JP2005070840A - 三次元モデル作成装置、三次元モデル作成方法、及び三次元モデル作成プログラム - Google Patents

三次元モデル作成装置、三次元モデル作成方法、及び三次元モデル作成プログラム Download PDF

Info

Publication number
JP2005070840A
JP2005070840A JP2003208635A JP2003208635A JP2005070840A JP 2005070840 A JP2005070840 A JP 2005070840A JP 2003208635 A JP2003208635 A JP 2003208635A JP 2003208635 A JP2003208635 A JP 2003208635A JP 2005070840 A JP2005070840 A JP 2005070840A
Authority
JP
Japan
Prior art keywords
data
dimensional
model
points
dimensional model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003208635A
Other languages
English (en)
Inventor
Hisashi Kato
尚志 加藤
Tetsunori Hattori
鉄範 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2003208635A priority Critical patent/JP2005070840A/ja
Publication of JP2005070840A publication Critical patent/JP2005070840A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】移動体を利用して取得した対象物の三次元座標データに基づいて精度良く三次元モデルを作成することができる三次元モデル作成装置を提供する。
【解決手段】鉄道車両等の移動体に搭載されている三次元データ取得装置10の記憶部111に記憶された対象物の三次元点群データに基づいて三次元のポリゴンモデルデータを作成する三次元モデル作成装置20であって、取得した対象物の三次元点群データに基づき、移動体の進行方向に関連して複数のポリゴンを作成するとともに、作成した複数のポリゴンデータから三次元のポリゴンモデルデータを作成して、記憶部202に記憶するポリゴンモデル作成部201から構成されている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、鉄道車両、自動車等の移動体を使用して取得した対象物の三次元座標データに基づいて三次元モデルを作成する際に用いて好適な三次元モデル作成装置、三次元モデル作成方法、及び三次元モデル作成プログラムに関する。
【0002】
【従来の技術】
従来の三次元モデル作成装置には、自動車を走行させながら取得した対象物の三次元座標データに基づいて都市空間等の三次元モデルを自動的に作成できるようにしたものがある(例えば、特許文献1参照。)。この文献に記載されている装置では、自動車に回転式のレーザスキャナを搭載し、レーザスキャナによって対象物まで距離に応じた複数の点群データを収集する。そして点群データが示す各点の三次元座標データに基づいて三次元モデルが自動的に作成されるようになっている。
【0003】
また、飛行体に搭載したレーザスキャナを用いて取得した三次元空間情報から、三次元モデルを作成するための装置が提案されている(例えば、特許文献2参照。)。この文献に記載されている装置では、レーザスキャナで対象物の三次元点群データを計測するとともに、対象物の画像を写真撮影する。次に、レーザスキャナで計測した点群データを、空地、道路等の地形の点群データと、建造物、樹木等の地物の点群データとに分離する。そして、写真画像から対象物の輪郭ポリゴンを作成し、輪郭ポリゴンと各点群データから市街地の三次元モデルが作成されるようになっている。
【0004】
【特許文献1】
特開2002−31528号公報(第4頁、第5図)
【特許文献2】
特開2002−74323号公報(第4頁、第1図)
【0005】
【発明が解決しようとする課題】
上記従来の技術においては、三次元モデルを作成する際の基準となる三次元点群データを移動体を用いて取得している、そのため移動体の移動に伴う計測値のばらつきなどによって、作成された三次元モデルが進行方向に関連して凹凸を持つような場合があった。そのような誤差は、例えば特定の対象物に起因した誤差のように限られた範囲にとどまるものではなく、誤差の発生する範囲が大きくなるという傾向がある。したがって修正のための編集作業が膨大となりやすいといった課題もあった。
【0006】
本発明は、このような事情に鑑みてなされたもので、移動体を利用して取得した対象物の三次元座標データに基づいて精度良く三次元モデルを作成することができる三次元モデル作成装置、三次元モデル作成方法、及び三次元モデル作成プログラムを提供することを目的とする。より具体的には、レーザスキャナ等を利用して計測した対象物の三次元点群データから複数のポリゴンを作成することで対象物の立体モデルを作成する際の精度をより高くすることができる三次元モデル作成装置、三次元モデル作成方法、及び三次元モデル作成プログラムを提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、請求項1記載の発明は、移動体に搭載した距離測定手段を用いて取得した各対象物を複数の点で表す三次元点群データに基づいて、三次元モデルを作成する三次元モデル作成装置において、移動体の進行方向を基に三次元点群データにおける各点の結線データを作成することで複数のポリゴンを作成し、作成した複数のポリゴンから三次元モデルを作成することを特徴とする。
【0008】
請求項2記載の発明は、請求項1記載の発明において、移動体の進行方向および前記距離測定手段の距離測定方向を基に三次元点群データにおける各点の結線データを作成することで複数のポリゴンを作成することを特徴とする。
請求項3記載の発明は、請求項2記載の発明において、移動体の進行方向および前記距離測定手段の距離測定方向に基づく所定の配置条件を満たす場合に、三次元点群データにおける各点の結線データを作成することを特徴とする。
【0009】
請求項4記載の発明は、移動体に搭載した距離測定手段を用いて取得した各対象物を複数の点で表す三次元点群データに基づいて、三次元モデルを作成する三次元モデル作成方法において、移動体の進行方向を基に三次元点群データにおける各点の結線データを作成することで複数のポリゴンを作成し、作成した複数のポリゴンから三次元モデルを作成することを特徴とする。
【0010】
請求項5記載の発明は、移動体に搭載した距離測定手段を用いて取得した各対象物を複数の点で表す三次元点群データに基づいて、三次元モデルを作成するコンピュータを、移動体の進行方向を基に三次元点群データにおける各点の結線データを作成することで複数のポリゴンを作成し、作成した複数のポリゴンから三次元モデルを作成する手段として機能させることを特徴とする。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明の一実施の形態に係る三次元モデル処理システムについて説明する。図1は本発明の一実施の形態を含む三次元モデル処理システムの構成を示すシステム図である。なお、図1および他の図において、同一の構成には同一の符号を付けている。図1に示すシステムは、三次元データ取得装置10と、三次元モデル作成装置20と、三次元モデル演算装置30とから構成されている。
【0012】
三次元データ取得装置10は、鉄道車両等の移動体に搭載され、移動体を移動させながら、三次元空間情報を取得する装置である。移動体の移動地点周辺の各構造物に対応する三次元座標情報や画像情報が連続的に取得される。ここで、三次元座標情報は、構造物を複数の点によって表した場合の各点の三次元座標を示すものである。そして、本願においては、複数の点を示す三次元座標データを、三次元点群データと呼ぶことにする。
【0013】
三次元モデル作成装置20は、三次元データ取得装置10が取得した三次元空間情報に基づいて、三次元モデルを作成する装置である。三次元空間情報を構成する三次元点群データにおける各点間の接続関係(結線情報)を求めることで、ポリゴンモデルを作成する。三次元モデル作成装置20が作成した三次元モデルは、ポリゴンモデルデータとして出力される。三次元モデル作成装置20は、また、必要に応じて三次元データ取得装置10で取得した構造物の画像情報を利用することができる。例えば三次元モデルを作成する際に画像認識処理を利用して結線情報の誤りを修正するようにしたり、画像情報を用いてポリゴンモデルに対してピクチャマッピング、テクスチャマッピング等を行えるようになっている。
