WO2017193269A1 - 多线激光雷达 - Google Patents

多线激光雷达 Download PDF

Info

Publication number
WO2017193269A1
WO2017193269A1 PCT/CN2016/081479 CN2016081479W WO2017193269A1 WO 2017193269 A1 WO2017193269 A1 WO 2017193269A1 CN 2016081479 W CN2016081479 W CN 2016081479W WO 2017193269 A1 WO2017193269 A1 WO 2017193269A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
lens
array
receiving
emission
Prior art date
Application number
PCT/CN2016/081479
Other languages
English (en)
French (fr)
Inventor
邱纯鑫
刘乐天
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to US15/748,320 priority Critical patent/US10838046B2/en
Priority to PCT/CN2016/081479 priority patent/WO2017193269A1/zh
Publication of WO2017193269A1 publication Critical patent/WO2017193269A1/zh
Priority to US17/036,231 priority patent/US11686825B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4868Controlling received signal intensity or exposure of sensor

Definitions

  • the invention relates to the field of laser detection technology, in particular to a multi-line laser radar.
  • Radar is an electronic device that uses electromagnetic waves to detect the position of a target. It is mainly used to detect motion parameters such as distance, velocity, and angular position of the target. Radars include ultrasonic radar, microwave radar, and laser radar. Lidar uses laser light waves to perform detection tasks. Traditional laser radars are often used for fixed point measurements. When multi-line measurement is not possible, the measurement speed cannot meet the real-time requirements.
  • a multi-line laser radar comprising: a laser emitting array for transmitting a plurality of lasers; a laser receiving array for receiving a plurality of laser echoes reflected by a target object; and an echo sampling device for adopting a time division multiplexing method Sampling the plurality of laser echoes and outputting a sampled data stream; a control system coupled to the laser emitting array, the laser receiving array, and the echo sampling device, respectively; the control system for Controlling the operation of the laser emitting array and the laser receiving array, and determining measurement data based on the sampled data stream; and outputting means for outputting the measurement data.
  • the laser emitting array can simultaneously emit multiple lasers, and the laser receiving array is used to receive multiple laser echoes reflected by the target object.
  • the echo sampling device samples the multiple laser echoes received by the laser receiving array by time division multiplexing, and outputs the sampling data stream for the control system to determine the measurement data and output through the output device.
  • the echo sampling device performs sampling in a time division multiplexing manner and performs real-time processing through the control system, which is beneficial to improving the real-time performance of the measurement process.
  • FIG. 1 is a block diagram showing the structure of a multi-line laser radar in an embodiment
  • FIG. 2 is a block diagram showing the structure of the control system of Figure 1;
  • FIG. 3 is a structural block diagram of a multi-line laser radar in another embodiment
  • FIG. 4 is a schematic structural diagram of a multi-line laser radar in an embodiment
  • Figure 5 is a plan view of Figure 4.
  • FIG. 6 is a schematic diagram of a transmitting optical path and a receiving optical path of the multi-line laser radar of FIG. 4;
  • FIG. 7 is a schematic structural view of the emission collimating optical system of FIG. 4;
  • FIG. 8 is a schematic structural view of the laser receiving focusing system of FIG. 4.
  • FIG. 8 is a schematic structural view of the laser receiving focusing system of FIG. 4.
  • the multi-line laser radar includes a laser emitting array 110, a laser receiving array 120, an echo sampling device 130, a control system 140, and an output device 150.
  • the laser emitting array 110 is used to emit multiple lasers.
  • the laser light emitted by the laser emitting array 110 is a pulsed laser.
  • the laser emitting array 110 includes a plurality of arrays of laser emitters.
  • the laser receiving array 120 is then configured to receive a plurality of pulsed lasers reflected by the target object.
  • the laser receiving array 120 also includes a plurality of arrayed laser receivers.
  • the number of laser receivers is the same as the number of laser emitters. In other embodiments, the arrangement of the laser emitting array 110 and the laser receiving array 120 can be set according to actual needs.
  • the echo sampling device 130 is coupled to the laser receiving array 120.
  • the echo sampling device 130 is configured to sample the laser echo received by the laser receiving array 120 in a time division multiplexing manner, and generate a sampled data stream for output.
  • the sampling of multiple laser echoes by time division multiplexing can effectively improve the sampling efficiency and improve the real-time performance of the measurement process.
  • the sampling frequency of the echo sampling device 130 is GSPS (Gigabit) Samples Per Second, that is, gigasamples per second, so that the resulting sampled data stream is a GSPS-level data stream (also referred to as a high-speed sampled data stream).
  • the echo acquisition device 130 is an ADC sampling device (analog-to-digital conversion sampling device), and the collected data stream is a high-speed data stream of 600,000 echo signals per second.
  • the data stream is 8 Bit ADC quantized data stream.
  • Control system 140 is coupled to laser emitting array 110, laser receiving array 120, and echo sampling device 130, respectively. Control system 140 is used to control the operational state of laser emitting array 110, laser receiving array 120, and echo sampling device 130. Moreover, the control system 140 is further configured to determine measurement data based on the sampled data stream. Specifically, the control system 140 can pass an FPGA (Field-Programmable) Gate Array, field programmable gate array) to achieve. Control system 140 includes a waveform screening system 142 and a time division multiplexed digital signal processing array (time division multiplexed DSP array) 144, as shown in FIG. The waveform screening system 142 is configured to filter out echoes from the sampled data stream that satisfy a predetermined waveform condition.
  • FPGA Field-Programmable gate array
  • the preset waveform condition may be a parameter condition such as a peak value or a phase of the waveform.
  • a waveform template is stored in the waveform screening system 142. Therefore, the waveform screening system 142 matches the waveform in the sampled data stream with the preset waveform template, and determines whether the waveform in the sampled data stream satisfies the preset waveform condition according to the degree of matching.
  • the waveform screening system 142 extracts the sequence of data points containing waveforms that satisfy the predetermined waveform conditions and sends them to the time division multiplexed DSP array 144.
