CN1871065A - 新型沸石组合物,其制备方法和其催化应用 - Google Patents

新型沸石组合物,其制备方法和其催化应用 Download PDF

Info

Publication number
CN1871065A
CN1871065A CNA2004800308040A CN200480030804A CN1871065A CN 1871065 A CN1871065 A CN 1871065A CN A2004800308040 A CNA2004800308040 A CN A2004800308040A CN 200480030804 A CN200480030804 A CN 200480030804A CN 1871065 A CN1871065 A CN 1871065A
Authority
CN
China
Prior art keywords
zeolite
mesopore
zsm
inorganic oxide
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004800308040A
Other languages
English (en)
Inventor
单志平
彼得·威廉·格哈德·瓦勒
布当·乔治·曼盖
菲利普·J·安杰文
雅各布斯·科尼利斯·詹森
叶春渊
托马斯·马施迈尔
弗里茨·M·道岑贝格
莱昂纳多·马尔凯塞
埃洛伊兹·德·奥利韦拉·帕斯托
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CB&I Technology Inc
Original Assignee
ABB Lummus Global Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Lummus Global Inc filed Critical ABB Lummus Global Inc
Publication of CN1871065A publication Critical patent/CN1871065A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/005Mixtures of molecular sieves comprising at least one molecular sieve which is not an aluminosilicate zeolite, e.g. from groups B01J29/03 - B01J29/049 or B01J29/82 - B01J29/89
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/87Gallosilicates; Aluminogallosilicates; Galloborosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/88Ferrosilicates; Ferroaluminosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/36Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
    • C01B13/366Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions by hydrothermal processing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/126Preparation of silica of undetermined type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/005Silicates, i.e. so-called metallosilicalites or metallozeosilites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/45Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
    • C07C45/46Friedel-Crafts reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/22Oxygen atoms attached in position 2 or 4
    • C07D215/227Oxygen atoms attached in position 2 or 4 only one oxygen atom which is attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/06Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • C07D301/10Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase with catalysts containing silver or gold
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/62Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/68Aromatisation of hydrocarbon oil fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/14Inorganic carriers the catalyst containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/08Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • B01J2229/62Synthesis on support in or on other molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1096Aromatics or polyaromatics
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种催化材料,包括负载于中孔无机氧化物载体上的微孔沸石。该微孔沸石能够包括Beta沸石、Y沸石(包括“超稳定的Y”-USY)、丝光沸石、L沸石、ZSM.5、ZSM-11、ZSM-12、ZSM-20、Theta-1、ZSM-23、ZSM-34、ZSM-35、ZSM-48、SSZ-32、PSH-3、MCM-22、MCM-49、MCM-56、ITQ-1、ITQ-2、ITQ-4、ITQ-21、SAPO-5、SAPO-11、SAPO-37、Breck-6、ALPO4-5等。该中孔无机氧化物能够为例如二氧化硅或硅酸盐。通过引入一些金属,例如铝、钛、铝、镍、钴、铁、钨、钯和铂,能够对该催化材料进一步改性。它能够作为催化剂用于酰化、烷基化、二聚、低聚、聚合、氢化、脱氢、芳构化、异构化、加氢处理、催化裂化和氢化裂化反应。