【0014】
三次元モデル演算装置30は、三次元モデル作成装置20で作成された三次元モデルを用いて、各種シミュレーション用の演算処理を行ったり、地理情報システム(GIS:Geographic Information System)用のデータ作成処理等の演算処理を行ったりする装置である。
【0015】
図1に示すように、三次元データ取得装置10は、それぞれが1または複数の装置から構成されている各部101〜111によって構成されている。この場合、各部101〜111は、図2に示すような鉄道車両1に搭載されている。レーザスキャナ部101は、図2の鉄道車両1の屋根上に搭載されている2台のレーザスキャナ101aおよび101bと、図示していない制御装置とから構成されている。各レーザスキャナ101aおよび101bは、例えばスキャン周波数(レーザ放射周期)20Hzで360度回転しながらレーザを放射するとともに、電柱3、架線3a、建物4、トンネル5等の構造物を対象物とする反射信号を受信する。すなわち、レーザスキャナ101aおよび101bはそれぞれ、レーザを回転させながら対象物に放射し、反射光を受信して対象物までの距離を測定する装置である。
【0016】
レーザスキャナ部101によって測定されたデータは、対象物までの角度情報と距離情報とからなる。そしてこれらの情報は、レーザスキャナデータとして測定時の時刻情報とともに記憶部106に記憶される。2台のレーザスキャナ101aおよび101bが測定したデータは、それぞれ独立したデータとして記憶される。記憶部106は不揮発性の半導体記憶装置、ハードディスク等の記憶装置から構成されている。
【0017】
INS部102は、慣性航法装置(Inertial Navigation System) から構成されている。INS部102は、例えばジャイロスコープで安定化した計測台の上で3方向の加速度を計測し、これを時間積分して3方向の変位を求めることで、鉄道車両1の位置変化を示す位置情報と、向きや傾きといった姿勢を示す姿勢情報を出力する。
【0018】
GPS部103は、全地球測位システム(Global Positioning System)であり、鉄道車両1の屋根上に取り付けられたアンテナ103aとその制御装置とから構成されている。GPS部103は、アンテナ103aを用いて複数のGPS用衛星6a、6b、…から送られてくる信号を受信することで、緯度、経度、高度等からなる位置情報を求めて出力する。このGPS部103は、携帯電話、FM放送等を用いて得た補正情報を利用するD−GPS(Differential GPS)とするこができる。
【0019】
車上子部104は、ATSシステム(自動列車停止装置システム)などで図2に示すように軌道2に沿って所定の位置に配置されている複数の地上子7との間で情報を送受信するための装置である。鉄道車両1に取り付けられたコイル104aと、制御装置とから構成されていて、各地上子7から受信した信号に基づいて走行位置情報を求めて出力する。これらのINS部102、GPS部103、および車上子部104から出力された位置情報や姿勢情報は、INSデータ、GPSデータ、および地上子データとして時刻情報とともに記憶部107に記憶される。
【0020】
ラインカメラ部105は、図2に示すようなラインカメラ105aを用いて構造物の画像を撮影し、画像データを出力する装置である。ラインカメラ105aは、鉄道車両1の側面方向で取り付けられていて、3個のラインセンサカメラを用いて矢印で示す進行方向に対して斜め前方、真横、斜め後方の各方向の画像を、周波数100Hzの周期で縦断方向に撮影する。その各撮影画像を連続させて配置することで、進行方向に連続した画像を得ることができる。各方向の画像は、障害物等で撮影できなかった方向の画像を相互に補完するために使用される。本実施の形態では、鉄道車両1のラインカメラ105aが取り付けられた面と反対側の側面にもラインカメラ105aと同一のラインカメラが取り付けられているものとする。ラインカメラ部105による撮影画像は、画像情報として、時刻情報とともに記憶部108に記憶される。
【0021】
データ同期部109は、コンピュータと周辺装置とから構成されていて、所定のプログラムを用いて処理を実行する。データ同期部109は、記憶部106に記憶されたレーザスキャナデータの各値と、記憶部107に記憶されたINSデータ、GPSデータ、および地上子データの各値とを時刻情報に基づいて対応付ける同期処理を行う。
【0022】
三次元座標値算出部110は、データ同期部109と同一または別のコンピュータと周辺装置とから構成されていて、所定のプログラムを用いて処理を実行する。三次元座標値算出部110は、データ同期部109による同期結果に用いて、レーザスキャナデータの各値の三次元座標値を算出する。レーザスキャナデータの各値は、レーザスキャナ101aまたは101bの設置位置を基準として各対象物に対応する複数の点を角度と距離の情報で示すものである。一方、INSデータ、GPSデータ、および地上子データは、地面を基準として鉄道車両1の移動位置や姿勢を示すものである。三次元座標値算出部110は、INSデータ、GPSデータ、および地上子データを用いて、レーザスキャナデータが示す各点の角度・距離情報を、地面、すなわち経度・緯度・高度を基準とする三次元座標値に変換する。そして、三次元座標値で示した各対象物の各点のデータを三次元点群データとして記憶部111に記憶する。
【0023】
なお、三次元座標値算出部110では、INSデータ、GPSデータ、および地上子データの各位置情報を次のような条件で利用している。まず取得間隔についてみると、INSデータは、所定の時間間隔で常に取得可能である。GPSデータは、通常、所定の時間間隔で取得可能ではあるが、図2のトンネル5を通過する際などはGPS衛星6a、6b、…からの信号が受信できない。つまり場合によっては取得不可能な時間帯が存在する。そして、地上子データは、図2の地上子7が設置されている地点でのみ取得可能である。一方、精度についてみると、地上子データは安定して精度が高く、GPSデータやINSデータは地上子データに比べて誤差が大きくなる場合がある。INSデータにはまた誤差が累積される特性がある。
【0024】
そこで、本実施の形態では、地上子データとGPSデータで補正しながらINSデータが示す位置および姿勢情報を利用することとしている。また、補正基準としてはGPSデータよりも地上子データを優先して利用することにしている。すなわち、同一時刻または接近した時間帯で、地上子データとGPSデータとの両者を取得した場合には、地上子データが示す位置情報の方を採用するようにしている。ただし、地上子データとGPSデータは必ずしも両者がなければならないものではない。どちらか一方でも用途によっては十分な位置情報精度が得られる場合がある。
【0025】
また、三次元座標値算出部110では、2台のレーザスキャナ101aおよび101bの出力を、単純にまとめて使用するようにしたり、例えばレーザスキャナ101aで取得できていない部分のデータをレーザスキャナ101bで取得したデータで補完するようにしたり、あるいは同一対象物について両者のデータの平均化したものを使用するようにしたりすることができる。この場合は、両者のデータをそのまままとめて使用することにする。
【0026】
ここで図3を参照して、図2の2台のレーザスキャナ101aおよび101bの配置について説明する。図3(a)は鉄道車両1の側面図、図3(b)は平面図である。レーザスキャナ101aは、鉄道車両1の屋根後部の中心付近(鉄道車両1の上部後方の幅方向の中心付近)に矢印で示す進行方向に対して水平方向(同一方向)に設置する。すなわち、レーザスキャナ101aは、そのレーザの計測断面(回転断面)101asが進行方向に直交した鉛直面となるように配置されている。一方、レーザスキャナ101bは、レーザスキャナ101aの上部で、側面図(図3(a))で水平方向から上方に斜めに傾けて、平面図(図3(b))でレーザスキャナ101aと同一方向に設置している。すなわち、レーザスキャナ101bは、そのレーザの計測断面101bsがレーザスキャナ101aの計測断面101asに対して進行方向に傾いた面となるように、配置されている。レーザスキャナ101bの傾斜角度としては例えば45度とする。
【0027】
このような配置によれば、レーザスキャナ101aおよび101bが鉄道車両1の車体から突出する部分は、鉄道車両1の上部方向のみとなる。ところで鉄道車両では、車両限界と呼ばれる突出部の余裕寸法に関する制限がある。車両限界は、上部や前後の端部よりも、側面の方が厳しい。例えば側面に垂直に、あるいはある角度をつけてレーザスキャナを設置しようとすると、レーザスキャナが側面から突出する部分が多くなると考えられる。しかし、このような設置は車両限界から許容されないことが多い。本実施の形態では、このような鉄道車両1おける車両限界を考慮して、かつできるだけ少ないレーザスキャナの台数で、精度良い計測が行えるように上記の配置を採用した。
