CN1300388C - 含镓氮化物块状单结晶在异质基板上的形成法 - Google Patents

含镓氮化物块状单结晶在异质基板上的形成法 Download PDF

Info

Publication number
CN1300388C
CN1300388C CNB028019520A CN02801952A CN1300388C CN 1300388 C CN1300388 C CN 1300388C CN B028019520 A CNB028019520 A CN B028019520A CN 02801952 A CN02801952 A CN 02801952A CN 1300388 C CN1300388 C CN 1300388C
Authority
CN
China
Prior art keywords
gallium nitride
autoclave
single crystal
bulk single
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028019520A
Other languages
English (en)
Other versions
CN1463309A (zh
Inventor
罗伯特·德威林斯基
罗曼·多拉辛斯基
哲兹·卡兹尼斯基
莱哲克·西芝普陶斯基
神原康雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Ammono Sp zoo
Original Assignee
Nichia Chemical Industries Ltd
Ammono Sp zoo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PL347918A external-priority patent/PL207400B1/pl
Priority claimed from PL35037501A external-priority patent/PL350375A1/xx
Application filed by Nichia Chemical Industries Ltd, Ammono Sp zoo filed Critical Nichia Chemical Industries Ltd
Publication of CN1463309A publication Critical patent/CN1463309A/zh
Application granted granted Critical
Publication of CN1300388C publication Critical patent/CN1300388C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B21/00Unidirectional solidification of eutectic materials
    • C30B21/02Unidirectional solidification of eutectic materials by normal casting or gradient freezing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0281Coatings made of semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/102Apparatus for forming a platelet shape or a small diameter, elongate, generally cylindrical shape [e.g., whisker, fiber, needle, filament]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及GaN等含镓氮化物块状单结晶在碳化硅等异质基板上成长的方法,在高加压釜中形成含有碱金属离子的超临界氨溶剂,在该超临界氨中溶解含有镓的供料,在比超临界溶剂中溶解含镓供料时更高温及/或更低压条件下,自溶解上述供料的超临界溶液中将含镓氮化物结晶在以异质基板作为晶种的上,该晶种在组成元素中不含有氧气且a0轴的晶格常数为2.8~3.6。依此,在有导电性基板上可以形成氮化镓系化合物的半导体元件。

