CN108603932B - 多脉冲的基于光探测和测距的三维成像 - Google Patents
多脉冲的基于光探测和测距的三维成像 Download PDFInfo
- Publication number
- CN108603932B CN108603932B CN201780009097.4A CN201780009097A CN108603932B CN 108603932 B CN108603932 B CN 108603932B CN 201780009097 A CN201780009097 A CN 201780009097A CN 108603932 B CN108603932 B CN 108603932B
- Authority
- CN
- China
- Prior art keywords
- pulse
- light
- light detection
- measurement
- ranging device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims description 55
- 238000003384 imaging method Methods 0.000 title description 7
- 238000005259 measurement Methods 0.000 claims abstract description 126
- 238000005286 illumination Methods 0.000 claims abstract description 97
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 claims abstract description 65
- 238000000034 method Methods 0.000 claims abstract description 18
- 238000004146 energy storage Methods 0.000 claims description 30
- 230000004044 response Effects 0.000 claims description 8
- 238000001914 filtration Methods 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 description 10
- 238000003491 array Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 230000001960 triggered effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000009532 heart rate measurement Methods 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 3
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical compound [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4814—Constructional features, e.g. arrangements of optical elements of transmitters alone
- G01S7/4815—Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/484—Transmitters
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
本文给出了用于执行多脉冲LIDAR测量的方法和系统。在一方面,每个LIDAR测量波束利用多个照明光脉冲的序列照亮三维环境中的位置。在测量区间期间由LIDAR系统的光敏探测器探测从该位置反射的光,该测量区间的持续时间大于或等于光从LIDAR系统飞到LIDAR系统的编程范围并返回的飞行时间。测量脉冲序列中的脉冲的幅度和持续时间可以变化。此外,还可以改变脉冲之间的延迟和每个测量脉冲序列中的脉冲数。在一些实施例中,对多脉冲照明波束进行编码,并且对返回测量脉冲序列进行解码以将测量脉冲序列与外源信号区分开。
Description
相关申请的交叉引用
本专利申请要求于2016年10月31日提交的名为“多脉冲的基于雷达的三维成像(Multiple Pulse,LIDAR Based三维Imaging)”美国专利申请No.15/339,790的优先权,该美国专利申请又根据美国法典第35卷第119节的规定要求于2016年1月31日提交的名为“多脉冲的基于雷达的三维成像(Multiple Pulse,LIDAR Based三维Imaging)”美国临时专利申请No.62/289,277的优先权,其主题被通过引用全部结合到本文中。
技术领域
所述实施例涉及基于光探测和测距(LIDAR)的三维点云测量系统。
背景技术
LIDAR系统使用光脉冲来基于每个光脉冲的飞行时间(TOF)测量与物体相距的距离。从LIDAR系统的光源发射的光脉冲与远侧物体相互作用。一部分光从该物体反射并返回到LIDAR系统的探测器。基于发射光脉冲和探测到返回的光脉冲之间所经过的时间来估计距离。在一些示例中,光脉冲由激光发射器产生。光脉冲通过透镜或透镜组件聚焦。测量激光脉冲返回到安装在发射器附近的探测器所花费的时间,并且以高精度通过时间推导出距离。
一些LIDAR系统采用与旋转镜相结合的单个激光发射器/探测器组合,以有效地横扫平面。由这种系统执行的距离测量实际上是二维的(即,平面的),并且捕获到的距离点被作为二维(即,单个平面)点云呈现出来。在一些示例中,旋转镜以非常快的速度(例如,每分钟数千转)旋转。
然而,在许多操作方案中,需要三维点云。已经采用了许多方案来三维地询问周围环境。在一些示例中,二维仪器通常在万向接头上被上下和/或前后致动。这在本领域中通常被称为“眨眼”或“点头”传感器。因此,可以采用单波束LIDAR单元来捕获距离点的整个三维阵列,尽管每次一个点。在相关示例中,采用棱镜将激光脉冲“划分”成多个层,每个层具有略微不同的垂直角。这模拟了上述点头效果,但是没未致动传感器本身。
在所有上述示例中,单个激光发射器/探测器组合的光路被以某种方式改变以获得更宽的视野。但是,由于对单个激光器的脉冲重复率的限制,导致这种设备每单位时间可以产生的像素数量天生就受到限制。波束路径的用以实现更大覆盖区域的任何改变(无论是通过反射镜、棱镜还是装置的致动)都以降低点云密度为代价。
如上所述,三维点云系统以若干种配置而存在。然而,在许多应用中,有必要在宽视野上收集距离测量值。例如,在自主车辆应用中,垂直视野应该向下延伸到车辆前方的地面。此外,如果汽车在道路上倾斜,则垂直视野应该在地平线的上方延伸。此外,必须在现实世界中发生的动作与那些动作的成像之间具有最小延迟。在一些示例中,所期望的是每秒提供至少五次完整的图像更新。为了满足这些要求,已经研发了一种3维LIDAR系统,其包括多个激光发射器和探测器阵列。该系统在于2011年6月28日授权的美国专利No.7,969,558中予以描述,其主题被通过引用全部结合到本文中。
在许多应用中,发射脉冲序列。每个脉冲的方向被依次接连不断地改变。在这些示例中,与每个单独脉冲相关联的距离测量可以被视为是像素,并且接连不断地发射和捕获的像素(即,“点云”)的收集可以被作为图像呈现或者出于其它原因(例如,探测障碍物)而被进行分析。在一些示例中,采用查看软件将最终获得的点云作为向用户显现三维的图像呈现。可以使用不同的方案将距离测量值描绘为三维图像,这些三维图像看起来就像它们被实况摄像机所捕获到的那样。
在一些示例中,设定连续光发射脉冲的正时,使得在触发后续脉冲发射之前探测与特定脉冲发射相关联的返回信号。这确保了探测到的返回信号与产生探测到的返回信号的特定脉冲发射适当关联。
在一些其它示例中,在探测到来自多个脉冲中的任一个的返回信号之前,将多个脉冲发射到周围环境中。传统上,该方法增加了探测到的信号之间的串扰的可能性。换句话说,当在探测到来自多个脉冲中的任一个的返回信号之前将多个脉冲发射到周围环境中时,探测到的返回信号可能与不同于引起探测到的返回信号的特定脉冲发射的脉冲发射错误地关联。这可能会导致距离测量误差。
传统上,为了避免多个脉冲之间的串扰,多个脉冲中的每个脉冲沿不同的方向投射。通过沿不同方向投射多个脉冲中的每一个,由多个脉冲中的每一个询问的每个空间体积与由其它多个脉冲中的任一个询问的任何空间体积完全分离开。由于增加了同时询问的空间之间的分离,因此降低了由于串扰诱生测量误差的可能性。
无论采用顺序脉冲技术还是采用具有空间分离的多脉冲技术,性能难题仍然存在。
返回信号的探测包括值得注意的测量噪声源。在一些示例中,由于太阳光、太阳耀斑或宇宙射线引起的光脉冲被探测到并且被与特定脉冲发射错误地相关联。这导致错误的距离测量值。在一些其它示例中,来自另一个LIDAR系统的脉冲发射被探测到并且被与特定脉冲发射错误地相关联。再一次,这导致错误的距离测量值。由于用于LIDAR系统的测量范围被扩展而并未增加激光脉冲强度,因此这些问题被加剧。
现有的LIDAR系统在任何给正时间使用单个光脉冲来询问周围环境的特定体积。这些系统易受到来自外部噪声源(例如太阳光、宇宙射线或其它基于LIDAR的成像系统)的信号污染的影响。
期望改善噪声抑制以扩展测量范围并抑制与不与LIDAR系统相关联的照明源相关联的探测信号。
发明内容
本文给出了用于执行多脉冲LIDAR测量的方法和系统。在一方面,每个LIDAR测量波束利用多个照明光脉冲的阵列来照亮三维环境中的位置。每个测量脉冲序列包括多个照明光脉冲,并且得到三维LIDAR系统与特定位置之间的距离的估计。在测量区间(window)期间由LIDAR系统的光敏探测器探测从该位置反射的光,该测量区间的持续时间大于或等于光从该LIDAR系统飞到LIDAR系统的编程范围之外并返回的飞行时间。
在另一方面,LIDAR系统确定多脉冲测量波束从LIDAR装置飞到三维环境的特定照亮点并返回到LIDAR装置的飞行时间。
在一些实施例中,每个LIDAR测量之间的延迟时间被设定为大于测量脉冲序列往返于位于LIDAR装置的最大范围处的物体的飞行时间。以这种方式,LIDAR系统的不同信道之间不存在串扰。
在一些其它实施例中,在从另一多脉冲照明系统发射的测量脉冲序列有时间返回到LIDAR装置之前,可以从一个多脉冲照明系统发射测量脉冲序列。在一些实施例中,注意确保在由每个波束询问的周围环境的区域之间存在足够的空间间隔以避免串扰。在一些实施例中,与特定测量信道相关联的多脉冲照明被以与由任何其它测量信道产生的任何其它多脉冲照明不同的方式进行编码。
可以根据代码分集方案、幅度分集方案、时间分集方案或其任何组合来对多脉冲照明波束进行编码。通过对测量脉冲序列进行编码并对返回测量脉冲序列进行解码,将通过测量脉冲序列与照明相关联的反射信号与外源信号区分开。
在一些示例中,多脉冲照明波束的编码可以是伪随机的。在一些示例中,可以响应于返回信号中的信道噪声的测量值来改变多脉冲波束的编码。例如,如果返回信号包括超过阈值的噪声,则选择另一代码。以这种方式,可以选择编码以使外源噪声源(例如其它LIDAR系统)的影响最小化。
通常,测量脉冲序列中的脉冲序列的幅度和持续时间可以变化。此外,还可以改变脉冲之间的延迟和每个测量脉冲序列中的脉冲数。
以上是概述,因此必然包含对于细节的简化、概括和省略;因此,本领域技术人员将了解,该概述仅是说明性的而并不以任何方式进行限制。本文中描述的装置和/或过程的其它方面、创造性特征和优点将在本文阐述的非限制性详细描述中变得显而易见。
附图说明
图1是示出了可被用于执行本文中所述的多脉冲测量方法的三维LIDAR系统100的一个实施例的简图。
图2是示出了可被用于执行本文中所述的多脉冲测量方法的3维LIDAR系统10的另一实施例的简图。
图3描绘了一个示例性实施例中的3维LIDAR系统100的分解图。
图4描绘了3维LIDAR系统100的光发射/收集引擎112的视图。
图5更为详细地描绘了3维LIDAR系统100的集光器件116的视图。
图6描绘了3维LIDAR系统100的集光器件116的剖视图,其示出了收集到的光118的每个波束的成形。
图7描绘了包括多脉冲照明系统130、光探测系统150和控制器140的3维LIDAR系统的元件。
图8描绘了多脉冲测量光束的发射正时和返回测量脉冲序列的捕获的图示。
图9描绘了在后滤波之前的返回测量脉冲序列的图示。
图10描绘了包括时间分界的返回测量脉冲序列的图示。
图11描绘了表170,该表170表明了与图10中描绘的返回测量脉冲序列的每个峰相关联的时间和相邻峰之间的时间。
图12描绘了测量脉冲序列167的图示,该测量脉冲序列167包括四个幅度相对小且持续时间短的脉冲,接着是具有相对大的幅度和长持续时间的第五脉冲。
图13描绘了来自十六个多脉冲照亮子系统的光发射的正时的图示。
图14描绘了一幅流程图,该流程图在至少一个新颖方面示出了执行多脉冲LIDAR测量的方法200。
具体实施方式
现将详细参考背景示例和本发明的一些实施例进行说明,本发明的示例被在附图中示出。
图1是示出了一个示例性操作场景中的3维LIDAR系统100的实施例的示图。三维LIDAR系统100包括下壳体101和上壳体102,该上壳体102包括由对红外光(例如,波长在700纳米至1,700纳米的光谱范围内的光)透明的材料构成的圆顶外壳元件103。在一个示例中,圆顶外壳元件103对于波长集中在905纳米的光是透明的。
如图1中所描绘的那样,多个脉冲光束105被从三维LIDAR系统100遍及从中心轴104测量到的角度范围α发射穿过圆顶外壳元件103。在图1中描述的实施例中,示出了每个光束的主射线。每个光束的每个主射线在彼此间隔开的多个不同的位置处被投影到由x轴和y轴限定的平面上。例如,波束106被于位置107处投射到xy平面上。
在图1中所描绘的实施例中,三维LIDAR系统100被配置为围绕中心轴104扫描多个光束105中的每一个。被投射到xy平面上的每个光束描画出以中心轴104和xy平面的交叉点为中心的圆形图案。例如,随着时间的推移,波束106的主射线到xy平面上的投影描绘出以中心轴104为中心的圆形轨迹108。xy平面被图1中描绘以示出从三维LIDAR系统100发射的波束的空间分离。通常,从三维LIDAR系统100发射的波束被投射到周围环境中并且入射在位于每个相应波束的路径中的物体上。
图2是示出了一个示例性操作场景中的三维LIDAR系统10的另一实施例的示图。三维LIDAR系统10包括下壳体11和上壳体12,该上壳体12包括由对红外光(例如,波长在700纳米至1,700纳米的光谱范围内的光)透明的材料构成的圆柱形外壳元件13。在一个示例中,圆柱形外壳元件13对于波长集中在905纳米的光是透明的。
如图2中所描绘的那样,多个光束15被从三维LIDAR系统10遍及角度范围β发射穿过圆柱形外壳元件13。在图2在描绘的实施例中,示出了每个光束的主射线。每个光束沿不同方向向外投射到周围环境中。例如,波束16被投射到周围环境中的位置17上。在一些实施例中,从系统10发射的每个光束略微发散。在一个示例中,从系统10发射的光束在与系统10相距100米的距离处照亮直径为20厘米的斑点大小。以这种方式,每个照明光束是从系统10发射的照明光锥。
在图2描绘的实施例中,三维LIDAR系统10被配置为以角速度ω围绕中心轴14扫描多个光束15中的每一个。出于说明的目的,光束15被示出为相对于三维LIDAR系统10的非旋转坐标系处于一个角度定向中,并且光束15'被示出为相对于该非旋转坐标系处于另一角度定向中。当光束15围绕中心轴14旋转时,投射到周围环境中的每个光束(例如,与每个波束束相关联的每个照明光锥)在它围绕中心轴14扫掠时照亮对应于锥形照明波束的环境的体积。
图3描绘了一个示例性实施例中的三维LIDAR系统100的分解图。三维LIDAR系统100还包括围绕中心轴104旋转的光发射/收集引擎112。如图3中所描绘的那样,光发射/收集引擎112的中心光轴117相对于中心轴104以角度θ倾斜。三维LIDAR系统100包括相对于下壳体101安装在固定位置中的固定电子板110。旋转电子板111被设置在固定电子板110的上方,并被配置为以预定旋转速度(例如,大于200转/分钟)相对于固定电子板110旋转。电力信号和电子信号被在固定电子板110和旋转电子板111之间通过一个或多个变压器元件、电容元件或光学元件进行传递,从而导致这些信号的非接触传输。光发射/收集引擎112被相对于旋转电子板111固定地定位,并因此以预定角速度ω围绕中心轴104旋转。
如图3中所描绘的那样,光发射/收集引擎112包括发光元件114的阵列和光探测元件113的阵列。从每个发光元件114发射的光被朝向反射镜(未示出)引导。从反射镜反射的光通过一系列照明光学器件115,这些照明光学器件115将发射的光校准到如图1中所描绘的从三维LIDAR系统100发射的光束105的阵列中。通常,任何数量的发光元件可以被布置成同时或基本上同时从三维LIDAR系统100发射任何数量的光束。此外,任何数量的发光元件可以被布置为从三维LIDAR系统100顺序地发射任意数量的光束。在一个实施例中,两个或更多个发光元件被触发以基本上同时发光,并且随后在经过编程的时间段之后,另外两个或更多个发光元件被触发以基本上同时发光。从环境中的物体反射的光被通过集光器件116进行收集。与每个照明光束相关联的收集光通过集光器件116,在那里,光被聚焦到探测元件113的阵列中的每个相应的探测元件上。在通过集光器件116之后,收集到的光被从反射镜(未示出)反射到每个探测器元件上。实际上,每个测量信道之中的串扰限制了可以被同时触发的信道数量。然而,为了使成像分辨率最大化,期望同时触发尽可能多的信道,使得同时而非顺序地从许多信道获得飞行时间测量值。
图4描绘了光发射/收集引擎112的另一视图。在一个方面中,光发射/收集引擎112包括中间电子板121、122和123,这些中间电子板提供旋转电子板111和光发射/收集引擎112的多个元件之间的机械支撑和电气连通性。例如,光探测元件113的阵列中的每一个被安装到中间电子板121。中间电子板121又被机械地以及电气地联接到旋转电子板111。同样,发光元件114的阵列中的每一个被安装到中间电子板123。中间电子板123又被机械地以及电气地联接到旋转电子板111。在另一示例中,照明光学器件115和集光器件116被机械地安装到中间电子板122。在该示例中,中间电子板122在空间上以及在光学方面将照明光学器件115和集光器件116分离开,以避免用照明光污染收集到的光。中间电子板122又被机械地以及电气地联接到旋转电子板111。以这种方式,中间电子板提供机械和电气连通性以及用于安装三维LIDAR系统100的操作所需的电气部件的附加板区域。
图5更为详细地描绘了集光器件116的视图。如图5中所描绘的那样,集光器件116包括四个透镜元件116A-D,这些透镜元件116A-D被布置为将收集到的光118聚焦到探测元件113的阵列中的每一个上。穿过集光器件116的光被从反射镜124反射并被引导到探测元件113的阵列中的每一个上。在另一方面中,集光器件116的光学元件中的一个或多个由吸收位于预定波长范围之外的光的一种或多种材料构成,该预定波长范围包括由发光元件114的阵列中的每一个发射的光的波长。在一个示例中,透镜元件中的一个或多个由塑料材料构成,该塑料材料包括着色添加剂以吸收波长小于由发光元件114的阵列中的每一个产生的红外光的光。在一个示例中,着色剂是可从Aako BV(荷兰)获得的Epolight 7276A。通常,可以将任何数量的不同着色剂添加到集光器件116的任何塑料透镜元件中以滤除掉不希望存在的光谱。
图6描绘了集光器件116的剖视图,以示出收集到的光118的每个波束的弯曲。
如上文中所述,集光器件116的光学元件中的一个或多个由吸收位于预定波长范围之外的光的一种或多种材料构成,该预定波长范围包括由发光元件114的阵列中的每一个发射的光的波长。然而,通常,照明光学器件115的光学元件中的一个或多个也可以由吸收位于预定波长范围之外的光的一种或多种材料构成,该预定波长范围包括由发光元件114的阵列中的每一个发射的光的波长。
LIDAR系统(例如图2中所描绘的三维LIDAR系统10和图1中所描绘的系统100)包括脉冲照明源,该脉冲照明源将来自LIDAR装置的照明光脉冲波束发射到周围环境中。在一些实施例中,脉冲照明源是基于激光的。在一些实施例中,脉冲照明源基于一个或多个发光二极管。通常,可以设想到任何适用的脉冲照明源。
在一个方面中,每个测量波束利用多个照明光脉冲的序列照亮三维环境(例如,像素)的特定位置。因此,每个测量脉冲序列包括多个照明光脉冲,该照明光询问周围环境中的一个位置并得到对于三维LIDAR系统与该位置之间的距离的估计。在测量区间期间,由LIDAR系统的光敏探测器探测从该位置反射的光,该测量区间的持续时间小于或等于从LIDAR系统到LIDAR系统的编程范围并返回的光的飞行时间。光敏探测器探测从周围的三维环境中的特定位置反射的测量脉冲序列。以这种方式,由LIDAR系统捕获来自测量脉冲序列的每个脉冲的特定测量位置的反射。
在另一方面,LIDAR系统确定多脉冲测量射束从LIDAR装置到三维环境的特定照亮点并返回到该LIDAR装置的飞行时间。基于在测量区间期间探测到的反射光来确定该飞行时间。LIDAR装置与由多脉冲照明光束照亮的三维环境的特定位置之间的距离被基于飞行时间和已知光速加以确定。
图7描绘了一个实施例中的LIDAR系统的元件,这些元件包括多脉冲照明系统130、多脉冲光探测系统150和控制器140。图7中描绘的实施例被作为非限制性示例提供,并且在本专利文件的范围内可以设想到用于执行如本文中所述的多脉冲LIDAR测量的许多其它适用的实施例。
多脉冲照明系统130包括脉冲发光装置137。脉冲发光装置137响应于向脉冲发光装置提供的脉冲电信号136产生脉冲光发射。由脉冲发光装置137产生的光被LIDAR系统的一个或多个光学元件被聚焦并被作为测量脉冲序列投射到周围环境中的特定位置138上。在一个示例中,由脉冲发光装置137发射的光被照明光学器件115聚焦并投射到特定位置上,这些照明光学器件115将发射的光校准到从三维LIDAR系统10发射的多脉冲光束16中,如图2中所示。
多脉冲照明系统130包括被选择性地联接到脉冲发光装置137的任何数量的电能存储元件(ESE)。出于说明的目的,图7描绘了N个能量存储元件中的三个能量存储元件(标记为ESE 132A-C),其中,N可以是任何整数。在一些示例中,每个能量存储元件是电容器。电能源131(例如,电压源)被电联接到能量存储元件中的每一个,并向每个电能存储元件提供电能。每个电能存储元件均被通过开关元件选择性地联接到脉冲发光装置137。再次,出于说明的目的,图7描绘了N个开关元件中的三个开关元件(被标记为139A-C)。每个开关元件被配置为根据控制信号(例如,数字控制信号MPC)的状态在两个状态之间进行切换。在第一状态下,开关元件基本上是不导电的。在这种状态下,相应的能量存储元件有效地与脉冲发光装置137断开连接。在这种状态下,电能从电能源131流到每个相应的能量存储元件,以有效地对能量存储元件进行充电。在第二状态下,开关元件基本上是导电的。在这种状态下,相应的能量存储元件被电联接到脉冲发光装置137。在这种状态下,电能从能量存储元件流到脉冲发光装置137。
如图7中所描绘的那样,通过任何能量存储元件同时向脉冲发光装置137供给的任何电流都是有效加成的。以这种方式,向脉冲发光装置137提供的电流信号136被通过控制信号(MPC)有效地成形。例如,当MPC[N]控制开关元件139C以便从基本上不导电的状态切换到基本导电的状态时,电流脉冲133被提供给脉冲发光装置137。同样,电流脉冲134和135可以分别从能量存储元件ESE 132B和ESE 132A向脉冲发光装置137提供。
如图7中所描绘的那样,控制器140产生控制信号MPC,该控制信号控制向脉冲发光装置137提供的电流脉冲的正时,并因此控制从LIDAR装置发射的光脉冲的正时。
通常,由控制器140命令的每个脉冲序列的幅度和持续时间可以变化。此外,还可以改变脉冲之间的延迟和每个测量脉冲序列中的脉冲数。在一些示例中,测量脉冲序列的一个脉冲具有比同一测量脉冲序列的另一脉冲更大的幅度。在一些示例中,测量脉冲序列的一个脉冲具有比同一测量脉冲序列的另一脉冲更长的持续时间。在一些示例中,测量脉冲序列的一个脉冲具有比同一测量脉冲序列的另一脉冲更长的持续时间和更大的幅度。
在一个实施例中,多脉冲照明系统130包括八个电能存储元件,其被以参照图7描述的方式选择性地联接到脉冲发光装置。通常,八个可用的光能脉冲被根据需要组合并确定正时。在图12中描绘的一个示例中,测量脉冲序列包括四个幅度相对小且持续时间短的脉冲,接着是幅度相对大且持续时间长的第五脉冲。通过触发一个能量存储元件的放电产生前四个脉冲中的每一个。通过将其余的四个能量存储元件同时触发到脉冲发光装置中来产生第五脉冲。在另一实施例中,第五脉冲可由具有较大能量存储容量的单个能量存储元件产生。以这种方式,测量光序列包括四个幅度相对小的脉冲,接着是一个大幅度脉冲。这可能是期望的,这是因为前四个脉冲适用于短距离测量,并且大幅度脉冲适用于相对长距离的测量。通常,能量存储元件可以以任何适用的方式确定尺寸,并且可以同时触发任何数量的能量存储元件以便在多脉冲照明序列内获得所期望的脉冲幅度。
通常,多脉冲照明系统130可以包括选择性地与脉冲发光装置串联联接的任何数量的电能存储元件。此外,一个或多个电能存储元件可以具有与一个或多个其它电能存储元件不同的能量存储容量。
在另一实施例中,LIDAR系统(例如图2中所描绘的LIDAR系统10)包括与共用控制器(例如,控制器140)协同操作的十六个多脉冲照明系统。图13描绘了示例性简图180,其示出了来自十六个多脉冲照明系统中的每一个的光发射的正时。
如图13中所描绘的那样,从第一多脉冲照明系统发射测量脉冲序列。在延迟时间(T延迟)之后,从LIDAR装置的第二多脉冲照明系统发射测量脉冲序列。以这种方式,在测量周期(T测量)期间,从LIDAR装置以不同方向发射一系列共十六个测量脉冲序列。十六个多脉冲照明系统中的每一个的能量存储元件在测量周期之后被充电持续充电周期(T充电)。在充电周期之后,在后一测量周期中从每个多脉冲照明系统发射另一测量脉冲序列。
在一些实施例中,延迟时间T延迟被设定为大于测量脉冲序列往返于位于LIDAR装置的最大范围处的对象的飞行时间。以这种方式,在十六个多脉冲照明系统中的任何一个之间均不存在串扰。
在一些其它实施例中,在从另一多脉冲照明系统发射的测量脉冲序列有时间返回到LIDAR装置之前,可以从一个多脉冲照亮系统发射测量脉冲序列。在这些实施例中的一些中,注意确保在由每个波束所询问的周围环境的区域之间存在足够大的空间间隔以避免串扰。在这些实施例中的一些中,由LIDAR系统采用的任何多脉冲照明系统所产生的多脉冲照明被以与由任何其它多脉冲照明系统所产生的任何其它多脉冲照明不同的方式进行编码。以这种方式,即使在射束之间存在空间重叠,也可以将与每个多脉冲照明波束相关联的返回信号与任何其它收集到的光区分开。
如图7中所描绘的那样,由光探测器155探测从位置138反射的光。光探测器155产生由模拟跨阻抗放大器152放大的输出信号151。通常,输出信号151的放大可以包括多个放大器级。在这个意义上,通过非限制性示例提供模拟跨阻抗放大器152,这是因为在本专利文件的范围内可以设想到许多其它模拟信号放大方案。
放大信号153被传送到控制器140。控制器140的模数转换器(ADC)144被用于将模拟信号153转换成用于进一步处理的数字信号。控制器140产生启用/停用信号145,用于与多脉冲控制信号MPC相呼应地通过ADC144控制数据获取的正时。
图8描绘了与测量脉冲序列的发射和返回的测量脉冲序列的捕获相关联的正时的图示。如图8中所描绘的那样,测量开始于由控制器140产生的多脉冲触发信号161(例如,MPC[1])。由于内部系统延迟,确定被相对于多脉冲触发信号161移位时间延迟(TD)的索引信号162。该时间延迟包括与从LIDAR系统发射光相关联的已知延迟(例如,与开关元件、能量存储元件和脉冲发光装置相关联的信号通信延迟和延时(latency))以及与收集光和产生指示收集到的光的信号相关联的已知延迟(例如,放大器延时、模拟-数字转换延迟等)。索引信号162可以是如图8中所描绘的多脉冲信号或单脉冲信号。索引信号被作为测量该系统内的时间延迟的方式而产生。这样,索引信号可以在系统操作期间的任何适用的时刻再生。另外,可以采用索引信号来估计与一个或多个测量信道相关联的时间延迟。
如图8中所描绘的那样,响应于特定位置的照明,由LIDAR系统探测返回信号163。通过启用来自光探测元件150的数据获取来启动测量区间(即,收集到的返回信号数据与特定测量脉冲序列相关联的一段时间)。控制器140控制测量区间的正时以对应于响应于测量脉冲序列的发射而预期返回信号的时间区间。在一些示例中,测量区间在发射测量脉冲序列的时间点被启用,并且在与光飞过两倍于LIDAR系统的范围的距离的飞行时间相对应的时间点被停用。以这种方式,测量区间被打开,以收集从与LIDAR系统相邻的物体(即,飞行时间可忽略)返回到位于LIDAR系统的最大范围处的物体的返回光。以这种方式,抑制可能无法有助于有用的返回信号的所有其它的光。
如图8中所描绘的那样,返回信号163包括两个返回测量脉冲序列,其对应于发射的测量脉冲序列。通常,对所有探测到的测量脉冲序列执行信号探测。可以执行进一步的信号分析以识别最接近的信号(例如,返回测量脉冲序列中的第一个情况)、最强信号和最远信号(例如,测量区间中的返回测量脉冲序列中的最后一个情况)。任何这些情况都可以被LIDAR系统报告为潜在有效的距离测量。例如,飞行时间TOF1可以通过最接近的(即,最早的)返回测量脉冲序列进行计算,该脉冲序列对应于如图8中所描绘的发射的测量脉冲序列。
在测量LIDAR系统与周围环境中的特定位置之间的距离时测量脉冲序列的发射和收集能够实现许多用于抑制噪声的方案。这可以导致可实现的范围的增大和不想要的信号(例如,太阳噪声、太阳耀斑、来自其它LIDAR装置的串扰等)的灵敏度的降低。可以根据代码分集方案、幅度分集方案、时间分集方案或其任何组合对多脉冲照明波束进行编码。通过对测量脉冲序列进行编码并对返回测量脉冲序列进行解码,将通过测量脉冲序列与照明相关联的反射信号与外源信号区分开。
在一些示例中,多脉冲照明波束的编码可以是伪随机的。在一些示例中,可以响应于返回信号中的信道噪声的测量值来改变多脉冲射束的编码。例如,如果返回信号包括超过阈值的噪声,则选择另一代码。以这种方式,可以选择使外源噪声源(例如其它LIDAR系统)的影响最小化的编码。
在图9中所描绘的一个示例中,返回测量脉冲序列163例如由签名探测滤波器进行滤波。在一个示例中,签名探测滤波器是自相关滤波器。滤波后的信号165也被描绘在图9中。在这些示例中,如果滤波后的输出信号超过阈值,则将收集到的信号确定为是真实(legitimate)的返回测量脉冲序列。
在图10-图11中描绘的另一示例中,确定返回测量脉冲序列163的峰的时间间隔。例如,如图11中所描绘的那样,表170表示与测量脉冲序列163的每个峰相关联的时间和相邻峰之间的时间。如果每个连续情况之间的时间基本上类似于发射的测量脉冲序列之间的时间,则将该返回测量脉冲序列确定为是真实的。因此,多脉冲照明光束的飞行时间基于从LIDAR装置发射多脉冲波束的时间和与超过阈值的输出信号的多个连续情况相关联的探测时间之间的差。
在另一方面中,在测量LIDAR系统与周围环境中的特定位置之间的距离测量中发射和收集多个脉冲序列能够估计LIDAR系统与探测到的物体之间的相对速度。
图14示出了在至少一个新颖方面中执行多脉冲LIDAR测量的方法200。方法200适用于由本发明的LIDAR系统(例如分别为图1的LIDAR系统100和图2的LIDAR系统10)实现。在一方面,认识到方法200的数据处理块可以经由由控制器140的一个或多个处理器或任何其它通用计算系统执行的预编程算法来执行。在此认识到,LIDAR系统100和10的特定结构方面并不代表限制,而应该仅被解释为是说明性的。