【0028】
上記配置において、レーザスキャナ101aの計測断面101asは進行方向に直交する鉛直面である。したがって、軌道2に直交する方向で進むレーザによって軌道2の沿線構造物等の対象物に対する計測が行われることになる。鉄道では沿線の壁、建物等の構造物が軌道2に沿って鉛直に設けられていることが多い。よって、進行方向に垂直かつ鉛直な計測断面101asを用いることで、より多くの対象物からの反射光が受信しやすくなる。また、架線3a、トンネル5の上部5a等、鉄道車両1の上部にも多くの対象物がある。これらの上部対象物からの反射光も受信しやすい。ただし、レーザスキャナ101aではトンネル5の端部垂直面5bのような進行方向に鉛直な面から精度良いデータを安定して得ることは難しい。
【0029】
一方、レーザスキャナ101bの計測断面101bsは鉛直から所定の角度を有する面である。したがって、トンネル5の端部垂直面5bのように進行方向に直交する面でも、所定の角度でレーザが照射されることになる。よって、そのような面でも安定した反射光を得ることが可能となる。また、レーザスキャナ101bでは、上部対象物からも安定した反射光を得ることが可能となる。なお、これらのレーザスキャナ101aおよび101bと異なり、例えば進行方向に水平な計測断面を持つレーザスキャナでは上部対象物にレーザを反射させて精度良いデータを安定して得ることは難しい。
【0030】
次に図4を参照してレーザスキャナ101aの計測順序と方向について説明する。図4はレーザスキャナ101aを回転軸方向から示す正面図(図2で進行方向後ろから進行方向を見た図)である。本実施の形態においてレーザスキャナ101aは、光学系部分の一回転で1つの断面形状を計測するタイプのものである。計測は回転角度で0.5度間隔で行われる。ただし、この場合、全周360度のうち60度分が機器内の調整に利用され計測データが得られない。例えば、計測不可方向を真下に設定して、鉄道車両1から計測した例では、列車が走行した真下の路面形状データに欠損が生じることになる。本実施の形態では0.5度間隔で601点のデータが計測される。
【0031】
次に図5を参照してレーザスキャナ101aの計測方向の変化について説明する。レーザスキャナ101aは回転して2次元断面を計測する。したがって、進行方向に垂直な計測断面101asを計測しながら走行するような場合、計測方向は鉄道車両1の走行に伴って図5のように螺旋状に変化する。図5では、同一回転の計測断面を第1〜第3計測断面としている。
【0032】
図5に示すように、計測点の密度は、進行方向(間隔Aの方向)と計測断面方向(間隔Bの方向)とで異なる。スキャン周波数が一定のレーザスキャナ101aでは進行方向の点群間隔Aは車両の走行速度に依存し、車両速度が速いほど間隔が粗く、遅いほど間隔が密になる。進行方向における単位時間当たりの計測点数はスキャン周波数に依存し、本実施の形態の20Hzの場合では、進行方向に1秒間で20点が計測される。例えば時速80kmの場合は進行方向の点群間隔は約1.1mとなり、時速20kmの場合は0.28mとなる。
【0033】
一方、レーザスキャナの計測断面方向の点群間隔Bは、対象物までの距離によって変化する。ここで点群間隔Bは、対象物の反射面上における反射点間の間隔である。本実施の形態のレーザスキャナ101aの計測角度間隔は、計測断面方向で0.5度となっている。計測する対象物までの距離が遠いほど計測点の間隔は広がり、対象物が近くにあるほど計測点間隔は密になる。例えばレーザスキャナ101aから10m以内にある線路付近の施設などは概ね10cm以下の間隔で、レーザスキャナ101aから20m〜50mにある線路周辺の建築物、法面などは数十cmの間隔で点群が取得される。
【0034】
図6に、図2に示すようなトンネル5の出入り口部を計測した場合の三次元点群データの一例を示す。レーザスキャナ101aから対象物までの距離が短くなるため、計測断面方向に密に点が並んだ形状で表現される。その結果、点群によるトンネルの三次元表現はその形状が把握しやすくなっている。
【0035】
次に再び図1を参照して、三次元モデル作成装置20の構成について説明する。三次元モデル作成装置20は、ポリゴンモデル作成部201と、ポリゴンデータ記憶用の記憶部202とから構成されている。ポリゴンモデル作成部201は、コンピュータと周辺装置とから構成されていて、所定のプログラムを用いて処理を実行する。ポリゴンモデル作成部201は、記憶部111に記憶された図6に示すような三次元点群データに基づいてポリゴンモデルを作成する。ポリゴンモデル作成部201が作成したポリゴンモデルは、ポリゴンモデルデータとして記憶部202に記憶される。
【0036】
ここで図7〜図12を参照して、ポリゴンモデル作成部201によるポリゴンモデル作成手順について説明する。点群からポリゴンを作成する方法としては、隣り合った点どうしを結んで三角形を作成する方法がある。そのような方法は、汎用のモデリングのソフトウェアによっても実現することができる。しかしながら、ポリゴンモデル作成部201が用いる点群データは、実際に鉄道車両1を走行させて計測したデータである。そのようなデータには、例えば図6に示すように、誤差成分を含んでいることがある。このようなデータを汎用のソフトウェアで処理した場合、レーザの反射点の取得精度によって、実際には存在しない凹凸が発生してしまうことがある。
【0037】
そこで、本実施の形態では、汎用のモデリングのソフトウェアには無い、進行方向という概念を導入することで、誤差成分にできるだけ影響されないポリゴンモデルの作成を可能とした。なお、汎用のモデリングソフトウェアでは、一般に、方位(東経緯度)を基準にポリゴンを作成している。
【0038】
ポリゴンモデル作成部201では、凹凸発生を防止するために、進行方向に沿ってポリゴンを作成するようにしている。対象物のデータは、進行方向やレーザスキャナの回転方向に対して連続性等の一定の関係を有している場合が多いと考えられる。すなわち、進行方向や回転方向で隣り合う計測点のデータ(対象物までの距離)の差は、比較的小さいと予想される。そこで、ポリゴンを作成する際に、進行方向と回転方向(すなわちデータ取得周期)を考慮した上でポリゴンの頂点座標の候補を選択する。さらに頂点間のデータの間隔に一定の制限を設ける。これによって、誤った点間を結線して実際と異なるポリゴンを作成してしまう問題をできるだけ回避することができる。
【0039】
図7は、図5に示す各計測断面のうちの第n計測断面と、第(n+1)計測断面における計測点の間隔を示す模式図である(ここでnは自然数)。レーザスキャナ101aでは、同一距離にある反射面からは同一間隔で反射信号が計測される。この関係は、進行方向またはレーザスキャナの回転方向の隣り合う各2点の計4点の測定点において最も深くなると考えられる。図7の例では、第n計測断面の1点目と2点目、第(n+1)計測断面の1点目と2点目が、最も関係が深い4点であると考えられる。このような1周期毎の点をペアとして、周囲の点と組み合わせて、例えば三角形のポリゴンを形成する。ただし点同士の距離が離れている場合には同一の面であるとは限らないため、判定条件としてレーザスキャナ回転方向(縦方向)では例えばLa=0.5m、列車走行方向(進行方向)には例えばLb=1.8m以下の条件でのみ結線を行うこととする制限を加えることにした。
【0040】
なお、回転方向で隣り合う2点と、進行方向で隣り合う2点(例えば、第n計測断面の1点目と第(n+1)計測断面の1点目)の計4点のデータについては、4点のデータが常に存在するとは限らない。例えば反射光を受信できなかった場合には計測データが存在しない計測点が発生することになる。三角形のポリゴンを形成するには、4点のうち最低3点のデータが必要である。4点のうち3点未満の計測点しか存在しないのは、図8に示す4つのケースである。図8は横方向を進行方向、縦方向を回転方向として、図7に示すような4点の計測点の組み合わせを示している。ここで黒丸はデータが存在する場合、白丸が存在しない場合である。ケース1および2が2点、ケース3が1点、そしてケース4が0点のデータが存在する場合である。
【0041】
一方、4点のうち4点すべてのデータが存在する場合には2個のポリゴンを作成することができる。また、3点のデータが存在する場合には1個のポリゴンを作成することができる。ただし、3点のデータが存在する場合には生成されるポリゴンの三角形の向きが異なることになる。図9に3点以上のデータが存在する場合の5つのケースを示す。図9は、図8と同様に横方向を進行方向、縦方向を回転方向として、図7に示すような4点の計測点の組み合わせを示している。黒丸がデータが存在する場合、白丸が存在しない場合である。ケース1が4点のデータが存在して2個の三角形が生成される場合、ケース2〜5が3点のデータが存在して1個の三角形が生成される場合である。
