WO2021088647A1 - 多脉冲激光发射电路、激光雷达以及发射激光束的方法 - Google Patents

多脉冲激光发射电路、激光雷达以及发射激光束的方法 Download PDF

Info

Publication number
WO2021088647A1
WO2021088647A1 PCT/CN2020/122662 CN2020122662W WO2021088647A1 WO 2021088647 A1 WO2021088647 A1 WO 2021088647A1 CN 2020122662 W CN2020122662 W CN 2020122662W WO 2021088647 A1 WO2021088647 A1 WO 2021088647A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
laser
lasers
pulse
emitting circuit
Prior art date
Application number
PCT/CN2020/122662
Other languages
English (en)
French (fr)
Inventor
费凡
向少卿
Original Assignee
上海禾赛科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海禾赛科技股份有限公司 filed Critical 上海禾赛科技股份有限公司
Publication of WO2021088647A1 publication Critical patent/WO2021088647A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems

Definitions

  • the present invention generally relates to the field of optoelectronic technology, and more particularly to a multi-pulse laser emitting circuit, a laser radar including the same, and a method for emitting a laser beam using the multi-pulse laser emitting circuit.
  • vehicle-mounted detection equipment includes: Lidar, camera, millimeter wave radar, ultrasonic and other sensing equipment.
  • Lidar measures the distance by measuring the time difference between the emitted laser signal and the laser signal reflected from the surface of the obstacle, and can obtain the distance data of the obstacle, and is not easily affected by light, smoke, and the environment, so it is widely used Used in various fields such as autonomous driving.
  • Autonomous vehicles use lidar, cameras, infrared light detection or ultrasonic detection and other on-board detection equipment to detect objects around the vehicle, change driving strategies in time, and select deceleration, steering, and emergency stops to achieve safe driving.
  • FIG. 1A The control block diagram of a typical single-pulse resonant laser drive circuit is shown in Figure 1A.
  • the use of resonant laser drive circuit has the advantages of high photoelectric conversion efficiency and large dynamic adjustment range of laser light intensity. It is often encountered when implementing multi-pulse (three pulses and more pulses) encoding. The cost is too high, and the circuit area required by the module is too large.
  • the resonant laser driving circuit can be simply divided into two parts, the pulsed high-voltage generating circuit and the high-voltage area. Since the high voltage required to generate laser light requires a process of charging the energy storage inductor for hundreds of nanoseconds, it is necessary Continuously emitting multiple light pulses with codes requires multiple pulse-type high-voltage generating circuits, as shown in Figure 1B. In most line-number lidars, each high-voltage area will be matched with multiple pulse-type high-voltage generating circuits to realize the function of multi-line number and multi-pulse encoding.
  • each high-voltage area in a typical resonant laser drive circuit needs to correspond to multiple pulse-type high-voltage generating circuits, the pulse-type high-voltage generating circuit will increase exponentially as the number of laser radar lines increases.
  • the cost of using a typical resonant laser drive circuit will be very high, and the circuit layout area required is also large, which greatly limits the integration of the laser radar.
  • the present invention provides a multi-pulse laser emitting circuit, including: multiple energy storage circuits, multiple first switches, multiple boost capacitors, and multiple sets of lasers, wherein: the storage The energy circuit is configured to store electric energy; one end of each of the first switches is connected to the output terminal of each of the plurality of energy storage circuits, and the other end is respectively connected to one group of lasers and one of the boost capacitors; Wherein, the plurality of first switches are configured to allow only one of the first switches to be turned on at the same time, so that one or more of the plurality of tank circuits respectively pair with the turned-on first switch The connected boost capacitor is charged, and the charged boost capacitor drives a group of lasers connected with the charged boost capacitor.
  • each group of lasers includes one or more parallel laser branches, and each laser branch includes a second switch and a laser connected to the second switch,
  • the laser connected to the second switch is driven by the connected boost capacitor to emit a laser beam.
  • the tank circuit includes an inductor, a third switch, and a diode; one end of the third switch is coupled to the inductor and the diode, and the other end is grounded; the first switch is coupled Between the diode and the boost capacitor.
  • the multi-pulse coded laser emitting circuit includes three energy storage circuits and four groups of lasers, and each group of lasers includes four lasers.
  • the multi-pulse laser emitting circuit further includes a control unit, which is coupled to the first switch and is configured to turn on all the first switches in turn, so that the multiple sets of laser wheels Patrol light.
  • control unit is coupled to the third switch, and is configured to sequentially control the third switch to be turned on when one of the first switches is turned on, so that the plurality of stored energy
  • the circuit sequentially charges the boost capacitor connected to the first switch that is turned on, and the charged boost capacitor drives a group of lasers connected thereto.
  • control unit is coupled to the second switch, and the control unit is configured to control the first switch, the second switch, and the third switch so that each of the lasers has more The laser beam is emitted in a pulsed manner.
  • control unit can control the pulse interval time of the multi-pulse of the laser, thereby encoding the multi-pulse.
  • control unit is configured to control the number of pulses of the multi-pulse by controlling the first switch, the second switch, and the third switch.
  • the first switch is a high-side switch and is driven by a high-side driver.
  • the present invention also provides a laser radar, including the above-mentioned multi-pulse laser emitting circuit.
  • the present invention also provides a method of emitting a laser beam using the above-mentioned multi-pulse laser emitting circuit.
  • the high-side driver and N-MOS tube in the half-bridge drive circuit are used to realize high-side area switching, thereby multiplexing the pulse-type high-voltage generating circuit, which has the advantages of excessive current, high withstand voltage, and low loss , High speed, low cost, small layout area.
  • the advantages are excessive current, high withstand voltage, low loss, high speed, and low cost.
  • the layout area is small, which increases the integration of the radar and reduces the cost
  • Figure 1A shows a control block diagram of a typical single-pulse resonant laser drive circuit
  • Figure 1B shows a control block diagram of a typical multi-pulse resonant laser drive circuit
  • Figure 2 shows a schematic diagram of a laser emitting circuit
  • Fig. 3 shows a multi-pulse laser emitting circuit according to an embodiment of the present invention
  • Fig. 4 shows a timing diagram of a multi-pulse laser emitting circuit according to an embodiment of the present invention.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, “plurality” means two or more than two, unless otherwise specifically defined.
  • the terms “installation”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection.
  • Connected or integrally connected It can be mechanically connected, or electrically connected or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal communication of two components or the interaction of two components relationship.
  • an intermediate medium which can be the internal communication of two components or the interaction of two components relationship.
  • the first feature "on” or “under” the second feature may include the first and second features in direct contact, or may include the first and second features Not in direct contact but through other features between them.
  • the "above”, “above” and “above” of the first feature on the second feature include the first feature directly above and obliquely above the second feature, or it simply means that the first feature is higher in level than the second feature.
  • the “below”, “below” and “below” of the first feature of the second feature include the first feature directly above and obliquely above the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • FIG. 2 shows a schematic diagram of a laser emitting circuit.
  • the energy storage circuit shown in the dashed box in Figure 2
  • the laser LD and the boost capacitor C.