  • the time division multiplexing DSP array 144 is constructed by FPGA logic resources and multipliers to perform a series of multiplication and iterative operations on the filtered data to obtain time interval information representing the distance information.
  • the time division multiplexing DSP array 144 is also converted into distance information according to the obtained time interval information and then packaged and transmitted in combination with other auxiliary information.
  • the calculation formula for converting time interval information into distance information is as follows:
  • echo sampling device 130 may also be integrated within control system 140.
  • Output device 150 is used to control the measurement data output output by system 140.
  • the output device 150 is an output interface.
  • the output device 150 can be a display device that directly outputs the measurement data.
  • the laser emitting array 110 can simultaneously emit multiple lasers, and the laser receiving array 120 is configured to receive multiple laser echoes reflected by the target object.
  • the echo sampling device 130 samples the multiple laser echoes received by the laser receiving array 120 by time division multiplexing and outputs the sampled data stream for the control system 140 to determine the measurement data and output through the output device 150.
  • the echo sampling device 130 performs sampling in a time division multiplexing manner and performs real-time processing through the control system 140, which is beneficial to improving the real-time performance of the measurement process.
  • the control system 140 uses the time division multiplexing DSP array to calculate and process the data, which can further improve the real-time performance of the measurement process.
  • control system 140 also includes a received power evaluation system 145, an automatic power control system 147, and a laser emission control system 149 that are sequentially coupled, as shown in FIG.
  • Receive power evaluation system 145 is coupled to waveform screening system 142 for performing echo power value calculations based on the screening results of waveform screening system 142.
  • An automatic power control system (AGC) 147 is used to calculate a power compensation value based on the calculated power value.
  • the laser emission control system 149 is configured to adjust the transmission power compensation optical path attenuation according to the power compensation value, so that the echo energy obtained next time is within the expected power range, thereby obtaining an echo signal having a better signal to noise ratio, thereby Conducive to improve the accuracy of the measurement.
  • the multi-line laser radar includes a rotating portion 200, a fixed portion 300, and a rotating mechanism 400.
  • the rotating unit 200 is coupled to the fixed unit 300 by a rotating mechanism 400.
  • the rotating part 200 includes a distance measuring system 210 and an FPGA main control system 220 that are connected to each other.
  • the fixed portion 300 includes an angle measuring system 310, an FPGA data integration system 320, and an output device 330 that are connected to each other.
  • the FPGA master system 220 and the FPGA data integration system 320 form a control system for the multi-line lidar.
  • a wireless communication system 410 with energy is disposed within the rotating mechanism 400.
  • the FPGA master system 220 is in communication with the FPGA data integration system 320 via a wireless communication system.
  • the FPGA main control system 220 is connected to the distance measuring system 210 and disposed in the rotating unit 200.
  • the FPGA data integration system 320 is connected to the angle measuring system 310 and the output device 330 and disposed in the fixed portion 300.
  • the FPGA master system 220 is communicatively coupled to the FPGA data integration system 320 via the wireless communication system 410 in the rotating mechanism 400 to form a control system for the multi-line lidar.
  • the distance measuring system 210 includes a laser emitting array 212, a transmitting collimating optical system 214, a laser receiving focusing system 216, and a laser receiving array 218.
  • Laser emission array 212 and laser receiving array 218 are coupled to FPGA master system 220, respectively.
  • the emission collimating optical system 214 is disposed on the outgoing light side of the laser emitting array 212.
  • the emission collimation optics 214 is used to collimate the multiple lasers emitted by the laser emission array 212.
  • the laser receiving focusing system 216 is disposed on the incident light side of the laser receiving array 218.
  • the laser receiving focusing system 216 is configured to focus the laser echoes reflected by the target object and output them to the laser receiving array 218.
  • the laser receiving array 218 is for receiving multiple laser echoes that are focused by the laser receiving focusing system 216. By focusing on the incident light and collimating the outgoing light, it is advantageous to improve the accuracy of the measurement.
  • the FPGA master system 210 is used to control the laser emitting array 212 and the laser receiving array 218.
  • the FPGA master system 210 is further configured to determine measurement data (distance information) based on the received multiple laser echoes.
  • the working process of the FPGA main control system 210 has been described in the foregoing embodiments, and details are not described herein.
  • the angle measuring system 310 is configured to measure the rotation angle of the rotating portion 200 and output it to the FPGA data integration system 320.
  • the angle measuring system 310 can be implemented using a high precision rotational angle measuring system commonly used in the art.
  • the FPGA data integration system 320 is configured to receive the angle information output by the angle measurement system 310 and the distance information output by the FPGA main control system 220, thereby generating angled measurement data and outputting through the output device 330.
  • the output device 330 may be a multi-path laser ranging data output interface, or may be a display device capable of visual display.
  • the rotating portion 200 includes a bracket 230.
  • the laser emitting array 212 and the laser receiving array 218 are respectively fixed to both sides of the bracket 230 and separated by the bracket 230.
  • a plurality of laser emitters in the laser emitting array 212 and a plurality of laser receivers in the laser receiving array 218 are vertically spaced along the bracket 230.
  • the bracket faces on which the plurality of laser emitters and the plurality of laser receivers are located are curved curved surfaces.
  • the angle between the exiting light of the laser emitting array 212 and the incident light of the laser receiving array 218 is 90 degrees.
  • the distance measurement system 210 also includes a transmit optical path system and a receive optical path system.
