EP0276360B1 - Magneteinrichtung mit gekrümmten Spulenwicklungen - Google Patents

Magneteinrichtung mit gekrümmten Spulenwicklungen Download PDF

Info

Publication number
EP0276360B1
EP0276360B1 EP87111574A EP87111574A EP0276360B1 EP 0276360 B1 EP0276360 B1 EP 0276360B1 EP 87111574 A EP87111574 A EP 87111574A EP 87111574 A EP87111574 A EP 87111574A EP 0276360 B1 EP0276360 B1 EP 0276360B1
Authority
EP
European Patent Office
Prior art keywords
winding
magnet device
coil
plane
particle path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87111574A
Other languages
English (en)
French (fr)
Other versions
EP0276360A2 (de
EP0276360A3 (en
Inventor
Helmut Marsing
Andreas Dr. Jahnke
Konrad Meier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0276360A2 publication Critical patent/EP0276360A2/de
Publication of EP0276360A3 publication Critical patent/EP0276360A3/de
Application granted granted Critical
Publication of EP0276360B1 publication Critical patent/EP0276360B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/06Two-beam arrangements; Multi-beam arrangements storage rings; Electron rings

Definitions

  • the accelerator system to be found in the publication mentioned above is a heavy ion accelerator designed as a cyclotron. His magnetic device with an approximately ring-shaped plan has twelve curved, mutually spaced 20 ° sector magnets, the superconducting windings of rectangular conductors are surrounded by an iron yoke. Because the rectangular conductors are accommodated in grooves, undesired conductor displacements can be prevented. In this known accelerator system, the particle beam is led out in the region of accelerator cavities located between the sector magnets.
  • the synchrotron radiation source known from DE-A-35 30 446 also has an electron storage ring of the racetrack type.
  • the synchrotron radiation i.e. the relativistic radiation emission of the electrons, which revolve almost at the speed of light and are kept on the prescribed particle path by deflection in a magnetic field, provides X-rays with parallel radiation characteristics and high intensity.
  • This synchrotron radiation can advantageously be used for an X-ray lithography, which is particularly suitable for the production of integrated circuits for the production of microstructures.
  • the invention is therefore based on the object To design a magnetic device with the features mentioned at the outset in such a way that it enables the use of synchrotron radiation with a high field accuracy of the generated magnetic field.
  • a problem with the design of magnetic devices with high demands on the field accuracy is also the fault-free position of the power supply lines at the conductor ends. Since the disruptive influence decreases with the distance to the particle path, the leads should advantageously leave the windings on the winding heads according to the invention. In this way, the effect of the feed lines is negligible, while the curvature of the entire winding packages upwards or downwards can easily be taken into account in the field design.
  • FIG. 1 schematically shows part of a synchrotron radiation source with a magnet device designed according to the invention.
  • FIGS. 2 and 3 each schematically illustrate an embodiment of a partial winding for such a magnetic device.
  • This magnetic device contains on both sides of the equatorial plane E spanned by the particle path 2 and lying in the xy-direction of a right-angled xyz coordinate system E a curved superconducting dipole coil winding 4 or 5 and possibly additional superconducting coil windings such as correction coil windings 6.
  • the superconducting coil windings with convex The outside, concave inside and end windings between these sides are advantageously held in structurally identical upper and lower frame structures 7 and 8, which are to be joined together in the equatorial plane E and thereby a beam guiding chamber 10 enclosing the particle path 2.
  • a dipole field B of sufficient quality is formed within this chamber 10.
  • the chamber 10 goes radially or tangentially outwards into an equatorial outlet chamber 12 which is open on one side and has an outlet opening or mouth 13 for the synchrotron radiation indicated by an arrow 14.
  • the outlet chamber can in particular be slit-shaped, the corresponding slit being able to make up the entire 180 ° arc of the curved particle path section.
  • the individual superconducting dipole coil windings 4 and 5 are located at least with their winding parts defining the convex outside and concave inside in azimuthally circumferential grooves 20 of appropriately designed individual coil formers 15 and 16 made of metal or plastic composite material. These coil formers are fitted into an upper or lower frame piece 17 or 18 of the respective frame structure 7 or 8 and are held perpendicularly to the equatorial xy plane E with screws 19.
  • the winding structure can advantageously take place from the respective slot base of the coil body in the direction of the equatorial plane E or in the opposite direction.
  • a graduated bracket part 21 or 22 secures the exact distances and positions of the respective winding edges to the equatorial plane on the one hand, and on the other hand increases the rigidity of the entire construction with a positive fit with the coil formers 15 and 16 and the frame pieces 17 and 18 radially directed Lorentz forces.
  • the clamp parts 21 and 22 can also compress the individual windings with the aid of screws 23 and 24 and thus conductor movements during the operation of the magnet device 3, which lead to a premature, undesirable transition of the superconducting material into the normal conducting state, ie to a so-called quenching of the windings can prevent.