  • the energy storage circuit is used to receive the input voltage VIN and store electric energy, and then can charge the boost capacitor C, and establish a high voltage on the boost capacitor C.
  • the input voltage is usually not very high, such as 5V or 12V, which cannot be directly used to drive the laser. It needs to be boosted.
  • the boosting process will be described below.
  • the high voltage established on the boost capacitor can be significantly higher than the input voltage VIN, for example, 60V, which can be used to drive the laser LD.
  • the boost capacitor C can drive the laser LD to emit a laser beam.
  • the laser LD may be various types of lasers, such as a vertical cavity surface emitting laser VCSEL, or an edge emitting laser EEL, and the protection scope of the present invention is not limited by the type of laser.
  • the energy storage circuit includes an inductor L, a diode D connected to the inductor L, and a switch M1.
  • One end of the inductor L is connected to the input voltage VIN, and the other end is connected to the diode D and the switch M1.
  • the driver controls the switch M1 to close, and the closed switch M1 can be equivalent to a short circuit in the circuit. Therefore, the current generated by the input voltage VIN flows through the inductor L and is grounded through the switch M1. As the inductor current increases, electrical energy is stored in the inductor L. When the energy storage phase is completed, the switch M1 is turned off.
  • the switch M1 since the switch M1 has been turned off, the inductor L can only charge the capacitor C, so the voltage across the capacitor C rises.
  • a high voltage for example, 60V
  • the switch S1 is closed. Due to the unidirectional conductivity of the diode D, the capacitor C cannot be discharged through the diode D, and can only be discharged through the loop of the laser LD and the switch S1. Therefore, the current flows through the laser LD, and the capacitor C drives the laser LD to emit light.
  • the switch M1 is closed again, the switch S1 is opened, and the cycle process of energy storage, charging, and discharging is performed again, and the laser L1 is continuously driven to emit light.
  • FIG. 3 shows a multi-pulse laser emitting circuit 10 according to an embodiment of the present invention, which will be described in detail below with reference to the accompanying drawings.
  • the multi-pulse laser emitting circuit 10 includes a plurality of energy storage circuits E1, E2, ..., Em, and a plurality of groups of lasers LD1, LD2, ..., LDn.
  • a plurality of energy storage circuits E1, E2, ..., Em are configured to store electric energy, and the specific structure thereof is for example the energy storage circuit shown in FIG. 2.
  • the first tank circuit E1 includes an inductor L1, a third switch M1 coupled to the inductor L1, and a diode D1, and the other end of the third switch M1 is grounded.
  • m and n are both integers, and m can be greater than n, less than n or equal to n.
  • m is smaller than n, so that the m energy storage circuits can be multiplexed to provide driving inputs for n groups of lasers.
  • Each of the multiple groups of lasers LD1, LD2, ..., LDn includes one or more parallel laser branches, and each laser branch includes a second switch and a laser connected to the second switch.
  • each group of lasers is shown as including four laser branches, and each laser branch includes a second switch and a laser.
  • each group of lasers may include more or less lasers, which are all within the protection scope of the present invention. Take the first group of lasers LD1 as an example. It includes four laser branches connected in parallel. Each laser branch has a laser and a second switch connected in series with it, which are lasers LD11, LD12, LD13, LD14, and a second switch S11. , S12, S13, S14.
  • the multi-pulse laser emitting circuit 10 further includes n first switches P1, P2,..., Pn and n boosting capacitors C1, C2,..., Cn.
  • the first switch and the boosting capacitor are respectively connected to the Corresponding to group lasers.
  • the first switch includes, for example, an N-MOS transistor. Taking the first switch P1 and the boost capacitor C1 as an example, one end of the first switch P1 is connected to the output terminal of each of the plurality of tank circuits, that is, the cathode of the diode of each tank circuit in the figure. The other end of the first switch P1 is respectively connected to the first group of lasers LD1 and the boost capacitor C1. As shown in FIG.
  • the first switch P1 is coupled between the diode and the boost capacitor C1.
  • FIG. 3 shows that each group of lasers corresponds to one boost capacitor, those skilled in the art can easily understand that the present invention is not limited to one boost capacitor, and each group of lasers can correspond to multiple boost capacitors connected in parallel. The laser provides higher driving power.
  • the plurality of first switches P1, P2, ..., Pn can be independently controlled by their driving signals, and are configured to allow only one of the first switches to be turned on at the same time, so that the plurality of storage
  • One or more of the energy circuits respectively charge the boost capacitor connected to the first switch that is turned on to establish a high voltage, and the charged boost capacitor drives a group of lasers connected to it.
  • the first switch P1 serves as a regional switch, and its on and off operations will affect all lasers in the first group of lasers LD1.
  • the on and off operations of the other first switches P2,..., Pn also affect all lasers in the corresponding group of lasers.
  • the first switch P1 when the first switch P1 is controlled to be turned on, the remaining first switches P2, ..., Pn are all controlled to be turned off. Next, through the linkage operation of the third switch and the second switch, the laser is driven to emit a light pulse. This is described in detail below.
  • the first switch P1 When the first switch P1 is controlled to be turned on, the tank circuit on the left in FIG. 3 is turned on with the boost capacitor C1 on the right and the first group of lasers LD1.
  • the third switches M1, M2, ..., Mm to be closed (for example, M1), the corresponding one of the tank circuits E1, E2, ..., Em (for example, E1) can be turned on and connected to the inductance (for example, E1).
  • the above process is repeated continuously, and each group of lasers and each laser can be driven in turn.
  • the energy storage process of the energy storage circuit and the boost charging and discharging processes of the boost capacitor C1 are basically similar to those described with reference to FIG. 2 and will not be repeated here.
  • a multi-channel pulse-type high-voltage generation circuit is used to generate high-voltage pulses.
  • the high-side driver and N-MOS switch of the half-bridge drive circuit can be used between the energy storage circuit and the high-voltage generation circuit (boost capacitor).
  • a high-voltage side switch (the first switch) is added in between, and the switch circuit can be controlled by the controller to switch on and off, thereby multiplexing multiple pulse-type high-voltage generating circuits.
  • the driving voltage given to the high-side N-MOS tube is given by the high-side driver IC through a bootstrap capacitor, so that there is little energy loss when the high-side switch is turned on and off, and the maximum can be reached.
  • each group of lasers in the plurality of groups of lasers includes a plurality of lasers and a second switch connected in parallel.
  • the boost capacitor connected to it is boosted and charged, when one of the second switches is closed, the laser connected to the second switch can be driven by the connected boost capacitor to emit Out the laser beam.
  • Realization of multi-pulse encoding when it is necessary to output three-pulse or more pulse-encoded light waveforms, use three-channel pulse-type high-voltage generation circuit.
  • the first-channel pulse-type high-voltage generation circuit can store energy immediately after the laser is emitted.
  • the inductor is charged, and then the charging time is completed using the encoding time at both ends to generate a pulsed high voltage, which is provided to the laser to emit light, so that the three groups of circuits can perform "infinite" pulse encoding in round-robin work.
  • the multi-pulse encoding laser emitting circuit 10 includes three energy storage circuits and four groups of lasers, and each group of lasers includes four lasers.
  • the first switch is a high-side switch and is driven by a high-side driver.
  • the multi-pulse encoding laser emitting circuit 10 further includes a control unit (not shown), which is coupled to the n first switches and is configured to turn on all the first switches in sequence.
  • a switch makes the multiple groups of lasers emit light in turn.