  • the transmit light path system is disposed between the laser light emitting array 212 and the emission collimating optical system 214.
  • the emission light path system is used to control the multiplex laser to exit in the direction of the outgoing light parallel to the laser emission array 212.
  • the emission optical path system includes a first optical lens 242 and a second optical lens 244.
  • the first optical lens 242 and the second optical lens 244 are disposed in parallel and at an angle of 45 degrees to the outgoing light of the laser emitting array 212.
  • the reflecting faces of the first optical lens 242 and the second optical lens 244 are disposed toward the laser emitting array 212.
  • the receiving optical path system is disposed between the laser receiving focusing system 216 and the laser receiving array 218.
  • the receiving optical path system is for controlling the output of the multiple lasers to the laser receiving array 218 in the direction of reflection of the laser echoes.
  • the receiving optical path system includes a third optical lens 252 and a fourth optical lens 254.
  • the third optical lens 252 and the fourth optical lens 254 are disposed in parallel and at an angle of 45 degrees to the incident light of the laser receiving array 218.
  • the reflecting faces of the third lens 252 and the fourth optical lens 254 are disposed toward the laser receiving array 218.
  • a schematic diagram of the transmitting light path and the receiving light path is shown in FIG.
  • the laser light emitted by the plurality of laser emitters in the laser emitting array 212 is incident on the second optical lens 244 mounted in front of the first optical lens 242 after being reflected by the first optical lens 242 mounted in front of the laser emitting array 212 by 90°. After being reflected by the second optical lens 244 by 90°, it is incident on the emission collimating optical system 214, collimated by the emission collimating optical system 214, and directly incident on the target object (or the detecting object). After being reflected by the detected object, it is incident on the laser receiving focusing system 216, is focused by the laser receiving focusing system 216, and then incident on the third optical lens 252.
  • the fourth optical lens 254 After being reflected by the third optical lens 252 by 90°, it is incident on the fourth optical lens 254, and is subjected to the fourth optical lens 254.
  • the optical lens 254 is incident on the laser receiving array 218 after being reflected by 90°.
  • the first optical lens 242, the second optical lens 244, the third optical lens 252, and the fourth optical lens 254 are all ordinary all-optical lenses.
  • the emission collimating optical system 214 is a large field of view collimation system.
  • the emission collimation optics 214 includes a plurality of collimated emission lenses (not shown).
  • a plurality of collimated emission lenses are disposed on the curved surface, and the radius of the curved surface is 200 mm.
  • the laser receiving focusing system 216 includes a plurality of focus receiving lenses (not shown).
  • a plurality of focus receiving lenses are disposed on the curved surface, and the radius of the curved curved surface is 200 mm.
  • the arc formed by the collimated emission lens is the same as the arc center formed by the focus receiving lens, and both are within 30 degrees of the central angle.
  • the emission collimating optical system 214 further includes a third lens J5, a second lens J3, and a first lens J1 which are sequentially coaxially arranged along the direction of the outgoing light of the laser emitting array 212, as shown in FIG.
  • the laser emitting array 212 includes 16 laser emitters F1 to F16.
  • the 16 lasers F1 to F16 are fixed on the laser holder W.
  • the laser holder W is a circular arc bracket.
  • the first lens J1 is a positive meniscus lens, and the curved surface of the first lens J1 is convex toward the laser emitter.
  • the second lens J3 is a negative meniscus lens, and the curved surface of the second lens J3 is curved toward the emission direction of the laser emitter.
  • the third lens J5 is a positive meniscus lens, and the curved surface of the third lens J5 is curved toward the emission direction of the laser emitter.
  • M1, M2, M3, M4, M5, and M6 are mirror surfaces of J1, J3, and J5 lenses, respectively.
  • a positive lens refers to a lens whose center thickness is larger than an edge thickness
  • a negative lens refers to a lens whose center thickness is smaller than an edge thickness.
  • the negative sign indicates the direction of propagation along the light, which is based on the intersection of the spherical surface and the main optical axis.
  • the spherical center of the sphere is left at this point, and the radius of curvature is negative. Otherwise, the center of the sphere is right at the point, and the radius of curvature is positive.
  • the specific parameters can be designed as follows: the radius of the mirror M1 is 15.6mm, the radius of the mirror M2 is 58.33mm, the radius of the mirror M3 is 14.011mm, the radius of the mirror M4 is 7.508mm, the radius of the mirror M5 is -156.575mm, the mirror M6 The radius is -19.31mm.
  • the inner radius of the circular arc bracket W is -200.058 mm.
  • the thickness of the glass between the mirror surface M1 and the mirror surface M2 is 7.33 mm
  • the refractive index of the material is 1.49
  • the Abbe number is 55.3
  • the aperture is 31.7 mm.
  • the mirror M2 to the mirror M3 has a thickness of 2 mm and the material is air.
  • the glass thickness of the mirror surface M3 to the mirror surface M4 is 3.59 mm
  • the refractive index of the material is 1.59
  • the Abbe number is 30.9
  • the aperture is 23 mm.
  • the mirror M4 to the mirror M5 has a thickness of 13.57 mm and the material is air.
  • the glass thickness of the mirror surface M5 to the mirror surface M6 is 21.3 mm, the refractive index of the material is 1.50, the Abbe number is 56.41, and the aperture is 19 mm.
  • the distance from the mirror surface M6 to the inner side of the laser holder W is 31.168 mm.
  • the laser receiving focusing system 216 further includes a fourth lens J2, a fifth lens J4, and a sixth lens J6 which are sequentially coaxially arranged in the incident direction, as shown in FIG.
  • the laser receiving array 218 includes 16 laser receivers P1 to P16.
  • the 16 lasers P1 to P16 are fixed to the laser holder W.
  • the laser holder W is a circular arc bracket.
  • the structure of the laser receiving focusing system 216 is the same as that of the emission collimating system 214 and will not be described here.
  • the multi-line laser radar described above has a simple structure, good stability, and can meet real-time requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种多线激光雷达,包括:激光发射阵列(110),用于发射多路激光;激光接收阵列(120),用于接收由目标物体反射的多路激光回波;回波采样装置(130),用于采用时分复用方式对多路激光回波进行采样并输出采样数据流;控制系统(140),分别与激光发射阵列(110)、激光接收阵列(120)以及回波采样装置(130)连接;控制系统(140)用于对激光发射阵列(110)和激光接收阵列(120)的工作进行控制,并根据采样数据流确定测量数据;以及输出装置(150),用于输出测量数据。

