EP0191392B1 - Magnetfelderzeugende Einrichtung - Google Patents

Magnetfelderzeugende Einrichtung Download PDF

Info

Publication number
EP0191392B1
EP0191392B1 EP86101356A EP86101356A EP0191392B1 EP 0191392 B1 EP0191392 B1 EP 0191392B1 EP 86101356 A EP86101356 A EP 86101356A EP 86101356 A EP86101356 A EP 86101356A EP 0191392 B1 EP0191392 B1 EP 0191392B1
Authority
EP
European Patent Office
Prior art keywords
useful volume
equipment according
shaped
magnetic field
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86101356A
Other languages
English (en)
French (fr)
Other versions
EP0191392A3 (en
EP0191392A2 (de
Inventor
Günter Dr. Ries
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0191392A2 publication Critical patent/EP0191392A2/de
Publication of EP0191392A3 publication Critical patent/EP0191392A3/de
Application granted granted Critical
Publication of EP0191392B1 publication Critical patent/EP0191392B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means
    • G21K1/093Deviation, concentration or focusing of the beam by electric or magnetic means by magnetic means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof

Definitions

  • the invention relates to a device for generating a magnetic field with a spatially predetermined Feidvenauf in a useful volume, which is provided with bodies made of ferromagnetic material influencing the course of the field.
  • a device for generating a magnetic field with a spatially predetermined Feidvenauf in a useful volume, which is provided with bodies made of ferromagnetic material influencing the course of the field.
  • Such a device is e.g. from DE-OS 25 26 845.
  • a number of field-distorting sources of interference can become important, so that the field error limits to be observed may then be exceeded.
  • the cause of undesired field lashings due to external field disturbances such as to think of the earth's field or magnetized objects.
  • eddy currents in metallic parts of the magnet itself or in the conductor can lead to corresponding disturbances.
  • Superconducting shielding currents in the filaments of a superconducting winding or the residual magnetization in an iron yoke also represent such sources of interference.
  • the fields of magnetizable, i.e. Para-, ferri- or ferromagnetic parts of a magnetic device can be the cause of field distortions.
  • current-fed compensation windings can be provided, which are often attached as a set of cylindrical multipole coils around the predetermined useful volume. These coils are fed by power supply units in such a way that the field error previously measured is compensated for during operation.
  • a sextupole correction coil in a superconducting deflection magnet from the publication "Proc. 1972 Applied Supercond. Conf.”, Annapolis (USA), pages 293 to 299.
  • a magnetic device for generating inhomogeneous magnetic fields is known from the DE-OS mentioned at the outset, as it is e.g. is to be used for magnetic ore separators.
  • This magnet device has superconducting magnet coils in order to produce the forces dependent on the product B grade B on the particles to be separated.
  • bodies made of ferromagnetic material are provided in the known device in zones with a higher field strength.
  • the object of the present invention is now to provide a magnetic field generating device of the type mentioned in the introduction, in which a spatially predetermined field profile with only small field errors can be ensured in a simple manner in a useful volume.
  • At least one thin plate-shaped body of predetermined geometric extension made of a material with high permeability is provided outside and on opposite sides of the useful volume, the surface facing the useful volume is shaped and arranged so that it is on a magnetic aquipotential surface of the magnetic field to be generated comes to rest in the usable volume.
  • the advantages associated with this configuration of the magnetic field generating device are to be seen in particular in that magnetic interference field fluxes within the plate-shaped bodies are compensated for and only the total flow penetrating the useful volume is predetermined by the magnetic field generating devices to be arranged outside the useful volume.
  • the expansion of the plate-shaped body is expediently chosen to be so large, depending on the spatial conditions, that interference fields can only reach into the usable volume from the edges in a strongly damped manner.
  • the influence of such interference fields on the magnetic field to be generated in the useful volume can advantageously be prevented, in particular when using superconducting magnets, by providing a planar, lattice-like or net-like structure of predetermined dimensions with wire or ribbon-shaped superconductors outside and on opposite sides of the useful volume , each structure being shaped and arranged so that it follows the field lines of the magnetic field to be generated in the useful volume, and wherein the superconductors are aligned perpendicular to the field lines and are connected at least in their ends to electrically conductive parts running in the direction of the field lines.
  • This network-like structure can then be used to prevent temporal changes in an interference field component perpendicular to the network level from penetrating into the useful volume by automatically inducing appropriate shielding currents in the wire or ribbon-shaped superconductors.
  • FIG. 1 shows a magnetic field generating device according to the invention.
  • Such a magnetic field generating device is indicated in FIG. 2 as part of an electron accelerator system.
  • Corresponding parts in the figures are provided with the same reference numerals.
  • a cross section through a magnetic field generating device is illustrated schematically, as it is e.g. can be provided for an electron storage ring.
  • the dipole magnet required for this is also curved due to the curved particle path and can in particular be bent in a semicircular shape (cf. e.g. the publication "IEEE Trans.Nuci.Sci.”). Because of the required high field strengths, its windings are preferably made with superconducting material.
  • the magnetic device should be able to generate a dipole magnetic field B of predetermined strength and with a predetermined course of its field lines in a useful volume V around the beam guidance axis A.
  • the device has a dipole winding 3 or 4, each with a main winding 3a and a secondary winding 3b or 4a and 4b, on both sides of the beam guide plane 2 containing the beam guide axis A and symmetrically to this plane.
  • These windings are used to generate the dipole field B, which is illustrated in the figure by its arrowed field lines labeled 5 and by a few equipotential lines 6a to 6e and 6'a to 6'e shown in broken lines.
  • a surface section is determined, which represents a magnetic equipotential surface of the desired field.
  • the equipotential surfaces 6d and 6d ' are selected.
  • Each of these surface sections is covered with a thin plate-shaped body 7 or 8 made of a material with a preferably high permeability.
  • These plate-shaped bodies 7 and 8 can be, for example, corresponding ferromagnetic sheets.
  • the relative permeability ⁇ r of these sheets should be at least 1500, preferably at least 2000. Ni-rich NiFe alloys such as permalloy alloys, for example, meet this condition.
  • the surface F or F 'of these sheets facing the useful volume V should therefore be shaped and arranged in such a way that it comes to rest on a magnetic equipotential surface of the magnetic field to be generated in the useful volume, for example on the surface 6d or 6'd .
  • the plates 7 and 8 should expediently be attached in the vicinity of the useful volume V. Their smallest distance e from the useful volume V is preferably smaller than the corresponding extension a of the useful volume in this direction.
  • the geometric extension of the surface sections to be covered with the metal sheets 7 and 8 is advantageously selected such that at least largely the field lines 5 of the field B penetrating the useful volume V pass through these surface sections.
  • the extent 1 of the sheets would have to be selected to be relatively large transverse to the beam guide axis A, i.e. e.g. correspond at least to the sum of the extent c of the useful volume V in this transverse direction and of the mean distance s between the sheets running through the beam guide axis A.
  • Such a size of the extent 1 is sometimes not practically possible due to the arrangement of the individual windings.
  • additional areal, lattice-like or net-like structures of predetermined dimensions can advantageously be provided with wire or ribbon-shaped superconductors can be provided on the open sides of the useful volume V.
  • Each of these net-like structures designated 10 and 11 in the figure, is shaped and arranged in such a way that it follows the field lines 5 of the magnetic field B to be generated in the useful volume V.
  • These structures 10 and 1 advantageously extend right up to the sheets 7 and 8 without, however, touching them.
  • the superconductors of these structures, denoted by 12 are arranged parallel to one another and run perpendicular to the field lines 5 of the magnetic field B.
  • the field shaping or shielding measures shown in FIG. 1 thus consist, viewed in cross-section, of a quadrilateral surrounding the useful cross-section, two opposite sides made of ferromagnetic sheets 7 and 8 and the other two sides each with a net-like structure 10 and 11, respectively Superconductors 12 be formed. All four sides are electrically isolated from each other. In order to avoid eddy currents in the ferromagnetic sheets 7 and 8, these can optionally be slotted or provided with other suitable measures. At the corners formed between a sheet and a net-like structure, the outline contours are perpendicular to one another. If a homogeneous field is required, the sheets and the structures form a rectangle with parallel sides.
  • the sides each form two segments of hyperbole groups orthogonal to one another.
  • they can also be approximated with good approximation by two flat ferromagnetic plates with an angle of inclination to one another and by two nets on circular segments.
  • Such a case is taken as a basis for the exemplary embodiment according to FIG. 1, with a negative field gradient was accepted.
  • the angle of inclination a of the sheets 7 and 8 with respect to the beam guidance plane 2 is approximately 3 ° .
  • the network-like structure 11 can also be provided with a lateral opening 15 in order to allow the synchrotron radiation emitted in the region of the curved particle path to emerge unhindered.
  • FIG. 2 an oblique view of a curved dipole deflection magnet of an electron accelerator system is shown schematically in a partially broken illustration.
  • This magnet has two large curved dipole windings 20 and 21, which are arranged parallel to one another on both sides of an electron beam tube 22 running along the beam guide axis A.
  • an additional gradient winding 23 along the curved inside of the magnet or the electron beam tube 22 there is an additional gradient winding 23. Since the conductors of these windings 20, 21 and 23 consist of superconducting material, the beam chamber 24, which accommodates these windings and is divided into two, for the purpose of leading out the synchronous radiation provided with a corresponding helium housing 25.
  • a ferromagnetic sheet 7 or 8 with the curvature of the tube 22 is arranged above and below the electron beam tube 22. Between the inner edges and the outer edges of these sheets there is a net-like structure 10 or 11 with superconducting wires 12. With these sheets 7 and 8 and the net-like structures 10 and 11, the cross-section of which is shown in FIG Interference fields are shielded by eddy current effects and the residual magnetization of the superconductor of the windings. The interference field shielding here follows the curved particle path over the entire magnet length and is only open at its ends.
  • the cross-sectional dimensions are, for example, 9 x 9 cm 2 .
  • the magnetic walls consist of, for example, 0.5 to 1 mm thick y-metal.
  • the net-like structures 10 and 11 each have at least three superconducting multifilament wires, which are connected every 10 cm by vertically running copper wires and at their ends by copper strips.
  • the UR time constant ⁇ of these structures can be much larger than the pulse rise time.
  • the field shaping or shielding measures according to the invention are particularly effective in small fields and high field change speeds.
  • the measures described are largely ineffective since the highly permeable material is saturated or the shielding currents induced in the wires become small.
  • the main windings of the magnetic device alone take over the field formation in a known manner.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Particle Accelerators (AREA)

Description

  • Die Erfindung bezieht sich auf eine Einrichtung zur Erzeugung eines Magnetfeldes mit räumlich vorgegebenem Feidvenauf in einem Nutzvolumen, welche mit den Feldverlauf beeinflussenden Körpern aus ferromagnetischem Material versehen ist. Eine derartige Einrichtung geht z.B. aus DE-OS 25 26 845 hervor.
  • In Einrichtungen, mit denen Magnetfelder zu erzeugen sind, ist häufig ein räumlich vorgegebener Feldverlauf in einem Nutzvolumen mit nur geringen Abweichungen einzuhalten. Dies trifft z.B. für Teilchenbeschleuniger-Anlagen zu, bei denen Ablenkeinrichtungen für geladene Teilchen wie z.B. Elektronen aufgrund ihrer gekrümmten Teilchenbahnen entsprechend gekrümmte Dipolmagnete aufweisen (vgl. z.B. "IEEE Transactions on Nuclear Science", vol. NS-30, no. 4, August 1983, Seiten 2531 bis 2533). Der vorgegebene Feldverlauf wird dabei im allgemeinen durch geeignete Formgebung und Dimensionierung der stromdurchflossenen Wicklungen oder auch durch ferromagnetische Polschuhe erzeugt.
  • Bei niedrigen Magnetfeldstärken oder bei hohen Feldänderungsgeschwindigkeiten kann eine Reihe von feldverzerrenden Störquellen Bedeutung gewinnen, so daß dann die einzuhaltenden Feldfehlerschranken gegebenenfalls überschritten werden. So ist als Ursache unerwünschter Feldverzurrungen an externe Feldstörungen wie z.B. das Erdfeld oder magnetisierte Objekte zu denken. Daneben können auch Wirbelströme in metallischen Teilen des Magneten selbst bzw. in dem Leiter zu entsprechenden Störungen führen. Auch supraleitende Abschirmströme in den Filamenten einer supraleitenden Wicklung oder die Restmagnetisierung in einem Eisenjoch stellen derartige Störquellen dar. Schließlich können auch die Felder von magnetisierbaren, d.h. para-, ferri- bzw. ferromagnetischen Teilen einer Magneteinrichtung Ursache für Feldverzerrungen sein.
  • Zur Kompensation derartiger Feldverzerrungen lassen sich beispielsweise stromgespeiste Kompensationswicklungen vorsehen, die vielfach als Satz zylindrischer Multipolspulen um das vorbestimmte Nutzvolumen angebracht werden. Diese Spulen werden von Netzgeräten so gespeist, daß der vorher gemessene Feldfehler im Betrieb kompensiert wird. So ist z.B. eine Sextupolkorrekturspule in einem supraleitenden Ablenkmagneten aus der Veröffentlichung "Proc. 1972 Applied Supercond. Conf.", Annapolis (USA), Seiten 293 bis 299 bekannt.
  • Auch bei der aus der Veröffentlichung "Proc. 8th Int. Conf. on High-Energy Accelerators-CERN 1971 ", Genf (CH), 1971, Seiten 177 bis 182 ist die Kompensation von Feldverzerrungen bei einer supraleitenden, kurzgeschlossenen Multipolspule vorgesehen. Hierzu induziert der unerwünschte Multipolfehler beim Hochfahren des Magnetfeldes selbsttätig den für eine Kompensationsspule benötigten Spulenstrom, welcher dann diese Komponente im Nutzvolumen weitgehend kompensiert. Dabei ist jedoch für jeden Multipol eine getrennte Spule erforderlich.
  • Aus der eingangs genannten DE-OS ist eine Magneteinrichtung zur Erzeugung inhomogener Magnetfelder bekannt, wie sie z.B. für magnetische Erzscheider zu verwenden ist. Diese Magneteinrichtung weist supraleitende Magnetspulen auf, um die vom Produkt B grad B abhängigen Kräfte auf die abzuscheidenden Teilchen hervorzurufen. Um ein möglichst hohes Produkt B grad B zu erzeugen, sind bei der bekannten Einrichtung in Zonen mit höherer Feldstärke Körper aus ferromagnetischem Material vorgesehen.
  • Aufgabe der vorliegenden Erfindung ist es nun, eine magnetfelderzeugende Einrichtung der eingangs genannten Art zu schaffen, bei der auf einfache Weise in einem Nutzvolumen ein räumlich vorgegebener Feldverlauf mit nur geringen Feldfehlern zu gewährleisten ist.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß außerhalb und auf gegenüberliegenden Seiten des Nutzvolumens jeweils mindestens ein dünner plattenförmiger Körper vorbestimmter geometrischer Ausdehnung aus einem Material mit hoher Permeabilität vorgesehen ist, dessen dem Nutzvolumen zugewandte Oberfläche so geformt und angeordnet ist, daß diese auf einer magnetischen Aquipotentialfläche des in dem Nutzvolumen zu erzeugenden Magnetfeldes zu liegen kommt.
  • Die mit dieser Ausgestaltung der magnetfelderzeugenden Einrichtung verbundenen Vorteile sind insbesondere darin zu sehen, daß magnetische Störfeldflüsse innerhalb der plattenförmigen Körper ausgegelichen werden und nur noch der das Nutzvolumen durchsetzende Gesamtfluß von den außerhalb des Nutzvolumens anzuordnenden magnetfelderzeugenden Einrichtungen vorgegeben ist. Die Ausdehnung der plattenförmigen Körper wird dabei in Abhängigkeit von den räumlichen Gegebenheiten zweckmäßigerweise so groß gewählt, daß von den Rändern her Störfelder nur noch stark gedämpft in das Nutzvolumen durchgreifen können.
  • Der Einfluß derartiger Störfelder auf das in dem Nutzvolumen zu erzeugende Magnetfeld kann insbesondere bei Verwendung von supraleitenden Magneten vorteilhaft dadurch unterbunden werden, daß außerhalb und auf gegenüberliegenden Seiten des Nutzvolumens jeweils eine flächenhafte, gitter-oder netzartige Struktur vorbestimmter Ausdehnung mit draht- oder bandförmigen Supraleitern vorgesehen ist, wobei jede Struktur so geformt und angeordnet ist, daß sie den Feldlinien des in dem Nutzvolumen zu erzeugenden Magnetfeldes folgt, und wobei die Supraleiter senkrecht zu den Feldlinien ausgerichtet und zumindest in ihren Enden mit in Richtung der Feldlinien verlaufenden elektrisch leitenden Teilen verbunden sind. Mit dieser netzartigen Struktur kann dann verhindert werden, daß zeitliche Änderungen einer Störfeldkomponete senkrecht zur Netzebene in das Nutzvolumen eindringen, indem in den draht- oder bandförmigen Supraleitern selbsttätig entsprechende Abschirmströme induziert werden.
  • Weitere vorteilhafte Ausgestaltungen der erfindungsgemäßen Einrichtung gehen aus den restlichen Unteransprüchen hervor.
  • Zur weiteren Erläuterung der Erfindung und deren in den Unteransprüchen gekennzeichneten Weiterbildungen wird nachfolgend auf die Zeichnung Bezug genommen, deren Figur 1 eine erfindungsgemäße magnetfelderzeugende Einrichtung zeigt. In Figur 2 ist eine derartige magnetfelderzeugende Einrichtung als Teil einer Elektronenbeschleuniger-Anlage angedeutet. Dabei sind in den Figuren übereinstimmende Teile mit den gleichen Bezugszeichen versehen.
  • In Figur 1 ist schematisch ein Querschnitt durch eine magnetfelderzeugende Einrichtung veranschaulicht, wie sie z.B. für einen Elektronenspeicherring vorgesehen werden kann. Der hierzu erforderliche Dipolmagnet ist aufgrund der gekrümmten Teilchenbahn ebenfalls gekrümmt und kann insbesondere halbkreisförmig gebogen sein (vgl. z.B. die genannte Veröffentlichung "IEEE Trans.Nuci.Sci."). Wegen der erforderlichen hohen Feldstärken sind seine Wicklungen bevorzugt mit supraleitendem Material erstellt.
  • Mit der magnetischen Einrichtung soll in einem Nutzvolumen V um die Strahlführungsachse A ein Dipolmagnetfeld B vorbestimmter Stärke und mit vorbestimmtem Verlauf seiner Feldlinien zu erzeugen sein. Hierzu weist die Einrichtung zu beiden Seiten der die Strahlführungsachse A enthaltenden Strahlführungsebene 2 und symmetrisch zu dieser Ebene je eine Dipolwicklung 3 bzw. 4 mit jeweils einer Hauptwicklung 3a und einer Nebenwicklung 3b bzw. 4a und 4b auf. Diese Wicklungen dienen zur Erzeugung des Dipolfeldes B, das in der Figur durch seine mit 5 bezeichneten gepfeilte Feldlinien sowie durch einige gestrichelt eingezeichnete Äquipotentiallinien 6a bis 6e bzw. 6'a bis 6'e veranschaulicht ist.
  • Um den geforderten Verlauf der Feldinien 5 innerhalb geringer Fehlerfeldgrenzen von z.B. 1 %o gewährleisten zu können, sind erfindungsgemäß um das Nutzvolumen V magnetische Randbedingungen geschaffen, welche den Feldverlauf im gesamten Innenraum des Nutzvolumens eindeutig bestimmen. Hierzu ist außerhalb des Nutzvolumens V auf gegenüberliegenden Seiten bezüglich dieses Volumens jeweils ein Flächenausschnitt bestimmt, welcher eine magnetische Äquipotentialfläche des gewünschten Feldes repräsentiert. Gemäß dem dargestellten Ausführungsbeispiel sind die Äquipotentialflächen 6d bzw. 6d' ausgewählt. Jeder dieser Flächenausschnitte ist mit einem dünnen plattenförmigen Körper 7 bzw. 8 aus einem Material mit einer vorzugsweise hohen Permeabilität belegt. Bei diesen plattenförmigen Körpern 7 und 8 kann es sich z.B. um entsprechende ferromagnetische Bleche handeln. Die relative Permeabilität µr dieser beispielsweise 0,5 bis 10 mm dicken Bleche soll dabei mindestens 1500, vorzugsweise mindestens 2000 betragen. Ni-reiche NiFe-Legierungen wie Permalloy-Legierungen erfüllen z.B. diese Bedingung. Die dem Nutzvolumen V jeweils zugewandte Oberfläche F bzw. F' dieser Bleche soll also so geformt und angeordnet sein, daß sie jeweils auf einer magnetischen Äquipotentialfläche des in dem Nutzvolumen zu erzeugenden Magnetfeldes wie z.B. auf der Fläche 6d bzw. 6'd zu liegen kommt. Dabei sollen die Bleche 7 und 8 zweckmäßigerweise in der Nähe des Nutzvolumens V angebracht sein. Vorzugsweise ist ihre geringste Entfernung e von dem Nutzvolumen V kleiner als die entsprechende Ausdehnung a des Nutzvolumens in dieser Richtung. Außerdem wird die geometrische Ausdehnung der mit den Blechen 7 bzw. 8 zu belegenden Flächenausschnitte vorteilhaft so gewählt, daß zumindest weitgehend die das Nutzvolumen V durchsetzenden Feldlinien 5 des Feldes B durch diese Flächenausschnitte hindurchtreten.
  • Um das Durchgreifen von Störfeldern von den von den Blechen 7 und 8 nicht abgedeckten Seiten her auf das Nutzvolumen V auf ein minimales Maß zu begrenzen, müßte gegebenenfalls die Ausdehnung 1 der Bleche quer zur Strahlführungsachse A verhältnismäßig groß gewählt werden, d.h. z.B. mindestens der Summe aus der Ausdehnung c des Nutzvolumens V in dieser Querrichtung und aus dem durch die Strahlführungsachse A verlaufenden mittleren Abstand s zwischen den Blechen entsprechen. Eine derartige Größe der Ausdehnung 1 ist jedoch bisweilen aufgrund der Anordnung der einzelnen Wicklungen praktisch nicht möglich.
  • Um dennoch auch bei kleineren Ausdehnungen 1, wobei 1 stets zumindest geringfügig größer als die entsprechende Ausdehnung c des Nutzvolumens sein wird, das seitliche Eindringen von Störfeldern zu verhindern, können vorteilhaft zusätzliche flächenhafte, gitter-oder netzartige Strukturen vorbestimmter Ausdehnung mit draht- oder bandförmigen Supraleitern an den offenen Seiten des Nutzvolumens V vorgesehen werden. Jede dieser in der Figur mit 10 bzw. 11 bezeichneten netzartigen Struktur ist dabei so geformt und angeordnet, daß sie den Feldlinien 5 des in dem Nutzvolumen V zu erzeugenden Magnetfeldes B folgt. Diese Strukturen 10 und 1 reichen vorteilhaft bis unmittelbar an die Bleche 7 und 8 heran, ohne diese jedoch zu berühren. Die mit 12 bezeichneten Supraleiter dieser Strukturen sind zueinander parallel angeordnet und verlaufen senkrecht zu den Feldlinien 5 des Magnetfeldes B. Zumindest an ihren Enden, gegebenenfalls in Abständen auch dazwischen, sind sie in Richtung der Feldlinien durch metallische Teile 13 elektrisch leitend verbunden. Mit der Auswahl des Materials für diese Teile 13 und deren Anzahl kann dann für jede so netzartig ausgebildete Struktur 10 bzw..11 eine vorbestimmte UR-Zeitkonstante t gewählt werden. Da bei zeitlichen Änderungen einer Störfeldkomponente senkrecht zur Netzebene in den Supraleitern selbsttätig entsprechende Abschirmströme induziert werden, werden insbesondere bei einem Start von einem Feld B=0 und einer UR-Zeitkonstanten τ der netzartigen Struktur, falls τ sehr viel größer als die Feldanstiegszeit ist, Störfelder selbst weitgehend abgeschirmt.
  • Die in Figur 1 dargestellten Feldformungs- bzw. Abschirmmaßnahmen bestehen somit, im Querschnitt gesehen, aus einem den Nutzquerschnitt umgebenden Viereck, wobei zwei gegenüberliegende Seiten aus den ferromagnetischen Blechen 7 und 8 und die zwei anderen Seiten jeweils aus einer netzartigen Struktur 10 bzw. 11 mit Supraleitern 12 ausgebildet werden. Alle vier Seiten sind dabei elektrisch voneinander isoliert. Um Wirbelströme in den ferromagnetischen Blechen 7 und 8 zu vermeiden, können diese gegebenenfalls geschlitzt oder mit anderen hierfür geeigneten Maßnahmen versehen sein. An den jeweils zwischen einem Blech und einer netzartigen Struktur ausgebildeten Ecken stehen die Umrißkonturen senkrecht aufeinander. Bei einem geforderten homogenen Feld wird durch die Bleche und die Strukturen ein Rechteck mit parallelen Seiten ausgebildet. Ist jedoch ein Gradient bzw. ein höherer Multipol verlangt, so bilden die Seiten jeweils zwei Segmente von zueinander orthogonalen Hyperbelscharen. Bei kleinen Gradientenbeimischungen können sie auch mit guter Näherung durch zwei ebene ferromagnetische Platten mit einem Neigungswinkel zueinander sowie durch zwei Netze auf Kreissegmenten genähert werden. Ein solcher Fall ist für das Ausführungsbeispiel gemäß Figur 1 zugrundegelegt, wobei ein negativer Feldgradient
    Figure imgb0001
    angenommen wurde. Der Neigungswinkel a der Bleche 7 bzw. 8 gegenüber der Strahlführungsebene 2 beträgt dabei etwa 3°.
  • Wie ferner aus Figur 1 hervorgeht, kann die netzartige Struktur 11 noch mit einer seitlichen Öffnung 15 versehen sein, um so die im Bereich der gekrümmten Teilchenbahn emittierte Synchrotronstrahlung ungehindert nach außen treten zu lassen.
  • In Figur 2 ist in Schrägansicht ein gekrümmter Dipolablenkmagnet einer Elektronenbeschleuniger-Anlage in teilweise aufgerissener Darstellung schematisch wiedergegeben. Dieser Magnet weist zwei große gekrümmte Dipolwicklungen 20 und 21 auf, die beiderseits eines längs der Strahlführungsachse A verlaufenden Elektronenstrahlrohres 22 parallel zueinander angeordnet sind. Längs der gekrümmten Innenseite des Magneten bzw. des Elektronenstrahlrohres 22 befindet sich noch eine zusätzliche Gradientenwicklung 23. Da die Leiter dieser Wicklungen 20, 21 und 23 aus supraleitendem Material bestehen, ist die aus Gründen der Herausführung der Synchrontronstrahlung zweigeteilte, diese Wicklungen aufnehmende Strahlkammer 24 mit einem entsprechenden Heliumgehäuse 25 versehen. Wie aus dem Aufriß ersichtlich ist, ist oberhalb und unterhalb des Elektronenstrahlrohres 22 jeweils ein ferromagnetisches Blech 7 bzw. 8 mit der Krümmung des Rohres 22 angepaßter Gestalt angeordnet. Zwischen den Innenrändern und den Außenrändern dieser Bleche befindet sich jeweils eine netzartige Struktur 10 bzw. 11 mit supraleitenden Drähten 12. Mit diesen Blechen 7 und 8 und den netzartigen Strukturen 10 und 11. deren Querschnitt in Fig. 1 dargestellt ist, können im schnellgepulsten Niederfeldbereich Störfelder durch Wirbelstromeffekte sowie die Restmagnetisierung des Supraleiters der Wicklungen abgeschirmt werden. Die Störfeldabschirmung folgt hier der gekrümmten Teilchenbahn über die ganze Magnetlänge und ist lediglich an ihren Enden offen. Die Querschnittsabmessungen betragen dabei z.B. 9 x 9 cm2. Die magnetischen Wände bestehen aus z.B. 0,5 bis 1 mm dicken y-Metall. Die netzartigen Strukturen 10 und 11 weisen jeweils mindestens drei supraleitende Multifilamentdrähte auf, die alle 10 cm durch senkrecht verlaufende Kupferdrähte und an ihren Enden durch Kupferbänder verbunden sind. Die UR-Zeitkonstante τ dieser Strukturen kann dabei viel größer als die Pulsanstiegszeit sein.
  • Die erfindungsgemäßen Feldformungs- bzw. Abschirmmaßnahmen sind insbesondere bei kleinen Feldern und hohen Feldänderungsgeschwindigkeiten wirksam. Bei hohen Feldern mit B > 1 T und kleinen Feldänderungsgeschwindigkeiten B werden die geschilderten Maßnahmen weitgehend wirkungslos, da dann das hochpermeable Material gesättigt ist bzw. die in den Drähten induzierten Abschirmströme klein werden. Hier übernehmen dann in bekannter Weise die Hauptwicklungen der magnetischen Einrichtung allein die Feldformung.

Claims (11)

1. Einrichtung zur Erzeugung eines Magnetfeldes mit räumlich vorgegebenem Feldverlauf in einem Nutzvolumen (V), welche mit den Feldverlauf beeinflussenden Körpern (7, 8) aus ferromagnetischem Material versehen ist, dadurch gekennzeichnet, daß außerhalb und auf gegenüberliegenden Seiten des Nutzvolumens (V) jeweils mindestens ein dünner plattenförmiger Körper (7, 8) vorbestimmter geometrischer Ausdehnung aus einem Material mit hoher Permeabilität (wr) vorgesehen ist, dessen dem Nutzvolumen (V) zugewandte Oberfläche (F bzw. F') so geformt und angeordnet ist, daß diese auf einer magnetischen Äquipotentialfläche (6d bzw. 6'd) des in dem Nutzvolumen (V) zu erzeugenden Magnetfeldes (B) zu liegen kommt.
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die geringste Entfernung (e) jedes plattenförmigen Körpers (7, 8) von dem Nutzvolumen (V) kleiner als die entsprechende Ausdehnung (a) des Nutzvolumens (V) in dieser Richtung ist.
3. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Querausdehnung (1) jedes plattenförmigen Körpers (7, 8) größer als die entsprechende Ausdehnung (c) des Nutzvolumens (V) in dieser Richtung ist.
4. Einrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die geometrische Ausdehnung der jeweils mit einem der plattenförmigen Körper (7 bzw. 8) zu belegenden Flächenausschnitte der Äquipotentialflächen (6d bzw. 6'd) so groß gewählt ist, daß zumindest weitgehend die das Nutzvolumen (V) durchsetzenden Feldlinien (5) des Magnetfeldes (B) durch diese Flächenausschnitte hindurchtreten.
5. Einrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß au ßerhalb und auf gegenüberliegenden Seiten des Nutzvolumens (V) jeweils eine flächenhafte, gitter- oder netzartige Struktur (10, 11) vorbestimmter Ausdehnung mit draht-oder bandförmigen Supraleitern (12) vorgesehen ist, wobei jede Struktur (1Q, 11) so geformt und angeordnet ist, daß sie den Feldlinien (5) des in dem Nutzvolumen (V) zu erzeugenden Magnetfeldes (B) folgt, und wobei die Supraleiter (12) senkrecht zu den Feldlinien (5) ausgerichtet und zumindest an ihren Enden mit in Richtung der Feldlinien (5) verlaufenden elektrisch leitenden Teilen (13) verbunden sind.
6. Einrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die elektrisch leitenden Teile (13) aus bei der Betriebstemperatur der Supraleiter (12) elektrisch normalleitendem Material bestehen.
7. Einrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Supraleiter (12) auch in zwischen ihren Enden liegenden Bereichen untereinander mit elektrisch leitenden Teilen verbunden sind, welche in Richtung der Feldlinien (5) des in dem Nutzvolumen (V) zu erzeugenden Magnetfeldes (B) verlaufen.
8. Einrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß mittels der Anzahl und der Materialauswahl der elektrisch leitenden Teile (13) eine vorbestimmte UR-Zeitkonstante (t) für die netzartigen Strukturen (10,11) eingestellt ist.
9. Einrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß die Ausdehnung und Anordnung der netzartigen Strukturen (1Q, 11) so gewählt ist, daß diese Strukturen zwischen den plattenförmigen Körpern (7, 8) verlaufen.
10. Einrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß für die plattenförmigen Körper (7, 8) Maßnahmen zur Wirbelstromverringerung in ihnen vorgesehen sind.
11. Einrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß sich das Nutzvolumen (V) im Innern einer Kammer (22) zur Führung elektrisch geladener Teilchen, insbesondere von Elektronen, in einer Teilchenbeschleuniger-Anlage befindet.
EP86101356A 1985-02-15 1986-02-03 Magnetfelderzeugende Einrichtung Expired EP0191392B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3505281 1985-02-15
DE19853505281 DE3505281A1 (de) 1985-02-15 1985-02-15 Magnetfelderzeugende einrichtung

Publications (3)

Publication Number Publication Date
EP0191392A2 EP0191392A2 (de) 1986-08-20
EP0191392A3 EP0191392A3 (en) 1986-12-10
EP0191392B1 true EP0191392B1 (de) 1989-05-17

Family

ID=6262663

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86101356A Expired EP0191392B1 (de) 1985-02-15 1986-02-03 Magnetfelderzeugende Einrichtung

Country Status (4)

Country Link
US (1) US4740758A (de)
EP (1) EP0191392B1 (de)
JP (1) JPS61188907A (de)
DE (2) DE3505281A1 (de)

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821478B2 (ja) * 1986-09-02 1996-03-04 三菱電機株式会社 荷電粒子装置
GB8701363D0 (en) * 1987-01-22 1987-02-25 Oxford Instr Ltd Magnetic field generating assembly
DE3705294A1 (de) * 1987-02-19 1988-09-01 Kernforschungsz Karlsruhe Magnetisches ablenksystem fuer geladene teilchen
GB2223350B (en) * 1988-08-26 1992-12-23 Mitsubishi Electric Corp Device for accelerating and storing charged particles
JPH0834130B2 (ja) * 1989-03-15 1996-03-29 株式会社日立製作所 シンクロトロン放射光発生装置
GB2272994B (en) * 1990-03-27 1994-08-31 Mitsubishi Electric Corp Deflection electromagnet for a charged particle device
JP2896188B2 (ja) * 1990-03-27 1999-05-31 三菱電機株式会社 荷電粒子装置用偏向電磁石
WO2009052635A1 (en) * 2007-10-22 2009-04-30 D-Wave Systems Inc. Systems, methods, and apparatus for superconducting magnetic shielding
US8519365B2 (en) * 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US9579525B2 (en) * 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
US8624528B2 (en) * 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US8569717B2 (en) * 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US9044600B2 (en) * 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US8188688B2 (en) 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US8598543B2 (en) * 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US20090314960A1 (en) * 2008-05-22 2009-12-24 Vladimir Balakin Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
US8436327B2 (en) * 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US8710462B2 (en) * 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US7939809B2 (en) * 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
US8642978B2 (en) * 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US8627822B2 (en) * 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3005954A (en) * 1959-04-08 1961-10-24 Harry G Heard Apparatus for control of high-energy accelerators
GB1329412A (en) * 1969-09-18 1973-09-05 Science Res Council Electrical coils for generating magnetic fields
US4047068A (en) * 1973-11-26 1977-09-06 Kreidl Chemico Physical K.G. Synchronous plasma packet accelerator
AT328551B (de) * 1974-04-12 1976-03-25 Siemens Ag Oesterreich Breitbandabschirmung gegen magnetischen streufluss
JPS57172238A (en) * 1981-04-17 1982-10-23 Hitachi Ltd Magnetic field correcting device
JPS59132345A (ja) * 1983-01-19 1984-07-30 Mitsubishi Electric Corp 磁界発生装置

Also Published As

Publication number Publication date
EP0191392A3 (en) 1986-12-10
US4740758A (en) 1988-04-26
DE3663412D1 (en) 1989-06-22
DE3505281A1 (de) 1986-08-21
JPS61188907A (ja) 1986-08-22
EP0191392A2 (de) 1986-08-20

Similar Documents

Publication Publication Date Title
EP0191392B1 (de) Magnetfelderzeugende Einrichtung
EP0193038B1 (de) Magnetfeldeinrichtung für eine Teilchenbeschleuniger-Anlage
EP0208163B1 (de) Magnetfeldeinrichtung für eine Anlage zur Beschleunigung und/oder Speicherung elektrisch geladener Teilchen
EP0193837B1 (de) Magnetfelderzeugende Einrichtung für eine Teilchenbeschleuniger-Anlage
DE3689346T2 (de) Magnetische Abschirmungen.
EP0348403B1 (de) Magnetisches ablenksystem für geladene teilchen
DE69634125T2 (de) Vorrichtung und Verfahren zur Erzeugung von überlagerten statischen und zeitlich-veränderlichen Magnetfeldern
DE2730985C2 (de) Bestrahlungsvorrichtung unter Verwendung geladener Teilchen
DE1946059B2 (de) Spulenanordnung zur feldhomogenisierung
DE4000666A1 (de) Elektromagnet fuer teilchenbeschleuniger
EP0197589A2 (de) Spulenanordnung für Kernspinunterschungen
EP0488015B1 (de) Homogenfeldmagnet mit mindestens einer mechanisch auszurichtenden Polplatte
DE2438254C3 (de) Konvergenzanordnung für eine Kathodenstrahlröhre vom In-Line-Typ
DE2136237B2 (de) Kernresonanzmagnetometer
DE4301557C2 (de) Antennenanordnung mit Abschirmung für ein Kernspintomographiegerät
EP0238909B1 (de) Grundfeldmagnet für bildgebende Einrichtungen der Kernspinresonanz-Technik
DE102008064696B4 (de) Teilchenoptische Vorrichtung mit Magnetanordnung und ihre Verwendung zum Abbilden oder Beleuchten
DE3689319T2 (de) Massenspektrometer mit magnetischem Sektor.
DE19854483B4 (de) Vorrichtung zur Erzeugung eines Magnetfeldes in einem Luftspalt
DE2446986C3 (de) Magnetische Abschirmvorrichtung
DE102017205231B3 (de) Teilchenoptische Vorrichtung und Teilchenstrahlsystem
DE1491307B2 (de) Elektronenstrahlerzeugersystem fuer eine laufzeitroehre
DE68904670T2 (de) Antenne fuer ein bilderzeugungsgeraet mittels magnetischer kernresonanz.
EP0288835A1 (de) Magnetsystem einer Anlage zur Kernspintomographie mit supraleitenden Einzelspulen und einem Kälteschild
DE102004003535B3 (de) Erzeuger eines zeitvariablen Magnetfelds eines Magnetresonanzgeräts und Magnetresonanzgerät mit einem derartigen Erzeuger eines zeitvariablen Magnetfelds

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19870127

17Q First examination report despatched

Effective date: 19880630

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 3663412

Country of ref document: DE

Date of ref document: 19890622

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920519

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930228

Ref country code: CH

Effective date: 19930228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931029

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940124

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940419

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050203