Description

新型沸石组合物,其制备方法和其催化应用
互相参考的相关申请
本申请是2001年11月27日提交的美国专利申请第09/995,227号的部分继续申请,美国专利申请第09/995,227号是1999年9月7日提交的美国专利申请第09/390,276号的部分继续申请,美国专利申请第09/390,276号现在被授予美国专利第6,358,486号,本申请要求美国专利第6,358,486号的优先权,在此引入所述的两份申请作为参考。
背景
1.技术领域
本发明公开了涉及独特的含包埋于催化剂载体中的沸石的独特的催化材料,特别涉及包埋于中孔载体中的微孔沸石。
2.技术背景
许多目前的烃加工技术基于沸石催化剂。在本领域中沸石催化剂为人们所熟知且具有孔径大小均匀的排列良好的孔体系。但是,这些材料倾向于只具有微孔或只具有中孔,在大多数情况下只具有微孔。微孔的定义为孔的直径小于2nm。中孔的定义为孔的直径范围从约2nm至约50nm。小的微孔限制外来分子接近微孔内的催化活性中心,或减慢向催化活性中心的扩散过程。许多烃的催化反应传质受限,从而降低了催化剂的有效利用。一种解决办法是减小催化剂粒度,从而缩短扩散途径和增加催化剂颗粒的外表面。
在实践中,不能直接使用小的沸石催化剂颗粒,因为该尘状材料难以处理,并且它将在固定床反应器中造成压力下降问题。因此,通常将沸石与无机氧化物混合并挤压成特定的形状和尺寸。然后该经煅烧整理的催化剂具有好的物理整体性(physical integrity)和多孔结构。但是,取决于具体的反应,结合剂(binder)可以限制向埋于结合剂内的沸石颗粒传质。如果能以高度多孔的载体代替较少孔的结合剂,将提高外来分子对沸石中的活性中心的易接近性。
非常需要具有理想的孔径分布的催化剂,其将有利于向活性催化中心传送反应物并把产物传出催化剂。
发明概述
本文提供了一种用于催化加工烃的材料。该材料包括沸石和多孔无机氧化物,该多孔无机氧化物包括,以无机氧化物的微孔和中孔为基准,至少97体积%的中孔。沸石优选为微孔沸石,例如,Beta沸石、Y沸石(包括“超稳定的Y”-USY)、丝光沸石、L沸石、ZSM-5、ZSM-11、ZSM-12、ZSM-20、Theta-1、ZSM-23、ZSM-34、ZSM-35、ZSM-48、SSZ-32、PSH-3、MCM-22、MCM-49、MCM-56、ITQ-1、ITQ-2、ITQ-4、ITQ-21、SAPO-5、SAPO-11、SAPO-37、Breck-6、ALPO4-5等。本文还描述了该材料的制备和使用方法。沸石颗粒被随机相互连接的中孔通道(channel)所包围,该中孔通道提供对沸石的高的可接近性。在一些情况下沸石颗粒和中孔载体之间的相互作用可能在一定程度上改变沸石和中孔载体的性质。
本文所述的催化材料有利于向活性催化中心传送反应物,并且取决于具体应用,其活性比单独使用的沸石高约2-5倍。
附图简要说明
下面结合附图说明几个实施方案,其中,
图1表示如下:含具有Beta沸石的中孔无机氧化物载体的样品1的X射线衍射(XRD)图(曲线1-a),Beta沸石的XRD图(曲线1-b),和样品1的延长扫描时间(EST)的XRD图像(曲线1-c);
图2是具有Beta沸石的中孔无机氧化物载体(样品1)的高分辨率透射电子显微镜(TEM)图像,和显示沸石区域(domain)的电子衍射图的一个插页;
图3是一个图表,表示具有Beta沸石的中孔无机氧化物载体(样品1)和没有Beta沸石的对比样品的程序升温NH3脱附(NH3-TPD)分析;
图4是一个图表,表示在本文实施例3、4和5中制备的材料以及纯Beta沸石的中孔孔径分布;
图5是一个图表,表示在本文实施例2至5中制备的材料以及纯Beta沸石的XRD图;
图6表示中孔材料(曲线6-a)、MCM-22(曲线6-b)和实施例7的复合材料(曲线6-c)的XRD图;
图7表示实施例7、8和10中所制备的材料的中孔孔径分布;
图8表示中孔材料(曲线8-a)、纯MCM-56(曲线8-b)和复合物8(曲线8-c)的XRD图;
图9表示纯ITQ-2沸石(曲线9-a)、中孔材料(曲线9-b)、复合物9材料(曲线9-c),和复合物10材料(曲线9-d)的XRD图;
图10表示对于在538℃下以样品3、4、5和纯Beta沸石来裂化正己烷的基于沸石质量的准一级反应速率常数;
图11表示在实施例4和5中所制备的材料的NH3-IR光谱;和
图12表示在本文实施例18中制备的材料(曲线12-a)以及纯USY沸石(曲线12-b)的XRD图。
优选实施方案的详细描述
本文所述的催化剂包括包埋于中孔载体中的微孔沸石。该微孔沸石可以是任意类型的微孔沸石。一些例子如Beta沸石、Y沸石(包括“超稳定的Y”-USY)、丝光沸石、L沸石、ZSM-5、ZSM-11、ZSM-12、ZSM-20、Theta-1、ZSM-23、ZSM-34、ZSM-35、ZSM-48、SSZ-32、PSH-3、MCM-22、MCM-49、MCM-56、ITQ-1、ITQ-2、ITQ-4、ITQ-21、SAPO-5、SAPO-11、SAPO-37、Breck-6(也称为EMT)、ALPO4-5。这些沸石是本领域中已知的,并且许多可在市场上买到。在本发明中,可以向中孔载体内引入沸石,或在催化剂载体中原位合成沸石。
可以把金属引入沸石骨架内作为晶格原子的替代,或使金属位于沸石微孔内。这些金属可以包括,例如,铝、钛、钒、锆、镓、硼、锰、锌、铜、金、镧、铬、钼、镍、钴、铁、钨、钯和铂。可以以组合的方式引入这些金属,例如,NiMo、NiW、PtPd等。
所述催化剂载体优选为三维中孔无机氧化物材料,该无机氧化物材料含有,以该无机氧化物材料(即,其中没有引入任何沸石)的微孔和中孔为基准,至少97体积%的中孔(即,不多于3体积%的微孔),并且通常含有占至少98体积%的中孔。在美国专利第6,358,486中描述了制备优选的含多孔二氧化硅的催化剂载体的方法。如N2-孔隙度测定法所测定的,优选催化剂的平均中孔孔径大小为从约2nm至约25nm。
一般地,通过加热下列物质的混合物来制备中孔无机氧化物:(1)水中的无机氧化物前体,和(2)有机模板剂(templating agent),其与氧化物前体或从该前体中生成的氧化物良好地混合,并且优选与它形成氢键。起始物通常为无定形材料,并且可包括一种或多种无机氧化物,例如氧化硅或氧化铝,有或没有其它金属氧化物。硅原子可部分地被其它金属原子所取代。这些金属包括,但不限于,铝、钛、钒、锆、镓、硼、锰、锌、铜、金、镧、铬、钼、镍、钴、铁、钨、钯和铂。可以把它们引入无机氧化物内的至少一个中孔壁上的和/或在至少一个中孔面上。在含中孔的结构的制备过程开始之前,可以非必须地把其它金属引入材料内。在制备材料后,也可以非必须地以其它离子如碱金属(例如,钠、钾、锂等)的离子来代替体系中的阳离子。
所述有机模板剂,一种形成中孔的有机化合物,优选为甘醇(一种包括两个或更多个羟基的化合物),例如,丙三醇、二甘醇、三甘醇、四甘醇、丙二醇等等,或由三乙醇胺、三异丙醇胺、环丁砜、四亚乙基五胺和二苯甲酸二乙二醇酯组成的组中的成员。优选地,有机模板剂的沸点为至少约150℃。
所述中孔催化剂载体为假晶材料(即,通过现有X射线衍射技术观察不到结晶性)。中孔的直径优选为从约3nm至约25nm。如BET(N2)所测定的,催化剂载体的表面积优选从约400m2/g至约1200m2/g。催化剂孔容积优选从约0.3cm3/g至约2.2cm3/g。
催化剂中的沸石含量可以从低于约1%重量比至高于约99%重量比。但是,优选从约3%重量比至90%重量比,更优选为从约4%重量比至约80%重量比。含沸石的催化剂优选含有不大于(no more than)10体积%的微孔。
更具体地,制备催化剂的方法包括在水中悬浮沸石。然后向水中添加无机氧化物前体并混合。该无机氧化物前体可以是含硅化合物例如原硅酸四乙酯(TEOS),或是铝源例如异丙醇铝,其与水反应形成无机氧化物。在市场上从已知的供应商那里可买到TEOS和异丙醇铝。
优选使上述混合物的pH值保持在约7.0。非必须地,含水混合物可以含有例如那些如上所述的其它金属离子。经搅拌后,向混合物中添加并混合有机模板剂。如下所述,有机模板剂在成孔步骤中帮助形成中孔。有机模板剂不应太憎水以致于在混合物中形成分离相。有机模板剂可以是如上所列的一种或多种化合物。优选向无机氧化物水溶液中逐滴添加有机模板剂并搅拌。一段时间后(例如,从约1至4小时)混合物形成浓稠凝胶。优选在该段时间内搅拌混合物以促进组分的混合。该溶液优选包括醇,其能被添加到混合物中和/或通过分解无机氧化物前体而原位形成。例如,当加热TEOS时产生乙醇。可通过分解异丙醇铝产生丙醇。
非必须地,可以通过预处理来改变沸石。例如,在一种预处理方式中,可以通过离子交换、浸渍、功能性物质的定位以及蒸热来改性沸石。另外,通过适当的处理,可以使层状结构的沸石如MCM-22分层剥落(exfoliate)成为新型沸石如ITQ-2。通过在碱的存在下用阳离子表面活性剂使前体膨胀,可以进行某些处理,如插层(intercalation)或分层,(Corma等人,J.Catal.191(1):218-224,2000)。非必须地,通过例如带有或不带机械搅拌的超声处理可以使膨胀的材料分层。最后,分离并煅烧分层的材料,形成新型沸石。
本发明提供了一种新方法,以在多孔基体/载体内引入或稳定或负载分层沸石。首先能在水中悬浮膨胀材料,然后能向水中添加无机氧化物前体或中孔载体并如上所述地混合。非必须地,在其它组分(例如,成孔剂)的添加过程中和/或在形成凝胶的过程中,可以通过带有或不带机械搅拌的超声处理使膨胀材料分层。凝胶形成后,可以把与膨胀前所添加的沸石不同的新型沸石引入凝胶。
然后可选择地在从约5℃至约45℃的温度下,优选在室温下老化凝胶,以完成无机氧化物源的水解和缩聚。优选可以进行老化达约48小时,通常从约0小时至30小时,更优选从约2小时至20小时。老化步骤后,在空气中在约98℃至100℃下加热凝胶,加热时间(例如,从约6至约48小时)为足以通过驱除水而干燥凝胶。优选地,在干燥过程中,帮助形成中孔的有机模板剂应留在凝胶中。从而,优选有机模板剂的沸点为至少约150℃。
把仍含有有机模板剂的经干燥的材料加热至大量形成中孔的温度。成孔步骤在高于水的沸点并直至约为有机模板剂沸点的温度下进行。一般地,在从约100℃至约250℃,优选从约150℃至约200℃的温度下形成中孔。水热成孔步骤可以可选择地在密封容器中在自生压力下进行。最后产品中的中孔孔径和中孔容积受水热步骤的时间长短与温度的影响。一般地,提高处理温度和增加处理的持续时间将提高最终产品中的中孔直径和中孔容积百分比。
成孔步骤后,在约300℃至约1000℃之间煅烧所述材料。煅烧温度优选从约400℃至约700℃,更优选从约500℃至约600℃。保持煅烧温度足够长的时间以除去有机模板剂/成孔剂。部分取决于煅烧温度,煅烧步骤的持续时间通常为从约2小时至约40小时,优选5小时至15小时。
为防止过热点,应逐渐升高温度。优选地,应当以从约0.1℃/min至约25℃/min,更优选从约0.5℃/min至约15℃/min,最优选从约1℃/min至约5℃/min的速率使催化剂材料的温度向上(ramp)升至煅烧温度。
在煅烧过程中,最终形成催化剂材料的结构,同时把有机分子从该材料中除去并分解。
可以用有机溶剂如乙醇进行萃取来代替煅烧步骤以除去有机模板剂。在这种情况下,模板化剂可以被回收以再利用。
另外,本发明的催化剂粉末可以与结合剂如二氧化硅和/或氧化铝混合,然后通过挤出或其它适当的方法形成所需的形状(例如,压出型材、球丸、环等)。通过浸渍、离子交换、或通过如G.W.Skeels andE.M.Flanigen in M.Occelli,et al.,eds.,A.C.S.Symposium Series,Vol.398,Buttersworth,pp.420-435(1989)中所述替代部分晶格原子,可向催化剂中添加金属离子,例如铝、钛、钒、锆、镓、铜、锰、锌、镍、铁、钴、锗、铬和钼。
通过XRD、气体吸附、27Al-NMR和NH3-IR(红外)来表征本发明的组合物。XRD和27Al-NMR显示在硅质中孔材料上引入或负载沸石后,所述沸石的结构没有改变。但是,NH3-IR显示引入Beta沸石后羟基改变。羟基改变的程度也取决于最终复合物中沸石的装料量(loading)。虽然不希望局限于任何特定理论,据信沸石与中孔基体/载体的相互作用导致了独特的结构,该结构明显不同于沸石和中孔材料的简单线性组合。另外,FTIR显示了与酸性改性相一致的羟基频率位移。
原则上,本文所描述的催化剂可以用于所有其中通常使用基于沸石的催化剂的方法中。例如,ZSM-11可以用于被ZSM-5所催化的基本上所有的反应(例如,芳香族化合物烷基化、二甲苯异构化、脱蜡等);ZSM-12可以用于芳香族化合物烷基化(例如,对二异丙基苯的制备)、芳构化、异构化、脱蜡等的方法中;ZSM-20可以用于异构化、烯烃制备、氢化裂化和芳构化;ZSM-22和ZSM-23用于异构化、烯烃制备、氢化裂化和芳构化;ZSM-34用于催化甲醇成为烯烃;ZSM-35用于脱蜡、异构化、芳构化、裂化和氢化;ZSM-48用于异构化;PSH-3和MCM-22对于芳香族化合物烷基化、裂化、异构化、芳构化等有活性;ITQ-1可以用于裂化、氧化等;ITQ-2对于裂化、水合、烷基化等尤其有活性;ITQ-21是用于裂化的非常好的催化剂;SAPO-5用于异构化、脱水、裂化;SAPO-34用于脱氢;SAPO-11用于脱蜡和芳香族化合物异构化。
例如,使用本文所述的催化剂,在FCC或TCC单元中,在从约400℃至约650℃的温度下,以从约3∶1至10∶1的催化剂对进料的重量比,可以催化裂化石油进料(例如,瓦斯油和真空瓦斯油)。用于催化裂化的进料可以包括初沸点(IBP)从约200℃至约260℃、终沸点(EBP)从约400℃至约455℃的石油馏分。非必须地,进料可以包括具有沸点高于540℃组分的石油馏分,例如脱沥青或未脱沥青的石油残渣、焦油砂油(tan sand oil)、页岩油、沥青或煤油。
在从约90℃至约250℃的温度、从约0.5巴至约35巴的压力、和从约1WHSV至约20WHSV的空速下,使用本文所述的催化剂可以以烯烃对有机化合物进行烷基化。
在从约200℃至约400℃的温度、从约10巴至约70巴的压力、和从约0.4WHSV至约50WHSV的空速下,使用本文所述的催化剂可以进行烃的氢化裂化。
在从约150℃至约500℃的温度、从约1巴至约240巴的压力、和从约0.1WHSV至约20WHSV的空速下,使用本文所述的催化剂可以进行烃的加氢异构化。
在较宽反应条件下,例如,在从约150℃至约500℃的温度、从约6巴至约110巴的压力、和从约0.1WHSV至约20WHSV的空速下,使用本文所述的催化剂可以进行烃的催化脱蜡。
在包括从约20℃至约350℃的温度、从约1巴至约110巴的压力、和从约0.1WHSV至约20WHSV的空速的反应条件下,使用本文所述的催化剂可以进行有机化合物(例如芳香化合物,烷基芳香化合物)的酰化。酰化剂包括,例如羧酸酐以及酰卤。
优选在包括从约600℃至约800℃的温度、小于约14巴的压力、和从约0.1WHSV至约10WHSV的空速的反应条件下,使用本文所述的催化剂进行轻质烃的芳构化。
在一些特别的应用中,本发明的组合物将比传统的催化剂表现出甚至更大的优势。例如,重质进料(heavy feeds)的催化裂化理想上需要中孔基体/载体上有一些弱酸性,以使非常大的分子预裂化为中等大小的分子,然后该中等大小的分子进一步裂化为所需的产品。本发明的组合物在中孔基体/载体的骨架中可以含有金属(例如,铝),从而提供弱酸性。另外,中孔基体/载体所提供的高的孔容积和高的表面积可以改善对金属(例如,V、Ni、Fe)和对硫、氮和氧类物质的耐受性(tolerance)。另外,通过改变所用的沸石类型、沸石装料量和中孔度,可以容易地调整本发明的组合物,以满足过程的一些特别要求。
含一些具有(脱)氢化功能的金属(例如,Ni、W、Pt、Pd及其组合)的本发明的组合物可以用作氢化裂化的催化剂。通过适当地选择沸石装料、中孔基体/载体中提供酸性的金属的量、和具有氢化功能的金属的量,可以容易地实现裂化活性和氢化活性的平衡。通常地,沸石材料具有高的裂化活性,中孔材料具有较低的裂化活性。从而,可以调节沸石和中孔基体的组合,以提供所需的裂化活性。因此可以优化产率和选择性。例如,可以实现对中间馏分或柴油的高选择性。在润滑油基础油(lube base oil)的生产中,因为中孔基体/载体提供预裂化作用,所以本发明的组合物使进料范围得以扩展;它也改善了对重金属和其它有毒物质的耐受性。
通过下列实施例说明本发明的制备催化剂组合物的方法和催化剂组合物的应用,但是本发明并不限于这些实施例。在这些实施例中组合物的量为重量份。
实施例1
首先,在16.3份水中悬浮Si/Al摩尔比为25且平均粒度为1μm的1.5份经煅烧的Beta沸石,并搅拌30分钟。然后在搅拌下向悬浮液中添加20.3份原硅酸四乙酯(TEOS)。又持续搅拌30分钟后,添加9.3份三乙醇胺。再搅拌30分钟后,向混合物中逐滴添加4.0份氢氧化四乙铵水溶液(从Aldrich购得的35%溶液),以提高pH值。搅拌约2小时后,混合物形成浓稠的不流动的凝胶。在室温静止状态下老化该凝胶17小时。然后,在100℃下干燥凝胶28小时。将经干燥的凝胶转移到高压釜中,并在170℃下水热处理17.5小时。最后,以1℃/min升温速率在空气中在600℃下煅烧凝胶10小时。
把最终产品命名为样品1。样品1中存在的Beta沸石的理论量为20wt%。样品1用XRD、TEM氮孔隙度测定法、氩孔隙度测定法和程序升温NH3脱附(TPD)表征。为比较目的也用XRD表征了纯的Beta沸石。
参照图1,以33分钟的扫描时间,曲线1-b所示的纯Beta沸石的XRD图在约7.70和2θ中的22.2°处显示了最明显的特征反射。图1-a表示具有Beta沸石晶体的中孔无机氧化物载体的(样品1)的XRD图。在小角度观察到强峰,说明样品1是中孔结构的材料。Beta沸石的峰相对小,因为最终产品中沸石的最大理论含量仅为20wt%。当把样品1的扫描时间延长至45小时,如曲线1-c所示,Beta沸石的特征峰变得清楚可见。
现在参照图2,其中描绘了样品1的高分辨率TEM图像,其显示了中孔基体12中的暗灰区域11。插图“ED”描绘了证实暗灰区域11为Beta沸石晶体的电子衍射图。
氮吸附显示样品1具有主要集中在约9.0nm的窄的中孔孔径分布、710m2/g的高表面积和1.01cm3/g的高的总孔容积。氩吸附在约0.64nm周围显示了微孔孔径分布的峰,对应于Beta沸石中的微孔孔径。直径小于0.7nm的孔的微孔容积为0.04cm3。这是纯Beta沸石的微孔容积的约16%。以最终复合物为基准,起初添加的未煅烧的Beta沸石占20wt%。由于在煅烧过程中除去模板,Beta沸石的重量降低了约20wt%。考虑到煅烧过程中沸石的质量损失,最终复合物中Beta沸石的预期含量为约16%,这与从微孔容积得到的值相一致。
参照图3,样品1的NH3-TPD测量显示了两个解吸峰,说明有和沸石中相似的强酸部位。
实施例2
首先,在85.0份水中悬浮Si/Al比为150且平均粒度为0.2μm的3.4份经煅烧的Beta沸石,并搅拌30分钟。然后在搅拌下向悬浮液中添加105.8份TEOS。又持续搅拌30分钟后,添加38.3份三乙醇胺。再搅拌30分钟后,向混合物中逐滴添加20.9份氢氧化四乙铵水溶液(35%)。搅拌约2小时后,混合物形成浓稠的不流动的凝胶。在室温静止状态下老化该凝胶24小时。然后,在空气中在98-100℃下干燥凝胶24小时。将经干燥的凝胶转移到高压釜中,并在180℃下水热处理4小时。最后,以1℃/min升温速率在空气中在600℃下煅烧凝胶10小时。图5显示了命名为样品2的所得产品的XRD图。最终复合物中有约10wt%的Beta沸石。