Description

多线激光雷达
【技术领域】
本发明涉及激光探测技术领域,特别是涉及一种多线激光雷达。
【背景技术】
“雷达”是一种利用电磁波探测目标的位置的电子装置,主要用于探测目标的距离、速度、角位置等运动参数。雷达包括超声波雷达、微波雷达以及激光雷达。激光雷达是利用激光光波来完成探测任务。传统的激光雷达多应用于定点测量。当多线测量时测量速度达不到要求,无法满足实时性要求。
【发明内容】
基于此,有必要提供一种实时性较高的多线激光雷达。
一种多线激光雷达,包括:激光发射阵列,用于发射多路激光;激光接收阵列,用于接收由目标物体反射的多路激光回波;回波采样装置,用于采用时分复用方式对所述多路激光回波进行采样并输出采样数据流;控制系统,分别与所述激光发射阵列、所述激光接收阵列以及所述回波采样装置连接;所述控制系统用于对所述激光发射阵列和所述激光接收阵列的工作进行控制,并根据所述采样数据流确定测量数据;以及输出装置,用于输出所述测量数据。
上述多线激光雷达,激光发射阵列可以同时发出多路激光,激光接收阵列用于接收由目标物体反射回来的多路激光回波。回波采样装置通过时分复用方式对激光接收阵列接收到的多路激光回波进行采样,并输出采样数据流以供控制系统确定出测量数据后通过输出装置输出。上述多线激光雷达,回波采样装置通过时分复用方式进行采样后通过控制系统进行实时处理,有利于提高测量过程的实时性。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为一实施例中的多线激光雷达的结构框图;
图2为图1中的控制系统的结构框图;
图3为另一实施例中的多线激光雷达的结构框图;
图4为一实施例中的多线激光雷达的具体结构示意图;
图5为图4的俯视图;
图6为图4中的多线激光雷达的发射光路和接收光路的示意图;
图7为图4中的发射准直光学系统的结构示意图;
图8为图4中的激光接收聚焦系统的结构示意图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
图1为一实施例中的多线激光雷达的结构框图。该多线激光雷达包括激光发射阵列110、激光接收阵列120、回波采样装置130、控制系统140以及输出装置150。
激光发射阵列110用于发射多路激光。其中,激光发射阵列110发射的激光为脉冲激光。激光发射阵列110包括多个阵列排布的激光发射器。
激光接收阵列120则用于接收由目标物体反射来的多路脉冲激光。激光接收阵列120同样包括多个阵列排布的激光接收器。激光接收器的数量与激光发射器的数量相同。在其他的实施例中,激光发射阵列110和激光接收阵列120的排列方式可以根据实际需要进行设定。
回波采样装置130与激光接收阵列120连接。回波采样装置130用于采用时分复用方式对激光接收阵列120接收到的激光回波进行采样,并生成采样数据流后输出。通过时分复用方式进行多路激光回波的采样,可以有效提高采样效率,且有利于提高测量过程的实时性。回波采样装置130的采样频率为GSPS(Gigabit Samples Per Second,即每秒千兆次采样)级,从而使得得到的采样数据流为GSPS级数据流(也可以称之为高速采样数据流)。在本实施例中,回波采集装置130为ADC采样装置(模数转换采样装置),其采集到的数据流为600000次回波信号每秒的高速数据流。该数据流为8 bit ADC量化后的数据流。
控制系统140分别与激光发射阵列110、激光接收阵列120以及回波采样装置130连接。控制系统140用于对激光发射阵列110、激光接收阵列120以及回波采样装置130的工作状态进行控制。并且,控制系统140还用于根据采样数据流确定测量数据。具体地,控制系统140可以通过FPGA(Field-Programmable Gate Array,现场可编程门阵列)来实现。控制系统140包括波形筛选系统142和时分复用数字信号处理阵列(时分复用DSP阵列)144,如图2所示。波形筛选系统142用于从采样数据流中筛选出满足预设波形条件的回波。预设波形条件可以是波形的峰值、相位等参数条件。具体地,波形筛选系统142内存储有预设波形模板。因此,波形筛选系统142将采样数据流中的波形与预设波形模板进行匹配,根据匹配程度判断采样数据流中的波形是否满足预设波形条件。波形筛选系统142将包含满足预设波形条件的波形的数据点序列提取后打包发送给时分复用DSP阵列144。时分复用DSP阵列144由FPGA逻辑资源和乘法器构建而成,以对筛选出的数据进行一系列的乘法及迭代运算,以得到代表距离信息的时间间隔信息。时分复用DSP阵列144还会根据得到的时间间隔信息转换为距离信息后结合其他辅助信息打包发送。时间间隔信息转换为距离信息的计算公式如下:
D=T*Ca/2。
其中,D表示距离,Ca表示空气中光传播速度,T表示时间间隔信息,为回波和参考信号与模板相关度分别达到最大值的时刻的差值的绝对值。通过将得到的距离信息与其他辅助信息如点序列号、信道衰减值以及检验信息等进行打包发送,有利于提高数据传输过程的稳定性以及安全性。在其他的实施例中,回波采样装置130也可以集成在控制系统140内。
输出装置150用于控制系统140输出的测量数据输出。在本实施例中,输出装置150为输出接口。在其他的实施例中,输出装置150可以为显示装置,直接将测量数据显示输出。
上述多线激光雷达,激光发射阵列110可以同时发出多路激光,激光接收阵列120用于接收由目标物体反射回来的多路激光回波。回波采样装置130通过时分复用方式对激光接收阵列120接收到的多路激光回波进行采样并输出采样数据流以供控制系统140确定出测量数据并通过输出装置150输出。上述多线激光雷达,回波采样装置130通过时分复用方式进行采样后通过控制系统140进行实时处理,有利于提高测量过程的实时性。同时,控制系统140采用时分复用DSP阵列对数据进行计算处理,可以进一步提高测量过程的实时性。
在一实施例中,控制系统140还包括依次连接的接收功率评估系统145、自动功率控制系统147和激光发射控制系统149,如图2所示。接收功率评估系统145与波形筛选系统142连接,用于根据波形筛选系统142的筛选结果进行回波功率值计算。自动功率控制系统(AGC)147用于根据计算得到的功率值计算出功率补偿值。激光发射控制系统149则用于根据该功率补偿值调整发射功率补偿光路衰减,使得下次得到的回波能量恰好在期待的功率范围内,从而获得具有较好信噪比的回波信号,从而有利于提高测量的准确度。
图3为另一实施例中的多线激光雷达的结构框图。该多线激光雷达包括旋转部200、固定部300和旋转机构400。旋转部200通过旋转机构400与固定部300连接。其中,旋转部200包括相互连接的距离测量系统210和FPGA主控系统220。固定部300则包括相互连接的角度测量系统310、FPGA数据集成系统320和输出装置330。FPGA主控系统220和FPGA数据集成系统320形成多线激光雷达的控制系统。旋转机构400内设置有带能量的无线通信系统410。FPGA主控系统220通过无线通信系统与FPGA数据集成系统320进行通信连接。