【0042】
一方、軌道2の沿線構造物には、例えば架線、樹木、電柱などがある。例えば電柱の場合には、図10に示すように、進行方向と回転方向でデータを比較することでその特徴を検知できることがある。本実施の形態では、一例として、電柱の場合について、レーザスキャナ101aの回転方向で連続してデータが存在し、かつ、進行方向の隣り合う計測断面でデータが存在しないような場合に、それが電柱であるとして、該当する計測点を上記のポリゴン作成対象から除外するようにした。そして、電柱であると判定したデータには、レーザスキャナでは電柱径が測定できないので、一定半径を考慮して仮想的にポリゴンを生成するようにした。
【0043】
図11に、ポリゴンモデル作成部201における上記の進行方向を考慮したポリゴン生成処理のフローチャートを示す。図1のポリゴンモデル作成部201は、まず、記憶部11から三次元点群データを読み込む(ステップS11)。ここで、レーザスキャナ101aおよび101bのいずれにおいてもレーザが受信できなかった点を「データが存在しない点データ」(図8の白丸に相当)として三次元点群データに追加する(ステップS12)。次に三次元点群データから電柱の判定条件を満足する点データを抽出する(ステップS13)。そして、該当する点データの属性を電柱に設定する(ステップS14)。
【0044】
次に、三次元点群データから回転に伴う連続する2点(レーザスキャナ101aの回転方向で隣り合う2点)および1回転した対応する2点(進行方向で隣り合う2点)の計4点の点データを抽出する(ステップS14)。尚、この点データには、レーザスキャナ101aにより取得されたデータ、レーザスキャナ1010bにより取得されたデータ、ステップS12において追加されたデータが含まれる。そして、各点の属性が電柱か否かを確認する(ステップS15)。電柱でなかった場合は、3点以上の点データが存在するか否かを確認する(ステップS16)。そして、3点以上のデータが存在した場合には、進行方向およびレーザスキャナ101aの回転方向で点間距離条件を満足するか否かを確認する(ステップS17)。そして、満足した場合には、各点を接続する結線データを作成する(ステップS18)。これらを、すべての点群データを処理するまで継続する(ステップS19)。一方、属性が電柱の場合(ステップS15で「yes」)や、データが存在しない場合(ステップS16で「no」)、点間距離条件を満足しない場合(ステップS17で「no」)には、結線データは作成されない。
【0045】
図12に走行方向等を考慮して作成されたポリゴンの一例を示す。図12は、図6に示す三次元点群データにおいて、3つの計測断面101as1〜101as3に関する部分で三角形のポリゴンを作成した場合の一例を示している。例えば、ポリゴン202a〜202c等のポリゴンが、各計測断面101as1〜101as3に関連して作成される。
【0046】
ポリゴンモデル作成部201は、走行方向等を考慮してポリゴンを作成した後、作成した複数のポリゴンデータから三次元モデルを表すポリゴンモデルデータを作成する。その際、ポリゴンが作成されていない領域については、走行方向等を考慮して作成されたポリゴンを基準として補間処理等によって新たなポリゴンを作成することができる。また、図1の記憶部108に記憶されている画像データを利用して、結線情報の誤りを修正するようにしたり、ピクチャマッピング、テクスチャマッピング等を行うようにしたりすることができる。
【0047】
図13および図14にポリゴンモデルデータの作成例を示す。図13および図14は、同一の三次元点群データからトンネル内部のポリゴンモデルを作成した場合を示した図である。図13は、走行方向等を考慮して作成されたポリゴンを基準とした場合であり、図14は、走行方向等を考慮しないで作成されたポリゴンを用いたものである。図13では壁面51a、52a、天井53aが進行方向に対して直線状に延びているのに対して、図14では壁面51b、52b、天井53bに実際には存在しない凹凸が多く現れている。また、図13では退避抗54a等の形状も明確に表現されている。
【0048】
次に図1の三次元モデル演算装置30について説明する。本実施の形態では、三次元モデル演算装置30が、電波伝搬シミュレーション部301によって構成されているのものとする。電波伝搬シミュレーション部301は、コンピュータとその周辺装置とから構成され、所定のプログラムを用いてシミュレーション処理を実行する。電波伝搬シミュレーション部301は、記憶部202に記憶されているポリゴンモデルデータを用い、電波伝搬シミュレーションを行う。電波伝搬シミュレーション部301は、受信レベルのシミュレーション手法(受信電界強度の理論的算定手法)として、従来からある無線に関するレイトレーシング法を採用する。本手法では受信点に到達する電波の伝搬路を幾何学的に算定することで電界強度を算定する。図15にそのイメージを、図16に受信レベルの計算結果の一例と実測値(実験結果)とを示す。図15に示すように、ポリゴンモデルにおいてトンネル5内部で受信点41a、41b、…を移動させ、各受信点41a、41b、…で受信レベルを計算する。図16に示すように、実測値D1のトンネル5内のデータ範囲T1と、同範囲の計算値D2の傾向には共通性が確認され、また、受信レベルは精度良く求めることができた。
【0049】
このように、本実施の形態では、電波伝搬シミュレーション部301では、三次元モデル作成装置20によって作成されたポリゴンモデルデータを無線回線設計の伝搬シミュレーションに応用することで、構造物の遮蔽や反射等を考慮した厳密な伝搬シミュレーションが可能となった。これによって、基地局の変更、増設等の影響をシミュレーションで確認できるので、設計品質の向上と測定の簡素化が期待できる。
【0050】
なお、本発明の実施の形態は、上記のものに限らず、例えば各部を統合したり、各部を通信回線等を介して分散配置したりする変更が適宜可能である。また、上記実施の形態においてコンピュータで実行されるプログラムは、コンピュータ読み取り可能な記録媒体や通信回線を介して頒布することが可能である。
【0051】
【発明の効果】
本発明によれば、移動体を使用して取得した対象物の三次元座標データに基づいて三次元モデルを作成する際に、移動体の進行方向に関連して複数のポリゴンを作成するようにしたので、従来に比べ精度良く三次元モデルを作成することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る三次元モデル処理システムの構成を示すシステム図。
【図2】図1の三次元データ取得装置とその周辺構造物とを示す模式図。
【図3】図2のレーザスキャナの配置を示す側面図(a)と平面図(b)。
【図4】図2のレーザスキャナの計測方向を示す正面図。
【図5】図2のレーザスキャナの計測断面の変化を示す模式図。
【図6】図1の記憶部に記憶される三次元点群データの一例を説明するための透視図。
【図7】図4のレーザスキャナによる計測データを説明するための模式図。
【図8】図7の4点の計測データの状態を説明するための説明図。
【図9】図7の4点の計測データの他の状態を説明するための説明図。
【図10】図4のレーザスキャナによる計測データの特定の条件例を説明するための模式図。
【図11】図1のポリゴンモデル作成部における処理の一例を示すフローチャート。
【図12】図1のポリゴンモデル作成部におけるポリゴンの作成例の一例を示す透視図。
【図13】図1のポリゴンモデル作成部におけるポリゴンモデルデータの作成例の一例を示す透視図。
【図14】従来例によるポリゴンモデルデータの作成例の一例を示す透視図。
【図15】図1の電波伝搬シミュレーション部によるシミュレーション例を説明するための透視図。
【図16】図1の電波伝搬シミュレーション部によるシミュレーション結果を説明するための受信レベルの距離特性図。
【符号の説明】
10…三次元データ取得装置、20…三次元モデル作成装置、30…三次元モデル演算装置、101…レーザスキャナ部、101a,101b…レーザスキャナ、102…INS部、103…GPS部、104…車上子部、105…ラインカメラ部、106…レーザスキャナデータ用の記憶部、107…INS/GPS/地上子データ用記憶部、108…画像データ用記憶部、109…データ同期部、110…三次元座標値算出部、111…三次元点群データ用記憶部、201…ポリゴンモデル作成部、202…ポリゴンモデルデータ用の記憶部、301…電波伝搬シミュレーション部、7…地上子