在块201中,将多脉冲照明光束从LIDAR装置发射到三维环境中。多脉冲照明光束利用照明光的测量脉冲序列照亮三维环境的特定点。
在块202中,在测量时间区间期间探测从三维环境的由多脉冲照明光束照亮的特定点反射的测量脉冲序列的量。测量时间区间的持续时间超过光飞过两倍于LIDAR装置的测量范围的距离的飞行时间。
在块203中,产生表示探测到的光量的输出信号。
在块204中,输出信号被例如通过图7中所描绘的控制器140的模数转换电子器件转换为数字信号。
在块205中,基于数字信号确定测量脉冲序列从LIDAR装置到三维环境的特定点并返回到LIDAR装置的飞行时间。
在一个或多个示例性实施例中,所描述的功能可以在硬件、软件、固件或其任何组合中来实施。如果在软件中实现,则可以将这些功能作为一个或多个指令或代码存储在计算机可读介质上或通过计算机可读介质进行传输。计算机可读介质包括计算机存储介质和通信介质,通信介质包括便于将计算机程序从一个地方传送到另一个地方的任何介质。存储介质可以是可由通用或专用计算机进行访问的任何可用介质。作为示例而非限制,这种计算机可读介质可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储器、磁盘存储器或其它磁性存储装置或者可以被用于呈指令或数据结构的形式承载或存储所需的程序代码且可以由通用或专用计算机或通用或专用处理器进行访问的任何其它介质。此外,任何连接都被适当地称为计算机可读介质。例如,如果使用同轴电缆、光纤电缆、双绞线、数字用户线(DSL)或无线技术(例如红外、无线电和微波)从网站、服务器或其它远程源传输软件,则介质的定义中包括同轴电缆、光纤电缆、双绞线、DSL或无线技术(例如红外、无线电和微波)。本文中所使用的磁盘和光盘包括压缩光盘(CD)、激光光盘、光盘、数字通用光盘(DVD)、软盘和蓝光光盘,其中,磁盘通常磁性地再现数据,而光盘利用激光光学地再现数据。上述的组合也应被包括在计算机可读介质的范围内。
尽管上面出于指导的目的描述了某些具体实施例,但是本专利文件的教导具有普遍适用性且不限于上述具体实施例。因此,在不脱离权利要求中所阐述的本发明的范围的情况下,可以实践所述实施例的多种特征的各种修改、改编和组合。
Claims (23)
1.一种光探测和测距装置,包括:
多脉冲照明源,所述多脉冲照明源被配置成将来自所述光探测和测距装置的多脉冲照明光束发射到三维环境中以利用照明光的包括多个照明光脉冲的测量脉冲序列照亮所述三维环境的特定点;
光敏探测器,所述光敏探测器被配置成探测从所述三维环境的由所述多脉冲照明光束照亮的所述特定点反射的所述测量脉冲序列的量,并产生表示探测到的光量的输出信号;以及
计算系统,所述计算系统被配置为:
接收表示所述探测到的光量的所述输出信号;
将所述输出信号转换为数字信号;
基于所述数字信号确定所述测量脉冲序列从所述光探测和测距装置飞到所述三维环境的所述特定点并返回到所述光探测和测距装置的飞行时间;以及
其中,所述多脉冲照明源被配置成响应于由所述光敏探测器产生的所述输出信号中的信道噪声的测量值改变所述多脉冲照明光束的编码。
2.根据权利要求1所述的光探测和测距装置,其中,所述多脉冲照明源包括:
脉冲发光装置;
多个电能存储元件,所述多个电能存储元件被选择性地联接到所述脉冲发光装置;
多个开关元件,所述多个开关元件被配置为将所述多个能量存储元件中的每一个选择性地联接到所述脉冲发光装置;以及
电能源,所述电能源被电联接到所述多个电能存储元件,其中,所述电能源被配置成向所述多个电能存储装置提供电能。
3.根据权利要求2所述的光探测和测距装置,其中,所述计算系统被进一步配置为:
将控制信号传送到所述多个开关元件中的每一个,以致使所述多个开关元件中的一个或多个将状态从不导电的状态改变为导电的状态。
4.根据权利要求3所述的光探测和测距装置,其中,所述控制信号致使从不止一个电存储元件到所述脉冲发光装置产生放电序列,并且所述脉冲发光装置被配置成接收所述放电序列并产生所述多脉冲照明光束。
5.根据权利要求4所述的光探测和测距装置,其中,所述多脉冲照明光束包括具有第一幅度的第一脉冲和具有大于或小于所述第一幅度的第二幅度的第二脉冲。
6.根据权利要求4所述的光探测和测距装置,其中,所述多脉冲照明波束包括具有第一持续时间的第一脉冲和具有大于或小于所述第一持续时间的第二持续时间的第二脉冲。
7.根据权利要求4所述的光探测和测距装置,其中,所述多脉冲照明波束包括具有第一持续时间和第一幅度的第一脉冲和具有第二持续时间和第二幅度的第二脉冲,所述第二幅度大于所述第一幅度,所述第二持续时间大于所述第一持续时间。
8.根据权利要求4所述的光探测和测距装置,其中,所述多脉冲照明波束被根据代码分集方案、幅度分集方案和时间分集方案中的任何一种进行编码。
9.根据权利要求1所述的光探测和测距装置,其中,所述计算系统被进一步配置为:
确定与所述输出信号的超过阈值的多个连续情况中的每一个相关联的第一探测时间;以及
确定所述连续情况中的每一个之间的第二时间是否类似于所述多脉冲照明光束的多个脉冲之间的第三时间,其中,基于从所述光探测和测距装置发射所述多脉冲波束的第四时间与同所述输出信号的超过所述阈值的多个连续情况中的每一个相关联的所述第一探测时间之间的差确定所述多脉冲照明光束的所述飞行时间。
10.根据权利要求1所述的光探测和测距装置,其中,所述计算系统被进一步配置为:
对所述输出信号进行滤波;以及
确定滤波后的所述输出信号超过阈值的情况,其中,基于从所述光探测和测距装置发射所述多脉冲波束的时间与同所述滤波后的输出信号超过所述阈值的情况相关联的探测时间之间的差确定所述多脉冲照明光束的所述飞行时间。
11.根据权利要求10所述的光探测和测距装置,其中,所述滤波涉及签名探测滤波器。
12.根据权利要求1所述的光探测和测距装置,其中,表示所述探测到的光量的所述输出信号在测量时间区间期间产生,所述测量时间区间的持续时间超过光飞过两倍于所述光探测和测距装置的测量范围的距离的所述飞行时间。
13.一种光探测和测距装置,包括:
多脉冲照明源,所述多脉冲照明源被配置成将来自所述光探测和测距装置的多脉冲照明光束发射到三维环境中,以利用照明光的包括多个照明光脉冲的测量脉冲序列照亮所述三维环境的特定点;
光敏探测器,所述光敏探测器被配置成探测从所述三维环境的由所述多脉冲照明光束照亮的所述特定点反射的所述测量脉冲序列的量,并产生表示探测到的光量的输出信号;以及
存储一定量的程序代码的非暂时性计算机可读介质,所述程序代码在由计算系统执行时致使所述计算系统:
接收表示所述探测到的光量的所述输出信号;
将所述输出信号转换为数字信号;
基于所述数字信号确定所述测量脉冲序列从所述光探测和测距装置飞到所述三维环境的所述特定点并返回到所述光探测和测距装置的飞行时间;以及
其中,所述多脉冲照明源被配置成响应于由所述光敏探测器产生的所述输出信号中的信道噪声的测量值改变所述多脉冲照明光束的编码。
14.根据权利要求13所述的光探测和测距装置,其中,所述多脉冲照明光束包括具有第一幅度的第一脉冲和具有大于或小于所述第一幅度的第二幅度的第二脉冲。
15.根据权利要求13所述的光探测和测距装置,其中,所述多脉冲照明波束包括具有第一持续时间的第一脉冲和具有大于或小于所述第一持续时间的第二持续时间的第二脉冲。
16.根据权利要求13所述的光探测和测距装置,其中,所述多脉冲照明波束被根据代码分集方案、幅度分集方案和时间分集方案中的任何一种进行编码。
17.根据权利要求13所述的光探测和测距装置,其中,所述一定量的程序代码进一步致使所述计算系统:
对所述输出信号进行滤波;以及
确定滤波后的所述输出信号超过阈值的情况,其中,基于从所述光探测和测距装置发射所述多脉冲波束的时间与同滤波后的所述输出信号超过阈值的情况相关联的探测时间之间的差确定所述多脉冲照明光束的所述飞行时间。
18.根据权利要求13所述的光探测和测距装置,其中,表示所述探测到的光量的所述输出信号在测量时间区间期间产生,所述测量时间区间的持续时间超过光飞过两倍于所述光探测和测距装置的测量范围的距离的所述飞行时间。
19.一种方法,包括:
将来自光探测和测距装置的编码的多脉冲照明光束发射到三维环境中,所述多脉冲照明光束利用照明光的包括多个照明光脉冲的测量脉冲序列照亮所述三维环境的特定点;
探测从所述三维环境的由所述多脉冲照明光束照亮的所述特定点反射的所述测量脉冲序列的量;
产生表示探测到的光量的输出信号;
将所述输出信号转换为数字信号;
基于所述数字信号确定所述测量脉冲序列从所述光探测和测距装置飞到所述三维环境的特定点并返回到所述光探测和测距装置的飞行时间;以及
响应于所述输出信号中的信道噪声的测量值来改变所述多脉冲照明光束的编码。
20.根据权利要求19所述的方法,其中,所述多脉冲照明光束包括具有第一幅度的第一脉冲和具有大于或小于所述第一幅度的第二幅度的第二脉冲、具有第一持续时间的所述第一脉冲和具有大于或小于所述第一持续时间的第二持续时间的所述第二脉冲或其组合。
21.根据权利要求19所述的方法,其中,根据代码分集方案、幅度分集方案和时间分集方案中的任何一种对所述多脉冲照明波束进行编码。
22.根据权利要求19所述的方法,其中,所述方法还包括:
对所述输出信号进行滤波;以及
确定滤波后的所述输出信号超过阈值的情况,其中,基于从所述光探测和测距装置发射所述测量脉冲序列的时间与同滤波后的所述输出信号超过所述阈值的情况相关联的探测时间之间的差确定所述测量脉冲序列的所述飞行时间。
23.根据权利要求19所述的方法,其中,在测量时间区间期间探测从所述三维环境的由所述多脉冲照明光束照亮的所述特定点反射的所述测量脉冲序列的量,所述测量时间区间的持续时间超过光飞过两倍于所述光探测和测距装置的测量范围的距离的所述飞行时间。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662289277P | 2016-01-31 | 2016-01-31 | |
US62/289,277 | 2016-01-31 | ||
US15/339,790 US10627490B2 (en) | 2016-01-31 | 2016-10-31 | Multiple pulse, LIDAR based 3-D imaging |
US15/339,790 | 2016-10-31 | ||
PCT/US2017/015869 WO2017132703A1 (en) | 2016-01-31 | 2017-01-31 | Multiple pulse, lidar based 3-d imaging |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108603932A CN108603932A (zh) | 2018-09-28 |
CN108603932B true CN108603932B (zh) | 2024-01-12 |
Family
ID=59385500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780009097.4A Active CN108603932B (zh) | 2016-01-31 | 2017-01-31 | 多脉冲的基于光探测和测距的三维成像 |
Country Status (6)
Country | Link |
---|---|
US (5) | US10627490B2 (zh) |
EP (1) | EP3408682B1 (zh) |
JP (1) | JP7096157B2 (zh) |
CN (1) | CN108603932B (zh) |
CA (1) | CA3012003C (zh) |
WO (1) | WO2017132703A1 (zh) |
Families Citing this family (132)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE46672E1 (en) | 2006-07-13 | 2018-01-16 | Velodyne Lidar, Inc. | High definition LiDAR system |
US11609336B1 (en) | 2018-08-21 | 2023-03-21 | Innovusion, Inc. | Refraction compensation for use in LiDAR systems |
US20110187878A1 (en) | 2010-02-02 | 2011-08-04 | Primesense Ltd. | Synchronization of projected illumination with rolling shutter of image sensor |
AU2015301488B2 (en) | 2014-08-15 | 2019-08-08 | Aeye, Inc. | Methods and systems for ladar transmission |
US10620300B2 (en) | 2015-08-20 | 2020-04-14 | Apple Inc. | SPAD array with gated histogram construction |
US9992477B2 (en) | 2015-09-24 | 2018-06-05 | Ouster, Inc. | Optical system for collecting distance information within a field |
US10063849B2 (en) | 2015-09-24 | 2018-08-28 | Ouster, Inc. | Optical system for collecting distance information within a field |
US10627490B2 (en) | 2016-01-31 | 2020-04-21 | Velodyne Lidar, Inc. | Multiple pulse, LIDAR based 3-D imaging |
US12123950B2 (en) | 2016-02-15 | 2024-10-22 | Red Creamery, LLC | Hybrid LADAR with co-planar scanning and imaging field-of-view |
US10908262B2 (en) | 2016-02-18 | 2021-02-02 | Aeye, Inc. | Ladar transmitter with optical field splitter/inverter for improved gaze on scan area portions |
US10754015B2 (en) | 2016-02-18 | 2020-08-25 | Aeye, Inc. | Adaptive ladar receiver |
US10042159B2 (en) | 2016-02-18 | 2018-08-07 | Aeye, Inc. | Ladar transmitter with optical field splitter/inverter |
US9933513B2 (en) | 2016-02-18 | 2018-04-03 | Aeye, Inc. | Method and apparatus for an adaptive ladar receiver |
JP7149256B2 (ja) | 2016-03-19 | 2022-10-06 | ベロダイン ライダー ユーエスエー,インコーポレイテッド | Lidarに基づく3次元撮像のための統合された照射及び検出 |
US10393877B2 (en) | 2016-06-01 | 2019-08-27 | Velodyne Lidar, Inc. | Multiple pixel scanning LIDAR |
CA3035094A1 (en) | 2016-08-24 | 2018-03-01 | Ouster, Inc. | Optical system for collecting distance information within a field |
KR102656372B1 (ko) | 2016-12-30 | 2024-04-12 | 세욘드, 인크. | 다중파장 라이다 설계 |
US10830878B2 (en) | 2016-12-30 | 2020-11-10 | Panosense Inc. | LIDAR system |
US10942257B2 (en) | 2016-12-31 | 2021-03-09 | Innovusion Ireland Limited | 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices |
US11054508B2 (en) | 2017-01-05 | 2021-07-06 | Innovusion Ireland Limited | High resolution LiDAR using high frequency pulse firing |
KR102569841B1 (ko) | 2017-01-05 | 2023-08-24 | 이노뷰전, 인크. | LiDAR를 인코딩 및 디코딩하기 위한 방법 및 시스템 |
US11009605B2 (en) | 2017-01-05 | 2021-05-18 | Innovusion Ireland Limited | MEMS beam steering and fisheye receiving lens for LiDAR system |
KR102572612B1 (ko) | 2017-02-17 | 2023-08-31 | 에이아이, 아이엔씨. | 레이다 펄스 충돌 방지를 위한 방법 및 시스템 |
US10365351B2 (en) | 2017-03-17 | 2019-07-30 | Waymo Llc | Variable beam spacing, timing, and power for vehicle sensors |
US10545240B2 (en) | 2017-03-28 | 2020-01-28 | Luminar Technologies, Inc. | LIDAR transmitter and detector system using pulse encoding to reduce range ambiguity |
CN110914705B (zh) | 2017-03-31 | 2024-04-26 | 威力登激光雷达美国有限公司 | 用于集成lidar照明功率控制的设备、系统和方法 |
CN110809704B (zh) | 2017-05-08 | 2022-11-01 | 威力登激光雷达美国有限公司 | Lidar数据获取与控制 |
KR102657365B1 (ko) | 2017-05-15 | 2024-04-17 | 아우스터, 인크. | 휘도 향상된 광학 이미징 송신기 |
US10527725B2 (en) | 2017-07-05 | 2020-01-07 | Ouster, Inc. | Electronically scanned light ranging device having multiple emitters sharing the field of view of a single sensor |
EP3665507A4 (en) * | 2017-09-13 | 2021-08-11 | Velodyne Lidar USA, Inc. | MULTIPLE RESOLUTION, SIMULTANEOUS LOCALIZATION AND IMAGING BASED ON 3D LIDAR MEASUREMENTS |
JP7197571B2 (ja) | 2017-09-15 | 2022-12-27 | エイアイ インコーポレイテッド | 低レイテンシ動作計画更新を有するインテリジェントladarシステム |
CN111492264B (zh) * | 2017-09-18 | 2024-07-23 | 威力登激光雷达美国有限公司 | Lidar信号获取 |
US10955552B2 (en) | 2017-09-27 | 2021-03-23 | Apple Inc. | Waveform design for a LiDAR system with closely-spaced pulses |
EP3698168A4 (en) * | 2017-10-19 | 2021-07-21 | Innovusion Ireland Limited | LIDAR WITH LARGE DYNAMIC RANGE |
JP6990864B2 (ja) * | 2017-10-20 | 2022-01-12 | パナソニックIpマネジメント株式会社 | 距離測定装置 |
JP7039948B2 (ja) | 2017-11-17 | 2022-03-23 | 株式会社デンソー | 測距センサ |
DE102017127922A1 (de) * | 2017-11-27 | 2019-05-29 | Valeo Schalter Und Sensoren Gmbh | Optoelektronische Detektionseinrichtung, Verfahren zum Betrieb einer solchen Detektionseinrichtung und Kraftfahrzeug mit einer solchen Detektionseinrichtung |
US11585902B2 (en) | 2017-11-30 | 2023-02-21 | Cepton Technologies, Inc. | Optical designs using cylindrical lenses for improved resolution in lidar systems |
US10690773B2 (en) | 2017-12-07 | 2020-06-23 | Velodyne Lidar, Inc. | Systems and methods for efficient multi-return light detectors |
US11340336B2 (en) | 2017-12-07 | 2022-05-24 | Ouster, Inc. | Rotating light ranging system with optical communication uplink and downlink channels |
US11294041B2 (en) * | 2017-12-08 | 2022-04-05 | Velodyne Lidar Usa, Inc. | Systems and methods for improving detection of a return signal in a light ranging and detection system |
WO2019125349A1 (en) * | 2017-12-18 | 2019-06-27 | Montrose Laboratories Llc | Time-of-flight sensing using an addressable array of emitters |
US11340339B2 (en) * | 2017-12-22 | 2022-05-24 | Waymo Llc | Systems and methods for adaptive range coverage using LIDAR |
US11493601B2 (en) | 2017-12-22 | 2022-11-08 | Innovusion, Inc. | High density LIDAR scanning |
CN112105944A (zh) * | 2017-12-27 | 2020-12-18 | ams传感器新加坡私人有限公司 | 具有使用短脉冲和长脉冲的多模式操作的光学测距系统 |
US11675050B2 (en) | 2018-01-09 | 2023-06-13 | Innovusion, Inc. | LiDAR detection systems and methods |
US11977184B2 (en) | 2018-01-09 | 2024-05-07 | Seyond, Inc. | LiDAR detection systems and methods that use multi-plane mirrors |
US10447424B2 (en) | 2018-01-18 | 2019-10-15 | Apple Inc. | Spatial multiplexing scheme |
CN111699411B (zh) | 2018-01-31 | 2024-07-19 | 罗伯特·博世有限公司 | 基于相位编码多脉冲传输和单比特过采样匹配滤波器检测的Lidar飞行时间和强度检测信号路径 |
DE102018102601A1 (de) | 2018-02-06 | 2019-08-08 | Sick Ag | Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten in einem Überwachungsbereich |
CN108387886A (zh) * | 2018-02-07 | 2018-08-10 | 苏州镭图光电科技有限公司 | 一种激光雷达背景暗噪声响应消除方法及装置 |
US11391823B2 (en) | 2018-02-21 | 2022-07-19 | Innovusion, Inc. | LiDAR detection systems and methods with high repetition rate to observe far objects |
WO2019164961A1 (en) | 2018-02-21 | 2019-08-29 | Innovusion Ireland Limited | Lidar systems with fiber optic coupling |
WO2019165095A1 (en) | 2018-02-23 | 2019-08-29 | Innovusion Ireland Limited | Distributed lidar systems |
US11808888B2 (en) | 2018-02-23 | 2023-11-07 | Innovusion, Inc. | Multi-wavelength pulse steering in LiDAR systems |
CN112292608B (zh) | 2018-02-23 | 2024-09-20 | 图达通智能美国有限公司 | 用于lidar系统的二维操纵系统 |
WO2019245614A2 (en) | 2018-03-09 | 2019-12-26 | Innovusion Ireland Limited | Lidar safety systems and methods |
US10877285B2 (en) | 2018-03-28 | 2020-12-29 | Apple Inc. | Wavelength-based spatial multiplexing scheme |
FR3079619B1 (fr) * | 2018-04-03 | 2020-09-25 | Arianegroup Sas | Procede et systeme d'emission et de reception d'impulsions laser |
DE102018108340A1 (de) * | 2018-04-09 | 2019-10-10 | Sick Ag | Optoelektronischer Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten |
WO2019199775A1 (en) | 2018-04-09 | 2019-10-17 | Innovusion Ireland Limited | Lidar systems and methods for exercising precise control of a fiber laser |
WO2019199796A1 (en) | 2018-04-09 | 2019-10-17 | Innovusion Ireland Limited | Compensation circuitry for lidar receiver systems and method of use thereof |
WO2019241396A1 (en) | 2018-06-15 | 2019-12-19 | Innovusion Ireland Limited | Lidar systems and methods for focusing on ranges of interest |
CN109116331B (zh) * | 2018-06-27 | 2020-04-24 | 上海禾赛光电科技有限公司 | 一种编码激光收发装置、测距装置以及激光雷达系统 |
US10466342B1 (en) | 2018-09-30 | 2019-11-05 | Hesai Photonics Technology Co., Ltd. | Adaptive coding for lidar systems |
US10760957B2 (en) | 2018-08-09 | 2020-09-01 | Ouster, Inc. | Bulk optics for a scanning array |
US10739189B2 (en) | 2018-08-09 | 2020-08-11 | Ouster, Inc. | Multispectral ranging/imaging sensor arrays and systems |
US11579300B1 (en) | 2018-08-21 | 2023-02-14 | Innovusion, Inc. | Dual lens receive path for LiDAR system |
US11860316B1 (en) | 2018-08-21 | 2024-01-02 | Innovusion, Inc. | Systems and method for debris and water obfuscation compensation for use in LiDAR systems |
US11971507B2 (en) | 2018-08-24 | 2024-04-30 | Velodyne Lidar Usa, Inc. | Systems and methods for mitigating optical crosstalk in a light ranging and detection system |
US11796645B1 (en) | 2018-08-24 | 2023-10-24 | Innovusion, Inc. | Systems and methods for tuning filters for use in lidar systems |
US11614526B1 (en) | 2018-08-24 | 2023-03-28 | Innovusion, Inc. | Virtual windows for LIDAR safety systems and methods |