上述多线激光雷达,FPGA主控系统220与距离测量系统210连接且设置在旋转部200,FPGA数据集成系统320和角度测量系统310、输出装置330连接且设置在固定部300。FPGA主控系统220通过旋转机构400中的无线通信系统410与FPGA数据集成系统320进行通信连接,从而形成多线激光雷达的控制系统。通过将控制系统中的FPGA主控系统220和FPGA数据集成系统320单独设置且分别设置在旋转部200和固定部300,有利于提高系统的稳定性。
在本实施例中,距离测量系统210包括激光发射阵列212、发射准直光学系统214、激光接收聚焦系统216以及激光接收阵列218。激光发射阵列212和激光接收阵列218分别与FPGA主控系统220连接。激光发射阵列212用于发射多路脉冲激光 (4路、8路、16路、32路、64路)。多路激光的路数可以根据需要设置,如设置成偶数路。发射准直光学系统214设置在激光发射阵列212的出射光侧。发射准直光学系统214用于对激光发射阵列212发射的多路激光进行准直。激光接收聚焦系统216设置在激光接收阵列218的入射光侧。激光接收聚焦系统216用于对由目标物体反射的各路激光回波进行聚焦后输出给激光接收阵列218。激光接收阵列218用于接收经过激光接收聚焦系统216聚焦后的多路激光回波。通过对入射光进行聚焦,并对出射光进行准直,有利于提高测量的精确度。FPGA主控系统210用于对激光发射阵列212和激光接收阵列218进行控制。FPGA主控系统210还用于根据接收到的多路激光回波确定测量数据(距离信息)。FPGA主控系统210的工作过程在前述实施例中已说明,此处不赘述。
角度测量系统310用于对旋转部200的旋转角度进行测量并输出给FPGA数据集成系统320。角度测量系统310可以采用本领域常用的高精度旋转角度测量系统来实现。FPGA数据集成系统320用于接收角度测量系统310输出的角度信息和FPGA主控系统220输出的距离信息,从而生成带角度的测量数据后通过输出装置330输出。输出装置330可以为多路激光测距数据输出接口,也可以为能够进行直观显示的显示装置。
图4为一实施例中的多线激光雷达的具体结构示意图,图5为图4的俯视图。在本实施例中,旋转部200包括支架230。激光发射阵列212和激光接收阵列218分别固定在支架230的两侧且由支架230分隔开来。并且,激光发射阵列212中的多个激光发射器和激光接收阵列218中的多个激光接收器均沿支架230竖向间隔排列。在本实施例中,多个激光发射器和多个激光接收器所在的支架面均为弧形曲面。激光发射阵列212的出射光和激光接收阵列218的入射光之间的夹角呈90度。距离测量系统210还包括发射光路系统和接收光路系统。发射光路系统设置在激光发射阵列212和发射准直光学系统214之间。发射光路系统用于控制多路激光沿平行于激光发射阵列212的出射光方向射出。具体地,发射光路系统包括第一光学透镜242和第二光学透镜244。第一光学透镜242和第二光学透镜244平行设置,并且与激光发射阵列212的出射光呈45度夹角。同时,第一光学透镜242和第二光学透镜244的反射面朝激光发射阵列212设置。接收光路系统则设置在激光接收聚焦系统216和激光接收阵列218之间。接收光路系统用于控制多路激光沿激光回波的反射方向输出至激光接收阵列218。具体地,接收光路系统包括第三光学透镜252和第四光学透镜254。第三光学透镜252和第四光学透镜254平行设置,并且与激光接收阵列218的入射光呈45度夹角。第三透镜252和第四光学透镜254的反射面朝激光接收阵列218设置。发射光路和接收光路的示意图如图6示。激光发射阵列212中的多个激光发射器发射的激光经装在激光发射阵列212前面的第一光学镜片242反射90°后入射到安装在第一光学镜片242前面的第二光学镜片244。经第二光学镜片244反射90°后入射到发射准直光学系统214,经过发射准直光学系统214准直后直接入射到目标物体(或探测物体)。经探测物体反射后入射到激光接收聚焦系统216,经过激光接收聚焦系统216聚焦后入射到第三光学镜片252,经第三光学镜片252反射90°后入射到第四光学镜片254,经第四光学镜片254反射90°后入射到激光接收阵列218。在本实施例中,第一光学镜片242、第二光学镜片244、第三光学镜片252和第四光学镜片254均为普通的全光学镜片。
在本实施例中,发射准直光学系统214为大视场准直系统。发射准直光学系统214包括多个准直发射镜头(图中未示)。多个准直发射镜头设置在弧形曲面上,弧形曲面的半径为200mm。激光接收聚焦系统216包括多个聚焦接收镜头(图中未示)。多个聚焦接收镜头设置在弧形面上,弧形曲面的半径为200mm。在本实施例中,准直发射镜头所构成的弧形与聚焦接收镜头所构成的弧形的圆心相同,且均在圆心角30度范围内。发射准直光学系统214还包括沿激光发射阵列212的出射光方向依次同轴排列的第三透镜J5、第二透镜J3以及第一透镜J1,如图7所示。参见图7,激光发射阵列212包括16路激光发射器F1~F16。16路激光器F1~F16固定在激光支架W上。激光支架W为圆弧形支架。在本实施例中,第一透镜J1为正弯月透镜,且第一透镜J1的曲面朝激光发射器凸出。第二透镜J3为负弯月透镜,且第二透镜J3的曲面朝激光发射器的射出方向弯曲。第三透镜J5为正弯月透镜,且第三透镜J5的曲面朝激光发射器的射出方向弯曲。M1、M2、M3、M4、M5、M6分别是J1、J3、J5透镜的镜面。在本实施例中,正透镜是指透镜的中心厚度大于比边缘厚度的透镜,负透镜是指透镜的中心厚度小于边缘厚的透镜。负号表示沿光的传播方向,以球面和主光轴的交点为准,球面的球心在该点以左,则曲率半径为负,反之,球心在该点以右,则曲率半径为正。具体参数可设计为:镜面M1的半径为15.6mm,镜面M2半径58.33mm,镜面M3半径为14.011mm,镜面M4半径为7.508mm,镜面M5半径为-156.575mm,镜面M6 半径为-19.31mm。圆弧形支架W的内侧半径为-200.058mm。其中,镜面M1到镜面M2间玻璃厚度为7.33mm,材料折射率为1.49、阿贝数为55.3、孔径为31.7mm。镜面M2到镜面M3的厚为2mm,材料为空气。镜面M3到镜面M4的玻璃厚为3.59mm,材料的折射率1.59、阿贝数为30.9、孔径为23mm。镜面M4到镜面M5的厚为13.57mm,材料为空气。镜面M5到镜面M6的玻璃厚为21.3mm,材料的折射率1.50、阿贝数为56.41、孔径为19mm。镜面M6到激光支架W的内侧弧面距离为31.168mm。上述参数仅为一具体示例,在其他的实施例中可以根据需要对各参数进行适应性调整。
激光接收聚焦系统216还包括沿入射方向依次同轴排列的第四透镜J2、第五透镜J4、以及第六透镜J6,如图8所示。参见图8,激光接收阵列218包括16路激光接收器P1~P16。16路激光器P1~P16固定在激光支架W上。激光支架W为圆弧形支架。激光接收聚焦系统216的结构与发射准直系统214的结构相同,此处不赘述。
上述多线激光雷达的结构简单、稳定性较好,且能够满足实时性要求。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (17)

  1. 一种多线激光雷达,其特征在于,包括:
    激光发射阵列,用于发射多路激光;
    激光接收阵列,用于接收由目标物体反射的多路激光回波;
    回波采样装置,用于采用时分复用方式对所述多路激光回波进行采样并输出采样数据流;
    控制系统,分别与所述激光发射阵列、所述激光接收阵列以及所述回波采样装置连接;所述控制系统用于对所述激光发射阵列和所述激光接收阵列的工作进行控制,并根据所述采样数据流确定测量数据;以及
    输出装置,用于输出所述测量数据。
  2. 根据权利要求1所述的多线激光雷达,其特征在于,所述回波采样装置为模数转换回波采样装置;所述控制系统包括波形筛选系统以及时分复用数字信号处理阵列;所述波形筛选系统用于从所述采样数据流中筛选出满足预设波形条件的回波并将筛选结果输出给所述时分复用数字信号处理阵列;所述时分复用数字信号处理阵列用于根据所述筛选结果处理得的时间间隔信息并根据所述时间间隔信息确定出目标物体的距离信息。
  3. 根据权利要求2所述的多线激光雷达,其特征在于,所述回波采样装置的采样频率为每秒千兆次采样级的采样频率。
  4. 根据权利要求2所述的多线激光雷达,其特征在于,所述控制系统还包括依次连接的接收功率评估系统、自动功率控制系统和激光发射控制系统;所述接收功率评估系统用于根据所述波形筛选系统的筛选结果计算回波的功率值;所述自动功率控制系统用于根据所述功率值计算得到功率补偿值;所述激光发射控制系统用于根据所述功率补偿值对所述激光发射阵列的发射功率进行控制。
  5. 根据权利要求1所述的多线激光雷达,其特征在于,还包括:
    发射准直光学系统,设置在所述激光发射阵列的出射光侧,用于对所述激光发射阵列发射的多路激光进行准直;以及
    激光接收聚焦系统,设置在所述激光接收阵列的入射光侧,用于对由目标物体反射的各路激光回波进行聚焦。
  6. 根据权利要求5所述的多线激光雷达,其特征在于,所述发射准直光学系统包括准直发射镜头;所述激光接收聚焦系统包括聚焦接收镜头;所述准直发射镜头和所述聚焦接收镜头均固定在弧形曲面上。
  7. 根据权利要求6所述的多线激光雷达,其特征在于,所述准直发射镜头所构成的弧形与所述聚焦接收镜头所构成的弧形的圆心相同,且所述准直发射镜头和所述聚焦接收镜头均在圆心角30度范围内。
  8. 根据权利要求6所述的多线激光雷达,其特征在于,所述发射准直光学系统还包括沿所述激光发射阵列的发射方向依次同轴排列的第三透镜、第二透镜和第一透镜;所述第三透镜为正弯月透镜且所述第三透镜的曲面朝所述激光发射阵列所在位置弯曲;所述第二透镜为负弯月透镜且所述第二透镜的曲面朝所述激光发射阵列的射出方向弯曲;所述第一透镜为正弯月透镜,且所述第一透镜的曲面朝所述激光发射阵列的射出方向弯曲。
  9. 根据权利要求6所述的多线激光雷达,其特征在于,所述激光接收聚焦系统还包括沿入射方向依次同轴排列的第四透镜、第五透镜和第六透镜;所述第六透镜为正弯月透镜且所述第六透镜的曲面朝所述激光发射阵列所在位置弯曲;所述第五透镜为负弯月透镜且所述第五透镜的曲面朝所述激光发射阵列的射出方向弯曲;所述第四透镜为正弯月透镜,且所述第四透镜的曲面朝所述激光发射阵列的射出方向弯曲。
  10. 根据权利要求5所述的多线激光雷达,其特征在于,还包括发射光路系统和接收光路系统;
    所述发射光路系统设置在所述激光发射阵列和所述发射准直光学系统之间;所述发射光路系统用于控制所述多路激光沿平行于所述激光发射阵列的出射光的方向射出;
    所述接收光路系统设置在所述激光接收阵列和所述激光接收聚焦系统之间;所述接收光路系统用于控制所述多路激光回波沿所述激光回波的入射方向输出至所述激光接收阵列。
  11. 根据权利要求10所述的多线激光雷达,其特征在于,所述发射光路系统包括平行设置的第一光学镜片和第二光学镜片;所述第一光学透镜和所述第二光学透镜的反射面朝所述激光发射阵列设置。
  12. 根据权利要求10所述的多线激光雷达,其特征在于,所述接收光路系统包括平行设置的第三光学镜片和第四光学镜片;第三光学镜片与所述第一光学镜片垂直设置;所述第三光学透镜和所述第四光学透镜的反射面朝所述激光接收阵列设置。
  13. 根据权利要求10所述的多线激光雷达,其特征在于,所述多线激光雷达包括固定部、旋转部以及旋转机构;所述固定部和所述旋转部之间通过旋转机构连接;所述激光发射阵列、所述发射准直光学系统、所述激光接收聚焦系统、所述激光接收阵列、所述回波采样装置、所述发射光路系统和所述接收光路系统均固定设置在所述旋转部;所述输出装置设置在所述固定部。
  14. 根据权利要求13所述的多线激光雷达,其特征在于,所述控制系统包括FPGA主控系统和FPGA数据集成系统;所述FPGA主控系统设置在所述旋转部;所述FPGA主控系统分别与所述激光发射阵列、所述激光接收阵列和所述回波采样装置连接;所述FPGA数据集成系统设置在所述固定部;所述FPGA数据集成系统与所述输出装置连接。
  15. 根据权利要求14所述的多线激光雷达,其特征在于,所述旋转结构上设置有无线通信系统,用于实现所述FPGA主控系统和所述FPGA数据集成系统之间的通信连接。
  16. 根据权利要求14所述的多线激光雷达,其特征在于,所述固定部还设置有旋转角测量系统;所述旋转角度测量系统与所述FPGA数据集成系统连接,用于测量旋转部的旋转角度信息;所述FPGA主控系统用于根据所述采样数据流确定测量数据并输出给所述FPGA数据集成系统;所述FPGA数据集成系统用于接收所述旋转角度信息以及所述测量数据,并生成带角度的测量数据后输出给所述输出装置。
  17. 根据权利要求13所述的多线激光雷达,其特征在于,所述旋转部还包括支架;所述激光发射阵列和所述激光接收阵列分别固定在所述支架的两侧且由所述支架分隔开来。
PCT/CN2016/081479 2016-05-10 2016-05-10 多线激光雷达 WO2017193269A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/748,320 US10838046B2 (en) 2016-05-10 2016-05-10 Multiline lidar
PCT/CN2016/081479 WO2017193269A1 (zh) 2016-05-10 2016-05-10 多线激光雷达
US17/036,231 US11686825B2 (en) 2016-05-10 2020-09-29 Multiline lidar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/081479 WO2017193269A1 (zh) 2016-05-10 2016-05-10 多线激光雷达

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/748,320 A-371-Of-International US10838046B2 (en) 2016-05-10 2016-05-10 Multiline lidar
US17/036,231 Continuation US11686825B2 (en) 2016-05-10 2020-09-29 Multiline lidar

Publications (1)

Publication Number Publication Date
WO2017193269A1 true WO2017193269A1 (zh) 2017-11-16

Family

ID=60266043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081479 WO2017193269A1 (zh) 2016-05-10 2016-05-10 多线激光雷达

Country Status (2)

Country Link
US (2) US10838046B2 (zh)
WO (1) WO2017193269A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108572359A (zh) * 2018-06-08 2018-09-25 上海禾赛光电科技有限公司 一种用于激光雷达的接收系统
CN111337903A (zh) * 2020-05-20 2020-06-26 北京大汉正源科技有限公司 一种多线激光雷达
WO2020211793A1 (en) * 2019-04-15 2020-10-22 Suteng Innovation Technology Co., Ltd. A lidar device
USRE48490E1 (en) 2006-07-13 2021-03-30 Velodyne Lidar Usa, Inc. High definition LiDAR system
WO2021057821A1 (en) * 2019-09-25 2021-04-01 Suteng Innovation Technology Co., Ltd. Lidar
US10983218B2 (en) 2016-06-01 2021-04-20 Velodyne Lidar Usa, Inc. Multiple pixel scanning LIDAR
US11073617B2 (en) 2016-03-19 2021-07-27 Velodyne Lidar Usa, Inc. Integrated illumination and detection for LIDAR based 3-D imaging
US11082010B2 (en) 2018-11-06 2021-08-03 Velodyne Lidar Usa, Inc. Systems and methods for TIA base current detection and compensation
US11137480B2 (en) 2016-01-31 2021-10-05 Velodyne Lidar Usa, Inc. Multiple pulse, LIDAR based 3-D imaging
US11408983B2 (en) 2018-10-01 2022-08-09 Infineon Technologies Ag Lidar 2D receiver array architecture
CN115166695A (zh) * 2022-09-06 2022-10-11 深圳力策科技有限公司 高安全性激光雷达扫描装置
US11592569B2 (en) 2017-12-22 2023-02-28 Robert Bosch Gmbh Lidar system for detecting an object
US11703569B2 (en) 2017-05-08 2023-07-18 Velodyne Lidar Usa, Inc. LIDAR data acquisition and control
US11796648B2 (en) 2018-09-18 2023-10-24 Velodyne Lidar Usa, Inc. Multi-channel lidar illumination driver
US11808891B2 (en) 2017-03-31 2023-11-07 Velodyne Lidar Usa, Inc. Integrated LIDAR illumination power control
US11885958B2 (en) 2019-01-07 2024-01-30 Velodyne Lidar Usa, Inc. Systems and methods for a dual axis resonant scanning mirror
US11933967B2 (en) 2019-08-22 2024-03-19 Red Creamery, LLC Distally actuated scanning mirror

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017193269A1 (zh) * 2016-05-10 2017-11-16 深圳市速腾聚创科技有限公司 多线激光雷达
KR102641651B1 (ko) * 2017-06-07 2024-02-29 헤사이 테크놀로지 씨오., 엘티디. 멀티 라인 레이저 레이더
CN109188401A (zh) * 2018-11-09 2019-01-11 深圳市速腾聚创科技有限公司 激光雷达光学系统及激光雷达
USD959305S1 (en) * 2019-10-31 2022-08-02 Hesai Technology Co., Ltd. Lidar
CN112789523B (zh) * 2019-11-01 2023-11-28 深圳市速腾聚创科技有限公司 角位移测量装置、激光雷达及角度调节方法
CN110988893B (zh) * 2019-12-11 2022-04-12 武汉万集信息技术有限公司 激光雷达装置
USD1000978S1 (en) * 2020-04-23 2023-10-10 Hesai Technology Co., Ltd. Lidar
CN112433197B (zh) * 2020-12-22 2022-08-19 北京遥测技术研究所 一种高时空匹配的微波激光云雨气溶胶复合探测雷达
CN112986951B (zh) * 2021-04-29 2023-03-17 上海禾赛科技有限公司 使用激光雷达测量目标物反射率的方法及激光雷达
CN114200469A (zh) * 2021-12-10 2022-03-18 湖北久之洋信息科技有限公司 一种基于角锥阵列的激光探测系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813778A (zh) * 2010-04-20 2010-08-25 长春艾克思科技有限责任公司 汽车多线激光雷达系统
CN102338875A (zh) * 2010-07-16 2012-02-01 李少勤 一种多线扫描前视防撞激光雷达装置及应用
CN103278808A (zh) * 2013-05-28 2013-09-04 中国科学院合肥物质科学研究院 一种多线扫描式激光雷达装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008008970A2 (en) * 2006-07-13 2008-01-17 Velodyne Acoustics, Inc High definition lidar system
WO2010006081A1 (en) * 2008-07-08 2010-01-14 Chiaro Technologies, Inc. Multiple channel locating
WO2011146523A2 (en) * 2010-05-17 2011-11-24 Velodyne Acoustics, Inc. High definition lidar system
US9377533B2 (en) * 2014-08-11 2016-06-28 Gerard Dirk Smits Three-dimensional triangulation and time-of-flight based tracking systems and methods
US9625582B2 (en) * 2015-03-25 2017-04-18 Google Inc. Vehicle with multiple light detection and ranging devices (LIDARs)
US10754015B2 (en) * 2016-02-18 2020-08-25 Aeye, Inc. Adaptive ladar receiver
WO2017193269A1 (zh) * 2016-05-10 2017-11-16 深圳市速腾聚创科技有限公司 多线激光雷达

