兩個超導線圈產生之背景磁場之磁場線之一部分之一剖面圖。
圖18係一腔內之一實例性粒子軌道之一前視圖。
圖19A係一實例性聚焦元件之一剖面圖。
圖19B係關於腔及提取通道展示圖19A之實例性聚焦元件之一實例性同步迴旋加速器之一部分之一剖面圖。
圖20A係由一聚焦空間軸向聚焦之一粒子束之一側視圖。
圖20B係由一提取通道之一實例性部分聚焦之一粒子束之一側視圖。
圖21展示由腔及提取通道聚焦之一粒子束。
圖22係一實例性場減小元件之一剖面圖。
圖23係一實例性場增加元件之一剖面圖。
各個圖式中之相似參考符號指示相似元件。
概述
本文中闡述供在諸如一質子或離子治療系統之一系統中利用之一粒子加速器之一實例。該粒子治療系統包含安裝於一龍門架上之一粒子加速器(在此實例中,一同步迴旋加速器)。該龍門架使得該加速器能夠圍繞一患者位置旋轉,如下文更詳細地闡釋。在某些實施方案中,龍門架係鋼製的且具有經安裝以用於在位於一患者之相對側上之兩個各別軸承上旋轉之兩個支腿。由一鋼桁架支撐該粒子加速器,該鋼桁架長得足以跨越患者躺於其中之一醫治區且在兩端處穩定地附接至龍門架之旋轉支腿。由於龍門架圍繞患者之旋轉,因此該粒子加速器亦旋轉。
在一實例性實施方案中,粒子加速器(例如,同步迴旋加速器)包含一低溫恒溫器,該低溫恒溫室固持用於傳導產生一磁場(B)之一電流之一超導線圈。在此實例中,該低溫恒溫器利用液態氦(He)來將線圈維持在超導溫度,例如,4凱氏(K)度。磁軛毗鄰(例如,圍繞)低溫恒溫器,且界定在其中使粒子加速之一腔。該低溫恒溫器透過條帶或諸如此類附接至磁軛。
在此實例性實施方案中,粒子加速器包含一粒子源(例如,一潘寧離子真空計(PIG)源)以提供一電漿柱至腔。離子化氫氣以產生該電漿柱。一電壓源提供一射頻(RF)電壓至該腔以使粒子自該電漿柱加速。如所述,在此實例中,粒子加速器係一同步迴旋加速器。因此,跨越一頻率範圍掃掠RF電壓以計及在自柱提取粒子時對粒子之相對效應(例如,增加之粒子質量)。由線圈產生之磁場致使自該電漿柱加速之粒子在腔內沿軌道加速。一鐵磁配置(例如,一磁再生器)定位於腔之外側附近(例如,在腔之一邊緣處)以調整腔內側之現有磁場以藉 此改變自該電漿柱加速之該等粒子之連續軌道之位置,以使得最終該等粒子輸出至通過軛之一提取通道。該提取通道接收自該電漿柱加速之粒子且輸出來自腔之所接收粒子。
在某些情形中,為提供某些類型之醫治,一粒子束之剖面區應具有一特定大小及/或形狀。舉例而言,一粒子束剖面可係實質上圓形的且應具有大約數毫米至數釐米之一直徑。若不聚焦粒子以提供特定剖面大小及/或形狀,則一束中之粒子中之某些粒子可擊中非目標組織,且目標處之輻射劑量可減少。提取通道可經組態以在將粒子束施加至一患者之前至少部分地聚焦該束。
可藉由使一區域中之磁場線彎曲而產生聚焦。可提供數種類型之聚焦,包含軸向聚焦及徑向聚焦。軸向聚焦可致使粒子束之剖面形狀在徑向平面(例如,粒子軌道之水平平面)中擴張且在軸向平面(例如,垂直於粒子軌道之平面之垂直平面)中壓縮。相比之下,徑向聚焦可致使粒子束之剖面形狀在徑向平面中壓縮且在軸向平面中擴張。可藉由改變一區域(本文中稱為一聚焦區域)中之磁場線之形狀而達成聚焦。在存在一相對大之磁場梯度之情況下改變磁場線之形狀可係困難的。
就此而言,腔內之磁場在中心處最高且朝向腔之邊緣減小。當粒子自腔輸出且由提取通道接收時,其經歷一相對大之負磁場梯度(例如,在一短距離內磁場強度之一相對大的減少)。舉例而言,該等粒子可在10釐米至15釐米之一距離(其中垂直於粒子之軌跡量測該距離)內經歷8特斯拉以上之一磁場減少。
在某些實施方案中,可利用具有矩形或正方形剖面形狀之鐵磁四極來將磁場線改變為一適當形狀以用於聚焦。然而,在某些實施方案中,由於自腔之中心至提取通道之一相對大之負磁場梯度(如上文所闡述),因此具有矩形或正方形剖面形狀之鐵磁四極可能無法將磁 場線更改為提供適當聚焦量之一形狀。因此,在某些實施方案中所利用之聚焦元件可包含具有一實質上直角梯形剖面形狀、具有傾斜表面之鐵磁四極,該等鐵磁四極能夠在存在一相對高之場梯度之情況下將一磁場更改為一適當磁場形狀。
眾所周知,無法同時在徑向平面及軸向平面中聚焦一粒子束。因此,可利用多個不同聚焦區域來在徑向平面及軸向平面中交替地聚焦粒子束以藉此在兩個平面中達成一淨聚焦。在一實例中,該提取通道含有多個聚焦區域。該等聚焦區域可包含一或多個聚焦空間及一或多個聚焦元件。一高場同步迴旋加速器中之一聚焦空間通常係一空隙、空的空間或提供軸向聚焦之其他區。此聚焦空間中之磁場線對應於背景磁場(例如,由超導線圈產生之磁場)之場線。一聚焦元件通常係諸如上文所闡述之一或多個鐵磁四極之一結構,該結構更改背景磁場以提供徑向聚焦。
通常在提取通道中存在兩個以上聚焦區域,該等聚焦區域按順序提供交替徑向及軸向聚焦。任何適當數目個聚焦區域可包含於提取通道中。軸向及/或徑向聚焦量以及聚焦區域之數目及組態係系統特定的且可取決於醫治類型以及所期望之聚焦量及類型而變化。
可在一單個粒子加速器中個別地利用用於在一粒子加速器之一提取通道中聚焦一粒子束之前述技術,或可在一單個粒子加速器中以任何適當組合利用彼等技術中之任何兩者或兩者以上。下文提供其中可利用前述技術之一粒子治療系統之一實例。
實例性粒子治療系統
參考圖1,一帶電粒子輻射治療系統500包含一產生束之粒子加速器502,該產生束之粒子加速器具有小得足以准許其被安裝於一旋轉龍門架504上之一重量及大小,其中其輸出自加速器殼體朝向一患者506被徑直地(亦即,基本上直接地)引導。
在某些實施方案中,鋼龍門架具有兩個支腿508、510,該兩個支腿經安裝以用於在位於患者之相對側上之兩個各別軸承512、514上旋轉。由一鋼桁架516支撐該加速器,該鋼桁架長得足以跨越患者躺於其中之一醫治區518(例如,一高個子人之兩倍長,以准許該人在空間內完全地旋轉,其中患者之任何所期望之目標區保持在束之線路中)且在兩端處穩定地附接至龍門架之旋轉支腿。
在某些實例中,龍門架之旋轉限於小於360度(例如,大約180度)之一範圍520以准許一地板522自裝納治療系統之廳室524之一牆壁延伸至患者醫治區中。龍門架之有限旋轉範圍亦減小為在醫治區外側之人提供輻射屏蔽之某些牆壁(其從不與束直接對準,例如,牆壁530)之所需厚度。龍門架旋轉之180度之一範圍足以涵蓋所有醫治接近角度,但提供一較大行程範圍可係有用的。舉例而言,旋轉範圍可在180度與330度之間且仍提供治療地板空間之間隙。
龍門架之水平旋轉軸532位於其中患者及治療師與治療系統互動之地板上方標稱一米處。此地板定位於治療系統經屏蔽之廳室之底部地板上方大約3米處。加速器可在經抬高地板下面擺動以自旋轉軸下方遞送醫治束。患者躺椅在平行於龍門架之旋轉軸之一實質上水平平面中移動及旋轉。該躺椅可在具有此組態之水平平面中旋轉經過大約270度之一範圍534。龍門架旋轉範圍及患者旋轉範圍之此組合及自由度允許治療師實際上選擇束之任何接近角度。若需要,則可沿相反定向將患者放置於躺椅上且然後可利用所有可能角度。
在某些實施方案中,加速器利用具有一極高磁場超導電磁結構之一同步迴旋加速器組態。由於一既定動能之一帶電粒子之彎曲半徑與施加至其之磁場之一增加成正比地減少,因此極高磁場超導磁結構准許將加速器製成為更小及更輕。同步迴旋加速器利用旋轉角度均勻且強度隨增加之半徑而下降之一磁場。不管磁場之量值如何皆可達成 此一場形狀,因此理論上不存在可用於一同步迴旋加速器中之磁場強度(及因此在一固定半徑下之所得粒子能量)之上限。
超導材料在存在極高磁場之情況下失去其超導性質。利用高效能超導導線繞組以允許達成極高磁場。
超導材料通常需要冷卻至低溫以實現其超導性質。在此處所闡述之某些實例中,利用低溫冷卻器來使超導線圈繞組達到接近絕對零度之溫度。利用低溫冷卻器可減少複雜度及成本。
在龍門架上支撐同步迴旋加速器以使得與患者成一排地直接產生束。龍門架准許迴旋加速器繞含有在患者內或在患者附近之一點(等角點540)之一水平旋轉軸之旋轉。平行於旋轉軸之分裂桁架在兩側上支撐迴旋加速器。
由於龍門架之旋轉範圍係有限的,因此可在圍繞等角點之一寬廣區中容納一患者支撐區。由於地板可圍繞等角點廣泛地延伸,因此一患者支撐台可經定位以相對於穿過等角點之一垂直軸542移動且繞該垂直軸旋轉以使得,藉由龍門架旋轉與台子運動及旋轉之一組合,可達成至患者之任何部分中之束引導之任何角度。兩個龍門架臂隔開一高個子患者之身高之兩倍以上,從而允許具有患者之躺椅在經抬高地板上方之一水平平面中旋轉及平移。
限制龍門架旋轉角度允許環繞醫治室之牆壁中之至少一者之厚度之一減小。通常由混凝土構成之厚牆壁對在醫治室外側之個人提供輻射防護。一停止質子束下游之一牆壁可係在房間之相對端處之一牆壁之大約兩倍厚以提供一相等防護位準。限制龍門架旋轉範圍使得醫治室能夠在三側上座落於地平面下方,同時允許一佔用區毗鄰於最薄牆壁,從而減少構造醫治室之成本。
在圖1中所展示之實例性實施方案中,超導同步迴旋加速器502以8.8特斯拉的同步迴旋加速器之一極隙中之一峰值磁場而操作。同 步迴旋加速器產生具有250 MeV之一能量之一質子束。在其他實施方案中,場強度可介於6特斯拉至20特斯拉之範圍內且質子能量可介於150 MeV至300 MeV之範圍內。
在此實例中所闡述之輻射治療系統用於質子輻射治療,但相同原理及細節可應用於供在重離子(離子)醫治系統中利用之類似系統中。
如圖2、圖3、圖4、圖5及圖6中所展示,一實例性同步迴旋加速器10(圖1中之502)包含含有一粒子源90、一射頻驅動系統91及一束提取系統38之一磁體系統12。由磁體系統建立之磁場具有適合於利用一對分裂環形超導線圈40、42與一對經塑形鐵磁(例如,低碳鋼)極面44、46之一組合維持一所含質子束之聚焦的一形狀。
兩個超導電磁線圈在一共同軸47上定中心且沿著該軸間隔開。如圖7及圖8中所展示,線圈由以一扭曲之通道中電纜導體幾何形狀部署的基於Nb3Sn之超導0.8mm直徑之股線48(最初包括由一銅包皮環繞之一鈮錫核心)形成。在將七個個別股線擰搓在一起之後,加熱該等個別股線以造成形成導線之最終(脆性)超導材料之一反應。在材料已起反應之後,將導線焊接至銅通道(外尺寸3.18×2.54mm及內尺寸2.08×2.08mm)中且使其覆蓋有絕緣物52(在此實例中,一經編織纖維玻璃材料)。然後將含有導線53之銅通道捲繞成一線圈,該線圈具有8.55cm×19.02cm之一矩形剖面,具有26個層及每一層49轉。然後用一環氧化合物54真空浸漬捲繞線圈。將所完成線圈安裝於一環形不銹鋼反向線圈架56上。將毯式加熱器55間隔地放置於繞組之層中以在一磁體失磁之事件中保護總成。
然後用一環氧化合物真空浸漬捲繞線圈。然後可用銅片覆蓋整個線圈以提供熱導率及機械穩定性且然後將該線圈含納於一額外環氧層中。可藉由加熱不銹鋼反向線圈架且將線圈裝配於反向線圈架內而 提供線圈之預壓縮。選擇反向線圈架內徑以使得當整個物塊冷卻至4 K時,反向線圈架保持與線圈接觸且提供某種壓縮。將不銹鋼反向線圈架加熱至大約50攝氏度且在100凱氏度之一溫度下裝配線圈可達成此。
藉由將線圈安裝於一「反向」矩形線圈架56中以施加對抗在供給線圈能量時產生之歪曲力之一恢復力60而維持線圈之幾何形狀。如圖5中所展示,利用一組暖至冷支撐條帶402、404、406相對於磁軛及低溫恒溫器維持線圈位置。藉助薄條帶支撐冷物塊減少藉由剛性支撐系統傳遞至冷物塊之熱洩漏。該等條帶經配置以當磁體在龍門架上旋轉時耐受線圈上之變化之重力。該等條帶耐受重力與大的離心力之經組合效應,大的離心力在線圈相對於磁軛自一完全對稱之位置被擾亂時由該線圈實現。另外,連桿用於減小當龍門架加速及減速時(當其位置改變時)在線圈上賦予之動態力。每一暖至冷支撐件包含一個S2纖維玻璃連桿及一個碳纖維連桿。跨越暖軛與一中間溫度(50 K至70 K)之間的銷支撐碳纖維連桿,且跨越中間溫度銷與附接至冷物塊之一銷支撐S2纖維玻璃連桿408。每一連桿係5cm長(銷中心至銷中心)且係17mm寬。連桿厚度係9mm。每一銷由高強度不銹鋼製成且直徑係40mm。
參考圖3,很大程度上藉由線圈幾何形狀及極面形狀之選擇而判定隨半徑而變之場強度量變曲線;可滲透軛材料之極面44、46可經定輪廓以微調磁場之形狀以確保粒子束在加速期間保持聚焦。
藉由將線圈總成(線圈及線圈架)封圍於一經抽空環形鋁或不銹鋼低溫恒溫室70內側而將超導線圈維持在接近絕對零度(例如,大約4凱氏度)之溫度,該低溫恒溫室圍繞線圈結構提供一自由空間,唯在一組有限支撐點71、73處除外。在一替代版本(圖4)中,低溫恒溫器之外壁可由低碳鋼製成以提供磁場之一額外返回磁通路徑。
在某些實施方案中,利用一個單級吉福特-麥克馬洪(Gifford-McMahon)低溫冷卻器及三個雙級吉福特-麥克馬洪低溫冷卻器達成並維持接近絕對零度之溫度。每一雙級低溫冷卻器具有附接至將氦蒸汽再冷凝成液態氦之一冷凝器之一第二級冷端。用來自一壓縮器之經壓縮氦供應低溫冷卻器頭部。單級吉福特-麥克馬洪低溫冷卻器經配置以冷卻將電流供應至超導繞組之高溫(例如,50凱氏度至70凱氏度)引線。
在某些實施方案中,利用配置於線圈總成上之不同位置處之兩個吉福特-麥克馬洪低溫冷卻器72、74達成並維持接近絕對零度之溫度。每一低溫冷卻器具有與線圈總成接觸之一冷端76。用來自一壓縮器80之經壓縮氦供應低溫冷卻器頭部78。兩個其他吉福特-麥克馬洪低溫冷卻器77、79經配置以冷卻將電流供應至超導繞組之高溫(例如,60凱氏度至80凱氏度)引線。
將線圈總成及低溫恒溫室安裝於一藥盒形狀之磁軛82之兩個半體81、83內且由該兩個半體完全地封圍線圈總成及低溫恒溫室。在此實例中,線圈總成之內徑係大約74.6cm。鐵軛82提供返回磁場通量84之一路徑且磁屏蔽極面44、46之間的體積86以防止外部磁影響擾亂彼體積內之磁場之形狀。軛亦用於減小在加速器附近之雜散磁場。
如圖3及圖9中所展示,同步迴旋加速器包含位於磁體結構82之幾何中心92附近之一潘寧離子真空計幾何形狀之一粒子源90。粒子源可係如下文所闡述,或粒子源可係為以引用方式併入本文中之第11/948,662號美國專利申請案中所闡述之類型。
透過遞送氣態氫之一氣體管路101及管194自氫之一供應器99饋送粒子源90。電纜94攜載來自一電流源95之一電流以刺激自與磁場200對準之陰極192、190之電子放電。
在此實例中,放電電子離子化透過一小孔自管194排出之氣體以 形成一正離子(質子)供應以供由一個半圓形(D形狀之)射頻板100及一個虛擬D形板102加速,該半圓形射頻板跨越由磁體結構封圍之空間之一半。在一中斷粒子源(第11/948,662號美國專利申請案中闡述其之一實例)之情形中,在加速區域處移除含有電漿之管之全部(或一實質部分),藉此允許使離子在一相對高之磁場中更迅速地加速。
如圖10中所展示,D形板100係具有封圍一空間107之兩個半圓形表面103、105之一空心金屬結構,其中使質子在其圍繞由磁體結構封圍之空間之旋轉之一半期間加速。敞開至空間107中之一導管109延伸穿過軛至一外部位置,可自該外部位置附接一真空泵111以抽空空間107及其中發生加速之一真空室119內之空間之剩餘部分。虛擬D形件102包括在D形板之經曝露邊沿附近隔開之一矩形金屬環。虛擬D形件接地至真空室及磁軛。藉由在一射頻傳輸線之端處經施加之一射頻信號驅動D形板100以在空間107中賦予一電場。當經加速粒子束距幾何中心之距離增加時使射頻電場適時變化。在2005年7月21日提出申請之標題為「A Programmable Radio Frequency Waveform Generator for a Synchrocyclotron」之第11/187,633號美國專利申請案中且在2004年7月21日提出申請之為同一標題之第60/590,089號美國臨時申請案中闡述對於此目的係有用之射頻波形發生器之實例,該兩個申請案皆以引用方式併入本文中。可以標題為「Matching A Resonant Frequency Of A Resonant Cavity To A Frequency Of An Input Voltage」之第11/948,359號美國專利申請案中所闡述之方式控制射頻電場,該美國專利申請案之內容以引用方式併入本文中。
對於自位於中央之粒子源出射以在其開始向外螺旋形上升時清理粒子源結構之束而言,跨越射頻板需要一大的電壓差。跨越射頻板施加20,000伏特。在某些版本中,可跨越射頻板施加自8,000伏特至20,000伏特。為減少驅動此大的電壓所需之電力,磁體結構經配置以 減少射頻板與接地之間的電容。藉由穿過外軛及低溫恒溫器殼體形成具有與射頻結構之充足間隙之孔且在磁體極面之間形成充足空間而完成此。
驅動D形板之高壓交流電位具有在加速循環期間向下掃掠以計及質子之增加之相對質量及減小之磁場之一頻率。虛擬D形件不需要一空心半圓柱形結構,此乃因其連同真空室壁一起處於接地電位。可利用其他板配置,諸如以不同電相位或眾多基頻驅動之一對以上加速電極。RF結構可經調諧以在所需頻率掃掠期間藉由利用(舉例而言)具有互相嚙合之旋轉及固定葉片之一旋轉電容器而保持Q為高。在葉片之每一嚙合期間,電容增加,因此降低RF結構之諧振頻率。該等葉片可經塑形以形成所需之一精確頻率掃掠。用於旋轉冷凝器之一驅動馬達可相位鎖定至RF發生器以用於精確控制。在旋轉冷凝器之葉片之每一嚙合期間使一個粒子集束加速。
在其中發生加速之真空室119係中心較薄且邊沿較厚之一大體圓柱形容器。該真空室封圍RF板及粒子源且由真空泵111抽空。維持一高真空確保加速離子不受與氣體分子之碰撞之影響且使得RF電壓能夠保持在一較高位準而不形成電弧至接地。
質子橫越在粒子源處開始之一大體螺旋形軌道路徑。在螺旋形路徑之每一迴路之一半中,質子在其通過空間107中之RF電場時獲得能量。當離子獲得能量時,其螺旋形路徑之每一連續迴路之中心軌道之半徑大於先前迴路直至迴路半徑達到極面之最大半徑為止。在彼位置處,一磁及電場擾動將離子引導至其中磁場快速減小之一區中,且該等離子離開高磁場之區且經引導穿過在本文中稱為提取通道之一經抽空管38以退出迴旋加速器之軛。可利用一磁再生器來改變磁場擾動以引導離子。退出迴旋加速器之離子在其進入存在於圍繞迴旋加速器之空間中之顯著減小之磁場區時將趨於分散。提取通道38中之束塑形 元件107、109使離子重定向以使得其停留在有限空間範圍之一直射束中。
極隙內之磁場需要具有特定性質以在經抽空室內之束加速時維持該束。下文展示之磁場指標n,n=-(r/B)dB/dr,應保持為正以維持此「弱」聚焦。此處r係束之半徑且B係磁場。另外,場指標需要維持在0.2以下,此乃因在此值下束之徑向振盪及垂直振盪之週期性以一νr=2 νz諧振一致。藉由νr=(1-n)1/2及νz=n1/2定義貝他加速器頻率。鐵磁極面經設計以塑形由線圈產生之磁場以使得場指標n在與既定磁場中之一250 MeV束一致之最小直徑中維持為正且小於0.2。
當束退出提取通道時其通過可被可程式化地控制以形成束之散射角度與範圍調變之一所要組合之一束形成系統125(圖5)。在2004年9月24日提出申請之標題為「A Programmable Particle Scatterer for Radiation Therapy Beam Formation」之第10/949,734號美國專利申請案中且在2005年7月21日提出申請之第60/590,088號美國臨時申請案中闡述對於彼目的係有用之束形成系統之實例,該兩個申請案皆以引用方式併入本文中。可結合下文闡述之一內龍門架601利用束形成系統125以將一束引導至患者。
在操作期間,板由於沿著板之表面之導電電阻而自所施加射頻場吸收能量。此能量表現為熱量且利用將熱量釋放於一熱交換器113中之水冷卻管路108(圖3)自板經移除。
自迴旋加速器退出之雜散磁場受藥盒磁軛(其亦用作一屏蔽物)及一單獨磁屏蔽物114兩者限制。單獨磁屏蔽物包含封圍藥盒軛、藉由一空間116分離的鐵磁材料(例如,鋼或鐵)之一層117。包含一軛、一空間及一屏蔽物之一夾層結構之此組態在較低重量下達成對一既定洩 漏磁場之充足屏蔽。
如所提及,龍門架允許同步迴旋加速器繞水平旋轉軸532旋轉。桁架結構516具有兩個大體平行跨件580、582。同步迴旋加速器用架支撐在跨件之間大約支腿之間的中途處。龍門架經平衡以利用安裝於支腿之與桁架相對之端上之平衡錘122、124繞軸承旋轉。
藉由安裝至龍門架支腿中之一者或兩者且藉由驅動齒輪連接至軸承箱的一電動馬達驅動龍門架旋轉。龍門架之旋轉位置源自由併入至龍門架驅動馬達及驅動齒輪中之軸角編碼器提供之信號。
在離子束退出迴旋加速器之位置處,束形成系統125作用於離子束以給予其適用於患者醫治之性質。舉例而言,束可經擴散且其穿透深度可係變化的以跨越一既定目標體積提供均勻輻射。束形成系統可包含被動散射元件以及主動掃描元件。
藉由適當同步迴旋加速器控制電子器件(未展示)(其可包含,例如,藉助適當程式經程式化以實現控制之一或多個電腦)來控制同步迴旋加速器之所有主動系統(電流驅動之超導線圈、RF驅動之板、用於真空加速室及超導線圈冷卻室之真空泵、電流驅動之粒子源、氫氣源及RF板冷卻器,舉例而言)。
藉由適當治療控制電子器件(未展示)達成對用以執行一療程之龍門架、患者支架、主動束塑形元件及同步迴旋加速器之控制。
如圖1、圖11及圖12中所展示,由一迴旋加速器廳室524之牆壁支撐龍門架軸承。龍門架使得迴旋加速器能夠擺動經過包含在患者上方、側面及下方之位置的180度(或更多)之一範圍520。廳室高得足以在龍門架之運動之頂部極限及底部極限處為該龍門架留出空間。由牆壁148、150作為側面之一曲徑146為治療師及患者提供一進入及退出路線。由於至少一個牆壁152決不與直接來自迴旋加速器之質子束成一排,因此其可製成為相對薄且仍執行其屏蔽功能。可能需更重度屏 蔽之房間之其他三個側面牆壁154、156、150/148可掩埋於一土山(未展示)內。牆壁154、156及158之所需厚度可減小,此乃因土地可自身提供某些所需屏蔽。
參考圖12及圖13,出於安全及美學原因,一治療室160可構造於廳室內。治療室以為搖擺龍門架留出空間且亦最大化治療室之地板空間164之範圍之一方式自容納室之牆壁154、156、150及底座162懸伸至龍門架支腿之間的空間中。可在經抬高地板下方之空間中完成加速器之週期性維修。當加速器在龍門架上旋轉至向下位置時,在與醫治區分離之一空間中對加速器之完全接達係可能的。電力供應器、冷卻設備、真空泵及其他支撐設備可位於經抬高地板下面在此單獨空間中。在醫治室內,可以准許支架被抬高及降低且准許患者旋轉及移動至各種位置及定向之各種方式安裝患者支架170。
在圖14之系統602中,一產生束之粒子加速器(在此情形中同步迴旋加速器604)安裝於旋轉龍門架605上。旋轉龍門架605係為本文中所闡述之類型,且可圍繞患者支架606成角度地旋轉。此特徵使得同步迴旋加速器604能夠自各種角度將一粒子束直接提供至患者。舉例而言,如在圖14中,若同步迴旋加速器604在患者支架606上方,則可朝向患者向下引導粒子束。另一選擇係,若同步迴旋加速器604在患者支架606下方,則可朝向患者向上引導粒子束。在不需要一中間束繞路機構之意義上將粒子束直接施加至患者。在此上下文中之一繞路機構與一塑形或定大小機構之不同之處在於:一塑形或定大小機構不使束重新繞路,而是定大小及/或塑形束同時維持束之同一大體軌跡。
關於前述系統之另外細節可見於以下各項中:2006年11月16日提出申請且標題為「Charged Particle Radiation Therapy」之第7,728,311號美國專利;及2008年11月20日提出申請且標題為「Inner Gantry」之第12/275,103號美國專利申請案。第7,728,311號美國專利 及第12/275,103號美國專利申請案之內容據此以引用方式併入至本發明中。
實例性實施方案
圖15展示在其中使粒子沿軌道(例如,在向外螺旋形軌道上)加速之一腔700之一部分之一俯視圖。上文闡述其之實例之一粒子源701安置於大約腔之中心處。自由粒子源701產生之一電漿柱提取帶電粒子(例如,質子或離子)。該等帶電粒子朝向磁再生器702在軌道上向外加速,且最終到達磁再生器702。在此實例性實施方案中,再生器702係由(例如)鋼、鐵或任何其他類型之鐵磁材料製成之一鐵磁結構。再生器702更改造成向外軌道加速之背景磁場。在此實例中,再生器702增大彼磁場(例如,其提供場中之一突增)。背景磁場中之突增以致使粒子軌道朝向提取通道703向外移動之一方式影響該等軌道。最終,軌道進入提取通道703,軌道自該提取通道退出。提取通道703可含有一或多個聚焦區域751至760,該一或多個聚焦區域包含一或多個聚焦元件(例如,圖19A中之711)及一或多個聚焦空間(例如,圖20A中之713)以聚焦粒子以便獲得一適當大小及/或形狀之一粒子束。
更詳細地,一粒子束軌道接近再生器702且與再生器702相互作用。由於增加之磁場,因此粒子束在彼處轉彎多一點且,替代為圓形的,其旋進至提取通道。圖16展示對照相對於粒子源700之半徑(r)標繪之磁場(B)。圖16亦相對於在兩個超導線圈709、710之間具有提取通道703之一線圈架706之一剖面707展示磁場曲線圖。如圖16中所展示,在此實例中,B自大約9特斯拉(T)變化至大約-2T。在大約腔700之中心處出現9T。磁場之極性在磁場跨越超導線圈之後改變,從而在線圈之外部上產生大約-2T,最終減弱至大約零。在再生器之點處出現磁場突增705。繼由再生器造成之磁場突增705之後,存在一相對大之負磁場梯度(例如,腔700內之磁場強度隨半徑大幅度下降)。如圖 16中所展示,在此實例中,在大約20cm(自r=30cm至r=50cm)之跨度內,B自大約9特斯拉(T)下降至大約0T。因此,磁場強度在粒子束進入提取通道703時係相對大的且在粒子束通過線圈之徑向中點時係相對小的。
在某些情形中,為提供某些類型之醫治,一粒子束之剖面區應具有一特定大小及/或形狀。舉例而言,一粒子束剖面可係實質上圓形的且可具有大約數毫米至數釐米之一直徑。提取通道703可經組態以在將粒子束施加至一患者之前聚焦粒子束以便獲得一適當大小及/或形狀之一粒子束。
圖17係在兩個超導線圈709、710之間具有提取通道703之一實例性同步迴旋加速器之一剖面圖。背景磁場線712指示背景磁場之形狀。腔700內之背景磁場(例如,由超導線圈產生之磁場)可具有一彎曲形狀,如由背景磁場線712所展示。在某些實施方案中,磁場線712在線圈709、710附近更大幅度地彎曲出來。磁場之彎曲形狀可造成下文更詳細地闡釋之粒子束之軸向聚焦。磁場線712之彎曲幅度愈大,磁場提供愈多聚焦力。
圖18展示腔700內之一實例性粒子軌道之一前視圖,其中軌道出入頁面。在圖18中,未展示同步迴旋加速器及腔700且僅展示兩個磁場線712,儘管可存在圖17中所展示之相同磁場。在垂直於紙張之平面中,使粒子向外加速且粒子正在向外螺旋形軌道上繞軌道而行。粒子束具有在一第一位置714及一第二位置716兩者處展示之一剖面,該剖面在徑向平面(例如,粒子軌道之水平平面)中擴張且在軸向平面(例如,垂直於粒子軌道之平面之垂直平面)中壓縮。實質上軸向聚焦粒子束,下文更詳細地闡釋。
當粒子繞軌道而行時,背景磁場使粒子在其彈道地傳播時不擴散。由背景磁線712展示的背景磁場之形狀亦造成粒子束之軸向聚焦 (例如,弱聚焦)。在繞軌道而行期間,粒子可在軸向平面中偏離其軌道路徑。對受一磁場718影響之一粒子之力(F)係:F=qv×B.此處,F係對粒子施加之力,q係粒子之電荷,v係粒子之速度,且B係磁場。F、v及B係向量。此等變數之交叉乘積關係致使粒子在軸向平面中壓縮。
為在提取通道之出口處獲得一適當大小及/或形狀之一粒子束,可連同軸向聚焦一起利用徑向聚焦。徑向聚焦可致使粒子束之剖面形狀在徑向平面中壓縮且在軸向平面中擴張。返回參考圖15,提取通道703可含有用以聚焦粒子束之一或多個聚焦元件711。一聚焦元件711可藉由更改一磁場以使得其沿與背景磁場(如由背景磁場線(圖17中之712)所展示)實質上相反之方向彎曲而提供徑向聚焦。
圖19A係一實例性聚焦元件711之一剖面圖。聚焦元件711包含鐵磁四極728(例如,兩個鐵磁四極728)及一磁場減法器730。在此實例性實施方案中,鐵磁四極728彼此上下相對地配置。磁場減法器730緊鄰鐵磁四極728水平對準。然而,值得注意地,可利用具有其他類型之鐵磁四極及/或其他組態之鐵磁四極的其他類型之聚焦元件。
鐵磁四極728更改磁場以使得磁場沿與背景磁場實質上相反之方向彎曲,如由鐵磁四極磁場線732所展示。磁場減法器730吸入周圍磁場通量,如由磁場減法器場線734所展示。磁場減法器730幫助鐵磁四極728將磁場更改為一適當形狀。由鐵磁四極728及磁場減法器730更改之背景磁場之淨結果係沿與背景磁場實質上相反之方向彎曲之一聚焦元件磁場形狀。
如上文所闡釋,鐵磁四極728之實質上直角梯形剖面形狀可幫助鐵磁四極728在存在一相對大之磁場梯度之情況下將背景磁場重塑形且仍留下足夠暢通的孔隙以供粒子束通過。在某些實例中,每一鐵磁 四極728具有一傾斜表面。鐵磁四極728經配置以使得鐵磁四極728之傾斜表面部分地面對彼此。磁場減法器730緊鄰鐵磁四極728水平對準以使得鐵磁四極728之傾斜表面對角地面對磁場減法器730之一寬闊表面。磁通量線垂直地脫離鐵磁材料之表面。傾斜表面沿幫助鐵磁四極728更改磁場形狀以使得其可充分地徑向聚焦束之一方向引導磁場線。
磁場減法器730防止聚焦元件磁場形狀沿與背景磁場相反之方向彎曲太遠。磁場減法器730可係如所展示之一矩形板,該矩形板吸取磁通量以防止磁場在鐵磁四極之間的過延伸。
鐵磁四極728可由諸如鋼之一鐵磁材料製成(儘管可利用取代鋼或除鋼之外之其他材料)。磁場減法器730亦可由不同於或相同於製成鐵磁四極728之材料之一鐵磁材料製成。
圖19B展示關於腔700及提取通道703之實例性聚焦元件711。在此實例中,粒子738朝向提取通道703在軌道上向外加速。最終,軌道進入提取通道703。提取通道703含有實例性聚焦元件711。實例性聚焦元件711更改磁場以形成沿與背景磁場實質上相反之方向彎曲之一聚焦元件磁場形狀,由聚焦元件磁場線736所展示。實例性聚焦元件711可藉由在徑向平面中壓縮粒子束且在軸向平面中擴張粒子束而徑向聚焦粒子束。
如上文所闡釋,無法同時在徑向平面及軸向平面兩者中聚焦粒子束。舉例而言,當在徑向平面中壓縮粒子束時,在軸向平面中擴張粒子束,且反之亦然。因此,可利用一或多個聚焦區域來在徑向平面及軸向平面中交替地聚焦粒子束直至淨聚焦產生具有一適當大小及/或形狀之一粒子束。
在一實例中,提取通道703含有多個聚焦區域。該等聚焦區域可包含一或多個聚焦空間713及一或多個聚焦元件711。在某些實施方案 中,每一聚焦空間713係粒子束行進穿過之一空的空間。聚焦空間713可具有對應於背景磁場(例如,由超導線圈產生之磁場)之形狀之一磁場形狀。聚焦空間713可軸向聚焦,如圖18中所展示。
在一實例中,提取通道703含有至少十個聚焦區域,儘管任何適當數目個聚焦區域可包含於提取通道703中。一提取通道703中之聚焦區域可在聚焦空間713與聚焦元件711之間交替。多個聚焦區域及交替類型(具有交替磁場形狀)可用於軸向或徑向抑制粒子束之剖面形狀之不期望擴張,藉此在粒子束通過提取通道703時聚焦粒子束。
在一實例中,每一聚焦區域將粒子束壓縮在該粒子束經組態以在其中聚焦之平面(例如,針對聚焦空間713之軸向平面及針對聚焦元件711之徑向平面)中之完全聚焦之大約1/6。藉由在完全聚焦之大約1/6之點處按順序定位下一聚焦區域而達成此。完全聚焦可係就在束在各別平面中開始變得過聚焦(例如,放大)之前之點。更簡而言之,一聚焦區域通常不將一既定平面中之一粒子束壓縮多於大約1/6其直徑,此乃因在彼點處粒子束進入下一相對聚焦區域(例如,一聚焦元件或聚焦空間)。舉例而言,軸向聚焦之一聚焦區域不減小粒子束之軸向直徑達多於大約1/6其軸向直徑。類似地,徑向聚焦之一聚焦區域不減小粒子束之徑向直徑達多於大約1/6其徑向直徑。
舉例而言,圖20A展示在軸向平面中(例如,由一聚焦空間713)聚焦之一粒子束。在此實例中,聚焦空間713經組態以將軸向平面中之粒子束聚焦大約完全聚焦之1/6。當粒子束退出聚焦空間713時,其具有小於在其進入聚焦空間713時其所具有之直徑之一軸向直徑及大於該直徑之一徑向直徑。就此而言,軸向平面中之完全聚焦點741係其中無法在特定平面中更精確地聚焦粒子束之點。一旦到達完全聚焦點741,額外聚焦即致使粒子束在特定平面中變得放大。過聚焦通常係大多數醫治所不期望的,此乃因其可導致粒子束之剖面形狀之不期望 之擴張。在此實例中,藉由配置聚焦區域以使得在每一聚焦區域之輸出處將粒子束壓縮至完全聚焦之大約1/6,存在粒子束過聚焦(如由實例性過聚焦束742所展示)之一經減小風險。
在一實例中,參考圖20B,就在來自圖20A之粒子束退出聚焦空間713之後,其進入一聚焦元件711。聚焦元件711經組態以藉由將另一聚焦區域於1/6焦點處而將徑向平面中之粒子束聚焦完全聚焦之大約1/6。在其他實施方案中,可利用除1/6以外之一焦點位準。當粒子束退出聚焦元件711時,其具有大於在其進入聚焦元件711時其所具有之直徑之一軸向直徑及小於該直徑之一徑向直徑。然而,粒子束之軸向直徑小於在其進入聚焦空間713時之直徑,且粒子束之徑向直徑大於在其進入聚焦空間713時之直徑。亦即,在此實例中之粒子束具有在其通過聚焦空間713及聚焦元件711兩者之後係更圓之一剖面形狀。淨結果係具有一更適當大小及/或形狀之一粒子束。圖20B中所展示之一提取通道703之實例性部分包含僅兩個聚焦區域,但如上文所提及,包含更多聚焦區域可係適當的,且通常係期望的。
返回參考圖15,實例性提取通道703含有多個聚焦區域751至760。圖21展示由圖15之腔700及聚焦區域聚焦之一實例性粒子束。在此實例中,具有係實質上圓形之一剖面形狀之一聚焦束係適當的。為闡釋起見,實例性提取通道703概念化為一筆直(非彎曲)組態。如上文所闡釋,腔700中之背景磁場之形狀軸向聚焦粒子束。等到將粒子束自腔700輸出至提取通道703時,實質上軸向聚焦粒子束。
提取通道703中之第一聚焦區域係聚焦元件751。聚焦元件751徑向聚焦粒子束。當粒子束退出聚焦元件751時,其具有一稍微較大之軸向直徑及一稍微較小之徑向直徑。然後粒子束進入軸向聚焦粒子束之聚焦空間752。當粒子束退出聚焦空間752時,其具有一稍微較小之軸向直徑及一稍微較大之徑向直徑。然而,粒子束之軸向直徑大於在 其進入聚焦元件751時之直徑,且粒子束之徑向直徑小於在其進入聚焦元件751時之直徑。亦即,在此實例中之粒子束具有在其通過聚焦元件751及聚焦空間752兩者之後係更圓之一剖面形狀。
聚焦元件753徑向聚焦粒子束。當粒子束退出聚焦元件753時,其具有一稍微較大之軸向直徑及一稍微較小之徑向直徑。粒子束之軸向直徑大於在其退出聚焦元件751時之直徑,且粒子束之徑向直徑小於在其退出聚焦元件751時之直徑。聚焦空間754軸向聚焦粒子束。當粒子束退出聚焦空間754時,其具有一稍微較小之軸向直徑及一稍微較大之徑向直徑。然而,粒子束之軸向直徑大於在其進入聚焦元件753時之直徑,且粒子束之徑向直徑小於在其進入聚焦元件753時之直徑。亦即,在此實例中之粒子束具有在其通過聚焦元件753及聚焦空間754之後係甚至更圓之一剖面形狀。
當粒子束通過交替類型之聚焦區域755、756、757、758、759及760時,此交替聚焦繼續。每一聚焦區域將一既定平面中之粒子束聚焦彼平面中之大約1/6其直徑。在此實例中,在行進穿過提取通道703之過程中,粒子束經歷給予其一更圓之剖面形狀之淨聚焦。
軸向及/或徑向聚焦量係系統特定的。在一實例中,由超導線圈產生之磁場之量值可需要多於(例如,來自聚焦元件711)徑向聚焦之軸向聚焦(例如,來自聚焦空間713)以獲得一適當大小及/或形狀之一粒子束。在另一實例中,由超導線圈產生之磁場之量值可需要多於軸向聚焦之徑向聚焦以獲得一適當大小及/或形狀之一粒子束。構成一適當大小及/或形狀之一粒子束的粒子可取決於系統及醫治類型。在一實例中,具有一實質上圓形剖面之一粒子束可係適當的。在另一實例中,具有在徑向或軸向平面上伸長之一橢圓形狀之剖面之一粒子束可係適當的。在另一實例中,粒子束之剖面區為相對大(例如,大約數cm2)可係適當的。在另一實例中,粒子束之剖面區為相對小(例 如,大約數mm2)可係適當的。
聚焦區域之數目及組態係系統特定的,且可經更改以提供任何適當類型之聚焦。在一實例中,具有多於/少於十個聚焦區域可係適當的。在另一實例中,聚焦區域在聚焦空間713與聚焦元件711之間交替可能並非適當的。聚焦區域之適當數目及組態可取決於醫治類型。
提取通道可含有一或多個場減小元件770。圖22係一實例性場減小元件770之一剖面圖。場減小元件770包含兩個磁場減法器730。磁場減法器730緊鄰且平行於彼此水平對準以使得一個磁場減法器730之一寬闊表面面對另一磁場減法器730之一寬闊表面。
在某些實例中,減小提取通道703中之磁場可係適當的。可需減小磁場以保持粒子束之軌跡在提取通道703內定中心。一場減小元件770可自粒子束之路徑吸走磁通量,如由場減小元件磁場線774所展示。
提取通道亦可含有一或多個場增加元件780。圖23係一實例性場增加元件780之一剖面圖。場增加元件780包含兩個磁場加法器782。磁場加法器782彼此上下且彼此平行地垂直對準以使得一個磁場加法器782之一寬闊表面面對另一磁場加法器782之一寬闊表面。
在某些實例中,增加提取通道703中之磁場可係適當的。可需增加磁場以保持粒子束之軌跡在提取通道703內定中心。一場增加元件780可將磁通量推入至粒子束之路徑中,如由場增加元件磁場線784所展示。在某些實施方案中,可在大約粒子束自提取通道之退出點處增加或減小磁場。是否需要此及/或增加或減少量通常係系統特定的。
可以一適當組合利用前述聚焦區域中之任何者以在提取通道703中聚焦粒子束。同樣地,可出於相同目的以一適當組合利用前述聚焦區域中之任何者之個別特徵。
本文中所闡述之不同實施方案之元件可經組合以形成上文未具 體陳述之其他實施方案。本文中所闡述之程序、系統、裝置等中可能遺漏元件而不會不利地影響其操作。各種單獨元件可組合成一或多個個別元件以執行本文中所闡述之功能。
本文中所闡述之實例性實施方案不限於與一粒子治療系統一起利用或與本文中所闡述之實例性粒子治療系統一起利用。而是,該等實施方案可用於將經加速粒子引導至一輸出之任何適當系統中。
關於本文中所闡述之粒子加速器之設計之額外資訊可見於以下各項中:標題為「High-Field Superconducting Synchrocyclotron」且2006年1月20日提出申請之第60/760,788號美國臨時申請案;標題為「Cryogenic Vacuum Break Pneumatic Thermal Coupler」且2006年8月9日提出申請之第11/463,402號美國專利申請案;及標題為「Cryogenic Vacuum Break Pneumatic Thermal Coupler」且2006年10月10日提出申請之第60/850,565號美國臨時申請案,所有該等申請案好像完全經陳述似得以引用方式併入本文中。
以下申請案(其中之所有申請案與本申請案(標題為「FOCUSING A PARTICLE BEAM」(代理人檔案號為17970-0031P01))同一天提出申請)好像完全陳述於本文中似得以引用方式併入至本申請案中:標題為「CONTROLLING INTENSITY OF A PARTICLE BEAM」(代理人檔案號為17970-0026P01)之美國臨時申請案;標題為「ADJUSTING ENERGY OF A PARTICLE BEAM」(代理人檔案號為17970-0027P01)之美國臨時申請案;標題為「ADJUSTING COIL POSITION」(代理人檔案號為17970-0028P01)之美國臨時申請案;標題為「FOCUSING A PARTICLE BEAM USING MAGNETIC FIELD FLUTTER」(代理人檔案號為17970-0029P01)之美國臨時申請案;標題為「MAGNETIC FIELD REGENERATOR」(代理人檔案號為17970-0030P01)之美國臨時申請案;標題為「CONTROLLING PARTICLE THERAPY」(代理人檔案號為17970-0032P01)之美國臨時申請案;及標題為「CONTROL SYSTEM FOR A PARTICLE ACCELERATOR」(代理人檔案號為17970-0033P01)之美國臨時申請案。
以下各項亦好像完全陳述於本文中似得以引用方式併入至本發明中:2010年6月1日頒佈之第7,728,311號美國專利;2007年11月30日提出申請之第11/948,359號美國專利申請案;2008年11月20日提出申請之第12/275,103號美國專利申請案;2007年11月30日提出申請之第11/948,662號美國專利申請案;2007年11月30日提出申請之第60/991,454號美國臨時申請案;2011年8月23日頒佈之第8,003,964號美國專利;2007年4月24日頒佈之第7,208,748號美國專利;2008年7月22日頒佈之第7,402,963號美國專利;2010年2月9日提出申請之第13/148,000號美國專利申請案;及2007年11月9日提出申請之第11/937,573號美國專利申請案。
本申請案之任何特徵可與以下各項之一或多個適當特徵組合:標題為「CONTROLLING INTENSITY OF A PARTICLE BEAM」(代理人檔案號為17970-0026P01)之美國臨時申請案;標題為「ADJUSTING ENERGY OF A PARTICLE BEAM」(代理人檔案號為17970-0027P01)之美國臨時申請案;標題為「ADJUSTING COIL POSITION」(代理人檔案號為17970-0028P01)之美國臨時申請案;標題為「FOCUSING A PARTICLE BEAM USING MAGNETIC FIELD FLUTTER」(代理人檔案號為17970-0029P01)之美國臨時申請案;標題為「MAGNETIC FIELD REGENERATOR」(代理人檔案號為17970-0030P01)之美國臨時申請案;標題為「CONTROLLING PARTICLE THERAPY」(代理人檔案號為17970-0032P01)之美國臨時申請案;標題為「CONTROL SYSTEM FOR A PARTICLE ACCELERATOR」(代理人檔案號為17970-0033P01)之美國臨時申請案;2010年6月1日頒佈 之第7,728,311號美國專利;2007年11月30日提出申請之第11/948,359號美國專利申請案;2008年11月20日提出申請之第12/275,103號美國專利申請案;2007年11月30日提出申請之第11/948,662號美國專利申請案;2007年11月30日提出申請之第60/991,454號美國臨時申請案;2011年8月23日頒佈之第8,003,964號美國專利;2007年4月24日頒佈之第7,208,748號美國專利;2008年7月22日頒佈之第7,402,963號美國專利;2010年2月9日提出申請之第13/148,000號美國專利申請案;及2007年11月9日提出申請之第11/937,573號美國專利申請案。
本文中未具體闡述之其他實施方案亦在以下申請專利範圍之範疇內。
703‧‧‧提取通道/實例性提取通道
709‧‧‧超導線圈/線圈
710‧‧‧超導線圈/線圈
711‧‧‧聚焦元件/實例性聚焦元件
712‧‧‧背景磁場線/磁場線/背景磁線
728‧‧‧鐵磁四極
730‧‧‧磁場減法器
736‧‧‧聚焦元件磁場線
738‧‧‧粒子

Claims (11)

  1. 一種粒子加速器,其包括:一諧振腔,在該諧振腔中使粒子加速,該諧振腔具有包含一第一形狀之一背景磁場,該背景磁場係至少6特斯拉;及一提取通道,其用於接收自該諧振腔輸出之粒子,該提取通道包括用以聚焦一所接收粒子束之一系列聚焦區域,其中該等聚焦區域中之至少一者係經組態以在存在由該至少6特斯拉背景磁場自該諧振腔至該提取通道之減少產生之一磁場梯度之情況下將該背景磁場之一形狀更改為實質上與該第一形狀相反之一第二形狀的一聚焦元件。
  2. 如請求項1之粒子加速器,其中該聚焦元件包括:鐵磁四極,每一鐵磁四極具有一實質上直角梯形之一剖面形狀,具有一傾斜表面,該等鐵磁四極彼此上下相對地配置以使得該等鐵磁四極之傾斜表面部分地面對彼此;及一磁場減法器,該磁場減法器緊鄰該等鐵磁四極水平對準以使得該等鐵磁四極之該等傾斜表面對角地面對該磁場減法器之一寬闊表面。
  3. 如請求項2之粒子加速器,其中該磁場減法器係一矩形板,該磁場減法器經組態以吸入周圍磁場通量以幫助該等鐵磁四極將該背景磁場更改為該第二形狀。
  4. 如請求項1之粒子加速器,其中該提取通道包括一或多個場增加元件,該一或多個場增加元件包括兩個磁場加法器;且其中該等磁場加法器包括矩形板,該等磁場加法器彼此上下且彼此平行地垂直對準以使得一個磁場加法器之一寬闊表面面對另一磁場加法器之一寬闊表面。
  5. 如請求項1之粒子加速器,其中該提取通道包括一或多個場減小元件,該一或多個場減小元件包括磁場減法器;且其中該等磁場減法器包括矩形板,該等磁場減法器緊鄰且平行於彼此水平對準以使得一個磁場減法器之一寬闊表面面對另一磁場減法器之一寬闊表面。
  6. 如請求項1之粒子加速器,其中該等聚焦區域經配置以使得每一聚焦區域將該所接收粒子束壓縮在一軸向或徑向平面中之完全聚焦之大約1/6。
  7. 如請求項1之粒子加速器,其中該等聚焦區域中之至少一者係一聚焦空間,該聚焦空間具有實質上類似於該背景磁場之該第一形狀之一磁場形狀。
  8. 如請求項7之粒子加速器,其中該系列聚焦區域經配置以使得聚焦元件與聚焦空間交替。
  9. 一種質子治療系統,其包括:如請求項1之粒子加速器,其中粒子包括質子;及一龍門架,該粒子加速器安裝於其上,該龍門架可相對於一患者位置旋轉;其中將質子自該粒子加速器基本上直接輸出至該患者位置。
  10. 一種粒子加速器,其包括:一線圈,其用以提供一磁場至一諧振腔以使得該諧振腔具有包含一第一形狀之一背景磁場,該背景磁場係至少6特斯拉;一粒子源,其用以提供一電漿柱至該諧振腔;一電壓源,其用以提供一射頻(RF)電壓至該諧振腔以使粒子自該電漿柱加速,該磁場致使自該電漿柱加速之粒子在該諧振腔內沿軌道移動;及一外殼,其含有用於接收自該諧振腔輸出之該等粒子之一提 取通道,該提取通道包括用於聚焦一所接收粒子束之一系列聚焦區域,其中該等聚焦區域中之至少一者係經組態以在存在由該至少6特斯拉背景磁場自該諧振腔至該提取通道之減少產生之一磁場梯度之情況下將該背景磁場之一形狀更改為實質上與該第一形狀相反之一第二形狀的一聚焦元件,其中該聚焦元件包括鐵磁四極,每一鐵磁四極具有一實質上直角梯形之一剖面形狀,具有一傾斜表面,該等鐵磁四極彼此上下相對地配置以使得該等鐵磁四極之傾斜表面至少部分地面對彼此。
  11. 如請求項10之粒子加速器,其進一步包括:一磁場減法器,該磁場減法器緊鄰該等鐵磁四極水平對準以使得該等鐵磁四極之傾斜表面對角地面對該磁場減法器之一寬闊表面。
TW102135151A 2012-09-28 2013-09-27 聚焦粒子束 TW201422279A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261707704P 2012-09-28 2012-09-28

Publications (1)

Publication Number Publication Date
TW201422279A true TW201422279A (zh) 2014-06-16

Family

ID=49322759

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102135151A TW201422279A (zh) 2012-09-28 2013-09-27 聚焦粒子束

Country Status (6)

Country Link
US (1) US8927950B2 (zh)
EP (1) EP2901822B1 (zh)
JP (1) JP6121544B2 (zh)
CN (1) CN104813748B (zh)
TW (1) TW201422279A (zh)
WO (1) WO2014052718A2 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
USRE48047E1 (en) 2004-07-21 2020-06-09 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101361156B (zh) 2005-11-18 2012-12-12 梅维昂医疗系统股份有限公司 用于实施放射治疗的设备
JP6523957B2 (ja) 2012-09-28 2019-06-05 メビオン・メディカル・システムズ・インコーポレーテッド 磁場を変更するための磁性シム
JP6254600B2 (ja) * 2012-09-28 2017-12-27 メビオン・メディカル・システムズ・インコーポレーテッド 粒子加速器
US9867272B2 (en) 2012-10-17 2018-01-09 Cornell University Generation and acceleration of charged particles using compact devices and systems
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
DE102014003536A1 (de) * 2014-03-13 2015-09-17 Forschungszentrum Jülich GmbH Fachbereich Patente Supraleitender Magnetfeldstabilisator
US10076675B2 (en) * 2015-09-30 2018-09-18 HIL Applied Medical Ltd. Beam delivery system for proton therapy for laser-accelerated protons
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
EP3481503B1 (en) 2016-07-08 2021-04-21 Mevion Medical Systems, Inc. Treatment planning
CN106163074B (zh) * 2016-07-29 2018-10-09 中国原子能科学研究院 增强中能超导回旋加速器引出区Vr等于1共振处磁刚度的方法
JP7271425B2 (ja) * 2016-09-09 2023-05-11 ボード オブ リージェンツ,ザ ユニバーシティ オブ テキサス システム 照射電子ビームの磁気制御用の装置および方法
CN106683822B (zh) * 2016-11-02 2021-10-29 中国电力科学研究院 一种大容量环形储能磁体的真空壳体
CN106373698B (zh) * 2016-11-02 2020-12-04 中国电力科学研究院 一种大容量环形储能磁体的热屏蔽
TWI614042B (zh) * 2016-12-02 2018-02-11 財團法人工業技術研究院 中子束源產生器及其濾屏
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
WO2018195441A1 (en) * 2017-04-21 2018-10-25 Massachusetts Institute Of Technology Dc constant-field synchrotron providing inverse reflection of charged particles
EP3645111A1 (en) 2017-06-30 2020-05-06 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
CN108551717B (zh) * 2018-06-04 2020-04-28 合肥中科离子医学技术装备有限公司 一种回旋加速器中心区增强轴向聚焦的方法
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor
US11483919B2 (en) 2019-03-27 2022-10-25 Huazhong University Of Science And Technology System of electron irradiation
WO2020191839A1 (zh) * 2019-03-27 2020-10-01 华中科技大学 电子辐照系统
CN115103505A (zh) * 2022-06-29 2022-09-23 中国原子能科学研究院 等时性加速器大径向范围内调变磁场梯度获得强聚焦方法
CN115531743B (zh) * 2022-10-21 2023-06-20 中国科学院近代物理研究所 一种多方位角照射系统及其应用方法

Family Cites Families (535)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2280606A (en) 1940-01-26 1942-04-21 Rca Corp Electronic reactance circuits
US2615129A (en) 1947-05-16 1952-10-21 Edwin M Mcmillan Synchro-cyclotron
US2492324A (en) 1947-12-24 1949-12-27 Collins Radio Co Cyclotron oscillator system
US2626351A (en) * 1948-08-17 1953-01-20 Wilson M Powell Beam extractor
US2616042A (en) 1950-05-17 1952-10-28 Weeks Robert Ray Stabilizer arrangement for cyclotrons and the like
US2659000A (en) 1951-04-27 1953-11-10 Collins Radio Co Variable frequency cyclotron
US2701304A (en) 1951-05-31 1955-02-01 Gen Electric Cyclotron
US2789222A (en) 1954-07-21 1957-04-16 Marvin D Martin Frequency modulation system
US2958327A (en) 1957-03-29 1960-11-01 Gladys W Geissmann Foundation garment
US3360647A (en) 1964-09-14 1967-12-26 Varian Associates Electron accelerator with specific deflecting magnet structure and x-ray target
US3175131A (en) 1961-02-08 1965-03-23 Richard J Burleigh Magnet construction for a variable energy cyclotron
US3432721A (en) 1966-01-17 1969-03-11 Gen Electric Beam plasma high frequency wave generating system
JPS4323267Y1 (zh) 1966-10-11 1968-10-01
NL7007871A (zh) 1970-05-29 1971-12-01
US3679899A (en) 1971-04-16 1972-07-25 Nasa Nondispersive gas analyzing method and apparatus wherein radiation is serially passed through a reference and unknown gas
US3757118A (en) 1972-02-22 1973-09-04 Ca Atomic Energy Ltd Electron beam therapy unit
US3883761A (en) * 1972-12-08 1975-05-13 Cyclotron Corp Electrostatic extraction method and apparatus for cyclotrons
CA966893A (en) 1973-06-19 1975-04-29 Her Majesty In Right Of Canada As Represented By Atomic Energy Of Canada Limited Superconducting cyclotron
US4047068A (en) 1973-11-26 1977-09-06 Kreidl Chemico Physical K.G. Synchronous plasma packet accelerator
US3992625A (en) 1973-12-27 1976-11-16 Jersey Nuclear-Avco Isotopes, Inc. Method and apparatus for extracting ions from a partially ionized plasma using a magnetic field gradient
US3886367A (en) 1974-01-18 1975-05-27 Us Energy Ion-beam mask for cancer patient therapy
US3958327A (en) 1974-05-01 1976-05-25 Airco, Inc. Stabilized high-field superconductor
US4129784A (en) 1974-06-14 1978-12-12 Siemens Aktiengesellschaft Gamma camera
US3925676A (en) 1974-07-31 1975-12-09 Ca Atomic Energy Ltd Superconducting cyclotron neutron source for therapy
US3955089A (en) 1974-10-21 1976-05-04 Varian Associates Automatic steering of a high velocity beam of charged particles
US4230129A (en) 1975-07-11 1980-10-28 Leveen Harry H Radio frequency, electromagnetic radiation device having orbital mount
FR2320680A1 (fr) * 1975-08-08 1977-03-04 Cgr Mev Dispositif de correction magnetique des trajectoires d'un faisceau de particules accelerees emergeant d'un cyclotron
ZA757266B (en) 1975-11-19 1977-09-28 W Rautenbach Cyclotron and neutron therapy installation incorporating such a cyclotron
SU569635A1 (ru) 1976-03-01 1977-08-25 Предприятие П/Я М-5649 Магнитный сплав
US4038622A (en) 1976-04-13 1977-07-26 The United States Of America As Represented By The United States Energy Research And Development Administration Superconducting dipole electromagnet
US4112306A (en) 1976-12-06 1978-09-05 Varian Associates, Inc. Neutron irradiation therapy machine
DE2759073C3 (de) 1977-12-30 1981-10-22 Siemens AG, 1000 Berlin und 8000 München Elektronentubus
GB2015821B (en) 1978-02-28 1982-03-31 Radiation Dynamics Ltd Racetrack linear accelerators
US4197510A (en) 1978-06-23 1980-04-08 The United States Of America As Represented By The Secretary Of The Navy Isochronous cyclotron
JPS5924520B2 (ja) 1979-03-07 1984-06-09 理化学研究所 等時性サイクロトロンの磁極の構造とそれの使用方法
FR2458201A1 (fr) 1979-05-31 1980-12-26 Cgr Mev Systeme resonnant micro-onde a double frequence de resonance et cyclotron muni d'un tel systeme
DE2926873A1 (de) 1979-07-03 1981-01-22 Siemens Ag Strahlentherapiegeraet mit zwei lichtvisieren
US4293772A (en) 1980-03-31 1981-10-06 Siemens Medical Laboratories, Inc. Wobbling device for a charged particle accelerator
US4342060A (en) 1980-05-22 1982-07-27 Siemens Medical Laboratories, Inc. Energy interlock system for a linear accelerator
US4336505A (en) 1980-07-14 1982-06-22 John Fluke Mfg. Co., Inc. Controlled frequency signal source apparatus including a feedback path for the reduction of phase noise
JPS57162527U (zh) 1981-04-07 1982-10-13
US4425506A (en) 1981-11-19 1984-01-10 Varian Associates, Inc. Stepped gap achromatic bending magnet
DE3148100A1 (de) 1981-12-04 1983-06-09 Uwe Hanno Dr. 8050 Freising Trinks "synchrotron-roentgenstrahlungsquelle"
US4507616A (en) 1982-03-08 1985-03-26 Board Of Trustees Operating Michigan State University Rotatable superconducting cyclotron adapted for medical use
JPS58141000U (ja) 1982-03-15 1983-09-22 和泉鉄工株式会社 上下反転積込排出装置
US4490616A (en) 1982-09-30 1984-12-25 Cipollina John J Cephalometric shield
JPS5964069A (ja) 1982-10-04 1984-04-11 バリアン・アソシエイツ・インコ−ポレイテツド 電子アーク治療用視準装置のための遮蔽物保持装置
US4507614A (en) 1983-03-21 1985-03-26 The United States Of America As Represented By The United States Department Of Energy Electrostatic wire for stabilizing a charged particle beam
SE462013B (sv) 1984-01-26 1990-04-30 Kjell Olov Torgny Lindstroem Behandlingsbord foer radioterapi av patienter
FR2560421B1 (fr) 1984-02-28 1988-06-17 Commissariat Energie Atomique Dispositif de refroidissement de bobinages supraconducteurs
US4865284A (en) 1984-03-13 1989-09-12 Siemens Gammasonics, Inc. Collimator storage device in particular a collimator cart
US4641104A (en) 1984-04-26 1987-02-03 Board Of Trustees Operating Michigan State University Superconducting medical cyclotron
GB8421867D0 (en) 1984-08-29 1984-10-03 Oxford Instr Ltd Devices for accelerating electrons
US4651007A (en) 1984-09-13 1987-03-17 Technicare Corporation Medical diagnostic mechanical positioner
JPS6180800U (zh) 1984-10-30 1986-05-29
US4641057A (en) 1985-01-23 1987-02-03 Board Of Trustees Operating Michigan State University Superconducting synchrocyclotron
DE3506562A1 (de) 1985-02-25 1986-08-28 Siemens AG, 1000 Berlin und 8000 München Magnetfeldeinrichtung fuer eine teilchenbeschleuniger-anlage
EP0193837B1 (de) 1985-03-08 1990-05-02 Siemens Aktiengesellschaft Magnetfelderzeugende Einrichtung für eine Teilchenbeschleuniger-Anlage
NL8500748A (nl) 1985-03-15 1986-10-01 Philips Nv Collimator wisselsysteem.
DE3511282C1 (de) 1985-03-28 1986-08-21 Brown, Boveri & Cie Ag, 6800 Mannheim Supraleitendes Magnetsystem fuer Teilchenbeschleuniger einer Synchrotron-Strahlungsquelle
US4705955A (en) 1985-04-02 1987-11-10 Curt Mileikowsky Radiation therapy for cancer patients
US4633125A (en) 1985-05-09 1986-12-30 Board Of Trustees Operating Michigan State University Vented 360 degree rotatable vessel for containing liquids
LU85895A1 (fr) 1985-05-10 1986-12-05 Univ Louvain Cyclotron
US4628523A (en) 1985-05-13 1986-12-09 B.V. Optische Industrie De Oude Delft Direction control for radiographic therapy apparatus
GB8512804D0 (en) 1985-05-21 1985-06-26 Oxford Instr Ltd Cyclotrons
DE3661672D1 (en) 1985-06-24 1989-02-09 Siemens Ag Magnetic-field device for an apparatus for accelerating and/or storing electrically charged particles
US4726046A (en) 1985-11-05 1988-02-16 Varian Associates, Inc. X-ray and electron radiotherapy clinical treatment machine
US4737727A (en) 1986-02-12 1988-04-12 Mitsubishi Denki Kabushiki Kaisha Charged beam apparatus
US4783634A (en) 1986-02-27 1988-11-08 Mitsubishi Denki Kabushiki Kaisha Superconducting synchrotron orbital radiation apparatus
JPS62150804U (zh) 1986-03-14 1987-09-24
US4754147A (en) 1986-04-11 1988-06-28 Michigan State University Variable radiation collimator
US4739173A (en) 1986-04-11 1988-04-19 Board Of Trustees Operating Michigan State University Collimator apparatus and method
JPS62186500U (zh) 1986-05-20 1987-11-27
US4763483A (en) 1986-07-17 1988-08-16 Helix Technology Corporation Cryopump and method of starting the cryopump
US4868843A (en) 1986-09-10 1989-09-19 Varian Associates, Inc. Multileaf collimator and compensator for radiotherapy machines
US4808941A (en) 1986-10-29 1989-02-28 Siemens Aktiengesellschaft Synchrotron with radiation absorber
GB8701363D0 (en) 1987-01-22 1987-02-25 Oxford Instr Ltd Magnetic field generating assembly
EP0277521B1 (de) 1987-01-28 1991-11-06 Siemens Aktiengesellschaft Synchrotronstrahlungsquelle mit einer Fixierung ihrer gekrümmten Spulenwicklungen
EP0276360B1 (de) 1987-01-28 1993-06-09 Siemens Aktiengesellschaft Magneteinrichtung mit gekrümmten Spulenwicklungen
DE3705294A1 (de) 1987-02-19 1988-09-01 Kernforschungsz Karlsruhe Magnetisches ablenksystem fuer geladene teilchen
JPS63218200A (ja) 1987-03-05 1988-09-12 Furukawa Electric Co Ltd:The 超伝導sor発生装置
JPS63226899A (ja) 1987-03-16 1988-09-21 Ishikawajima Harima Heavy Ind Co Ltd 超電導ウイグラ−
JPH0517318Y2 (zh) 1987-03-24 1993-05-10
US4767930A (en) 1987-03-31 1988-08-30 Siemens Medical Laboratories, Inc. Method and apparatus for enlarging a charged particle beam
JPH0546928Y2 (zh) 1987-04-01 1993-12-09
US4812658A (en) 1987-07-23 1989-03-14 President And Fellows Of Harvard College Beam Redirecting
JPS6435838A (en) 1987-07-31 1989-02-06 Jeol Ltd Charged particle beam device
DE3828639C2 (de) 1987-08-24 1994-08-18 Mitsubishi Electric Corp Strahlentherapiegerät
JP2667832B2 (ja) 1987-09-11 1997-10-27 株式会社日立製作所 偏向マグネット
JPS6489621A (en) 1987-09-30 1989-04-04 Nec Corp Frequency synthesizer
GB8725459D0 (en) 1987-10-30 1987-12-02 Nat Research Dev Corpn Generating particle beams
US4945478A (en) 1987-11-06 1990-07-31 Center For Innovative Technology Noninvasive medical imaging system and method for the identification and 3-D display of atherosclerosis and the like
EP0395711B1 (en) 1987-12-03 1995-03-08 The University Of Florida Apparatus for stereotactic radiosurgery
US4896206A (en) 1987-12-14 1990-01-23 Electro Science Industries, Inc. Video detection system
US4870287A (en) 1988-03-03 1989-09-26 Loma Linda University Medical Center Multi-station proton beam therapy system
US4845371A (en) 1988-03-29 1989-07-04 Siemens Medical Laboratories, Inc. Apparatus for generating and transporting a charged particle beam
US4917344A (en) 1988-04-07 1990-04-17 Loma Linda University Medical Center Roller-supported, modular, isocentric gantry and method of assembly
JP2645314B2 (ja) 1988-04-28 1997-08-25 清水建設株式会社 磁気遮蔽器
US4905267A (en) 1988-04-29 1990-02-27 Loma Linda University Medical Center Method of assembly and whole body, patient positioning and repositioning support for use in radiation beam therapy systems
US5006759A (en) 1988-05-09 1991-04-09 Siemens Medical Laboratories, Inc. Two piece apparatus for accelerating and transporting a charged particle beam
JPH079839B2 (ja) 1988-05-30 1995-02-01 株式会社島津製作所 高周波多重極線型加速器
JPH078300B2 (ja) 1988-06-21 1995-02-01 三菱電機株式会社 荷電粒子ビームの照射装置
GB2223350B (en) 1988-08-26 1992-12-23 Mitsubishi Electric Corp Device for accelerating and storing charged particles
GB8820628D0 (en) 1988-09-01 1988-10-26 Amersham Int Plc Proton source
US4880985A (en) 1988-10-05 1989-11-14 Douglas Jones Detached collimator apparatus for radiation therapy
DE58907575D1 (de) 1988-11-29 1994-06-01 Varian International Ag Zug Strahlentherapiegerät.
DE4000666C2 (de) 1989-01-12 1996-10-17 Mitsubishi Electric Corp Elektromagnetanordnung für einen Teilchenbeschleuniger
JPH0834130B2 (ja) 1989-03-15 1996-03-29 株式会社日立製作所 シンクロトロン放射光発生装置
US5017789A (en) 1989-03-31 1991-05-21 Loma Linda University Medical Center Raster scan control system for a charged-particle beam
US5117829A (en) 1989-03-31 1992-06-02 Loma Linda University Medical Center Patient alignment system and procedure for radiation treatment
US5046078A (en) 1989-08-31 1991-09-03 Siemens Medical Laboratories, Inc. Apparatus and method for inhibiting the generation of excessive radiation
US5010562A (en) 1989-08-31 1991-04-23 Siemens Medical Laboratories, Inc. Apparatus and method for inhibiting the generation of excessive radiation
JP2896188B2 (ja) 1990-03-27 1999-05-31 三菱電機株式会社 荷電粒子装置用偏向電磁石
US5072123A (en) 1990-05-03 1991-12-10 Varian Associates, Inc. Method of measuring total ionization current in a segmented ionization chamber
JPH06501334A (ja) 1990-08-06 1994-02-10 シーメンス アクチエンゲゼルシヤフト シンクロトロン放射源
JPH0494198A (ja) 1990-08-09 1992-03-26 Nippon Steel Corp 電磁気シールド用材料
JP2896217B2 (ja) 1990-09-21 1999-05-31 キヤノン株式会社 記録装置
JP2529492B2 (ja) 1990-08-31 1996-08-28 三菱電機株式会社 荷電粒子偏向電磁石用コイルおよびその製造方法
JP2786330B2 (ja) 1990-11-30 1998-08-13 株式会社日立製作所 超電導マグネットコイル、及び該マグネットコイルに用いる硬化性樹脂組成物
DE4101094C1 (en) 1991-01-16 1992-05-27 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De Superconducting micro-undulator for particle accelerator synchrotron source - has superconductor which produces strong magnetic field along track and allows intensity and wavelength of radiation to be varied by conrolling current
IT1244689B (it) 1991-01-25 1994-08-08 Getters Spa Dispositivo per eliminare l'idrogeno da una camera a vuoto, a temperature criogeniche,specialmente in acceleratori di particelle ad alta energia
JPH04258781A (ja) 1991-02-14 1992-09-14 Toshiba Corp ガンマカメラ
JPH04273409A (ja) 1991-02-28 1992-09-29 Hitachi Ltd 超電導マグネツト装置及び該超電導マグネツト装置を使用した粒子加速器
DE69226553T2 (de) 1991-03-13 1998-12-24 Fujitsu Ltd Vorrichtung und Verfahren zur Belichtung mittels Ladungsträgerstrahlen
JP2556057Y2 (ja) 1991-05-11 1997-12-03 ケージーパック株式会社 義歯の一時保管用袋
JPH04337300A (ja) 1991-05-15 1992-11-25 Res Dev Corp Of Japan 超電導偏向マグネット
JPH05154210A (ja) 1991-12-06 1993-06-22 Mitsubishi Electric Corp 放射線治療装置
US5148032A (en) 1991-06-28 1992-09-15 Siemens Medical Laboratories, Inc. Radiation emitting device with moveable aperture plate
US5191706A (en) 1991-07-15 1993-03-09 Delmarva Sash & Door Company Of Maryland, Inc. Machine and method for attaching casing to a structural frame assembly
WO1993002537A1 (en) 1991-07-16 1993-02-04 Sergei Nikolaevich Lapitsky Superconducting electromagnet for charged-particle accelerator
FR2679509B1 (fr) 1991-07-26 1993-11-05 Lebre Charles Dispositif de serrage automatique, sur le mat d'un diable a fut, de l'element de prise en suspension du fut.
US5166531A (en) 1991-08-05 1992-11-24 Varian Associates, Inc. Leaf-end configuration for multileaf collimator
JP3125805B2 (ja) 1991-10-16 2001-01-22 株式会社日立製作所 円形加速器
US5240218A (en) 1991-10-23 1993-08-31 Loma Linda University Medical Center Retractable support assembly
JPH0636893Y2 (ja) 1991-11-16 1994-09-28 三友工業株式会社 連続加熱成形装置
BE1005530A4 (fr) 1991-11-22 1993-09-28 Ion Beam Applic Sa Cyclotron isochrone
US5374913A (en) 1991-12-13 1994-12-20 Houston Advanced Research Center Twin-bore flux pipe dipole magnet
US5260581A (en) 1992-03-04 1993-11-09 Loma Linda University Medical Center Method of treatment room selection verification in a radiation beam therapy system
US5382914A (en) 1992-05-05 1995-01-17 Accsys Technology, Inc. Proton-beam therapy linac
JPH05341352A (ja) 1992-06-08 1993-12-24 Minolta Camera Co Ltd カメラ及び交換レンズのバヨネットマウント用キャップ
JPH0636895A (ja) * 1992-06-09 1994-02-10 Ishikawajima Harima Heavy Ind Co Ltd シンクロトロンの収束電磁石およびこの収束電磁石を有するシンクロトロン
US5336891A (en) 1992-06-16 1994-08-09 Arch Development Corporation Aberration free lens system for electron microscope
JP2824363B2 (ja) 1992-07-15 1998-11-11 三菱電機株式会社 ビーム供給装置
US5401973A (en) 1992-12-04 1995-03-28 Atomic Energy Of Canada Limited Industrial material processing electron linear accelerator
JP3121157B2 (ja) 1992-12-15 2000-12-25 株式会社日立メディコ マイクロトロン電子加速器
JPH06233831A (ja) 1993-02-10 1994-08-23 Hitachi Medical Corp 定位的放射線治療装置
US5440133A (en) 1993-07-02 1995-08-08 Loma Linda University Medical Center Charged particle beam scattering system
US5549616A (en) 1993-11-02 1996-08-27 Loma Linda University Medical Center Vacuum-assisted stereotactic fixation system with patient-activated switch
US5464411A (en) 1993-11-02 1995-11-07 Loma Linda University Medical Center Vacuum-assisted fixation apparatus
US5463291A (en) 1993-12-23 1995-10-31 Carroll; Lewis Cyclotron and associated magnet coil and coil fabricating process
JPH07191199A (ja) 1993-12-27 1995-07-28 Fujitsu Ltd 荷電粒子ビーム露光システム及び露光方法
JP3307059B2 (ja) 1994-03-17 2002-07-24 株式会社日立製作所 加速器及び医療用装置並びに出射方法
JPH07260939A (ja) 1994-03-17 1995-10-13 Hitachi Medical Corp シンチレーションカメラのコリメータ交換台車
JPH07263196A (ja) 1994-03-18 1995-10-13 Toshiba Corp 高周波加速空洞
DE4411171A1 (de) 1994-03-30 1995-10-05 Siemens Ag Vorrichtung zur Bereitstellung eines Strahls aus geladenen Teilchen, der eine Achse auf einer diese schneidenden Zielgeraden anfliegt, sowie ihre Verwendung
EP0840538A3 (en) 1994-08-19 1999-06-16 Nycomed Amersham plc Target for use in the production of heavy isotopes
IT1281184B1 (it) 1994-09-19 1998-02-17 Giorgio Trozzi Amministratore Apparecchiatura per la radioterapia intraoperatoria mediante acceleratori lineari utilizzabili direttamente in sala operatoria
EP0709618B1 (en) 1994-10-27 2002-10-09 General Electric Company Ceramic superconducting lead
US5633747A (en) 1994-12-21 1997-05-27 Tencor Instruments Variable spot-size scanning apparatus
JP3629054B2 (ja) 1994-12-22 2005-03-16 北海製罐株式会社 溶接缶サイドシームの外面補正塗装方法
US5511549A (en) 1995-02-13 1996-04-30 Loma Linda Medical Center Normalizing and calibrating therapeutic radiation delivery systems
US5585642A (en) 1995-02-15 1996-12-17 Loma Linda University Medical Center Beamline control and security system for a radiation treatment facility
US5510357A (en) 1995-02-28 1996-04-23 Eli Lilly And Company Benzothiophene compounds as anti-estrogenic agents
JP3023533B2 (ja) 1995-03-23 2000-03-21 住友重機械工業株式会社 サイクロトロン
WO1996032987A1 (en) 1995-04-18 1996-10-24 Loma Linda University Medical Center System and method for multiple particle therapy
US5668371A (en) 1995-06-06 1997-09-16 Wisconsin Alumni Research Foundation Method and apparatus for proton therapy
BE1009669A3 (fr) 1995-10-06 1997-06-03 Ion Beam Applic Sa Methode d'extraction de particules chargees hors d'un cyclotron isochrone et dispositif appliquant cette methode.
GB9520564D0 (en) 1995-10-07 1995-12-13 Philips Electronics Nv Apparatus for treating a patient
JPH09162585A (ja) 1995-12-05 1997-06-20 Kanazawa Kogyo Univ 磁気シールドルーム及びその組立方法
JP3472657B2 (ja) 1996-01-18 2003-12-02 三菱電機株式会社 粒子線照射装置
JP3121265B2 (ja) 1996-05-07 2000-12-25 株式会社日立製作所 放射線遮蔽体
US5811944A (en) 1996-06-25 1998-09-22 The United States Of America As Represented By The Department Of Energy Enhanced dielectric-wall linear accelerator
US5821705A (en) 1996-06-25 1998-10-13 The United States Of America As Represented By The United States Department Of Energy Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators
US5726448A (en) 1996-08-09 1998-03-10 California Institute Of Technology Rotating field mass and velocity analyzer
DE69737270T2 (de) 1996-08-30 2008-03-06 Hitachi, Ltd. Vorrichtung zum Bestrahlen mit geladenen Teilchen
JPH1071213A (ja) 1996-08-30 1998-03-17 Hitachi Ltd 陽子線治療システム
US5851182A (en) 1996-09-11 1998-12-22 Sahadevan; Velayudhan Megavoltage radiation therapy machine combined to diagnostic imaging devices for cost efficient conventional and 3D conformal radiation therapy with on-line Isodose port and diagnostic radiology
US5727554A (en) 1996-09-19 1998-03-17 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus responsive to movement of a patient during treatment/diagnosis
US5672878A (en) 1996-10-24 1997-09-30 Siemens Medical Systems Inc. Ionization chamber having off-passageway measuring electrodes
US5778047A (en) 1996-10-24 1998-07-07 Varian Associates, Inc. Radiotherapy couch top
US5920601A (en) 1996-10-25 1999-07-06 Lockheed Martin Idaho Technologies Company System and method for delivery of neutron beams for medical therapy
US5825845A (en) 1996-10-28 1998-10-20 Loma Linda University Medical Center Proton beam digital imaging system
US5784431A (en) 1996-10-29 1998-07-21 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus for matching X-ray images with reference images
JP3841898B2 (ja) 1996-11-21 2006-11-08 三菱電機株式会社 深部線量測定装置
WO1998023330A1 (fr) 1996-11-26 1998-06-04 Mitsubishi Denki Kabushiki Kaisha Procede d'obtention de rayonnement d'energie
JP3246364B2 (ja) 1996-12-03 2002-01-15 株式会社日立製作所 シンクロトロン型加速器及びそれを用いた医療用装置
EP0864337A3 (en) 1997-03-15 1999-03-10 Shenzhen OUR International Technology & Science Co., Ltd. Three-dimensional irradiation technique with charged particles of Bragg peak properties and its device
US5841237A (en) 1997-07-14 1998-11-24 Lockheed Martin Energy Research Corporation Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources
BE1012534A3 (fr) 1997-08-04 2000-12-05 Sumitomo Heavy Industries Systeme de lit pour therapie par irradiation.
US5846043A (en) 1997-08-05 1998-12-08 Spath; John J. Cart and caddie system for storing and delivering water bottles
JP3532739B2 (ja) 1997-08-07 2004-05-31 住友重機械工業株式会社 放射線の照射野形成部材固定装置
US5963615A (en) 1997-08-08 1999-10-05 Siemens Medical Systems, Inc. Rotational flatness improvement
JP3519248B2 (ja) 1997-08-08 2004-04-12 住友重機械工業株式会社 放射線治療用回転照射室
JP3203211B2 (ja) 1997-08-11 2001-08-27 住友重機械工業株式会社 水ファントム型線量分布測定装置及び放射線治療装置
JPH11102800A (ja) 1997-09-29 1999-04-13 Toshiba Corp 超電導高周波加速空胴および粒子加速器
WO1999018579A2 (en) 1997-10-06 1999-04-15 Koninklijke Philips Electronics N.V. X-ray examination apparatus including x-ray filter and collimator
JP3577201B2 (ja) 1997-10-20 2004-10-13 三菱電機株式会社 荷電粒子線照射装置、荷電粒子線回転照射装置、および荷電粒子線照射方法
JPH11142600A (ja) 1997-11-12 1999-05-28 Mitsubishi Electric Corp 荷電粒子線照射装置及び照射方法
JP3528583B2 (ja) 1997-12-25 2004-05-17 三菱電機株式会社 荷電粒子ビーム照射装置および磁界発生装置
WO1999035966A1 (en) 1998-01-14 1999-07-22 Leonard Reiffel System to stabilize an irradiated internal target
AUPP156698A0 (en) 1998-01-30 1998-02-19 Pacific Solar Pty Limited New method for hydrogen passivation
JPH11243295A (ja) 1998-02-26 1999-09-07 Shimizu Corp 磁気シールド方法及び磁気シールド構造
JPH11253563A (ja) 1998-03-10 1999-09-21 Hitachi Ltd 荷電粒子ビーム照射方法及び装置
JP3053389B1 (ja) 1998-12-03 2000-06-19 三菱電機株式会社 動体追跡照射装置
GB2361523B (en) 1998-03-31 2002-05-01 Toshiba Kk Superconducting magnet apparatus
JPH11329945A (ja) 1998-05-08 1999-11-30 Nikon Corp 荷電粒子ビーム転写方法及び荷電粒子ビーム転写装置
JP2000070389A (ja) 1998-08-27 2000-03-07 Mitsubishi Electric Corp 照射線量値計算装置、照射線量値計算方法および記録媒体
ATE472807T1 (de) 1998-09-11 2010-07-15 Gsi Helmholtzzentrum Schwerionenforschung Gmbh Ionenstrahl-therapieanlage und verfahren zum betrieb der anlage
SE513192C2 (sv) 1998-09-29 2000-07-24 Gems Pet Systems Ab Förfarande och system för HF-styrning
US6369585B2 (en) 1998-10-02 2002-04-09 Siemens Medical Solutions Usa, Inc. System and method for tuning a resonant structure
US6279579B1 (en) 1998-10-23 2001-08-28 Varian Medical Systems, Inc. Method and system for positioning patients for medical treatment procedures
US6621889B1 (en) 1998-10-23 2003-09-16 Varian Medical Systems, Inc. Method and system for predictive physiological gating of radiation therapy
US6241671B1 (en) 1998-11-03 2001-06-05 Stereotaxis, Inc. Open field system for magnetic surgery
US6441569B1 (en) 1998-12-09 2002-08-27 Edward F. Janzow Particle accelerator for inducing contained particle collisions
BE1012358A5 (fr) 1998-12-21 2000-10-03 Ion Beam Applic Sa Procede de variation de l'energie d'un faisceau de particules extraites d'un accelerateur et dispositif a cet effet.
BE1012371A5 (fr) 1998-12-24 2000-10-03 Ion Beam Applic Sa Procede de traitement d'un faisceau de protons et dispositif appliquant ce procede.
JP2000237335A (ja) 1999-02-17 2000-09-05 Mitsubishi Electric Corp 放射線治療方法及びそのシステム
DE19907121A1 (de) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zur Überprüfung der Strahlführung eines Ionenstrahl-Therapiesystems
DE19907138A1 (de) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zur Überprüfung der Strahlerzeugungsmittel und der Strahlbeschleunigungsmittel eines Ionenstrahl-Therapiesystems
DE19907065A1 (de) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zur Überprüfung eines Isozentrums und einer Patientenpositionierungseinrichtung eines Ionenstrahl-Therapiesystems
DE19907098A1 (de) 1999-02-19 2000-08-24 Schwerionenforsch Gmbh Ionenstrahl-Abtastsystem und Verfahren zum Betrieb des Systems
DE19907097A1 (de) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zum Betreiben eines Ionenstrahl-Therapiesystems unter Überwachung der Bestrahlungsdosisverteilung
DE19907205A1 (de) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zum Betreiben eines Ionenstrahl-Therapiesystems unter Überwachung der Strahlposition
DE19907774A1 (de) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zum Verifizieren der berechneten Bestrahlungsdosis eines Ionenstrahl-Therapiesystems
US6144875A (en) 1999-03-16 2000-11-07 Accuray Incorporated Apparatus and method for compensating for respiratory and patient motion during treatment
US6501981B1 (en) 1999-03-16 2002-12-31 Accuray, Inc. Apparatus and method for compensating for respiratory and patient motions during treatment
EP1041579A1 (en) 1999-04-01 2000-10-04 GSI Gesellschaft für Schwerionenforschung mbH Gantry with an ion-optical system
US6780149B1 (en) 1999-04-07 2004-08-24 Loma Linda University Medical Center Patient motion monitoring system for proton therapy
JP2000294399A (ja) 1999-04-12 2000-10-20 Toshiba Corp 超電導高周波加速空胴及び粒子加速器
US6433494B1 (en) 1999-04-22 2002-08-13 Victor V. Kulish Inductional undulative EH-accelerator
JP3530072B2 (ja) 1999-05-13 2004-05-24 三菱電機株式会社 放射線治療用の放射線照射装置の制御装置
SE9902163D0 (sv) 1999-06-09 1999-06-09 Scanditronix Medical Ab Stable rotable radiation gantry
JP2001006900A (ja) 1999-06-18 2001-01-12 Toshiba Corp 放射光発生装置
US6814694B1 (en) 1999-06-25 2004-11-09 Paul Scherrer Institut Device for carrying out proton therapy
EP1069809A1 (en) 1999-07-13 2001-01-17 Ion Beam Applications S.A. Isochronous cyclotron and method of extraction of charged particles from such cyclotron
JP2001029490A (ja) 1999-07-19 2001-02-06 Hitachi Ltd 混合照射評価支援システム
NL1012677C2 (nl) 1999-07-22 2001-01-23 William Van Der Burg Inrichting en werkwijze voor het plaatsen van een informatiedrager.
US6380545B1 (en) 1999-08-30 2002-04-30 Southeastern Universities Research Association, Inc. Uniform raster pattern generating system
US6420917B1 (en) 1999-10-01 2002-07-16 Ericsson Inc. PLL loop filter with switched-capacitor resistor
US6713773B1 (en) 1999-10-07 2004-03-30 Mitec, Inc. Irradiation system and method
AU8002500A (en) 1999-10-08 2001-04-23 Advanced Research And Technology Institute, Inc. Apparatus and method for non-invasive myocardial revascularization
JP4185637B2 (ja) 1999-11-01 2008-11-26 株式会社神鋼エンジニアリング&メンテナンス 粒子線治療用回転照射室
US6803585B2 (en) 2000-01-03 2004-10-12 Yuri Glukhoy Electron-cyclotron resonance type ion beam source for ion implanter
US6366021B1 (en) 2000-01-06 2002-04-02 Varian Medical Systems, Inc. Standing wave particle beam accelerator with switchable beam energy
US6498444B1 (en) 2000-04-10 2002-12-24 Siemens Medical Solutions Usa, Inc. Computer-aided tuning of charged particle accelerators
AU7481401A (en) 2000-04-27 2001-11-07 Univ Loma Linda Nanodosimeter based on single ion detection
DE10031074A1 (de) 2000-06-30 2002-01-31 Schwerionenforsch Gmbh Vorrichtung zur Bestrahlung eines Tumorgewebes
JP3705091B2 (ja) 2000-07-27 2005-10-12 株式会社日立製作所 医療用加速器システム及びその運転方法
US6914396B1 (en) 2000-07-31 2005-07-05 Yale University Multi-stage cavity cyclotron resonance accelerator
US7041479B2 (en) 2000-09-06 2006-05-09 The Board Of Trustess Of The Leland Stanford Junior University Enhanced in vitro synthesis of active proteins containing disulfide bonds
CA2325362A1 (en) 2000-11-08 2002-05-08 Kirk Flippo Method and apparatus for high-energy generation and for inducing nuclear reactions
JP3633475B2 (ja) 2000-11-27 2005-03-30 鹿島建設株式会社 すだれ型磁気シールド方法及びパネル並びに磁気暗室
EP2320431A3 (en) 2000-12-08 2012-09-05 Loma Linda University Medical Center Proton beam therapy control system
US6492922B1 (en) 2000-12-14 2002-12-10 Xilinx Inc. Anti-aliasing filter with automatic cutoff frequency adaptation
JP2002210028A (ja) 2001-01-23 2002-07-30 Mitsubishi Electric Corp 放射線照射システム及び放射線照射方法
US6407505B1 (en) 2001-02-01 2002-06-18 Siemens Medical Solutions Usa, Inc. Variable energy linear accelerator
ES2301631T3 (es) 2001-02-05 2008-07-01 Gesellschaft Fur Schwerionenforschung Mbh Aparato para preaceleracion de haces de iones utilizados en un sistema de aplicacion de haces de iones pesados.
JP2004518978A (ja) 2001-02-06 2004-06-24 ジー エス アイ ゲゼルシャフト フュア シュベールイオーネンフォルシュンク エム ベー ハー 重イオンガントリー用ビーム走査システム
US6493424B2 (en) 2001-03-05 2002-12-10 Siemens Medical Solutions Usa, Inc. Multi-mode operation of a standing wave linear accelerator
JP4115675B2 (ja) 2001-03-14 2008-07-09 三菱電機株式会社 強度変調療法用吸収線量測定装置
US6646383B2 (en) 2001-03-15 2003-11-11 Siemens Medical Solutions Usa, Inc. Monolithic structure with asymmetric coupling
US6465957B1 (en) 2001-05-25 2002-10-15 Siemens Medical Solutions Usa, Inc. Standing wave linear accelerator with integral prebunching section
EP1265462A1 (fr) 2001-06-08 2002-12-11 Ion Beam Applications S.A. Dispositif et méthode de régulation de l'intensité d'un faisceau extrait d'un accélérateur de particules
US6853703B2 (en) 2001-07-20 2005-02-08 Siemens Medical Solutions Usa, Inc. Automated delivery of treatment fields
WO2003017745A2 (en) 2001-08-23 2003-03-06 Sciperio, Inc. Architecture tool and methods of use
JP2003086400A (ja) 2001-09-11 2003-03-20 Hitachi Ltd 加速器システム及び医療用加速器施設
EP1446989B1 (en) 2001-10-30 2007-03-21 Loma Linda University Medical Center Device for aligning a patient for delivering radiotherapy
US6519316B1 (en) 2001-11-02 2003-02-11 Siemens Medical Solutions Usa, Inc.. Integrated control of portal imaging device
US6777689B2 (en) 2001-11-16 2004-08-17 Ion Beam Application, S.A. Article irradiation system shielding
US7221733B1 (en) 2002-01-02 2007-05-22 Varian Medical Systems Technologies, Inc. Method and apparatus for irradiating a target
US6593696B2 (en) 2002-01-04 2003-07-15 Siemens Medical Solutions Usa, Inc. Low dark current linear accelerator
DE10205949B4 (de) 2002-02-12 2013-04-25 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Verfahren und Vorrichtung zum Steuern einer nach dem Rasterscanverfahren arbeitenden Bestrahlungseinrichtung für schwere Ionen oder Protonen mit Strahlextraktion
JP3691020B2 (ja) 2002-02-28 2005-08-31 株式会社日立製作所 医療用荷電粒子照射装置
JP4072359B2 (ja) 2002-02-28 2008-04-09 株式会社日立製作所 荷電粒子ビーム照射装置
AU2002302415A1 (en) 2002-03-12 2003-09-22 Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts Device for performing and verifying a therapeutic treatment and corresponding computer program and control method
JP3801938B2 (ja) 2002-03-26 2006-07-26 株式会社日立製作所 粒子線治療システム及び荷電粒子ビーム軌道の調整方法
EP1358908A1 (en) 2002-05-03 2003-11-05 Ion Beam Applications S.A. Device for irradiation therapy with charged particles
DE10221180A1 (de) 2002-05-13 2003-12-24 Siemens Ag Patientenlagerungsvorrichtung für eine Strahlentherapie
WO2003101538A1 (en) 2002-05-31 2003-12-11 Ion Beam Applications S.A. Apparatus for irradiating a target volume
US6777700B2 (en) 2002-06-12 2004-08-17 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation apparatus
US6865254B2 (en) 2002-07-02 2005-03-08 Pencilbeam Technologies Ab Radiation system with inner and outer gantry parts
US7162005B2 (en) 2002-07-19 2007-01-09 Varian Medical Systems Technologies, Inc. Radiation sources and compact radiation scanning systems
US7103137B2 (en) 2002-07-24 2006-09-05 Varian Medical Systems Technology, Inc. Radiation scanning of objects for contraband
DE10241178B4 (de) 2002-09-05 2007-03-29 Mt Aerospace Ag Isokinetische Gantry-Anordnung zur isozentrischen Führung eines Teilchenstrahls und Verfahren zu deren Auslegung
AU2003258441A1 (en) 2002-09-18 2004-04-08 Paul Scherrer Institut System for performing proton therapy
JP3748426B2 (ja) 2002-09-30 2006-02-22 株式会社日立製作所 医療用粒子線照射装置
JP3961925B2 (ja) 2002-10-17 2007-08-22 三菱電機株式会社 ビーム加速装置
US6853142B2 (en) 2002-11-04 2005-02-08 Zond, Inc. Methods and apparatus for generating high-density plasma
EP1566082B1 (fr) 2002-11-25 2012-05-30 Ion Beam Applications S.A. Cyclotron
EP1429345A1 (fr) 2002-12-10 2004-06-16 Ion Beam Applications S.A. Dispositif et procédé de production de radio-isotopes
DE10261099B4 (de) 2002-12-20 2005-12-08 Siemens Ag Ionenstrahlanlage
AU2003297456B2 (en) 2003-01-02 2007-05-03 Loma Linda University Medical Center Configuration management and retrieval system for proton beam therapy system
EP1439566B1 (en) 2003-01-17 2019-08-28 ICT, Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam apparatus and method for operating the same
US7814937B2 (en) 2005-10-26 2010-10-19 University Of Southern California Deployable contour crafting
JP4186636B2 (ja) 2003-01-30 2008-11-26 株式会社日立製作所 超電導磁石
CN100359993C (zh) 2003-02-17 2008-01-02 三菱电机株式会社 带电粒子加速器
JP3748433B2 (ja) 2003-03-05 2006-02-22 株式会社日立製作所 ベッド位置決め装置及びその位置決め方法
JP3859605B2 (ja) 2003-03-07 2006-12-20 株式会社日立製作所 粒子線治療システム及び粒子線出射方法
TWI340623B (en) 2003-03-17 2011-04-11 Kajima Corp A magnetic shield structure having openings and a magnetic material frame therefor
JP3655292B2 (ja) 2003-04-14 2005-06-02 株式会社日立製作所 粒子線照射装置及び荷電粒子ビーム照射装置の調整方法
JP2004321408A (ja) 2003-04-23 2004-11-18 Mitsubishi Electric Corp 放射線照射装置および放射線照射方法
DE602004007647T2 (de) 2003-05-13 2008-02-14 Ion Beam Applications S.A. Verfahren und system zur automatischen strahlzuweisung in einer teilchenstrahlentherapieanlage mit mehreren räumen
DE602004010949T3 (de) 2003-05-13 2011-09-15 Hitachi, Ltd. Einrichtung zur Bestrahlung mit Teilchenstrahlen und Bestrahlungsplanungseinheit
US7317192B2 (en) 2003-06-02 2008-01-08 Fox Chase Cancer Center High energy polyenergetic ion selection systems, ion beam therapy systems, and ion beam treatment centers
JP2005027681A (ja) 2003-07-07 2005-02-03 Hitachi Ltd 荷電粒子治療装置及び荷電粒子治療システム
US7038403B2 (en) 2003-07-31 2006-05-02 Ge Medical Technology Services, Inc. Method and apparatus for maintaining alignment of a cyclotron dee
AU2004266644B2 (en) 2003-08-12 2009-07-16 Vision Rt Limited Patient positioning system for radiation therapy system
CA2533680C (en) 2003-08-12 2014-09-16 Loma Linda University Medical Center Modular patient support system
JP3685194B2 (ja) 2003-09-10 2005-08-17 株式会社日立製作所 粒子線治療装置,レンジモジュレーション回転装置及びレンジモジュレーション回転装置の取り付け方法
US20050058245A1 (en) 2003-09-11 2005-03-17 Moshe Ein-Gal Intensity-modulated radiation therapy with a multilayer multileaf collimator
US7554096B2 (en) 2003-10-16 2009-06-30 Alis Corporation Ion sources, systems and methods
US7786452B2 (en) 2003-10-16 2010-08-31 Alis Corporation Ion sources, systems and methods
US7786451B2 (en) 2003-10-16 2010-08-31 Alis Corporation Ion sources, systems and methods
US7557360B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US7557359B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US7557361B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US7554097B2 (en) 2003-10-16 2009-06-30 Alis Corporation Ion sources, systems and methods
US7557358B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US7154991B2 (en) 2003-10-17 2006-12-26 Accuray, Inc. Patient positioning assembly for therapeutic radiation system
CN1537657A (zh) 2003-10-22 2004-10-20 高春平 手术中放射治疗装置
US7295648B2 (en) 2003-10-23 2007-11-13 Elektra Ab (Publ) Method and apparatus for treatment by ionizing radiation
JP4114590B2 (ja) 2003-10-24 2008-07-09 株式会社日立製作所 粒子線治療装置
JP3912364B2 (ja) 2003-11-07 2007-05-09 株式会社日立製作所 粒子線治療装置
WO2005054899A1 (en) 2003-12-04 2005-06-16 Paul Scherrer Institut An inorganic scintillating mixture and a sensor assembly for charged particle dosimetry
JP3643371B1 (ja) 2003-12-10 2005-04-27 株式会社日立製作所 粒子線照射装置及び照射野形成装置の調整方法
JP4443917B2 (ja) 2003-12-26 2010-03-31 株式会社日立製作所 粒子線治療装置
US7710051B2 (en) 2004-01-15 2010-05-04 Lawrence Livermore National Security, Llc Compact accelerator for medical therapy
US7173385B2 (en) 2004-01-15 2007-02-06 The Regents Of The University Of California Compact accelerator
DE602005002379T2 (de) 2004-02-23 2008-06-12 Zyvex Instruments, LLC, Richardson Benutzung einer Sonde in einer Teilchenstrahlvorrichtung
EP1584353A1 (en) 2004-04-05 2005-10-12 Paul Scherrer Institut A system for delivery of proton therapy
US7860550B2 (en) 2004-04-06 2010-12-28 Accuray, Inc. Patient positioning assembly
US8160205B2 (en) 2004-04-06 2012-04-17 Accuray Incorporated Robotic arm for patient positioning assembly
JP4257741B2 (ja) 2004-04-19 2009-04-22 三菱電機株式会社 荷電粒子ビーム加速器、荷電粒子ビーム加速器を用いた粒子線照射医療システムおよび、粒子線照射医療システムの運転方法
DE102004027071A1 (de) 2004-05-19 2006-01-05 Gesellschaft für Schwerionenforschung mbH Strahlzuteilungsvorrichtung und Strahlzuteilungsverfahren für medizinische Teilchenbeschleuniger
DE102004028035A1 (de) 2004-06-09 2005-12-29 Gesellschaft für Schwerionenforschung mbH Vorrichtung und Verfahren zur Kompensation von Bewegungen eines Zielvolumens während einer Ionenstrahl-Bestrahlung
DE202004009421U1 (de) 2004-06-16 2005-11-03 Gesellschaft für Schwerionenforschung mbH Teilchenbeschleuniger für die Strahlentherapie mit Ionenstrahlen
US7073508B2 (en) 2004-06-25 2006-07-11 Loma Linda University Medical Center Method and device for registration and immobilization
US7135678B2 (en) 2004-07-09 2006-11-14 Credence Systems Corporation Charged particle guide
US7208748B2 (en) 2004-07-21 2007-04-24 Still River Systems, Inc. Programmable particle scatterer for radiation therapy beam formation
JP4104008B2 (ja) 2004-07-21 2008-06-18 独立行政法人放射線医学総合研究所 螺旋軌道型荷電粒子加速器及びその加速方法
EP2259664B1 (en) 2004-07-21 2017-10-18 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
US6965116B1 (en) 2004-07-23 2005-11-15 Applied Materials, Inc. Method of determining dose uniformity of a scanning ion implanter
JP4489529B2 (ja) 2004-07-28 2010-06-23 株式会社日立製作所 粒子線治療システム及び粒子線治療システムの制御システム
GB2418061B (en) 2004-09-03 2006-10-18 Zeiss Carl Smt Ltd Scanning particle beam instrument
JP2006128087A (ja) 2004-09-30 2006-05-18 Hitachi Ltd 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
DE102004048212B4 (de) 2004-09-30 2007-02-01 Siemens Ag Strahlentherapieanlage mit Bildgebungsvorrichtung
JP3806723B2 (ja) 2004-11-16 2006-08-09 株式会社日立製作所 粒子線照射システム
DE102004057726B4 (de) 2004-11-30 2010-03-18 Siemens Ag Medizinische Untersuchungs- und Behandlungseinrichtung
CN100561332C (zh) 2004-12-09 2009-11-18 Ge医疗系统环球技术有限公司 X射线辐照器和x射线成像设备
US7122966B2 (en) 2004-12-16 2006-10-17 General Electric Company Ion source apparatus and method
WO2006076545A2 (en) 2005-01-14 2006-07-20 Indiana University Research And Technology Corporation Automatic retractable floor system for a rotating gantry
US7193227B2 (en) 2005-01-24 2007-03-20 Hitachi, Ltd. Ion beam therapy system and its couch positioning method
US7468506B2 (en) 2005-01-26 2008-12-23 Applied Materials, Israel, Ltd. Spot grid array scanning system
GB2422958B (en) 2005-02-04 2008-07-09 Siemens Magnet Technology Ltd Quench protection circuit for a superconducting magnet
JP4435829B2 (ja) 2005-02-04 2010-03-24 三菱電機株式会社 粒子線照射装置
DE112005002154T5 (de) 2005-02-04 2008-04-10 Mitsubishi Denki K.K. Teilchenstrahlbestrahlungsverfahren und Teilchenstrahlbestrahlungsvorrichtung für ein derartiges Verfahren
JP4219905B2 (ja) 2005-02-25 2009-02-04 株式会社日立製作所 放射線治療装置の回転ガントリー
EP1871477B1 (en) 2005-03-09 2011-03-23 Paul Scherrer Institut System for taking wide-field beam-eye-view (bev) x-ray-images simultaneously to the proton therapy delivery
JP4363344B2 (ja) 2005-03-15 2009-11-11 三菱電機株式会社 粒子線加速器
JP4158931B2 (ja) 2005-04-13 2008-10-01 三菱電機株式会社 粒子線治療装置
JP4751635B2 (ja) 2005-04-13 2011-08-17 株式会社日立ハイテクノロジーズ 磁界重畳型電子銃
US7420182B2 (en) 2005-04-27 2008-09-02 Busek Company Combined radio frequency and hall effect ion source and plasma accelerator system
US7547901B2 (en) 2006-06-05 2009-06-16 Varian Medical Systems, Inc. Multiple beam path particle source
US7014361B1 (en) 2005-05-11 2006-03-21 Moshe Ein-Gal Adaptive rotator for gantry
WO2006126075A2 (en) 2005-05-27 2006-11-30 Ion Beam Applications, S.A. Device and method for quality assurance and online verification of radiation therapy
US7385203B2 (en) * 2005-06-07 2008-06-10 Hitachi, Ltd. Charged particle beam extraction system and method
US7575242B2 (en) 2005-06-16 2009-08-18 Siemens Medical Solutions Usa, Inc. Collimator change cart
GB2427478B (en) 2005-06-22 2008-02-20 Siemens Magnet Technology Ltd Particle radiation therapy equipment and method for simultaneous application of magnetic resonance imaging and particle radiation
US7436932B2 (en) 2005-06-24 2008-10-14 Varian Medical Systems Technologies, Inc. X-ray radiation sources with low neutron emissions for radiation scanning
JP3882843B2 (ja) 2005-06-30 2007-02-21 株式会社日立製作所 回転照射装置
WO2007009084A1 (en) 2005-07-13 2007-01-18 Crown Equipment Corporation Pallet clamping device
CA2616292A1 (en) 2005-07-22 2007-02-01 Tomotherapy Incorporated Method and system for evaluating quality assurance criteria in delivery of a treament plan
KR20080039925A (ko) 2005-07-22 2008-05-07 토모테라피 인코포레이티드 생물학적 모델에 기초하여 방사선 요법 치료 계획을적합화시키는 방법 및 시스템
ATE511885T1 (de) 2005-07-22 2011-06-15 Tomotherapy Inc Verfahren zur bestimmung eines interessierenden bereiches von oberflächenstrukturen mit einem dosiervolumenhistogramm
US7567694B2 (en) 2005-07-22 2009-07-28 Tomotherapy Incorporated Method of placing constraints on a deformation map and system for implementing same
AU2006272746A1 (en) 2005-07-22 2007-02-01 Tomotherapy Incorporated Method and system for evaluating delivered dose
CN101512547A (zh) 2005-07-22 2009-08-19 断层放疗公司 用于预测剂量实施的方法和系统
US7839972B2 (en) 2005-07-22 2010-11-23 Tomotherapy Incorporated System and method of evaluating dose delivered by a radiation therapy system
CN101268476A (zh) 2005-07-22 2008-09-17 断层放疗公司 用于处理与放射疗法治疗计划相关的数据的方法和系统
DE102006033501A1 (de) 2005-08-05 2007-02-15 Siemens Ag Gantry-System für eine Partikeltherapieanlage
DE102005038242B3 (de) 2005-08-12 2007-04-12 Siemens Ag Vorrichtung zur Aufweitung einer Partikelenergieverteilung eines Partikelstrahls einer Partikeltherapieanlage, Strahlüberwachungs- und Strahlanpassungseinheit und Verfahren
EP1752992A1 (de) 2005-08-12 2007-02-14 Siemens Aktiengesellschaft Vorrichtung zur Anpassung mindestens eines Partikelstrahlparameters eines Partikelstrahls einer Partikelbeschleunigeranlage und Partikelbeschleunigeranlage mit einer derartigen Vorrichtung
DE102005041122B3 (de) 2005-08-30 2007-05-31 Siemens Ag Gantry-System für eine Partikeltherapieanlage, Partikeltherapieanlage und Bestrahlungsverfahren für eine Partikeltherapieanlage mit einem derartigen Gantry-System
JP5245193B2 (ja) 2005-09-07 2013-07-24 株式会社日立製作所 荷電粒子ビーム照射システム及び荷電粒子ビーム出射方法
DE102005044408B4 (de) 2005-09-16 2008-03-27 Siemens Ag Partikeltherapieanlage, Verfahren und Vorrichtung zur Anforderung eines Partikelstrahls
DE102005044409B4 (de) 2005-09-16 2007-11-29 Siemens Ag Partikeltherapieanlage und Verfahren zur Ausbildung eines Strahlpfads für einen Bestrahlungsvorgang in einer Partikeltherapieanlage
JP2007103107A (ja) * 2005-10-03 2007-04-19 Sii Nanotechnology Inc 荷電粒子ビーム装置及び荷電粒子ビームの照射方法
US7295649B2 (en) 2005-10-13 2007-11-13 Varian Medical Systems Technologies, Inc. Radiation therapy system and method of using the same
US7658901B2 (en) 2005-10-14 2010-02-09 The Trustees Of Princeton University Thermally exfoliated graphite oxide
US7893541B2 (en) 2005-10-24 2011-02-22 Lawrence Livermore National Security, Llc Optically initiated silicon carbide high voltage switch
US7893397B2 (en) 2005-11-07 2011-02-22 Fibics Incorporated Apparatus and method for surface modification using charged particle beams
DE102005053719B3 (de) 2005-11-10 2007-07-05 Siemens Ag Partikeltherapieanlage, Therapieplan und Bestrahlungsverfahren für eine derartige Partikeltherapieanlage
CN101375644A (zh) 2005-11-14 2009-02-25 劳伦斯利弗莫尔国家安全有限公司 铸造的电介质复合材料线性加速器
CN101361156B (zh) 2005-11-18 2012-12-12 梅维昂医疗系统股份有限公司 用于实施放射治疗的设备
US7459899B2 (en) 2005-11-21 2008-12-02 Thermo Fisher Scientific Inc. Inductively-coupled RF power source
EP1795229A1 (en) 2005-12-12 2007-06-13 Ion Beam Applications S.A. Device and method for positioning a patient in a radiation therapy apparatus
DE102005063220A1 (de) 2005-12-22 2007-06-28 GSI Gesellschaft für Schwerionenforschung mbH Vorrichtung zum Bestrahlen von Tumorgewebe eines Patienten mit einem Teilchenstrahl
US7656258B1 (en) 2006-01-19 2010-02-02 Massachusetts Institute Of Technology Magnet structure for particle acceleration
EP2190269B1 (en) 2006-01-19 2017-03-15 Massachusetts Institute of Technology Magnet structure for particle acceleration
US7432516B2 (en) 2006-01-24 2008-10-07 Brookhaven Science Associates, Llc Rapid cycling medical synchrotron and beam delivery system
JP4696965B2 (ja) 2006-02-24 2011-06-08 株式会社日立製作所 荷電粒子ビーム照射システム及び荷電粒子ビーム出射方法
JP4310319B2 (ja) 2006-03-10 2009-08-05 三菱重工業株式会社 放射線治療装置制御装置および放射線照射方法
DE102006011828A1 (de) 2006-03-13 2007-09-20 Gesellschaft für Schwerionenforschung mbH Bestrahlungsverifikationsvorrichtung für Strahlentherapieanlagen und Verfahren zur Handhabung derselben
DE102006012680B3 (de) 2006-03-20 2007-08-02 Siemens Ag Partikeltherapie-Anlage und Verfahren zum Ausgleichen einer axialen Abweichung in der Position eines Partikelstrahls einer Partikeltherapie-Anlage
JP4644617B2 (ja) 2006-03-23 2011-03-02 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP4730167B2 (ja) 2006-03-29 2011-07-20 株式会社日立製作所 粒子線照射システム
US7507975B2 (en) 2006-04-21 2009-03-24 Varian Medical Systems, Inc. System and method for high resolution radiation field shaping
US8426833B2 (en) 2006-05-12 2013-04-23 Brookhaven Science Associates, Llc Gantry for medical particle therapy facility
US8173981B2 (en) 2006-05-12 2012-05-08 Brookhaven Science Associates, Llc Gantry for medical particle therapy facility
US7582886B2 (en) 2006-05-12 2009-09-01 Brookhaven Science Associates, Llc Gantry for medical particle therapy facility
US7476883B2 (en) 2006-05-26 2009-01-13 Advanced Biomarker Technologies, Llc Biomarker generator system
US7466085B2 (en) 2007-04-17 2008-12-16 Advanced Biomarker Technologies, Llc Cyclotron having permanent magnets
US7817836B2 (en) 2006-06-05 2010-10-19 Varian Medical Systems, Inc. Methods for volumetric contouring with expert guidance
JP5116996B2 (ja) 2006-06-20 2013-01-09 キヤノン株式会社 荷電粒子線描画方法、露光装置、及びデバイス製造方法
US7990524B2 (en) 2006-06-30 2011-08-02 The University Of Chicago Stochastic scanning apparatus using multiphoton multifocal source
JP4206414B2 (ja) 2006-07-07 2009-01-14 株式会社日立製作所 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
US7801269B2 (en) 2006-07-28 2010-09-21 Tomotherapy Incorporated Method and apparatus for calibrating a radiation therapy treatment system
JP4889105B2 (ja) * 2006-08-23 2012-03-07 エスアイアイ・ナノテクノロジー株式会社 荷電粒子ビーム装置
JP4881677B2 (ja) 2006-08-31 2012-02-22 株式会社日立ハイテクノロジーズ 荷電粒子線走査方法及び荷電粒子線装置
JP4872540B2 (ja) 2006-08-31 2012-02-08 株式会社日立製作所 回転照射治療装置
US7701677B2 (en) 2006-09-07 2010-04-20 Massachusetts Institute Of Technology Inductive quench for magnet protection
JP4365844B2 (ja) 2006-09-08 2009-11-18 三菱電機株式会社 荷電粒子線の線量分布測定装置
US7950587B2 (en) 2006-09-22 2011-05-31 The Board of Regents of the Nevada System of Higher Education on behalf of the University of Reno, Nevada Devices and methods for storing data
US8069675B2 (en) 2006-10-10 2011-12-06 Massachusetts Institute Of Technology Cryogenic vacuum break thermal coupler
DE102006048426B3 (de) 2006-10-12 2008-05-21 Siemens Ag Verfahren zur Bestimmung der Reichweite von Strahlung
DE202006019307U1 (de) 2006-12-21 2008-04-24 Accel Instruments Gmbh Bestrahlungsvorrichtung
US8405056B2 (en) 2006-12-28 2013-03-26 Fondazione per Adroterapia Oncologica—TERA Ion acceleration system for medical and/or other applications
FR2911843B1 (fr) 2007-01-30 2009-04-10 Peugeot Citroen Automobiles Sa Systeme de chariots pour le transport et la manipulation de bacs destines a l'approvisionnement en pieces d'une ligne de montage de vehicules
JP4228018B2 (ja) 2007-02-16 2009-02-25 三菱重工業株式会社 医療装置
JP4936924B2 (ja) 2007-02-20 2012-05-23 稔 植松 粒子線照射システム
US7977648B2 (en) 2007-02-27 2011-07-12 Wisconsin Alumni Research Foundation Scanning aperture ion beam modulator
WO2008106484A1 (en) 2007-02-27 2008-09-04 Wisconsin Alumni Research Foundation Ion radiation therapy system with rocking gantry motion
US7397901B1 (en) 2007-02-28 2008-07-08 Varian Medical Systems Technologies, Inc. Multi-leaf collimator with leaves formed of different materials
US7453076B2 (en) 2007-03-23 2008-11-18 Nanolife Sciences, Inc. Bi-polar treatment facility for treating target cells with both positive and negative ions
US7778488B2 (en) 2007-03-23 2010-08-17 Varian Medical Systems International Ag Image deformation using multiple image regions
US8041006B2 (en) 2007-04-11 2011-10-18 The Invention Science Fund I Llc Aspects of compton scattered X-ray visualization, imaging, or information providing
DE102007020599A1 (de) 2007-05-02 2008-11-06 Siemens Ag Partikeltherapieanlage
DE102007021033B3 (de) 2007-05-04 2009-03-05 Siemens Ag Strahlführungsmagnet zur Ablenkung eines Strahls elektrisch geladener Teilchen längs einer gekrümmten Teilchenbahn und Bestrahlungsanlage mit einem solchen Magneten
US7668291B2 (en) 2007-05-18 2010-02-23 Varian Medical Systems International Ag Leaf sequencing
JP5004659B2 (ja) 2007-05-22 2012-08-22 株式会社日立ハイテクノロジーズ 荷電粒子線装置
US7947969B2 (en) 2007-06-27 2011-05-24 Mitsubishi Electric Corporation Stacked conformation radiotherapy system and particle beam therapy apparatus employing the same
DE102007036035A1 (de) 2007-08-01 2009-02-05 Siemens Ag Steuervorrichtung zur Steuerung eines Bestrahlungsvorgangs, Partikeltherapieanlage sowie Verfahren zur Bestrahlung eines Zielvolumens
US7770231B2 (en) 2007-08-02 2010-08-03 Veeco Instruments, Inc. Fast-scanning SPM and method of operating same
GB2451708B (en) 2007-08-10 2011-07-13 Tesla Engineering Ltd Cooling methods
JP4339904B2 (ja) 2007-08-17 2009-10-07 株式会社日立製作所 粒子線治療システム
US8122542B2 (en) 2007-09-04 2012-02-28 Tomotherapy Incorporated Patient support device
DE102007042340C5 (de) 2007-09-06 2011-09-22 Mt Mechatronics Gmbh Partikeltherapie-Anlage mit verfahrbarem C-Bogen
US7848488B2 (en) 2007-09-10 2010-12-07 Varian Medical Systems, Inc. Radiation systems having tiltable gantry
US8436323B2 (en) 2007-09-12 2013-05-07 Kabushiki Kaisha Toshiba Particle beam irradiation apparatus and particle beam irradiation method
US7582866B2 (en) 2007-10-03 2009-09-01 Shimadzu Corporation Ion trap mass spectrometry
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
DE102007050035B4 (de) 2007-10-17 2015-10-08 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Ablenkung eines Strahls elektrisch geladener Teilchen auf eine gekrümmte Teilchenbahn
DE102007050168B3 (de) 2007-10-19 2009-04-30 Siemens Ag Gantry, Partikeltherapieanlage sowie Verfahren zum Betreiben einer Gantry mit beweglichem Stellelement
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
TWI448313B (zh) 2007-11-30 2014-08-11 Mevion Medical Systems Inc 具有一內部起重機龍門架之系統
EP2227295B1 (en) 2007-11-30 2011-05-11 Still River Systems, Inc. Inner gantry
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8085899B2 (en) 2007-12-12 2011-12-27 Varian Medical Systems International Ag Treatment planning system and method for radiotherapy
EP2238606B1 (en) 2007-12-17 2011-08-24 Carl Zeiss NTS GmbH Scanning charged particle beams
US7914734B2 (en) 2007-12-19 2011-03-29 Singulex, Inc. Scanning analyzer for single molecule detection and methods of use
JP5074915B2 (ja) 2007-12-21 2012-11-14 株式会社日立製作所 荷電粒子ビーム照射システム
DE102008005069B4 (de) 2008-01-18 2017-06-08 Siemens Healthcare Gmbh Positioniervorrichtung zum Positionieren eines Patienten, Partikeltherapieanlage sowie Verfahren zum Betreiben einer Positioniervorrichtung
DE102008014406A1 (de) 2008-03-14 2009-09-24 Siemens Aktiengesellschaft Partikeltherapieanlage und Verfahren zur Modulation eines in einem Beschleuniger erzeugten Partikelstrahls
US7919765B2 (en) 2008-03-20 2011-04-05 Varian Medical Systems Particle Therapy Gmbh Non-continuous particle beam irradiation method and apparatus
JP5107113B2 (ja) 2008-03-28 2012-12-26 住友重機械工業株式会社 荷電粒子線照射装置
DE102008018417A1 (de) 2008-04-10 2009-10-29 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Erstellen eines Bestrahlungsplans
JP4719241B2 (ja) 2008-04-15 2011-07-06 三菱電機株式会社 円形加速器
US7759642B2 (en) 2008-04-30 2010-07-20 Applied Materials Israel, Ltd. Pattern invariant focusing of a charged particle beam
US8291717B2 (en) 2008-05-02 2012-10-23 Massachusetts Institute Of Technology Cryogenic vacuum break thermal coupler with cross-axial actuation
JP4691574B2 (ja) 2008-05-14 2011-06-01 株式会社日立製作所 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
US8309941B2 (en) 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
JP5497750B2 (ja) 2008-05-22 2014-05-21 エゴロヴィチ バラキン、ウラジミール 荷電粒子癌治療システムと併用されるx線方法及び装置
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US8144832B2 (en) 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US8373145B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US8399866B2 (en) 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US7940894B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8378321B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US8569717B2 (en) 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US8373143B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US8198607B2 (en) 2008-05-22 2012-06-12 Vladimir Balakin Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US7943913B2 (en) 2008-05-22 2011-05-17 Vladimir Balakin Negative ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US8093564B2 (en) 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
US8188688B2 (en) 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US8288742B2 (en) 2008-05-22 2012-10-16 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US7834336B2 (en) 2008-05-28 2010-11-16 Varian Medical Systems, Inc. Treatment of patient tumors by charged particle therapy
US7987053B2 (en) 2008-05-30 2011-07-26 Varian Medical Systems International Ag Monitor units calculation method for proton fields
US7801270B2 (en) 2008-06-19 2010-09-21 Varian Medical Systems International Ag Treatment plan optimization method for radiation therapy
DE102008029609A1 (de) 2008-06-23 2009-12-31 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Vermessung eines Strahlflecks eines Partikelstrahls sowie Anlage zur Erzeugung eines Partikelstrahls
US8227768B2 (en) 2008-06-25 2012-07-24 Axcelis Technologies, Inc. Low-inertia multi-axis multi-directional mechanically scanned ion implantation system
US7809107B2 (en) 2008-06-30 2010-10-05 Varian Medical Systems International Ag Method for controlling modulation strength in radiation therapy
JP4691587B2 (ja) 2008-08-06 2011-06-01 三菱重工業株式会社 放射線治療装置および放射線照射方法
US7796731B2 (en) 2008-08-22 2010-09-14 Varian Medical Systems International Ag Leaf sequencing algorithm for moving targets
US8330132B2 (en) 2008-08-27 2012-12-11 Varian Medical Systems, Inc. Energy modulator for modulating an energy of a particle beam
US7835494B2 (en) 2008-08-28 2010-11-16 Varian Medical Systems International Ag Trajectory optimization method
US7817778B2 (en) 2008-08-29 2010-10-19 Varian Medical Systems International Ag Interactive treatment plan optimization for radiation therapy
JP5430115B2 (ja) 2008-10-15 2014-02-26 三菱電機株式会社 荷電粒子線ビームのスキャニング照射装置
WO2010047378A1 (ja) 2008-10-24 2010-04-29 株式会社 日立ハイテクノロジーズ 荷電粒子線装置
US7609811B1 (en) 2008-11-07 2009-10-27 Varian Medical Systems International Ag Method for minimizing the tongue and groove effect in intensity modulated radiation delivery
ES2628757T3 (es) 2008-12-31 2017-08-03 Ion Beam Applications S.A. Suelo rodante para cilindro de exploración
CN101631422B (zh) * 2009-01-12 2012-05-23 中国科学院近代物理研究所 非对称磁聚焦结构的同步加速器
US7839973B2 (en) 2009-01-14 2010-11-23 Varian Medical Systems International Ag Treatment planning using modulability and visibility factors
WO2010082451A1 (ja) 2009-01-15 2010-07-22 株式会社日立ハイテクノロジーズ 荷電粒子線応用装置
GB2467595B (en) * 2009-02-09 2011-08-24 Tesla Engineering Ltd Cooling systems and methods
US7835502B2 (en) 2009-02-11 2010-11-16 Tomotherapy Incorporated Target pedestal assembly and method of preserving the target
US7986768B2 (en) 2009-02-19 2011-07-26 Varian Medical Systems International Ag Apparatus and method to facilitate generating a treatment plan for irradiating a patient's treatment volume
US8053745B2 (en) 2009-02-24 2011-11-08 Moore John F Device and method for administering particle beam therapy
CN102292122B (zh) 2009-06-09 2015-04-22 三菱电机株式会社 粒子射线治疗装置及粒子射线治疗装置的调整方法
US7934869B2 (en) 2009-06-30 2011-05-03 Mitsubishi Electric Research Labs, Inc. Positioning an object based on aligned images of the object
US7894574B1 (en) 2009-09-22 2011-02-22 Varian Medical Systems International Ag Apparatus and method pertaining to dynamic use of a radiation therapy collimator
US8009803B2 (en) 2009-09-28 2011-08-30 Varian Medical Systems International Ag Treatment plan optimization method for radiosurgery
US8009804B2 (en) 2009-10-20 2011-08-30 Varian Medical Systems International Ag Dose calculation method for multiple fields
US8382943B2 (en) 2009-10-23 2013-02-26 William George Clark Method and apparatus for the selective separation of two layers of material using an ultrashort pulse source of electromagnetic radiation
CN102740929B (zh) 2010-01-28 2015-07-01 三菱电机株式会社 粒子射线治疗装置
JP5463509B2 (ja) 2010-02-10 2014-04-09 株式会社東芝 粒子線ビーム照射装置及びその制御方法
EP2365514B1 (en) 2010-03-10 2015-08-26 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Twin beam charged particle column and method of operating thereof
CN102844820B (zh) 2010-05-27 2015-04-01 三菱电机株式会社 粒子射线照射系统及粒子射线照射系统的控制方法
WO2012014705A1 (ja) 2010-07-28 2012-02-02 住友重機械工業株式会社 荷電粒子線照射装置
US8416918B2 (en) 2010-08-20 2013-04-09 Varian Medical Systems International Ag Apparatus and method pertaining to radiation-treatment planning optimization
JP5670126B2 (ja) 2010-08-26 2015-02-18 住友重機械工業株式会社 荷電粒子線照射装置、荷電粒子線照射方法及び荷電粒子線照射プログラム
US8440987B2 (en) 2010-09-03 2013-05-14 Varian Medical Systems Particle Therapy Gmbh System and method for automated cyclotron procedures
US8472583B2 (en) 2010-09-29 2013-06-25 Varian Medical Systems, Inc. Radiation scanning of objects for contraband
WO2012111125A1 (ja) 2011-02-17 2012-08-23 三菱電機株式会社 粒子線治療装置
JP5638457B2 (ja) 2011-05-09 2014-12-10 住友重機械工業株式会社 シンクロサイクロトロン及びそれを備えた荷電粒子線照射装置
US8653314B2 (en) 2011-05-22 2014-02-18 Fina Technology, Inc. Method for providing a co-feed in the coupling of toluene with a carbon source
WO2013098089A1 (en) * 2011-12-28 2013-07-04 Ion Beam Applications S.A. Extraction device for a synchrocyclotron
EP2637181B1 (en) 2012-03-06 2018-05-02 Tesla Engineering Limited Multi orientation cryostats
US8581525B2 (en) 2012-03-23 2013-11-12 Massachusetts Institute Of Technology Compensated precessional beam extraction for cyclotrons
US9603235B2 (en) 2012-07-27 2017-03-21 Massachusetts Institute Of Technology Phase-lock loop synchronization between beam orbit and RF drive in synchrocyclotrons
US8975836B2 (en) 2012-07-27 2015-03-10 Massachusetts Institute Of Technology Ultra-light, magnetically shielded, high-current, compact cyclotron
JP6121544B2 (ja) 2012-09-28 2017-04-26 メビオン・メディカル・システムズ・インコーポレーテッド 粒子ビームの集束
GB201217782D0 (en) 2012-10-04 2012-11-14 Tesla Engineering Ltd Magnet apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE48047E1 (en) 2004-07-21 2020-06-09 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US9706636B2 (en) 2012-09-28 2017-07-11 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US10155124B2 (en) 2012-09-28 2018-12-18 Mevion Medical Systems, Inc. Controlling particle therapy
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US10368429B2 (en) 2012-09-28 2019-07-30 Mevion Medical Systems, Inc. Magnetic field regenerator

Also Published As

Publication number Publication date
US8927950B2 (en) 2015-01-06
CN104813748B (zh) 2019-07-09
CN104813748A (zh) 2015-07-29
EP2901822A2 (en) 2015-08-05
JP6121544B2 (ja) 2017-04-26
WO2014052718A2 (en) 2014-04-03
JP2015532508A (ja) 2015-11-09
US20140094641A1 (en) 2014-04-03
EP2901822B1 (en) 2020-04-08
WO2014052718A3 (en) 2014-05-30

Similar Documents

Publication Publication Date Title
TWI604868B (zh) 粒子加速器及質子治療系統
TW201422279A (zh) 聚焦粒子束
US10368429B2 (en) Magnetic field regenerator
EP2901824B1 (en) Magnetic shims to adjust a position of a main coil and corresponding method
US9730308B2 (en) Particle accelerator that produces charged particles having variable energies
US8791656B1 (en) Active return system
US9706636B2 (en) Adjusting energy of a particle beam
TW201424467A (zh) 一粒子束之強度控制
EP2591821A1 (en) Inner gantry
TW201422278A (zh) 粒子加速器之控制系統