  • the control unit may be coupled to the driver and drive the first switch by triggering the driver.
  • the control unit first controls the first switch P1 to be turned on, and the other switches P2, ..., Pn are turned off.
  • m energy storage circuits can be used to sequentially store energy and charge the boost capacitor C1.
  • the boost capacitor C1 can be used to drive each laser in the first group of lasers LD1 after being charged.
  • control unit may be coupled to the third switches M1, ..., Mm, and configured to sequentially control the third switches to be turned on when one of the first switches is turned on, so that the plurality of storage devices are turned on.
  • the energy circuit sequentially charges the boost capacitor connected to the first switch that is turned on, and the charged boost capacitor drives a group of lasers connected thereto.
  • control unit may be coupled to the second switch, and the control unit is configured to control the first switch, the second switch, and the third switch so that each The laser emits a laser beam in a multi-pulse manner.
  • control unit When transmitting the detection pulse, the control unit first switches the first switch, and then operates the second switch and the third switch in conjunction (the two can be regarded as a simultaneous operation of emitting light), and emits a light pulse.
  • control unit can control the pulse interval time of the multi-pulse of the laser, thereby encoding the multi-pulse.
  • control unit is configured to control the number of pulses of the multi-pulse by controlling the first switch, the second switch and the third switch.
  • FIG. 4 shows a timing diagram of controlling each laser to emit light by the control unit, which will be described in detail below with reference to FIG. 4.
  • the multi-pulse coded laser emitting circuit 10 includes three energy storage circuits and four groups of lasers as an example. Each group of lasers has four lasers, and each laser emits three pulses. For the laser, the time interval between each pulse can be the same or can be set differently, so as to realize the multi-pulse encoding of the laser.
  • the scope of protection of the present invention is not limited to this. Under the teaching of the concept of the present invention, the number of energy storage circuits, the number of pulses, the number of laser groups, and the number of lasers in each group can be changed without paying. Creative work, these are all within the protection scope of the present invention.
  • the controller controls the second switch S11 to be closed, and the other second switches S12, S13, and S14 are opened.
  • the first boost capacitor C1 will be discharged through the circuit including the laser LD11 and the second switch S11, and the current flows through the laser LD11, so the laser LD11 emits a pulse 1. Note that because the laser discharges at a very fast speed, in FIG. 4, the high voltage on the first boost capacitor C1 almost immediately returns to its original value, and the process of the voltage gradually decreasing over time is not shown.
  • the controller controls the third switch M1 to close, the inductor L1 starts to flow through the inductor L1 and the third switch M1 under the action of the input voltage VIN, Recharge and store energy on the inductor L1. After the energy storage is completed, wait for the next charging and boosting of one of the capacitors.
  • the controller ensures that the first switch P1 is closed, and at the same time controls the third switch M2 to open. Therefore, the inductance L2 of the second tank circuit, due to its characteristic of maintaining the current, will pass through the diode D2 and the first switch P1 and the capacitor C1 are discharged, thereby charging the capacitor C1, and a high voltage is gradually established thereon.
  • the establishment of the high voltage on the capacitor C1 is completed.
  • the controller controls the second switch S11 to be closed, and the other second switches S12, S13, and S14 are opened.
  • the first boost capacitor C1 will be discharged through the circuit including the laser LD11 and the second switch S11, and the current will flow through the laser LD11, so the laser LD11 emits a pulse 2.
  • the controller controls the third switch M2 to close, the inductor L2 starts to flow through the inductor L2 and the third switch M2 under the action of the input voltage VIN, Recharge and store energy on the inductor L2. After the energy storage is completed, wait for the next charging and boosting of one of the capacitors.
  • the controller ensures that the first switch P1 is closed, and at the same time controls the third switch M3 to open. Therefore, the inductance L3 of the second tank circuit, due to its characteristic of maintaining the current, will pass through the diode D3 and the first switch. P1 and the capacitor C1 are discharged, thereby charging the capacitor C1, and a high voltage is gradually established thereon. At time t5, the high voltage on capacitor C1 is established. At this time, the controller controls the second switch S11 to be closed, and the other second switches S12, S13, and S14 are opened. At this time, the first boost capacitor C1 will be discharged through the circuit including the laser LD11 and the second switch S11, and the current flows through the laser LD11, so the laser LD11 emits a pulse 3.
  • the first tank circuit E1, the second tank circuit E2, and the third tank circuit E3 sequentially charge the boost capacitor C1 of the first group of lasers, and build a high voltage on it. .
  • the controller controls the second switch S11 to close, so the laser LD11 connected to the second switch S11 is driven three times to send out pulse 1, pulse 2, and pulse 3 to complete a detection and light emission process of the laser LD11 .
  • Each energy storage circuit after charging and boosting the boost capacitor C1, enters the charging time of the energy storage inductor, stores electric energy on it, and is ready to charge and boost one of the capacitors next time.
  • the time between the pulse 1 and the pulse 2 is the encoding time ⁇ t1 + the capacitor C1 charging time
  • the time between the pulse 2 and the pulse 3 is the encoding time ⁇ t2 + the capacitor C1 charging time.
  • the encoding time ⁇ t1 and the encoding time ⁇ t2 may be the same or different.
  • the encoding time can be set to be different from each other, so that multi-pulse encoding can be realized.
  • the receiving end of the lidar can decode the pulse according to the time interval between the pulses, and know which laser emission pulse it corresponds to.
  • FIG. 4 schematically shows that each laser emits three pulses during one luminescence detection process.
  • Each laser can emit fewer or more pulses in one luminescence detection process.
  • the controller can control the second switch S12 to close, so that the boost capacitor C1 is discharged through the laser LD12 and the second switch S12, and the laser LD12 is driven to emit Light pulse.
  • the boost capacitor C1 can be recharged through the first energy storage circuit E1 that is charged the earliest, and then the laser LD11 is driven to generate pulse 4. The above process is repeated until the laser LD11 emits a preset number of pulses.
  • the control of the energy storage circuit and the control of the first switch P1 are basically similar to those in the driving process of the laser LD11. The difference is that the controller needs to control the second switch S12 to close in order to drive the laser LD12 .
  • the above-mentioned driving process is performed on the laser LD13 and the laser LD14 respectively, until all the lasers in the first group emit light.
  • the second group of lasers are driven to emit light. During this process, it is necessary to ensure that the first switches P1, P3, and P4 are turned off.
  • each group of lasers and multiple lasers in each group of lasers are driven in a certain order.
  • the present invention is not limited to this, and each group of lasers and multiple lasers therein can be driven in any order.
  • the present invention also relates to a laser radar, including the multi-pulse laser emitting circuit 100 as described above.
  • the present invention also relates to a method of emitting a laser beam using the multi-pulse laser emitting circuit 100 as described above.
  • the high-side driver and N-MOS tube in the half-bridge drive circuit are used to realize high-side area switching, thereby multiplexing the pulse-type high-voltage generating circuit, which has the advantages of excessive current, high withstand voltage, and low loss , High speed, low cost, small layout area.
  • the advantages are excessive current, high withstand voltage, low loss, high speed, and low cost.
  • the layout area is small, which increases the integration of the radar and reduces the cost