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813778A (zh) * 2010-04-20 2010-08-25 长春艾克思科技有限责任公司 汽车多线激光雷达系统
CN102338875A (zh) * 2010-07-16 2012-02-01 李少勤 一种多线扫描前视防撞激光雷达装置及应用
CN103278808A (zh) * 2013-05-28 2013-09-04 中国科学院合肥物质科学研究院 一种多线扫描式激光雷达装置

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE48504E1 (en) 2006-07-13 2021-04-06 Velodyne Lidar Usa, Inc. High definition LiDAR system
USRE48688E1 (en) 2006-07-13 2021-08-17 Velodyne Lidar Usa, Inc. High definition LiDAR system
USRE48666E1 (en) 2006-07-13 2021-08-03 Velodyne Lidar Usa, Inc. High definition LiDAR system
USRE48503E1 (en) 2006-07-13 2021-04-06 Velodyne Lidar Usa, Inc. High definition LiDAR system
USRE48490E1 (en) 2006-07-13 2021-03-30 Velodyne Lidar Usa, Inc. High definition LiDAR system
USRE48491E1 (en) 2006-07-13 2021-03-30 Velodyne Lidar Usa, Inc. High definition lidar system
US11137480B2 (en) 2016-01-31 2021-10-05 Velodyne Lidar Usa, Inc. Multiple pulse, LIDAR based 3-D imaging
US11698443B2 (en) 2016-01-31 2023-07-11 Velodyne Lidar Usa, Inc. Multiple pulse, lidar based 3-D imaging
US11073617B2 (en) 2016-03-19 2021-07-27 Velodyne Lidar Usa, Inc. Integrated illumination and detection for LIDAR based 3-D imaging
US11550056B2 (en) 2016-06-01 2023-01-10 Velodyne Lidar Usa, Inc. Multiple pixel scanning lidar
US11874377B2 (en) 2016-06-01 2024-01-16 Velodyne Lidar Usa, Inc. Multiple pixel scanning LIDAR
US10983218B2 (en) 2016-06-01 2021-04-20 Velodyne Lidar Usa, Inc. Multiple pixel scanning LIDAR
US11808854B2 (en) 2016-06-01 2023-11-07 Velodyne Lidar Usa, Inc. Multiple pixel scanning LIDAR
US11561305B2 (en) 2016-06-01 2023-01-24 Velodyne Lidar Usa, Inc. Multiple pixel scanning LIDAR
US11808891B2 (en) 2017-03-31 2023-11-07 Velodyne Lidar Usa, Inc. Integrated LIDAR illumination power control
US11703569B2 (en) 2017-05-08 2023-07-18 Velodyne Lidar Usa, Inc. LIDAR data acquisition and control
US11592569B2 (en) 2017-12-22 2023-02-28 Robert Bosch Gmbh Lidar system for detecting an object
CN108572359A (zh) * 2018-06-08 2018-09-25 上海禾赛光电科技有限公司 一种用于激光雷达的接收系统
CN108572359B (zh) * 2018-06-08 2023-06-16 上海禾赛科技有限公司 一种用于激光雷达的接收系统
US11796648B2 (en) 2018-09-18 2023-10-24 Velodyne Lidar Usa, Inc. Multi-channel lidar illumination driver
US11408983B2 (en) 2018-10-01 2022-08-09 Infineon Technologies Ag Lidar 2D receiver array architecture
US11082010B2 (en) 2018-11-06 2021-08-03 Velodyne Lidar Usa, Inc. Systems and methods for TIA base current detection and compensation
US11885958B2 (en) 2019-01-07 2024-01-30 Velodyne Lidar Usa, Inc. Systems and methods for a dual axis resonant scanning mirror
WO2020211793A1 (en) * 2019-04-15 2020-10-22 Suteng Innovation Technology Co., Ltd. A lidar device
US11933967B2 (en) 2019-08-22 2024-03-19 Red Creamery, LLC Distally actuated scanning mirror
WO2021057821A1 (en) * 2019-09-25 2021-04-01 Suteng Innovation Technology Co., Ltd. Lidar
CN111337903A (zh) * 2020-05-20 2020-06-26 北京大汉正源科技有限公司 一种多线激光雷达
CN111337903B (zh) * 2020-05-20 2020-09-08 北京大汉正源科技有限公司 一种多线激光雷达
CN115166695A (zh) * 2022-09-06 2022-10-11 深圳力策科技有限公司 高安全性激光雷达扫描装置

Also Published As

Publication number Publication date
US10838046B2 (en) 2020-11-17
US11686825B2 (en) 2023-06-27
US20210025992A1 (en) 2021-01-28
US20180217240A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
WO2017193269A1 (zh) 多线激光雷达
CN105824029A (zh) 多线激光雷达
CN109917348B (zh) 一种激光雷达系统
US7259838B2 (en) Optical beam separation element, measuring apparatus and method of measuring
CN106291510A (zh) 一种基于时间飞行法的激光雷达光学系统
CN102169050A (zh) 一种反射率综合测量方法
CN209264948U (zh) 一种同轴收发的激光雷达
CN107907885A (zh) 一种基于单光子计数方法的水下目标探测装置
EP0939905A1 (en) Fiber optic guidance system for laser guided missiles
CN105403169A (zh) 一种用于数据采集的激光轮廓扫描装置及数据采集方法
CN1316282C (zh) 收发离轴式卫星光通信跟瞄装置
CN114814884B (zh) 一种基于滤波片切换的拉曼测温激光雷达系统
US10680720B2 (en) Optical point source detection locating sensor
CN109975825A (zh) 装配于非旋转弹的单发多收区域扫描方式激光探测装置
CN111889894B (zh) 一种激光切割质量的检测方法及装置
CN109269923B (zh) 一种气炮加载实验样品回收及测速装置
CN104729458B (zh) 一种基于热光场聚束效应的新型测距仪
KR101513542B1 (ko) 광학계
CN215297679U (zh) 一种激光雷达压缩光程式同轴收发光学系统
CN115327791A (zh) 光学系统及具有此的激光雷达
CN113391323B (zh) 小开口级联同步扫描水下激光全周向探测方法
WO2022170535A1 (zh) 测距方法、测距装置、系统及计算机可读存储介质
CN113030912B (zh) 一种基于扫描振镜的激光雷达系统
CN212433402U (zh) 一种激光回波测距装置
CN207965134U (zh) 一种激光探测雷达的光学系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15748320

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901224

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901224

Country of ref document: EP

Kind code of ref document: A1