Claims (5)

  1. 移動体に搭載した距離測定手段を用いて取得した各対象物を複数の点で表す三次元点群データに基づいて、三次元モデルを作成する三次元モデル作成装置において、
    移動体の進行方向を基に三次元点群データにおける各点の結線データを作成することで複数のポリゴンを作成し、作成した複数のポリゴンから三次元モデルを作成する
    ことを特徴とする三次元モデル作成装置。
  2. 移動体の進行方向および前記距離測定手段の距離測定方向を基に三次元点群データにおける各点の結線データを作成することで複数のポリゴンを作成する
    ことを特徴とする請求項1記載の三次元モデル作成装置。
  3. 移動体の進行方向および前記距離測定手段の距離測定方向に基づく所定の配置条件を満たす場合に、三次元点群データにおける各点の結線データを作成する
    ことを特徴とする請求項2記載の三次元モデル作成装置。
  4. 移動体に搭載した距離測定手段を用いて取得した各対象物を複数の点で表す三次元点群データに基づいて、三次元モデルを作成する三次元モデル作成方法において、
    移動体の進行方向を基に三次元点群データにおける各点の結線データを作成することで複数のポリゴンを作成し、作成した複数のポリゴンから三次元モデルを作成する
    ことを特徴とする三次元モデル作成方法。
  5. 移動体に搭載した距離測定手段を用いて取得した各対象物を複数の点で表す三次元点群データに基づいて、三次元モデルを作成するコンピュータを、
    移動体の進行方向を基に三次元点群データにおける各点の結線データを作成することで複数のポリゴンを作成し、作成した複数のポリゴンから三次元モデルを作成する手段
    として機能させることを特徴とする三次元モデル作成プログラム。
JP2003208635A 2003-08-25 2003-08-25 三次元モデル作成装置、三次元モデル作成方法、及び三次元モデル作成プログラム Withdrawn JP2005070840A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003208635A JP2005070840A (ja) 2003-08-25 2003-08-25 三次元モデル作成装置、三次元モデル作成方法、及び三次元モデル作成プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003208635A JP2005070840A (ja) 2003-08-25 2003-08-25 三次元モデル作成装置、三次元モデル作成方法、及び三次元モデル作成プログラム