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种多脉冲激光发射电路(10),包括:多个储能电路(E1,E2,……Em)、多个第一开关(P1,P2,……Pn)、多个升压电容(C1,C2,……Cn)及多组激光器(LD1,LD2,……LDn)。储能电路(E1,E2,……Em)配置成可储存电能;每个第一开关(P1,P2,……Pn)的一端连接到多个储能电路(E1,E2,……Em)中的每一个的输出端,另一端分别连接到其中一组激光器(LD1,LD2,……LDn)和其中一个升压电容(C1,C2,……Cn);其中,多个第一开关(P1,P2,……Pn)配置成在同一时刻仅允许其中一个第一开关(P1,P2,……Pn)导通,以使得多个储能电路(E1,E2,……Em)中的一或多个分别对与导通的第一开关(P1,P2,……Pn)连接的升压电容(C1,C2,……Cn)充电,并由被充电的升压电容(C1,C2,……Cn)驱动与被充电的升压电容(C1,C2,……Cn)连接的一组激光器(LD1,LD2,……LDn)。

Description

多脉冲激光发射电路、激光雷达以及发射激光束的方法 技术领域
本发明大致涉及光电技术领域,尤其涉及一种多脉冲激光发射电路、包括其的激光雷达以及使用该多脉冲激光发射电路发射激光束的方法。
背景技术
随着人工智能的发展,自动驾驶技术也日臻成熟。对于自动驾驶,环境感知是实现自动驾驶的必要前提,而障碍物检测是环境感知的重要组成部分。常见的障碍物检测设备,即车载探测设备包括:激光雷达、相机、毫米波雷达、超声波等传感设备等。激光雷达通过测量发射的激光信号和从障碍物表面反射的激光信号之间的时间差来测量距离,可以获取障碍物的距离数据,且不容易受到光照、烟雾、环境的影响,故被广泛地应用于自动驾驶等各种领域。自动驾驶车辆通过采用激光雷达、相机、红外光探测或者超声波探测等车载探测设备,对车辆周围的物体进行探测,及时改变驾驶策略,选择减速、转向、急停车等,以实现安全驾驶。
典型的单脉冲谐振式激光驱动电路的控制框图如图1A所示。但是在多线数激光雷达的设计当中,使用谐振式激光驱动电路有光电转化效率高,激光光强动态调节范围大等优点,实现多脉冲(三脉冲以及更多脉冲)编码时往往会遇到成本过高,模块所需的电路面积过大的问题。
谐振式激光驱动电路可以简单的分为两个部分,脉冲式高压生成电路和高压区域,由于生成激光发光所需的高压需要进行一个长达数百纳秒给储能电感充电的过程,所以需要连续发出多个带编码的光脉冲就需要多个脉冲式高压生成电路,如图1B所示。在大多数线数的激光雷达中,每一个高压区域都会对应配和多路的脉冲式高压生成电路,来实现多线数多脉冲编码的功能。
由于典型的谐振式激光驱动电路中每个高压区域需要对应多个脉冲式高压 生成电路,所以脉冲式高压生成电路会随着激光雷达的线数增加成倍数增加。对于多线数的激光雷达,使用典型的谐振式激光驱动电路,成本会很高,同时需要的电路布板面积也很大,这大大限制了激光雷达的集成度。
背景技术部分的内容仅仅是发明人所知晓的技术,并不当然代表本领域的现有技术。
发明内容
有鉴于现有技术的至少一个缺陷,本发明提供一种多脉冲激光发射电路,包括:多个储能电路、多个第一开关、多个升压电容及多组激光器,其中:所述储能电路配置成可储存电能;每个所述第一开关的一端连接到所述多个储能电路中的每一个的输出端,另一端分别连接到其中一组激光器和其中一个升压电容;其中,所述多个第一开关配置成在同一时刻仅允许其中一个第一开关导通,以使得所述多个储能电路中的一个或多个分别对与所述导通的第一开关连接的升压电容充电,并由被充电的所述升压电容驱动与被充电的所述升压电容相连接的一组激光器。
根据本发明的一个发明,每组激光器包括一个或多个并联的激光器支路,每个激光器支路包括第二开关和与第二开关连接的激光器,
当每个第二开关闭合时,与所述第二开关连接的激光器被相连接的升压电容驱动,发射出激光束。
根据本发明的一个发明,所述储能电路包括电感、第三开关和二极管;所述第三开关的一端与所述电感及所述二极管耦接,另一端接地;所述第一开关耦接在所述二极管与所述升压电容之间。
根据本发明的一个发明,所述多脉冲编码激光发射电路包括三个储能电路和四组激光器,每组激光器包括四个激光器。
根据本发明的一个发明,所述多脉冲激光发射电路还包括控制单元,所述控制单元耦接到所述第一开关,并配置成依次导通全部第一开关,使得所述多 组激光器轮巡发光。
根据本发明的一个发明,所述控制单元耦接到所述第三开关,并配置成当其中一个第一开关导通时,依次控制所述第三开关导通,使得所述多个储能电路依次对与所述导通的第一开关连接的升压电容充电,并由所述充电的升压电容驱动与其相连接的一组激光器。
根据本发明的一个发明,所述控制单元耦接到所述第二开关,所述控制单元配置成通过控制所述第一开关、第二开关和第三开关,使得每个所述激光器以多脉冲的方式发射出激光束。
根据本发明的一个发明,所述控制单元可控制所述激光器的多脉冲的脉冲间隔时间,从而对所述多脉冲进行编码。
根据本发明的一个发明,所述控制单元配置成可通过控制所述第一开关、第二开关和第三开关,控制所述多脉冲的脉冲数量。
根据本发明的一个发明,所述第一开关为高边开关,通过高边驱动器进行驱动。
本发明还提供一种激光雷达,包括如上所述的多脉冲激光发射电路。
本发明还提供一种使用如上所述的多脉冲激光发射电路发射激光束的方法。
本发明的实施例中,使用半桥驱动电路中的高边驱动器和N-MOS管实现能高边区域切换,从而复用脉冲式高压生成电路,优点有过大电流,高耐压,低损耗、速度高,成本低,布板面积小。使用三路脉冲式高压生成电路实现多脉冲编码(大于等于三脉冲),使用最少的电路实现多脉冲编码,增加雷达的集成度。使用半桥驱动电路中的高边驱动器和N-MOS管实现能高边区域切换,从而复用脉冲式高压生成电路,优点有过大电流,高耐压,低损耗、速度高,成本低,布板面积小,增加雷达的集成度并且降低了成本
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1A示出了典型的单脉冲谐振式激光驱动电路的控制框图;
图1B示出了典型的多脉冲谐振式激光驱动电路的控制框图;
图2示出了激光发射电路的示意图;
图3示出了根据本发明一个实施例的一种多脉冲激光发射电路;