Description

含镓氮化物块状单结晶在异质基板上的形成法
技术领域
本发明涉及使超临界溶液在异质基板的晶种上形成结晶,在异质基板上长成含镓氮化物的块状单结晶的方法。
背景技术
应用氮化物的电子光学机器,一般是在堆积的氮化物层与不同蓝宝石基板上或是碳化硅的基板上制造(不定向附晶生长法),最常使用的MOCVD法中,GaN虽是由氨与金属有机化合物来气相成长,但不可能生成块状单结晶层,又,虽然利用缓冲层虽会降低每单位面积的位错数,但目前以上述方法只能降低到108个/cm2
在此,最近,为了降低表面缺陷密度是使用横方向生长法(ELO)。此方法,是在蓝宝石基板上成长GaN层,在其上面再堆积线状或网状的SiO2。针对如此所准备的基板,虽然GaN的横方向成长,可以限制缺陷密度到约107/cm2以下。然而此方法很难降到106/cm2以下。
另外,关于HNP法[″Prospects for high-pressure crystal growth of III-Vnitrides″S,Porowski et.al.,Inst.Phys.Conf.Series,137,369(1998)]中,结晶的成长是在溶解的镓中,毕竟是在液相中进行,会生成10mm左右的GaN结晶。然而,在镓内要得到充分的氮气溶解度,必须要设定温度在1500℃、氮气的压力在15kbar。
为此,为了降低成长步骤的温度与压力,有提议利用超临界氨的议案[″Ammono method of BN,AIN,and GaN synthesis and crystal growth″R.Dwilinski et al.,Proc.EGW-3,Warsaw,June 22-24,1998,MRS InternetJournal of Nitride Semiconductor Research],[″Crystal Growth of galliumnitride in supercritical ammonia″J.W.Kolis et al.,J.Cryst.Growth 222,431-434(2001)],所得的GaN结晶不超过0.5mm程度,因得不到块状单结晶,所以终究不能作为电子零件等的基板。
本发明人,虽提供利用含有付与氨基碱性(ammono-basic)的1种或多数矿化剂的超临界氨溶剂中产生化学输送,可以得到含镓氮化物的单结晶成长方法,但GaN层的转位密度降到106/cm2以下时,导电性机能会下降,就不可能期望其作为电子零件的基板。
发明内容
在此,本发明的第一个目的是提供,在有导电性等机能的异质基板晶种上,可以形成含镓氮化物的块状单结晶的方法。
又,本发明的第二个目的是提供,在品质上可以作为光学元件基板的氮化物块状结晶基板。
为了达成上述目的的本发明第一构成是基于,含有付与氨基碱性(ammono-basic)的一种或多数矿化剂的超临界氨溶剂中不含有氧的组成成分,a0轴的晶格常数为2.8~3.6的各种结晶构造不容易溶解,产生含镓氮化物的化学输送,可以得到含镓氮化物的单结晶成长,并且为了在比较低温下进行结晶成长,即使使用作为晶种的金属导电性基板,热膨胀差也可以缓和能无障害地进行成长,
在制得含镓氮化物块状单结晶的方法中,其特征为提供,在高压釜内将含镓原料溶解到含有氨与碱金属离子的超临界溶剂中,供给含镓氮化物的溶解度有负温度系数的超临界溶液,使上述超临界溶液中的含镓氮化物结晶,利用含镓氮化物的溶解度负温度系数,只在配置在高压釜内的a0轴的晶格常数为2.8~3.6的晶种面上选择性的成长含镓氮化物结晶的方法,及在制得含镓氮化物块状单结晶的方法中,其特征为提供,在高压釜内将含镓原料溶解到含有氨与碱金属离子的超临界溶剂中,供给含镓氮化物的溶解度有正压力系数的超临界溶液,使上述超临界溶液中的含镓氮化物结晶,利用含镓氮化物的溶解度正压力系数,只在配置在高压釜内的a0轴的晶格常数为2.8~3.6的晶种面上选择性的成长含镓氮化物结晶的方法。
依照本发明,因氧为非构成要素,在超临界氨溶液中不容易溶解,并且a0轴的晶格常数为2.8~3.6,所以GaN(晶格常数3.16)系的含镓氮化物没有不适合的成长。并且在超临界氨中,含镓氮化物的再结晶法因是在比较低温进行结晶成长,即使使用作为晶种的金属导电性基板也可以进行热膨胀差缓和的无障害结晶成长。
具体的是,上述晶种至少有一层表面是可以选自由体心立方结晶系的钼、钨,密排六方晶系的α-Hf、α-Zr,正方晶系钻石,WC构造结晶系WC、W2C,ZnO构造结晶系SiC、尤其α-SiC、TaN、NbN、AlN,六方晶(P6/mmm)系AgB2、AuB2、HfB2,六方晶(P63/mmc)系γ-MoC、ε-NbN等所组成的族群中,也可以是晶种全体是由上述组成所形成。
在第一构成中,进行第二结晶步骤,重点是在晶种面上选择性进行结晶。在此,本案发明的第二构成是含镓氮化物的块状单结晶的结晶方法,其特征是,在高压釜中将含镓氮化物溶解在含有氨与碱金属离子的超临界溶剂中,将含镓氮化物的溶解度为负温度系数的超临界溶液,至少将高压釜内有a0轴晶格常数为2.8~3.6晶种面的晶种配置在区域中,通过上升到所定的温度或下降到所定的压力下,将超临界溶液的溶解度调节到针对晶种而言的过饱和区域中的不产生自发结晶的浓度以下,只有在高压釜内所配置的晶种面上选择性的成长含镓氮化物结晶。
在上述第二构成中,在高压釜内同时形成所谓的溶解区域与结晶化区域的2个区域时,为了控制针对晶种而言的超临界溶液过饱和,以调整溶解温度与结晶化温度为宜,因此,结晶化区域的温度若设定在400~600℃的温度则能容易控制,在高压釜内溶解温度与结晶化温度的温度差以在150℃以下为宜,较佳是保持在100℃以下则能容易控制。又,针对晶种超临界溶液的过饱和调整,在高压釜内是可以设置1个或多数个阀来区分低温溶解区域与高温结晶化区域,也可以虽然调整溶解区域与结晶化区域的对流量来进行。再,加压釜中形成有特定温度差的溶解区域与结晶化区域2个区域的情形,针对晶种的超临界溶液过饱和调整也可以利用,投入其总面积大于晶种总面积的GaN结晶当作所投与的含镓原料。
同时,在上述第一构成中,上述碱金属离子为以碱金属或不含卤素物质的矿化剂形状来投与,作为碱金属离子,是选自由Li+、Na+、K+所组成族群中的1种或2种。又,超临界溶剂中所溶解的含镓原料,是含镓氮化物或在超临界溶剂中可溶解可能产生镓化合物的镓前驱体。又,本发明方法虽是依照氨基碱性反应,但含镓原料者为以HVPE所形成的GaN或化学反应所形成的GaN,即使本来含有氯,对氨基碱性超临界反应也无损害,所以无限制问题。
利用上述第二构成的情形,可以使用由相当于做原料的超临界氨溶剂在平衡反应中溶解的含镓氮化物,与相当于超临界氨溶剂在不可逆反应中溶解的金属镓所组合。
作为上述含镓氮化物,在使用氮化镓时,能容易控制结晶化的反应,在此情形,以使用SiC单结晶作为晶种较佳。
本发明是提供,在上述第一的溶解步骤与第二结晶化步骤的同时,并且在高压釜内进行作为分离方法的第四构成。即提供,得到含镓氮化物的块状单结晶的方法,其特征为在高压釜中形成含碱金属离子的超临界氨溶剂,在该超临界氨溶剂中溶解含镓原料,在比溶解含镓原料时更高温及/或更低压的条件下,自溶解上述原料的超临界溶液将含镓氮化物,在a0轴的晶格常数为2.8~3.6晶种面上结晶的方法。
在第一构成中,在含镓原料的溶解步骤的外,可以另外具备有比超临界溶液更高温及/或更低压中移动的步骤。又,在高压釜中同时形成有温度差的至少2个区域,是由在低温溶解区域中配置含镓原料,在高温结晶化区域中配置有a0轴的晶格常数为2.8~3.6的晶种面晶种来进行。溶解区域与结晶化区域的温度差,必须设定超临界溶液内能确保化学输送的范围内,超临界溶液内的化学输送主要是虽然对流来进行,通常,溶解区域与结晶化区域的温度差是在1℃以上,较佳是在5~150℃,更好是在100℃以下。
本发明中,含镓氮化物的定义如下,以AlxGa1-x-yInyN(0≤x<1、0≤y<1、0≤x+y<1)为对象,因应用途可以含有给予体、接受体或磁性掺质。超临界溶剂是如以下的定义,含有氨或其衍生物,作为矿化剂者为碱金属离子、至少含有钠或钾的离子,另外,含镓原料主要是由含镓氮化物或其它前驱体所构成,前驱体是选自含有镓的叠氮化物类、亚胺类、酰胺亚胺类、酰胺类、氢化物、金属间化合物、合金及金属镓,如以下般来定义。
本发明中,晶种有a0轴的晶格常数为2.8~3.6的晶种面,此结晶层中相关表面缺陷密度以在106/cm2以下为宜。具体的,选自体心立方结晶系的钼、钨,密排六方晶系的α-Hf、α-Zr,正方晶系钻石,WC构造结晶系WC、W2C,ZnO构造结晶系SiC、尤其α-SiC、TaN、NbN、AlN,六方晶(P6/mmm)系AgB2、AuB2、HfB2,六方晶(P63/mmc)系γ-MoC、ε-NbN等。
本发明中,含镓氮化物的结晶化虽可以在100~800℃的范围进行,但较好是在300~600℃,更好是可以在400~550℃的温度进行,又,含镓氮化物的结晶化是可以在100~10000bar进行,但较佳是在1000~5500bar,更好是可以在1500~3000bar的压力进行。超临界溶剂内的碱金属离子浓度是,调整到可以确保原料及含镓氮化物的特定溶解度,针对超临界溶液内的其它成分,碱金属离子的摩尔比以控制在1∶200~1∶2,较佳者为1∶100~1∶5,更好为1∶20~1∶8的范围以内为宜。
同时,本发明是有关在含有付与氨基碱性1种或多种矿化剂的超临界氨溶剂中产生化学输送,可得到含镓氮化物的单结晶成长,氨基碱性结晶成长技术,为了认定原本的高技术,在本发明中,所使用的下面用词,是可以用以下的本案说明书来定义其意义。
含镓氮化物是指至少作为构成要件,是至少含有镓与氮原子的化合物,其中至少含有二元化合物GaN、三元化合物AlGaN、InGaN及4元化合物AlInGaN、只要不背离上述氨基碱性结晶成长技术、可改变对镓的其它元素的组合范围。
含镓氮化物的块状单结晶是指虽然MOCVD或是HVPE等的成长方法,可以形成如LED或LD的光及电子零件的含镓氮化物单结晶基板。
含镓氮化物的前驱物质是,至少含有镓、主要是含有碱金属、XIII族元素、含氮及/或氢物质或是此等的混合物,属于金属镓、此等的合金或金属间化合物、此等的氢化物、酰胺类、亚胺类、酰胺亚胺类、叠氮化物类,是可以形成在下定义的超临界氨溶剂中溶解的镓化合物。
含有镓的原料是指含有镓氮化物或其前驱物质。
超临界氨溶剂,至少含有氨,超临界氨溶剂为了溶解含镓氮化物,可以理解为含1种或多种碱金属离子。
矿化剂是指在超临界氨溶剂中为了溶解含镓氮化物供给1种或多种碱金属离子,在说明书中有具体例示。
含镓原料的溶解是指上述原料针对超临界溶剂为溶解性镓化合物,例如以镓配位化合物的形态取得可逆性或非可逆性的过程,镓配位化合物与NH3或与其衍生物NH2-、NH2-配位,是以镓为配位中心所围成的配位化合物。
超临界氨溶液是上述超临界氨溶剂与溶解含镓原料所产生的溶解性镓化合物,根据实验,可以发现在充分的高温高压下,固体含镓氮化物与超临界溶液间存在著平衡关系,因此,溶解性含镓氮化物的溶解度,是可以定义为在固体的含镓氮化物存在下,上述溶解性镓化合物的平衡浓度。相关步骤中,此平衡是可以随温度及/或压力的变化而移动。
溶解度的负温度系数是指保持其它全部的参数时,溶解度是以温度的减少系数(monotonically decreasing function)来表示,同样的,溶解度的正压力系数,是指保持其它全部的参数时,溶解度是以压力的增加系数来表示,我们的研究发现,在超临界氨溶剂中含镓氮化物的溶解度至少从300到550℃的温度区域中,自1到5.5Kbar的压力范围内有负的温度系数及正的压力系数。
相对于含镓氮化物的超临界氨溶液的过饱和,是指在上述超临界氨溶液中可溶性镓化合物的浓度为平衡状态的浓度,即,指溶解度更高的意思。在闭锁系统中含镓氮化物的溶解情形,如此的过饱和是随溶解度的负温度系数或正压力系数,由增加温度或是减少压力来达成。
超临界氨溶液中有关含镓氮化物的化学输送,是指包括含镓原料的溶解、可溶性镓化合物的经由超临界氨溶液移动、由过饱和超临界氨溶液的含镓氮化物的结晶、等连续步骤,一般化学输送步骤是虽然温度梯度、压力梯度、浓度梯度、溶解的原料与结晶生成物的化学的或是物理的不同性质等的、驱动力来进行。依本案发明方法虽可得到含镓氮化铝的块状单结晶,但上述化学输送是分别在溶解步骤与结晶化步骤的区域中进行,结晶化区域以维持在比溶解区域更高温度来达成较佳。晶种在本案说明书中虽有例示,但也提供进行含镓氮化物的结晶化区域,因其支配结晶的生长品质,所以能选择品质良好。
自发的结晶(Spontaneous crystallization),是指自过饱和超临界氨溶液形成含镓氮化物的核及成长,在高压釜内的任一边都会产生,这是不被期望的步骤,包含在晶种表面的不同方向性的成长(disoriented growth)。对晶种的选择性结晶,是指所谓的非自发性的成长、结晶是在晶种上进行的步骤,为达成块状单结晶成长中不可欠缺的步骤,为本案发明方法之一。
高压釜是指任意形态的为了进行氨碱性结晶成长的闭锁系反应室。又,本发明中所使用的GaN颗粒是指成形GaN粉末状,为烧成密度在70%以上,以高密度者为宜。
同时,本案发明实施例中高压釜内的温度分布,因是在没有超临界氨存在下,测定空高压釜,并非实际的超临界温度。又,压力是直接测定的,是由最初导入的氨量、高压釜的温度及容积等来计算决定。
上述方法于实施时,以使用如下的装置为佳,即,本发明是提供其特征为备有产生超临界溶剂的高压釜1的设备、在上述高压釜中设置有对流控制管理装置2、投入备有加热装置5或冷却装置6的炉体4中,的含镓氮化物块状单结晶的生产设备。
上述炉体4,是具有相当于高压釜1的结晶化区域14、备有加热装置5的高温区域,及相当于高压釜1的溶解区域13,备有加热装置5或冷却装置6的低温区域,或是,上述炉体4,是相当于高压釜1的结晶化区域14、备有加热装置5或冷却装置6的高温区域及相当于高压釜1的溶解区域13,备有加热装置5或冷却装置6的低温区域。对流控制管理装置2,是区分成结晶化区域14与溶解区域13,在中心或周围由一张或多张的有孔洞横型阀12所构成。在高压釜1内,是将原料16配置在溶解区域13中,晶种17配置在结晶化区域14中,13与14区域间的超临界溶液的对流是依控制管理装置2来设定构成,其特征为溶解区域13是位在横型阀12的上方,结晶化区域14是位在横型阀12的下方。
附图说明
图1表示在T=400℃与T=500℃中,压力与含有胺化钾(KNH2∶NH3=0.07)的超临界氨内的GaN溶解度关系图。
图2表示实施例1中,p=常数,因时间的变化,高压釜内的温度变化图。
图3表示实施例2中,T=常数,因时间的变化,高压釜内的压力变化图。
图4表示实施例3,于固定容量中,因时间的变化,高压釜内的温度变化图。
图5表示实施例4中,因时间的变化,高压釜内的温度变化图。
图6表示实施例5中,因时间的变化,高压釜内的温度变化图。