Publications (1)

Publication Number Publication Date
JP2005070840A true JP2005070840A (ja) 2005-03-17

Family

ID=34401836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003208635A Withdrawn JP2005070840A (ja) 2003-08-25 2003-08-25 三次元モデル作成装置、三次元モデル作成方法、及び三次元モデル作成プログラム

Country Status (1)

Country Link
JP (1) JP2005070840A (ja)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269046A (ja) * 2006-03-30 2007-10-18 Nec Corp 地上子位置ずれ計測方法、装置、およびプログラム
JP2010249709A (ja) * 2009-04-17 2010-11-04 Mitsubishi Electric Corp 断面計測装置、断面計測方法および断面計測プログラム
JP2012002783A (ja) * 2010-06-21 2012-01-05 Univ Of Miyazaki 内面形状測定装置、及び内面形状測定方法
JP2012163346A (ja) * 2011-02-03 2012-08-30 Univ Of Miyazaki 表面形状計測装置、及び表面形状計測方法
WO2012172670A1 (ja) 2011-06-16 2012-12-20 株式会社日立製作所 電波伝搬環境計測装置、無線ネットワーク構築システムおよび電波伝搬環計測方法
WO2014024812A1 (ja) * 2012-08-06 2014-02-13 株式会社 明電舎 レーザ測定による支持物検知装置
JP2015014490A (ja) * 2013-07-04 2015-01-22 株式会社明電舎 架線測定装置及び方法
JP2015090345A (ja) * 2013-11-07 2015-05-11 株式会社環境総合テクノス 3次元路面下診断システムおよび3次元路面下診断方法
DE102014212233A1 (de) * 2014-06-25 2015-12-31 Bombardier Transportation Gmbh Vorrichtung und Verfahren zur Erfassung einer Fahrzeugumgebung eines Schienenfahrzeugs sowie Schienenfahrzeug
JP2016057079A (ja) * 2014-09-05 2016-04-21 三菱電機株式会社 モデル化データ算出方法及びモデル化データ算出装置
JP2016079009A (ja) * 2014-10-21 2016-05-16 株式会社日立ビルシステム 据付図作成装置、据付図作成方法及び据付図作成プログラム
WO2017103999A1 (ja) * 2015-12-15 2017-06-22 三菱電機株式会社 トロリ線計測装置およびトロリ線計測方法
JP6177483B1 (ja) * 2016-11-14 2017-08-09 三菱電機株式会社 トロリ線表示装置、トロリ線表示システムおよびトロリ線表示データ作成方法
JP2017156179A (ja) * 2016-02-29 2017-09-07 日本電信電話株式会社 設備状態検出方法および装置の設置方法
KR101784584B1 (ko) 2016-01-19 2017-10-12 인하대학교 산학협력단 레이저 회전을 이용하여 3차원 물체를 판별하는 장치 및 방법
JP2018059770A (ja) * 2016-10-04 2018-04-12 公益財団法人鉄道総合技術研究所 建築限界離れ測定装置及び建築限界判定装置
JP2018105804A (ja) * 2016-12-28 2018-07-05 首都高Etcメンテナンス株式会社 計測情報取得方法および電界強度測定用作業車
JP2018146509A (ja) * 2017-03-08 2018-09-20 株式会社明電舎 サードレール測定方法及び装置
JPWO2018155590A1 (ja) * 2017-02-24 2019-12-12 国立研究開発法人理化学研究所 写真画像に映ったトンネル内の壁面の位置を同定する同定装置、同定方法、ならびに、プログラム
JP2020020750A (ja) * 2018-08-03 2020-02-06 株式会社Nttドコモ 電波伝搬推定装置および電波伝搬推定方法
WO2020225886A1 (ja) * 2019-05-08 2020-11-12 日本電信電話株式会社 点群解析装置、方法、及びプログラム
USRE48491E1 (en) 2006-07-13 2021-03-30 Velodyne Lidar Usa, Inc. High definition lidar system
IT201900018290A1 (it) * 2019-10-09 2021-04-09 Ets S R L Sistema di rilevamento per rilevare difetti lungo una struttura
US10983218B2 (en) 2016-06-01 2021-04-20 Velodyne Lidar Usa, Inc. Multiple pixel scanning LIDAR
JP2021071288A (ja) * 2019-10-29 2021-05-06 大林道路株式会社 三次元計測システム
US11073617B2 (en) 2016-03-19 2021-07-27 Velodyne Lidar Usa, Inc. Integrated illumination and detection for LIDAR based 3-D imaging
US11082010B2 (en) 2018-11-06 2021-08-03 Velodyne Lidar Usa, Inc. Systems and methods for TIA base current detection and compensation
US11137480B2 (en) 2016-01-31 2021-10-05 Velodyne Lidar Usa, Inc. Multiple pulse, LIDAR based 3-D imaging
WO2022024177A1 (ja) * 2020-07-27 2022-02-03 日本電信電話株式会社 位置測定方法及び位置測定装置
US11703569B2 (en) 2017-05-08 2023-07-18 Velodyne Lidar Usa, Inc. LIDAR data acquisition and control
US11796648B2 (en) 2018-09-18 2023-10-24 Velodyne Lidar Usa, Inc. Multi-channel lidar illumination driver
US11808891B2 (en) 2017-03-31 2023-11-07 Velodyne Lidar Usa, Inc. Integrated LIDAR illumination power control
US11885958B2 (en) 2019-01-07 2024-01-30 Velodyne Lidar Usa, Inc. Systems and methods for a dual axis resonant scanning mirror
WO2024063078A1 (ja) * 2022-09-23 2024-03-28 愛知製鋼株式会社 3次元地図データの生成方法及び生成システム