实施例3
首先,在51.02份水中悬浮Si/Al比为150且平均粒度为0.2μm的4.6份经煅烧的Beta沸石,并搅拌30分钟。然后在搅拌下向悬浮液中添加23.0份三乙醇胺。又持续搅拌30分钟后,添加63.5份TEOS。再搅拌30分钟后,向混合物中逐滴添加12.6份氢氧化四乙铵水溶液(35%)。搅拌约2小时后,混合物形成浓稠的不流动的凝胶。在室温静止状态下老化该凝胶24小时。然后,在空气中在100℃下干燥凝胶24小时。将经干燥的凝胶转移到高压釜中,并在180℃下水热处理4小时。最后,以1℃/min升温速率在空气中在600℃下煅烧凝胶10小时。图5显示了命名为样品3的所得产品的XRD图,其清楚地显示了Beta沸石的两个特征峰。最终复合物中有约20wt%的Beta沸石。氮吸附表明它的表面积为约730m2/g,孔容积为约1.08cm3/g。图4显示了样品3的中孔孔径分布。
实施例4
首先,在51.0份水中悬浮Si/Al比为150且平均粒度为0.2μm的12.2份经煅烧的Beta沸石,并搅拌30分钟。然后在搅拌下向悬浮液中添加23.0份三乙醇胺。又持续搅拌30分钟后,添加63.5份TEOS。再搅拌30分钟后,向混合物中逐滴添加12.7份氢氧化四乙铵水溶液(35%)。搅拌约2小时后,混合物形成浓稠的不流动的凝胶。在室温静止状态下老化该凝胶24小时。然后,在空气中在100℃下干燥凝胶24小时。将经干燥的凝胶转移到高压釜中,并在180℃下水热处理4小时。最后,以1℃/min升温速率在空气中在600℃下煅烧凝胶10小时。图5显示了命名为样品4的所得产品的XRD图,其清楚地显示了Beta沸石的两个特征峰。最终复合物中有约40wt%的Beta沸石。氮吸附表明它的表面积为约637m2/g,孔容积为约1.07cm3/g。图4显示了它的中孔孔径分布。
实施例5
首先,在17.0份水中悬浮Si/Al比为150且平均粒度为0.2μm的9.2份经煅烧的Beta沸石,并搅拌30分钟。然后在搅拌下向悬浮液中添加7.6份三乙醇胺。又持续搅拌30分钟后,添加21.2份TEOS。再搅拌30分钟后,向混合物中逐滴添加4.2份氢氧化四乙铵水溶液(35%)。搅拌约2小时后,混合物形成浓稠的不流动的凝胶。在室温静止状态下老化该凝胶24小时。然后,在空气中在100℃下干燥凝胶24小时。将经干燥的凝胶转移到三个50ml的高压釜中,并在180℃下水热处理4小时。最后,以1℃/min升温速率在空气中在600℃下煅烧凝胶10小时。图5显示了命名为样品5的所得产品的XRD图,其清楚地显示了Beta沸石的两个特征峰。最终复合物中有约60wt%的Beta沸石。氮吸附表明它的表面积为约639m2/g,孔容积为约0.97cm3/g。图4显示了它的中孔孔径分布。
实施例6
使八份样品1与两份Nyacol形式的氧化铝混合,以提供催化剂。通过下列过程干燥并煅烧混合物:以5℃/min的速率升温至120℃,保持120℃的温度一小时,然后以5℃/min的速率升温至500℃并保持五小时,最后以5℃/min的速率降温至150℃,然后在干燥器中使催化剂冷却至室温。然后将催化剂人工粉碎并筛分至-12/+20筛目以检测活性。该催化剂在中孔载体中含有16wt%的Beta沸石。用1.0克催化剂对再循环差动(differential)固定床反应器装料。再循环速率(200g/min)为进料速率(6.1g/min)的约33倍。开始时用苯填充已装料的反应器,当反应器温度达到190℃时,用计量泵计量量取进料(含0.35wt%乙烯的苯)。运行七小时。反应条件包括:温度190℃、压力350psig和空速6WHSV。在运行的开始、中间和结束时对进料取样。每隔三分钟对产品取样并用气相色谱仪分析。对于采用含16wt%Beta沸石的催化剂,用乙烯使苯烷基化形成乙基苯的反应,根据一阶速率方程得到了速率常数为0.30cm3/g-sec。或者,对于80wt%Beta沸石催化剂而言,该数值相当于1.50cm3/g-sec。
比较实施例A
除了不引入沸石外,根据实施例1中所述的方法制备全硅质中孔载体。把所得载体命名为比较样品A。对比较样品A进行NH3-TPD测量,图3显示了所得测量结果。
比较实施例B
将购自商业供应商的且含有80wt%Beta沸石(Si/Al比为4.9)和20wt%结合剂的样品调整大小至-12/+20筛目。图4表示Beta沸石的孔径分布。使用如实施例6所述的同样的方法和设备,检测在相同的烷基化反应中该比较实施例中的纯Beta沸石的活性。得到一阶速率常数0.29cm3/g-sec。
将实施例6的结果与比较实施例B对比,对于用乙烯使苯烷基化而言,根据本发明实施例6的催化剂具有比单独的同等量Beta沸石高约五倍的活性。这些结果表明,在样品1的合成过程中,中孔催化剂载体中沸石晶体的完整性得以保持。结果还表明,合成催化剂后,样品1的中孔载体中的微孔Beta沸石依然是可达的,并且在芳香族化合物烷基化反应中载体的中孔有利于传质。
实施例7
该实施例说明了引入MCM-22。首先,在10.5份水中悬浮Si/Al比为12.8且平均粒度为2.5μm的2.4份已合成(as synthesized)的MCM-22沸石,并搅拌30分钟。然后在搅拌下向上述悬浮液中添加9.2份三乙醇胺。又持续搅拌30分钟后,添加12.7份TEOS。再搅拌30分钟后,向混合物中逐滴添加2.52份氢氧化四乙铵水溶液(35%)。搅拌约2小时后,混合物形成浓稠的不流动的凝胶。在室温静止状态下老化该凝胶24小时。然后,在空气中在98℃下干燥凝胶24小时。将经干燥的凝胶转移到高压釜中,并在180℃下水热处理4小时。最后,以1℃/min升温速率在空气中在600℃下煅烧凝胶10小时。
命名为复合物7并以图6中的曲线6-c表示的所得产品的XRD图清楚地显示了MCM-22沸石(曲线6-b)和中孔材料(曲线6-a)的特征峰。在复合物7中有约40wt%的MCM-22沸石,假设没有铝来自硅质中孔材料,根据铝的含量,元素分析证实了这一数字。氮吸附表明它的表面积为约686m2/g,孔容积为约0.82cm3/g。图7显示中孔孔径分布集中在10nm左右。氩吸附显示微孔主要为0.5nm左右。
实施例8
该实施例说明了引入MCM-56。首先,使7.7份三乙醇胺与8.5份蒸馏水混合半小时。然后,在搅拌下向上述溶液中添加2.0份NH4 +形式的MCM-56沸石(Si/Al摩尔比为12.5)。又持续搅拌2小时后,在搅拌下添加10.6份TEOS。再搅拌30分钟后,向混合物中逐滴添加2.1份氢氧化四乙铵水溶液(35%)。继续搅拌直至混合物形成浓稠的不流动的凝胶。如实施例7中一样处理凝胶,得到白色粉末。
命名为复合物8并以图8中的曲线8-c表示的所得产品的XRD图清楚地显示了MCM-56沸石和中孔材料的两个特征峰。曲线8-b表示MCM-56沸石的XRD图,曲线8-a表示中孔材料的XRD图。元素分析表明最终复合物的总Si/Al比为43,最终复合物中沸石的装料为约33.3wt%。氮吸附表明它的表面积为约712m2/g,孔容积为约0.96cm3/g。图7显示它的中孔孔径分布主要为2.0nm左右。
实施例9
该实施例说明了引入ITQ-2。首先,将15.2份溴化十六烷基三乙基铵(CTAB)溶于31.7份水和32.7份氢氧化四丙铵中。然后,向上述溶液中添加2.7份已合成的MCM-22,得到悬浮液。在置于80℃油浴里带回流冷凝的烧瓶中搅拌悬浮液,以膨胀层状结构的MCM-22沸石。在超声槽(135w,40KHz)里使膨胀的MCM-22分层1小时得到ITQ-2沸石。洗涤并离心分离ITQ-2沸石直至悬浮液的pH值降至8。
将ITQ-2再悬浮于10份水中,然后在搅拌下添加到由9.2份TEA和12.7份TEOS组成的混合物中。约45分钟后形成浓稠凝胶。如实施例7中一样处理凝胶。命名为复合物9并以图9中的曲线9-c表示的最终产品的XRD图清楚地显示了ITQ-2沸石和中孔材料的两个特征峰。曲线9-b表示中孔材料的XRD图,曲线9-a表示ITQ-2沸石的XRD图。元素分析表明最终复合物的总Si/Al比为36.9,最终复合物中沸石的装料为约32.3wt%。氮吸附表明它的表面积为约685m2/g,孔容积为约0.40cm3/g。它的中孔孔径分布主要为2.1nm。
实施例10
该实施例说明了“原位”引入ITQ-2,其中在中孔形成的过程中进行MCM-22向ITQ-2的转化。所用的药品和它们的量与实施例9中一样。首先,以和实施例9相同的方法膨胀已合成的MCM-22。但是,不立即使膨胀的MCM-22分层。将它洗涤并随后离心分离直至用硝酸银溶液检测不到溴化物。在水中再悬浮膨胀的MCM-22。
把装有由TEA和TEOS组成的混合物的瓶置于超声槽中。既用声波振荡又用机械聚四氟乙烯搅拌器来搅拌混合物,同时添加膨胀的MCM-22悬浮液。搅拌约一小时后,添加2.5份TEAOH(35%,氢氧化四乙铵),最终形成浓稠的凝胶。以和实施例7相同的方法处理凝胶。命名为复合物10并以图9中的曲线9-d表示的最终复合物的XRD图清楚地显示了ITQ-2沸石(曲线9-a)和中孔材料(曲线9-b)的两个特征峰。元素分析表明复合物10的总Si/Al比为32.4,最终复合物中沸石的装料为约50wt%。氮吸附表明它的表面积为约726m2/g,孔容积为约0.78cm3/g。如图7所示,中孔孔径分布主要为2.2nm。
实施例11
在有搅拌的间歇式反应器中进行2-甲氧基萘的酰化以得到2-乙酰基-6-甲氧基萘。将具有16.5份催化剂的反应器,即具有实施例10中制备的复合物10的反应器,在真空下在240℃下加热2小时,然后充满干氮气。待反应器冷却至120℃后,向反应器内注射250份萘烷(作为溶剂)、31.6份2-甲氧基萘、40份乙酸酐和10份正十四烷(作为内标)。反应六小时后,通过带WAX 52CB柱的GC来分析反应器混合物,发现2-甲氧基萘以100%的选择性和56%的转化率转化为2-乙酰基-6-甲氧基萘。
实施例12
使用上述实施例中制备的各种催化剂进行2-甲氧基萘的酰化以得到2-乙酰基-6-甲氧基萘。反应条件和实施例11中相同。在所有实验中反应器中沸石的量和实施例11中的相同。也就是说,催化剂(复合物)的量不同是因为复合物中沸石装料的不同。表1比较了在不同催化剂上的反应效果。
表1
在不同催化剂上酰化2-甲氧基萘的比较
  催化剂   催化剂描述   沸石装料%   沸石中的Si/Al比   转化率(%)   选择性(%)
  复合物7   MCM-22复合物   40.0   12.8   28.5   96
  复合物8   MCM-56复合物   33.3   12.5   53.4   96
  复合物10   ITQ-2复合物   50.0   12.8   56.2   96
实施例13
在固定床反应器中进行正己烷的裂化。向反应器内引入约1g通过粉碎和筛分得到的粒度为125-250μm的样品3。为活化,在50ml/min的气流中以10℃/min的加热速率把样品从室温加热至600℃,并保持在该温度下8小时。在大气压力下,以氮气中6.6mol%浓度的正己烷进行正己烷的裂化反应。以10℃为一级把反应温度从500℃改变至570℃。基于催化剂质量的经修改的接触时间稳定保持在1.4gcat*min*1-1。对于所有的测量,正己烷的转化率低于15%以避免失活作用。已发现可以用明显的一阶动力学来描述正己烷的裂化,并且对于不同的反应温度计算了基于沸石质量的一阶反应速率常数。为比较催化剂活性,用从四个一阶反应速率常数中确定的阿累尼乌斯(Arrhenius)方程计算对于538℃的反应速率常数。对于样品3所得反应速率为0.19g沸石 -1*min-1*1。
如下与纯Beta沸石,以及样品4和样品5进行比较:
把市场上的Si/Al比为150的Beta沸石压成片并筛分至125-250μm。使用与上面实施例7所述同样的方法和设备检测纯Beta沸石,以及样品4和样品5的活性。图10显示了表征催化剂活性的基于沸石质量的反应速率常数。样品3、4和5的活性比纯Beta沸石的活性高约两倍。所测150kJ/mol的相对高的活化能说明传质不影响相对小的正己烷分子的反应。
实施例14
用Brucker IFS88分光计以4cm-1的分辨率记录中孔载体和纯Beta沸石(样品3、4和5)的FTIR光谱。将所有的样品与KBr制成丸状,并置于永久连接到真空管道(最终压力≤10-5托)的石英池中,以在原位条件下热处理。
参照图11,传统上在3745cm-1处的强峰被指认为硅烷醇基团,在3610cm-1处(尤其对于Beta沸石)的非常小的峰可以被指认为它的布朗斯台德(Bronsted)酸性部位,在3725-3650cm-1区域的宽的吸收峰可以被指认为H-键合的硅烷醇或邻近路易斯酸中心的硅烷醇。通常,与单独考虑的所用Beta沸石和中孔载体相比,本发明的组合物(样品3、4、5)在3725-3650cm-1范围显示宽的吸收峰。有趣之处在于具有40wt%Beta沸石的复合物在3725-3650cm-1范围处具有最宽的羟基分布。另外,这些羟基的强度比其它样品中的更高。图11清楚地表明具有40wt%沸石的复合物与中孔载体或纯Beta沸石明显不同。
虽然不希望局限于任何特定理论,据信纳米大小的沸石与中孔基体的相互作用形成独特的第三结构,其不同于沸石和中孔材料的简单线性组合。另外,有与酸性改性相一致的羟基频率位移。这可以解释为什么40wt%沸石装料的酸性变化显著。这可能是与实施例13中正己烷裂化相关的催化活性。
实施例15
向含铝中孔基体中引入Si/Al摩尔比为14.8且表面积为606m2/g的超稳定Y(USY)。首先,在17.0份水中悬浮9.2份超稳定Y沸石,并搅拌30分钟。然后在搅拌下向上述悬浮液中添加7.7份三乙醇胺。又持续搅拌30分钟后,在搅拌下添加由21.2份TEOS和3.3份异丙醇铝组成的混合物。再搅拌30分钟后,向混合物中逐滴添加4.2份氢氧化四乙铵水溶液(35%)。搅拌约2小时后,混合物形成浓稠的不流动的凝胶。在室温静止状态下老化该凝胶24小时。然后,在空气中在100℃下干燥凝胶24小时。将经干燥的凝胶转移到高压釜中,并在180℃下水热处理2小时。最后,以1℃/min升温速率在空气中在600℃下煅烧凝胶10小时。把最终材料命名为复合物15。
图12的曲线12-a表示复合物15的XRD图,其清楚地显示了Y沸石和中孔材料的两个特征峰。曲线12-b表示Y沸石的XRD图。最终复合物中有约60wt%的Y沸石。氮吸附表明它的表面积为约689m2/g,孔容积为约0.99cm3/g。
实施例16
用复合物15制备催化裂化催化剂。通过离子交换,在搅拌下使一份复合物15与十份1N硝酸铵溶液在60℃下混合6小时,得到复合物的质子形式(H+-)。过滤、洗涤并在110℃下干燥固体材料,得到白色粉末。经过第二次离子交换后,在空气中在550℃下煅烧固体材料6小时。
使八份H+-复合物15与两份Nyacol形式的氧化铝混合,以提供催化剂。通过下列步骤干燥并煅烧混合物:(a)以5℃/min的速率升温至120℃,(b)在120℃的温度下保持一小时,(c)以5℃/min的速率升温至500℃并保持五小时,(d)以5℃/min的速率降温至150℃,和(e)然后在干燥器中使催化剂冷却至室温。催化剂含有约48%USY沸石。
然后在大气压力下以50%蒸汽在760℃下汽蒸催化剂10小时。把最终催化剂(含USY、中孔基体、和氧化铝结合剂)命名为CAT16A。
为比较裂化活性,通过与CAT16A的制备方法相同的离子交换、挤出和汽蒸来制备含48%USY和氧化铝结合剂(没有中孔基体)的命名为CAT16B的催化剂。
以甲苯中的环烷酸钒浸渍这两种催化剂的每种的一半,造成在工业条件下FCC催化剂的5000ppm钒失活。这两种经浸渍的催化剂分别被命名为CAT16AV和CAT16BV。
实施例17
以在400℃下的固定式流化床FCC单元、催化剂/油的比率2、投入生产(on stream)5分钟,使用流化活性测试(“FAI”)来评比实施例16中制备的四种催化剂的裂化活性。进料为东德克萨斯轻瓦斯油(Light East Texas Gas Oil)(LETGO),其性质见表2。催化性能的比较见表3。
表2
东德克萨斯轻瓦斯油(LETGO)的性质
              API   36.4
  蒸馏(D1160):IBP,(vol%)10%30%50%70%90%EBP溴数KV@100℃,cSt平均分子量倾点(pour point),℃CCR,wt%折射率@70℃苯胺点,℃氢,wt%硫,wt%总氮量,ppm碱性氮(Basic Nitrogen),ppm镍,ppm钒,ppm铁,ppm铜,ppm石蜡,wt%环烷芳香族化合物,wt% 235℃254℃268℃287℃307℃341℃364℃0.501.30269-70.021.44927613.30.13300450.10.10.770.0544.733.222.1
表3
催化表现
  催化剂   钒含量%   FAI%转化率   活性保持率%
  CAT16A   0   65.6
  CAT16AV   0.52   51.3   78.7
  CAT16B   0   48.3
  CAT16BV   0.53   23.8   49.3
表3中的结果说明,由于酸性中孔基体,本发明的组合物改善了对重金属的耐受性。沸石与酸性中孔基体的新型组合也提高了裂化活性。
实施例18
以与实施例15中同样的方法合成含USY沸石的、命名为复合物18的复合物。仅有的区别在于所用的化学品的量:2.9份USY沸石、28份异丙醇铝、171.4份原硅酸四乙酯、34份氢氧化四乙铵、124份三乙醇胺和138份水。图12显示了复合物18的XRD图,其清楚地显示了Y沸石和中孔材料的两个特征峰。复合物含有约5wt%的USY沸石,表面积为约694m2/g,孔容积为约1.1cm3/g。
如实施例16中所述,将复合物18离子交换为质子形式(H+-)并挤出。最后,复合物形成直径为1.6mm的圆柱形状,并含有约4wt%USY、76wt%含Al的中孔材料和20wt%Al2O3
以Ni和W浸渍使复合物18进一步功能化。在搅拌下使五(5)份硝酸镍水溶液(14wt%Ni)与8.4份偏钨酸铵溶液(39.8wt%W)混合。然后在搅拌下用9份水稀释混合物。以上述Ni/W溶液浸渍12.5份复合物18,在118℃下干燥2小时并在500℃下煅烧2小时。所得改性复合物18被命名为CAT 18,并含有4.0wt%的Ni和18.7wt%的W。它的主要特征在于大量的弱酸性中孔基体。
实施例19
本实施例说明了实施例18中的材料作为氢化裂化催化剂的用途。评价实施例18中制备的复合物18在氢化裂化中对中间馏分的选择性。以预硫化的复合物18(以常规方法)使用加氢处理的重真空瓦斯油(heavy vacuum gas oil)作为进料,在流动反应器中进行评价。在LHSV1.5千克/升·小时、总压140巴(H2S分压5.5巴,氨分压0.075巴)和气体/进料比1500NL/kg的条件下操作。进料的性质见表4。
表4
加氢处理的重真空瓦斯油的性质
  蒸馏(D1160):IBP,℃(vol%) 345
  10%30%50%70%90%EPKV@100℃,cSt碳,wt%氢,wt%总硫量,wt%总氮量,ppm   4024414725085647418.8186.713.40.00816.1
在65wt%的组分的净转化条件下,确定对中间馏分(例如,沸点范围从175℃至345℃)的选择性。出人意料地,选择性达到72.6wt%。
虽然上面的描述包含许多细节,这些细节不应理解为限制本发明的范围,而仅仅是作为本发明的优选实施方案的示例。本领域所属技术人员将能预见如实施例所定义的本发明的范围与精神内的其它许多可能性。