US11579258B1 (en) | 2018-08-30 | 2023-02-14 | Innovusion, Inc. | Solid state pulse steering in lidar systems |
US11493606B1 (en) | 2018-09-12 | 2022-11-08 | Apple Inc. | Multi-beam scanning system |
US20200088844A1 (en) * | 2018-09-18 | 2020-03-19 | Velodyne Lidar, Inc. | Systems and methods for improving detection of a return signal in a light ranging and detection system with pulse encoding |
US10712434B2 (en) | 2018-09-18 | 2020-07-14 | Velodyne Lidar, Inc. | Multi-channel LIDAR illumination driver |
US11170228B2 (en) * | 2018-09-19 | 2021-11-09 | Here Global B.V. | One-dimensional vehicle ranging |
US11513197B2 (en) * | 2018-10-15 | 2022-11-29 | Leica Geosystems Ag | Multiple-pulses-in-air laser scanning system with ambiguity resolution based on range probing and 3D point analysis |
DE102018126522A1 (de) | 2018-10-24 | 2020-04-30 | Blickfeld GmbH | Laufzeitbasierte Entfernungsmessung unter Verwendung von modulierten Pulsfolgen von Laserpulsen |
US10656252B1 (en) | 2018-10-25 | 2020-05-19 | Aeye, Inc. | Adaptive control of Ladar systems using spatial index of prior Ladar return data |
CN111448475B (zh) * | 2018-10-31 | 2024-04-12 | 深圳市大疆创新科技有限公司 | 光探测方法、光探测装置和移动平台 |
US11808887B2 (en) * | 2018-11-02 | 2023-11-07 | Waymo Llc | Methods and systems for mapping retroreflectors |
US11082010B2 (en) | 2018-11-06 | 2021-08-03 | Velodyne Lidar Usa, Inc. | Systems and methods for TIA base current detection and compensation |
US11686824B2 (en) | 2018-11-14 | 2023-06-27 | Innovusion, Inc. | LiDAR systems that use a multi-facet mirror |
US10826269B2 (en) * | 2018-12-24 | 2020-11-03 | Beijing Voyager Technology Co., Ltd. | Multi-pulse generation for pulsed laser diodes using low-side drivers |
US11585906B2 (en) * | 2018-12-26 | 2023-02-21 | Ouster, Inc. | Solid-state electronic scanning laser array with high-side and low-side switches for increased channels |
US11885958B2 (en) | 2019-01-07 | 2024-01-30 | Velodyne Lidar Usa, Inc. | Systems and methods for a dual axis resonant scanning mirror |
US12061263B2 (en) | 2019-01-07 | 2024-08-13 | Velodyne Lidar Usa, Inc. | Systems and methods for a configurable sensor system |
CN113302515B (zh) | 2019-01-10 | 2024-09-24 | 图达通智能美国有限公司 | 具有光束转向和广角信号检测的lidar系统和方法 |
CN113767301B (zh) * | 2019-01-31 | 2024-06-25 | 感觉光子公司 | 闪光lidar的选通窗口相关照明 |
US11486970B1 (en) | 2019-02-11 | 2022-11-01 | Innovusion, Inc. | Multiple beam generation from a single source beam for use with a LiDAR system |
KR102604902B1 (ko) | 2019-02-11 | 2023-11-21 | 애플 인크. | 펄스형 빔들의 희소 어레이를 사용하는 깊이 감지 |
US11977185B1 (en) | 2019-04-04 | 2024-05-07 | Seyond, Inc. | Variable angle polygon for use with a LiDAR system |
CN110832345A (zh) * | 2019-04-15 | 2020-02-21 | 深圳市速腾聚创科技有限公司 | 一种激光雷达 |
US11513223B2 (en) | 2019-04-24 | 2022-11-29 | Aeye, Inc. | Ladar system and method with cross-receiver |
US11500094B2 (en) | 2019-06-10 | 2022-11-15 | Apple Inc. | Selection of pulse repetition intervals for sensing time of flight |
JP7356286B2 (ja) * | 2019-06-26 | 2023-10-04 | ダイキョーニシカワ株式会社 | 車両用距離センサの取付構造 |
US10613203B1 (en) | 2019-07-01 | 2020-04-07 | Velodyne Lidar, Inc. | Interference mitigation for light detection and ranging |
US11555900B1 (en) | 2019-07-17 | 2023-01-17 | Apple Inc. | LiDAR system with enhanced area coverage |
EP4010736A1 (en) * | 2019-08-08 | 2022-06-15 | Neural Propulsion Systems, Inc. | Distributed aperture optical ranging system |
US11556000B1 (en) | 2019-08-22 | 2023-01-17 | Red Creamery Llc | Distally-actuated scanning mirror |
US11150348B2 (en) * | 2019-10-02 | 2021-10-19 | Cepton Technologies, Inc. | Techniques for detecting cross-talk interferences in lidar imaging sensors |
WO2021088647A1 (zh) * | 2019-11-07 | 2021-05-14 | 上海禾赛科技股份有限公司 | 多脉冲激光发射电路、激光雷达以及发射激光束的方法 |
US11733359B2 (en) | 2019-12-03 | 2023-08-22 | Apple Inc. | Configurable array of single-photon detectors |
CN111427052B (zh) * | 2020-06-09 | 2020-11-27 | 深圳市汇顶科技股份有限公司 | 基于飞行时间的测距方法和相关测距系统 |
JP7483548B2 (ja) * | 2020-08-05 | 2024-05-15 | 京セラ株式会社 | 電磁波検出装置 |
CN112327272B (zh) * | 2020-11-06 | 2021-06-29 | 深圳煜炜光学科技有限公司 | 一种脉冲可编码的激光雷达装置及其检测方法 |
US12061289B2 (en) | 2021-02-16 | 2024-08-13 | Innovusion, Inc. | Attaching a glass mirror to a rotating metal motor frame |
US11422267B1 (en) | 2021-02-18 | 2022-08-23 | Innovusion, Inc. | Dual shaft axial flux motor for optical scanners |
US11789128B2 (en) | 2021-03-01 | 2023-10-17 | Innovusion, Inc. | Fiber-based transmitter and receiver channels of light detection and ranging systems |
US11442152B1 (en) | 2021-03-26 | 2022-09-13 | Aeye, Inc. | Hyper temporal lidar with dynamic laser control using a laser energy model |
US11630188B1 (en) | 2021-03-26 | 2023-04-18 | Aeye, Inc. | Hyper temporal lidar with dynamic laser control using safety models |
US11486977B2 (en) | 2021-03-26 | 2022-11-01 | Aeye, Inc. | Hyper temporal lidar with pulse burst scheduling |
US11500093B2 (en) | 2021-03-26 | 2022-11-15 | Aeye, Inc. | Hyper temporal lidar using multiple matched filters to determine target obliquity |
US11635495B1 (en) | 2021-03-26 | 2023-04-25 | Aeye, Inc. | Hyper temporal lidar with controllable tilt amplitude for a variable amplitude scan mirror |
US11686846B2 (en) | 2021-03-26 | 2023-06-27 | Aeye, Inc. | Bistatic lidar architecture for vehicle deployments |
US20230044929A1 (en) | 2021-03-26 | 2023-02-09 | Aeye, Inc. | Multi-Lens Lidar Receiver with Multiple Readout Channels |
US11555895B2 (en) | 2021-04-20 | 2023-01-17 | Innovusion, Inc. | Dynamic compensation to polygon and motor tolerance using galvo control profile |
US11614521B2 (en) | 2021-04-21 | 2023-03-28 | Innovusion, Inc. | LiDAR scanner with pivot prism and mirror |
CN117178199A (zh) | 2021-04-22 | 2023-12-05 | 图达通智能美国有限公司 | 具有高分辨率和超宽视场的紧凑型光检测和测距设计 |
WO2022225859A1 (en) | 2021-04-22 | 2022-10-27 | Innovusion, Inc. | A compact lidar design with high resolution and ultra-wide field of view |
CN115248427A (zh) * | 2021-04-27 | 2022-10-28 | 上海禾赛科技有限公司 | 激光雷达的控制方法及激光雷达 |
CN117337404A (zh) * | 2021-05-11 | 2024-01-02 | 欧普赛斯技术有限公司 | 像素映射固态lidar发射机系统和方法 |
US11624806B2 (en) | 2021-05-12 | 2023-04-11 | Innovusion, Inc. | Systems and apparatuses for mitigating LiDAR noise, vibration, and harshness |
US11662440B2 (en) | 2021-05-21 | 2023-05-30 | Innovusion, Inc. | Movement profiles for smart scanning using galvonometer mirror inside LiDAR scanner |
US11768294B2 (en) | 2021-07-09 | 2023-09-26 | Innovusion, Inc. | Compact lidar systems for vehicle contour fitting |
US11681028B2 (en) | 2021-07-18 | 2023-06-20 | Apple Inc. | Close-range measurement of time of flight using parallax shift |
DE102021118660B4 (de) | 2021-07-20 | 2024-09-05 | Sick Ag | Laserscanner und Verfahren zur Erfassung von Objekten mit einem Laserscanner |
CN117940804A (zh) * | 2021-10-09 | 2024-04-26 | 华为技术有限公司 | 一种控制方法、装置、激光雷达及终端设备 |
CN216356147U (zh) | 2021-11-24 | 2022-04-19 | 图达通智能科技(苏州)有限公司 | 一种车载激光雷达电机、车载激光雷达及车辆 |
US11871130B2 (en) | 2022-03-25 | 2024-01-09 | Innovusion, Inc. | Compact perception device |
CN115792864B (zh) * | 2023-01-30 | 2023-05-12 | 探维科技(北京)有限公司 | 一种激光雷达的控制方法、装置、电子设备及存储介质 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0468175A2 (en) * | 1990-12-21 | 1992-01-29 | Kaman Aerospace Corporation | Imaging lidar system employing multipulse single and multiple range gating |
US5249046A (en) * | 1992-03-30 | 1993-09-28 | Kaman Aerospace Corporation | Method and apparatus for three dimensional range resolving imaging |
US5309212A (en) * | 1992-09-04 | 1994-05-03 | Yaskawa Electric Corporation | Scanning rangefinder with range to frequency conversion |
US5793163A (en) * | 1995-09-29 | 1998-08-11 | Pioneer Electronic Corporation | Driving circuit for light emitting element |
US5942688A (en) * | 1994-11-18 | 1999-08-24 | Mitsubishi Denki Kabushiki Kaisha | Apparatus and method for detecting a measurable quantity of an object |
EP2157445A2 (en) * | 2008-08-19 | 2010-02-24 | Rosemount Aerospace Inc. | Lidar system using a pseudo-random pulse sequence |
CN102798866A (zh) * | 2012-08-14 | 2012-11-28 | 哈尔滨工业大学 | 激光雷达系统及采用该系统的正弦调幅-脉冲相位编码调制的复合测距和测速方法 |
CN103064087A (zh) * | 2012-12-25 | 2013-04-24 | 符建 | 基于多次积分的三维成像雷达系统及方法 |
CN103616696A (zh) * | 2013-11-27 | 2014-03-05 | 中国电子科技集团公司第三十八研究所 | 一种激光成像雷达装置及其测距的方法 |
US8953647B1 (en) * | 2007-03-21 | 2015-02-10 | Lockheed Martin Corporation | High-power laser using thulium-doped fiber amplifier and frequency quadrupling for blue output |
US9063549B1 (en) * | 2013-03-06 | 2015-06-23 | Google Inc. | Light detection and ranging device with oscillating mirror driven by magnetically interactive coil |
Family Cites Families (574)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE930909C (de) | 1943-03-30 | 1955-07-28 | Hans Dr-Ing Thoma | Hydraulische Getriebeanlage |
US3064252A (en) | 1952-03-31 | 1962-11-13 | Arthur A Varela | Height finding radar system |
US3636250A (en) | 1964-02-26 | 1972-01-18 | Andrew V Haeff | Apparatus for scanning and reproducing a three-dimensional representation of an object |
US3373441A (en) | 1966-06-17 | 1968-03-12 | Ernest A. Zadig | Laser speed detector |
US3551845A (en) | 1968-05-09 | 1970-12-29 | Gen Systems Inc | Transistor-magnetic oscillators incorporating voltage reference means to regulate the output frequency |
DE10151981A1 (de) | 2001-10-22 | 2003-04-30 | Ibeo Automobile Sensor Gmbh | Optoelektronische Erfassungseinrichtung |
US4944036A (en) * | 1970-12-28 | 1990-07-24 | Hyatt Gilbert P | Signature filter system |
US3686514A (en) | 1971-07-16 | 1972-08-22 | Ney Co J M | Slip ring assembly |
US3781111A (en) | 1972-03-16 | 1973-12-25 | Nasa | Short range laser obstacle detector |
US3897150A (en) | 1972-04-03 | 1975-07-29 | Hughes Aircraft Co | Scanned laser imaging and ranging system |
US5023888A (en) | 1972-07-24 | 1991-06-11 | Martin Marietta Corporation | Pulse code recognition method and system |
US5026156A (en) | 1972-07-24 | 1991-06-25 | Martin Marietta Corporation | Method and system for pulse interval modulation |
US3862415A (en) | 1972-10-31 | 1975-01-21 | Gen Electric | Opto-electronic object detector using semiconductor light source |
US3921081A (en) | 1974-10-30 | 1975-11-18 | Gen Electric | Pulse generator for producing pulses of definable width |
AT353487B (de) | 1977-05-31 | 1979-11-12 | Plasser Bahnbaumasch Franz | Vermessungseinrichtung zur anzeige bzw. registrierung des profilverlaufes von tunnel- roehren, durchlaessen u.dgl. engstellen |
DE2744130A1 (de) | 1977-09-30 | 1979-04-12 | Siemens Ag | Vorrichtung zum beruehrungsfreien messen des abstandes einer oberflaeche eines objektes von einer bezugsebene |
DE2818942C2 (de) | 1978-04-28 | 1986-03-27 | Zellweger Uster Ag, Uster | Verfahren zur Raumüberwachung und Vorrichtung zur Durchführung des Verfahrens |
US4199697A (en) | 1978-07-05 | 1980-04-22 | Northern Telecom Limited | Pulse amplitude modulation sampling gate including filtering |
CH640050A5 (de) | 1978-07-20 | 1983-12-15 | Kern & Co Ag | Verfahren und vorrichtung zur messung der relativlage zwischen einem ersten und mindestens einem zweiten punkt. |
JPS5525883U (zh) | 1978-08-10 | 1980-02-19 | ||
US4201442A (en) | 1978-10-02 | 1980-05-06 | Sperry Corporation | Liquid crystal switching coupler matrix |
GB2041687B (en) | 1978-12-18 | 1983-03-23 | Decca Ltd | Narrow beam scanning radar or lidas |
JPS5596475A (en) | 1979-01-19 | 1980-07-22 | Nissan Motor Co Ltd | Obstacle detector for vehicle |
DE3134815C2 (de) | 1981-09-03 | 1986-07-10 | Telenot Electronic GmbH, 7080 Aalen | Flächensicherung |
DE3216312A1 (de) | 1982-05-03 | 1983-11-03 | Johann F. Dipl.-Phys. 2000 Hamburg Hipp | Schaltungsanordnung zum betrieb von pulslaserdioden |
DE3216313C2 (de) | 1982-05-03 | 1994-11-03 | Hipp Johann F | Regelungselektronische Einrichtung für elektrooptische Entfernungsmesser mit Lichtpulslaufzeit-Meßverfahren |
JPS58211677A (ja) | 1982-06-02 | 1983-12-09 | Nissan Motor Co Ltd | 光レ−ダ装置 |
US4516837A (en) | 1983-02-22 | 1985-05-14 | Sperry Corporation | Electro-optical switch for unpolarized optical signals |
US4700301A (en) | 1983-11-02 | 1987-10-13 | Dyke Howard L | Method of automatically steering agricultural type vehicles |
GB2158232B (en) | 1984-04-25 | 1987-11-18 | Matsushita Electric Works Ltd | Object detecting apparatus including photosensors for restricted detection area |
EP0185816A1 (en) | 1984-12-27 | 1986-07-02 | THE GENERAL ELECTRIC COMPANY, p.l.c. | A vehicle guidance and control system |
DE3530646A1 (de) | 1985-08-28 | 1987-03-12 | Telenot Electronic Gmbh | Flaechensicherung |
US4834531A (en) | 1985-10-31 | 1989-05-30 | Energy Optics, Incorporated | Dead reckoning optoelectronic intelligent docking system |
JPH0690149B2 (ja) | 1986-01-31 | 1994-11-14 | 東洋ガラス株式会社 | 透光度検査装置 |
DE3635396A1 (de) | 1986-10-17 | 1988-04-28 | Bayerische Motoren Werke Ag | Vorrichtung zum erkennen von hindernissen fuer kraftfahrzeuge |
US5241481A (en) | 1987-06-22 | 1993-08-31 | Arnex Handelsbolag | Method and a device for laser optical navigation |
DE3741259A1 (de) | 1987-12-05 | 1989-06-15 | Hipp Johann F | Verfahren und vorrichtung zur autonomen steuerung eines fahrzeuges |
US4902126A (en) | 1988-02-09 | 1990-02-20 | Fibertek, Inc. | Wire obstacle avoidance system for helicopters |
DE3808972A1 (de) | 1988-03-17 | 1989-10-05 | Hipp Johann F | Vorrichtung zur kontinuierlichen verfolgung und positionsmessung eines objektes |
US4896343A (en) | 1988-05-02 | 1990-01-23 | Saunders Allan M | Radiation apparatus with distance mapper for dose control |
US4952911A (en) | 1988-05-18 | 1990-08-28 | Eastman Kodak Company | Scanning intrusion detection device |
US4967183A (en) | 1988-05-18 | 1990-10-30 | Eastman Kodak Company | Method of intrusion detection over a wide area |
DE3821892C1 (en) | 1988-06-29 | 1990-02-22 | Johann F. Dipl.-Phys. 2000 Hamburg De Hipp | Method and device for position measurement of container repositioning vehicles |
US4862257A (en) | 1988-07-07 | 1989-08-29 | Kaman Aerospace Corporation | Imaging lidar system |
US4895440A (en) | 1988-08-22 | 1990-01-23 | Spectra-Physics, Inc. | Laser-based measurement system |
DE3833022A1 (de) | 1988-09-29 | 1990-04-05 | Fraunhofer Ges Forschung | Verfahren zum schutz eines fahrzeugs gegen kollisionen und kollisionsgeschuetztes fahrzeug |
US5710417A (en) | 1988-10-21 | 1998-01-20 | Symbol Technologies, Inc. | Bar code reader for reading both one dimensional and two dimensional symbologies with programmable resolution |
US5621203A (en) | 1992-09-25 | 1997-04-15 | Symbol Technologies | Method and apparatus for reading two-dimensional bar code symbols with an elongated laser line |
JPH0755525Y2 (ja) | 1989-02-10 | 1995-12-20 | 旭光学工業株式会社 | レンズシャッタ式カメラのレンズ鏡筒の遮光装置 |
DE3915627A1 (de) | 1989-05-12 | 1990-11-15 | Dornier Luftfahrt | Optisches radar |
JPH036407A (ja) | 1989-06-03 | 1991-01-11 | Daido Steel Co Ltd | 外周形状測定装置 |
US5004916A (en) | 1989-07-28 | 1991-04-02 | Ncr Corporation | Scanning system having automatic laser shutdown upon detection of defective scanning element motion |
ES2049876T3 (es) | 1989-08-08 | 1994-05-01 | Siemens Ag | Instalacion de proteccion contra colisiones para aparatos de transporte. |
ATE111995T1 (de) | 1989-08-08 | 1994-10-15 | Siemens Ag | Fördervolumenmessung aus der schnittkontur eines schaufelradbaggers oder anderen tagebaugeräts. |
ATE99758T1 (de) | 1989-08-08 | 1994-01-15 | Siemens Ag | Foerdermengenregelung eines schaufelradbaggers oder schaufelradaufnehmers im tagebau. |
EP0412395B1 (de) | 1989-08-08 | 1994-09-21 | Siemens Aktiengesellschaft | Führung eines Bagger-Schaufelrades zum Erzeugen vorherbestimmter Flächen |
US5291261A (en) | 1990-02-06 | 1994-03-01 | Motorola, Inc. | Optical object detection system incorporating fiber optic coupling |
US5175694A (en) | 1990-02-08 | 1992-12-29 | The United States Of America As Represented By The Secretary Of The Navy | Centroid target tracking system utilizing parallel processing of digital data patterns |
DE4107850B4 (de) | 1990-03-10 | 2006-06-29 | Daimlerchrysler Ag | Anordnung zur Verbesserung der Sicht, insbesondere in Fahrzeugen |
US5006721A (en) | 1990-03-23 | 1991-04-09 | Perceptron, Inc. | Lidar scanning system |
US5059008A (en) | 1990-03-26 | 1991-10-22 | General Electric Company | Wide angle beam steerer using translation of plural lens arrays |
EP0464263A3 (en) | 1990-06-27 | 1992-06-10 | Siemens Aktiengesellschaft | Device for obstacle detection for pilots of low flying aircrafts |
US5249157A (en) | 1990-08-22 | 1993-09-28 | Kollmorgen Corporation | Collision avoidance system |
CH681756A5 (zh) | 1990-11-12 | 1993-05-14 | Beat Decoi | |
JP2975424B2 (ja) | 1990-11-14 | 1999-11-10 | 株式会社トプコン | 光波測距装置 |
DE4040894C1 (en) | 1990-12-20 | 1992-04-30 | Eltro Gmbh, Gesellschaft Fuer Strahlungstechnik, 6900 Heidelberg, De | Motor vehicle parking aid using pulsed laser - evaluates signal reflected from obstacle and received by semiconductor diode at rear corner of vehicle |
IE71181B1 (en) | 1991-01-29 | 1997-01-29 | Proximeter Co Ltd | Proximity detector |
US5463384A (en) | 1991-02-11 | 1995-10-31 | Auto-Sense, Ltd. | Collision avoidance system for vehicles |
DE4115747C2 (de) | 1991-05-14 | 1998-02-26 | Hipp Johann F | Vorrichtung und Verfahren zur Situations-, Hindernis- und Objekterkennung |
DE4215272C2 (de) | 1991-06-15 | 1994-11-17 | Leuze Electronic Gmbh & Co | Einen Sender, einen Empfänger und eine Schaltungsanordnung zur Signalauswertung aufweisende lichtelektrische Überwachungseinrichtung |
US5357331A (en) | 1991-07-02 | 1994-10-18 | Flockencier Stuart W | System for processing reflected energy signals |
DE4124192A1 (de) | 1991-07-20 | 1993-01-21 | Dornier Luftfahrt | Abstandsmessgeraet oder abstandswarngeraet |
DE4127168C2 (de) | 1991-08-16 | 1994-07-07 | Spies Martin J Dipl Ing Fh | Signalverarbeitung zur Abstandsmessung |
DE4130619A1 (de) | 1991-09-14 | 1993-03-25 | Deutsche Aerospace | Einrichtung zum objektschutz |
US5177768A (en) | 1991-11-22 | 1993-01-05 | Bell Communications Research, Inc. | Spread-time code division multiple access technique with arbitrary spectral shaping |
JPH05240940A (ja) | 1992-02-26 | 1993-09-21 | Toshihiro Tsumura | 光計測システム |
WO1994005586A1 (de) | 1992-08-28 | 1994-03-17 | Johann Hipp | Vorrichtung und verfahren zur steuerung eines containerkranes |
US6333121B1 (en) | 1992-10-13 | 2001-12-25 | General Electric Company | Low-sulfur article having a platinum-aluminide protective layer and its preparation |
US5838239A (en) | 1992-10-20 | 1998-11-17 | Robotic Vision Systems, Inc. | System for detecting ice or snow on surface which specularly reflects light |
US5546188A (en) | 1992-11-23 | 1996-08-13 | Schwartz Electro-Optics, Inc. | Intelligent vehicle highway system sensor and method |
DE4340756C5 (de) | 1992-12-08 | 2006-08-10 | Sick Ag | Laserabstandsermittlungsvorrichtung |
DE4345448C2 (de) | 1992-12-08 | 1998-07-30 | Sick Ag | Laserabstandsermittlungsvorrichtung |
DE4243631A1 (de) | 1992-12-22 | 1994-06-23 | Siemens Ag | Verfahren zum Steuern einer Abraumförderbrücke und Abraumförderbrücke |
US5793491A (en) | 1992-12-30 | 1998-08-11 | Schwartz Electro-Optics, Inc. | Intelligent vehicle highway system multi-lane sensor and method |
US5314037A (en) | 1993-01-22 | 1994-05-24 | Shaw David C H | Automobile collision avoidance system |
CA2089105A1 (en) | 1993-02-09 | 1994-08-10 | Denis Jacob | Borehole laser cavity monitoring system |
JP3225682B2 (ja) | 1993-03-30 | 2001-11-05 | 住友電気工業株式会社 | 距離測定装置 |
JP3345953B2 (ja) | 1993-04-01 | 2002-11-18 | 大同特殊鋼株式会社 | 線材の直径測定装置 |
US5465142A (en) | 1993-04-30 | 1995-11-07 | Northrop Grumman Corporation | Obstacle avoidance system for helicopters and other aircraft |
RU2061224C1 (ru) | 1993-07-05 | 1996-05-27 | Валерий Михайлович Волынкин | Лидар |
EP0636903B1 (en) | 1993-07-29 | 1998-10-07 | Omron Corporation | An electromagnetic wave generating device and a distance measuring device |
US5563706A (en) | 1993-08-24 | 1996-10-08 | Nikon Corporation | Interferometric surface profiler with an alignment optical member |
US5612781A (en) | 1993-09-09 | 1997-03-18 | Kabushiki Kaisha Topcon | Object reflector detection system |
JP3444310B2 (ja) | 1993-10-20 | 2003-09-08 | 東京電力株式会社 | 光学式振動検出装置 |
JP2827930B2 (ja) | 1993-11-12 | 1998-11-25 | 日本電気株式会社 | 集積レーザ素子および光ビーム走査装置 |
DE4406821A1 (de) | 1994-03-02 | 1995-09-07 | Hipp Johann | Vorrichtung zur Führung des Piloten eines sich seiner Parkposition nähernden Flugzeuges |
DE4411448C5 (de) | 1994-03-31 | 2009-05-14 | Sick Ag | Verfahren und Vorrichtung zur Kontrolle eines vorgegebenen Überwachungsbereichs |
DE4412044A1 (de) | 1994-04-08 | 1995-10-12 | Leuze Electronic Gmbh & Co | Optoelektronische Vorrichtung zum Erfassen von Gegenständen in einem Überwachungsbereich |
US5526291A (en) | 1994-09-08 | 1996-06-11 | Trimble Navigation Limited | Compensation for receiver and satellite signal differences |
FR2730829B1 (fr) | 1995-02-22 | 2003-06-06 | Asahi Optical Co Ltd | Dispositif de mesure de distance |
DE19512644A1 (de) | 1995-04-05 | 1996-10-10 | Bayerische Motoren Werke Ag | Verfahren zum Vermeiden einer Kollision eines Kraftfahrzeugs |
DE19512681A1 (de) | 1995-04-07 | 1996-10-10 | Hipp Johann | Sicherheitseinrichtung für Fahrzeuge, insbesondere frei navigierende Fahrzeuge, zur Kollisionsverhinderung |
DE69633524T2 (de) | 1995-04-12 | 2005-03-03 | Matsushita Electric Industrial Co., Ltd., Kadoma | Verfahren und Gerät zur Objekterfassung |
DE19517001A1 (de) | 1995-05-09 | 1996-11-14 | Sick Optik Elektronik Erwin | Verfahren und Vorrichtung zur Bestimmung der Lichtlaufzeit über eine zwischen einer Meßvorrichtung und einem reflektierenden Objekt angeordnete Meßstrecke |
US5691687A (en) | 1995-07-03 | 1997-11-25 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Contactless magnetic slip ring |
US5572219A (en) * | 1995-07-07 | 1996-11-05 | General Electric Company | Method and apparatus for remotely calibrating a phased array system used for satellite communication |
DE19530281C2 (de) | 1995-08-17 | 1999-01-07 | Johann Hipp | Vorrichtung zum optischen Erfassen von Hindernissen vor Fahrzeugen |
DE19539955A1 (de) | 1995-10-26 | 1997-04-30 | Sick Ag | Optische Erfassungseinrichtung |
DE19546563C2 (de) | 1995-12-13 | 1997-09-18 | Leica Ag | Spannungsversorgung für eine Impulsendstufe |
US6629641B2 (en) | 2000-06-07 | 2003-10-07 | Metrologic Instruments, Inc. | Method of and system for producing images of objects using planar laser illumination beams and image detection arrays |
DE19607345A1 (de) | 1996-02-27 | 1997-08-28 | Sick Ag | Laserabstandsermittlungsvorrichtung |
DE29607076U1 (de) | 1996-04-18 | 1996-08-29 | Erwin Sick Gmbh Optik-Elektronik, 79183 Waldkirch | Opto-elektronischer Sensor zur Erkennung transparenter Objekte |
US5988862A (en) | 1996-04-24 | 1999-11-23 | Cyra Technologies, Inc. | Integrated system for quickly and accurately imaging and modeling three dimensional objects |
JPH1075347A (ja) | 1996-06-24 | 1998-03-17 | Nikon Corp | フィルム画像読取装置及びフィルム画像読取装置に対する制御手順を記憶する記憶媒体 |
US5790244A (en) | 1996-08-23 | 1998-08-04 | Laser Technology, Inc. | Pre-biasing technique for a transistor based avalanche circuit in a laser based distance measurement and ranging instrument |
GB9620001D0 (en) | 1996-09-25 | 1996-11-13 | Firearms Research Ltd | Optical sighting devices |
FR2754909B1 (fr) | 1996-10-22 | 1999-01-08 | Thomson Csf | Lidar monostatique |
DE19647152A1 (de) | 1996-11-14 | 1998-05-28 | Sick Ag | Laserabstandsermittlungsvorrichtung |
US5847817A (en) | 1997-01-14 | 1998-12-08 | Mcdonnell Douglas Corporation | Method for extending range and sensitivity of a fiber optic micro-doppler ladar system and apparatus therefor |
DE19701803A1 (de) | 1997-01-20 | 1998-10-01 | Sick Ag | Lichttaster mit Lichtlaufzeit-Auswertung |
DE19704340A1 (de) | 1997-02-05 | 1998-08-06 | Sick Ag | Entfernungsmesser |
JP3456120B2 (ja) | 1997-09-09 | 2003-10-14 | 三菱電機株式会社 | レーザダイオード用電源制御装置 |
DE19717399C2 (de) | 1997-04-24 | 2001-05-23 | Martin Spies | Einrichtung zur Bestimmung von Abstand und Art von Objekten sowie der Sichtweite |
US6420698B1 (en) | 1997-04-24 | 2002-07-16 | Cyra Technologies, Inc. | Integrated system for quickly and accurately imaging and modeling three-dimensional objects |
US6034803A (en) | 1997-04-30 | 2000-03-07 | K2 T, Inc. | Method and apparatus for directing energy based range detection sensor |
US6621764B1 (en) | 1997-04-30 | 2003-09-16 | Thomas Smith | Weapon location by acoustic-optic sensor fusion |
DE19727792C2 (de) | 1997-06-30 | 2000-03-23 | Sick Ag | Scanner |
US5910767A (en) | 1997-07-11 | 1999-06-08 | Laser Guard | Intruder detector system |
DE19735037C2 (de) | 1997-08-13 | 1999-06-02 | Schmersal Eot Gmbh & Co Kg | Vorrichtung zum Orten von in einen zu überwachenden Raumbereich eindringenden Objekten |
DE19735038C2 (de) | 1997-08-13 | 1999-07-15 | Schmersal Eot Gmbh & Co Kg | Vorrichtung zum Orten von in einen zu überwachenden Raumbereich eindringenden Objekten |
DE19741730B4 (de) | 1997-09-22 | 2006-02-02 | Sick Ag | Verfahren zur Ermittlung der Oberflächenkontur von Meßobjekten |
DE19741731A1 (de) | 1997-09-22 | 1999-04-01 | Sick Ag | Vorrichtung zur optischen Abtastung von Oberflächen |
US7962285B2 (en) | 1997-10-22 | 2011-06-14 | Intelligent Technologies International, Inc. | Inertial measurement unit for aircraft |
EP0913707B1 (de) | 1997-10-31 | 2003-06-11 | LAP GmbH Laser Applikationen | Verfahren zur berührungsfreien Messung des Abstands eines Objekts nach dem Prinzip der Laser-Triangulation |
US6201236B1 (en) | 1997-11-13 | 2001-03-13 | Auto Sense Ltd. | Detection system with improved noise tolerance |
DE19752145A1 (de) | 1997-11-25 | 1999-05-27 | Hipp Johann F | Vorrichtung zur Überwachung von Fahrzeuginnenräumen |
DE19757849C5 (de) | 1997-12-24 | 2013-11-21 | Sick Ag | Scanner und Vorrichtung zur optischen Erfassung von Hindernissen, sowie deren Verwendung |
DE19757840C1 (de) | 1997-12-24 | 1999-09-30 | Johann F Hipp | Vorrichtung zur optischen Erfassung und Abstandermittlung von Objekten von einem Fahrzeug aus |
DE19757847A1 (de) | 1997-12-24 | 1999-07-15 | Hipp Johann F | Scanner für eine Vorrichtung zur optischen Erfassung von Objekten |
DE19757848C2 (de) | 1997-12-24 | 2003-04-30 | Sick Ag | Vorrichtung zur optischen Erfassung von Objekten |
JP3420049B2 (ja) | 1997-12-27 | 2003-06-23 | 本田技研工業株式会社 | 車両用物体検知装置 |
US5903386A (en) | 1998-01-20 | 1999-05-11 | Northrop Grumman Corporation | Tilted primary clamshell lens laser scanner |
DE19805606A1 (de) | 1998-02-12 | 1999-09-02 | Schmersal Eot Gmbh & Co Kg | Verfahren zum Konfigurieren von Sensoren |
DE19806741A1 (de) | 1998-02-18 | 1999-08-19 | Schmersal Eot Gmbh & Co Kg | Lichtlaufzeitzähler mit Korrekturschaltung |
JPH11242518A (ja) | 1998-02-25 | 1999-09-07 | Honda Motor Co Ltd | レーダー装置 |
JPH11264871A (ja) | 1998-03-17 | 1999-09-28 | Komatsu Ltd | 車両用障害物検出装置の監視機構 |
DE19815149A1 (de) | 1998-04-03 | 1999-10-07 | Leuze Electronic Gmbh & Co | Sensoranordnung |
AUPP299498A0 (en) | 1998-04-15 | 1998-05-07 | Commonwealth Scientific And Industrial Research Organisation | Method of tracking and sensing position of objects |
US5953110A (en) | 1998-04-23 | 1999-09-14 | H.N. Burns Engineering Corporation | Multichannel laser radar |
US6529923B2 (en) | 1998-05-29 | 2003-03-04 | Cidra Corporation | Method for improving the accuracy in the determination of a waveform center of a waveform signal |
DE19828000C2 (de) | 1998-06-24 | 2000-06-21 | Schmersal Eot Gmbh & Co Kg | Verfahren zur optoelektronischen Überwachung eines Schutzbereichs |
AU6355799A (en) | 1998-10-28 | 2000-05-15 | Measurement Devices Limited | Apparatus and method for obtaining 3d images |
US6744800B1 (en) | 1998-12-30 | 2004-06-01 | Xerox Corporation | Method and structure for nitride based laser diode arrays on an insulating substrate |