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269046A (ja) * 2006-03-30 2007-10-18 Nec Corp 地上子位置ずれ計測方法、装置、およびプログラム
USRE48491E1 (en) 2006-07-13 2021-03-30 Velodyne Lidar Usa, Inc. High definition lidar system
USRE48490E1 (en) 2006-07-13 2021-03-30 Velodyne Lidar Usa, Inc. High definition LiDAR system
USRE48688E1 (en) 2006-07-13 2021-08-17 Velodyne Lidar Usa, Inc. High definition LiDAR system
USRE48666E1 (en) 2006-07-13 2021-08-03 Velodyne Lidar Usa, Inc. High definition LiDAR system
USRE48504E1 (en) 2006-07-13 2021-04-06 Velodyne Lidar Usa, Inc. High definition LiDAR system
USRE48503E1 (en) 2006-07-13 2021-04-06 Velodyne Lidar Usa, Inc. High definition LiDAR system
JP2010249709A (ja) * 2009-04-17 2010-11-04 Mitsubishi Electric Corp 断面計測装置、断面計測方法および断面計測プログラム
JP2012002783A (ja) * 2010-06-21 2012-01-05 Univ Of Miyazaki 内面形状測定装置、及び内面形状測定方法
JP2012163346A (ja) * 2011-02-03 2012-08-30 Univ Of Miyazaki 表面形状計測装置、及び表面形状計測方法
WO2012172670A1 (ja) 2011-06-16 2012-12-20 株式会社日立製作所 電波伝搬環境計測装置、無線ネットワーク構築システムおよび電波伝搬環計測方法
US9883407B2 (en) 2011-06-16 2018-01-30 Hitachi, Ltd. Radio wave propagation environment measuring apparatus, radio network construction system, and method for measuring radio wave propagation environment
WO2014024812A1 (ja) * 2012-08-06 2014-02-13 株式会社 明電舎 レーザ測定による支持物検知装置
JPWO2014024812A1 (ja) * 2012-08-06 2016-07-25 株式会社明電舎 レーザ測定による支持物検知装置
JP5796684B2 (ja) * 2012-08-06 2015-10-21 株式会社明電舎 レーザ測定による支持物検知装置
CN104541124A (zh) * 2012-08-06 2015-04-22 株式会社明电舍 利用激光测定的支撑物探测装置
JP2015014490A (ja) * 2013-07-04 2015-01-22 株式会社明電舎 架線測定装置及び方法
JP2015090345A (ja) * 2013-11-07 2015-05-11 株式会社環境総合テクノス 3次元路面下診断システムおよび3次元路面下診断方法
DE102014212233A1 (de) * 2014-06-25 2015-12-31 Bombardier Transportation Gmbh Vorrichtung und Verfahren zur Erfassung einer Fahrzeugumgebung eines Schienenfahrzeugs sowie Schienenfahrzeug
JP2016057079A (ja) * 2014-09-05 2016-04-21 三菱電機株式会社 モデル化データ算出方法及びモデル化データ算出装置
JP2016079009A (ja) * 2014-10-21 2016-05-16 株式会社日立ビルシステム 据付図作成装置、据付図作成方法及び据付図作成プログラム
CN108431547A (zh) * 2015-12-15 2018-08-21 三菱电机株式会社 滑触线测量装置及滑触线测量方法
JP6223601B1 (ja) * 2015-12-15 2017-11-01 三菱電機株式会社 トロリ線計測装置およびトロリ線計測方法
US10712144B2 (en) 2015-12-15 2020-07-14 Mitsubishi Electric Corporation Trolley-wire measurement device and trolley-wire measurement method
WO2017103999A1 (ja) * 2015-12-15 2017-06-22 三菱電機株式会社 トロリ線計測装置およびトロリ線計測方法
KR101784584B1 (ko) 2016-01-19 2017-10-12 인하대학교 산학협력단 레이저 회전을 이용하여 3차원 물체를 판별하는 장치 및 방법
US11550036B2 (en) 2016-01-31 2023-01-10 Velodyne Lidar Usa, Inc. Multiple pulse, LIDAR based 3-D imaging
US11137480B2 (en) 2016-01-31 2021-10-05 Velodyne Lidar Usa, Inc. Multiple pulse, LIDAR based 3-D imaging
US11698443B2 (en) 2016-01-31 2023-07-11 Velodyne Lidar Usa, Inc. Multiple pulse, lidar based 3-D imaging
US11822012B2 (en) 2016-01-31 2023-11-21 Velodyne Lidar Usa, Inc. Multiple pulse, LIDAR based 3-D imaging
JP2017156179A (ja) * 2016-02-29 2017-09-07 日本電信電話株式会社 設備状態検出方法および装置の設置方法
US11073617B2 (en) 2016-03-19 2021-07-27 Velodyne Lidar Usa, Inc. Integrated illumination and detection for LIDAR based 3-D imaging
US11550056B2 (en) 2016-06-01 2023-01-10 Velodyne Lidar Usa, Inc. Multiple pixel scanning lidar
US11874377B2 (en) 2016-06-01 2024-01-16 Velodyne Lidar Usa, Inc. Multiple pixel scanning LIDAR
US10983218B2 (en) 2016-06-01 2021-04-20 Velodyne Lidar Usa, Inc. Multiple pixel scanning LIDAR
US11808854B2 (en) 2016-06-01 2023-11-07 Velodyne Lidar Usa, Inc. Multiple pixel scanning LIDAR
US11561305B2 (en) 2016-06-01 2023-01-24 Velodyne Lidar Usa, Inc. Multiple pixel scanning LIDAR
JP2018059770A (ja) * 2016-10-04 2018-04-12 公益財団法人鉄道総合技術研究所 建築限界離れ測定装置及び建築限界判定装置
JP6177483B1 (ja) * 2016-11-14 2017-08-09 三菱電機株式会社 トロリ線表示装置、トロリ線表示システムおよびトロリ線表示データ作成方法
WO2018087931A1 (ja) * 2016-11-14 2018-05-17 三菱電機株式会社 トロリ線表示装置、トロリ線表示システムおよびトロリ線表示データ作成方法
JP2018105804A (ja) * 2016-12-28 2018-07-05 首都高Etcメンテナンス株式会社 計測情報取得方法および電界強度測定用作業車
WO2018123669A1 (ja) * 2016-12-28 2018-07-05 首都高Etcメンテナンス株式会社 計測情報取得方法および電界強度測定用作業車
JPWO2018155590A1 (ja) * 2017-02-24 2019-12-12 国立研究開発法人理化学研究所 写真画像に映ったトンネル内の壁面の位置を同定する同定装置、同定方法、ならびに、プログラム
JP2018146509A (ja) * 2017-03-08 2018-09-20 株式会社明電舎 サードレール測定方法及び装置
US11808891B2 (en) 2017-03-31 2023-11-07 Velodyne Lidar Usa, Inc. Integrated LIDAR illumination power control
US11703569B2 (en) 2017-05-08 2023-07-18 Velodyne Lidar Usa, Inc. LIDAR data acquisition and control
JP2020020750A (ja) * 2018-08-03 2020-02-06 株式会社Nttドコモ 電波伝搬推定装置および電波伝搬推定方法
JP7100526B2 (ja) 2018-08-03 2022-07-13 株式会社Nttドコモ 電波伝搬推定装置および電波伝搬推定方法
US11796648B2 (en) 2018-09-18 2023-10-24 Velodyne Lidar Usa, Inc. Multi-channel lidar illumination driver
US11082010B2 (en) 2018-11-06 2021-08-03 Velodyne Lidar Usa, Inc. Systems and methods for TIA base current detection and compensation
US11885958B2 (en) 2019-01-07 2024-01-30 Velodyne Lidar Usa, Inc. Systems and methods for a dual axis resonant scanning mirror
JP7235104B2 (ja) 2019-05-08 2023-03-08 日本電信電話株式会社 点群解析装置、方法、及びプログラム
JPWO2020225886A1 (ja) * 2019-05-08 2020-11-12
WO2020225886A1 (ja) * 2019-05-08 2020-11-12 日本電信電話株式会社 点群解析装置、方法、及びプログラム
IT201900018290A1 (it) * 2019-10-09 2021-04-09 Ets S R L Sistema di rilevamento per rilevare difetti lungo una struttura
JP7219201B2 (ja) 2019-10-29 2023-02-07 大林道路株式会社 三次元計測システム
JP2021071288A (ja) * 2019-10-29 2021-05-06 大林道路株式会社 三次元計測システム
WO2022024177A1 (ja) * 2020-07-27 2022-02-03 日本電信電話株式会社 位置測定方法及び位置測定装置
JP7453584B2 (ja) 2020-07-27 2024-03-21 日本電信電話株式会社 位置測定方法及び位置測定装置
WO2024063078A1 (ja) * 2022-09-23 2024-03-28 愛知製鋼株式会社 3次元地図データの生成方法及び生成システム

Similar Documents

Publication Publication Date Title
JP2005070840A (ja) 三次元モデル作成装置、三次元モデル作成方法、及び三次元モデル作成プログラム
JP2005069700A (ja) 三次元データ取得装置
JP7398506B2 (ja) ローカライゼーション基準データを生成及び使用する方法及びシステム
CN106327573B (zh) 一种针对城市建筑的实景三维建模方法
US10240934B2 (en) Method and system for determining a position relative to a digital map
JP2020500290A (ja) 位置特定基準データを生成及び使用する方法及びシステム
EP2588882B1 (en) Method for producing a digital photo wherein at least some of the pixels comprise position information, and such a digital photo
CN101681525A (zh) 产生多视点全景图的方法及设备
JP4255777B2 (ja) 電波伝搬シミュレーション装置、及び電波伝搬シミュレーション方法
JP2002511614A (ja) 物体位置の追跡・検知方法
JP5762131B2 (ja) キャリブレーション装置、キャリブレーション装置のキャリブレーション方法およびキャリブレーションプログラム
RU2591875C1 (ru) Способ построения карты экзогенных геологических процессов местности вдоль трассы магистрального нефтепровода
JP5339953B2 (ja) 三次元地図補正装置及び三次元地図補正プログラム
Alamús et al. On the accuracy and performance of the GEOMÒBIL System
Haala et al. Sensor fusion for airborne 3D data capture
TW201024665A (en) Method of generating a geodetic reference database product
JP3704276B2 (ja) 電波到達範囲評価装置
Dillane Post-mission misalignment angle calibration for airborne laser scanners

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107