Claims (55)

1.一种组合物,包括:
a)至少一种有序的、结晶的和微孔的材料,其平均孔径小于15埃;
b)至少一种非结晶的无机氧化物,所述无机氧化物具有中孔或中孔和微孔,其中所述无机氧化物在X射线衍射图中具有2θ中在0.3与3度之间的峰,并且其中所述中孔为相互连接的中孔。
2.如权利要求1所述的组合物,其中所述的结晶微孔材料选自Beta沸石、Y沸石、USY、丝光沸石、L沸石、ZSM-5、ZSM-11、ZSM-12、ZSM-20、Theta-1、ZSM-23、ZSM-34、ZSM-35、ZSM-48、SSZ-32、PSH-3、MCM-22、MCM-49、MCM-56、ITQ-1、ITQ-2、ITQ-4、ITQ-21、SAPO-5、SAPO-11、SAPO-37、Breck-6和ALPO4-5组成的组。
3.如权利要求1所述的组合物,其中至少一种无机氧化物具有,以该无机氧化物的微孔和中孔为基准,占至少97体积%的中孔,400-1100m2/g的表面积,和约0.3-2.2cm3/g的总的孔容积。
4.如权利要求3所述的组合物,其中所述中孔的孔径大小范围为从约2nm至约25nm。
5.如权利要求3所述的组合物,其中所述的多孔无机氧化物为氧化硅。
6.如权利要求1所述的组合物,进一步包括至少一种金属。
7.如权利要求6所述的组合物,其中把所述金属引入沸石骨架内作为晶格原子的替代和/或使所述金属位于沸石微孔内。
8.如权利要求6所述的组合物,其中把所述金属引入无机氧化物内的至少一个中孔壁内和/或在至少一个中孔面上。
9.如权利要求6所述的组合物,其中所述金属为选自铝、钛、钒、锆、镓、硼、锰、锌、铜、金、镧、铬、钼、镍、钴、铁、钨、钯和铂组成的组的至少一种金属。
10.如权利要求1所述的组合物,其中按所述结晶微孔材料的重量计算组分的百分比范围为从约3%至约90%。
11.如权利要求1所述的组合物,其中按所述微孔沸石的重量计算组分的百分比范围为从约4%至约80%。
12.制备催化材料的方法,包括如下步骤:
a)预处理沸石;
b)使所述经预处理的沸石与水、无机氧化物或无机氧化物前体、以及至少一种形成中孔的有机化合物组合形成混合物;
c)干燥所述混合物;
d)加热所述经干燥的混合物,加热温度和加热时间足以形成中孔无机氧化物结构。
13.如权利要求12所述的方法,其中所述的沸石为层状沸石,并且预处理包括该层状沸石的分层或插层。
14.如权利要求13所述的方法,其中在允许层状沸石膨胀和分层的条件下使层状沸石与阳离子表面活性剂的碱性溶液接触,以实现所述的分层。
15.如权利要求13所述的方法,其中所述沸石的分层包括对沸石进行超声处理。
16.如权利要求12所述的方法,其中所述的预处理包括离子交换、浸渍、功能性物质的固定和/或汽蒸。
17.如权利要求12所述的方法,其中所述的形成中孔的有机化合物选自丙三醇、二甘醇、三甘醇、四甘醇、丙二醇、三乙醇胺、三异丙醇胺、淀粉、环丁砜、四亚乙基五胺和二苯甲酸二乙二醇酯组成的组。
18.如权利要求12所述的方法,其中所述的形成中孔的有机化合物的沸点为至少150℃。
19.如权利要求12所述的方法,其中通过使无机氧化物前体与水反应形成所述的无机氧化物。
20.如权利要求12所述的方法,其中保持所述混合物的pH值高于约7.0。
21.如权利要求14所述的方法,其中如下干燥所述混合物:在空气中加热混合物,加热温度和加热时间为足以去除至少大部分的水和形成中孔的有机化合物。
22.如权利要求12所述的方法,其中所述加热步骤(d)包括把经干燥的混合物加热至从约100℃至约250℃的温度。
23.如权利要求12所述的方法,进一步包括如下步骤:在从约300℃至约1000℃的温度下煅烧所述经加热干燥的混合物,煅烧时间为至少足以从中孔无机氧化物载体中除去形成中孔的有机化合物。
24.如权利要求12所述的方法,进一步包括组合金属离子与混合物,所述金属选自铝、钛、钒、锆、镓、硼、锰、锌、铜、金、镧、铬、钼、镍、钴、铁、钨、钯和铂组成的组。
25.如权利要求12所述的方法,进一步包括使结合剂与催化材料混合并使该催化材料形成预定形状的步骤。
26.制备催化材料的方法,包括如下步骤:
a)使层状结构的沸石与阳离子表面活性剂的碱性溶液在允许该层状沸石膨胀的条件下接触;
b)使所述膨胀的沸石与水、无机氧化物或无机氧化物前体、和至少一种形成中孔的有机化合物组合,以形成混合物;
c)使所述层状沸石分层;
d)干燥所述混合物;
e)加热所述经干燥的混合物,加热温度和加热时间为足以形成中孔氧化物结构。
27.如权利要求26所述的方法,其中所述的形成中孔的有机化合物选自丙三醇、二甘醇、三甘醇、四甘醇、丙二醇、三乙醇胺、三异丙醇胺、环丁砜、四亚乙基五胺和二苯甲酸二乙二醇酯组成的组。
28.如权利要求26所述的方法,其中所述的形成中孔的有机化合物的沸点为至少150℃。
29.如权利要求26所述的方法,其中通过使无机氧化物前体与水反应形成所述的无机氧化物。
30.如权利要求29所述的方法,其中所述的无机氧化物前体选自二氧化硅源和氧化铝源组成的组。
31.如权利要求26所述的方法,其中保持所述混合物的pH值高于约7.0。
32.如权利要求26所述的方法,其中如下干燥所述的混合物:在空气中加热混合物,加热温度和加热时间为足以去除至少大部分的水和形成中孔的有机化合物。
33.如权利要求26所述的方法,其中所述的加热步骤(e)包括把经干燥的混合物加热至从约100℃至约250℃的温度。
34.如权利要求26所述的方法,其中加热步骤(e)包括把经干燥的混合物加热至从约150℃至约200℃的温度。
35.如权利要求26所述的方法,进一步包括在从约300℃至约1000℃的温度下煅烧所述经加热干燥的混合物的步骤。
36.如权利要求26所述的方法,进一步包括在从约400℃至约700℃的温度下煅烧所述经加热干燥的混合物约2小时至约40小时的步骤。
37.如权利要求26所述的方法,进一步包括组合金属离子与混合物,所述金属选自铝、钛、钒、锆、镓、硼、锰、锌、铜、金、镧、铬、钼、镍、钴、铁、钨、钯和铂组成的组。
38.如权利要求26所述的方法,进一步包括使结合剂与催化材料混合并使该催化材料形成预定形状的步骤。
39.处理烃进料的方法,包括:
使含有至少一种烃组分的进料与催化有效量的催化剂在足以转化所述烃组分的反应条件下接触,所述催化剂包括至少一种在多孔无机氧化物上负载的沸石,所述多孔无机氧化物具有,以该多孔无机氧化物的微孔和中孔为基准,占至少97体积%的中孔,具有约400-1100m2/g的表面积,并具有2θ在0.3与3度之间的至少一个X射线衍射峰。
40.如权利要求39所述的方法,其中通过反应实现烃组分的转化,所述反应选自酰化、烷基化、二聚、低聚、聚合、脱蜡、水合、脱水、歧化、氢化、脱氢、芳构化、选择性氧化、异构化、加氢处理、催化裂化和氢化裂化组成的组。
41.如权利要求39所述的方法,其中所述的进料包括芳香族化合物和酰化剂,并且所述反应为酰化反应,该酰化反应在足以使所述芳香族化合物与酰化剂进行酰化的酰化反应条件下进行。
42.如权利要求41所述的方法,其中所述的酰化剂包括羧酸酐、酰卤。
43.如权利要求41所述的方法,其中所述的酰化反应条件包括温度从约20℃至约350℃、压力从约1巴至约110巴、和空速从约0.1WHSV至约20WHSV。
44.如权利要求39所述的方法,其中所述的进料包括石油馏分,并且所述反应条件为足以实现馏分的催化裂化。
45.如权利要求44所述的方法,其中所述的石油馏分包括至少一种初沸点从约200℃至约260℃且终沸点从约400℃至约455℃的组分。
46.如权利要求45所述的方法,其中所述的石油馏分进一步包括至少一种沸点高于约540℃的组分。
47.如权利要求46所述的方法,其中所述的沸点高于540℃的组分为未脱沥青的石油残渣、脱沥青的石油残渣、焦油砂沥青、页岩油、或煤油液体。
48.如权利要求44所述的方法,其中所述的反应条件包括温度从约440℃至约650℃,催化剂对进料的重量比从约3∶1至10∶1。
49.如权利要求39所述的方法,其中所述的进料包括石油馏分,并且所述反应条件为足以实现馏分的氢化裂化以生产相对较轻质的烃产品。
50.如权利要求49所述的方法,其中所述的石油馏分含有至少一种沸点高于约260℃的组分。
51.如权利要求49所述的方法,其中所述的石油馏分含有至少一种沸点高于约290℃的组分。
52.如权利要求49所述的方法,其中所述的石油馏分含有至少一种沸点高于约340℃的组分。
53.如权利要求50所述的方法,其中所述的石油馏分进一步包括至少一种组分,该组分选自未脱沥青的石油残渣、脱沥青的石油残渣、焦油砂沥青、页岩油、和煤油液体组成的组。
54.如权利要求49所述的方法,其中所述的相对较轻质的烃产品包括组分,该组分选自沸点范围为从150℃至400℃的中间馏分、柴油和润滑油基础油组成的组。
55.如权利要求39所述的方法,其中通过加氢异构化实现所述烃组分的转化,并且所述反应条件包括温度从约150℃至约500℃、压力从约1巴至约240巴、和WHSV从约0.1至约20。
CNA2004800308040A 2003-10-22 2004-09-30 新型沸石组合物,其制备方法和其催化应用 Pending CN1871065A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/691,358 US7084087B2 (en) 1999-09-07 2003-10-22 Zeolite composite, method for making and catalytic application thereof
US10/691,358 2003-10-22