DE19902903C1 (de) | 1999-01-26 | 2000-05-31 | Schmersal Eot Gmbh & Co Kg | Vorrichtung zum Orten von in einen zu überwachenden Raumbereich eindringenden Objekten |
US6441363B1 (en) | 1999-02-24 | 2002-08-27 | Siemens Vdo Automotive Corporation | Vehicle occupant sensing system |
US6137566A (en) | 1999-02-24 | 2000-10-24 | Eoo, Inc. | Method and apparatus for signal processing in a laser radar receiver |
DE19911375A1 (de) | 1999-03-15 | 2000-09-21 | Johann F Hipp | Einrichtung zur Detektion der Position eines Flugkörpers |
WO2000055642A1 (de) | 1999-03-18 | 2000-09-21 | Siemens Aktiengesellschaft | Ortsauflösendes abstandsmesssystem |
US9191260B1 (en) | 1999-04-05 | 2015-11-17 | Lightworks Ii, Llc | Method and apparatus to determine a match between signals |
DE29907270U1 (de) | 1999-04-23 | 1999-07-29 | Sick AG, 79183 Waldkirch | Verbindungsvorrichtung |
DE19919925C2 (de) | 1999-04-30 | 2001-06-13 | Siemens Ag | Anordnung und Verfahren zur gleichzeitigen Messung der Geschwindigkeit sowie der Oberflächengestalt von bewegten Objekten |
EP1055937A3 (de) | 1999-05-22 | 2002-05-08 | Volkswagen Aktiengesellschaft | Empfangseinrichtung für einen Laserscanner |
DE19927501A1 (de) | 1999-05-22 | 2000-11-23 | Volkswagen Ag | Sendeeinrichtung für einen Laserscanner |
US6580385B1 (en) | 1999-05-26 | 2003-06-17 | Robert Bosch Gmbh | Object detection system |
KR20010007146A (ko) | 1999-06-01 | 2001-01-26 | 안자이 이치로 | 퍼스널 컴퓨터용 cpu의 방열기 |
AU5874300A (en) | 1999-06-14 | 2001-01-02 | Escort Inc. | Radar warning receiver with position and velocity sensitive functions |
DE19936440C2 (de) | 1999-08-03 | 2003-12-24 | Leuze Electronic Gmbh & Co Kg | Optoelektronische Vorrichtung |
US6687373B1 (en) | 1999-08-24 | 2004-02-03 | Nortel Networks Limited | Heusristics for optimum beta factor and filter order determination in echo canceler systems |
US6836285B1 (en) | 1999-09-03 | 2004-12-28 | Arete Associates | Lidar with streak-tube imaging,including hazard detection in marine applications; related optics |
DE19953009C2 (de) | 1999-10-27 | 2003-11-27 | Sick Ag | Vorrichtung zur Überwachung der Belegung von Kraftfahrzeug-Stellplätzen |
DE19953007A1 (de) | 1999-10-27 | 2001-05-03 | Johann F Hipp | Vorrichtung zur Verkehrsüberwachung von Straßen |
DE19953008A1 (de) | 1999-10-27 | 2001-05-03 | Johann F Hipp | Vorrichtung zur Steuerung des Verkehrsflusses an einer Kreuzung, insbesondere zur Ampelsteuerung |
DE19953006B4 (de) | 1999-10-27 | 2008-07-24 | Sick Ag | Vorrichtung zur Steuerung des Verkehrsflusses im Bereich einer Kreuzung, insbesondere zur Ampelsteuerung |
DE19953010B4 (de) | 1999-10-27 | 2006-03-23 | Sick Ag | Vorrichtung zur Durchfahrtkontrolle bei Parkhäusern |
US6297844B1 (en) | 1999-11-24 | 2001-10-02 | Cognex Corporation | Video safety curtain |
US6794725B2 (en) | 1999-12-21 | 2004-09-21 | Xerox Corporation | Amorphous silicon sensor with micro-spring interconnects for achieving high uniformity in integrated light-emitting sources |
JP2001216592A (ja) | 2000-02-03 | 2001-08-10 | Mitsubishi Cable Ind Ltd | 道路の路面状態検知装置 |
US6650402B2 (en) | 2000-02-10 | 2003-11-18 | Oceanit Laboratories, Inc. | Omni-directional cloud height indicator |
US7525567B2 (en) | 2000-02-16 | 2009-04-28 | Immersive Media Company | Recording a stereoscopic image of a wide field of view |
JP4370660B2 (ja) | 2000-03-09 | 2009-11-25 | 株式会社Ihi | 火災監視システム |
EP1148345B1 (de) | 2000-04-19 | 2007-03-28 | Sick Ag | Vorrichtung zum Orten von in einen zu überwachenden Raumbereich eindringenden Objekten |
DE10025511C1 (de) | 2000-05-23 | 2001-12-06 | Schmersal Eot Gmbh & Co Kg | Vorrichtung zum Orten von in einen zu überwachenden Raumbereich eindringenden Objekten |
DE10026668A1 (de) | 2000-05-29 | 2001-12-06 | Sick Ag | Laserscanner |
DE10027239A1 (de) | 2000-05-31 | 2001-12-06 | Sick Ag | Verfahren zur Abstandsmessung und Abstandsmeßeinrichtung |
JP4486737B2 (ja) | 2000-07-14 | 2010-06-23 | アジア航測株式会社 | モービルマッピング用空間情報生成装置 |
US6664529B2 (en) | 2000-07-19 | 2003-12-16 | Utah State University | 3D multispectral lidar |
EP1174733B1 (de) | 2000-07-21 | 2005-02-02 | Leuze electronic GmbH + Co KG | Optischer Sensor |
DE10043694A1 (de) | 2000-09-04 | 2002-03-14 | Bosch Gmbh Robert | Verfahren zur adaptiven Klopfregelung einer Benzindirekteinspritzenden Brennkraftmaschine und entsprechende Vorrichtung |
IL138683A0 (en) | 2000-09-25 | 2001-10-31 | Vital Medical Ltd | Apparatus and method for monitoring tissue vitality parameters |
US6329800B1 (en) | 2000-10-17 | 2001-12-11 | Sigmatel | Method and apparatus for reducing power consumption in driver circuits |
FR2817339B1 (fr) | 2000-11-24 | 2004-05-14 | Mensi | Dispositif de relevement tridimensionnel d'une scene a emission laser |
US6441889B1 (en) | 2000-11-29 | 2002-08-27 | P.A.T.C.O. Properties, Inc. | LIDAR with increased emitted laser power |
JP2002286959A (ja) | 2000-12-28 | 2002-10-03 | Canon Inc | 半導体装置、光電融合基板、及びそれらの製造方法 |
US6682478B2 (en) | 2001-02-08 | 2004-01-27 | Olympus Optical Co., Ltd. | Endoscope apparatus with an insertion part having a small outer diameter which includes and object optical system |
DE10110416A1 (de) | 2001-03-05 | 2002-09-12 | Sick Ag | Verfahren und Vorrichtung zur Überwachung einer Schutzzone |
DE10110420A1 (de) | 2001-03-05 | 2002-09-12 | Sick Ag | Vorrichtung zur Bestimmung eines Abstandsprofils |
US6396577B1 (en) | 2001-03-19 | 2002-05-28 | Thomas P. Ramstack | Lidar-based air defense system |
DE10114362C2 (de) | 2001-03-22 | 2003-12-24 | Martin Spies | Laserscan-System für Entfernungsmessung |
EP1373830B1 (en) | 2001-04-04 | 2006-05-17 | Instro Precision Limited | Surface profile measurement |
US6798527B2 (en) | 2001-04-27 | 2004-09-28 | Minolta Co., Ltd. | Three-dimensional shape-measuring system |
US6593582B2 (en) | 2001-05-11 | 2003-07-15 | Science & Engineering Services, Inc. | Portable digital lidar system |
DE10127204A1 (de) | 2001-06-05 | 2003-03-20 | Ibeo Automobile Sensor Gmbh | Erfassungsverfahren und - vorrichtung |
DE10127417A1 (de) | 2001-06-06 | 2002-12-12 | Ibeo Automobile Sensor Gmbh | Transport-Protokoll für die Gerätekommunikation |
WO2002103385A1 (de) | 2001-06-15 | 2002-12-27 | Ibeo Automobile Sensor Gmbh | Verfahren zur bereitstellung von bildinformationen |
US20040247157A1 (en) | 2001-06-15 | 2004-12-09 | Ulrich Lages | Method for preparing image information |
DE10128954A1 (de) | 2001-06-15 | 2002-12-19 | Ibeo Automobile Sensor Gmbh | Korrekturverfahren für Daten mehrerer optoelektronischer Sensoren |
US6844924B2 (en) | 2001-06-29 | 2005-01-18 | The United States Of America As Represented By The Secretary Of The Army | Ladar system for detecting objects |
US6646725B1 (en) | 2001-07-11 | 2003-11-11 | Iowa Research Foundation | Multiple beam lidar system for wind measurement |
DE10138641A1 (de) | 2001-08-07 | 2003-02-20 | Ibeo Automobile Sensor Gmbh | Verfahren zur Bestimmung einer Modellfahrbahn |
US6804693B2 (en) | 2001-08-14 | 2004-10-12 | Cidra Corporation | Method for reducing skew in a real-time centroid calculation |
DE10140802A1 (de) | 2001-08-20 | 2003-03-06 | Ibeo Automobile Sensor Gmbh | Führung von Kraftfahrzeugen |
DE10141055B4 (de) | 2001-08-22 | 2013-09-05 | Ibeo Automobile Sensor Gmbh | Verfahren zur Bestimmung von Bewegungsinformationen |
EP1419402B1 (de) | 2001-08-22 | 2006-04-26 | IBEO Automobile Sensor GmbH | Verfahren zur erkennung und verfolgung von objekten |
DE10141294B4 (de) | 2001-08-23 | 2016-12-08 | Sick Ag | Verfahren zur Bodenerkennung |
US7190465B2 (en) | 2001-08-30 | 2007-03-13 | Z + F Zoller & Froehlich Gmbh | Laser measurement system |
EP1291674A3 (de) | 2001-09-03 | 2004-02-04 | IBEO Automobile Sensor GmbH | Verfahren zur Erkennung und Verfolgung von Objekten |
DE10143061A1 (de) | 2001-09-03 | 2003-03-20 | Sick Ag | Optoelektronische Entfernungsmeßeinrichtung |
DE10143060A1 (de) | 2001-09-03 | 2003-03-20 | Sick Ag | Optoelektronische Erfassungseinrichtung |
DE10143107A1 (de) | 2001-09-03 | 2003-03-20 | Sick Ag | Optoelektronische Entfernungsmeßeinrichtung |
DE10143059A1 (de) | 2001-09-03 | 2003-03-27 | Sick Ag | Optoelektronische Erfassungseinrichtung mit einer Speichereinrichtung |
US6542227B2 (en) | 2001-09-04 | 2003-04-01 | Rosemount Aerospace, Inc. | System and method of measuring flow velocity in three axes |
US6665063B2 (en) | 2001-09-04 | 2003-12-16 | Rosemount Aerospace Inc. | Distributed laser obstacle awareness system |
US6556282B2 (en) | 2001-09-04 | 2003-04-29 | Rosemount Aerospace, Inc. | Combined LOAS and LIDAR system |
DE10146692B4 (de) | 2001-09-21 | 2004-08-05 | Spies, Martin, Dipl.-Ing. (FH) | Entfernungsbildsensor |
DE10148064A1 (de) | 2001-09-28 | 2003-04-10 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung und Verfolgung von Objekten |
DE10148069A1 (de) | 2001-09-28 | 2003-04-10 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung und Verfolgung von Objekten |
DE10148060A1 (de) | 2001-09-28 | 2003-04-10 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung und Verfolgung von Objekten |
DE10148070A1 (de) | 2001-09-28 | 2003-04-17 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung und Verfolgung von Objekten |
DE10148071A1 (de) | 2001-09-28 | 2003-04-17 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung und Verfolgung von Objekten |
DE10149768A1 (de) | 2001-10-09 | 2003-04-17 | Ibeo Automobile Sensor Gmbh | Sichtweitenbestimmung |
DE10151983A1 (de) | 2001-10-22 | 2003-04-30 | Ibeo Automobile Sensor Gmbh | Verfahren zur Dokumentation einer Unfallsituation |
DE10151979A1 (de) | 2001-10-22 | 2003-04-30 | Ibeo Automobile Sensor Gmbh | Verfahren zur Objekterkennung und/oder -verfolgung |
DE10153270A1 (de) | 2001-10-29 | 2003-05-08 | Sick Ag | Optoelektronische Entfernungsmesseinrichtung |
CN1613020A (zh) | 2001-11-08 | 2005-05-04 | 西门子公司 | 用于测量距离的激光光栅 |
AT412028B (de) | 2001-11-09 | 2004-08-26 | Riegl Laser Measurement Sys | Einrichtung zur aufnahme eines objektraumes |
DE10162668B4 (de) | 2001-12-19 | 2004-03-04 | Spies, Martin, Dipl.-Ing. (FH) | System zur Messung des Abstandes zu Objekten mittels elektromagnetischer Impulse |
US7489865B2 (en) | 2002-02-01 | 2009-02-10 | Cubic Corporation | Integrated optical communication and range finding system and applications thereof |
EP1472505A4 (en) | 2002-02-04 | 2010-12-01 | Bae Systems Information | NEW INTRODUCED VEHICLE INTERVAL WITH IR AND VARIABLE FOV LASER RADAR |
US20030163030A1 (en) | 2002-02-25 | 2003-08-28 | Arriaga Moises A. | Hollow endoscopy |
US7868665B2 (en) | 2002-03-05 | 2011-01-11 | Nova R&D, Inc. | Integrated circuit and sensor for imaging |
IL148795A0 (en) | 2002-03-20 | 2002-09-12 | Vital Medical Ltd | Apparatus and method for monitoring tissue vitality parameters for the diagnosis of body metabolic emergency state |
WO2003088485A1 (en) | 2002-04-10 | 2003-10-23 | The Johns Hopkins University | The time of flight system on a chip |
DE10217294A1 (de) | 2002-04-18 | 2003-11-06 | Sick Ag | Sensorausrichtung |
DE10217295B4 (de) | 2002-04-18 | 2014-05-15 | Ibeo Automotive Systems GmbH | Bestimmung der Ausrichtung eines optoelektronischen Sensors |
US6876790B2 (en) | 2002-05-17 | 2005-04-05 | Science & Engineering Services, Inc. | Method of coupling a laser signal to an optical carrier |
JP3779644B2 (ja) | 2002-05-21 | 2006-05-31 | ナブテスコ株式会社 | 自動ドア装置及びそれのタッチセンサ |
DE10222797C5 (de) | 2002-05-23 | 2018-07-12 | Sick Ag | Abstandsbestimmung |
DE10229408B4 (de) | 2002-06-29 | 2006-09-07 | Leuze Electronic Gmbh & Co Kg | Optischer Sensor |
DE10230397A1 (de) | 2002-07-05 | 2004-01-15 | Sick Ag | Laserabtastvorrichtung |
DE10238759A1 (de) | 2002-08-23 | 2004-03-04 | Ibeo Automobile Sensor Gmbh | Überwachung der Umgebung eines Gegenstandes |
DE10244641A1 (de) | 2002-09-25 | 2004-04-08 | Ibeo Automobile Sensor Gmbh | Optoelektronische Erfassungseinrichtung |
DE10244638A1 (de) | 2002-09-25 | 2004-04-08 | Ibeo Automobile Sensor Gmbh | Optoelektronische Erfassungseinrichtung |
DE10244640A1 (de) | 2002-09-25 | 2004-04-08 | Ibeo Automobile Sensor Gmbh | Optoelektronische Erfassungseinrichtung |
DE10244643A1 (de) | 2002-09-25 | 2004-04-08 | Ibeo Automobile Sensor Gmbh | Optoelektronische Erfassungseinrichtung |
DE10244639A1 (de) | 2002-09-25 | 2004-04-08 | Ibeo Automobile Sensor Gmbh | Optoelektronische Erfassungseinrichtung |
US20040066500A1 (en) | 2002-10-02 | 2004-04-08 | Gokturk Salih Burak | Occupancy detection and measurement system and method |
DE20215631U1 (de) | 2002-10-11 | 2003-02-06 | Sick AG, 79183 Waldkirch | Sensor |
AU2003301367A1 (en) | 2002-10-16 | 2004-05-04 | Lake Shore Cryotronics, Inc. | Spectral filter for green and longer wavelengths |
DE10252323A1 (de) | 2002-11-11 | 2004-05-19 | Ibeo Automobile Sensor Gmbh | Verfahren zur Bestimmung einer Eigenbewegung eines Fahrzeuges |
US6879419B2 (en) | 2002-12-05 | 2005-04-12 | Northrop Grumman Corporation | Laser scanner with peripheral scanning capability |
DE10258794A1 (de) | 2002-12-16 | 2004-06-24 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung und Verfolgung von Objekten |
DE10303015A1 (de) | 2003-01-27 | 2004-08-12 | Daimlerchrysler Ag | System aus laserscanner und katadioptrischer Kamera |
US6781677B1 (en) | 2003-01-31 | 2004-08-24 | The Boeing Company | Laser range finding apparatus |
JP2004241915A (ja) | 2003-02-04 | 2004-08-26 | Sumitomo Electric Ind Ltd | 光送受信モジュール、光送信モジュール及び光受信モジュール |
JP2007501410A (ja) | 2003-02-10 | 2007-01-25 | ユニヴァースティ オブ ヴァージニア パテント ファウンデイション | ターゲットおよび/又は化学種のスペクトル特性を遠隔検知および/又は解析して検出および/又は特定するためのシステムおよび方法 |
US7248342B1 (en) | 2003-02-14 | 2007-07-24 | United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Three-dimension imaging lidar |
GB2398841A (en) | 2003-02-28 | 2004-09-01 | Qinetiq Ltd | Wind turbine control having a Lidar wind speed measurement apparatus |
US7106424B2 (en) | 2003-03-11 | 2006-09-12 | Rosemount Aerospace Inc. | Compact laser altimeter system |
DE10312249A1 (de) | 2003-03-19 | 2004-09-30 | Ibeo Automobile Sensor Gmbh | Verfahren zur gemeinsamen Verarbeitung von tiefenaufgelösten Bildern und Videobildern |
US20040213463A1 (en) * | 2003-04-22 | 2004-10-28 | Morrison Rick Lee | Multiplexed, spatially encoded illumination system for determining imaging and range estimation |
DE10319700A1 (de) | 2003-05-02 | 2004-11-18 | Ibeo Automobile Sensor Gmbh | Verfahren und Vorrichtung zur Ermittlung einer Wahrscheinlichkeit für eine Kollision eines Fahrzeugs mit einem Gegenstand |
JP4284644B2 (ja) | 2003-05-23 | 2009-06-24 | 財団法人生産技術研究奨励会 | 3次元モデル構築システム及び3次元モデル構築プログラム |
US7379559B2 (en) | 2003-05-28 | 2008-05-27 | Trw Automotive U.S. Llc | Method and apparatus for determining an occupant's head location in an actuatable occupant restraining system |
US7089114B1 (en) | 2003-07-03 | 2006-08-08 | Baojia Huang | Vehicle collision avoidance system and method |
DE10331529A1 (de) | 2003-07-11 | 2005-01-27 | Ibeo Automobile Sensor Gmbh | Optoelektronische Erfassungseinrichtung |
CN2681085Y (zh) | 2003-07-22 | 2005-02-23 | 烟台麦特电子有限公司 | 一种激光测量三维尺寸的仪器 |
US8242428B2 (en) | 2007-12-06 | 2012-08-14 | The United States Of America As Represented By The Secretary Of The Army | Method and system for lidar using spatial information from a light source in combination with nonspatial information influenced by the subject to derive an image |
JP2005070840A (ja) | 2003-08-25 | 2005-03-17 | East Japan Railway Co | 三次元モデル作成装置、三次元モデル作成方法、及び三次元モデル作成プログラム |
DE10341548A1 (de) | 2003-09-09 | 2005-03-31 | Ibeo Automobile Sensor Gmbh | Optoelektronische Erfassungseinrichtung |
DE10353347A1 (de) | 2003-11-14 | 2005-06-02 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung von Fußgängern |
DE10353348A1 (de) | 2003-11-14 | 2005-06-02 | Ibeo Automobile Sensor Gmbh | Verfahren zur Verfolgung von Objekten |
DE10360889A1 (de) * | 2003-12-19 | 2005-07-14 | Robert Bosch Gmbh | System mit zwei oder mehr Sensoren |
DE10360789B4 (de) | 2003-12-23 | 2007-03-15 | Leuze Lumiflex Gmbh + Co. Kg | Vorrichtung zur Überwachung eines Erfassungsbereichs an einem Arbeitsmittel |
DE102004003868A1 (de) | 2004-01-26 | 2005-08-11 | Ibeo Automobile Sensor Gmbh | Verfahren zur Verfolgung von Objekten |
DE102004003870A1 (de) | 2004-01-26 | 2005-08-11 | Ibeo Automobile Sensor Gmbh | Verfahren zur Klassifizierung von Objekten |
DE102004003848A1 (de) | 2004-01-26 | 2005-08-11 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung von gekennzeichneten Gefahr- und/oder Baustellen im Bereich von Fahrbahnen |
DE102004003850A1 (de) | 2004-01-26 | 2005-08-18 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung von Markierungen auf einer Fahrbahn |
JP3908226B2 (ja) | 2004-02-04 | 2007-04-25 | 日本電産株式会社 | スキャニング型レンジセンサ |
DE102004010197B4 (de) | 2004-03-02 | 2015-04-16 | Sick Ag | Verfahren zur Funktionskontrolle einer Positionsermittlungs- oder Umgebungserfassungseinrichtung eines Fahrzeugs oder zur Kontrolle einer digitalen Karte |
US7373473B2 (en) | 2004-03-10 | 2008-05-13 | Leica Geosystems Hds Llc | System and method for efficient storage and manipulation of extremely large amounts of scan data |
US7323670B2 (en) | 2004-03-16 | 2008-01-29 | Leica Geosystems Hds Llc | Laser operation for survey instruments |
US7187823B2 (en) | 2004-03-16 | 2007-03-06 | Leica Geosystems Hds Llc | Contact-free slip ring for survey instrumentation |
US8042056B2 (en) | 2004-03-16 | 2011-10-18 | Leica Geosystems Ag | Browsers for large geometric data visualization |
DE102004014041B4 (de) | 2004-03-19 | 2006-04-06 | Martin Spies | Sensor zur Hinderniserkennung |
US7583364B1 (en) | 2004-03-19 | 2009-09-01 | University Corporation For Atmospheric Research | High pulse-energy, eye-safe lidar system |
WO2005100613A2 (en) | 2004-04-13 | 2005-10-27 | Hyo Sang Lee | Ultraviolet lidar for detection of biological warfare agents |
JP2005297863A (ja) | 2004-04-14 | 2005-10-27 | Bunpei Sono | 自動車の安全システム |
DE102004018813A1 (de) | 2004-04-19 | 2006-02-23 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung und/oder Verfolgung von Objekten |
CA2505715A1 (en) | 2004-05-03 | 2005-11-03 | Her Majesty In Right Of Canada As Represented By The Minister Of National Defence | Volumetric sensor for mobile robotics |
JP2005321403A (ja) | 2004-05-10 | 2005-11-17 | Ibeo Automobile Sensor Gmbh | 距離測定のための方法及び装置 |
US7240314B1 (en) | 2004-06-04 | 2007-07-03 | Magma Design Automation, Inc. | Redundantly tied metal fill for IR-drop and layout density optimization |
DE102004033114A1 (de) | 2004-07-08 | 2006-01-26 | Ibeo Automobile Sensor Gmbh | Verfahren zur Kalibrierung eines Abstandsbildsensors |
US7667769B2 (en) | 2004-07-12 | 2010-02-23 | Honeywell International Inc. | Rotatable wireless electrical coupler |
DE102004044973B4 (de) | 2004-09-16 | 2014-12-04 | Sick Ag | Kontrolle eines Überwachungsbereiches |
US20060073621A1 (en) | 2004-10-01 | 2006-04-06 | Palo Alto Research Center Incorporated | Group III-nitride based HEMT device with insulating GaN/AlGaN buffer layer |
US20060100783A1 (en) | 2004-10-21 | 2006-05-11 | Sick Ag | Monitoring the surroundings of a vehicle |
US8078338B2 (en) | 2004-10-22 | 2011-12-13 | Irobot Corporation | System and method for behavior based control of an autonomous vehicle |
DE102005050824A1 (de) | 2004-11-17 | 2006-05-24 | Heidelberger Druckmaschinen Ag | Verfahren zur ortsabhängigen Absicherung von gefährlichen Bereichen |
WO2006083349A2 (en) | 2004-11-19 | 2006-08-10 | Science & Engineering Services, Inc. | Enhanced portable digital lidar system |
EP1672382A1 (de) | 2004-12-18 | 2006-06-21 | Leica Geosystems AG | Einkanal-Heterodyn -Distanzmessverfahren |
US7688374B2 (en) | 2004-12-20 | 2010-03-30 | The United States Of America As Represented By The Secretary Of The Army | Single axis CCD time gated ladar sensor |
JP4171728B2 (ja) | 2004-12-24 | 2008-10-29 | パルステック工業株式会社 | 3次元形状測定装置 |
WO2006076731A1 (en) | 2005-01-12 | 2006-07-20 | University Of Florida Research Foundation, Inc. | Full circumferential scanning oct intravascular imaging probe based on scanning mems miror |
DE102005003827B4 (de) | 2005-01-26 | 2007-01-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zur Interaktion zwischen einem Menschen und einer Robotereinheit an einem Roboterarbeitsplatz |
US20060176697A1 (en) | 2005-02-08 | 2006-08-10 | Arruda Steven S | Combination light fixture and motion sensor apparatus |
US7477360B2 (en) | 2005-02-11 | 2009-01-13 | Deltasphere, Inc. | Method and apparatus for displaying a 2D image data set combined with a 3D rangefinder data set |
US20060186326A1 (en) | 2005-02-21 | 2006-08-24 | Takashi Ito | Wave receiving apparatus and distance measuring apparatus |
CN2773714Y (zh) | 2005-02-21 | 2006-04-19 | 王治平 | 激光扫描探测器 |
US20060197867A1 (en) | 2005-03-02 | 2006-09-07 | Peter Johnson | Imaging head and imaging system |
DE102005011684A1 (de) | 2005-03-11 | 2006-09-14 | Sick Ag | System zur Absicherung von mit Türen verschließbaren Personeneinstiegsöffnungen an Fahrzeugen zur Personenbeförderung |
DE102005019233A1 (de) | 2005-04-26 | 2006-11-09 | Sick Ag | Vorrichtung zur optischen Erfassung von Objekten |
US8139685B2 (en) | 2005-05-10 | 2012-03-20 | Qualcomm Incorporated | Systems, methods, and apparatus for frequency control |
US8451432B2 (en) * | 2005-06-09 | 2013-05-28 | Analog-Modules, Inc. | Laser spot tracking with off-axis angle detection |
US8203702B1 (en) | 2005-06-13 | 2012-06-19 | ARETé ASSOCIATES | Optical system |
US20080002176A1 (en) | 2005-07-08 | 2008-01-03 | Lockheed Martin Corporation | Lookdown and loitering ladar system |
US7907333B2 (en) | 2005-07-27 | 2011-03-15 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Optical source and apparatus for remote sensing |
US20070071056A1 (en) | 2005-09-09 | 2007-03-29 | Ye Chen | Laser ranging with large-format VCSEL array |
US7511800B2 (en) | 2005-11-28 | 2009-03-31 | Robert Bosch Company Limited | Distance measurement device with short range optics |
US7649182B2 (en) | 2006-10-26 | 2010-01-19 | Searete Llc | Variable multi-stage waveform detector |
DE102006002376A1 (de) | 2006-01-17 | 2007-07-19 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Durchgangsverkehrserkennung |
US7358819B2 (en) | 2006-01-17 | 2008-04-15 | Rockwell Automation Technologies, Inc. | Reduced-size sensor circuit |
US7489186B2 (en) | 2006-01-18 | 2009-02-10 | International Rectifier Corporation | Current sense amplifier for voltage converter |
US7544945B2 (en) | 2006-02-06 | 2009-06-09 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Vertical cavity surface emitting laser (VCSEL) array laser scanner |
US20070201027A1 (en) | 2006-02-07 | 2007-08-30 | Doushkina Valentina V | Innovative Raster-Mirror Optical Detection System For Bistatic Lidar |
US7826117B2 (en) | 2006-02-20 | 2010-11-02 | Sanyo Electric Co., Ltd. | Beam irradiation apparatus |
US7944548B2 (en) * | 2006-03-07 | 2011-05-17 | Leica Geosystems Ag | Increasing measurement rate in time of flight measurement apparatuses |
US8050863B2 (en) | 2006-03-16 | 2011-11-01 | Gray & Company, Inc. | Navigation and control system for autonomous vehicles |
DE202006005643U1 (de) | 2006-03-31 | 2006-07-06 | Faro Technologies Inc., Lake Mary | Vorrichtung zum dreidimensionalen Erfassen eines Raumbereichs |
US7501616B2 (en) | 2006-05-25 | 2009-03-10 | Microvision, Inc. | Method and apparatus for capturing an image of a moving object |
DE102006027063A1 (de) | 2006-06-10 | 2007-12-13 | Sick Ag | Scanner |
US20080013896A1 (en) | 2006-06-28 | 2008-01-17 | Salzberg Jose B | Miniature optical transceiver |
DE602006014263D1 (de) | 2006-07-03 | 2010-06-24 | Trimble Ab | Vermessungsinstrument und Verfahren zur Steuerung eines Vermessungsinstruments |
DE102006031580A1 (de) | 2006-07-03 | 2008-01-17 | Faro Technologies, Inc., Lake Mary | Verfahren und Vorrichtung zum dreidimensionalen Erfassen eines Raumbereichs |
WO2008008970A2 (en) | 2006-07-13 | 2008-01-17 | Velodyne Acoustics, Inc | High definition lidar system |
USRE46672E1 (en) | 2006-07-13 | 2018-01-16 | Velodyne Lidar, Inc. | High definition LiDAR system |
ATE452346T1 (de) | 2006-08-28 | 2010-01-15 | Ibeo Automobile Sensor Gmbh | Verfahren zur bestimmung der globalen position |
US7701558B2 (en) | 2006-09-22 | 2010-04-20 | Leica Geosystems Ag | LIDAR system |
KR100758987B1 (ko) | 2006-09-26 | 2007-09-17 | 삼성전자주식회사 | Led 발광 장치 및 그 제어 방법 |
JP4971744B2 (ja) | 2006-10-18 | 2012-07-11 | パナソニック株式会社 | 強度変調光を用いた空間情報検出装置 |
WO2008047640A1 (fr) | 2006-10-18 | 2008-04-24 | Panasonic Electric Works Co., Ltd. | Dispositif de détection d'informations spatiales |
EP1914564B1 (de) | 2006-10-19 | 2010-06-23 | Sick Ag | Optische Erfassungseinrichtung |
CA2670214A1 (en) | 2006-11-21 | 2008-05-29 | Mantisvision Ltd. | 3d geometric modeling and 3d video content creation |
EP1927867B1 (de) | 2006-12-02 | 2012-04-04 | Sick Ag | Optoelektronischer Mehrebenensensor und Verfahren zur Erfassung von Objekten |
DE102006060062A1 (de) | 2006-12-19 | 2008-07-03 | Sick Ag | Objektfeststellungssensor |
DE102006060108A1 (de) | 2006-12-20 | 2008-06-26 | Sick Ag | Laserscanner |
DE202007000327U1 (de) | 2007-01-10 | 2007-04-12 | Sick Ag | Optoelektronischer Scanner |
US20080170826A1 (en) | 2007-01-16 | 2008-07-17 | Applied Optical Materials | Misalignment-tolerant optical coupler/connector |
DE102007013023B4 (de) | 2007-03-19 | 2017-10-05 | Sick Ag | Probabilistische Rasterkarte |
JP5019928B2 (ja) | 2007-03-31 | 2012-09-05 | 能美防災株式会社 | 住宅情報盤 |
US8110835B2 (en) | 2007-04-19 | 2012-02-07 | Luminus Devices, Inc. | Switching device integrated with light emitting device |
EP1983354A1 (de) | 2007-04-20 | 2008-10-22 | IBEO Automobile Sensor GmbH | Optoelektronischer Scanner |
EP2003471A1 (de) | 2007-06-11 | 2008-12-17 | IBEO Automobile Sensor GmbH | Einziehbare Radarvorrichtung |
US8767215B2 (en) | 2007-06-18 | 2014-07-01 | Leddartech Inc. | Method for detecting objects with light |
US8063415B2 (en) | 2007-07-25 | 2011-11-22 | Renesas Electronics Corporation | Semiconductor device |
US7944420B2 (en) | 2007-09-28 | 2011-05-17 | Osram Sylvania Inc. | Light emitting diode driver providing current and power control |
TWI358606B (en) | 2007-12-28 | 2012-02-21 | Ind Tech Res Inst | Method for three-dimension (3d) measurement and an |
JP5376707B2 (ja) | 2008-01-24 | 2013-12-25 | 株式会社半導体エネルギー研究所 | レーザアニール装置 |
KR101666462B1 (ko) | 2008-03-28 | 2016-10-14 | 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 | 웨이퍼 스크라이빙을 위한 오토포커스 방법 및 장치 |
US7642946B2 (en) | 2008-04-07 | 2010-01-05 | Broadcom Corporation | Successive approximation analog to digital converter |
WO2009136184A2 (en) | 2008-04-18 | 2009-11-12 | Bae Systems Plc | Improvements in lidars |
US8301027B2 (en) | 2008-05-02 | 2012-10-30 | Massachusetts Institute Of Technology | Agile-beam laser array transmitter |
US20090299631A1 (en) | 2008-05-29 | 2009-12-03 | Delphi Technologies, Inc. | Vehicle Pre-Impact Sensing System Having Object Feature Detection |
US8311067B2 (en) | 2008-06-12 | 2012-11-13 | Akonia Holographics, Llc | System and devices for improving external cavity diode lasers using wavelength and mode sensors and compact optical paths |
WO2010017643A1 (en) * | 2008-08-13 | 2010-02-18 | Pierre Thibault | Method and device for generating short pulses |
JP5267785B2 (ja) | 2008-09-01 | 2013-08-21 | 株式会社Ihi | レーザレーダ及びレーザレーダによる境界監視方法 |
US8107056B1 (en) | 2008-09-17 | 2012-01-31 | University Of Central Florida Research Foundation, Inc. | Hybrid optical distance sensor |
JP5243161B2 (ja) | 2008-09-18 | 2013-07-24 | 日本板硝子株式会社 | 画像読取装置 |
JP2010072557A (ja) | 2008-09-22 | 2010-04-02 | Oki Data Corp | レンズアレイユニット、光学ヘッドおよび情報装置 |
DE102008052064B4 (de) | 2008-10-17 | 2010-09-09 | Diehl Bgt Defence Gmbh & Co. Kg | Vorrichtung zur Aufnahme von Bildern einer Objektszene |
EP3032922B1 (en) | 2008-11-17 | 2018-09-19 | Express Imaging Systems, LLC | Electronic control to regulate power for solid-state lighting and methods thereof |
JP5688876B2 (ja) | 2008-12-25 | 2015-03-25 | 株式会社トプコン | レーザスキャナ測定システムの較正方法 |
US20100204964A1 (en) | 2009-02-09 | 2010-08-12 | Utah State University | Lidar-assisted multi-image matching for 3-d model and sensor pose refinement |
AU2010257107B2 (en) | 2009-02-20 | 2015-07-09 | Digital Signal Corporation | System and method for generating three dimensional images using lidar and video measurements |
US8761465B2 (en) | 2009-03-18 | 2014-06-24 | Microsoft Corporation | Centroid processing |
US8447563B2 (en) | 2009-03-31 | 2013-05-21 | The United States Of America As Represented By The Secretary Of The Navy | Method and system for determination of detection probability or a target object based on a range |
US8077047B2 (en) | 2009-04-16 | 2011-12-13 | Ut-Battelle, Llc | Tampering detection system using quantum-mechanical systems |
US8743176B2 (en) | 2009-05-20 | 2014-06-03 | Advanced Scientific Concepts, Inc. | 3-dimensional hybrid camera and production system |
US8675181B2 (en) | 2009-06-02 | 2014-03-18 | Velodyne Acoustics, Inc. | Color LiDAR scanner |
WO2010144961A1 (en) | 2009-06-17 | 2010-12-23 | Stephen Woodford | Determining haemodynamic performance |
US20110028859A1 (en) | 2009-07-31 | 2011-02-03 | Neuropace, Inc. | Methods, Systems and Devices for Monitoring a Target in a Neural System and Facilitating or Controlling a Cell Therapy |
JP2011069726A (ja) | 2009-09-25 | 2011-04-07 | Hamamatsu Photonics Kk | 距離画像取得装置 |
US9294280B2 (en) | 2009-10-14 | 2016-03-22 | Robert Anderson Malaney | Location verification in quantum communications |
US8875409B2 (en) | 2010-01-20 | 2014-11-04 | Faro Technologies, Inc. | Coordinate measurement machines with removable accessories |
JP2011150100A (ja) | 2010-01-21 | 2011-08-04 | Nippon Sheet Glass Co Ltd | 正立等倍レンズアレイプレートおよび画像読取装置 |
US8760631B2 (en) | 2010-01-27 | 2014-06-24 | Intersil Americas Inc. | Distance sensing by IQ domain differentiation of time of flight (TOF) measurements |
DE102010010097A1 (de) | 2010-03-01 | 2011-09-01 | Esw Gmbh | Kompakter Laser-Entfernungsmesser |
US20110305256A1 (en) | 2010-03-05 | 2011-12-15 | TeraDiode, Inc. | Wavelength beam combining based laser pumps |
US9465228B2 (en) | 2010-03-19 | 2016-10-11 | Optical Biosystems, Inc. | Illumination apparatus optimized for synthetic aperture optics imaging using minimum selective excitation patterns |
US8502867B2 (en) | 2010-03-19 | 2013-08-06 | Lightspeed Genomics, Inc. | Synthetic aperture optics imaging method using minimum selective excitation patterns |
US8305561B2 (en) | 2010-03-25 | 2012-11-06 | Hokuyo Automatic Co., Ltd. | Scanning-type distance measuring apparatus |
US20110280265A1 (en) | 2010-05-14 | 2011-11-17 | Institut National D'optique | Driver circuit for the direct modulation of a laser diode |
EP2388615B1 (en) | 2010-05-17 | 2020-03-18 | Velodyne LiDAR, Inc. | High definition lidar system |
US8605262B2 (en) | 2010-06-23 | 2013-12-10 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Time shifted PN codes for CW LiDAR, radar, and sonar |
CN102299621B (zh) | 2010-06-28 | 2014-12-10 | 东芝照明技术株式会社 | 开关电源用装置、开关电源电路以及电气设备 |
US8736818B2 (en) | 2010-08-16 | 2014-05-27 | Ball Aerospace & Technologies Corp. | Electronically steered flash LIDAR |
DE212010000228U1 (de) | 2010-10-04 | 2013-07-01 | Valerii V. Banayuk | Laserentfernungsmessgerät |
WO2012056615A1 (ja) | 2010-10-26 | 2012-05-03 | パナソニック株式会社 | 半導体装置 |
US20130286404A1 (en) | 2010-11-16 | 2013-10-31 | Thunder Bay Regional Research Institute | Methods and apparatus for alignment of interferometer |
US8948238B2 (en) | 2010-11-19 | 2015-02-03 | Nokia Corporation | Handling complex signal parameters |
DE102011089636A1 (de) | 2010-12-22 | 2012-06-28 | PMD Technologie GmbH | Lichtlaufzeitkamera |
EP2503360B1 (de) | 2011-03-25 | 2020-08-19 | Baumer Electric AG | Verfahren zur optischen Erfassung zumindest teilweise transparenter Objekte |
US8976340B2 (en) | 2011-04-15 | 2015-03-10 | Advanced Scientific Concepts, Inc. | Ladar sensor for landing, docking and approach |
US8908159B2 (en) | 2011-05-11 | 2014-12-09 | Leddartech Inc. | Multiple-field-of-view scannerless optical rangefinder in high ambient background light |
DE102011076493A1 (de) | 2011-05-26 | 2012-11-29 | Hilti Aktiengesellschaft | Messeinrichtung zur Distanzmessung |
CA2839194C (en) | 2011-06-17 | 2017-04-18 | Leddartech Inc. | System and method for traffic side detection and characterization |
US9059562B2 (en) * | 2011-06-23 | 2015-06-16 | Daylight Solutions, Inc. | Control system for directing power to a laser assembly |
US9069061B1 (en) | 2011-07-19 | 2015-06-30 | Ball Aerospace & Technologies Corp. | LIDAR with analog memory |
JP2013037298A (ja) | 2011-08-10 | 2013-02-21 | Nippon Sheet Glass Co Ltd | 正立等倍レンズアレイプレート |
US9288513B2 (en) | 2011-08-29 | 2016-03-15 | Aerovironment, Inc. | System and method of high-resolution digital data image transmission |
US8907921B2 (en) | 2011-08-30 | 2014-12-09 | Synaptics Incorporated | Interference sensing within a display device with an integrated sensing device |
US9453914B2 (en) | 2011-09-08 | 2016-09-27 | Continental Advanced Lidar Solutions Us, Inc. | Terrain mapping LADAR system |
WO2013053952A1 (en) | 2011-10-14 | 2013-04-18 | Iee International Electronics & Engineering S.A. | Spatially selective detection using a dynamic mask in an image plane |
US9217415B2 (en) | 2011-10-14 | 2015-12-22 | Vestas Wind Systems A/S | Estimation of wind properties using a light detection and ranging device |
US20130093583A1 (en) | 2011-10-14 | 2013-04-18 | Alan D. Shapiro | Automotive panel warning and protection system |
JP5910011B2 (ja) | 2011-11-14 | 2016-04-27 | 株式会社リコー | 光走査装置及びレーザレーダ装置 |
WO2013091697A1 (de) | 2011-12-21 | 2013-06-27 | Carl Zeiss Industrielle Messtechnik Gmbh | Verfahren zum koppeln zweier systemkomponenten eines messgeräts, insbesondere eines koordinatenmessgeräts |
EP2607924A1 (de) | 2011-12-23 | 2013-06-26 | Leica Geosystems AG | Entfernungsmesser-Justage |
US8754412B2 (en) | 2012-01-03 | 2014-06-17 | International Business Machines Corporation | Intra die variation monitor using through-silicon via |
US9157790B2 (en) | 2012-02-15 | 2015-10-13 | Apple Inc. | Integrated optoelectronic modules with transmitter, receiver and beam-combining optics for aligning a beam axis with a collection axis |
JP5863512B2 (ja) | 2012-02-29 | 2016-02-16 | 日本板硝子株式会社 | レンズアレイユニット、正立等倍レンズアレイ、光走査ユニット、画像読取装置、および画像書込装置 |
EP2637038B1 (de) | 2012-03-07 | 2017-01-18 | Vectronix AG | Entfernungsmesser |
JP5778059B2 (ja) | 2012-03-12 | 2015-09-16 | 古河電気工業株式会社 | 発光素子駆動装置 |
US9915726B2 (en) | 2012-03-16 | 2018-03-13 | Continental Advanced Lidar Solutions Us, Llc | Personal LADAR sensor |
US8804101B2 (en) | 2012-03-16 | 2014-08-12 | Advanced Scientific Concepts, Inc. | Personal LADAR sensor |
US20130241761A1 (en) | 2012-03-16 | 2013-09-19 | Nikon Corporation | Beam steering for laser radar and other uses |
US8994925B2 (en) | 2012-03-27 | 2015-03-31 | Pulsedlight, Inc. | Optical distance measurement device |
US20160191173A1 (en) | 2012-04-10 | 2016-06-30 | Robert Anderson Malaney | Location Verification in Quantum Communications |
US9246041B1 (en) | 2012-04-26 | 2016-01-26 | Id Quantique Sa | Apparatus and method for allowing avalanche photodiode based single-photon detectors to be driven by the same electrical circuit in gated and in free-running modes |
US9634156B2 (en) | 2012-05-25 | 2017-04-25 | Sensl Technologies Ltd. | Semiconductor photomultiplier and readout method |
WO2013177617A1 (en) | 2012-05-29 | 2013-12-05 | Macquarie University | Two-directional scanning for luminescence microscopy |
TW201400800A (zh) | 2012-06-18 | 2014-01-01 | Fujifilm Corp | 圖案相位差濾光片的檢查裝置以及檢查方法 |
US9349263B2 (en) | 2012-06-22 | 2016-05-24 | GM Global Technology Operations LLC | Alert systems and methods for a vehicle |
KR101908304B1 (ko) | 2012-08-10 | 2018-12-18 | 엘지전자 주식회사 | 거리 검출 장치, 및 이를 구비하는 영상처리장치 |
WO2014028667A1 (en) | 2012-08-15 | 2014-02-20 | Skyworks Solutions, Inc. | Systems, circuits and methods related to controllers for radio-frequency power amplifiers |
US20140063189A1 (en) | 2012-08-28 | 2014-03-06 | Digital Signal Corporation | System and Method for Refining Coordinate-Based Three-Dimensional Images Obtained from a Three-Dimensional Measurement System |
US9081096B2 (en) | 2012-08-31 | 2015-07-14 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Apparatus, method, and computer program for a resolution-enhanced pseudo-noise code technique |
CA2884771C (en) | 2012-09-10 | 2021-06-29 | Aemass, Inc. | Multi-dimensional data capture of an environment using plural devices |
CN104620129A (zh) | 2012-09-14 | 2015-05-13 | 法罗技术股份有限公司 | 具有角扫描速度的动态调整的激光扫描仪 |
US9383753B1 (en) | 2012-09-26 | 2016-07-05 | Google Inc. | Wide-view LIDAR with areas of special attention |
US9442195B2 (en) | 2012-10-11 | 2016-09-13 | Lumentum Operations Llc | Power efficient pulsed laser driver for time of flight cameras |
US8879050B2 (en) | 2012-12-04 | 2014-11-04 | Texas Instruments Incorporated | Method for dynamically adjusting the operating parameters of a TOF camera according to vehicle speed |
US9151940B2 (en) | 2012-12-05 | 2015-10-06 | Kla-Tencor Corporation | Semiconductor inspection and metrology system using laser pulse multiplier |
US9285477B1 (en) | 2013-01-25 | 2016-03-15 | Apple Inc. | 3D depth point cloud from timing flight of 2D scanned light beam pulses |
US8908251B2 (en) | 2013-01-30 | 2014-12-09 | Hrl Laboratories, Llc | Tunable optical metamaterial |
KR102048361B1 (ko) | 2013-02-28 | 2019-11-25 | 엘지전자 주식회사 | 거리 검출 장치, 및 이를 구비하는 영상처리장치 |
US9250327B2 (en) * | 2013-03-05 | 2016-02-02 | Subcarrier Systems Corporation | Method and apparatus for reducing satellite position message payload by adaptive data compression techniques |
US9110169B2 (en) | 2013-03-08 | 2015-08-18 | Advanced Scientific Concepts, Inc. | LADAR enabled impact mitigation system |
US9086273B1 (en) | 2013-03-08 | 2015-07-21 | Google Inc. | Microrod compression of laser beam in combination with transmit lens |
US20160098620A1 (en) | 2013-03-11 | 2016-04-07 | 1626628 Ontario Limited | Method and system for object identification |
US9215430B2 (en) | 2013-03-15 | 2015-12-15 | Omnivision Technologies, Inc. | Image sensor with pixels having increased optical crosstalk |
US9319916B2 (en) | 2013-03-15 | 2016-04-19 | Isco International, Llc | Method and appartus for signal interference processing |
RU2567469C2 (ru) | 2013-03-20 | 2015-11-10 | Общество с Ограниченной Ответственностью "Научно-Производственное Предприятие"Лазерные системы" | Лидар дифференциального поглощения на мобильном носителе |
JP6175835B2 (ja) | 2013-03-26 | 2017-08-09 | 株式会社デンソーウェーブ | レーザレーダ装置 |
US20140293263A1 (en) | 2013-03-28 | 2014-10-02 | James Justice | LIDAR Comprising Polyhedron Transmission and Receiving Scanning Element |
US9239959B1 (en) | 2013-04-08 | 2016-01-19 | Lockheed Martin Corporation | Multi-resolution, wide field-of-view, unmanned ground vehicle navigation sensor |
US10132928B2 (en) | 2013-05-09 | 2018-11-20 | Quanergy Systems, Inc. | Solid state optical phased array lidar and method of using same |
US9069080B2 (en) | 2013-05-24 | 2015-06-30 | Advanced Scientific Concepts, Inc. | Automotive auxiliary ladar sensor |
CN103278808B (zh) | 2013-05-28 | 2015-12-23 | 中国科学院合肥物质科学研究院 | 一种多线扫描式激光雷达装置 |
WO2014209987A1 (en) | 2013-06-26 | 2014-12-31 | Zygo Corporation | Coherence scanning interferometry using phase shifted interferometrty signals |
US9113154B2 (en) | 2013-07-10 | 2015-08-18 | Faro Technologies, Inc. | Three-dimensional measurement device having three-dimensional overview camera |
US9297900B2 (en) | 2013-07-25 | 2016-03-29 | Hand Held Products, Inc. | Code symbol reading system having adjustable object detection |
US9629220B2 (en) | 2013-08-05 | 2017-04-18 | Peter Panopoulos | Sensor-based controllable LED lighting system with repositionable components and method |
US10126412B2 (en) | 2013-08-19 | 2018-11-13 | Quanergy Systems, Inc. | Optical phased array lidar system and method of using same |
US8836922B1 (en) | 2013-08-20 | 2014-09-16 | Google Inc. | Devices and methods for a rotating LIDAR platform with a shared transmit/receive path |
SG11201600181PA (en) | 2013-08-23 | 2016-03-30 | Sicpa Holding Sa | Method and system for authenticating using a quartz oscillator |
US9684066B2 (en) | 2013-10-28 | 2017-06-20 | Texas Instruments Incorporated | Light radar signal processing apparatus, systems and methods |
US10203399B2 (en) | 2013-11-12 | 2019-02-12 | Big Sky Financial Corporation | Methods and apparatus for array based LiDAR systems with reduced interference |
EP3072162B1 (en) | 2013-11-22 | 2020-09-30 | Uatc, Llc | Lidar scanner calibration |
JP6135481B2 (ja) | 2013-11-28 | 2017-05-31 | トヨタ自動車株式会社 | 自律移動体 |
KR101770872B1 (ko) | 2013-12-27 | 2017-08-23 | 주식회사 만도 | 차량용 tof 카메라 및 그의 구동 방법 |
WO2015104572A1 (en) | 2014-01-08 | 2015-07-16 | Dh Technologies Development Pte. Ltd. | Detector current amplification with current gain transformer followed by transimpedance amplifier |
US9831630B2 (en) | 2014-02-06 | 2017-11-28 | GM Global Technology Operations LLC | Low cost small size LiDAR for automotive |
KR20150095033A (ko) | 2014-02-12 | 2015-08-20 | 한국전자통신연구원 | 레이저 레이더 장치 및 그것의 영상 획득 방법 |
US9110154B1 (en) | 2014-02-19 | 2015-08-18 | Raytheon Company | Portable programmable ladar test target |
JP2015169491A (ja) | 2014-03-06 | 2015-09-28 | 株式会社ミツトヨ | 変位検出装置および変位検出方法 |
US9658322B2 (en) | 2014-03-13 | 2017-05-23 | Garmin Switzerland Gmbh | LIDAR optical scanner system |
US8995478B1 (en) | 2014-04-08 | 2015-03-31 | Tekhnoscan-Lab LLC | Passively mode-locked pulsed fiber laser |
US9360554B2 (en) | 2014-04-11 | 2016-06-07 | Facet Technology Corp. | Methods and apparatus for object detection and identification in a multiple detector lidar array |
US9286538B1 (en) | 2014-05-01 | 2016-03-15 | Hrl Laboratories, Llc | Adaptive 3D to 2D projection for different height slices and extraction of robust morphological features for 3D object recognition |
FR3022349B1 (fr) | 2014-06-13 | 2016-09-23 | Thales Sa | Lidar doppler a mesure relative de vitesse |
DE202014005508U1 (de) | 2014-07-02 | 2014-10-09 | Robert Bosch Gmbh | Entfernungsmessvorrichtung |
US9575184B2 (en) | 2014-07-03 | 2017-02-21 | Continental Advanced Lidar Solutions Us, Inc. | LADAR sensor for a dense environment |
US9531928B2 (en) | 2014-07-08 | 2016-12-27 | Flir Systems, Inc. | Gimbal system with imbalance compensation |
US9759809B2 (en) | 2014-07-08 | 2017-09-12 | Sikorsky Aircraft Corporation | LIDAR-based shipboard tracking and state estimation for autonomous landing |
WO2016025502A1 (en) | 2014-08-11 | 2016-02-18 | Gerard Dirk Smits | Three-dimensional triangulation and time-of-flight based tracking systems and methods |
US9342968B2 (en) | 2014-08-12 | 2016-05-17 | Tyco Fire & Security Gmbh | Electronic article surveillance systems implementing methods for determining security tag locations |
US9934681B2 (en) | 2014-09-05 | 2018-04-03 | Halliburton Energy Services, Inc. | Electromagnetic signal booster |
US9734276B2 (en) | 2014-10-22 | 2017-08-15 | Samsung Electronics Co., Ltd. | Integrated circuit and method of designing layout of the same |
US10054675B2 (en) | 2014-10-24 | 2018-08-21 | Analog Devices, Inc. | Active compensation for phase alignment errors in time-of-flight cameras |
EP3029494A1 (de) | 2014-12-02 | 2016-06-08 | Sick Ag | Optoelektronischer Sensor |
JP2016133341A (ja) | 2015-01-16 | 2016-07-25 | 株式会社リコー | 物体検出装置、センシング装置、移動体装置及び物体検出方法 |
US10107914B2 (en) | 2015-02-20 | 2018-10-23 | Apple Inc. | Actuated optical element for light beam scanning device |
DE102016103623B4 (de) | 2015-03-02 | 2023-05-17 | Epistar Corporation | LED-Treiber |
US10036801B2 (en) | 2015-03-05 | 2018-07-31 | Big Sky Financial Corporation | Methods and apparatus for increased precision and improved range in a multiple detector LiDAR array |
US9625582B2 (en) | 2015-03-25 | 2017-04-18 | Google Inc. | Vehicle with multiple light detection and ranging devices (LIDARs) |
US9529079B1 (en) | 2015-03-26 | 2016-12-27 | Google Inc. | Multiplexed multichannel photodetector |
US9866035B2 (en) | 2015-03-27 | 2018-01-09 | Irobot Corporation | Rotatable coupling |
DE102015004272B4 (de) | 2015-04-07 | 2019-05-29 | Metek Meteorologische Messtechnik Gmbh | Störlicht-tolerantes Lidar-Messsystem und Störlicht-tolerantes Lidar-Messverfahren |
US20180168539A1 (en) | 2015-04-09 | 2018-06-21 | Avaz Surgical, Llc | Device and System for Placing Securing Device Within Bone |
EP3078935A1 (en) | 2015-04-10 | 2016-10-12 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Method and device for real-time mapping and localization |
US10436904B2 (en) | 2015-04-15 | 2019-10-08 | The Boeing Company | Systems and methods for modular LADAR scanning |
JP6554310B2 (ja) | 2015-04-28 | 2019-07-31 | 浜松ホトニクス株式会社 | 距離測定装置 |
US10215847B2 (en) | 2015-05-07 | 2019-02-26 | GM Global Technology Operations LLC | Pseudo random sequences in array lidar systems |
US20180131450A1 (en) | 2015-05-18 | 2018-05-10 | Lasermotive, Inc. | Power beaming vcsel arrangement |
US20170214861A1 (en) * | 2015-05-22 | 2017-07-27 | Massachusetts Institute Of Technology | Rapid and precise optically multiplexed imaging |
US10356392B2 (en) | 2015-05-28 | 2019-07-16 | University College Cork—National Univesity of Ireland, Cork | Coded access optical sensor |
CN107615005B (zh) | 2015-05-28 | 2021-06-01 | 赛莱特私人有限公司 | 高分辨率3-d谱域光学成像设备和方法 |
US9866208B2 (en) | 2015-06-15 | 2018-01-09 | Microsoft Technology Lincensing, LLC | Precision measurements and calibrations for timing generators |
US10591592B2 (en) | 2015-06-15 | 2020-03-17 | Humatics Corporation | High-precision time of flight measurement systems |
US9887537B2 (en) | 2015-06-30 | 2018-02-06 | Microsoft Technology Licensing, Llc | Analog limit on digitally set pulse widths |
US10585037B2 (en) | 2015-08-24 | 2020-03-10 | Panasonic Intellectual Property Management Co., Ltd. | Substance detecting device, substance detecting system, and substance detecting method in which temperature control of light emission is performed |
CN116213918A (zh) | 2015-09-09 | 2023-06-06 | 伊雷克托科学工业股份有限公司 | 镭射处理设备、镭射处理工件的方法及相关配置 |
US10754034B1 (en) | 2015-09-30 | 2020-08-25 | Near Earth Autonomy, Inc. | Apparatus for redirecting field of view of lidar scanner, and lidar scanner including same |
US10215846B2 (en) | 2015-11-20 | 2019-02-26 | Texas Instruments Incorporated | Compact chip scale LIDAR solution |
US10539661B2 (en) | 2015-11-25 | 2020-01-21 | Velodyne Lidar, Inc. | Three dimensional LIDAR system with targeted field of view |
DE102015120538A1 (de) | 2015-11-26 | 2017-06-01 | Valeo Schalter Und Sensoren Gmbh | Laserscanner und Kraftfahrzeug mit einem Laserscanner |
EP3411660A4 (en) | 2015-11-30 | 2019-11-27 | Luminar Technologies, Inc. | LIDAR SYSTEM WITH DISTRIBUTED LASER AND MULTIPLE SENSOR HEADS AND PULSED LASER FOR LIDAR SYSTEM |
EP3185038B1 (de) | 2015-12-23 | 2018-02-14 | Sick Ag | Optoelektronischer sensor und verfahren zur messung einer entfernung |
US10309213B2 (en) | 2015-12-28 | 2019-06-04 | Halliburton Energy Services, Inc. | Distributed optical sensing using compressive sampling |
US10627490B2 (en) | 2016-01-31 | 2020-04-21 | Velodyne Lidar, Inc. | Multiple pulse, LIDAR based 3-D imaging |
US10754015B2 (en) | 2016-02-18 | 2020-08-25 | Aeye, Inc. | Adaptive ladar receiver |
EP3423865B1 (en) | 2016-03-01 | 2024-03-06 | Brightway Vision Ltd. | Gated imaging apparatus, system and method |
JP7149256B2 (ja) | 2016-03-19 | 2022-10-06 | ベロダイン ライダー ユーエスエー,インコーポレイテッド | Lidarに基づく3次元撮像のための統合された照射及び検出 |
CN108885263B (zh) | 2016-03-21 | 2024-02-23 | 威力登激光雷达有限公司 | 具有可变脉冲重复的基于lidar的3d成像 |
JP7258554B2 (ja) | 2016-03-21 | 2023-04-17 | ベロダイン ライダー ユーエスエー,インコーポレイテッド | 可変照射場密度を有するlidarに基づく三次元撮像 |
US10761195B2 (en) | 2016-04-22 | 2020-09-01 | OPSYS Tech Ltd. | Multi-wavelength LIDAR system |
US10690756B2 (en) | 2016-05-10 | 2020-06-23 | Texas Instruments Incorporated | Methods and apparatus for LIDAR operation with pulse position modulation |
WO2017193269A1 (zh) | 2016-05-10 | 2017-11-16 | 深圳市速腾聚创科技有限公司 | 多线激光雷达 |
US10393877B2 (en) | 2016-06-01 | 2019-08-27 | Velodyne Lidar, Inc. | Multiple pixel scanning LIDAR |
US11270904B2 (en) | 2016-07-12 | 2022-03-08 | Brooks Automation Us, Llc | Substrate processing apparatus |
US20180059219A1 (en) * | 2016-08-31 | 2018-03-01 | Qualcomm Incorporated | Multi-beam position sensing devices |
KR102698290B1 (ko) | 2016-09-09 | 2024-08-23 | 삼성전자주식회사 | 위상 변조 능동 소자, 이의 구동 방법 및 위상 변조 능동 소자를 포함하는 광학 장치 |
CN106443699B (zh) | 2016-09-09 | 2019-02-15 | 深圳市砝石激光雷达有限公司 | 一种多组合式激光雷达装置及相应的扫描方法 |
US20180081041A1 (en) | 2016-09-22 | 2018-03-22 | Apple Inc. | LiDAR with irregular pulse sequence |
CN106597471B (zh) | 2016-11-08 | 2019-05-24 | 上海禾赛光电科技有限公司 | 具有透明障碍物自动检测功能的车辆及方法 |
WO2018100082A1 (en) | 2016-11-30 | 2018-06-07 | Sony Semiconductor Solutions Corporation | Apparatus and method |
US10048358B2 (en) | 2016-12-30 | 2018-08-14 | Panosense Inc. | Laser power calibration and correction |
US10830878B2 (en) | 2016-12-30 | 2020-11-10 | Panosense Inc. | LIDAR system |
US10109183B1 (en) | 2016-12-30 | 2018-10-23 | Panosense Inc. | Interface for transferring data between a non-rotating body and a rotating body |
US10673204B2 (en) | 2017-03-07 | 2020-06-02 | Sensl Technologies Ltd. | Laser driver |
JP2020511666A (ja) | 2017-03-20 | 2020-04-16 | ベロダイン ライダー, インク. | 構造化された光及び統合化された照明と検出によるlidarベースの3dイメージング |
US9869754B1 (en) | 2017-03-22 | 2018-01-16 | Luminar Technologies, Inc. | Scan patterns for lidar systems |
US9989629B1 (en) | 2017-03-30 | 2018-06-05 | Luminar Technologies, Inc. | Cross-talk mitigation using wavelength switching |
CN110914705B (zh) | 2017-03-31 | 2024-04-26 | 威力登激光雷达美国有限公司 | 用于集成lidar照明功率控制的设备、系统和方法 |
US20180284246A1 (en) | 2017-03-31 | 2018-10-04 | Luminar Technologies, Inc. | Using Acoustic Signals to Modify Operation of a Lidar System |
US10460180B2 (en) | 2017-04-20 | 2019-10-29 | GM Global Technology Operations LLC | Systems and methods for visual classification with region proposals |
WO2018196001A1 (en) | 2017-04-28 | 2018-11-01 | SZ DJI Technology Co., Ltd. | Sensing assembly for autonomous driving |
CN110809704B (zh) | 2017-05-08 | 2022-11-01 | 威力登激光雷达美国有限公司 | Lidar数据获取与控制 |
CN206773192U (zh) | 2017-06-19 | 2017-12-19 | 上海禾赛光电科技有限公司 | 基于多个非均匀分布激光器的激光雷达 |
CN107037444A (zh) | 2017-06-07 | 2017-08-11 | 深圳大学 | 光学系统及激光雷达 |
WO2018232192A1 (en) | 2017-06-14 | 2018-12-20 | Ubiqd Inc. | Fiber-coupled broadband light source |
CN207457508U (zh) | 2017-08-08 | 2018-06-05 | 上海禾赛光电科技有限公司 | 基于二维扫描振镜的激光雷达系统 |
US10003168B1 (en) | 2017-10-18 | 2018-06-19 | Luminar Technologies, Inc. | Fiber laser with free-space components |
CN108061884B (zh) | 2017-11-10 | 2021-12-03 | 无锡英菲感知技术有限公司 | 一种基于微镜的共享窗口激光雷达系统 |
CN207457499U (zh) | 2017-11-14 | 2018-06-05 | 北京万集科技股份有限公司 | 一种mems振镜同步信号反馈装置及激光雷达 |
US11340336B2 (en) | 2017-12-07 | 2022-05-24 | Ouster, Inc. | Rotating light ranging system with optical communication uplink and downlink channels |
US11294041B2 (en) | 2017-12-08 | 2022-04-05 | Velodyne Lidar Usa, Inc. | Systems and methods for improving detection of a return signal in a light ranging and detection system |
US11415681B2 (en) | 2018-01-10 | 2022-08-16 | Velodyne Lidar Usa, Inc. | LIDAR based distance measurements with tiered power control |
CN109116367B (zh) * | 2018-06-27 | 2020-05-19 | 上海禾赛光电科技有限公司 | 一种激光雷达 |
US11971507B2 (en) | 2018-08-24 | 2024-04-30 | Velodyne Lidar Usa, Inc. | Systems and methods for mitigating optical crosstalk in a light ranging and detection system |
CN208902906U (zh) | 2018-09-03 | 2019-05-24 | 上海禾赛光电科技有限公司 | 遮光件、具有遮光结构的透镜组及激光雷达 |
US10712434B2 (en) | 2018-09-18 | 2020-07-14 | Velodyne Lidar, Inc. | Multi-channel LIDAR illumination driver |
US11082010B2 (en) | 2018-11-06 | 2021-08-03 | Velodyne Lidar Usa, Inc. | Systems and methods for TIA base current detection and compensation |
US10613203B1 (en) | 2019-07-01 | 2020-04-07 | Velodyne Lidar, Inc. | Interference mitigation for light detection and ranging |
-
2016
- 2016-10-31 US US15/339,790 patent/US10627490B2/en active Active
-
2017
- 2017-01-31 JP JP2018540039A patent/JP7096157B2/ja active Active
- 2017-01-31 WO PCT/US2017/015869 patent/WO2017132703A1/en active Application Filing
- 2017-01-31 EP EP17745112.7A patent/EP3408682B1/en active Active
- 2017-01-31 CA CA3012003A patent/CA3012003C/en active Active
- 2017-01-31 CN CN201780009097.4A patent/CN108603932B/zh active Active
-
2020
- 2020-04-21 US US16/854,755 patent/US11137480B2/en active Active
- 2020-06-18 US US16/905,843 patent/US11698443B2/en active Active
- 2020-06-18 US US16/905,849 patent/US11550036B2/en active Active
- 2020-06-23 US US16/909,846 patent/US11822012B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0468175A2 (en) * | 1990-12-21 | 1992-01-29 | Kaman Aerospace Corporation | Imaging lidar system employing multipulse single and multiple range gating |
US5249046A (en) * | 1992-03-30 | 1993-09-28 | Kaman Aerospace Corporation | Method and apparatus for three dimensional range resolving imaging |
US5309212A (en) * | 1992-09-04 | 1994-05-03 | Yaskawa Electric Corporation | Scanning rangefinder with range to frequency conversion |
US5942688A (en) * | 1994-11-18 | 1999-08-24 | Mitsubishi Denki Kabushiki Kaisha | Apparatus and method for detecting a measurable quantity of an object |
US5793163A (en) * | 1995-09-29 | 1998-08-11 | Pioneer Electronic Corporation | Driving circuit for light emitting element |
US8953647B1 (en) * | 2007-03-21 | 2015-02-10 | Lockheed Martin Corporation | High-power laser using thulium-doped fiber amplifier and frequency quadrupling for blue output |
EP2157445A2 (en) * | 2008-08-19 | 2010-02-24 | Rosemount Aerospace Inc. | Lidar system using a pseudo-random pulse sequence |
CN102798866A (zh) * | 2012-08-14 | 2012-11-28 | 哈尔滨工业大学 | 激光雷达系统及采用该系统的正弦调幅-脉冲相位编码调制的复合测距和测速方法 |
CN103064087A (zh) * | 2012-12-25 | 2013-04-24 | 符建 | 基于多次积分的三维成像雷达系统及方法 |
US9063549B1 (en) * | 2013-03-06 | 2015-06-23 | Google Inc. | Light detection and ranging device with oscillating mirror driven by magnetically interactive coil |
CN103616696A (zh) * | 2013-11-27 | 2014-03-05 | 中国电子科技集团公司第三十八研究所 | 一种激光成像雷达装置及其测距的方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2019507340A (ja) | 2019-03-14 |
EP3408682B1 (en) | 2023-09-27 |
EP3408682A4 (en) | 2019-09-25 |
US20200319312A1 (en) | 2020-10-08 |
US20200249321A1 (en) | 2020-08-06 |
CA3012003A1 (en) | 2017-08-03 |
US20200319311A1 (en) | 2020-10-08 |
JP7096157B2 (ja) | 2022-07-05 |
US11822012B2 (en) | 2023-11-21 |
US20170219695A1 (en) | 2017-08-03 |
CA3012003C (en) | 2022-09-27 |
CN108603932A (zh) | 2018-09-28 |
US20200319310A1 (en) | 2020-10-08 |
US10627490B2 (en) | 2020-04-21 |
EP3408682A1 (en) | 2018-12-05 |
WO2017132703A1 (en) | 2017-08-03 |
US11550036B2 (en) | 2023-01-10 |
US11137480B2 (en) | 2021-10-05 |
US11698443B2 (en) | 2023-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108603932B (zh) | 多脉冲的基于光探测和测距的三维成像 | |
JP7465834B2 (ja) | 目標視野を有する三次元lidarシステム | |
JP7483819B2 (ja) | 可変パルス繰返し数を有するlidarに基づく三次元撮像 | |
US11723762B2 (en) | LIDAR based 3-D imaging with far-field illumination overlap | |
US10197669B2 (en) | LIDAR based 3-D imaging with varying illumination intensity | |
WO2017165318A1 (en) | Lidar based 3-d imaging with varying illumination field density |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241009 Address after: California, USA Patentee after: Wieden lidar USA Ltd. Country or region after: U.S.A. Address before: California, USA Patentee before: VELODYNE LIDAR, Inc. Country or region before: U.S.A. |
|
TR01 | Transfer of patent right |