图4示出了根据本发明一个实施例的多脉冲激光发射电路的时序图。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本发明的描述中,需要理解的是,术语"中心"、"纵向"、"横向"、"长度"、"宽度"、"厚度"、"上"、"下"、"前"、"后"、"左"、"右"、"坚直"、"水平"、"顶"、"底"、"内"、"外"、"顺时针"、"逆时针"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,"多个"的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语"安装"、"相连"、"连接"应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接:可以是机械连接,也可以是电连接或可以相互通讯;可以 是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之"上"或之"下"可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征"之上"、"上方"和"上面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征"之下"、"下方"和"下面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
图2示出了激光发射电路的示意图。其中包括储能电路(如图2中虚线框所示)、激光器LD以及升压电容C。其中,储能电路用于接收输入电压VIN并储存电能,进而可以对升压电容C进行充电,在升压电容C上建立高电压。通常由于输入侧没有安全电路,因此输入电压通常不会很高,例如为5V或者12V,无法直接用于驱动激光器,需要进行升压,升压的过程将在下文描述。升压电容上建立的高压可以显著高于输入电压VIN,例如为60V,从而可用于驱动激光器LD。该高电压建立完成后,升压电容C可以驱动所述激光器LD,使其发出激 光束。所述激光器LD可以是各种类型的激光器,例如垂直腔面发射激光器VCSEL,或者边发射型激光器EEL,本发明的保护范围不受激光器的类型的限制。
如图2所示的,所述储能电路包括电感L、分别与电感L连接的二极管D以及开关M1。电感L的一端连接输入电压VIN,另一端连接二极管D和开关M1。在储能阶段,通过驱动器控制开关M1闭合,闭合的开关M1在电路上可等效于短路,因此输入电压VIN产生的电流流过电感L,并通过开关M1接地。随着电感电流的增加,电感L中存储了电能。当储能阶段完成后,开关M1断开,此时由于电感L的电流保持特性,流经电感L的电流不会马上变为零,而是缓慢地由充电完成时的电流值变为零,在这个过程中,由于开关M1已经断开,因此电感L只能对电容C进行充电,因而电容C两端的电压升高。当电容C上已经建立起高压(例如60V)之后,开关S1闭合。由于二极管D的单向导通性,电容C无法通过二极管D放电,只能通过激光器LD和开关S1的回路来进行放电,因此电流流过激光器LD,电容C驱动激光器LD发光。当电容C放电完毕,重新闭合开关M1,断开开关S1,再次进行储能、充电、放电的循环过程,不断地驱动所述激光器L1发光。
图3示出了根据本发明一个实施例的一种多脉冲激光发射电路10,下面参考附图详细描述。
如图3所示,多脉冲激光发射电路10包括多个储能电路E1、E2、…、Em,多组激光器LD1、LD2、…、LDn。其中,多个储能电路E1、E2、…、Em配置成均可储存电能,其具体结构例如图2所示的储能电路。以第一个储能电路E1为例,其包括电感L1、与所述电感L1耦接的第三开关M1和二极管D1,所述第三开关M1的另一端接地。其中电感L1的一端用于连接输入电压VIN(例如5V或者12V),另一端连接所述第三开关M1的一端以及二极管D1。储能电路的工作方式如上面参考图2详细描述的,此处不再赘述。其中m和n均为整数,m可以大于n、小于n或等于n。优选的,m小于n,从而可以复用所述m个储能电路,为n组激光器提供驱动输入。
多组激光器LD1、LD2、…、LDn中的每组激光器包括一个或多个并联的激光器支路,每个激光器支路包括第二开关和与第二开关连接的激光器。图3中为了方便起见,每组激光器均示出为包括四个激光器支路,每个激光器支路包括一个第二开关和一个激光器。本领域技术人员容易理解,每组激光器可以包括数目更多或者更少的激光器,这些都在本发明的保护范围内。以第一组激光器LD1为例,其包括并联的四个激光器支路,每个激光器支路具有一个激光器以及与其串联的第二开关,分别为激光器LD11、LD12、LD13、LD14以及第二开关S11、S12、S13、S14。
另外,所述多脉冲激光发射电路10还包括n个第一开关P1、P2、…、Pn和n个升压电容C1、C2、…、Cn,第一开关以及升压电容分别与所述多组激光器对应。所述第一开关例如包括N-MOS管。以第一开关P1和升压电容C1为例,第一开关P1的一端连接到所述多个储能电路中的每一个的输出端,即图中每个储能电路的二极管的负极。第一开关P1的另一端分别连接到第一组激光器LD1以及升压电容C1,如图3所示,所述第一开关P1耦接在所述二极管与所述升压电容C1之间。另外,图3中虽然示出了每组激光器对应一个升压电容,但本领域技术人员容易理解,本发明不限于一个升压电容,每组激光器可以对应多个并联的升压电容,从而为激光器提供更高的驱动功率。
其中所述多个第一开关P1、P2、…、Pn都可以由其驱动信号而被独立地控制,并且配置成在同一时刻仅允许其中一个第一开关导通,以使得所述多个储能电路中的一个或多个分别对与所述导通的第一开关连接的升压电容充电,建立高压,并由所述被充电的升压电容驱动与其相连接的一组激光器。第一开关P1作为区域开关,其导通和断开操作将影响到第一组激光器LD1中的所有激光器。其它第一开关P2、…、Pn的导通和断开操作同样影响相对应的一组激光器中的所有激光器。
例如,当第一开关P1被控制导通时,其余的第一开关P2、…、Pn均被控制断开。接下来,通过第三开关和第二开关的联动操作,驱动激光器发出一个 光脉冲。下面详细描述。当第一开关P1被控制导通时,图3中左侧的储能电路与右侧的升压电容C1以及第一组激光器LD1导通。此时,通过控制第三开关M1、M2、…、Mm中的一个闭合(例如M1),储能电路E1、E2、…、Em中相应的一个(例如E1)可以接通并在电感(例如L1)中储能,并向与所述第一开关P1连接的升压电容C1进行充电,使得升压电容C1输出高压。升压电容C1充电完成后,通过控制所述第二开关S11、S12、S13、S14中的一个闭合,可以驱动所述激光器LD11、LD12、LDD13、LD14中的一个。接下来,通过控制第三开关M1、M2、…、Mm中的下一个闭合(例如M2),下一个储能电路(例如E2)进行储能,并向升压电容C1充电,输出高压,然后通过控制第二开关,驱动其中一个激光器(可以仍然是前次驱动的激光器,也可以是不同的激光器)。上述过程不断重复,可以依次驱动各组激光器以及其中各个激光器。所述储能电路的储能的过程、以及所述升压电容C1的升压充电、以及放电的过程,同参考图2所描述的基本类似,此处不再赘述。