Publications (1)

Publication Number Publication Date
CN1871065A true CN1871065A (zh) 2006-11-29

Family

ID=34549879

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2004800308040A Pending CN1871065A (zh) 2003-10-22 2004-09-30 新型沸石组合物,其制备方法和其催化应用

Country Status (12)

Country Link
US (3) US7084087B2 (zh)
EP (1) EP1677909A1 (zh)
JP (1) JP2007508935A (zh)
KR (1) KR20070004530A (zh)
CN (1) CN1871065A (zh)
AR (3) AR046556A1 (zh)
AU (3) AU2004285859B2 (zh)
BR (1) BRPI0415621A (zh)
RU (1) RU2323779C2 (zh)
TW (1) TW200528189A (zh)
WO (1) WO2005042148A1 (zh)
ZA (1) ZA200603144B (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102471702A (zh) * 2009-07-03 2012-05-23 英国石油国际有限公司 烯烃低聚方法
CN102548657A (zh) * 2009-09-30 2012-07-04 埃克森美孚化学专利公司 由甲烷制备芳族化合物
CN102553650A (zh) * 2010-12-17 2012-07-11 中国石油天然气股份有限公司 一种加氢裂化催化剂载体及其制备方法
CN102039200B (zh) * 2009-10-22 2012-07-18 中国石油天然气股份有限公司 一种Y-Beta/MCM-41双微孔-介孔复合分子筛及制备方法
CN102039158B (zh) * 2009-10-21 2012-08-29 中国石油化工股份有限公司 一种mcm-22/氧化硅复合物的制备方法
CN102698795A (zh) * 2012-05-22 2012-10-03 凯瑞化工股份有限公司 一种正丁烯骨架异构化催化剂及其制备方法
CN105582980A (zh) * 2014-10-22 2016-05-18 中国石油化工股份有限公司大连石油化工研究院 一种低碳烷烃异构化催化剂的制备方法
CN105984876A (zh) * 2015-01-30 2016-10-05 中国科学院大连化学物理研究所 一种金属改性sapo分子筛的制备方法
CN106673011A (zh) * 2015-11-09 2017-05-17 中国石油化工股份有限公司 Sfe结构分子筛的制造方法、sfe结构分子筛及其用途
CN107285972A (zh) * 2017-07-11 2017-10-24 江南大学 一种从合成气生产芳香族化合物的连续反应工艺
CN107519925A (zh) * 2016-06-21 2017-12-29 中国石油天然气股份有限公司 Y/Sm2O3/SBA‑3/ASA复合材料及其制备方法
CN107983402A (zh) * 2017-12-06 2018-05-04 中国科学院山西煤炭化学研究所 一种丙烷芳构化催化剂及制备方法和应用
CN108579793A (zh) * 2018-04-17 2018-09-28 连云港鹏辰特种新材料有限公司 一种基于纳米催化剂的环保高沸点芳烃溶剂的制备方法
CN108706607A (zh) * 2018-07-02 2018-10-26 南京工业大学 一种沸石分子筛、制备方法及其应用
CN110709164A (zh) * 2017-03-29 2020-01-17 埃克森美孚化学专利公司 催化剂组合物及其在芳族烷基化方法中的用途
CN110997143A (zh) * 2017-08-08 2020-04-10 巴斯夫欧洲公司 包含混合金属氧化物和含具有骨架类型cha和碱土金属的沸石材料的模制品的组合物
CN112023919A (zh) * 2020-07-30 2020-12-04 浙江恒澜科技有限公司 用于制备高顺反比2,2,4,4-四甲基-1,3-环丁二醇的催化剂、装置及方法
CN112843766A (zh) * 2020-12-29 2021-05-28 复榆(张家港)新材料科技有限公司 变压吸附分离溶剂水二元共沸物的吸附分离工艺
CN112934258A (zh) * 2019-11-26 2021-06-11 国家能源投资集团有限责任公司 复合分子筛及其制备方法和加氢异构催化剂及费托合成油加氢异构的方法
CN110759357B (zh) * 2018-07-25 2021-08-27 中国石油天然气股份有限公司 一种zsm-35/zsm-5共晶分子筛的合成方法
CN113967538A (zh) * 2021-11-30 2022-01-25 郑州轻工业大学 一种有机烟雾多污染物深度净化装置及应用
CN115650251A (zh) * 2022-11-02 2023-01-31 吉林大学 一种mor沸石分子筛整料及其制备方法和应用