  • stamp-like pressure strips 27 on the respective slot base are used for this purpose, which are to be pressed against the respective winding parts by means of screws 28.
  • the winding inside the slots can be pressed together vertically from two sides.
  • the windings or parts of them can optionally be cast in the slots.
  • the frame pieces 17 and 18 of the frame structures 7 and 8 are rigidly connected to an upper and lower plate element 31 and 32, respectively. This ensures a very precise positioning of the individual superconducting coil windings 4 to 6 relative to the particle track 2.
  • the upper and lower plate elements 31 and 32 of the frame structures 7 and 8 are braced against ring-like, force-transmitting distributor pieces 34 and 35.
  • the slot-like outlet chamber 12 extends outwards between these distributor pieces.
  • the mutual distance and a force support between the distributor pieces 34 and 35 is ensured by at least one support element 40, which is located radially further outside than the mouth of the outlet opening 13. Since the distributor pieces 34 and 35 form parts of a cold helium housing 42 for receiving liquid helium for cooling the superconducting coil windings within a cryostat, the support element 40 running between them is also at this temperature.
  • the suspension and positioning elements of the magnetic device which are not shown in the figure, can also advantageously be located directly on the distribution pieces within a vacuum housing of the cryostat, which is also not shown 34 and 35 and thus in close proximity to the superconducting coil windings 4 to 6. This brings with it a correspondingly high positioning accuracy of the windings with respect to the particle path.
  • the portion of the synchrotron radiation 14 striking the support element 40 is collected by a radiation absorber 46, which is expediently cooled.
  • Liquid nitrogen is to be regarded as the preferred cryogenic refrigeration medium.
  • each of the coil windings 4 and 5 is made up of a plurality of sub-windings which surround one another in a shell-like manner.
  • three such partial windings each represent a coil winding.
  • One of these partial windings which largely corresponds to the winding of the coil winding 4 designated by 4a in FIG. 1, is illustrated in more detail in FIG. 2 as an oblique view.
  • This partial winding, identified by 4a ist is created from a superconducting rectangular conductor 50, with which so-called "pancakes" 51 are formed from two turns each arranged in a layer next to one another.
  • the rectangular conductor 50 is inserted layer by layer with its broad side in grooves corresponding to the adapted radial expansion.
  • the resulting winding package is then fixed in the grooves, which are not shown in the figure for reasons of clarity.
  • These grooves run in at least one bobbin, also not shown, in such a way that the curved shape of the partial winding 4a ⁇ results with a convex outer side 53 and a concave inner side 54.
  • Two winding heads are formed in the two transition regions between these sides 53 and 54. Of these end windings, only one is shown in the figure and designated 55 ⁇ .
  • the winding head 55 Wick of the partial winding 4a ⁇ is not in a common plane with the the sides 53 and 54 forming curved winding parts 57 and 58.
  • the common plane for the winding parts 57 and 58 is parallel to the plane spanned by the x and y coordinates of the xyz coordinate system according to FIG. 1.
  • the partial winding 4a 'in the region of the winding head 55' is bent up like a saddle relative to this common plane or in the manner of a bed frame, that is, it is led out of this plane.
  • the winding can be bent there so far that it comes to lie in a vertical plane which runs parallel to the plane spanned by the x and z planes of the coordinate system.
  • a relatively small radius of curvature or curvature can advantageously be provided.
  • the two curved winding parts of the partial winding 4a ' are not, as assumed in FIG. 2, to be arranged in a common plane which runs parallel to the plane defined by the particle path.
  • the two curved winding parts should advantageously also lie in two different planes with different distances from the particle path plane.
  • FIG. 3 A corresponding embodiment of the partial winding 4a can be seen in FIG. 3, for which a representation corresponding to FIG. 2 is selected.
  • the partial winding 4a which is only partially implemented in FIG. 3, contains a curved winding part 64 which forms the concave inside 54 and runs in a first plane E1.
  • this plane is, for example, the xy plane of a right-angled xyz coordinate system.
  • a winding part 63 running parallel to this winding part 64 and forming the convex outer side 53 of the partial winding 4a then lies in a parallel second plane E2, which is spaced apart from the plane E1 by a distance d.
  • this distance can be compensated, for example, on the end winding 55 by providing a straight intermediate piece 66 running in the z-direction with a corresponding expansion between curved winding parts.
  • the intermediate piece 66 is the inner one Assign winding part 64 for level compensation with respect to the outer winding part 63.
  • the magnetic device according to the invention can be advantageous according to the exemplary embodiment indicated in FIG. 1 for a synchrotron radiation source with a radial outlet opening for the synchrotron radiation can be designed.
  • the measures according to the invention can also be used just as well for other types of accelerator systems with curved tracks with their electrically charged particles.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Particle Accelerators (AREA)

Description

  • Die Erfindung bezieht sich auf eine Magneteinrichtung für den Gebrauch in einem gekrümmten Abschnitt einer Bahn elektrisch geladener Teilchen einer Beschleunigeranlage, wobei die Magneteinrichtung um eine die Teilchenbahn umgebende Strahlführungskammer angeordnet ist und gekrümmte Spulenwicklungen enthält,
    • welche aus supraleitenden Rechteckleitern aufgebaut sind,
    • welche zumindest mit ihren konvexe Außenseiten und konkave Innenseiten bildenden Wicklungsteilen in Nuten entsprechend geformter Spulenkörper angeordnet sind, wobei die Nuten zumindest annähernd senkrecht zu der durch die Teilchenbahn festgelegten Ebene in die Tiefe gehen,
    und
    • welche in Übergangsbereichen an den Wickelköpfen zwischen den Außen- und Innenseiten sattelartig aufgebogen sind.
    Eine derartige Magneteinrichtung geht aus der Veröffentlichung "Nuclear Instruments and Methods in Physics Research, Section A", Vol. A244, No. 1/2, Febr. 1986, Seiten 273 bis 282 hervor.
  • Bei der aus der vorstehend genannten Veröffentlichung zu entnehmenden Beschleunigeranlage handelt es sich um einen als Zyklotron ausgebildeten Schwerionenbeschleuniger. Seine Magneteinrichtung mit etwa ringscheibenförmigem Grundriß weist zwölf gekrümmte, untereinander beabstandete 20°-Sektormagnete auf, deren supraleitende Wicklungen aus Rechteckleitern von einem Eisenjoch umgeben sind. Wegen der Unterbringung der Rechteckleiter in Nuten können so unerwünschte Leiterverschiebungen verhindert werden. Bei dieser bekannten Beschleunigeranlage wird der Teilchenstrahl im Bereich von zwischen den Sektormagneten befindlichen Beschleunigerkavitäten herausgeführt.
  • Neben solchen Kreisbeschleunigeranlagen sind ferner solche vom sogenannten Rennbahn-Typ bekannt. Deren Teilchenbahn setzt sich dann aus zwei Halbkreisen mit jeweils einem entsprechenden 180°-Ablenkmagneten und aus zwei geraden Bahnabschnitten zusammen (vgl. "Nucl. Instrum. and Meth.", Vol. 177, 1980, Seiten 411 bis 416, oder Vol. 204, 1982, Seiten 1 bis 20).
  • Auch die aus der DE-A-35 30 446 bekannte Synchrotronstrahlungsquelle weist einen Elektronenspeicherring vom Rennbahn-Typ auf. Die Synchrotronstrahlung, d.h. die relativistische Strahlungsemission der Elektronen, die nahezu mit Lichtgeschwindigkeit umlaufen und durch Ablenken in einem magnetischen Feld auf der vorgeschriebenen Teilchenbahn gehalten werden, liefert eine Röntgenstrahlung mit paralleler Strahlungscharakteristik und großer Intensität. Diese Synchrotronstrahlung kann vorteilhaft für eine Röntgenstrahl-Lithographie verwendet werden, welche insbesondere bei einer Herstellung von integrierten Schaltkreisen zur Erzeugung von Mikrostrukturen geeignet ist.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, die Magneteinrichtung mit den eingangs genannten Merkmalen dahingehend auszugestalten, daß sie die Nutzung einer Synchrotronstrahlung bei zugleich hoher Feldgenauigkeit des erzeugten Magnetfeldes ermöglicht.
  • Diese Aufgabe wird erfindungsgemäß mit den im kennzeichnenden zweiten Teil des Anspruchs 1 angegebenen Maßnahmen gelöst.
  • Die mit einer entsprechenden Ausgestaltung der Magneteinrichtung verbundenen Vorteile sind insbesondere darin zu sehen, daß sich aufgrund der unterschiedlichen Beabstandung der einzelnen Wicklungsteile von der Teilchenbahnebene ein Raum ergibt, in dem ohne Beeinträchtigung der Feldhomogenität die Austrittskammer für die Synchrotronstrahlung unterzubringen ist.
  • Ein Problem bei der Auslegung von Magneteinrichtungen mit hohen Anforderungen an die Feldgenauigkeit stellt ferner die störungsfreie Lage der Stromzuführungen an den Leiterenden dar. Da der störende Einfluß mit dem Abstand zur Teilchenbahn abnimmt, sollen erfindungsgemäß die Zuleitungen die Wicklungen vorteilhaft an den Wickelköpfen verlassen. Auf diese Weise ist der Effekt der Zuleitungen vernachlässigbar, während sich die Krümmung der gesamten Wickelpakete nach oben bzw. unten bei der Feldgestaltung ohne weiteres berücksichtigen läßt.
  • Vorteilhafte Ausgestaltungen der erfindungsgemäßen Magneteinrichtung gehen aus den abhängigen Ansprüchen hervor.
  • Zur weiteren Erläuterung der Erfindung wird auf die Zeichnung Bezug genommen, deren Figur 1 schematisch einen Teil einer Synchrotronstrahlungsquelle mit einer erfindungsgemäß gestalteten Magneteinrichtung zeigt. In den Figuren 2 und 3 sind je eine Ausführungsform einer Teilwicklung für eine derartige Magneteinrichtung schematisch veranschaulicht.
  • Beim Aufbau der in Figur 1 angedeuteten Strahlungsquelle wird von bekannten Ausführungsformen, insbesondere vom Rennbahn-Typ, ausgegangen (vgl. z.B. DE-C-35 11 282, DE-A-35 30 446 oder die Veröffentlichung des "Institute for Solid State Physics" of the University of Tokyo, Japan, Sept. 1984, Ser. B., No. 21, Seiten 1 bis 29 mit dem Titel: "Superconducting Racetrack Electron Storage Ring and Coexistent Injector Microtron for Synchrotron Radiation"). In der Figur ist ein Querschnitt im Bereich ihrer um 180° gekrümmten Teilchenbahn 2 mit einer entsprechenden erfindungsgemäßen Magneteinrichtung 3 dargestellt. Der Krümmungsradius ist dabei mit R bezeichnet. Diese Magneteinrichtung enthält zu beiden Seiten der durch die Teilchenbahn 2 aufgespannten, in x-y-Richtung eines rechtwinkligen x-y-z-Koordinatensystems liegenden Äquatorialebene E je eine gekrümmte supraleitende Dipolspulenwicklung 4 bzw. 5 und gegebenenfalls noch zusätzliche supraleitende Spulenwicklungen wie z.B. Korrekturspulenwicklungen 6. Die supraleitenden Spulenwicklungen mit konvexer Außenseite, konkaver Innenseite und Wickelköpfen zwischen diesen Seiten werden vorteilhaft in baugleichen oberen und unteren Rahmenstrukturen 7 bzw. 8 gehalten, die in der Äquatorialebene E zusammenzufügen sind und dabei eine die Teilchenbahn 2 umschließende Strahlführungskammer 10 aufnehmen. Innerhalb dieser Kammer 10 ist ein Dipolfeld B hinreichender Qualität ausgebildet. Die Kammer 10 geht radial oder tangential nach außen hin in eine äquatoriale, einseitig offene Austrittskammer 12 mit einer Austrittsöffnung oder -mündung 13 für die durch einen Pfeil 14 angedeutete Synchrotronstrahlung über. Die Austrittskammer kann insbesondere schlitzförmig ausgebildet sein, wobei der entsprechende Schlitz den gesamten 180°-Bogen des gekrümmten Teilchenbahnabschnittes ausmachen kann.
  • Die einzelnen supraleitenden Dipolspulenwicklungen 4 und 5 befinden sich zumindest mit ihren die konvexe Außenseite und konkave Innenseite festlegenden Wicklungsteilen in azimut umlaufenden Nuten 20 entsprechend ausgebildeter, einzelner Spulenkörper 15 und 16 aus Metall oder Kunststoff-Verbundwerkstoff. Diese Spulenkörper sind in ein oberes bzw. unteres Rahmenstück 17 bzw. 18 der jeweiligen Rahmenstruktur 7 bzw. 8 eingepaßt und werden senkrecht zur äquatorialen x-y-Ebene E mit Schrauben 19 gehalten. Der Wicklungsaufbau kann dabei vorteilhaft von dem jeweiligen Nutengrund des Spulenkörpers in Richtung auf die Äquatorialebene E hin oder auch in umgekehrter Richtung erfolgen. Hierbei sichert je ein abgestuft ausgeführtes Klammerteil 21 bzw. 22 die exakten Abstände und Positionen der jeweiligen Wicklungskanten zur Äquatorialebene einerseits und erhöht andererseits durch einen Formschluß mit den Spulenkörpern 15 bzw. 16 und den Rahmenstücken 17 bzw. 18 die Steifigkeit der gesamten Konstruktion im Hinblick auf radial gerichtete Lorentzkräfte. Die Klammerteile 21 und 22 können außerdem mit Hilfe von Schrauben 23 und 24 die einzelnen Wicklungen verdichten und somit Leiterbewegungen im Betrieb der Magneteinrichtung 3, die zu einem vorzeitigen, unerwünschten Übergang des supraleitenden Materials in den normalleitenden Zustand, d.h. zu einem sogenannten Quenchen der Wicklungen führen können, verhindern. Hierzu dienen insbesondere auch stempelartige Druckleisten 27 am jeweiligen Nutengrund, die über Schrauben 28 gegen die jeweiligen Wicklungsteile zu pressen sind. Auf diese Weise ist die Wicklung innerhalb der Nuten von zwei Seiten vertikal zusammenzupressen. Darüber hinaus können die Wicklungen oder Teile von ihnen gegebenenfalls auch in den Nuten vergossen werden.
  • Die Rahmenstücke 17 und 18 der Rahmenstrukturen 7 und 8 sind starr mit einem oberen bzw. unteren Plattenelement 31 bzw. 32 verbunden. Es ist so eine sehr genaue Positionierung der einzelnen supraleitenden Spulenwicklungen 4 bis 6 zur Teilchenbahn 2 gewährleistet. Am peripheren Außenrand der Magneteinrichtung 3 im Bereich der schlitzförmigen Austrittsöffnung 13 für die Synchrotronstrahlung 14 sind die oberen und unteren Plattenelemente 31 und 32 der Rahmenstrukturen 7 bzw. 8 gegen ringartige, kraftübertragende Verteilerstücke 34 und 35 verspannt. Zwischen diesen Verteilerstücken hindurch erstreckt sich die schlitzartige Austrittskammer 12 nach außen hin. Dabei ist der gegenseitige Abstand und eine Kraftabstützung zwischen den Verteilerstücken 34 und 35 über mindestens ein Stützelement 40 gewährleistet, das sich radial weiter außen als die Mündung der Austrittsöffnung 13 befindet. Da die Verteilerstücke 34 und 35 innerhalb eines Kryostaten Teile eines kalten Heliumgehäuses 42 zur Aufnahme von flüssigem Helium zur Kühlung der supraleitenden Spulenwicklungen darstellen, befindet sich auch das zwischen ihnen verlaufende Stützelement 40 etwa auf dieser Temperatur.
  • Mit den Rahmenstrukturen 7 und 8, den Verteilerstücken 34 und 35 sowie dem mindestens einen Stützelement 40 ist somit eine verhältnismäßig einfache und sichere Abstützung und Halterung der zu beiden Seiten der Äquatorialebene E liegenden supraleitenden Spulenwicklungen zu gewährleisten.
  • Mit dieser Konstruktion können außerdem vorteilhaft die in der Figur nicht ausgeführten Aufhängungs- und Positionierelemente der Magneteinrichtung innerhalb eines ebenfalls nicht dargestellten Vakuumgehäuses des Kryostaten direkt an den Verteilungsstücken 34 und 35 und damit in unmittelbarer Nähe zu den supraleitenden Spulenwicklungen 4 bis 6 ansetzen. Dies bringt eine entsprechend hohe Positioniergenauigkeit der Wicklungen hinsichtlich der Teilchenbahn mit sich.
  • Der auf das Stützelement 40 auftreffende Anteil der Synchrotronstrahlung 14 wird von einem Strahlungsabsorber 46 aufgefangen, der zweckmäßig gekühlt wird. Als bevorzugtes kryogenes Kältemedium ist hierzu flüssiger Stickstoff anzusehen.
  • Im allgemeinen ist jede der Spulenwicklungen 4 und 5 aus mehreren Teilwicklungen aufgebaut, die sich gegenseitig schalenförmig umschließen. Gemäß dem in Figur 1 gezeigten Ausführungsbeispiel stellen drei solcher Teilwicklungen jeweils eine Spulenwicklung dar. Eine dieser Teilwicklungen, die der in Figur 1 mit 4a bezeichneten Wicklung der Spulenwicklung 4 weitgehend entspricht, ist in Figur 2 als Schrägansicht näher veranschaulicht. Diese mit 4aʹ gekennzeichnete Teilwicklung ist aus einem supraleitenden Rechteckleiter 50 erstellt, mit dem sogenannte "Pancakes" 51 aus jeweils zwei in einer Lage nebeneinander angeordneten Windungen ausgebildet sind. Hierzu wird der Rechteckleiter 50 mit seiner Breitseite in Nuten entsprechend angepaßter radialer Ausdehnung Lage für Lage eingelegt. Das so entstandene Wickelpaket wird dann in den Nuten, welche in der Figur aus Gründen der Übersichtlichkeit nicht dargestellt sind, fixiert. Diese Nuten verlaufen dabei in mindestens einem ebenfalls nicht eingezeichneten Spulenkörper derart, daß sich die gekrümmte Form der Teilwicklung 4aʹ mit einer konvexen Außenseite 53 und einer konkaven Innenseite 54 ergibt. In den beiden Übergangsbereichen zwischen diesen Seiten 53 und 54 sind zwei Wickelköpfe ausgebildet. Von diesen Wickelköpfen ist in der Figur nur einer ausgeführt und mit 55ʹ bezeichnet.
  • Wie aus Figur 2 deutlich hervorgeht, liegt der Wickelkopf 55ʹ der Teilwicklung 4aʹ nicht in einer gemeinsamen Ebene mit den die Seiten 53 und 54 bildenden, gekrümmten Wicklungsteilen 57 und 58. Die für die Wicklungsteile 57 und 58 gemeinsame Ebene liegt dabei parallel zu der durch die x- und y-Koordinaten des x-y-z-Koordinatensystems nach Figur 1 aufgespannten Ebene. Vielmehr ist erfindungsgemäß die Teilwicklung 4a' im Bereich des Wickelkopfes 55' gegenüber dieser gemeinsamen Ebene sattelartig bzw. nach Art eines Bettgestells aufgebogen, d.h. aus dieser Ebene herausgeführt. Insbesondere kann dort die Wicklung soweit aufgebogen sein, daß sie in eine vertikale Ebene zu liegen kommt, die parallel zu der durch die x- und z-Ebene des Koordinatensystems aufgespannten Ebene verläuft. Dabei kann vorteilhaft ein verhältnismäßig kleiner Biege- oder Krümmungsradius vorgesehen werden. Mit diesem Aufbiegen der Teilwicklung 4a' an dem Wickelkopf 55' wird nicht nur der Einfluß von eventuellen Leiterbewegungen auf die Feldhomogenität reduziert; vielmehr wird auch ein störender Einfluß der Leiterenden der Wicklung bzw. ihrer Stromzuführungen aufgrund des entsprechend größeren Abstandes zur Teilchenbahn vermindert. In der Figur sind der Wicklungsanfang und das Wicklungsende an dem Wickelkopf 55' mit 60 bzw. 61 bezeichnet.
  • Bei dem vorstehend erläuterten Ausführungsbeispiel wurde davon ausgegangen, daß die supraleitenden Spulenwicklungen 4 und 5 nur mit ihren in einer Ebene liegenden Wicklungsteilen 57 und 58 innerhalb von Nuten einzelner Spulenkörper verlaufen, während an den Wickelköpfen 55' keine Nuten vorgesehen sind. Selbstverständlich ist es jedoch auch möglich, für diese Teile der Wicklungen entsprechend geformte Nuten auszubilden, wie sie z.B. für nicht-gekrümmte, sattelartige Magnetspulen an sich bekannt sind (vgl. z.B. die DE-C-1 514 445).
  • Außerdem sind erfindungsgemäß die beiden gekrümmten Wicklungsteile der Teilwicklung 4a' nicht, wie in Figur 2 angenommen, in einer gemeinsamen Ebene, die parallel zu der durch die Teilchenbahn festgelegten Ebene verläuft, anzuordnen. Wie nämlich bereits aus Figur 1 deutlich hervorgeht, sollen vorteilhaft die beiden gekrümmten Wicklungsteile auch in zwei verschiedene Ebenen mit verschiedenen Abständen zur Teilchenbahnebene zu liegen kommen. Eine entsprechende Ausführungsform der Teilwicklung 4a ist aus Figur 3 ersichtlich, für die eine Figur 2 entsprechende Darstellung gewählt ist.
  • Dementsprechend enthält die in Figur 3 nur teilweise ausgeführte Teilwicklung 4a einen die konkave Innenseite 54 bildenden, gekrümmten Wicklungsteil 64, der in einer ersten Ebene E1 verläuft. Bei dieser Ebene handelt es sich gemäß der Darstellung der Figur beispielsweise um die x-y-Ebene eines rechtwinkligen x-y-z-Koordinatensystems. Ein zu diesem Wicklungsteil 64 parallel verlaufender, die konvexe Außenseite 53 der Teilwicklung 4a bildender Wicklungsteil 63 liegt dann in einer parallelen zweiten Ebene E2, die gegenüber der Ebene E1 um eine Distanz d beabstandet ist. Innerhalb der Teilwicklung 4a kann diese Distanz beispielsweise am Wickelkopf 55 dadurch ausgeglichen werden, daß man ein in z-Richtung verlaufendes, gerades Zwischenstück 66 mit entsprechender Ausdehnung zwischen gekrümmten Wicklungsteilen vorsieht. Gemäß dem dargestellten Ausführungsbeispiel ist das Zwischenstück 66 dem inneren Wicklungsteil 64 zum Niveauausgleich gegenüber dem äußeren Wicklungsteil 63 zuzuordnen. Durch geeignete Wahl unterschiedlicher Abstände des inneren und äußeren Wicklungsteils 64 bzw. 63 gegenüber der Teilchenbahnebene ist es dann gegebenenfalls sogar möglich, daß auf eine besondere Gradientenspule, wie sie z.B. gemäß der DE-A-35 30 446 vorgesehen ist, verzichtet werden kann.
  • Die erfindungsgemäße Magneteinrichtung kann zwar vorteilhaft gemäß dem in Figur 1 angedeuteten Ausführungsbeispiel für eine Synchrotronstrahlungsquelle mit radialer Austrittsöffnung für die Synchrotronstrahlung konzipiert werden. Die erfindungsgemäßen Maßnahmen lassen sich jedoch ebensogut auch für andere Typen von Beschleunigeranlagen mit gekrümmten Bahnen ihre elektrisch geladenen Teilchen einsetzen.

Claims (6)

  1. Magneteinrichtung (3) für den Gebrauch in einem gekrümmten Abschnitt einer Bahn (2) elektrisch geladener Teilchen einer Beschleunigeranlage, wobei die Magneteinrichtung (3) um eine die Teilchenbahn (2) umgebende Strahlführungskammer (10) angeordnet ist und gekrümmte Spulenwicklungen (4, 4a, 5) enthält,
    - welche aus supraleitenden Rechteckleitern (50) aufgebaut sind,
    - welche zumindest mit ihren konvexe Außenseiten (53) und konkave Innenseiten (54) bildenden Wicklungsteilen (63 bzw. 64) in Nuten (20) entsprechend geformter Spulenkörper (15, 16) angeordnet sind, wobei die Nuten (20) zumindest annähernd senkrecht zu der durch die Teilchenbahn (2) festgelegten Ebene (E) in die Tiefe gehen,
    und
    - welche in Übergangsbereichen an den Wickelköpfen (55) zwischen den Außen- und Innenseiten (53 bzw. 54) sattelartig aufgebogen sind,
    dadurch gekennzeichnet, daß die Strahlführungskammer (10) im dem gekrümmten Abschnitt der Teilchenbahn (2) in eine Austrittskammer (12) für eine Synchrotronstrahlung (14) übergeht, daß die die konvexen Außenseiten (53) bildenden Wicklungsteile (63) gegenüber den die konkaven Innenseiten (54) bildenden Wicklungsteilen (64) unterschiedliche Abstände zu der Teilchenbahnebene (E) haben, und daß der Wicklungsanfang (60) und das Wicklungsende (61) jeder Spulenwicklung (4, 4a, 5) in den Bereich ihres jeweiligen Wickelkopfes (55) gelegt wird.
  2. Magneteinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Nuten (20) in den Spulenkörpern (15, 16) auch die Bereiche der Wickelköpfe (55) mit erfassen.
  3. Magneteinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Spulenkörper (15, 16) in mindestens einer Rahmenstruktur (7, 8) der Magneteinrichtung (3) starr befestigt sind.
  4. Magneteinrichtung nach Anspruch 3, dadurch gekennzeichnet, daß zwei zumindest weitgehend baugleiche Rahmenstrukturen (7, 8) vorgesehen sind, die in der Teilchenbahnebene (E) zusammenzufügen sind.
  5. Magneteinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß Vorrichtungen zur mechanischen Fixierung der Spulenwicklungen (4, 5) in den Nuten (20) vorgesehen sind.
  6. Magneteinrichtung nach Anspruch 5, dadurch gekennzeichnet, daß am Nutengrund jeder Nut (20) mindestens eine Druckleiste (27) angeordnet ist, mit welcher die jeweilige Spulenwicklung (4, 5) gegen mindestens ein die Nutenöffnung verschließendes Klammerteil (21, 22) zu pressen ist.
EP87111574A 1987-01-28 1987-08-10 Magneteinrichtung mit gekrümmten Spulenwicklungen Expired - Lifetime EP0276360B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3702389 1987-01-28
DE3702389 1987-01-28

Publications (3)

Publication Number Publication Date
EP0276360A2 EP0276360A2 (de) 1988-08-03
EP0276360A3 EP0276360A3 (en) 1989-07-26
EP0276360B1 true EP0276360B1 (de) 1993-06-09

Family

ID=6319641

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87111574A Expired - Lifetime EP0276360B1 (de) 1987-01-28 1987-08-10 Magneteinrichtung mit gekrümmten Spulenwicklungen

Country Status (4)

Country Link
US (1) US4769623A (de)
EP (1) EP0276360B1 (de)
JP (1) JPS63188908A (de)
DE (1) DE3786158D1 (de)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3705294A1 (de) * 1987-02-19 1988-09-01 Kernforschungsz Karlsruhe Magnetisches ablenksystem fuer geladene teilchen
JPH0763037B2 (ja) * 1987-03-11 1995-07-05 日本電信電話株式会社 空芯型偏向電磁石
JPH0763036B2 (ja) * 1987-03-11 1995-07-05 日本電信電話株式会社 リタ−ンヨ−ク付き偏向電磁石
US4939493A (en) * 1988-09-27 1990-07-03 Boston University Magnetic field generator
DE4000666C2 (de) * 1989-01-12 1996-10-17 Mitsubishi Electric Corp Elektromagnetanordnung für einen Teilchenbeschleuniger
US4969064A (en) * 1989-02-17 1990-11-06 Albert Shadowitz Apparatus with superconductors for producing intense magnetic fields
DE4029477C2 (de) * 1989-09-29 1994-06-01 Siemens Ag Tesserale Gradientenspule für Kernspin-Tomographiegeräte
JPH06510885A (ja) * 1991-09-25 1994-12-01 シーメンス アクチエンゲゼルシヤフト 超伝導素線を備えた導体からなるコイル装置
JP2944317B2 (ja) * 1992-07-28 1999-09-06 三菱電機株式会社 シンクロトロン放射光源装置
CN1282215C (zh) * 2003-06-10 2006-10-25 清华大学 一种电子束的束流引导装置
EP2259664B1 (de) 2004-07-21 2017-10-18 Mevion Medical Systems, Inc. Programmfunkfrequenz-wellenformgenerator für ein synchrozyklotron
EP1764132A1 (de) * 2005-09-16 2007-03-21 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Einstellung eines Strahlpfades einer Partikeltherapieanlage
EP2389980A3 (de) * 2005-11-18 2012-03-14 Still River Systems, Inc. Strahlentherapie mit geladenen Teilchen
US7432516B2 (en) * 2006-01-24 2008-10-07 Brookhaven Science Associates, Llc Rapid cycling medical synchrotron and beam delivery system
DE102006018635B4 (de) * 2006-04-21 2008-01-24 Siemens Ag Bestrahlungsanlage mit einem Gantry-System mit einem gekrümmten Strahlführungsmagneten
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
WO2013101294A1 (en) * 2011-05-19 2013-07-04 The Regents Of The University Of California Combined function toroidal magnet
TW201424467A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 一粒子束之強度控制
JP6254600B2 (ja) 2012-09-28 2017-12-27 メビオン・メディカル・システムズ・インコーポレーテッド 粒子加速器
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
CN104812443B (zh) 2012-09-28 2018-02-02 梅维昂医疗系统股份有限公司 粒子治疗系统
EP2901824B1 (de) 2012-09-28 2020-04-15 Mevion Medical Systems, Inc. Magnetischer ausgleichskörper zur einstellung einer position einer hauptspule und entsprechendes verfahren
TW201422278A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 粒子加速器之控制系統
TW201422279A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 聚焦粒子束
JP6138947B2 (ja) 2012-09-28 2017-05-31 メビオン・メディカル・システムズ・インコーポレーテッド 磁場再生器
TW201434508A (zh) 2012-09-28 2014-09-16 Mevion Medical Systems Inc 一粒子束之能量調整
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
JP6855240B2 (ja) 2013-09-27 2021-04-07 メビオン・メディカル・システムズ・インコーポレーテッド 粒子ビーム走査
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US9793036B2 (en) * 2015-02-13 2017-10-17 Particle Beam Lasers, Inc. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields
CN106199471B (zh) 2015-05-04 2019-10-01 通用电气公司 部分折叠的梯度线圈单元及装置
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
JP7059245B2 (ja) 2016-07-08 2022-04-25 メビオン・メディカル・システムズ・インコーポレーテッド 治療計画の決定
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
EP3645111A1 (de) 2017-06-30 2020-05-06 Mevion Medical Systems, Inc. Unter verwendung von linearmotoren gesteuerter, konfigurierbarer kollimator
TW202039026A (zh) 2019-03-08 2020-11-01 美商美威高能離子醫療系統公司 藉由管柱之輻射遞送及自其產生治療計劃
CN113744993B (zh) * 2021-08-30 2022-06-28 中国科学院合肥物质科学研究院 kA级大载流高温超导双饼线圈的绕制成型装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3283276A (en) * 1963-07-25 1966-11-01 Avco Corp Twisted superconductive winding assembly
US4200844A (en) * 1976-12-13 1980-04-29 Varian Associates Racetrack microtron beam extraction system
GB8421867D0 (en) * 1984-08-29 1984-10-03 Oxford Instr Ltd Devices for accelerating electrons
DE3511282C1 (de) * 1985-03-28 1986-08-21 Brown, Boveri & Cie Ag, 6800 Mannheim Supraleitendes Magnetsystem fuer Teilchenbeschleuniger einer Synchrotron-Strahlungsquelle
US4667174A (en) * 1985-08-23 1987-05-19 Resonex, Inc. Magnet assembly for magnetic resonance imaging and method of manufacture

Also Published As

Publication number Publication date
DE3786158D1 (de) 1993-07-15
EP0276360A2 (de) 1988-08-03
EP0276360A3 (en) 1989-07-26
JPS63188908A (ja) 1988-08-04
US4769623A (en) 1988-09-06

Similar Documents

Publication Publication Date Title
EP0276360B1 (de) Magneteinrichtung mit gekrümmten Spulenwicklungen
EP0277521B1 (de) Synchrotronstrahlungsquelle mit einer Fixierung ihrer gekrümmten Spulenwicklungen
EP0208163B1 (de) Magnetfeldeinrichtung für eine Anlage zur Beschleunigung und/oder Speicherung elektrisch geladener Teilchen
DE4109931C2 (de) Ablenkmagnet zum Ablenken eines Strahls von geladenen Teilchen auf einer halbkreisförmigen Bahn
DE3511282C1 (de) Supraleitendes Magnetsystem fuer Teilchenbeschleuniger einer Synchrotron-Strahlungsquelle
EP0111218B1 (de) Elektromagnet für die NMR-Tomographie
DE3889847T2 (de) NMR Abbildungssystem mit geöffnetem Zutritt zum Abbildungsraum des Patienten.
EP0191392B1 (de) Magnetfelderzeugende Einrichtung
EP0586983B1 (de) Gradientenspulen für Therapietomographen
DE3875863T2 (de) Magnetisches resonanzgeraet mit gradientenspulensystem.
EP0257371B1 (de) Vorrichtung zum Kompensieren von zeitvarianten Feldstörungen in Magnetfeldern
DE3530446A1 (de) Synchrotron
DE4041495A1 (de) Elektronenenergiefilter, vorzugsweise vom alpha- oder omega-typ
DE2307822C3 (de) Supraleitendes Linsensystem für Korpuskularstrahlung
EP0102486A1 (de) Vorrichtung zur Justierung und Halterung von Magnetspulen eines Magnetsystems zur Kernspin-Tomographie
EP0488015B1 (de) Homogenfeldmagnet mit mindestens einer mechanisch auszurichtenden Polplatte
DE19527020C1 (de) Tesserale Gradientenspule für Kernspintomographiegeräte
DE2128255C3 (de) Elektronenstrahlgenerator
DE2059781C3 (de) Magnetische Linsenanordnung
EP0724273B1 (de) Magneteinrichtung mit forciert zu kühlender supraleitender Wicklung
DE4020112C2 (de)
WO1994001983A1 (de) Wiggler mit spulenanordnungen mit konzentrischen spulen
DE1614693C3 (de) Magnetische Linsenanordnung mit stromdurchflossener Linsenwicklung fur unter Vakuum arbeitende Korpuskularstrahlgeräte, insbesondere Objektivlinsenanordnung fur Elektronenmikroskope
DE3639973A1 (de) Vorrichtung zum behaelterlosen schmelzen von metallen oder legierungen
DE2056287C3 (de) Supraleitungsmagnetspule mit einer zwei- oder mehrpoligen Wicklung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19890830

17Q First examination report despatched

Effective date: 19910411

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 3786158

Country of ref document: DE

Date of ref document: 19930715

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930908

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940718

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940824

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940829

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941018

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19941207

Year of fee payment: 8

EAL Se: european patent in force in sweden

Ref document number: 87111574.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950831

Ref country code: CH

Effective date: 19950831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950810

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960501

EUG Se: european patent has lapsed

Ref document number: 87111574.7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050810