图3的方案中,使用了多路脉冲式高压生成电路产生高压脉冲,可以使用半桥驱动电路的高边驱动器与N-MOS管开关,在储能电路与高压生成电路(升压电容)之间加入一级高压侧开关(第一开关),可以通过控制器控制这个开关电路通断,从而复用多路脉冲式高压生成电路。使用高边驱动器时,给予高边N-MOS管上面的驱动电压是高边驱动IC通过自举电容给出,从而开启和关断高边开关时造成的能量损耗很少,并且能达到的极快开启关断的速度(开启关断时间在10ns左右),过流能力能达到数安培(根据选型的MOS管决定),耐压能达到数十伏至数百伏(根据选型的MOS管决定)。
如图3所示,所述多组激光器中的每组激光器包括并联的多个激光器和第二开关。对于其中一组激光器,当与其连接的升压电容被升压充电后,当其中一个第二开关闭合时,与所述第二开关连接的激光器就可以被相连接的升压电容驱动,从而发射出激光束。
图3方案的工作时序大致如下:
1:多脉冲编码的实现:当需要输出三脉冲或者更多脉冲编码的光波形时,使用三路脉冲式高压生成电路,第一路脉冲式高压生成电路可以在激光器发光完毕后立即给储能电感进行充电,随后利用两端编码时间完成充电,生成脉冲式高压,提供给激光器发光,从而三组电路轮巡工作能实现“无限”脉冲编码。
2:高压区域的切换:当一路高压区域的激光器完成发光后,就会关断对应的高边开关,闭合下一路对应的高边开关,通过切换高边开关来复用脉冲式高压生成电路,从而控制各个高压区域的激光器轮巡发光
根据本发明的一个优选实施例,所述多脉冲编码激光发射电路10包括三个储能电路和四组激光器,每组激光器包括四个激光器。
根据本发明的一个实施例,所述第一开关为高边开关,通过高边驱动器进行驱动。
根据本发明的一个实施例,所述多脉冲编码激光发射电路10还包括控制单元(未示出),所述控制单元耦接到所述n个第一开关,并配置成依次导通全部第一开关,使得所述多组激光器轮巡发光。在第一开关包括单独驱动器(例如高边驱动器)的情况下,所述控制单元可以耦接到所述驱动器,通过触发所述驱动器而驱动所述第一开关。例如,控制单元首先控制第一开关P1导通,其他开关P2、…、Pn断开。此时,可以通过m个储能电路依次储能并对升压电容C1进行充电。升压电容C1充电后可用于驱动第一组激光器LD1中的各个激光器。
另外,所述控制单元可以耦接到所述第三开关M1、…、Mm,并配置成当其中一个第一开关导通时,依次控制所述第三开关导通,使得所述多个储能电路依次对与所述导通的第一开关连接的升压电容充电,并由所述充电的升压电容驱动与其相连接的一组激光器。
另外,根据本发明的一个优选实施例,所述控制单元可以耦接到所述第二开关,所述控制单元配置成通过控制所述第一开关、第二开关和第三开关,使得每个所述激光器以多脉冲的方式发射出激光束。在发射探测脉冲时,所述控制单元首先切换第一开关,然后联动操作第二开关和第三开关(二者可以看做 一次发光的联动操作),发出一个光脉冲。
根据本发明的一个优选实施例,所述控制单元可控制所述激光器的多脉冲的脉冲间隔时间,从而对所述多脉冲进行编码。
根据本发明的一个优选实施例,其中所述控制单元配置成可通过控制所述第一开关、第二开关和第三开关,控制所述多脉冲的脉冲数量。
图4示出了通过控制单元控制各个激光器进行发光的时序图,下面参考图4详细描述。以下描述中,为方便起见,将以所述多脉冲编码激光发射电路10包括三个储能电路、四组激光器为例进行说明,每组激光器分别具有四个激光器,每个激光器发射出三脉冲激光,每个脉冲之间的时间间隔可以相同,也可以进行差别设定,从而实现激光的多脉冲编码。本领域技术人员容易理解,本发明的保护范围不限于此,在本发明概念的教导下,可以改变储能电路的数目、脉冲的数目、激光器的组数以及每组激光器的数目,而无需付出创造性的劳动,这些都在本发明的保护范围内。
如图4所示,首先在时刻t1之前,假定第一储能电路E1已经完成对第一升压电容C1的充电,在第一升压电容C1上建立起高压(如t1时刻之前的波形所示)。
在t1时刻,控制器控制第二开关S11闭合,其他第二开关S12、S13、S14断开。此时,第一升压电容C1将通过包括激光器LD11和第二开关S11的回路进行放电,电流流过激光器LD11,因而激光器LD11发出脉冲1。注意,由于激光器放电的速度非常快,因此在图4中,第一升压电容C1上的高压几乎立刻恢复原值,而没有示出电压随着时间逐渐下降的过程。
在t1时刻放电之后,进入编码时间Δt1。直到时刻t2。并且从t1时刻放电结束开始,第一储能电路E1进入充电时间,控制器控制第三开关M1闭合,电感L1在输入电压VIN的作用下,开始有电流流动经过电感L1和第三开关M1,重新对电感L1进行充电和储能。储能完成后,等待下一次为其中一个电容充电升压。
在时刻t2,假定第二储能电路E2已经储能完成。此时,控制器确保第一开关P1闭合,同时控制第三开关M2断开,因此,第二储能电路的电感L2,由于其具有保持其上电流的特性,将通过二极管D2、第一开关P1以及电容C1进行放电,从而对电容C1进行充电,逐渐在其上建立起高压。在时刻t3,电容C1上的高压建立完成。此时,控制器控制第二开关S11闭合,其他第二开关S12、S13、S14断开。此时,第一升压电容C1将通过包括激光器LD11和第二开关S11的回路进行放电,电流流过激光器LD11,因而激光器LD11发出脉冲2。
在t3时刻放电之后,进入编码时间Δt2。直到时刻t4。并且从t3时刻放电结束开始,第二储能电路E2进入充电时间,控制器控制第三开关M2闭合,电感L2在输入电压VIN的作用下,开始有电流流动经过电感L2和第三开关M2,重新对电感L2进行充电和储能。储能完成后,等待下一次为其中一个电容充电升压。
在时刻t4,假定第三储能电路E3已经储能完成。此时,控制器确保第一开关P1闭合,同时控制第三开关M3断开,因此,第二储能电路的电感L3,由于其具有保持其上电流的特性,将通过二极管D3、第一开关P1以及电容C1进行放电,从而对电容C1进行充电,逐渐在其上建立起高压。在时刻t5,电容C1上的高压建立完成。此时,控制器控制第二开关S11闭合,其他第二开关S12、S13、S14断开。此时,第一升压电容C1将通过包括激光器LD11和第二开关S11的回路进行放电,电流流过激光器LD11,因而激光器LD11发出脉冲3。