Families Citing this family (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7084087B2 (en) * 1999-09-07 2006-08-01 Abb Lummus Global Inc. Zeolite composite, method for making and catalytic application thereof
US7985400B2 (en) * 2004-01-26 2011-07-26 Lummus Technology Inc. Method for making mesoporous or combined mesoporous and microporous inorganic oxides
US7589041B2 (en) 2004-04-23 2009-09-15 Massachusetts Institute Of Technology Mesostructured zeolitic materials, and methods of making and using the same
JP2008512231A (ja) * 2004-09-07 2008-04-24 エイビービー ラマス グローバル インコーポレイテッド ゼオライト及び高メソ細孔性を有する水素化触媒
US7538065B2 (en) * 2004-09-08 2009-05-26 International Business Machines Corporation Noble metal-containing catalyst containing a specific ratio of silica to aluminum in the framework
CN1332761C (zh) * 2005-07-13 2007-08-22 清华大学 覆载型硅磷铝分子筛的制备方法
KR100663111B1 (ko) 2005-08-23 2007-01-02 한국과학기술연구원 인 이온교환용 메조 기공성 지르코늄 황산염 구조체 및 그제조 방법
US8299312B2 (en) * 2005-10-28 2012-10-30 Neste Oil Oyj Process for dimerizing olefins
FR2894851B1 (fr) * 2005-12-15 2009-02-06 Total France Sa Composition catalytique et procede de craquage catalytique en lit fluidise utilisant une telle composition
WO2007083684A1 (ja) * 2006-01-21 2007-07-26 Tokyo Institute Of Technology 触媒およびそれを用いるオレフィンの製造方法
US7569510B2 (en) * 2006-02-27 2009-08-04 Philip Morris Usa Inc. Catalysts to reduce carbon monoxide such as in the mainstream smoke of a cigarette
JP5925406B2 (ja) * 2006-03-31 2016-06-01 Jxエネルギー株式会社 水素化分解触媒の製造方法および燃料基材の製造方法
CN100413784C (zh) * 2006-04-06 2008-08-27 辽宁石油化工大学 一种y沸石与mapo-5双结构分子筛的合成方法
CN100406416C (zh) * 2006-07-03 2008-07-30 中国石油化工集团公司 一种制取乙烯和丙烯的方法及用于该方法的催化剂
CN101134172B (zh) * 2006-08-31 2010-10-27 中国石油化工股份有限公司 一种烃类转化催化剂
WO2008048427A1 (en) 2006-10-17 2008-04-24 Abb Lummus Global, Inc. Bimetallic alkylation catalysts
FR2909012B1 (fr) 2006-11-23 2009-05-08 Inst Francais Du Petrole Catalyseur a base d'un materiau a porosite hierarchisee comprenant du silicium et procede d'hydrocraquage/ hydroconversion et d'hydrotraitement de charges hydrocarbonees.
ES2319007B1 (es) * 2006-12-07 2010-02-16 Rive Technology, Inc. Metodos para fabricar materiales zeoliticos mesoestructurados.
US7919421B2 (en) * 2006-12-21 2011-04-05 Exxonmobil Chemical Patents Inc. Catalyst composition, the method of manufacturing and the process of use thereof in aromatics alkylation
US7381676B1 (en) * 2007-01-16 2008-06-03 Exxonmobil Chemical Patents Inc. Catalyst composition and its use thereof in aromatics alkylation
CA2675264C (en) * 2007-02-09 2013-04-02 Exxonmobil Chemical Patents Inc. Improved alkylaromatic production process
EP3626329B1 (en) * 2007-04-26 2021-10-27 Johnson Matthey Public Limited Company Exhaust system comprising copper/zsm-34 zeolite scr catalyst and method of converting nitrogen oxides
US7790940B2 (en) 2007-06-21 2010-09-07 Exxonmobil Chemical Patents Inc. Liquid phase alkylation process
US8816145B2 (en) 2007-06-21 2014-08-26 Exxonmobil Chemical Patents Inc. Liquid phase alkylation process
US20090048094A1 (en) * 2007-08-13 2009-02-19 Zbigniew Ring Sulfur-resistant noble metal nano-particles encapsulated in a zeolite cage as a catalyst enhancer
US20090093662A1 (en) * 2007-10-08 2009-04-09 Whitchurch Patrick C Aromatic isomerization catalyst
US7629283B2 (en) * 2007-10-08 2009-12-08 Uop Llc Aromatic isomerization catalyst and isomerization process
US8206498B2 (en) 2007-10-25 2012-06-26 Rive Technology, Inc. Methods of recovery of pore-forming agents for mesostructured materials
WO2009108166A2 (en) * 2007-11-05 2009-09-03 Regents Of The University Of Minnesota Layered zeolite materials and methods related thereto
CN101514018B (zh) * 2008-02-20 2011-11-30 中国石油化工股份有限公司 Zsm-5/丝光沸石/mcm-56三相共生分子筛及其合成方法
JPWO2009136547A1 (ja) * 2008-05-07 2011-09-08 出光興産株式会社 アダマンタン構造を有する化合物の製造方法
ITMI20081036A1 (it) * 2008-06-06 2009-12-07 Eni Spa Processo di cracking e catalizzatori migliorati per detto processo
JP5221659B2 (ja) * 2008-07-23 2013-06-26 三井化学株式会社 エチレンのオリゴマー化触媒およびその用途
US8653315B2 (en) 2008-07-30 2014-02-18 King Fahd University Of Petroleum And Minerals Multiple zeolite catalyst and method of using the same for toluene disproportionation
US20100029467A1 (en) * 2008-07-30 2010-02-04 Tomoyuki Inui Multiple zeolite catalyst
US8912109B2 (en) * 2008-12-29 2014-12-16 Fina Technology, Inc. Catalyst with an ion-modified binder
US8231778B2 (en) * 2008-12-31 2012-07-31 Uop Llc Hydrocracking processes yielding a hydroisomerized product for lube base stocks
US8524625B2 (en) 2009-01-19 2013-09-03 Rive Technology, Inc. Compositions and methods for improving the hydrothermal stability of mesostructured zeolites by rare earth ion exchange
CN102333728A (zh) 2009-01-19 2012-01-25 里福技术股份有限公司 在低Si/Al沸石中引入介孔
CN102413929A (zh) 2009-04-29 2012-04-11 Pq公司 沸石y
DK2440328T3 (en) 2009-06-12 2016-11-28 Albemarle Europe Sprl SAPO molecular sieve and preparation and uses thereof
US8685875B2 (en) 2009-10-20 2014-04-01 Rive Technology, Inc. Methods for enhancing the mesoporosity of zeolite-containing materials
US8212099B2 (en) * 2009-11-05 2012-07-03 Chevron U.S.A. Inc. N-paraffin selective hydroconversion process using borosilicate ZSM-48 molecular sieves
US8142757B2 (en) * 2009-11-05 2012-03-27 Chevron U.S.A. Inc. Method for making borosilicate ZSM-48 molecular sieves
US8685231B2 (en) 2009-11-27 2014-04-01 Shell Oil Company Process for conversion of paraffinic feedstock
TW201139336A (en) * 2010-02-05 2011-11-16 Fina Technology Styrene production processes and catalysts for use therein
JP5468957B2 (ja) * 2010-03-29 2014-04-09 Jx日鉱日石エネルギー株式会社 水素化異性化触媒、その製造方法、炭化水素油の脱蝋方法、炭化水素の製造方法及び潤滑油基油の製造方法
BR112012029308B1 (pt) 2010-05-20 2018-07-03 Exxonmobil Chemical Patents Inc. Processo de alquilação aperfeiçoado
US8877669B2 (en) 2010-08-02 2014-11-04 Basf Corporation Hydroisomerization catalysts for biological feedstocks
RU2563461C2 (ru) 2010-08-30 2015-09-20 Эксонмобил Кемикэл Пейтентс Инк. Улучшенный способ алкилирования
US8557106B2 (en) * 2010-09-30 2013-10-15 Exxonmobil Research And Engineering Company Hydrocracking process selective for improved distillate and improved lube yield and properties
CN103180042B (zh) * 2010-10-15 2015-07-22 埃克森美孚化学专利公司 选择改进的催化剂组合物和使用所述催化剂组合物的烃转化方法
CN101973560B (zh) * 2010-10-19 2012-05-23 大连理工大学 一种itq-2分子筛的制备方法
US8791040B2 (en) * 2010-11-03 2014-07-29 Fina Technology, Inc. Catalysts containing nano-materials and methods of making and using same
CN102008976B (zh) * 2010-11-09 2013-07-31 中国海洋石油总公司 一种脱烯烃催化剂的制备方法
US9522390B2 (en) * 2010-12-10 2016-12-20 The Regents Of The University Of California Oxide materials and synthesis by fluoride/chloride anion promoted exfoliation
US8778824B2 (en) 2011-03-07 2014-07-15 Exxonmobil Research And Engineering Company Aggregates of small crystallites of zeolite Y
US8778171B2 (en) 2011-07-27 2014-07-15 Exxonmobil Research And Engineering Company Hydrocracking catalysts containing stabilized aggregates of small crystallites of zeolite Y associated hydrocarbon conversion processes
US8882993B2 (en) 2011-03-07 2014-11-11 Exxonmobil Research And Engineering Company Stabilized aggregates of small crystallites of zeolite Y
US8852326B2 (en) 2011-03-07 2014-10-07 Exxonmobil Research And Engineering Company Aggregates of small particles of synthetic faujasite zeolite
EP2694438A4 (en) * 2011-04-08 2014-11-05 Rive Technology Inc MESOPOROUS ZEOLITE WITH MODIFIED FRAME
JP5750300B2 (ja) * 2011-04-28 2015-07-22 日揮触媒化成株式会社 新規ヘテロ接合多孔性結晶体の合成方法および新規ヘテロ接合多孔性結晶体
CN102910641B (zh) * 2011-08-01 2015-04-01 中国石油化工股份有限公司 具有规整介孔结构Y-Beta复合分子筛及其合成方法
RU2487112C2 (ru) * 2011-08-22 2013-07-10 Учреждение Российской Академии Наук Институт Нефтехимии И Катализа Ран СПОСОБ ПОЛУЧЕНИЯ ОЛИГОМЕРОВ ВЫСШИХ ЛИНЕЙНЫХ α-ОЛЕФИНОВ
RU2473385C1 (ru) * 2011-08-25 2013-01-27 Окрытое акционерное общество "Газпромнефть-Омский НПЗ" Микросферический катализатор для крекинга нефтяных фракций и способ его приготовления
RU2473384C1 (ru) * 2011-08-25 2013-01-27 Открытое акционерное общество "Газпромнефть-Омский НПЗ" Микросферический бицеолитный катализатор для повышения октанового числа бензина крекинга вакуумного газойля и способ его приготовления
RU2472586C1 (ru) * 2011-08-26 2013-01-20 Открытое акционерное общество "Газпромнефть-Омский НПЗ" Микросферический катализатор для снижения содержания серы в бензине крекинга и способ его приготовления
KR101701578B1 (ko) 2011-09-16 2017-02-01 엑손모빌 케미칼 패턴츠 인코포레이티드 개선된 액체상 알킬화 방법
US20130172649A1 (en) * 2011-12-30 2013-07-04 Sivadinarayana Chinta Supported nano sized zeolite catalyst for alkylation reactions
CN103930369A (zh) 2012-01-13 2014-07-16 瑞弗科技有限公司 低硅沸石的中孔隙率的引入
US9376324B2 (en) 2012-01-13 2016-06-28 Rive Technology, Inc. Introduction of mesoporosity into zeolite materials with sequential acid, surfactant, and base treatment
US10286391B2 (en) * 2012-02-17 2019-05-14 Inaeris Technologies, Llc Catalyst system having meso and macro hierarchical pore structure
CN103373888A (zh) * 2012-04-24 2013-10-30 中国石油天然气股份有限公司 一种磺酸基介孔有机硅催化剂的应用
US20140007493A1 (en) * 2012-07-06 2014-01-09 Kior, Inc. Hybrid silica and alumina as catalyst matrix and/or binder in biomass conversion catalysts and bio-oil upgrading
US9914672B2 (en) 2012-10-19 2018-03-13 Lummus Technology Inc. Conversion of alcohols to distillate fuels
KR101451902B1 (ko) * 2012-11-26 2014-10-22 한국과학기술원 메조기공을 갖는 mre 구조의 제올라이트 또는 유사 mre 제올라이트 물질 및 그의 제조 방법
US8765660B1 (en) 2013-03-08 2014-07-01 Rive Technology, Inc. Separation of surfactants from polar solids
WO2014164406A1 (en) * 2013-03-13 2014-10-09 Basf Corporation Hydroisomerization catalysts based on fe containing molecular sieves
CN105050987A (zh) * 2013-03-19 2015-11-11 弗纳技术股份有限公司 形成c5二烯的方法
CN104117388B (zh) * 2013-04-23 2016-06-15 上海碧科清洁能源技术有限公司 一种sapo-11/zsm-5混合分子筛催化剂及其制备和应用
CA2913922A1 (en) * 2013-05-31 2014-12-04 The Regents Of The University Of California Delamination of borosilicate layered zeolite
BR112016000038B1 (pt) * 2013-07-04 2021-03-16 Total Research & Technology Feluy composições catalisadoras compreendendo cristais de peneiras moleculares de tamanho pequeno depositados em um material poroso
CN104250010B (zh) * 2013-07-22 2016-08-24 中国海洋石油总公司 一种含两种改性分子筛的硅铝载体及其制备方法与应用
CN103551186B (zh) * 2013-07-22 2015-07-15 中国海洋石油总公司 一种含复合分子筛的中油型加氢裂化催化剂及其制备方法和应用
US9790143B2 (en) 2013-11-01 2017-10-17 The Regents Of The University Of California Delaminated zeolite catalyzed aromatic alkylation
US9662640B2 (en) 2013-12-27 2017-05-30 Rive Technology, Inc. Introducing mesoporosity into zeolite materials with a modified acid pre-treatment step
WO2015179735A1 (en) 2014-05-22 2015-11-26 Saudi Arabian Oil Company Framework substituted zeolite catalyst for fluidized catalytic cracking and method for fluidized catalytic cracking
CN105293521A (zh) * 2014-07-11 2016-02-03 中国石油化工股份有限公司 制备高堆积密度球状zsm-5沸石的方法
CN105582986B (zh) * 2014-10-22 2017-10-27 中国石油化工股份有限公司大连石油化工研究院 一种c8芳烃异构化催化剂的制备方法
CN105582984B (zh) * 2014-10-22 2017-10-27 中国石油化工股份有限公司 一种乙苯脱烷基催化剂的制备方法
CN105582983B (zh) * 2014-10-22 2017-10-27 中国石油化工股份有限公司 一种石蜡烃择型异构化催化剂的制备方法
CN105521811B (zh) * 2014-10-22 2017-08-22 中国石油化工股份有限公司大连石油化工研究院 一种石脑油异构化催化剂的制备方法
CN105521816B (zh) * 2014-10-22 2017-10-03 中国石油化工股份有限公司大连石油化工研究院 一种石蜡烃择型异构化催化剂的制备方法
CN107001056B (zh) 2014-12-11 2019-04-02 瑞弗科技有限公司 以减少的处理制备介孔沸石
ES2574500B1 (es) 2014-12-17 2017-03-31 Consejo Superior De Investigaciones Científicas (Csic) Síntesis de la zeolita con la estructura cristalina CHA, procedimiento de síntesis y su uso en aplicaciones catalíticas
US10626019B2 (en) 2014-12-30 2020-04-21 W. R. Grace & Co.-Conn. Methods for preparing zeolites with surfactant-templated mesoporosity and tunable aluminum content
JP5901817B2 (ja) * 2015-04-06 2016-04-13 日揮触媒化成株式会社 重質炭化水素油の接触分解、水素化分解触媒用ヘテロ接合多孔性結晶体
RU2592548C1 (ru) * 2015-06-24 2016-07-27 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский государственный университет нефти и газа имени И.М. Губкина" Способ переработки тяжелого углеводородного сырья
JP6903674B2 (ja) 2015-10-21 2021-07-14 サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company カチオン性ポリマー及び多孔質材料
CA3008277A1 (en) * 2015-12-21 2017-06-29 Exxonmobil Research And Engineering Company Trim dewaxing of distillate fuel
JP6733501B2 (ja) * 2016-01-18 2020-08-05 東ソー株式会社 芳香族化合物製造触媒及び芳香族化合物の製造方法
RU2613516C1 (ru) * 2016-01-29 2017-03-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" Способ получения композита на основе микропористого цеолита и мезопористого оксида кремния
CN107758688B (zh) * 2016-08-23 2020-08-07 中国石油化工股份有限公司 不同致密性的纳米聚集盘状丝光沸石
EP3526183A4 (en) * 2016-10-14 2020-06-17 GEVO, Inc. CONVERSION OF BLENDS OF C2-C8 OLEFINES INTO NOZZLE FUEL AND / OR DIESEL FUEL IN HIGH YIELD FROM BIOBASED ALCOHOLS
CN106582809B (zh) * 2016-12-22 2019-08-30 红宝丽集团股份有限公司 一种烯烃环氧化催化剂及其制备方法
CN108262059A (zh) * 2016-12-30 2018-07-10 中国石油天然气股份有限公司 一种催化裂化助催化剂
US10526546B2 (en) 2017-02-23 2020-01-07 Saudi Arabian Oil Company Systems and methods for cracking hydrocarbon streams utilizing cracking catalysts
US10494574B2 (en) 2017-02-23 2019-12-03 Saudi Arabian Oil Company Systems and methods for cracking hydrocarbon streams such as crude oils utilizing catalysts which include zeolite mixtures
WO2018183009A1 (en) * 2017-03-29 2018-10-04 Exxonmobil Chemical Patents Inc. Catalyst compositions and their use in aromatic alkylation processes
RU2762825C2 (ru) 2017-03-29 2021-12-23 Эксонмобил Кемикэл Пейтентс Инк. Способы удаления примесей из потока углеводородов и их применение в способах алкилирования ароматических соединений
TWI681942B (zh) * 2017-03-29 2020-01-11 美商艾克頌美孚化學專利股份有限公司 觸媒組成物及其用於芳族化合物烷基化方法之用途
GB201705241D0 (en) * 2017-03-31 2017-05-17 Johnson Matthey Catalysts (Germany) Gmbh Catalyst composition
US10661260B2 (en) 2017-06-15 2020-05-26 King Fahd University Of Petroleum And Minerals Zeolite composite catalysts for conversion of heavy reformate to xylenes
US11097262B2 (en) 2017-06-15 2021-08-24 Saudi Arabian Oil Company Composite hierarchical zeolite catalyst for heavy reformate conversion to xylenes
PL235544B1 (pl) 2017-06-28 2020-09-07 Politechnika Krakowska Im Tadeusza Kosciuszki Sposób otrzymywania katalizatora zeolitowego zawierającego cząstki miedzi lub jej tlenku, zastosowanie ultradźwięków w sposobie wytwarzania katalizatora zeolitowego oraz jego zastosowanie w reakcji selektywnej katalitycznej redukcji SCR
CN109420521A (zh) * 2017-09-04 2019-03-05 中国科学院大连化学物理研究所 一种用于费托合成反应的催化剂及其制备和应用
CN109704355A (zh) * 2017-10-25 2019-05-03 北京思达安新材料科技有限公司 一种多级孔沸石及制备方法
CN109701609B (zh) * 2017-10-26 2021-11-30 中国石油化工股份有限公司 Aei复合分子筛催化剂、制备方法及其应用
CN109806908A (zh) * 2017-11-20 2019-05-28 中国科学院大连化学物理研究所 一种生物质基合成气制液体燃料的催化剂及其制备和应用
CN109876866B (zh) * 2017-12-06 2022-03-08 中国石油化工股份有限公司 一种用于芳香醛合成芳香胺的催化剂及其制备方法
RU2705574C1 (ru) * 2018-02-27 2019-11-08 Индийская Нефтяная Корпорация Лимитэд Каталитическая композиция для превращения алканов в алкены и способ ее получения
CN108212204B (zh) * 2018-03-23 2021-02-09 安徽理工大学 一种微波辅助甲烷直接制备高碳烯烃的催化剂及催化工艺
US11684910B2 (en) 2018-07-16 2023-06-27 Battelle Energy Ailiance, LLC Composite media for non-oxidative ethane dehydrogenation, and related ethane activation systems and method of processing an ethane-containing stream
US11667536B2 (en) 2018-08-24 2023-06-06 Umicore Ag & Co. Kg Method for the preparation of a molecular sieve of the CHA-type
US10807078B2 (en) * 2018-11-19 2020-10-20 Saudi Arabian Oil Company Method of synthesis of nano-sized beta zeolites containing mesopores and uses thereof
CN110156554B (zh) * 2019-05-21 2020-09-11 浙江大学 一种促进烃类原料热裂解的方法
CN110127718A (zh) * 2019-05-28 2019-08-16 华东师范大学 一种zsm-35/zsm-5复合分子筛及其制备方法
RU2707179C1 (ru) * 2019-08-02 2019-11-25 федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" Бицеолитный катализатор изомеризации ароматических углеводородов с-8
CN112320815B (zh) * 2019-08-05 2023-05-30 中国石油化工股份有限公司 巯基功能化mcm分子筛的制备方法和应用
US11185850B2 (en) 2019-12-02 2021-11-30 Saudi Arabian Oil Company Dual functional composite catalyst for olefin metathesis and cracking
US11078431B2 (en) 2019-12-16 2021-08-03 Saudi Arabian Oil Company Modified ultra-stable Y (USY) zeolite catalyst for deolefinization of hydrocarbon streams
US10981160B1 (en) 2019-12-19 2021-04-20 Saudi Arabian Oil Company Composite hierarchical zeolite catalyst for heavy reformate conversion to xylenes
US11098256B2 (en) 2020-01-08 2021-08-24 Saudi Arabian Oil Company Modified ultra-stable Y (USY) zeolite catalyst for improving cold flow properties of distillates
BR112022014661A2 (pt) * 2020-02-18 2022-09-20 Symrise Ag Método para produzir limoneno e composição contendo limoneno
US11446645B2 (en) 2020-07-02 2022-09-20 Saudi Arabian Oil Company FCC catalyst compositions for fluid catalytic cracking and methods of using the FCC catalyst compositions
US11213810B1 (en) 2020-07-06 2022-01-04 Saudi Arabian Oil Company Method of producing a cracking catalyst
US11278873B2 (en) 2020-07-16 2022-03-22 Saudi Arabian Oil Company Method of producing an aromatization catalyst
US11274068B2 (en) 2020-07-23 2022-03-15 Saudi Arabian Oil Company Process for interconversion of olefins with modified beta zeolite
US11332678B2 (en) 2020-07-23 2022-05-17 Saudi Arabian Oil Company Processing of paraffinic naphtha with modified USY zeolite dehydrogenation catalyst
US11420192B2 (en) 2020-07-28 2022-08-23 Saudi Arabian Oil Company Hydrocracking catalysts containing rare earth containing post-modified USY zeolite, method for preparing hydrocracking catalysts, and methods for hydrocracking hydrocarbon oil with hydrocracking catalysts
US11154845B1 (en) 2020-07-28 2021-10-26 Saudi Arabian Oil Company Hydrocracking catalysts containing USY and beta zeolites for hydrocarbon oil and method for hydrocracking hydrocarbon oil with hydrocracking catalysts
US11142703B1 (en) 2020-08-05 2021-10-12 Saudi Arabian Oil Company Fluid catalytic cracking with catalyst system containing modified beta zeolite additive
CN114073930A (zh) * 2020-08-19 2022-02-22 同济大学 一种沸石/介孔二氧化硅复合微球材料及制备方法
US11484869B2 (en) 2020-12-09 2022-11-01 Saudi Arabian Oil Company Modified ultra-stable Y (USY) zeolite catalyst for dealkylation of aromatics
EP4314204A1 (en) * 2021-03-29 2024-02-07 Chevron U.S.A. Inc. Ring-opening processes and catalysts for hydrocarbon species comprising aromatic and cycloparaffinic rings
CN113751056B (zh) * 2021-10-15 2022-07-26 河南大学 用于催化烃类裂解制取丙烯的分子筛催化剂及其制备方法和用途
CN116062766B (zh) * 2021-10-29 2024-05-07 中国石油化工股份有限公司 一种改性zsm-5分子筛及其制备方法和应用
KR102641139B1 (ko) * 2021-11-12 2024-02-27 한국화학연구원 휘발성 유기화합물 흡착-산화용 제올라이트 복합체 제조방법
US11618858B1 (en) 2021-12-06 2023-04-04 Saudi Arabian Oil Company Hydrodearylation catalysts for aromatic bottoms oil, method for producing hydrodearylation catalysts, and method for hydrodearylating aromatic bottoms oil with hydrodearylation catalysts
CN114917865B (zh) * 2022-06-06 2023-08-22 中海油天津化工研究设计院有限公司 一种芳烃吸附剂及其在增产乙烯裂解原料中的应用
US11725149B1 (en) 2022-06-13 2023-08-15 Saudi Arabian Oil Company Fluidized catalytic cracking processes and additives for improving gasoline yield and quality
CN115532307B (zh) * 2022-09-28 2023-09-01 河北工业大学 一种多级孔分子筛负载金属氧化物复合材料及其制备方法和应用
CN115970750A (zh) * 2022-11-30 2023-04-18 嘉庚创新实验室 一种沸石分子筛基催化剂及其制备方法,以及油脂一步加氢异构制备生物基柴油的方法

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2073294A (en) * 1935-01-17 1937-03-09 Caillau Marcel Urbain Hose clamp
US3912920A (en) * 1974-02-06 1975-10-14 Josuke Kubota Polarized light illumination device
US4963448A (en) * 1987-08-31 1990-10-16 Agency Of Industrial Science & Technology Photorecording element and liquid crystal cell comprising the same
US4988659A (en) * 1988-11-23 1991-01-29 Chevron Research Company Silica/alumina cogel catalysts
US4974941A (en) * 1989-03-08 1990-12-04 Hercules Incorporated Process of aligning and realigning liquid crystal media
US4899659A (en) * 1989-06-30 1990-02-13 The United States Of America As Represented By The Secretary Of The Navy Safe and arm device
JPH0336527A (ja) * 1989-07-03 1991-02-18 Agency Of Ind Science & Technol 光学素子
US5057296A (en) 1990-12-10 1991-10-15 Mobil Oil Corp. Method for synthesizing mesoporous crystalline material
US5108725A (en) 1990-01-25 1992-04-28 Mobil Oil Corp. Synthesis of mesoporous crystalline material
US5264203A (en) 1990-01-25 1993-11-23 Mobil Oil Corporation Synthetic mesoporous crystalline materials
US5110572A (en) 1990-01-25 1992-05-05 Mobil Oil Corp. Synthesis of mesoporous crystalline material using organometallic reactants
US5102643A (en) 1990-01-25 1992-04-07 Mobil Oil Corp. Composition of synthetic porous crystalline material, its synthesis
US5021178A (en) * 1990-02-07 1991-06-04 Mobil Oil Corporation Acylation of lower olefin oligomers
GB9013859D0 (en) * 1990-06-21 1990-08-15 Ici Plc Zeolites
EP0492216B1 (de) * 1990-12-21 1995-10-11 F. Hoffmann-La Roche Ag Optisch nichtlineare Polymerschichten
US5191148A (en) 1991-05-06 1993-03-02 Mobil Oil Corporation Isoparaffin/olefin alkylation
US5191134A (en) 1991-07-18 1993-03-02 Mobil Oil Corporation Aromatics alkylation process
SG50596A1 (en) * 1991-07-26 2001-01-16 Rolic Ag Photo-oriented polymer networks and method of their manufacture
EP0525473B1 (de) * 1991-07-26 1998-05-06 Rolic AG Flüssigkristall-Zelle
US5221648A (en) * 1991-12-30 1993-06-22 Exxon Research & Engineering Company Highly attrition resistant mesoporous catalytic cracking catalysts
US5453862A (en) * 1992-09-04 1995-09-26 Stanley Electric Co., Ltd. Rubbing-free (chiral) nematic liquid crystal display
JP2572537B2 (ja) * 1993-02-10 1997-01-16 スタンレー電気株式会社 液晶表示装置とその製造方法
SG64893A1 (en) * 1993-02-17 1999-08-17 Rolic Ag Orientating layers for liquid crystals
DE59403063D1 (de) * 1993-02-17 1997-07-17 Hoffmann La Roche Optisches Bauelement
JP2777056B2 (ja) * 1993-05-20 1998-07-16 エルジー電子株式会社 液晶セルの配向物質
JP2693368B2 (ja) * 1993-06-29 1997-12-24 スタンレー電気株式会社 液晶表示素子とその製造方法
US5601798A (en) * 1993-09-07 1997-02-11 Pq Corporation Process for preparing zeolite Y with increased mesopore volume
KR970000356B1 (ko) * 1993-09-18 1997-01-08 엘지전자 주식회사 액정표시소자(lcd)용 광 폴리머 배향막 형성방법
DE69528315T2 (de) * 1994-01-10 2003-05-22 Honeywell, Inc. Multidomänen-Farbfiltersubstrat
US5712696A (en) * 1994-02-17 1998-01-27 Stanley Electric, Co., Ltd. Manufacture of LCD device by transferring the orientation state from a parent substrate to a child substrate
JP3075917B2 (ja) * 1994-05-27 2000-08-14 シャープ株式会社 液晶表示装置、その製造方法およびその製造装置
IT1270230B (it) * 1994-06-16 1997-04-29 Enichem Sintesi Composizione catalitica e processo per l'alchilazione di composti aromatici
US5840264A (en) 1994-08-22 1998-11-24 Board Of Trustees Operating Michigan State University Crystalline inorganic oxide compositions prepared by neutral templating route
JP2708382B2 (ja) * 1994-10-14 1998-02-04 インターナショナル・ビジネス・マシーンズ・コーポレイション 液晶表示装置用基板の製造方法、液晶表示装置の製造方法及び液晶表示装置
US5578351A (en) * 1995-01-20 1996-11-26 Geo-Centers, Inc. Liquid crystal composition and alignment layer
JP3599815B2 (ja) * 1995-03-15 2004-12-08 アルプス電気株式会社 紫外線架橋化合物、液晶表示素子用配向膜及び液晶表示素子
US5786041A (en) * 1995-06-07 1998-07-28 International Business Machines Corporation Alignment film, a method for producing the alignment film and a liquid crystal display device using the alignment film
GB9519860D0 (en) * 1995-09-29 1995-11-29 Secr Defence Polymers for liquid crystal alignment
JPH09127525A (ja) * 1995-11-06 1997-05-16 Sharp Corp 液晶表示素子およびその製造方法
KR0179115B1 (ko) * 1995-11-20 1999-05-01 구자홍 액정배향용 감광성물질 및 이를 이용한 액정표시장치
US5853566A (en) * 1995-11-28 1998-12-29 Shell Oil Company Zeolite-beta containing catalyst compositions and their use in hydrocarbon conversion processes for producing low boiling point materials
KR0181782B1 (ko) * 1995-12-08 1999-05-01 구자홍 광을 이용한 벤드배향된 액정셀 제조방법
KR0169016B1 (ko) * 1995-12-29 1999-03-20 구자홍 광을 이용한 트위스트네메틱 액정셀 제조방법
DE19703682B9 (de) * 1996-02-01 2006-11-23 Lg. Philips Lcd Co., Ltd. UV-Licht-Bestrahlvorrichtung für Photoausrichtungsverfahren und Bestrahlverfahren unter Verwendung derselben
US5731405A (en) * 1996-03-29 1998-03-24 Alliant Techsystems Inc. Process and materials for inducing pre-tilt in liquid crystals and liquid crystal displays
US5849258A (en) * 1996-06-06 1998-12-15 Intevep, S.A. Material with microporous crystalline walls defining a narrow size distribution of mesopores, and process for preparing same
KR100247137B1 (ko) * 1996-07-29 2000-03-15 구본준 멀티도메인 액정셀의 제조방법
KR100191787B1 (ko) * 1996-09-20 1999-06-15 구자홍 광시야각을 가지는 액정셀의 제조방법
KR100201841B1 (ko) * 1996-11-29 1999-06-15 구자홍 액정셀 제조방법
IT1290846B1 (it) 1996-12-12 1998-12-14 Enichem Spa Composizione catalitica e processo per l'alchilazione e/o la transalchilazione di composti aromatici
US6133186A (en) 1997-03-06 2000-10-17 Shell Oil Company Process for the preparation of a catalyst composition
US7084087B2 (en) * 1999-09-07 2006-08-01 Abb Lummus Global Inc. Zeolite composite, method for making and catalytic application thereof
US6762143B2 (en) * 1999-09-07 2004-07-13 Abb Lummus Global Inc. Catalyst containing microporous zeolite in mesoporous support
US6814950B1 (en) * 1999-09-07 2004-11-09 Abb Lummus Global Inc. Inorganic oxides with mesoporosity or combined meso-and microporosity and process for the preparation thereof
BR0013787B1 (pt) * 1999-09-07 2010-11-16 processo para produção de um óxido inorgánico que contenha micro e mesoporos.
JP4810037B2 (ja) 1999-09-20 2011-11-09 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス 芳香族化合物のアルキル化
FR2802120B1 (fr) * 1999-12-14 2002-02-01 Inst Francais Du Petrole Solide silicoaluminate micro et mesoporeux, procede de preparation, utilisation comme catalyseur et en conversion d'hydrocarbures
US6346140B2 (en) 2000-03-31 2002-02-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Porous solid for gas adsorption separation and gas adsorption separation process employing it
US6843977B2 (en) 2000-05-25 2005-01-18 Board Of Trustees Of Michigan State University Ultrastable porous aluminosilicate structures and compositions derived therefrom