图7表示实施例6中,因时间的变化,高压釜内的温度变化图。
图8表示实施例7中,因时间的变化,高压釜内的温度变化图。
图9表示实施例4、5、6、7中所述的高压釜与炉体的剖面图。
图10表示产生含镓氮化物的块状单结晶的设备概要图。
图11表示实施例8中,因时间的变化,高压釜内的温度变化图。
图12表示实施例9中,因时间的变化,高压釜内的温度变化图。
图13表示实施例10中,因时间的变化,高压釜内的温度变化图。
图14表示实施例11,12,因时间的变化,高压釜内的温度变化图。
图15表示实施例13中,因时间的变化,高压釜内的温度变化图。
具体实施方案
在本发明方法中,可以分为原料的溶解步骤,与在晶种面上成长含镓氮化物结晶的高温或是低压条件下移动超临界溶液的步骤。或是,在高压釜中至少分成2个有温度差的区域,可以将含镓原料配置在低温的溶解区域中,晶种配置在高温的结晶化区域中,虽然溶解区域与结晶化区域间的温度差设定在超临界溶液内可以进行对流化学输送的范围,但上述的溶解区域与结晶化区域间的温度差是在1℃以上。含镓氮化物是有AlxGa1-x-yInyN(0≤x<1、0≤y<1、0≤x+y<1),可以含有给予体、接受体或磁性掺质。超临界溶剂中是可以使用含有碱金属(至少为钾)离子的氨或其衍生物。作为原料,主要可以使用含镓氮化物或者是选自叠氮化物类、亚胺类、酰胺亚胺类、酰胺类、氢化物、含镓的金属化合物或合金、金属镓中的GaN前驱体,晶种是至少含有镓或其它族号13(IUPAC、1989)元素的氮化物结晶层,此结晶层的表面缺陷密度是在106/cm2以下。
含镓氮化物的结晶化是在温度为100~800℃、压力100~10000bar的条件下进行。超临界溶剂中碱金属离子的浓度,是可以调整到确保含镓氮化物的适当溶解度,对于超临界溶剂内的其它成分碱金属离子的摩尔比控制在1∶200~1∶2的范围内。
含镓氮化物的单结晶产生设备,是由备有控制对流装置的产生超临界溶剂的高压釜,及高压釜配置有1台或数台备有加热、冷却措施的炉体所组成。在炉体中备有相当于高压釜结晶化区域的加热措施高温区域、与备有相当于高压釜溶解区域的加热、冷却装置的低温区域。或是,可以利用备有加热、冷却装置的高温区域、与备有加热、冷却装置的低温区域的炉体。上述对流控制装置,是区分成结晶化区域与溶解区域,可以在中心或周围制成1个或数个横型阀。高压釜内在溶解区域中配置原料,在结晶化区域中配置晶种。溶解区域与结晶化区域间的超临界溶液对流,是虽然上述的装置来控制。溶解区域位在横型阀的上方,结晶化区域位在横型阀的下方。
依所进行的研究结果,最佳的氮化镓块状单结晶的缺陷密度约为104/cm2,对于表面(0002)的X线测定半高宽,因可得60arcsec以下,所以使用此的半导体元件可以确保适当的品质与寿命特性。
氮化镓在含有碱金属或其化合物(KNH2等)的NH3中,显示出有良好的溶解度。图1所示超临界溶剂内氮化镓的溶解度在400℃到500℃的温度与压力的关系,但此溶解度是定义为摩尔百分比:S=GaN溶液∶(KNH2+NH3)100%。在此情形的溶剂,是摩尔比X=KNH2∶NH3为0.07的超临界氨内的KNH2溶液。依据上述的图时,溶解度是与压力的增加有关,与温度的减少有关。利用此关系,在溶解度高的条件下进行含镓氮化物的溶解,虽然在溶解度低的条件下结晶,可以成长氮化镓的块状单结晶。此负温度梯度的意思是指在产生温度差的情形,含镓氮化物的化学输送为自低温溶解区域迈向高温的结晶化区域。又,可知其它的镓化合物、金属镓也可以作为GaN配位化合物的供给源使用,例如,在上述成分所成的溶剂中,最简单的原料为金属镓,可以投与Ga配位化合物。其次,适当变化加热等的条件来进行,虽然制造含镓氮化物过饱和溶液,具体的,在选自体心立方结晶系的钼、钨,密排六方晶系的α-Hf、α-Zr,正方晶系钻石,WC构造结晶系WC、W2C,ZnO构造结晶系SiC、尤其α-SiC、TaN、NbN、AlN,六方晶(P6/mmm)系AgB2、AuB2、HfB2,六方晶(P63/mmc)系γ-MoC、ε-NbN等的晶种面上成长结晶。体心立方、面心立方晶的情形是使用以自[111]方向切出者为宜,以有导电性的α-SiC、Mo、W等为佳。本发明的方法,是在晶种面上可以成长含镓氮化物的块状单结晶,与在由GaN结晶所成的晶种上做成的块状单结晶层得到GaN的化学理论成长有关。上述的单结晶,因是在含有碱金属离子的超临界溶液内成长,因此所得的单结晶也含有0.1ppm以上的碱金属。又,为了防止设备腐蚀需保持超临界溶液的碱性,期望在溶剂中不要投入卤素物质。依本发明的方法,可以用Al或In取代0.05~0.5的Ga。成分可以变更成柔软,可以调整所得氮化物的晶格常数。再,在氮化镓的块状单结晶中,可以掺杂浓度1017~1021/cm3的给予体(Si、O等)、接受体(Mg、Zn等)、磁性物质(Mn、Cr等),虽然掺杂可以改变含镓氮化物的光学、电性、磁性特性。在其它的物理特性中,成长的GaN块状单结晶表面的缺陷密度是可以在106/cm2以下,较佳是在105/cm2以下,更佳是在104/cm2以下。又,对(0002)面的X线半高宽是在600arcsec以下,较佳是在300arcsec以下,更佳是在60arcsec以下成长。最佳的块状GaN单结晶是,可以在缺陷密度为104/cm2以下,对表面(0002)的X线测定半高宽为60arcsec以下成长。
实施例1
使用导入有2台坩釜的容积为10.9cm3的高压加压釜[H.Jacobs,D.Schmidt,Current Topics in Material Science,vol.8,ed.E.Kaldis(north-Holland,Amsterdam,19810,381设计),其中一个配置0.4克以HVPE法所生成的厚度为0.1mm的GaN薄板做原料,另一个是配置α-SiC的晶种,在高压釜中投入0.72克纯度为4N的金属钾。再投入4.81克氨後,紧闭高压釜。将高压釜投入炉中,加热到400℃,高压釜内的压力为2kbar,8天後,温度加热到500℃,压力保持在2kbar状态,再放置8天(图2),操作结果,原料的全量溶解,部分在溶解的晶种上再结晶成GaN层。
实施例2
在容积10.9cm3的高压加压釜中,导入2台坩釜,一个是加入0.44克以HVPE法所生成的厚度为0.1mm的GaN薄板做原料,另一个是配置α-SiC的晶种,在高压釜中投入0.82克纯度为4N的金属钾。再投入5.43克氨後,紧闭高压釜。将高压釜投入炉中,加热到500℃,高压釜内的压力为3.5kbar,2天後,压力降到2kbar,温度保持在500℃的状态,再放置4天(图3),操作结果,原料的全量溶解,在晶种上再结晶成GaN层。
实施例3
在容积10.9cm3的高压加压釜中,导入2台坩釜,一个是加入0.3克纯度6N的金属镓作为原料,另一个是配置α-SiC的晶种,在高压釜中投入0.6克纯度为4N的金属钾。再投入4克氨後,紧闭高压釜。将高压釜投入炉中,加热到200℃,2天後,温度加温到500℃,压力变为2kbar,在此状态下再放置4天(图4),操作结果,原料的全量溶解,在晶种上再结晶成GaN层。
实施例4
在容积35.6cm3的高压加压釜1(图9)中,将1.5克以HVPE法所得的GaN配置在溶解区域13中,α-SiC的结晶配置在结晶化区域14中,投入2.4克纯度为4N的金属钾,其次投入15.9克的氨(5N),紧闭高压釜1後,投入炉体4中,加热到450℃,高压釜内的压力为2kbar,1天後,结晶化区域14的温度增加到500℃,将溶解区域13的温度降到400℃,在此状态的高压釜1再放置6天(图5)。操作结果,溶解区域13的原料一部分溶解,在结晶化区域14的α-SiC晶种上成长氮化镓。
实施例5
在容积35.6cm3的高压加压釜1(图9)溶解区域13中,配置3.0克GaN颗粒做成的原料,在结晶化区域14中配置α-SiC的结晶,再投入2.4克纯度为4N的金属钾,其次投入15.9克的氨(5N),紧闭高压釜1後,投入炉体4中,加热到450℃,高压釜内的压力约为2kbar,1天後,将结晶化区域14的温度增加到500℃,溶解区域13的温度降到420℃,在此状态的高压釜再放置6天(图6)。操作结果,溶解区域13的原料一部分溶解,在结晶化区域14的晶种上成长氮化镓。
实施例6
在容积36cm3的高压加压釜1(图9)的溶解区域13中,配置1.6克以HVPE法所得的GaN做成的原料,在结晶化区域14中配置α-SiC的结晶,再加入3.56克纯度为4N的金属钾,其次投入14.5克的氨(5N),紧闭高压釜1。将高压釜1投入炉体4中,加热到425℃,高压釜内的压力为1.5kbar,1天後,溶解区域13的温度降到400℃,将结晶化区域14的温度增加到450℃,在此状态的高压釜再放置8天(图7)。操作结果,溶解区域13的原料一部分会溶解,在结晶化区域14的α-SiC晶种上成长氮化镓。
实施例7
在容积36cm3的高压加压釜1(图9)溶解区域13中,配置2克以HVPE法所得的GaN做成的原料,加入0.47克纯度为4N的金属钾,在结晶化区域14中配置α-SiC的结晶,其次投入16.5克的氨(5N),紧闭高压釜1。将高压釜1投入炉体4中,加热到500℃,高压釜内的压力为3kbar,1天後,溶解区域13的温度降到450℃,将结晶化区域14的温度增加到550℃,在此状态的高压釜再放置8天(图8)。操作结果,溶解区域13的原料一部分会溶解,在结晶化区域14的α-SiC晶种上成长氮化镓。
实施例8
在容积35.6cm3的高压加压釜溶解区域中,配置1克以HVPE法所得的GaN做成的原料,在结晶化区域中配置α-SiC的结晶,在高压釜中,加入1.2克纯度为6N的金属镓与2.2克纯度为4N的金属钾,其次投入15.9克的氨(5N),紧闭高压釜後,投入炉体中,加热到200℃,金属镓的全量溶解做成镓配位化合物的溶液,3日後,温度加热到450℃,高压釜内的压力变为约230MPa,1天後,结晶化区域的温度增加到500℃,溶解区域的温度降到370℃,将此状态的高压釜再放置20天(图11)。操作结果,溶解区域的原料一部分会溶解,在结晶化区域的晶种两面上成长氮化镓单结晶层。
实施例9
在容积35.6cm3的高压加压釜溶解区域中,配置3.0克以GaN颗粒做成的原料,在结晶化区域中配置α-SiC的结晶,再加入2.3克纯度为4N的金属钾,其次投入15.9克的氨(5N),紧闭高压釜。将高压釜投入炉体中,为了得到由GaN颗粒部分溶解在预备的镓配位化合物中以得到饱和溶液,先加热到250℃,2天後,将结晶化区域的温度增加到500℃,溶解区域的温度增到420℃,在此状态的高压釜再放置20天(图12)。操作结果,溶解区域的原料溶解很多,在结晶化区域的晶种两面上,成长氮化镓层。
实施例10
在容积35.6cm3的高压加压釜1的溶解区域13中,配置0.5克以HVPE法所得的厚度约120mm的GaN板所做成的原料,在结晶化区域14中配置α-SiC的结晶,再加入0.41克纯度为3N的金属钾,其次投入14.4克的氨(5N),紧闭高压釜後,将高压釜投入炉体中,结晶化区域的温度增加到550℃,溶解区域的温度增加到450℃,得到压力约为2.6kbar,将此状态的高压釜再放置8天(图13)。操作结果,溶解区域的原料一部分会溶解,在结晶化区域的晶种两面上成长氮化镓层。
实施例11
在容积35.6cm3的高压加压釜溶解区域13中,配置0.5克以HVPE法所得的厚度约120mm的GaN板所做成的原料,在结晶化区域14中配置α-SiC的结晶,再在高压釜中,加入0.071克纯度为6N的金属镓与1.4克纯度为3N的金属钠,其次投入14.5克的氨(5N),紧闭高压釜。将高压釜投入炉体中,加热到200℃,1天後,金属镓溶解,在超临界溶液中,形成溶解性镓,如是,将加压釜的结晶化区域的温度增加到500℃,溶解区域的温度增加到400℃,得到压力约为2.3kbar。在此状态的高压釜再放置8天(图14)。操作结果,溶解区域的原料一部分溶解,在结晶化区域的晶种两面上,成长氮化镓层。
实施例12
在容积35.6cm3的高压加压釜溶解区域13中,配置0.5克以HVPE法所得的厚度约120mm的GaN板做成的原料,结晶化区域14中配置α-SiC的结晶,再于高压釜中,加入0.20克胺化镓与1.4克纯度为3N的金属钠,其次投入14.6克的氨(5N),紧闭高压釜後,将高压釜投入炉体中,加热到200℃,1天後,胺化镓溶解,在超临界溶液中,形成溶解性镓,如是,将加压釜结晶化区域的温度增加到500℃,溶解区域的温度增加到400℃,得到压力约为2.3kbar,将此状态的高压釜再放置8天(图14)。操作结果,溶解区域的原料一部分会溶解,在结晶化区域的晶种两面上成长氮化镓层。
实施例13
在容积10.9cm3的高压加压釜中,导入2台坩釜,一个是加入0.3克纯度6N的金属镓作为原料,另一个是配置3个α-SiC的晶种,在高压釜中投入0.5克纯度为4N的金属钾。再投入5.9克氨後,紧闭高压釜。将高压釜投入炉中,加热到200℃,压力变为约2.5kbar,1天後,温度加温到500℃,压力保持为在5kbar,在此状态下再放置2天(图15),操作结果,原料的全量溶解,在晶种上再结晶成GaN层。
实施例14
以Mo体心立方晶在[111]方向切出,代替α-SiC的晶种,使用此作为晶种,其余与实施例1~13相同,在晶种上可以得到GaN结晶的成长。
实施例15
以W体心立方晶在[111]方向切出,代替α-SiC的晶种,使用此作为晶种,其余与实施例1~13相同,在晶种上可以得到GaN结晶的成长。
实施例16
有关本发明的方法,是利用在超临界溶剂内产生含镓氮化物的块状单结晶设备来进行,此设备的主要部分是由生成超临界溶剂的高压釜1,与高压釜1中超临界溶液内可控制化学输送的控制管理装置2所组成,将上述的高压釜1投入备有加热措施5或冷却措施6的(2台)炉体4的室内3中,为了对炉体4保有一定的位置,以带子的固定装置7来固定。炉体4设置在炉床8上,在炉体4与炉床8的周围以钢带9固定,炉床8与炉体4在回转台10上设置,在特定的角度虽然栓固定装置11固定,可以控制高压釜1内的对流种类与对流速度。炉体4中所投入的高压釜1内的超临界溶液对流,可以区分成结晶化区域14与溶解区域13,在中心或周围设定一张或数张有孔洞的横型阀12所组成的对流控制管理装置2。将高压釜1内的两区域温度,虽然设置在炉体4上的控制装置15,设立在100~800℃的范围内,相当于炉体4低温区域的高压釜1内的溶解区域13,是位于横型阀12的上方,在此区域13内配置原料16,相当炉体4高温区域的高压釜内的结晶化区域14,是位于横型阀12的下方,在此区域14中虽配置有晶种17,但将此配置的位置设定在对流的上流与下流为交叉情形的下方。
发明的效果
如此所得异质基板晶种,尤其使用有导电特性的α-SiC、Mo及W作为晶种时,在其上所成长的含镓氮化物块状单结晶,因可以具有较好的导电性,同时,有良好的结晶性,所以可以作为各种电子机器的基板、利用氮化物半导体的激光二极体等的光学元件基板。

Claims (26)

1.一种含镓氮化物块状单结晶在异质基板上的形成法,其特征在于:在高压釜中形成含有碱金属离子的超临界氨溶剂、在该超临界氨溶剂中溶解含镓原料、在比超临界溶剂溶解含镓原料更高温及/或更低压的条件下,使溶解有上述原料的超临界溶液中的含镓氮化物,在构成元素中不含氧且a0轴的晶格常数为2.8~3.6的晶种面上形成结晶。
2.根据权利要求1所述的含镓氮化物块状单结晶在异质基板上的形成法,其特征在于:其中晶种为至少表面是有选自由体心立方结晶系的钼、钨,密排六方晶系的α-Hf、α-Zr,正方晶系钻石,WC构造结晶系WC、W2C,ZnO构造结晶系SiC、TaN、NbN、AlN,六方晶系AgB2、AuB2、HfB2,六方晶系γ-MoC、ε-NbN所组成的层面。
3.根据权利要求1所述的含镓氮化物块状单结晶在异质基板上的形成法,其特征在于:其中在高压釜中同时形成有温度差的至少2个区域,在低温的溶解区域中配置含镓原料,在高温的结晶化区域中配置晶种。
4.根据权利要求1所述的含镓氮化物块状单结晶在异质基板上的形成法,其特征在于:其中含镓氮化物是AlxGa1-x-yInyN,其中0≤x<1、0≤y<1、0≤x+y<1。
5.根据权利要求1所述的含镓氮化物块状单结晶在异质基板上的形成法,其特征在于:其中含镓氮化物可含有给予体、接受体、或磁性掺质。
6.根据权利要求1所述的含镓氮化物块状单结晶在异质基板上的形成法,其特征在于:晶种具有a0轴的晶铬常数为2.8~3.6的晶种面,该结晶层中的表面缺陷密度是在106/cm2以下。
7.根据权利要求1所述的含镓氮化物块状单结晶在异质基板上的形成法,其特征在于:其中含镓氮化物的结晶化是在100~800℃的温度下进行。
8.根据权利要求7所述的含镓氮化物块状单结晶在异质基板上的形成法,其特征在于:其中含镓氮化物的结晶化是在300~600℃的温度下进行。
9.根据权利要求8所述的含镓氮化物块状单结晶在异质基板上的形成法,其特征在于:其中含镓氮化物的结晶化是在400~550℃的温度下进行。
10.根据权利要求1所述的含镓氮化物块状单结晶在异质基板上的形成法,其特征在于:其中含镓氮化物的结晶化是在100~10000bar的压力下进行。
11.根据权利要求10所述的含镓氮化物块状单结晶在异质基板上的形成法,其特征在于:其中含镓氮化物的结晶化是在1000~5500bar的压力下进行。
12.根据权利要求11所述的含镓氮化物块状单结晶在异质基板上的形成法,其特征在于:其中含镓氮化物的结晶化是在1500~3000bar的压力下进行。
13.根据权利要求1所述的含镓氮化物块状单结晶在异质基板上的形成法,其特征在于:其中超临界溶剂内碱金属离子的浓度是调整到可以确保原料及含镓氮化物的特定溶解度。
14.根据权利要求1所述的含镓氮化物块状单结晶在异质基板上的形成法,其特征在于:其中相对于超临界溶液内的其它成分的碱金属离子摩尔比控制在1∶200~1∶2的范围以内。
15.根据权利要求14所述的含镓氮化物块状单结晶在异质基板上的形成法,其特征在于:其中相对于超临界溶液内的其它成分的碱金属离子摩尔比控制在1∶100~1∶5的范围以内。
16.根据权利要求15所述的含镓氮化物块状单结晶在异质基板上的形成法,其特征在于:其中相对于超临界溶液内的其它成分的碱金属离子摩尔比控制在1∶20~1∶8的范围以内。
17.一种含镓氮化物的块状单结晶在异质基板上的形成法,其特征在于:在高压釜中将含镓原料溶解到含氨与碱金属离子的超临界溶剂中,供给含镓氮化物的溶解度有负温度系数的超临界溶液,利用含镓氮化物溶解度的负温度系数,使上述超临界溶液中的含镓氮化物的结晶只在高压釜内配置的构成元素中不含氧且a0轴的晶格常数为2.8~3.6的晶种面上进行选择地成长。
18.一种制得含镓氮化物的块状单结晶的方法,其特征在于:在高压釜中将含镓原料溶解到含氨与碱金属离子的超临界溶剂中,供给含镓氮化物的溶解度有正压力系数的超临界溶液,利用含镓氮化物溶解度的正压力系数,使上述超临界溶液中的含镓氮化物的结晶只在高压釜内配置的构成元素中不含氧且a0轴的晶格常数为2.8~3.6的晶种面上进行选择地成长。
19.根据权利要求17或18所述的制得含镓氮化物的块状单结晶的方法,其特征在于:其中晶种为至少表面1层是选自由体心立方结晶系的钼、钨,密排六方晶系的α-Hf、α-Zr,正方晶系钻石,WC构造结晶系WC、W2C,ZnO构造结晶系SiC、TaN、NbN、AlN,六方晶系AgB2、AuB2、HfB2,六方晶系γ-MoC、ε-NbN所组成的层面。
20.根据权利要求17或18所述的制得含镓氮化物的块状单结晶的方法,其特征在于:其中所述含镓氮化物是氮化镓。
21.一种含镓氮化物的块状单结晶的结晶方法,其特征在于:在高压釜中将含镓氮化物溶解到含氨与碱金属离子的超临界溶剂中,使将含镓氮化物的溶解度有负温度系数的超临界溶液至少具有在高压釜内的构成元素中不含氧且a0轴的晶格常数为2.8~3.6有晶种面的晶种所配置的区域中,通过上升到所定温度或下降到所定压力,将超临界溶液的溶解度调节到针对上述晶种的过饱和区域内的不会产生自发性结晶浓度以下後,只在高压釜内所配置的上述晶种面上,选择性成长含镓氮化物的结晶。
22.根据权利要求21所述的含镓氮化物的块状单结晶的结晶方法,其特征在于:其中在高压釜中同时形成溶解区域与结晶化区域的2个区域後,通过将调整溶解温度与结晶温度进行对晶种的超临界溶液的过饱和管理。
23.根据权利要求21所述的含镓氮化物的块状单结晶的结晶方法,其特征在于:其中结晶区域的温度是设定在400~600℃。
24.根据权利要求21所述的含镓氮化物的块状单结晶的结晶方法,其特征在于:其中在高压釜中同时形成溶解区域与结晶化区域的2个区域後,区域间的温度差保持在150℃以下。
25.根据权利要求24所述的含镓氮化物的块状单结晶的结晶方法,其特征在于:其中在高压釜中同时形成溶解区域与结晶化区域的2个区域後,区域间的温度差保持在100℃以下。
26.根据权利要求21所述的含镓氮化物的块状单结晶的结晶方法,其特征在于:其中在高压釜中形成有特定温度差的溶解区域与结晶化区域的2个区域,针对具有构成元素中不含氧且a0轴的晶格常数为2.8~3.6有晶种面晶种的超临界溶液过饱和调整,是通过利用投入其总面积大于晶种总面积的GaN结晶的含镓原料来进行。
CNB028019520A 2001-06-06 2002-06-06 含镓氮化物块状单结晶在异质基板上的形成法 Expired - Fee Related CN1300388C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PL347918A PL207400B1 (pl) 2001-06-06 2001-06-06 Sposób i urządzenie do otrzymywania objętościowego monokryształu azotku zawierającego gal
PLP347918 2001-06-06
PLP350375 2001-10-26
PL35037501A PL350375A1 (en) 2001-10-26 2001-10-26 Epitaxial layer substrate

Publications (2)

Publication Number Publication Date
CN1463309A CN1463309A (zh) 2003-12-24
CN1300388C true CN1300388C (zh) 2007-02-14

Family

ID=26653399

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB028020235A Expired - Lifetime CN100453710C (zh) 2001-06-06 2002-05-17 获得整体单晶性含镓氮化物的方法及装置
CNB028019520A Expired - Fee Related CN1300388C (zh) 2001-06-06 2002-06-06 含镓氮化物块状单结晶在异质基板上的形成法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB028020235A Expired - Lifetime CN100453710C (zh) 2001-06-06 2002-05-17 获得整体单晶性含镓氮化物的方法及装置

Country Status (16)

Country Link
US (5) US7252712B2 (zh)
EP (2) EP1432853B1 (zh)
JP (6) JP4116535B2 (zh)
KR (2) KR100850293B1 (zh)
CN (2) CN100453710C (zh)
AU (1) AU2002328130B2 (zh)
CA (1) CA2449714C (zh)
CZ (1) CZ306997B6 (zh)
HU (1) HUP0401866A3 (zh)
IL (2) IL159165A0 (zh)
MY (1) MY141883A (zh)
NO (1) NO20035437D0 (zh)
PL (1) PL219109B1 (zh)
RU (1) RU2296189C2 (zh)
TW (4) TWI277666B (zh)
WO (2) WO2002101120A2 (zh)

Families Citing this family (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679152A (en) * 1994-01-27 1997-10-21 Advanced Technology Materials, Inc. Method of making a single crystals Ga*N article
PL207400B1 (pl) 2001-06-06 2010-12-31 Ammono Społka Z Ograniczoną Odpowiedzialnością Sposób i urządzenie do otrzymywania objętościowego monokryształu azotku zawierającego gal
PL219109B1 (pl) 2001-06-06 2015-03-31 Ammono Spółka Z Ograniczoną Odpowiedzialnością Sposób otrzymywania objętościowego monokrystalicznego azotku zawierającego gal oraz urządzenie do otrzymywania objętościowego monokrystalicznego azotku zawierającego gal
UA82180C2 (uk) 2001-10-26 2008-03-25 АММОНО Сп. с о. о Об'ємний монокристал нітриду галію (варіанти) і основа для епітаксії
WO2003043150A1 (fr) * 2001-10-26 2003-05-22 Ammono Sp.Zo.O. Structure d'element electoluminescent a couche monocristalline non epitaxiee de nitrure
US7063741B2 (en) * 2002-03-27 2006-06-20 General Electric Company High pressure high temperature growth of crystalline group III metal nitrides
KR101363377B1 (ko) * 2002-04-15 2014-02-14 더 리전츠 오브 더 유니버시티 오브 캘리포니아 무극성 질화 갈륨 박막의 전위 감소
US8809867B2 (en) 2002-04-15 2014-08-19 The Regents Of The University Of California Dislocation reduction in non-polar III-nitride thin films
US20030209191A1 (en) * 2002-05-13 2003-11-13 Purdy Andrew P. Ammonothermal process for bulk synthesis and growth of cubic GaN
US20060138431A1 (en) 2002-05-17 2006-06-29 Robert Dwilinski Light emitting device structure having nitride bulk single crystal layer
WO2003098757A1 (fr) * 2002-05-17 2003-11-27 Ammono Sp.Zo.O. Structure d'element electroluminescent comprenant une couche de monocristaux de nitrure en vrac
EP1514958B1 (en) * 2002-05-17 2014-05-14 Ammono S.A. Apparatus for obtaining a bulk single crystal using supercritical ammonia
US7364619B2 (en) 2002-06-26 2008-04-29 Ammono. Sp. Zo.O. Process for obtaining of bulk monocrystalline gallium-containing nitride
AU2003279067A1 (en) * 2002-09-23 2004-04-08 Genta Inc. Tri(alkylcarboxylato) gallium (iii) products and pharmaceutical compositions containing them
JP2006509707A (ja) 2002-12-11 2006-03-23 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン ガリウム含有窒化物のバルク単結晶を得るための改良されたプロセス
EP1590509B1 (en) * 2002-12-11 2014-02-12 Ammono S.A. Process for obtaining bulk monocrystalline gallium-containing nitride
TWI352434B (en) * 2002-12-11 2011-11-11 Ammono Sp Zoo A substrate for epitaxy and a method of preparing
WO2004061923A1 (en) 2002-12-27 2004-07-22 General Electric Company Gallium nitride crystal, homoepitaxial gallium-nitride-based devices and method for producing same
US9279193B2 (en) 2002-12-27 2016-03-08 Momentive Performance Materials Inc. Method of making a gallium nitride crystalline composition having a low dislocation density
US8089097B2 (en) * 2002-12-27 2012-01-03 Momentive Performance Materials Inc. Homoepitaxial gallium-nitride-based electronic devices and method for producing same
US7261775B2 (en) * 2003-01-29 2007-08-28 Ricoh Company, Ltd. Methods of growing a group III nitride crystal
JP2004335559A (ja) * 2003-04-30 2004-11-25 Nichia Chem Ind Ltd Iii族窒化物基板を用いる半導体素子
US7170095B2 (en) * 2003-07-11 2007-01-30 Cree Inc. Semi-insulating GaN and method of making the same
US7009215B2 (en) * 2003-10-24 2006-03-07 General Electric Company Group III-nitride based resonant cavity light emitting devices fabricated on single crystal gallium nitride substrates
JP4534631B2 (ja) * 2003-10-31 2010-09-01 住友電気工業株式会社 Iii族窒化物結晶の製造方法
JP2005183947A (ja) * 2003-11-26 2005-07-07 Ricoh Co Ltd Iii族窒化物の結晶成長方法およびiii族窒化物結晶およびiii族窒化物半導体デバイスおよび発光デバイス
JP4622447B2 (ja) * 2004-01-23 2011-02-02 住友電気工業株式会社 Iii族窒化物結晶基板の製造方法
JP5356933B2 (ja) * 2004-03-10 2013-12-04 三菱化学株式会社 窒化物結晶の製造装置
JP4819677B2 (ja) * 2004-03-31 2011-11-24 パナソニック株式会社 Iii族元素窒化物結晶の製造方法、それに用いる製造装置、およびそれらにより得られた半導体素子
KR100843394B1 (ko) * 2004-04-27 2008-07-03 아리조나 보드 오브 리전트스, 아리조나주의 아리조나 주립대 대행법인 고 발광성 도프된 금속 질화물 분말을 합성하는 방법
PL1769105T3 (pl) * 2004-06-11 2014-11-28 Ammono S A Objętościowy monokrystaliczny azotek galu oraz sposób jego wytwarzania
EP1759408A1 (en) * 2004-06-11 2007-03-07 AMMONO Sp.z o.o. High electron mobility transistor (hemt) made of layers of group xiii element nitrides and manufacturing method thereof.
US7339205B2 (en) * 2004-06-28 2008-03-04 Nitronex Corporation Gallium nitride materials and methods associated with the same
US7687827B2 (en) * 2004-07-07 2010-03-30 Nitronex Corporation III-nitride materials including low dislocation densities and methods associated with the same
PL211286B1 (pl) * 2004-08-15 2012-04-30 Inst Wysokich Ciśnień Polskiej Akademii Nauk Azotkowa dioda laserowa i sposób wytwarzania azotkowej diody laserowej
PL371405A1 (pl) * 2004-11-26 2006-05-29 Ammono Sp.Z O.O. Sposób wytwarzania objętościowych monokryształów metodą wzrostu na zarodku
US7558631B2 (en) * 2004-12-21 2009-07-07 Ebr Systems, Inc. Leadless tissue stimulation systems and methods
JP4603498B2 (ja) 2005-03-14 2010-12-22 株式会社リコー Iii族窒化物結晶の製造方法及び製造装置
DE102005020741A1 (de) * 2005-05-02 2006-03-30 Basf Ag Verwendung von flüssigen Farbmittelzubereitungen zur Einfärbung von Cellulose/Polymer-Verbundwerkstoffen
US9708735B2 (en) 2005-06-23 2017-07-18 Sumitomo Electric Industries, Ltd. Group III nitride crystal substrate, epilayer-containing group III nitride crystal substrate, semiconductor device and method of manufacturing the same
US8771552B2 (en) * 2005-06-23 2014-07-08 Sumitomo Electric Industries, Ltd. Group III nitride crystal substrate, epilayer-containing group III nitride crystal substrate, semiconductor device and method of manufacturing the same
JP4277826B2 (ja) * 2005-06-23 2009-06-10 住友電気工業株式会社 窒化物結晶、窒化物結晶基板、エピ層付窒化物結晶基板、ならびに半導体デバイスおよびその製造方法
KR100623271B1 (ko) * 2005-06-24 2006-09-12 한국과학기술연구원 갈륨망간나이트라이드 단결정 나노선의 제조방법
JP5023312B2 (ja) * 2005-07-01 2012-09-12 三菱化学株式会社 超臨界溶媒を用いた結晶製造方法、結晶成長装置、結晶およびデバイス
WO2007004495A1 (ja) * 2005-07-01 2007-01-11 Mitsubishi Chemical Corporation 超臨界溶媒を用いた結晶製造方法、結晶成長装置、結晶およびデバイス
EP1917382A4 (en) * 2005-07-08 2009-09-02 Univ California METHOD OF PULLING GROUP III NITRIDE CRYSTALS IN SUPERCRITICAL AMMONIA, USING AN AUTOCLAVE
JP5454829B2 (ja) * 2006-03-06 2014-03-26 三菱化学株式会社 超臨界溶媒を用いた結晶製造方法および結晶製造装置
JP5454830B2 (ja) * 2006-03-06 2014-03-26 三菱化学株式会社 超臨界溶媒を用いた結晶製造方法および結晶製造装置
US9466481B2 (en) 2006-04-07 2016-10-11 Sixpoint Materials, Inc. Electronic device and epitaxial multilayer wafer of group III nitride semiconductor having specified dislocation density, oxygen/electron concentration, and active layer thickness
US9518340B2 (en) 2006-04-07 2016-12-13 Sixpoint Materials, Inc. Method of growing group III nitride crystals
US9790616B2 (en) 2006-04-07 2017-10-17 Sixpoint Materials, Inc. Method of fabricating bulk group III nitride crystals in supercritical ammonia
US9224817B2 (en) 2006-04-07 2015-12-29 Sixpoint Materials, Inc. Composite substrate of gallium nitride and metal oxide
US8764903B2 (en) 2009-05-05 2014-07-01 Sixpoint Materials, Inc. Growth reactor for gallium-nitride crystals using ammonia and hydrogen chloride
US20140084297A1 (en) 2012-09-26 2014-03-27 Seoul Semiconductor Co., Ltd. Group iii nitride wafers and fabrication method and testing method
JP2009533303A (ja) * 2006-04-07 2009-09-17 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 大表面積窒化ガリウム結晶の成長
US9834863B2 (en) 2006-04-07 2017-12-05 Sixpoint Materials, Inc. Group III nitride bulk crystals and fabrication method
US9202872B2 (en) 2006-04-07 2015-12-01 Sixpoint Materials, Inc. Method of growing group III nitride crystals
US9909230B2 (en) 2006-04-07 2018-03-06 Sixpoint Materials, Inc. Seed selection and growth methods for reduced-crack group III nitride bulk crystals
US9790617B2 (en) 2006-04-07 2017-10-17 Sixpoint Materials, Inc. Group III nitride bulk crystals and their fabrication method
US9255342B2 (en) 2006-04-07 2016-02-09 Sixpoint Materials, Inc. Bismuth-doped semi-insulating group III nitride wafer and its production method
US9885121B2 (en) 2006-04-07 2018-02-06 Sixpoint Materials, Inc. High pressure reactor and method of growing group III nitride crystals in supercritical ammonia
US8357243B2 (en) 2008-06-12 2013-01-22 Sixpoint Materials, Inc. Method for testing group III-nitride wafers and group III-nitride wafers with test data
JP2007290921A (ja) * 2006-04-26 2007-11-08 Mitsubishi Chemicals Corp 窒化物単結晶の製造方法、窒化物単結晶、およびデバイス
US7488384B2 (en) * 2006-05-03 2009-02-10 Ohio University Direct pyrolysis route to GaN quantum dots
KR100839757B1 (ko) * 2006-05-03 2008-06-19 주식회사 엘지화학 배가스 제거 시스템을 이용한 질화갈륨 결정체 분말의 제조방법 및 그 제조 장치
US7534714B2 (en) * 2006-05-05 2009-05-19 Applied Materials, Inc. Radial temperature control for lattice-mismatched epitaxy
JP4832221B2 (ja) * 2006-09-01 2011-12-07 パナソニック株式会社 半導体レーザ装置の製造方法
US20100104495A1 (en) * 2006-10-16 2010-04-29 Mitsubishi Chemical Corporation Method for producing nitride semiconductor, crystal growth rate increasing agent, single crystal nitride, wafer and device
EP2092093A4 (en) * 2006-10-25 2017-06-14 The Regents of The University of California Method for growing group iii-nitride crystals in a mixture of supercritical ammonia and nitrogen, and group iii-nitride crystals grown thereby
US8458262B2 (en) * 2006-12-22 2013-06-04 At&T Mobility Ii Llc Filtering spam messages across a communication network
CN101622376B (zh) * 2007-01-30 2012-04-04 朗姆研究公司 使用超临界溶剂在半导体基片上形成金属膜的组合物和方法
JP2008285383A (ja) * 2007-05-21 2008-11-27 Lucelabo:Kk Iii族窒化物の製造方法及び遷移金属窒化物の製造方法
KR101428481B1 (ko) * 2007-08-17 2014-08-11 삼성전자 주식회사 인쇄매체이송장치 및 이를 구비하는 화상형성장치
FR2921200B1 (fr) * 2007-09-18 2009-12-18 Centre Nat Rech Scient Heterostructures semi-conductrices monolithiques epitaxiees et leur procede de fabrication
JP5751513B2 (ja) 2007-09-19 2015-07-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 窒化ガリウムのバルク結晶とその成長方法
JP5241855B2 (ja) * 2008-02-25 2013-07-17 シックスポイント マテリアルズ, インコーポレイテッド Iii族窒化物ウエハを製造する方法およびiii族窒化物ウエハ
US20090223440A1 (en) * 2008-03-04 2009-09-10 Boris Feigelson Method of growing GaN crystals from solution
WO2009149299A1 (en) * 2008-06-04 2009-12-10 Sixpoint Materials Methods for producing improved crystallinty group iii-nitride crystals from initial group iii-nitride seed by ammonothermal growth
JP5631746B2 (ja) * 2008-06-04 2014-11-26 シックスポイント マテリアルズ, インコーポレイテッド Iii族窒化物結晶を成長させるための高圧ベッセル、ならびに高圧ベッセルおよびiii族窒化物結晶を用いてiii族窒化物結晶を成長させる方法
US8871024B2 (en) 2008-06-05 2014-10-28 Soraa, Inc. High pressure apparatus and method for nitride crystal growth
US20090301388A1 (en) * 2008-06-05 2009-12-10 Soraa Inc. Capsule for high pressure processing and method of use for supercritical fluids
US9157167B1 (en) 2008-06-05 2015-10-13 Soraa, Inc. High pressure apparatus and method for nitride crystal growth
US8097081B2 (en) 2008-06-05 2012-01-17 Soraa, Inc. High pressure apparatus and method for nitride crystal growth
US8303710B2 (en) * 2008-06-18 2012-11-06 Soraa, Inc. High pressure apparatus and method for nitride crystal growth
US20090320745A1 (en) * 2008-06-25 2009-12-31 Soraa, Inc. Heater device and method for high pressure processing of crystalline materials
US20100006873A1 (en) * 2008-06-25 2010-01-14 Soraa, Inc. HIGHLY POLARIZED WHITE LIGHT SOURCE BY COMBINING BLUE LED ON SEMIPOLAR OR NONPOLAR GaN WITH YELLOW LED ON SEMIPOLAR OR NONPOLAR GaN
WO2011044554A1 (en) 2009-10-09 2011-04-14 Soraa, Inc. Method for synthesis of high quality large area bulk gallium based crystals
US20100003492A1 (en) * 2008-07-07 2010-01-07 Soraa, Inc. High quality large area bulk non-polar or semipolar gallium based substrates and methods
US9404197B2 (en) 2008-07-07 2016-08-02 Soraa, Inc. Large area, low-defect gallium-containing nitride crystals, method of making, and method of use
EP2319086A4 (en) 2008-08-04 2014-08-27 Soraa Inc WHITE LIGHTING DEVICES WITH NON POLAR OR SEMI-POLAR GALLIUM-HARDENED MATERIALS AND INFLUENCES
US8284810B1 (en) 2008-08-04 2012-10-09 Soraa, Inc. Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods
US20100031873A1 (en) * 2008-08-07 2010-02-11 Soraa, Inc. Basket process and apparatus for crystalline gallium-containing nitride
US8979999B2 (en) 2008-08-07 2015-03-17 Soraa, Inc. Process for large-scale ammonothermal manufacturing of gallium nitride boules
US8430958B2 (en) 2008-08-07 2013-04-30 Soraa, Inc. Apparatus and method for seed crystal utilization in large-scale manufacturing of gallium nitride
US8323405B2 (en) 2008-08-07 2012-12-04 Soraa, Inc. Process and apparatus for growing a crystalline gallium-containing nitride using an azide mineralizer
US10036099B2 (en) 2008-08-07 2018-07-31 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of gallium nitride boules
US8021481B2 (en) 2008-08-07 2011-09-20 Soraa, Inc. Process and apparatus for large-scale manufacturing of bulk monocrystalline gallium-containing nitride
US8148801B2 (en) 2008-08-25 2012-04-03 Soraa, Inc. Nitride crystal with removable surface layer and methods of manufacture
US7976630B2 (en) 2008-09-11 2011-07-12 Soraa, Inc. Large-area seed for ammonothermal growth of bulk gallium nitride and method of manufacture
JP5093033B2 (ja) * 2008-09-30 2012-12-05 ソニー株式会社 半導体レーザの製造方法、半導体レーザ、光ピックアップおよび光ディスク装置
US8354679B1 (en) 2008-10-02 2013-01-15 Soraa, Inc. Microcavity light emitting diode method of manufacture
US20100295088A1 (en) * 2008-10-02 2010-11-25 Soraa, Inc. Textured-surface light emitting diode and method of manufacture
WO2010045567A1 (en) * 2008-10-16 2010-04-22 Sixpoint Materials, Inc. Reactor design for growing group iii nitride crystals and method of growing group iii nitride crystals
US8455894B1 (en) 2008-10-17 2013-06-04 Soraa, Inc. Photonic-crystal light emitting diode and method of manufacture
WO2010053964A1 (en) * 2008-11-07 2010-05-14 The Regents Of The University Of California Novel vessel designs and relative placements of the source material and seed crystals with respect to the vessel for the ammonothermal growth of group-iii nitride crystals
WO2010060034A1 (en) * 2008-11-24 2010-05-27 Sixpoint Materials, Inc. METHODS FOR PRODUCING GaN NUTRIENT FOR AMMONOTHERMAL GROWTH
US8987156B2 (en) 2008-12-12 2015-03-24 Soraa, Inc. Polycrystalline group III metal nitride with getter and method of making
USRE47114E1 (en) 2008-12-12 2018-11-06 Slt Technologies, Inc. Polycrystalline group III metal nitride with getter and method of making
US8878230B2 (en) 2010-03-11 2014-11-04 Soraa, Inc. Semi-insulating group III metal nitride and method of manufacture
US9589792B2 (en) 2012-11-26 2017-03-07 Soraa, Inc. High quality group-III metal nitride crystals, methods of making, and methods of use
US8461071B2 (en) * 2008-12-12 2013-06-11 Soraa, Inc. Polycrystalline group III metal nitride with getter and method of making
US9543392B1 (en) 2008-12-12 2017-01-10 Soraa, Inc. Transparent group III metal nitride and method of manufacture
US20110100291A1 (en) * 2009-01-29 2011-05-05 Soraa, Inc. Plant and method for large-scale ammonothermal manufacturing of gallium nitride boules
KR100999695B1 (ko) * 2009-02-16 2010-12-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
US8299473B1 (en) 2009-04-07 2012-10-30 Soraa, Inc. Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors
US8306081B1 (en) 2009-05-27 2012-11-06 Soraa, Inc. High indium containing InGaN substrates for long wavelength optical devices
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US8509275B1 (en) 2009-05-29 2013-08-13 Soraa, Inc. Gallium nitride based laser dazzling device and method
EP2267197A1 (en) * 2009-06-25 2010-12-29 AMMONO Sp.z o.o. Method of obtaining bulk mono-crystalline gallium-containing nitride, bulk mono-crystalline gallium-containing nitride, substrates manufactured thereof and devices manufactured on such substrates
US8435347B2 (en) 2009-09-29 2013-05-07 Soraa, Inc. High pressure apparatus with stackable rings
KR101746562B1 (ko) * 2009-11-12 2017-06-13 다이헤이요 세멘토 가부시키가이샤 알칼리금속 질화물 또는 알칼리토금속 질화물의 제조방법
JP2011124253A (ja) * 2009-12-08 2011-06-23 Sony Corp 半導体レーザの製造方法、半導体レーザ、光ディスク装置、半導体装置の製造方法および半導体装置
JP2011153055A (ja) * 2010-01-28 2011-08-11 Asahi Kasei Corp 窒化物単結晶の製造方法
JP2011153052A (ja) * 2010-01-28 2011-08-11 Asahi Kasei Corp 窒化物単結晶の製造方法
US9564320B2 (en) 2010-06-18 2017-02-07 Soraa, Inc. Large area nitride crystal and method for making it
US8729559B2 (en) 2010-10-13 2014-05-20 Soraa, Inc. Method of making bulk InGaN substrates and devices thereon
US8786053B2 (en) 2011-01-24 2014-07-22 Soraa, Inc. Gallium-nitride-on-handle substrate materials and devices and method of manufacture
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
JP2012158481A (ja) * 2011-01-29 2012-08-23 Soraa Inc アンモノサーマル法によるガリウムナイトライドボウルの大規模製造設備および製造方法
CN103635616A (zh) 2011-06-23 2014-03-12 旭化成株式会社 氮化物单晶的制造方法及其使用的高压釜
US8492185B1 (en) 2011-07-14 2013-07-23 Soraa, Inc. Large area nonpolar or semipolar gallium and nitrogen containing substrate and resulting devices
US9694158B2 (en) 2011-10-21 2017-07-04 Ahmad Mohamad Slim Torque for incrementally advancing a catheter during right heart catheterization
JP2013091596A (ja) * 2011-10-24 2013-05-16 Mitsubishi Chemicals Corp 窒化物結晶の製造方法
US10029955B1 (en) 2011-10-24 2018-07-24 Slt Technologies, Inc. Capsule for high pressure, high temperature processing of materials and methods of use
US8482104B2 (en) 2012-01-09 2013-07-09 Soraa, Inc. Method for growth of indium-containing nitride films
KR20140146158A (ko) * 2012-04-10 2014-12-24 더 리전츠 오브 더 유니버시티 오브 캘리포니아 탄소 섬유 함유 재료를 이용하여 3족 나이트라이드 결정의 성장용으로 사용되는 장치 및 그 안에서 성장된 3족 나이트라이드
JP2012184162A (ja) * 2012-04-27 2012-09-27 Mitsubishi Chemicals Corp 窒化物単結晶の製造方法、窒化物単結晶、およびデバイス
US10145026B2 (en) 2012-06-04 2018-12-04 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of semipolar gallium nitride boules
JP6144347B2 (ja) 2012-08-28 2017-06-07 シックスポイント マテリアルズ, インコーポレイテッド Iii族窒化物ウエハおよびその生産方法
US9275912B1 (en) 2012-08-30 2016-03-01 Soraa, Inc. Method for quantification of extended defects in gallium-containing nitride crystals
US9299555B1 (en) 2012-09-28 2016-03-29 Soraa, Inc. Ultrapure mineralizers and methods for nitride crystal growth
US9761763B2 (en) 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
US9376735B2 (en) 2013-03-15 2016-06-28 University Of Houston System Methods and systems for recovering rare earth elements
US9650723B1 (en) 2013-04-11 2017-05-16 Soraa, Inc. Large area seed crystal for ammonothermal crystal growth and method of making
PL229568B1 (pl) 2013-05-30 2018-07-31 Ammono Spolka Akcyjna Sposób wytwarzania monokrystalicznego azotku zawierającego gal i monokrystaliczny azotek zawierający gal, wytworzony tym sposobem
JP6516738B2 (ja) 2013-07-11 2019-05-22 シックスポイント マテリアルズ, インコーポレイテッド Iii族窒化物半導体を用いた電子デバイスおよびその製造方法、および該電子デバイスを製作するためのエピタキシャル多層ウエハ
EP3094766B1 (en) 2014-01-17 2021-09-29 SixPoint Materials, Inc. Group iii nitride bulk crystals and fabrication method
RU2568585C2 (ru) * 2014-03-24 2015-11-20 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) Индикаторный состав для экспресс-обнаружения окислителей
EP3146093A1 (en) 2014-05-23 2017-03-29 Sixpoint Materials, Inc. Group iii nitride bulk crystals and their fabrication method
PL231548B1 (pl) 2014-09-11 2019-03-29 Ammono Spolka Akcyjna Sposób wytwarzania monokrystalicznego azotku zawierającego gal
WO2016090045A1 (en) 2014-12-02 2016-06-09 Sixpoint Materials, Inc. Group iii nitride crystals, their fabrication method, and method of fabricating bulk group iii nitride crystals in supercritical ammonia
US10094017B2 (en) 2015-01-29 2018-10-09 Slt Technologies, Inc. Method and system for preparing polycrystalline group III metal nitride
EP3314044B1 (en) 2015-06-25 2019-04-17 SixPoint Materials, Inc. High pressure reactor and method of growing group iii nitride crystals in supercritical ammonia
JP6623969B2 (ja) * 2015-08-26 2019-12-25 豊田合成株式会社 Iii族窒化物半導体単結晶の製造方法
US9899564B2 (en) * 2016-03-23 2018-02-20 Panasonic Intellectual Property Management Co., Ltd. Group III nitride semiconductor and method for producing same
US10355115B2 (en) 2016-12-23 2019-07-16 Sixpoint Materials, Inc. Electronic device using group III nitride semiconductor and its fabrication method
US10174438B2 (en) 2017-03-30 2019-01-08 Slt Technologies, Inc. Apparatus for high pressure reaction
JP6931827B2 (ja) 2017-04-07 2021-09-08 日本製鋼所M&E株式会社 結晶製造用圧力容器
MD4552C1 (ro) * 2017-04-20 2018-09-30 Институт Прикладной Физики Академии Наук Молдовы Procedeu de obţinere a monocristalelor de arseniură de niobiu sau tantal
US10287709B2 (en) 2017-09-26 2019-05-14 Sixpoint Materials, Inc. Seed crystal for growth of gallium nitride bulk crystal in supercritical ammonia and fabrication method
US10354863B2 (en) 2017-09-26 2019-07-16 Sixpoint Materials, Inc. Seed crystal for growth of gallium nitride bulk crystal in supercritical ammonia and fabrication method
JP2020535092A (ja) 2017-09-26 2020-12-03 シックスポイント マテリアルズ, インコーポレイテッド 超臨界アンモニアの中での窒化ガリウムバルク結晶の成長のための種結晶および製造方法
US10242868B1 (en) 2017-09-26 2019-03-26 Sixpoint Materials, Inc. Seed crystal for growth of gallium nitride bulk crystal in supercritical ammonia and fabrication method
US11560625B2 (en) 2018-01-19 2023-01-24 Entegris, Inc. Vapor deposition of molybdenum using a bis(alkyl-arene) molybdenum precursor
WO2019157313A1 (en) 2018-02-09 2019-08-15 Sixpoint Materials, Inc. Low-dislocation bulk gan crystal and method of fabricating same
US11767609B2 (en) 2018-02-09 2023-09-26 Sixpoint Materials, Inc. Low-dislocation bulk GaN crystal and method of fabricating same
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11466384B2 (en) 2019-01-08 2022-10-11 Slt Technologies, Inc. Method of forming a high quality group-III metal nitride boule or wafer using a patterned substrate
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
US12000552B2 (en) 2019-01-18 2024-06-04 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system for a vehicle
RU2730315C1 (ru) * 2019-08-30 2020-08-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ получения монокристаллов органо-неорганического комплексного галогенида
US12091771B2 (en) 2020-02-11 2024-09-17 Slt Technologies, Inc. Large area group III nitride crystals and substrates, methods of making, and methods of use
CN115104174A (zh) 2020-02-11 2022-09-23 Slt科技公司 改进的iii族氮化物衬底、制备方法和使用方法
US11721549B2 (en) 2020-02-11 2023-08-08 Slt Technologies, Inc. Large area group III nitride crystals and substrates, methods of making, and methods of use
JP7483669B2 (ja) 2020-11-02 2024-05-15 エスエルティー テクノロジーズ インコーポレイテッド 窒化物結晶成長のための超高純度鉱化剤及び改良された方法
US11638470B2 (en) 2021-01-12 2023-05-02 Arash Kani Gallium nitride gemstones
US20230110306A1 (en) 2021-10-11 2023-04-13 Slt Technologies, Inc. Heater for retrograde solvothermal crystal growth, method of making, and method of use
WO2024155944A1 (en) 2023-01-19 2024-07-25 Slt Technologies, Inc. Improved process for retrograde solvothermal crystal growth and single crystal grown thereby
CN117423612A (zh) * 2023-09-19 2024-01-19 深圳大学 一种制备半绝缘氮化镓衬底的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1289867A (zh) * 1999-09-29 2001-04-04 中国科学院物理研究所 一种氮化镓单晶的热液生长方法

Family Cites Families (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US63258A (en) * 1867-03-26 David king
US139912A (en) * 1873-06-17 Improvement in organ-reeds
US78881A (en) * 1868-06-16 libbey
US14631A (en) * 1856-04-08 Improvement in corn-planters
US47113A (en) * 1865-04-04 Improvement in the manufacture of bolts
US31153A (en) * 1861-01-22 Needle
JPS6065798A (ja) * 1983-09-19 1985-04-15 Toyota Central Res & Dev Lab Inc 窒化ガリウム単結晶の成長方法
JPH0722692B2 (ja) 1988-08-05 1995-03-15 株式会社日本製鋼所 水熱合成用容器
JPH02137287A (ja) 1988-11-17 1990-05-25 Sanyo Electric Co Ltd 半導体レーザ装置
CN1014535B (zh) * 1988-12-30 1991-10-30 中国科学院物理研究所 利用改进的矿化剂生长磷酸钛氧钾单晶的方法
US5096860A (en) 1990-05-25 1992-03-17 Alcan International Limited Process for producing unagglomerated single crystals of aluminum nitride
KR920004181B1 (ko) * 1990-09-13 1992-05-30 한국과학기술연구원 입방정질화붕소의 제조방법
US5190738A (en) * 1991-06-17 1993-03-02 Alcan International Limited Process for producing unagglomerated single crystals of aluminum nitride
US5156581A (en) * 1991-06-21 1992-10-20 Chow John W Finger conditioning device
US5306662A (en) * 1991-11-08 1994-04-26 Nichia Chemical Industries, Ltd. Method of manufacturing P-type compound semiconductor
JP2540791B2 (ja) 1991-11-08 1996-10-09 日亜化学工業株式会社 p型窒化ガリウム系化合物半導体の製造方法。
CN1065289A (zh) 1992-04-28 1992-10-14 抚顺石油学院 洁厕灵
CN1036414C (zh) 1992-11-03 1997-11-12 程大酉 改进的回热并联复合双流体燃气轮机装置及其操作方法
US5456204A (en) 1993-05-28 1995-10-10 Alfa Quartz, C.A. Filtering flow guide for hydrothermal crystal growth
PL173917B1 (pl) * 1993-08-10 1998-05-29 Ct Badan Wysokocisnieniowych P Sposób wytwarzania krystalicznej struktury wielowarstwowej
JP3184717B2 (ja) 1993-10-08 2001-07-09 三菱電線工業株式会社 GaN単結晶およびその製造方法
US5679152A (en) * 1994-01-27 1997-10-21 Advanced Technology Materials, Inc. Method of making a single crystals Ga*N article
JPH07249830A (ja) 1994-03-10 1995-09-26 Hitachi Ltd 半導体発光素子の製造方法
US5716450A (en) * 1994-04-08 1998-02-10 Japan Energy Corporation Growing method of gallium nitride related compound semiconductor crystal and gallium nitride related compound semiconductor device
US5599520A (en) 1994-11-03 1997-02-04 Garces; Juan M. Synthesis of crystalline porous solids in ammonia
US5777350A (en) 1994-12-02 1998-07-07 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting device
JPH08250802A (ja) 1995-03-09 1996-09-27 Fujitsu Ltd 半導体レーザ及びその製造方法
US5681405A (en) 1995-03-09 1997-10-28 Golden Aluminum Company Method for making an improved aluminum alloy sheet product
US5670798A (en) * 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
US5679965A (en) * 1995-03-29 1997-10-21 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact, non-nitride buffer layer and methods of fabricating same
JP3728332B2 (ja) * 1995-04-24 2005-12-21 シャープ株式会社 化合物半導体発光素子
GB2310083B (en) * 1995-08-31 1999-07-28 Toshiba Kk Blue light emitting element and method of manufacturing same
DE69622277T2 (de) 1995-09-18 2003-03-27 Hitachi, Ltd. Halbleitermaterial, verfahren zur herstellung des halbleitermaterials und eine halbleitervorrichtung
AU7346396A (en) 1995-10-13 1997-04-30 Centrum Badan Wysokocisnieniowych Method of manufacturing epitaxial layers of gan or ga(a1,in)n on single crystal gan and mixed ga(a1,in)n substrates
JPH09134878A (ja) * 1995-11-10 1997-05-20 Matsushita Electron Corp 窒化ガリウム系化合物半導体の製造方法
JP3778609B2 (ja) 1996-04-26 2006-05-24 三洋電機株式会社 半導体素子の製造方法
JPH107496A (ja) 1996-06-25 1998-01-13 Hitachi Cable Ltd 窒化物結晶の製造方法およびその装置
CN1065289C (zh) 1996-07-22 2001-05-02 中国科学院物理研究所 一种制备掺杂钒酸盐单晶的水热生长方法
JP3179346B2 (ja) 1996-08-27 2001-06-25 松下電子工業株式会社 窒化ガリウム結晶の製造方法
JPH1084161A (ja) 1996-09-06 1998-03-31 Sumitomo Electric Ind Ltd 半導体レーザ及びその製造方法
US6031858A (en) 1996-09-09 2000-02-29 Kabushiki Kaisha Toshiba Semiconductor laser and method of fabricating same
WO1998019375A1 (fr) 1996-10-30 1998-05-07 Hitachi, Ltd. Machine de traitement optique de l'information et dispositif a semi-conducteur emetteur de lumiere afferent
JPH111399A (ja) * 1996-12-05 1999-01-06 Lg Electron Inc 窒化ガリウム半導体単結晶基板の製造方法並びにその基板を用いた窒化ガリウムダイオード
US6677619B1 (en) * 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
EP1017113B1 (en) 1997-01-09 2012-08-22 Nichia Corporation Nitride semiconductor device
US5868837A (en) * 1997-01-17 1999-02-09 Cornell Research Foundation, Inc. Low temperature method of preparing GaN single crystals
PL184902B1 (pl) * 1997-04-04 2003-01-31 Centrum Badan Wysokocisnieniowych Pan Sposób usuwania nierówności i obszarów silnie zdefektowanych z powierzchni kryształów i warstw epitaksjalnych GaN i Ga AL In N
JP3491492B2 (ja) * 1997-04-09 2004-01-26 松下電器産業株式会社 窒化ガリウム結晶の製造方法
CN1159750C (zh) * 1997-04-11 2004-07-28 日亚化学工业株式会社 氮化物半导体的生长方法
US5888389A (en) * 1997-04-24 1999-03-30 Hydroprocessing, L.L.C. Apparatus for oxidizing undigested wastewater sludges
PL186905B1 (pl) 1997-06-05 2004-03-31 Cantrum Badan Wysokocisnieniow Sposób wytwarzania wysokooporowych kryształów objętościowych GaN
PL183687B1 (pl) * 1997-06-06 2002-06-28 Centrum Badan Sposób wytwarzania półprzewodnikowych związków grupy A-B o przewodnictwie elektrycznym typu p i typu n
JP3533938B2 (ja) * 1997-06-11 2004-06-07 日立電線株式会社 窒化物結晶の製造方法、混合物、液相成長方法、窒化物結晶、窒化物結晶粉末、および気相成長方法
GB2333520B (en) 1997-06-11 2000-04-26 Hitachi Cable GaN crystal growth method
TW519551B (en) 1997-06-11 2003-02-01 Hitachi Cable Methods of fabricating nitride crystals and nitride crystals obtained therefrom
US6270569B1 (en) * 1997-06-11 2001-08-07 Hitachi Cable Ltd. Method of fabricating nitride crystal, mixture, liquid phase growth method, nitride crystal, nitride crystal powders, and vapor phase growth method
JP3603598B2 (ja) * 1997-08-04 2004-12-22 住友化学株式会社 3−5族化合物半導体の製造方法
JP3239812B2 (ja) 1997-08-07 2001-12-17 日本電気株式会社 InGaN層を含む窒化ガリウム系半導体層の結晶成長方法および窒化ガリウム系発光素子およびその製造方法
JP3234799B2 (ja) 1997-08-07 2001-12-04 シャープ株式会社 半導体レーザ素子の製造方法
US6593589B1 (en) * 1998-01-30 2003-07-15 The University Of New Mexico Semiconductor nitride structures
JPH11307813A (ja) 1998-04-03 1999-11-05 Hewlett Packard Co <Hp> 発光装置、その製造方法およびディスプレイ
US6249534B1 (en) 1998-04-06 2001-06-19 Matsushita Electronics Corporation Nitride semiconductor laser device
TW428331B (en) * 1998-05-28 2001-04-01 Sumitomo Electric Industries Gallium nitride single crystal substrate and method of producing the same
JPH11340576A (ja) 1998-05-28 1999-12-10 Sumitomo Electric Ind Ltd 窒化ガリウム系半導体デバイス
JP3727187B2 (ja) 1998-07-03 2005-12-14 日亜化学工業株式会社 窒化物半導体レーザ素子の製造方法
JP2000031533A (ja) 1998-07-14 2000-01-28 Toshiba Corp 半導体発光素子
TW413956B (en) 1998-07-28 2000-12-01 Sumitomo Electric Industries Fluorescent substrate LED
JP2000082863A (ja) 1998-09-04 2000-03-21 Sony Corp 半導体発光素子の製造方法
JP2000091637A (ja) * 1998-09-07 2000-03-31 Rohm Co Ltd 半導体発光素子の製法
US6423984B1 (en) * 1998-09-10 2002-07-23 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride compound semiconductor
US6252261B1 (en) * 1998-09-30 2001-06-26 Nec Corporation GaN crystal film, a group III element nitride semiconductor wafer and a manufacturing process therefor
CN1260409A (zh) 1998-10-23 2000-07-19 黄石市皂素厂 L-半胱氨酸盐酸盐一水物生产工艺
TW498102B (en) 1998-12-28 2002-08-11 Futaba Denshi Kogyo Kk A process for preparing GaN fluorescent substance
US6372041B1 (en) * 1999-01-08 2002-04-16 Gan Semiconductor Inc. Method and apparatus for single crystal gallium nitride (GaN) bulk synthesis
JP2000216494A (ja) 1999-01-20 2000-08-04 Sanyo Electric Co Ltd 半導体発光素子およびその製造方法
EP1024524A2 (en) * 1999-01-27 2000-08-02 Matsushita Electric Industrial Co., Ltd. Deposition of dielectric layers using supercritical CO2
US6177057B1 (en) * 1999-02-09 2001-01-23 The United States Of America As Represented By The Secretary Of The Navy Process for preparing bulk cubic gallium nitride
EP1168539B1 (en) 1999-03-04 2009-12-16 Nichia Corporation Nitride semiconductor laser device
JP3957918B2 (ja) 1999-05-17 2007-08-15 独立行政法人科学技術振興機構 窒化ガリウム単結晶の育成方法
US6592663B1 (en) * 1999-06-09 2003-07-15 Ricoh Company Ltd. Production of a GaN bulk crystal substrate and a semiconductor device formed on a GaN bulk crystal substrate
JP4329229B2 (ja) * 1999-06-30 2009-09-09 住友電気工業株式会社 Iii−v族窒化物半導体の成長方法および気相成長装置
CA2313155C (en) * 1999-06-30 2003-09-30 Sumitomo Electric Industries, Ltd. Group iii-v nitride semiconductor growth method and vapor phase growth apparatus
FR2796657B1 (fr) 1999-07-20 2001-10-26 Thomson Csf Procede de synthese de materiaux massifs monocristallins en nitrures d'elements de la colonne iii du tableau de la classification periodique
JP3968920B2 (ja) 1999-08-10 2007-08-29 双葉電子工業株式会社 蛍光体
JP4646359B2 (ja) 1999-09-09 2011-03-09 シャープ株式会社 窒化物半導体発光素子の製造方法
JP2001085737A (ja) 1999-09-10 2001-03-30 Sharp Corp 窒化物半導体発光素子
US6265322B1 (en) 1999-09-21 2001-07-24 Agere Systems Guardian Corp. Selective growth process for group III-nitride-based semiconductors
AU7617800A (en) 1999-09-27 2001-04-30 Lumileds Lighting U.S., Llc A light emitting diode device that produces white light by performing complete phosphor conversion
JP4145437B2 (ja) 1999-09-28 2008-09-03 住友電気工業株式会社 単結晶GaNの結晶成長方法及び単結晶GaN基板の製造方法と単結晶GaN基板
US6398867B1 (en) * 1999-10-06 2002-06-04 General Electric Company Crystalline gallium nitride and method for forming crystalline gallium nitride
EP1104031B1 (en) 1999-11-15 2012-04-11 Panasonic Corporation Nitride semiconductor laser diode and method of fabricating the same
US6653663B2 (en) * 1999-12-06 2003-11-25 Matsushita Electric Industrial Co., Ltd. Nitride semiconductor device
JP2001168385A (ja) * 1999-12-06 2001-06-22 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子及びiii族窒化物系化合物半導体発光素子
US7315599B1 (en) * 1999-12-29 2008-01-01 Intel Corporation Skew correction circuit
US6355497B1 (en) * 2000-01-18 2002-03-12 Xerox Corporation Removable large area, low defect density films for led and laser diode growth
US20010015437A1 (en) * 2000-01-25 2001-08-23 Hirotatsu Ishii GaN field-effect transistor, inverter device, and production processes therefor
JP4429459B2 (ja) * 2000-03-03 2010-03-10 古河電気工業株式会社 高抵抗GaN結晶層の製造方法
US6447604B1 (en) 2000-03-13 2002-09-10 Advanced Technology Materials, Inc. Method for achieving improved epitaxy quality (surface texture and defect density) on free-standing (aluminum, indium, gallium) nitride ((al,in,ga)n) substrates for opto-electronic and electronic devices
US6596079B1 (en) * 2000-03-13 2003-07-22 Advanced Technology Materials, Inc. III-V nitride substrate boule and method of making and using the same
JP3946427B2 (ja) 2000-03-29 2007-07-18 株式会社東芝 エピタキシャル成長用基板の製造方法及びこのエピタキシャル成長用基板を用いた半導体装置の製造方法
JP2001339121A (ja) 2000-05-29 2001-12-07 Sharp Corp 窒化物半導体発光素子とそれを含む光学装置
GB2363518A (en) 2000-06-17 2001-12-19 Sharp Kk A method of growing a nitride layer on a GaN substrate
US6693935B2 (en) * 2000-06-20 2004-02-17 Sony Corporation Semiconductor laser
JP2002016285A (ja) 2000-06-27 2002-01-18 National Institute Of Advanced Industrial & Technology 半導体発光素子
US6586762B2 (en) 2000-07-07 2003-07-01 Nichia Corporation Nitride semiconductor device with improved lifetime and high output power
JP3968968B2 (ja) 2000-07-10 2007-08-29 住友電気工業株式会社 単結晶GaN基板の製造方法
US6749819B2 (en) * 2000-07-28 2004-06-15 Japan Pionics Co., Ltd. Process for purifying ammonia
JP4154558B2 (ja) 2000-09-01 2008-09-24 日本電気株式会社 半導体装置
JP4416297B2 (ja) 2000-09-08 2010-02-17 シャープ株式会社 窒化物半導体発光素子、ならびにそれを使用した発光装置および光ピックアップ装置
US6858882B2 (en) * 2000-09-08 2005-02-22 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and optical device including the same
JP2002094189A (ja) * 2000-09-14 2002-03-29 Sharp Corp 窒化物半導体レーザ素子およびそれを用いた光学装置
US7053413B2 (en) 2000-10-23 2006-05-30 General Electric Company Homoepitaxial gallium-nitride-based light emitting device and method for producing
US6936488B2 (en) 2000-10-23 2005-08-30 General Electric Company Homoepitaxial gallium-nitride-based light emitting device and method for producing
JP4063520B2 (ja) 2000-11-30 2008-03-19 日本碍子株式会社 半導体発光素子
WO2002044444A1 (en) 2000-11-30 2002-06-06 Kyma Technologies, Inc. Method and apparatus for producing miiin columns and miiin materials grown thereon
JP4003413B2 (ja) 2000-12-11 2007-11-07 日亜化学工業株式会社 13族窒化物結晶の製造方法
JP3785566B2 (ja) 2001-03-19 2006-06-14 株式会社日鉱マテリアルズ GaN系化合物半導体結晶の製造方法
US6806508B2 (en) 2001-04-20 2004-10-19 General Electic Company Homoepitaxial gallium nitride based photodetector and method of producing
PL219109B1 (pl) 2001-06-06 2015-03-31 Ammono Spółka Z Ograniczoną Odpowiedzialnością Sposób otrzymywania objętościowego monokrystalicznego azotku zawierającego gal oraz urządzenie do otrzymywania objętościowego monokrystalicznego azotku zawierającego gal
PL207400B1 (pl) 2001-06-06 2010-12-31 Ammono Społka Z Ograniczoną Odpowiedzialnością Sposób i urządzenie do otrzymywania objętościowego monokryształu azotku zawierającego gal
PL350375A1 (en) 2001-10-26 2003-05-05 Ammono Sp Z Oo Epitaxial layer substrate
US6734530B2 (en) * 2001-06-06 2004-05-11 Matsushita Electric Industries Co., Ltd. GaN-based compound semiconductor EPI-wafer and semiconductor element using the same
US6488767B1 (en) 2001-06-08 2002-12-03 Advanced Technology Materials, Inc. High surface quality GaN wafer and method of fabricating same
UA82180C2 (uk) * 2001-10-26 2008-03-25 АММОНО Сп. с о. о Об'ємний монокристал нітриду галію (варіанти) і основа для епітаксії
WO2003043150A1 (fr) 2001-10-26 2003-05-22 Ammono Sp.Zo.O. Structure d'element electoluminescent a couche monocristalline non epitaxiee de nitrure
US7097707B2 (en) 2001-12-31 2006-08-29 Cree, Inc. GaN boule grown from liquid melt using GaN seed wafers
US20030209191A1 (en) 2002-05-13 2003-11-13 Purdy Andrew P. Ammonothermal process for bulk synthesis and growth of cubic GaN
WO2003098757A1 (fr) * 2002-05-17 2003-11-27 Ammono Sp.Zo.O. Structure d'element electroluminescent comprenant une couche de monocristaux de nitrure en vrac
EP1514958B1 (en) * 2002-05-17 2014-05-14 Ammono S.A. Apparatus for obtaining a bulk single crystal using supercritical ammonia
US20060138431A1 (en) * 2002-05-17 2006-06-29 Robert Dwilinski Light emitting device structure having nitride bulk single crystal layer
PL216522B1 (pl) * 2002-06-26 2014-04-30 Ammono Spółka Z Ograniczoną Odpowiedzialnością Azotkowe półprzewodnikowe urządzenie laserowe oraz sposób wytwarzania półprzewodnikowego urządzenia laserowego
US7364619B2 (en) * 2002-06-26 2008-04-29 Ammono. Sp. Zo.O. Process for obtaining of bulk monocrystalline gallium-containing nitride
TWI352434B (en) * 2002-12-11 2011-11-11 Ammono Sp Zoo A substrate for epitaxy and a method of preparing
EP1590509B1 (en) * 2002-12-11 2014-02-12 Ammono S.A. Process for obtaining bulk monocrystalline gallium-containing nitride
JP2006509707A (ja) * 2002-12-11 2006-03-23 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン ガリウム含有窒化物のバルク単結晶を得るための改良されたプロセス
WO2004090202A1 (ja) 2003-04-03 2004-10-21 Mitsubishi Chemical Corporation 酸化亜鉛単結晶
PL371405A1 (pl) * 2004-11-26 2006-05-29 Ammono Sp.Z O.O. Sposób wytwarzania objętościowych monokryształów metodą wzrostu na zarodku

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1289867A (zh) * 1999-09-29 2001-04-04 中国科学院物理研究所 一种氮化镓单晶的热液生长方法

Also Published As

Publication number Publication date
CN100453710C (zh) 2009-01-21
US7422633B2 (en) 2008-09-09
CA2449714A1 (en) 2002-12-19
CN1526037A (zh) 2004-09-01
KR20030036675A (ko) 2003-05-09
WO2002101120A3 (en) 2004-04-29
JP2004168656A (ja) 2004-06-17
JP4113837B2 (ja) 2008-07-09
EP1432853A2 (en) 2004-06-30
KR100850293B1 (ko) 2008-08-04
TW546272B (en) 2003-08-11
TW569471B (en) 2004-01-01
RU2296189C2 (ru) 2007-03-27
CZ306997B6 (cs) 2017-11-08
US6656615B2 (en) 2003-12-02
EP1432853B1 (en) 2013-04-24
US20040255840A1 (en) 2004-12-23
TWI277666B (en) 2007-04-01
JPWO2002101126A1 (ja) 2004-09-24
JPWO2003098708A1 (ja) 2005-09-22
EP1770189A3 (en) 2010-05-05
RU2004100115A (ru) 2005-04-10
JP4358646B2 (ja) 2009-11-04
CA2449714C (en) 2011-08-16
AU2002328130B2 (en) 2008-05-29
JP4726923B2 (ja) 2011-07-20
IL159165A (en) 2009-07-20
JP2003040699A (ja) 2003-02-13
HUP0401866A3 (en) 2005-12-28
EP1770189B1 (en) 2013-07-10
US7160388B2 (en) 2007-01-09
US7252712B2 (en) 2007-08-07
NO20035437D0 (no) 2003-12-05
US20040089221A1 (en) 2004-05-13
WO2002101120A2 (en) 2002-12-19
US20040139912A1 (en) 2004-07-22
KR20030095388A (ko) 2003-12-18
WO2002101126A1 (en) 2002-12-19
PL219109B1 (pl) 2015-03-31
TW588016B (en) 2004-05-21
HUP0401866A1 (hu) 2004-12-28
JP4116535B2 (ja) 2008-07-09
IL159165A0 (en) 2004-06-01
PL370418A1 (en) 2005-05-30
US20020189531A1 (en) 2002-12-19
AU2002328130A2 (en) 2002-12-23
CZ20033564A3 (cs) 2004-06-16
EP1770189A2 (en) 2007-04-04
US20020192507A1 (en) 2002-12-19
JP2008208024A (ja) 2008-09-11
US7744697B2 (en) 2010-06-29
JP2004533391A (ja) 2004-11-04
CN1463309A (zh) 2003-12-24
KR100865348B1 (ko) 2008-10-27
MY141883A (en) 2010-07-16

Similar Documents

Publication Publication Date Title
CN1300388C (zh) 含镓氮化物块状单结晶在异质基板上的形成法
CN1282771C (zh) 氮化铝块状单晶的制造方法
CN100339512C (zh) 获得大单晶含镓氮化物的方法的改进
TWI274735B (en) Bulk single crystal production facility employing supercritical ammonia
CN101583745B (zh) GaN晶体的制造方法、GaN晶体、GaN晶体基板、半导体装置及GaN晶体制造装置
US9441311B2 (en) Growth reactor for gallium-nitride crystals using ammonia and hydrogen chloride
WO2006038467A1 (ja) 六方晶系ウルツ鉱型単結晶、その製造方法、および六方晶系ウルツ鉱型単結晶基板
US8852341B2 (en) Methods for producing GaN nutrient for ammonothermal growth
TW201002879A (en) Methods for producing improved crystallinity group III-nitride crystals from initial group III-nitride seed by ammonothermal growth
KR20050084261A (ko) 벌크 단결정 갈륨-함유 질화물의 제조공정
EP1772540B1 (en) Method for preparing crystal of nitride of metal belonging to 13 group of periodic table and method for manufacturing semiconductor device using the same
JPH107496A (ja) 窒化物結晶の製造方法およびその装置
CN1873060A (zh) 化合物半导体单晶及其生长用容器和制造方法
CN1723302A (zh) 模板型衬底及其制造方法
WO2008029827A1 (fr) PROCÉDÉ DE PRODUCTION DE CRISTAL D&#39;AlN
Chandrasekaran et al. Growth of Gallium Nitride Textured Films and Nanowires on Polycrystalline Substrates at sub-Atmospheric Pressures
Chandrasekaran Substrate-independent oriented crystal growth of gallium nitride
JPH08268791A (ja) 縦型結晶成長方法およびそれに使用される結晶成長容器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070214

Termination date: 20210606

CF01 Termination of patent right due to non-payment of annual fee