如上所述,从时刻t1到t5,第一储能电路E1、第二储能电路E2、第三储能电路E3依次对第一组激光器的升压电容C1进行充电,在其上建立起高压。升压电容C1上建立起高压后,控制器控制第二开关S11闭合,因此三次驱动与第二开关S11连接的激光器LD11,发出脉冲1、脉冲2、脉冲3,完成激光器LD11的一次探测发光过程。每一个储能电路,在对升压电容C1进行充电升压之后,就进入储能电感充电时间,在其上储备电能,准备下一次给其中一个电容进行充电升压。
所述脉冲1与脉冲2之间间隔的时间为编码时间Δt1+电容C1充电时间,脉冲2与脉冲3之间间隔的时间为编码时间Δt2+电容C1充电时间。其中,编码时间Δt1与编码时间Δt2可以相同,也可以不同。另外,对于不同的激光器之间,其编码时间可以设置为互不相同,从而可以实现多脉冲编码。激光雷达的接收端在接收到雷达回波之后,根据各个脉冲之间的时间间隔,就可以对该脉冲进行解码,获知其对应于哪一个激光器的发射脉冲。
图4中示意性示出了每一个激光器的一次发光探测过程中发射三个脉冲,本领域技术人员容易理解,本发明的保护范围不限于此。每一个激光器的一次发光探测过程可以发射数目更少或更多的脉冲。当发射数目更少的脉冲时,例如两个脉冲,那么在时刻t5时,控制器可以控制第二开关S12闭合,从而升压电容C1通过激光器LD12和第二开关S12进行放电,驱动激光器LD12发出光脉冲。当发射更多数目的脉冲时,在脉冲3之后,可以通过最早进行充电的第一储能电路E1,重新对升压电容C1进行充电,之后驱动激光器LD11,产生脉冲4。重复上述过程,直至激光器LD11发出预设数目的脉冲。
在激光器LD11发射完毕之后,重复上述过程,驱动激光器LD12进行发光,发射预设数目的脉冲,如图4中“下一激光器12,发光”所示的。注意,在驱动激光器LD12的过程中,储能电路的控制、第一开关P1的控制,与激光器LD11驱动过程中的基本类似,区别在于:控制器需要控制第二开关S12闭合,才能驱动激光器LD12。
分别对激光器LD13和激光器LD14执行上述驱动过程,直至第一组激光器全部发光完毕。
类似地,驱动第二组激光器发光。在此过程中,需要确保第一开关P1、P3、P4断开。
重复以上过程,驱动第三组激光器和第四组激光器发光。待第四组激光器中最后一个激光器LD44发光完毕后,重新开始驱动第一组激光器中的第一个激光器LD11。
以上描述中,是按照一定顺序驱动各组激光器以及每组激光器中的多个激光器,本发明不限于此,可以按照任意顺序驱动各组激光器以及其中的多个激光器。
本发明还涉及一种激光雷达,包括如上所述的多脉冲激光发射电路100。
本发明还涉及一种使用如上所述的多脉冲激光发射电路100来发射激光束的方法。
本发明的实施例中,使用半桥驱动电路中的高边驱动器和N-MOS管实现能高边区域切换,从而复用脉冲式高压生成电路,优点有过大电流,高耐压,低损耗、速度高,成本低,布板面积小。使用三路脉冲式高压生成电路实现多脉冲编码(大于等于三脉冲),使用最少的电路实现多脉冲编码,增加雷达的集成度。使用半桥驱动电路中的高边驱动器和N-MOS管实现能高边区域切换,从而复用脉冲式高压生成电路,优点有过大电流,高耐压,低损耗、速度高,成本低,布板面积小,增加雷达的集成度并且降低了成本
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种多脉冲激光发射电路,包括:多个储能电路、多个第一开关、多个升压电容及多组激光器,其中:
    所述储能电路配置成可储存电能;
    每个所述第一开关的一端连接到所述多个储能电路中的每一个的输出端,另一端分别连接到其中一组激光器和其中一个升压电容;
    其中,所述多个第一开关配置成在同一时刻仅允许其中一个第一开关导通,以使得所述多个储能电路中的一个或多个分别对与所述导通的第一开关连接的升压电容充电,并由被充电的所述升压电容驱动与被充电的所述升压电容相连接的一组激光器。
  2. 根据权利要求1所述的多脉冲激光发射电路,其中每组激光器包括一个或多个并联的激光器支路,每个激光器支路包括第二开关和与第二开关连接的激光器,
    当每个第二开关闭合时,与所述第二开关连接的激光器被相连接的升压电容驱动,发射出激光束。
  3. 根据权利要求1或2所述的多脉冲激光发射电路,所述储能电路包括电感、第三开关和二极管;所述第三开关的一端与所述电感及所述二极管耦接,另一端接地;所述第一开关耦接在所述二极管与所述升压电容之间。
  4. 根据权利要求1或2所述的多脉冲激光发射电路,所述多脉冲编码激光发射电路包括三个储能电路和四组激光器,每组激光器包括四个激光器。
  5. 根据权利要求3所述的多脉冲激光发射电路,还包括控制单元,所述控制单元耦接到所述第一开关,并配置成依次导通全部第一开关,使得所述多组激光器轮巡发光。
  6. 根据权利要求5所述的多脉冲激光发射电路,所述控制单元耦接到所 述第三开关,并配置成当其中一个第一开关导通时,依次控制所述第三开关导通,使得所述多个储能电路依次对与所述导通的第一开关连接的升压电容充电,并由所述充电的升压电容驱动与其相连接的一组激光器。
  7. 根据权利要求6所述的多脉冲激光发射电路,所述控制单元耦接到所述第二开关,所述控制单元配置成通过控制所述第一开关、第二开关和第三开关,使得每个所述激光器以多脉冲的方式发射出激光束。
  8. 根据权利要求7所述的多脉冲激光发射电路,所述控制单元可控制所述激光器的多脉冲的脉冲间隔时间,从而对所述多脉冲进行编码。
  9. 根据权利要求7或8所述的多脉冲激光发射电路,所述控制单元配置成可通过控制所述第一开关、第二开关和第三开关,控制所述多脉冲的脉冲数量。
  10. 根据权利要求1或2所述的多脉冲激光发射电路,所述第一开关为高边开关,通过高边驱动器进行驱动。
  11. 一种激光雷达,包括如权利要求1-10中任一项所述的多脉冲激光发射电路。
  12. 一种使用如权利要求1-10中任一项所述的多脉冲激光发射电路发射激光束的方法。
PCT/CN2020/122662 2019-11-07 2020-10-22 多脉冲激光发射电路、激光雷达以及发射激光束的方法 WO2021088647A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911083460.4A CN112782668A (zh) 2019-11-07 2019-11-07 多脉冲激光发射电路、激光雷达以及发射激光束的方法
CN201911083460.4 2019-11-07

Publications (1)

Publication Number Publication Date
WO2021088647A1 true WO2021088647A1 (zh) 2021-05-14

Family

ID=75748023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122662 WO2021088647A1 (zh) 2019-11-07 2020-10-22 多脉冲激光发射电路、激光雷达以及发射激光束的方法

Country Status (2)

Country Link
CN (1) CN112782668A (zh)
WO (1) WO2021088647A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230204783A1 (en) * 2021-12-28 2023-06-29 Suteng Innovation Technology Co., Ltd. Laser emitting module and lidar apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022042548A1 (zh) * 2020-08-24 2022-03-03 上海禾赛科技有限公司 电源单元、包括其的发射装置及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107436431A (zh) * 2017-07-17 2017-12-05 南京理工大学 一种脉冲激光发射电路
CN108603932A (zh) * 2016-01-31 2018-09-28 威力登激光雷达有限公司 多脉冲的基于光探测和测距的三维成像
US20180301589A1 (en) * 2017-04-12 2018-10-18 Sense Photonics, Inc. Devices incorporating integrated detectors and ultra-small vertical cavity surface emitting laser emitters
CN109116331A (zh) * 2018-06-27 2019-01-01 上海禾赛光电科技有限公司 一种编码激光收发装置、测距装置以及激光雷达系统
CN109728501A (zh) * 2019-03-14 2019-05-07 深圳市镭神智能系统有限公司 一种激光器的驱动电路、驱动方法及激光雷达系统
WO2020210176A1 (en) * 2019-04-09 2020-10-15 OPSYS Tech Ltd. Solid-state lidar transmitter with laser control

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631151A (zh) * 2018-06-05 2018-10-09 成都楼兰科技有限公司 激光驱动电路
CN209327575U (zh) * 2018-10-12 2019-08-30 深圳市速腾聚创科技有限公司 激光发射电路以及激光雷达

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108603932A (zh) * 2016-01-31 2018-09-28 威力登激光雷达有限公司 多脉冲的基于光探测和测距的三维成像
US20180301589A1 (en) * 2017-04-12 2018-10-18 Sense Photonics, Inc. Devices incorporating integrated detectors and ultra-small vertical cavity surface emitting laser emitters
CN107436431A (zh) * 2017-07-17 2017-12-05 南京理工大学 一种脉冲激光发射电路
CN109116331A (zh) * 2018-06-27 2019-01-01 上海禾赛光电科技有限公司 一种编码激光收发装置、测距装置以及激光雷达系统
CN109728501A (zh) * 2019-03-14 2019-05-07 深圳市镭神智能系统有限公司 一种激光器的驱动电路、驱动方法及激光雷达系统
WO2020210176A1 (en) * 2019-04-09 2020-10-15 OPSYS Tech Ltd. Solid-state lidar transmitter with laser control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230204783A1 (en) * 2021-12-28 2023-06-29 Suteng Innovation Technology Co., Ltd. Laser emitting module and lidar apparatus
US12013462B2 (en) * 2021-12-28 2024-06-18 Suteng Innovation Technology Co., Ltd. Laser emitting module and lidar apparatus

Also Published As

Publication number Publication date
CN112782668A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
US10903621B2 (en) Circuit for driving a laser and method therefor
WO2021088647A1 (zh) 多脉冲激光发射电路、激光雷达以及发射激光束的方法
CN113692540A (zh) 带激光控制的固态lidar发送器
WO2021031753A1 (zh) 用于发光模块的安全充电电路、保护方法以及激光雷达发射系统
US11837849B2 (en) Control circuit for pulsed control of a light-emitting means
CN114594451A (zh) 激光发射驱动电路、激光雷达及激光发射控制方法
CN114594453A (zh) 激光发射电路、激光发射控制方法及激光雷达
EP3859393B1 (en) Light source system
US20230132592A1 (en) Power supply unit, emitting apparatus including the same, and control method
CN113904212A (zh) 脉冲发生器电路、相关系统以及方法
US20200412087A1 (en) Continuous wave laser driver with energy recycling
CN110212405A (zh) 一种激光发射器及其发射方法
CN111989833B (zh) 用于产生具有短脉冲持续时间的光脉冲的光源以及利用光源产生短光脉冲的方法
CN114089374A (zh) 发射装置、包括其的激光雷达及控制方法
JP2012009891A (ja) レーザーダイオード駆動回路
CN209913235U (zh) 一种激光器的驱动电路及激光雷达系统
RU2627729C2 (ru) По отдельности управляемая матрица излучающих элементов
CN102460929A (zh) 用于产生脉冲电压的方法和电路装置
CN214310863U (zh) 激光雷达用驱动芯片、激光器驱动芯片及激光雷达
CN213717248U (zh) Vcsel阵列驱动电路以及vcsel阵列
JPH0445270Y2 (zh)
US5130738A (en) Electronic flash unit driver by insulated gate bipolar transistor
CN118402183A (zh) 驱动器电路和用于提供脉冲的方法
CN106338735B (zh) 激光测距装置
US20230291176A1 (en) Laser driver for driving vcsel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20884692

Country of ref document: EP

Kind code of ref document: A1