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102471702A (zh) * 2009-07-03 2012-05-23 英国石油国际有限公司 烯烃低聚方法
CN102471702B (zh) * 2009-07-03 2015-11-25 英国石油国际有限公司 烯烃低聚方法
CN102548657A (zh) * 2009-09-30 2012-07-04 埃克森美孚化学专利公司 由甲烷制备芳族化合物
CN102548657B (zh) * 2009-09-30 2015-01-21 埃克森美孚化学专利公司 由甲烷制备芳族化合物
CN102039158B (zh) * 2009-10-21 2012-08-29 中国石油化工股份有限公司 一种mcm-22/氧化硅复合物的制备方法
CN102039200B (zh) * 2009-10-22 2012-07-18 中国石油天然气股份有限公司 一种Y-Beta/MCM-41双微孔-介孔复合分子筛及制备方法
CN102553650A (zh) * 2010-12-17 2012-07-11 中国石油天然气股份有限公司 一种加氢裂化催化剂载体及其制备方法
CN102553650B (zh) * 2010-12-17 2013-07-31 中国石油天然气股份有限公司 一种加氢裂化催化剂载体及其制备方法
CN102698795A (zh) * 2012-05-22 2012-10-03 凯瑞化工股份有限公司 一种正丁烯骨架异构化催化剂及其制备方法
CN105582980A (zh) * 2014-10-22 2016-05-18 中国石油化工股份有限公司大连石油化工研究院 一种低碳烷烃异构化催化剂的制备方法
CN105984876A (zh) * 2015-01-30 2016-10-05 中国科学院大连化学物理研究所 一种金属改性sapo分子筛的制备方法
CN106673011A (zh) * 2015-11-09 2017-05-17 中国石油化工股份有限公司 Sfe结构分子筛的制造方法、sfe结构分子筛及其用途
CN107519925A (zh) * 2016-06-21 2017-12-29 中国石油天然气股份有限公司 Y/Sm2O3/SBA‑3/ASA复合材料及其制备方法
CN107519925B (zh) * 2016-06-21 2019-10-11 中国石油天然气股份有限公司 Y/Sm2O3/SBA-3/ASA复合材料及其制备方法
CN110709164A (zh) * 2017-03-29 2020-01-17 埃克森美孚化学专利公司 催化剂组合物及其在芳族烷基化方法中的用途
CN107285972A (zh) * 2017-07-11 2017-10-24 江南大学 一种从合成气生产芳香族化合物的连续反应工艺
CN110997143A (zh) * 2017-08-08 2020-04-10 巴斯夫欧洲公司 包含混合金属氧化物和含具有骨架类型cha和碱土金属的沸石材料的模制品的组合物
CN107983402A (zh) * 2017-12-06 2018-05-04 中国科学院山西煤炭化学研究所 一种丙烷芳构化催化剂及制备方法和应用
CN107983402B (zh) * 2017-12-06 2020-12-25 中国科学院山西煤炭化学研究所 一种丙烷芳构化催化剂及制备方法和应用
CN108579793A (zh) * 2018-04-17 2018-09-28 连云港鹏辰特种新材料有限公司 一种基于纳米催化剂的环保高沸点芳烃溶剂的制备方法
CN108579793B (zh) * 2018-04-17 2020-10-20 连云港鹏辰特种新材料有限公司 一种基于纳米催化剂的高沸点芳烃溶剂的制备方法
CN108706607A (zh) * 2018-07-02 2018-10-26 南京工业大学 一种沸石分子筛、制备方法及其应用
CN108706607B (zh) * 2018-07-02 2021-12-03 南京工业大学 一种沸石分子筛、制备方法及其应用
CN110759357B (zh) * 2018-07-25 2021-08-27 中国石油天然气股份有限公司 一种zsm-35/zsm-5共晶分子筛的合成方法
CN112934258A (zh) * 2019-11-26 2021-06-11 国家能源投资集团有限责任公司 复合分子筛及其制备方法和加氢异构催化剂及费托合成油加氢异构的方法
CN112934258B (zh) * 2019-11-26 2023-10-13 国家能源投资集团有限责任公司 复合分子筛及其制备方法和加氢异构催化剂及费托合成油加氢异构的方法
CN112023919A (zh) * 2020-07-30 2020-12-04 浙江恒澜科技有限公司 用于制备高顺反比2,2,4,4-四甲基-1,3-环丁二醇的催化剂、装置及方法
CN112023919B (zh) * 2020-07-30 2022-07-08 浙江恒逸石化研究院有限公司 用于制备高顺反比2,2,4,4-四甲基-1,3-环丁二醇的催化剂、装置及方法
CN112843766A (zh) * 2020-12-29 2021-05-28 复榆(张家港)新材料科技有限公司 变压吸附分离溶剂水二元共沸物的吸附分离工艺
CN113967538A (zh) * 2021-11-30 2022-01-25 郑州轻工业大学 一种有机烟雾多污染物深度净化装置及应用
CN115650251A (zh) * 2022-11-02 2023-01-31 吉林大学 一种mor沸石分子筛整料及其制备方法和应用
CN115650251B (zh) * 2022-11-02 2024-02-02 吉林大学 一种mor沸石分子筛整料及其制备方法和应用

Also Published As

Publication number Publication date
RU2006117333A (ru) 2007-11-27
US7470645B2 (en) 2008-12-30
US20060128555A1 (en) 2006-06-15
US20060264318A1 (en) 2006-11-23
AU2004285859B2 (en) 2010-02-25
AR075800A2 (es) 2011-04-27
AR075385A2 (es) 2011-03-30
AU2010200213A1 (en) 2010-10-21
AU2010200214B8 (en) 2011-06-09
JP2007508935A (ja) 2007-04-12
RU2323779C2 (ru) 2008-05-10
BRPI0415621A (pt) 2006-12-12
AU2010200214A1 (en) 2010-10-21
TW200528189A (en) 2005-09-01
EP1677909A1 (en) 2006-07-12
US20040138051A1 (en) 2004-07-15
ZA200603144B (en) 2007-04-25
US7084087B2 (en) 2006-08-01
AU2010200214A8 (en) 2011-06-09
US7550405B2 (en) 2009-06-23
WO2005042148A1 (en) 2005-05-12
AU2010200213B2 (en) 2012-02-23
KR20070004530A (ko) 2007-01-09
AU2004285859A1 (en) 2005-05-12
AU2010200214B2 (en) 2011-02-10
AR046556A1 (es) 2005-12-14

Similar Documents

Publication Publication Date Title
CN1871065A (zh) 新型沸石组合物,其制备方法和其催化应用
US8758596B2 (en) Hydrogenation isomerization catalyst, method for producing same, method for dewaxing hydrocarbon oil, and method for producing lubricant base oil
RU2501736C2 (ru) Способ получения средних дистиллятов гидрокрекингом сырья, полученного в процессе фишера-тропша, в присутствии катализатора, содержащего твердый izm-2
RU2378050C2 (ru) Цеолитные катализаторы с контролируемым содержанием промотирующего элемента и улучшенный способ обработки углеводородных фракций
JP4603689B2 (ja) 触媒組成物の製造方法
JP5544089B2 (ja) シリカ成形体の製造方法
CN1723265A (zh) 极低酸度usy和均相非晶形氧化硅-氧化铝加氢裂化催化剂及方法
CN1933905A (zh) 非常均匀的非晶形氧化硅-氧化铝催化剂组合物
FR2926028A1 (fr) Catalyseur comprenant au moins une zeolithe particuliere et au moins une silice-alumine et procede d'hydrocraquage de charges hydrocarbonees utilisant un tel catalyseur
EP3311917A1 (en) Support for selective synthesis of high-quality kerosene fraction from synthesis gas, catalyst thereof, and preparation method therefor
CA2948943A1 (en) Catalyst suitable for production of aviation kerosene from biomass fischer-tropsch synthesis oil and preparation method therefor
CN109876853B (zh) 由包含特定前体的溶液制备基于izm-2催化剂的方法和其用于链烷烃原料异构化的用途
JP2010155190A (ja) 水素化異性化触媒、その製造方法、炭化水素油の脱蝋方法及び潤滑油基油の製造方法
Gong et al. Three-dimensionally ordered macroporous ZSM-5 zeolite supported high-dispersed Ni2P: Highly active catalyst for quinoline hydrodenitrogenation
CN114929841A (zh) 具有低碱金属含量的基于izm-2的催化剂用于将链烷烃原料异构化为中间馏出物的用途
US20240226866A9 (en) Methods of producing catalysts comprising one or more oxides of nickel and one or more oxides of siler
RU2183505C1 (ru) Способ приготовления катализатора гидрооблагораживания нефтяного сырья
EP4324556A1 (en) Zeolite with improved hydroisomerization activity
CN116390809A (zh) 通过特定热处理制备基于izm-2的催化剂的方法以及所述催化剂用于将链烷烃原料异构化为中间馏出物的用途
CN1542102A (zh) 一种烃油加氢转化催化剂

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication