JP3650354B2 - 電子加速装置 - Google Patents

電子加速装置 Download PDF

Info

Publication number
JP3650354B2
JP3650354B2 JP2001305183A JP2001305183A JP3650354B2 JP 3650354 B2 JP3650354 B2 JP 3650354B2 JP 2001305183 A JP2001305183 A JP 2001305183A JP 2001305183 A JP2001305183 A JP 2001305183A JP 3650354 B2 JP3650354 B2 JP 3650354B2
Authority
JP
Japan
Prior art keywords
incident
electron beam
trajectory
electron
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001305183A
Other languages
English (en)
Other versions
JP2003109800A (ja
Inventor
博文 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001305183A priority Critical patent/JP3650354B2/ja
Publication of JP2003109800A publication Critical patent/JP2003109800A/ja
Application granted granted Critical
Publication of JP3650354B2 publication Critical patent/JP3650354B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、医療診断や半導体の加工などに利用される電子加速施設に関し、特に電子加速装置に関するものである。
【0002】
【従来の技術】
従来より、電子ビームを蓄積して、電子ビームを加速しながら放射光を発生する電子加速施設は、よく知られている。図11は一般的な電子加速施設を示す斜視図、図12は図11に示した電子加速施設に設置させる従来の電子加速装置を概略的に示す概略図である。
【0003】
図11において、電子加速施設は、電子加速装置11、入射用電子直線加速器(入射器)12、電子シンクロトロン13、ビーム輸送路14および電源15により構成されている。また、電子加速装置11は、入射装置111を備えている。
【0004】
さらに、図12において、電子加速装置11は、セプタム電磁石111A(入射装置111)、加速電界Eを励振させる高周波加速空洞113、パルス電磁石201、入射軌道202および蓄積軌道203により構成されている。入射装置111は、電子ビームを取り込むためのセプタム電磁石111Aを備えている。
【0005】
電子加速装置11は、リング状に並べた偏向電磁石で電子に円形軌道をとらせ、円形軌道の途中に置いた高周波加速空洞113で電子を加速させる。そして、高速で走る電子が偏向電磁石による磁界で曲げられると、エネルギーの一部が光(放射光)として放出される。
【0006】
円形軌道上には、高エネルギーの電子(電子ビーム)が蓄積(貯蔵)されており、高周波加速空洞113からエネルギーを補給されながら、長時間にわたって光を放出し続ける。
【0007】
次に、図11および図12を参照しながら、従来の電子加速装置を備えた電子加速施設の動作について説明する。
【0008】
まず、電子(電子ビーム)は入射用電子直線加速器12で発生し、加速される。次に、電子ビームに所定のエネルギーを持たせるために、電子ビームを電子シンクロトロン13に入射させ、円運動しながら加速させる。
【0009】
所定のエネルギーを持った電子ビームは、ビーム輸送路14を経由し、入射装置111のセプタム電磁石111Aを用いて電子加速装置(貯蔵リング)11に入射する。
【0010】
次に、パルス電磁石201で電子ビームが周回している蓄積軌道203を変化させて、電子ビームが入射するための入射軌道202を作成する。このとき、入射軌道202がセプタム電磁石111Aに最も近づいた時点で、電子ビーム(入射電子ビーム)は入射軌道202に入り、その後、電子ビームの蓄積軌道203に入る。
【0011】
蓄積軌道203に入った電子ビーム(蓄積電子ビーム)は、電子加速装置11の中で蓄積(貯蔵)され、円形軌道の蓄積軌道203に沿って円運動する。このように、電子加速装置11の中で円運動している間、電子ビームは放射光を放出する。なお、電子ビームは放射減衰により放射光を放出すると、エネルギーの一部を失うが、電子加速装置11の高周波加速空洞113中で運動エネルギーが与えられて、高いエネルギー状態に復帰されることにより、円運動を続けることができる。
【0012】
次の電子ビームの入射は、蓄積電子ビームのビームサイズが放射減衰によって小さくなるまで行われない。なぜなら、電子ビームはエネルギーを失うと電子ビームのビームサイズが小さくなるが、電子ビームのビームサイズが小さくなっていない状態で次の電子ビームを入射すると、周回(円運動)をしている電子ビームがセプタム電磁石111Aに衝突して、電子ビームを失ってしまうからである。従って、電子ビームのビームサイズが小さくなったら次の電子ビームを入射するという動作を繰り返す。
【0013】
従来の電子加速装置11において、入射の周期(周波数)は、放射減衰時間の値と同程度に設定されている。
【0014】
この種の電子加速装置は、例えば、「K.Yoshida,et.al.,Compact synchrotron light source of the HSRC,jounal of Synchrotron Radiation, Vol.5 Part3,1998,p345−p347」(吉田他、HSRCのコンパクト放射光源、放射光ジャーナル)に示されている。
【0015】
一般に、放射減衰時間は、電子加速装置11に入射する電子ビームのエネルギーの2乗と、電子ビームを円運動させる偏向電磁石の磁場強度(偏向磁場強度)とに反比例するので、放射減衰時間を短くするには、入射電子ビームのエネルギーを上げ、偏向磁場強度を上げることが必要である。
【0016】
例えば、入射する電子ビームのエネルギーが150MeV程度で、偏向電磁石の偏向磁場強度が1.4T程度のコンベンショナルな電子加速装置の場合、1秒〜2秒の放射減衰時間となる。
【0017】
次に、従来の電子加速装置11の電子ビーム入射方法について、図13の水平(x軸)方向(軌道平面方向)の位相平面説明図を用いて説明する。
【0018】
図13は従来の電子加速装置11を用いた場合を示し、ある周期での入射の位相平面を時間毎に4分割して示している。
【0019】
まず、ステップS1301において、楕円中を電子ビームが周回(ターン)し、入射軌道202を蓄積軌道203へ近づけていく過程について説明する。この過程は、セプタム電磁石111Aの位置を楕円の外側にずらしていくことに対応(外側から入射を行う場合)する。
【0020】
ここでは、入射時の水平方向の蓄積軌道(203)のベータトロン振動数の小数部を0.25または0.75付近としている。従って、入射された電子ビームを周回(ターン)毎にプロットすると、ステップS1301に示すように、楕円の1/4毎の位置に存在することとなる。
【0021】
そして、4ターン目に電子ビームが再度セプタム電磁石111Aの位置付近に到達し、この時点で電子ビームがセプタム電磁石111Aの位置より外側にあると、その電子ビームは、セプタム電磁石111Aに衝突して失なわれてしまう。
【0022】
従って、電子ビームが4ターンするまでに、セプタム電磁石111Aの位置を外側にずらして、4ターン目の電子ビームがセプタム電磁石111Aより中に入るようにしておく必要がある。このことは、入射軌道202を作成するパルス電磁石201(パータベータ)を所定の時間で励磁することで達成される。
【0023】
次に、ステップS1302において、1回の入射が終了した時点での電子ビームの位相平面について説明する。
【0024】
このとき、セプタム電磁石111Aは、電子ビームのアクセプタンスより外側に位置し、電子ビームは、磁石配置によって決まる楕円上を周回し、ステップS1302に示すように、数100μsec程度でアクセプタンスの楕円内を埋め尽くすと考えることができる。
【0025】
続いて、ステップS1303において、電子ビームは、偏向電磁石による磁界中で、円軌道の中心に向かって力を受け、前述のように放射光(Synchrotron Radiation)を放射する。放射光を放射した電子ビームは、エネルギーを失うが、失われたエネルギーは、高周波加速空洞113で高周波電界により補充される。
【0026】
このとき、放射光の放射は、ある広がりを持った方向に行われるので、電子ビームのエネルギーの減少は、電子ビームの進行方向および横方向ともに生じる。
【0027】
ところが、高周波加速空洞113によるエネルギーの補充は、主として電子ビームの進行方向のみであるため、電子ビームの横方向の運動量は時間と共に失われていく。結果的に、位相平面上において、楕円の面積は縮小していくこととなる。この現象を放射減衰と呼ぶ。
【0028】
この放射減衰により、電子ビームのエミッタンスは減少し、放射減衰と放射励起とがつりあったエミッタンスに収束する。
【0029】
最後に、ステップS1304において、電子ビームのエミッタンスが十分に小さくなった後、次の入射が開始される。
【0030】
入射軌道202を作成する時には、位相平面上のセプタム電磁石111Aの位置が実効的に内側にずれている。入射電子ビームは、セプタム電磁石111Aの位置に近づき、楕円上の電子ビームが蓄積軌道203を回転する。そして、前述のステップS1301の入射過程に入る。
【0031】
前述のように、電子ビームのエミッタンスが大きいと、電子ビームは入射軌道203を作成した時にセプタム電磁石111Aと衝突して失われてしまう。
【0032】
【発明が解決しようとする課題】
従来の電子加速装置は以上のように、通常の磁場強度の偏向電磁石を用いて、100MeV〜150MeV程度の低エネルギーの電子ビームの入射を行う場合には、放射減衰時間が長くなってしまい、高い周波数(短い周期)での入射ができないので、入射と次の入射との間に、残留ガスとの衝突によって電子加速装置11内の電子ビームが急速に失われてしまう。そして、この電子ビームの減衰量と入射による電流の増加量とがつりあった時間以降は蓄積電流が増加しないので、大電流の蓄積を実現することができないという問題があった。
【0033】
また、例えば、入射エネルギーが150MeVと低エネルギーであっても、偏向電磁石の磁場強度が2.7Tと高い磁場強度である場合には、放射減衰時間が0.5秒と比較的短く、2Hz程度の周波数での入射を実現することができるが、このような高磁場強度の電磁石の消費電力が大きい。さらに、電子ビームのエミッタンスを小さくしなければならない場合には、高磁場強度が望ましくない。従って、このような高磁場強度の電磁石を用いた電子加速施設は用途が限定されてしまうという問題があった。
【0034】
さらに、大電流の加速を行うためには、前段の加速器(従来のシンクロトロン)で高エネルギー(放射減衰時間が十分短くなるエネルギー)になるまで加速する必要があった。しかしその加速器を加えた分、電子加速施設が大型となり、産業用装置や医療用装置としての普及が難しいという問題があった。
【0035】
この発明は上記のような問題点を解決するためになされたもので、低エネルギーの電子ビームを入射して、低磁場強度の偏向電磁石を利用することにより、大電流を蓄積することのできる電子加速装置を得ることを目的とする。
【0036】
また、この発明は、産業用装置や医療用装置への普及を目指して、コンパクトな電子加速施設にするための電子加速装置を得ることを目的とする。
【0037】
【課題を解決するための手段】
この発明に係る電子加速装置は、第1の電子ビームを周回させるための高周波加速空洞を有する蓄積軌道と、蓄積軌道の外部から蓄積軌道に第2の電子ビームを入射するための入射軌道と、蓄積軌道を変化させて入射軌道を作成するためのパルス電磁石と、第2の電子ビームを入射軌道に導入するためのセプタム電磁石を有する入射手段とを備え、第1の電子ビームを加速しながら放射光を発生する電子加速装置であって、パルス電磁石は、第2の電子ビームの入射軌道への入射時に、入射軌道と蓄積軌道とのずれ量の最大値が第2の電子ビームのビームサイズの1.25倍の値とセプタム電磁石の厚さとの加算値以下となるように入射軌道を作成するものである。
【0038】
また、この発明に係る電子加速装置は、第2の電子ビームの入射周期を、第1の電子ビームの放射減衰時間の4倍以上に設定したものである。
【0039】
また、この発明に係る電子加速装置の入射手段は、蓄積軌道の歪みを補正するための歪み補正手段を含み、蓄積軌道の歪みをあらかじめ補正して入射軌道に第2の電子ビームを入射させるものである。
【0040】
また、この発明に係る電子加速装置は、放射光を被験者に照射されて被験者の医療診断に用いられるものである。
【0041】
さらに、この発明に係る電子加速装置は、放射光を被加工物に照射されて被加工物の加工に用いられるものである。
【0042】
【発明の実施の形態】
実施の形態1.
以下、図面を参照しながら、この発明の実施の形態1について詳細に説明する。図1はこの発明の実施の形態1を示す構成図である。
【0043】
図1において、電子加速装置11Aは、セプタム電磁石111A(図2参照)を備え、電子ビームを入射する入射装置111と、電子が周回する真空ダクト112と、電子を加速する高周波加速空洞113と、電子を偏向させる(曲げる)偏向電磁石114とから構成されている。なお、中央に存在するのは、電子加速装置11Aに電子ビームを入射する入射器(マイクロトロン)12Aである。
【0044】
図2はこの発明の実施の形態1を示す説明図である。図2において、前述(図1参照)と同様のものについては、同一符号が付されている。
【0045】
図2においては、入射軌道を作るパルス電磁石201と、電子ビームが入射される入射軌道202と、高エネルギーの電子ビームが蓄積されている蓄積軌道203とが示されている。
【0046】
以下に、図3のフローチャートを参照しながら、図1および図2に示したこの発明の実施の形態1による電子加速装置の動作について説明する。
【0047】
図3において、まず、電子ビームは、セプタム電磁石111Aから入射される(ステップS301)。
【0048】
次に、入射軌道202を作成する(ステップS302)。
【0049】
このとき、入射軌道202は、電子ビームの入射時に、蓄積軌道203の一部または全ての軌道をパルス電磁石201で変化させることにより、セプタム電磁石111Aに近づく方向に作成される。
【0050】
ただし、蓄積軌道203上には、前回入射した電子ビーム(蓄積電子ビーム)が周回しており、入射軌道202は、所定の距離D(図2参照)までしかセプタム電磁石111Aに近づくことができない。
【0051】
その後、パルス電磁石201の励磁が最大になった時に、入射軌道202はセプタム電磁石111Aに最も近づき、入射軌道202と蓄積軌道203とのずれが最大となる。
【0052】
続いて、パルス電磁石201の励磁が減衰し、入射軌道202が蓄積軌道203に戻っていく時間の間に、電子ビームはセプタム電磁石111Aから入射される(ステップS303)。
【0053】
次に、入射が終了する(ステップS304)と、蓄積電子ビームは、入射軌道202と蓄積軌道203との差程度の電子ビーム径(ビームサイズ)となり、振動しながら蓄積軌道203を周回する。
【0054】
仮に、この状態で、再度入射軌道202を作成して次の電子ビームを入射すると、前回入射して蓄積軌道203を周回している蓄積電子ビームのビームサイズが大きすぎるために、セプタム電磁石111Aに衝突してしまい、蓄積電子ビームを失ってしまう。
【0055】
従って、電子ビーム入射後は、放射減衰により蓄積電子ビームのビームサイズが十分小さくなる(放射減衰時間が経過する)まで、次の入射を行わない(ステップS305)。すなわち、放射減衰(ステップS305)の終了後にステップS301に戻る。
【0056】
こうして、電子ビームビームサイズが小さくなった時点で、次の入射を開始し、以降この動作を繰り返す。
【0057】
次に、ステップS305における放射減衰について具体的に説明する。
【0058】
放射減衰とは、電子ビームが円運動の中心(蓄積軌道203の中心)に向かって力を受けて軌道が曲げられるときに、放射光が発生することにより、横方向運動のエネルギーが減衰して、電子ビームのエミッタンスが小さくなっていく現象のことである。この現象は、蓄積電子ビームのビームサイズが小さくなっていくことに相当する。
【0059】
放射減衰後の蓄積電子ビームのエミッタンスは、入射直後の広がった(大きい)蓄積電子ビームのエミッタンスの1/eになる。ただし、eは、素電荷(1.602×10-19C)である。
【0060】
この放射減衰時間よりも短い周期で電子ビームを入射すると、蓄積軌道203を周回している蓄積電子ビームがセプタム電磁石111Aに衝突し、蓄積電子ビームを失ってしまい、電子加速装置11Aでの蓄積電流が増加しないと考えられている。
【0061】
次に、図4および図5を参照しながら、この発明の実施の形態1による電子ビームの入射方法について、さらに詳しく説明する。
【0062】
図4はこの発明の実施の形態1による入射方法を示す説明図であり、前述の図13に対応している。図4において、ステップS401〜S404は、ある回の入射について、水平(x軸)方向の位相平面を時間毎に4分割して示している。
【0063】
図5はこの発明の実施の形態1による入射方法を示す説明図であり、図5において、入射する電子ビーム(入射電子ビーム)の位置501と、入射軌道202(入射時の蓄積軌道の変異(ずれ)が最大となる時間における入射電子ビームの位置)および蓄積軌道203の位置202A、203Aとが示されている。
【0064】
図4において、始めに、電子ビームの入射条件を示す(ステップS401)。まず、入射軌道202および蓄積軌道203のずれを小さくして、蓄積軌道203内の電子ビームを蓄積可能な領域(アクセプタンス)の一番外側にのみ入射する。ステップS401では、セプタム電磁石111Aの位置がアクセプタンスの外側すれすれに位置していることに対応する。
【0065】
また、入射軌道202および蓄積軌道203のずれの最大値(図2、図5の距離Dに相当)は、セプタム電磁石111Aの厚さと入射する電子ビームのビームサイズの1.25倍の値との和(図5における厚さB+ビームサイズC×1.25)以下とする。
【0066】
なお、入射電子ビームは、中心部の電子密度が高い正規分布に近い分布をしており、その境界は厳密ではない。この実施の形態1の場合、正規分布の1σの幅の2倍程度をビーム境界(電子ビームサイズC)と考えている。ただし、電子ビームサイズCの1.25倍までは、この実施の形態1と同様の効果を有する。
【0067】
次に、ある回の入射が終了した時点での蓄積電子ビームを示す(ステップS402)。セプタム電磁石111Aの位置は、蓄積電子ビームのアクセプタンスより外側になる。
【0068】
蓄積電子ビームは、水平方向のチューンを振動数として、磁石配置から決まる楕円上を周回し、数100μsec程度で、ステップS402に示すように、ある楕円内を埋め尽くすと考えることができる。すなわち、従来の入射手法(図13内のステップ1302)と比較して、アクセプタンスの外側に集中した密度分布となる。
【0069】
次に、ある回の入射が終了(ステップS402)すると、電子ビームは放射減衰を開始する(ステップS403)。ただし、次の入射までの時間が短いので、蓄積電子ビームは十分に減衰しきらず、かなり大きなビームサイズのままである。
【0070】
そして、次の入射を開始する(ステップS404)。前述の通り、入射軌道202および蓄積軌道203のずれが大きくなると、蓄積電子ビームの一部はセプタム電磁石111Aと衝突して失われてしまう。
【0071】
蓄積電子ビームは、ベータトロン振動数の周期で振動しているので、異なるターン時に、セプタム電磁石111Aに衝突した部分の電子ビーム消失部分がずれることになり、蓄積電子ビームの楕円は多角形の形状となる。このような状態で、次の入射を開始して(ステップS401)、以降ステップS401〜S404を繰り返し行う。
【0072】
このとき、セプタム電磁石111Aに衝突する蓄積電子ビームのパワーは、150MeVのエネルギーで10Hz入射の場合、約10W程度であり、何ら問題とならない。
【0073】
入射後の蓄積電子ビームは、入射の繰り返し過程で徐々に減衰していくので、セプタム電磁石111Aに衝突して失われる蓄積電子ビームは、入射後のある一定時間の蓄積電子ビームのみである。
【0074】
以上のように、電子加速装置11Aは、セプタム電磁石111Aに衝突して一部の蓄積電子ビームを失ってしまうが、放射減衰時間より大幅に高い周波数で電子ビームを入射することができるので、大電流を蓄積することが実現できる。
【0075】
次に、図6および図7を参照しながら、コンピュータシミュレーションにより、この入射方法を実験した結果について説明する。
【0076】
図6および図7は、入射周波数(Repetition)と最大加速電流(最大蓄積電流)(Current)との関係を示す特性図であり、図6はこの発明の実施の形態1による入射方法における特性図、図7は従来の入射方法における特性図を示している。
【0077】
図6および図7においては、放射減衰時間が1秒の場合と2秒の場合とを計算したときの特性が示されている。これらの時間値は、偏向磁場強度1.4T程度の偏向電磁石を用いた電子加速装置11A、11にエネルギー150MeVの電子ビームを入射した場合の放射減衰時間に相当する。
【0078】
図7において、最大加速電流は、秒単位の放射減衰時間の値にほぼ等しい入射周波数の条件の場合(放射減衰時間1秒に対して、入射周波数1Hz程度)が最適であり、入射周波数を高くさせるに従い、最大加速電流は減少していくことがわかる。
【0079】
これは、従来の入射方法の場合、入射周波数が高いと、ほとんどの電子ビームがセプタム電磁石111Aに衝突して失われてしまうので、最大加速電流が最適な、放射減衰時間程度の周波数で入射が行われていることを示す。
【0080】
一方、この発明による入射方法を示す図6において、入射周波数が低い場合には、図7(従来の入射方法)と比べて最大加速電流が小さい。しかし、入射周波数を高くするに従って、この発明の入射方法の方が最大加速電流が大きくなることがわかる。
【0081】
図6においては、放射減衰時間が2秒の場合に、入射周波数が10Hz近傍で最大加速電流が最大となる。また、放射減衰時間が1秒の場合には、入射周波数の高い方が最大加速蓄積電流が大きくなっており、入射周波数が20Hzではまだ飽和していない。
【0082】
このように、この発明の入射方法で、秒単位の放射減衰時間の値よりも高い周波数(10〜20Hz)で電子ビームの入射を行うことにより、最大加速電流(最大蓄積電流)の増大が可能であることがわかる。
【0083】
以上のような入射方法により、高い周波数での入射が可能であり、蓄積電流の増大が可能となる。
【0084】
従って、医療診断装置や放射光加工装置などの電子加速施設で、この電子加速装置を用いれば、従来、必要であったブースターシンクロトロンは必要なく、電子加速施設全体の縮小を図ることができ、電子加速施設の大きさの原因で普及が難しかった医療用装置や産業用装置としての普及が望める。
【0085】
実施の形態2.
なお、上記実施の形態1では、電子ビームの入射周期(入射周波数)について言及しなかったが、放射減衰時間の値の4倍以上に設定してもよい。
【0086】
図8および図9は、この発明の実施の形態2に係る入射周波数および最大加速電流の関係を従来特性と対比して示した特性図である。
【0087】
図8は放射減衰時間が1秒の場合、図9は放射減衰時間が2秒の場合で入射方法の関係を示している。
【0088】
図8および図9より、従来と比べてこの発明の入射方法による効果の相違が顕著となるのは、入射周波数を秒単位の放射減衰時間の値の4倍程度以上(放射減衰時間1秒時、入射周波数4Hz、放射減衰時間2秒時、入射周波数8Hz)とした条件であることがわかる。
【0089】
以上のように、入射周波数を放射減衰時間の値の4倍程度以上とすることにより、上記実施の形態1の入射方法による効果が顕著となり、最大蓄積電流の増大が可能である。さらに、上記実施の形態1のように、電子加速施設の縮小を図ることができる。
【0090】
実施の形態3.
なお、上記実施の形態1、2では、蓄積軌道の歪み(COD)について言及しなかったが、歪み(COD)を補正してもよい。
【0091】
次に、図10を参照しながら、蓄積軌道203の歪み(COD)が、蓄積電流(蓄積電子ビーム)に与える影響について説明する。
【0092】
この発明においては、アクセプタンス境界付近に電子ビームを入射するので、平衡軌道の歪み(COD)が最大加速電流に与える影響が大きい。アクセプタンスとは、電子ビームが安定周回可能な位相平面上の領域のことである。
【0093】
図10はこの発明の実施の形態3に係るシミュレーション実験の結果を示す特性図である。図10において、横軸が水平方向(軌道平面方向)のセプタム電磁石111Aの位置での歪み(COD)、縦軸が最大加速電流である。
【0094】
図10において、歪み(COD)が1.5mm以上になると、急激に最大加速電流が減少することがわかる。従って、大電流加速時にはあらかじめ蓄積電子ビームの歪み(COD)を1.5mm以下に補正して入射を行うのが望ましい。
【0095】
この関係は、電子加速装置11Aのパラメータにより若干の変動があるが、セプタム電磁石111Aの位置における水平方向の歪み(COD)をミリ(mm)オーダで制御することは現状技術ではそれほど難しくなく、実現可能である。
【0096】
以上のように、電子ビームの入射方法(手段)や、蓄積軌道203の歪み補正方法(手段)を用いた電子加速装置を備えれば、低エネルギー入射および低磁場強度の偏向電磁石の利用でも、大電流の蓄積が可能である。
【0097】
従って、上記実施の形態1、2のように、医療診断装置や放射光加工装置などの電子加速施設の縮小を図ることができる。
【0098】
実施の形態4.
なお、上記実施の形態1〜3では、電子加速装置11Aへ電子ビームを入射する入射器12Aとしてマイクロトロンを用いたが、線形加速器を用いてもよい。
【0099】
ただし、マイクロトロンを用いた入射器12Aと比較して、線形加速器は入射器部分が長くなる。
【0100】
線形加速器を用いた入射器12Aによる電子ビームの入射方法などは全て上記実施の形態1〜3と同様であるので省略する。
【0101】
入射器12Aをマイクロトロンから線形加速器に変えても、上記実施の形態1〜3と同様の効果を得ることができる。
【0102】
【発明の効果】
以上のように、この発明によれば、第1の電子ビームを周回させるための高周波加速空洞を有する蓄積軌道と、蓄積軌道の外部から蓄積軌道に第2の電子ビームを入射するための入射軌道と、蓄積軌道を変化させて入射軌道を作成するためのパルス電磁石と、第2の電子ビームを入射軌道に導入するためのセプタム電磁石を有する入射手段とを備え、第1の電子ビームを加速しながら放射光を発生する電子加速装置であって、パルス電磁石は、第2の電子ビームの入射軌道への入射時に、入射軌道と蓄積軌道とのずれ量の最大値が第2の電子ビームのビームサイズの1.25倍の値とセプタム電磁石の厚さとの加算値以下となるように入射軌道を作成するので、短い周期(高い周波数)で低エネルギーの電子ビームを入射して、低磁場強度の偏向電磁石を利用することができ、蓄積電流を増大させることのできる電子加速装置が得られる効果がある。
【0103】
また、この発明によれば、第2の電子ビームの入射周期は、第1の電子ビームの放射減衰時間の4倍以上に設定されたので、低エネルギーの電子ビームの入射を繰り返すことにより、大電流の電子ビームを加速することのできる電子加速装置が得られる効果がある。
【0104】
また、この発明によれば、入射手段は、蓄積軌道の歪みを補正するための歪み補正手段を含み、蓄積軌道の歪みをあらかじめ補正して入射軌道に第2の電子ビームを入射させるので、大電流の電子ビームを加速することのできる電子加速装置が得られる効果がある。
【0105】
また、この発明によれば、放射光は、被験者に照射されて被験者の医療診断に用いられるので、電子加速施設全体の大きさを縮小する(コンパクトにする)ことのできる電子加速装置が得られる効果がある。
【0106】
さらに、この発明によれば、放射光は、被加工物に照射されて被加工物の加工に用いられるので、電子加速施設全体の大きさを縮小する(コンパクトにする)ことのできる電子加速装置が得られる効果がある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1を示す構成図である。
【図2】 この発明の実施の形態1を示す説明図である。
【図3】 この発明の実施の形態1による動作を示すフローチャートである。
【図4】 この発明の実施の形態1による入射方法を示す説明図である。
【図5】 この発明の実施の形態1による入射方法を示す説明図である。
【図6】 この発明の実施の形態1による入射方法における特性図である。
【図7】 従来の入射方法における特性図である。
【図8】 この発明の実施の形態2に係る入射周波数および最大加速電流の関係を従来特性と対比して示した特性図である。
【図9】 この発明の実施の形態2に係る入射周波数および最大加速電流の関係を従来特性と対比して示した特性図である。
【図10】 この発明の実施の形態3に係るシミュレーション実験の結果を示す特性図である。
【図11】 一般的な電子加速施設を示す斜視図である。
【図12】 電子加速施設に設置させる従来の電子加速装置を概略的に示す概略図である。
【図13】 従来の電子加速装置を示す説明図である。
【符号の説明】
11、11A 電子加速装置、12、12A 入射器(入射用電子直線加速器)、13 電子シンクロトロン、14 ビーム輸送路、15 電源、111、111A 入射装置(セプタム電磁石)、112 真空ダクト、113 高周波加速空洞、114 偏向電磁石、201 パルス電磁石、202、202A 入射軌道、203、203A 蓄積軌道、501 入射電子ビームの位置。

Claims (5)

  1. 第1の電子ビームを周回させるための高周波加速空洞を有する蓄積軌道と、
    前記蓄積軌道の外部から前記蓄積軌道に第2の電子ビームを入射するための入射軌道と、
    前記蓄積軌道を変化させて前記入射軌道を作成するためのパルス電磁石と、
    前記第2の電子ビームを前記入射軌道に導入するためのセプタム電磁石を有する入射手段とを備え、
    前記第1の電子ビームを加速しながら放射光を発生する電子加速装置であって、
    前記パルス電磁石は、前記第2の電子ビームの前記入射軌道への入射時に、前記入射軌道と前記蓄積軌道とのずれ量の最大値が前記第2の電子ビームのビームサイズの1.25倍の値と前記セプタム電磁石の厚さとの加算値以下となるように前記入射軌道を作成することを特徴とする電子加速装置。
  2. 前記第2の電子ビームの入射周期は、前記第1の電子ビームの放射減衰時間の4倍以上に設定されたことを特徴とする請求項1に記載の電子加速装置。
  3. 前記入射手段は、前記蓄積軌道の歪みを補正するための歪み補正手段を含み、前記蓄積軌道の歪みをあらかじめ補正して前記入射軌道に前記第2の電子ビームを入射させることを特徴とする請求項1または請求項2に記載の電子加速装置。
  4. 前記放射光は、被験者に照射されて前記被験者の医療診断に用いられることを特徴とする請求項1から請求項3までのいずれかに記載の電子加速装置。
  5. 前記放射光は、被加工物に照射されて前記被加工物の加工に用いられることを特徴とする請求項1から請求項3までのいずれかに記載の電子加速装置。
JP2001305183A 2001-10-01 2001-10-01 電子加速装置 Expired - Fee Related JP3650354B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001305183A JP3650354B2 (ja) 2001-10-01 2001-10-01 電子加速装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001305183A JP3650354B2 (ja) 2001-10-01 2001-10-01 電子加速装置

Publications (2)

Publication Number Publication Date
JP2003109800A JP2003109800A (ja) 2003-04-11
JP3650354B2 true JP3650354B2 (ja) 2005-05-18

Family

ID=19125010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001305183A Expired - Fee Related JP3650354B2 (ja) 2001-10-01 2001-10-01 電子加速装置

Country Status (1)

Country Link
JP (1) JP3650354B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107676448B (zh) * 2017-11-03 2018-08-28 合肥中科离子医学技术装备有限公司 一种用于真空环境曲轨传动装置
CN108036809A (zh) * 2018-02-05 2018-05-15 合肥中科离子医学技术装备有限公司 一种高精度曲线传动测量系统

Also Published As

Publication number Publication date
JP2003109800A (ja) 2003-04-11

Similar Documents

Publication Publication Date Title
US7122978B2 (en) Charged-particle beam accelerator, particle beam radiation therapy system using the charged-particle beam accelerator, and method of operating the particle beam radiation therapy system
JP4988516B2 (ja) 粒子線治療システム
EP2026640B1 (en) Particle beam therapy system
JP4633002B2 (ja) 荷電粒子ビーム加速器のビーム出射制御方法及び荷電粒子ビーム加速器を用いた粒子ビーム照射システム
JP2596292B2 (ja) 円形加速器及びその運転方法並びに医療システム
JP6169254B2 (ja) 円形加速器、円形加速器の運転方法、および粒子線治療装置
JPH05109499A (ja) 加速器及び荷電粒子の出射方法並びに荷電粒子の出射装置
JPH05198398A (ja) 円形加速器及び円形加速器のビーム入射方法
US5138271A (en) Method for cooling a charged particle beam
JP2001326100A (ja) 直流電子ビーム加速装置およびその直流電子ビーム加速方法
JP4650382B2 (ja) 荷電粒子ビーム加速器及びその荷電粒子ビーム加速器を用いた粒子線照射システム
JP3650354B2 (ja) 電子加速装置
JP2017159077A (ja) 重粒子線治療装置及びシンクロトロン加速器
JP3857096B2 (ja) 荷電粒子ビームの出射装置及び円形加速器並びに円形加速器システム
JP2014186939A (ja) 粒子線照射システムとその運転方法
JPH07111199A (ja) 加速器とそのビーム出射方法並びに医療用装置
WO2023013458A1 (ja) 円形加速器および粒子線治療システム
JP3943578B2 (ja) 円形粒子加速器
JP3943579B2 (ja) 円形粒子加速器
JP2008112693A (ja) 環状型加速装置及びその運転方法
JP6279036B2 (ja) 粒子線照射システムとその運転方法
JP2002305100A (ja) マイクロトロン電子加速器
JP3943568B2 (ja) 円形粒子加速器
Takeda et al. Electron Linac of test accelerator facility for linear collider
JP3922022B2 (ja) 円形加速器の制御方法及び制御装置、並びに円形加速器システム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees