CN101024309B - 压力机线系统和方法 - Google Patents

压力机线系统和方法 Download PDF

Info

Publication number
CN101024309B
CN101024309B CN200710003549.6A CN200710003549A CN101024309B CN 101024309 B CN101024309 B CN 101024309B CN 200710003549 A CN200710003549 A CN 200710003549A CN 101024309 B CN101024309 B CN 101024309B
Authority
CN
China
Prior art keywords
forcing press
equipment
circulation
robot
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200710003549.6A
Other languages
English (en)
Other versions
CN101024309A (zh
Inventor
斯约德·博斯加
马克·塞古拉·戈洛伦斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Schweiz AG
Original Assignee
ABB Research Ltd Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland filed Critical ABB Research Ltd Switzerland
Publication of CN101024309A publication Critical patent/CN101024309A/zh
Application granted granted Critical
Publication of CN101024309B publication Critical patent/CN101024309B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/14Control arrangements for mechanically-driven presses
    • B30B15/146Control arrangements for mechanically-driven presses for synchronising a line of presses
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D43/00Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
    • B21D43/02Advancing work in relation to the stroke of the die or tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/26Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by cams, eccentrics, or cranks
    • B30B1/266Drive systems for the cam, eccentric or crank axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/14Control arrangements for mechanically-driven presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/14Control arrangements for mechanically-driven presses
    • B30B15/148Electrical control arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41815Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by the cooperation between machine tools, manipulators and conveyor or other workpiece supply system, workcell
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39105Manipulator cooperates with moving machine, like press brake
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45142Press-line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

描述了一种改良压力机线,所述压力机线包括具有至少一个电驱动马达(20)的至少一个机械压力机、压头(23)、用于操作所述压力机的机械装置(27、25)、及一个其它设备或辅助生产设备,所述压力机如此设置,使得可在压力机循环的至少一个压制或非压制部分期间改变至少一个所述电驱动马达的速度(W)。通过控制所述马达的速度并使所述压力机的运动与至少其它设备、装载器或其它压力机的运动或位置同步,获得了改良的操作特性及优化的能量使用和循环时间。描述了包括这样的压力机的系统以及用于控制压力机线的计算机程序。

Description

压力机线系统和方法
技术领域
本发明涉及压力机线(press line),用于由毛坯压制、模锻、冲压成形(drawing)或冲孔出主要为金属的部件。更具体而言,本发明公开了一种压力机线,其包括可以以动态或自适应的方式与压力机线中的其它设备同步的改良机械压力机。本发明对于生产用于汽车工业和白色货物的模锻或压制部件特别有利。
背景技术
机械压力机一般用来由金属模板如钢坯或工件生产模锻的汽车部件。通常在压力机线中设置一个或多个这样的机械压力机,以对毛坯或工件执行一系列的操作。
二十世纪七十年代后期,通过使用机械臂对压力机进行部件的装载-卸载,使压力机线成为自动化的压力机线。二十世纪八十年代后期,机器人被引入压力机车间来执行相同的功能。控制系统(通常为可编程逻辑控制器,或者说PLC)典型地对来自机器人和压力机的所有信息进行管理,并给予压力机以及压力机线中的其它设备进行装载、模锻和卸载的数字授权。压力机线系统以异步方式工作,这样,如果机器人在卸载时早到,则它必须等待,直到压力机充分打开。同样可发生机器人在装载时晚到的情况,这意味着压力机需等待。这样的动作和其它动作导致机器人移动-停止-移动的循环,而对于压力机,这会引起齿轮箱的额外磨损,且亦可引起马达制动器的磨损。而且,线的速率不可超过特定极限。压力机线的重要改良包括:机器人装载器/卸载器是用结合了被称作与传感器同步功能的ABB的工业机器人来实现的。借助于传感器或编码器,具有与传感器同步的机器人可读取压力机的位置,然后机器人控制器动态地调节机器人的速度,以使机器人“准时”到达卸载点。对于装载操作,实现了对应的改良。装载机器人通过总线连接来读取卸载器的位置,而机器人控制器同样调节机器人速度,以“准时”装载。迄今为止,已经开发了其中机器人装载器/卸载器可与压力机的特定运动同步的压力机线。
然而,机械压力机具有固定的循环。传统上,机械压力机的压力机驱动和动力传输系统或者说运动机构(kinematics)是经由飞轮来驱动的。飞轮的功能是存储必要的能量以进行循环。飞轮借助于离合器和制动器系统(其可为气力或液力的)连接或断开于运动机构。驱动链中的任何离合器或制动器均需要维护。
一旦设置成以给定模具来运行,则固定了传统的飞轮驱动的机械压力机、连杆式压力机、曲柄压力机等的工作循环。例如,一旦设置了飞轮的速度且离合器接合,则压力机将以如图7a、8(现有技术)的固定模式移动,并根据需要重复多次。这里,压力机速度按照马达或机械传动部件的旋转速度如压力机压头或滑块的偏心速度或线速度来描述。具有固定循环意味着:对压力机循环的任何调整或优化均需要中断生产并调整驱动传动装置、飞轮等的机械部件,以便修改压力机循环。图8(现有技术)示出了传统机械压力机的压力机生产循环的概图,即以偏心速度W27相对于时间来表示的速度分布。生产循环时间,即从开始到结束且包括一个压力机循环的完整生产循环的总时间,通常包括在压力机循环开始、直到压制速度Wp的短加速时间,处于恒定压制速度Wp的时间段,在实际压制操作期间、速度正常下降的时间段P,在压制后、速度逐渐回升到压制速度的时间,以及最后在压力机循环结束时使压力机静止时的减速或制动时间段。最后,且通常在压力机正被卸载和重新装载时,压力机一般保持一段时间的静止。这样,生产循环始于压力机循环的起始,并终于压力机循环的结束加上任何静止时间。
通常通过机械制动使压力机静止。图8(现有技术)示出了概括的速度分布图,其包括以压头或滑块速度相对于时间来表示的完整的生产循环。该速度分布示出的循环以压头位置位于上止点(TDC)开始,然后压头移到较低的位置,直到压制阶段开始,压制阶段始于压力机模具和工件之间撞击的点I。压头继续下移到下止点(BDC),即最低压头位置,压力机完全关闭。在BDC之后,压头加速回升到TDC,在该点其又处于完全打开的位置。传统压力机局限于运行固定的循环,而压力机线中的其它设备必须与压力机同步,以获得短循环时间,以便针对诸如整个压力机线的完整生产循环的其它任何约束来优化压力机循环。为了适应于更快或更慢的装载器,只可改变压力机循环的起始点。
发明内容
本发明的目的在于提供一种用于操作压力机线的改良方法以及包括这样的改良压力机线的系统。这个目的及其它目的通过以所附独立权利要求表征的方法和系统来实现。上述独立权利要求的从属权利要求描述了有利的实施例。
根据本发明的一个实施例,提供了一种用于操作压力机线的方法,所述压力机线包括具有至少一个电驱动马达的至少一个机械压力机、压头、用于操作所述压力机的机械装置,所述压力机线包括至少一个其它关联设备,其中所述压力机如此设置,使得可在压力机循环的至少一个压制或非压制部分期间改变至少一个所述电驱动马达的速度,并且通过控制所述马达的速度,所述压力机的运动可与所述压力机线中的至少一个所述其它设备的运动或位置同步。
根据本发明的另一实施例,提供了一种用于操作压力机线的方法,所述方法包括:在压力机循环的至少一个压制或非压制部分期间控制所述其它设备,以及使所述其它设备的运动与所述压力机、所述压力机线中的另一个设备或另一个压力机的运动同步。
根据本发明的另一实施例,提供了一种用于操作压力机线的方法,所述方法包括:在压力机循环的第一部分期间,控制所述其它设备,以便与所述压力机线中所述其它设备下游的设备的运动或位置同步;以及在所述压力机循环的第二部分期间,控制所述其它设备的移动,以便使其与所述压力机线中所述其它设备上游的设备的运动或位置同步。
根据本发明的一个实施例,提供了一种用于操作压力机线的方法,所述方法包括:在压力机循环的第一部分期间,控制所述其它设备,以便使其尽快操作;以及在所述压力机循环的第二部分期间,控制所述其它设备的运动,以便使其尽快地操作所述压力机,其中所述其它设备可以是下列组中的任何一个:装载器、卸载器、机器人、另一个压力机。
根据本发明的一个实施例,提供了一种用于操作压力机线的方法,所述方法包括:控制所设置的装载器或卸载器设备或机器人来装载、相应地卸载所述压力机,以及还控制所述设备作为另一个压力机的卸载器、相应装载器来工作。
根据本发明的另一实施例,提供了一种用于操作压力机线的方法,其中机器人控制单元计算机器人的路径,并计算压力机的运动或位置设置点值以及到压力机的控制单元或驱动单元的速度和/或位置控制值。
根据本发明的一个实施例,提供了一种用于操作压力机线的方法,所述方法包括:控制至少一个电驱动马达的速度,以及根据以下组中的任何一个的参数来优化所述压力机线:下游工艺的状态、上游工艺的状态、总的功率或能量消耗、对功率消耗峰的平滑。
根据本发明的另一实施例,提供了一种用于操作压力机线的方法,所述方法包括:在所述压力机的压力机循环的至少一个压制或非压制部分期间,控制所述至少一个电驱动马达的速度,以便使其改变,并大于所述驱动马达在所述压力机循环的压制部分期间的速度。
根据本发明的另一实施例,提供了一种用于操作压力机线的方法,所述方法包括:控制所述至少一个驱动马达,使得以所述第一旋转方向执行的所述压力机循环包括在每个完整压力机循环结束时反转所述驱动马达并以第二旋转方向工作的步骤。
根据本发明的另一实施例,提供了一种用于操作压力机线的方法,所述方法包括:控制所述至少一个驱动马达,使得以所述第一旋转方向执行的所述压力机循环包括在每个完整压力机循环结束时、在以所述第一旋转方向开始新的压力机循环之前反转所述驱动马达的步骤。
根据本发明的另一实施例,提供了一种用于操作压力机线的方法,所述方法包括:控制所述马达,以便部分地通过再生制动使所述马达减速至降低的速度或零速度。
根据本发明的另一实施例,提供了一种用于操作压力机线的方法,其中所述压力机线包括至少一个压力机,所述压力机包括第二驱动马达或致动器,所述第二驱动马达或致动器设置为连接至所述压头,使得在压力机循环的至少一个部分期间,通过控制所述第二驱动马达的速度,可改变所述压力机的运动。
根据本发明的一个实施例,提供了一种用于操作压力机线的方法,所述压力机线包括具有至少一个电驱动马达(20)的至少一个机械压力机、压头(23)、用于操作所述压力机的机械装置(27、25)、及用于装载、卸载或压制的至少一个其它设备,其中,所述压力机如此设置,使得在压力机循环的至少一个压制或非压制部分期间改变至少一个所述电驱动马达的速度,并且所述压力机能够被配置作为所述至少一个其他设备的从设备或者所述至少一个其他设备能够被配置作为所述压力机的从设备,使得所述压力机的运动与所述压力机线中的至少一个所述其它设备的运动或位置同步并优化所述压力机线的循环时间。
根据本发明的一个实施例,提供了一种包括压力机线的系统,所述压力机线包括具有至少一个电驱动马达的至少一个机械压力机、压头、用于操作所述压力机的机械装置、及用于加载、卸载或压制的至少一个其它设备,并且所述系统的所述压力机如此设置,使得在压力机循环的至少一个压制或非压制部分期间改变至少一个所述电驱动马达的速度,并且所述压力机能够被配置作为所述至少一个其他设备的从设备或者所述至少一个其他设备能够被配置作为所述压力机的从设备,以使所述压力机的运动与所述压力机线中的所述至少一个其它设备的运动或位置同步并优化所述压力机线的循环时间。
根据本发明的一个方面,描述了一种压力机线,所述压力机线包括:包括至少一个电驱动马达的至少一个改良机械压力机;及马达控制装置,如频率转换器和机械联接器,用于操作所述压力机,所述压力机线包括至少一个其它设备,其中所述压力机如此设置,使得在压力机循环的至少一个压制或非压制部分期间可改变至少一个所述电驱动马达的速度,并且其中,通过控制所述马达的速度,所述压力机的运动可与所述压力机线中至少一个所述其它设备的运动同步。
马达和曲柄(或压头)之间的可变速直接驱动使得能够在压力机循环的不同部分期间动态控制压力机沿滑块行程的速度。压力机循环的部分是诸如:在移动的模具与待压制的工件或毛坯接触之前;在模具闭合之后和在压制工件的部分循环期间;以及在模具再次打开之后和在压制结束与开始压制下一工件之间的部分循环期间。
改良压力机线的控制系统优选地包括由设备与压力机的同步、设备与设备的同步、以及压力机与设备的同步所构成的闭环设置。因此,在某些实施例中,这可至少部分地包括机器人与压力机的同步、机器人与机器人的同步以及压力机与机器人的同步的三角设置。借助于设置成与可变速驱动马达一起工作的机械压力机,实现了使压力机与外部设备同步的能力,所述可变速驱动马达为压力机提供了以可变的速度来工作的装置。通过对机器人和压力机运动的协调进行优化,所述改良压力机线的控制系统使压力机线实现了较高的生产率。
所述改良马达驱动和控制方法允许改变总生产循环的部分期间的马达速度,这对于现有技术的飞轮压力机是不可能的。甚至,可以以连续或动态或自适应的方式来改变马达速度,使得马达速度和/或压头速度不限于一个或多个预定速度。与现有技术压力机相比,改良机械压力机、如美国申请US 60/765183中所述的压力机(该申请的全部内容通过引用结合于本说明书中)设置有马达速度控制装置,其可在零和最大速度之间变化,该最大速度提供了可大于偏心轮(eccentric)的压制速度Wp的偏心轮或曲轴的旋转速度W1。在一些实施例中,速度可以在负速度即反向速度、零、直到最大正向速度比方说W1之间改变,如下面对优选实施例的描述中所详细说明的。在现有技术中,具有飞轮的机械压力机局限于固定曲轴速度,原因是飞轮速度通常或多或少是恒定的。
图2示意性示出了包括一个传统机械压力机的现有技术压力机线。其示出了压力机99,设置有用于主压力机马达的电驱动控制器101、用于控制压力机运动的压力机控制可编程逻辑控制器或者说PLC 110以及用于控制压力机安全开关以及设置在压力机上或周围的紧急停止开关的压力机安全控制器120。
在改良压力机线中,改良机械压力机的运动可适应于生产序列中所涉及的其它机器的操作。可关于生产序列中的其它机器对压力机运动进行优化。举例来说,压力机运动可相对于外部设备的动作进行优化,例如,当通过转移设备或其它自动设备将工件装载于压力机中和/或从压力机卸载模锻部件的时候。生产序列中这样的其它机器可包括一个或多个工业机器人或操纵臂。与控制自动进给器、其它进给器、机器人装载器/卸载器等的进给相同步地控制压力机,提供了对进给器/装载器/卸载器运动与压力机运动的同步的改良控制和机会,从而例如又提供了减少的总生产循环时间,而不必牺牲压制质量。在控制方面,改良压力机线中所包括的改良压力机可如此运行,使得压力机在压力机循环的部分期间是卸载器设备的从设备。压力机构造和控制系统还允许压力机在同一压力机循环的另一个部分期间作为装载器设备的从设备而运行。这种控制配置中的可变性对于通过飞轮来提供动力的传统机械压力机是不可能的,在传统机械压力机中,压力机循环中的压力机运动从离合器接合的时刻起就固定了。
与使用一个或多个传统机械压力机的压力机线相比,改良压力机线的优选优点典型地在于生产循环时间的缩短。与由传统机械压力机构成的压力机线相比,本发明的优点可包括:
●可控性:尽管在压力机循环的模锻工艺部分期间,预设的运动将是恰当的,但可在运动循环的其余部分期间施加控制。由此可实现下列优点和特征:
●通过在压力机循环的一个或多个部分期间除了使其它设备作为从设备而与压力机同步以外或者取代使其它设备作为从设备而与压力机同步,还将压力机配置成使其作为从设备而与另一个设备同步,从而对压力机循环时间进行优化的新机会,
●打开/关闭压力机期间的速度的增加(例如,同时在循环的模锻部分期间维持原始速度),从而导致循环时间的减少,
●利用速度控制来调节速度分布,以例如通过在压力机关闭期间、刚好在撞击之前降低速度来减少可听噪音、振动、应力,
●压制期间的目标压制速度Wp和零之间的速度变化,以便对压制工艺结果或质量进行优化。
在本发明的另一方面,改良压力机线包括至少一个机械压力机,所述机械压力机具有两个或更多个电驱动马达,所述马达如国际申请WO/SE2006/050055所述,该国际申请的全部内容通过引用结合在本说明书中。在该改良压力机中,为机械压力机添加了第二马达。所述第二马达的最重要的功能是在压力机实际上未进行压制的循环的那个/那些部分期间驱动压力机。对于实际压制的阶段,仍可如现今一样使用飞轮。离合器和制动器仍是需要的,但与传统机械压力机中的离合器和制动器相比可以简单而便宜得多。这种方案实现了伺服驱动压力机类型的性能,而无需很大的电功率设备。该方案尤其适于作为现有压力机的附加、翻新或整修选项。此外,提供了优选地在例如压力机循环的工作(压制)部分期间同时使用两个马达的选项。
与现有技术压力机相比,不论是US 60/765183中首先描述的伺服压力机还是WO/SE2006/050055的混合伺服压力机,改良机械压力机的马达如此操作,使得压力机循环期间的速度可在零和最大速度之间变化,该最大速度提供了可大于偏心轮的压制速度Wp的偏心轮的旋转速度W1。在一些实施例中,速度可在负速度和零之间变化,即反向速度,也可以是零和W1之间的正向速度,如下面对优选实施例中的描述中所详细说明的。
在本发明的另一实施例中,通过将压力机和压力机控制设置成为马达留出压力机循环的较大部分以便加速到所需的速度,减少了所述的改良压力机的马达的所需尺度。在一个或多个有利实施例中,改良压力机控制方法如此设置,以便提供完整的压力机循环,其超过传统的360度曲柄旋转角,或者就TDC位置而言为过去的TDC的两倍,并且与相似吨位的基于飞轮的机械压力机相比,对于完整的生产循环,仍可具有较短的总生产循环时间。可通过至少两种方式中的任何一种来实现包括大于360度的曲柄角旋转的压力机循环,如US 60/765183的伺服压力机或WO/SE2006/050055的混合压力机中所详细说明的。总之,这些实施例的方法包括:在循环结束时反转压力机、以及从前一循环的停止位置之前的位置开始下一循环,或者,在循环结束时反转压力机并在第一压力机循环的旋转方向的相反方向上运行随后的完整循环。
在根据本发明实施例的机器人与压力机、机器人与机器人和/或压力机与机器人同步之间的同步中,例如,可分4个阶段来对装载器机器人进行控制,如:
与卸载器同步、自由、卸载与压力机同步的前一压力机、自由;
卸载器机器人亦:与压力机同步、自由、装载与下一卸载器同步的下一压力机、自由。
当然,在所述线的开始和结束可以有某些变化。压力机典型地具有两个阶段:与装载器或卸载器同步、以及自由。
改良压力机线的主要优点在于,其通过对压力机线中的一个压力机、任何压力机或所有压力机以及工艺或压力机线中的进给器或转移机构装载器/卸载器如装载/卸载机器人的运动进行协调,提供了优化压力机线的较好机会。例如,压力机之间和/或压力机与装载器/卸载器之间的协调可通过使用单个控制器对这样的线进行控制来进行。可依赖于下列参数来对协调进行优化,如:下游工艺的状态;或上游工艺的状态或者另外的考虑如总功率或能量消耗;压力机线中的功率消耗峰的平滑。
在本发明方法的优选实施例中,所述方法可由一个或多个计算设备来执行或控制,所述计算设备包括一个或多个微处理器单元或计算机。控制单元包括存储器装置,用于存储一个或多个计算机程序,所述计算机程序用于执行对一个或多个机械压力机的操作进行控制的改良方法。优选地,这种计算机程序包含用于处理器执行上述和下面详细描述的方法的指令。在另一实施例中,提供了计算机程序,该计算机程序记录于计算机可读数据载体如DVD、光或磁数据设备上,或经由数据网络提供自服务器、数据服务器等。
附图说明
下面参考附图、仅为示例性地描述本发明的实施例,在附图中:
图1是根据本发明一实施例的改良压力机线的示意性框图;
图2是示出公知压力机线的示意图(现有技术);
图3是示出根据本发明另一实施例的改良压力机线的示意图;
图4(现有技术)是传统机械压力机的示意图,并亦示出了根据现有技术的压力机循环的示图;
图5是根据改良压力机线的一实施例的伺服型改良机械压力机的示意图;
图6是根据改良压力机线的一实施例的混合型改良机械压力机的示意图;
图7a(现有技术)示出了根据公知压力机循环的标准360度压力机循环;
图7b-7d示出了根据本发明实施例与开始/停止位置和旋转方向有关的压力机循环的示意图;
图8(现有技术)是示出根据公知压力机线的公知机械压力机的压力机循环的速度-时间分布的示意图;
图9是示出了可包括于改良压力机线的一实施例中的改良压力机的压力机循环的速度-时间分布的示意图;
图10是根据本发明一实施例用于操作包括飞轮和离合器的改良机械压力机的方法的示意性流程图;
图11是根据本发明一实施例使改良压力机线中的一个或多个设备与包括从设备或自由同步状态的压力机同步的方法的示意图;
图12是对可包括于改良压力机线发明的另一实施例中的包括飞轮和离合器的改良机械压力机进行操作的方法的示意性流程图;
图13是对根据改良压力机线发明的另一实施例的改良机械压力机进行操作的方法的示意性流程图;
图14是对根据包括混合型压力机的改良压力机线发明的一实施例的改良机械压力机进行操作的方法的示意性流程图;
图15是示出其同步状态可在压力机循环期间改变的压力机及装载器/卸载器的从设备或自由同步状态的示意性流程图;
图16是示出关于DP和UC角的位置的双向压力机循环的部分的示意图;
图17是示出了根据本发明另一实施例的改良压力机线的示意图,其中机器人控制单元包括用于压力机和其它设备的同步计算装置和控制指令生成装置。
图18是三角模式的机器人-压力机-机器人同步的示意图;
图19是根据本发明另一优选实施例的改良压力机线的双向压力机循环的速度分布;
图20是根据本发明另一实施例的改良压力机线的压力机循环的部分中相对两个压力机的机器人同步的示图。
具体实施方式
如上所述,图2示出了根据现有技术的压力机线布局。首先将描述该现有技术配置的布局,以便简化对根据本发明的改良的说明。图2示出了压力机99,其配置有用于该压力机的主电驱动马达的驱动器101(或电驱动控制器101)。压力机的运动由压力机控制器110控制。压力机控制器110包括压力机控制器PLC(PLC,可编程逻辑控制器)111。压力机控制器110控制供给驱动器101的功率,可以接收来自分布式I/O设备112、来自编码器113或传感器的输入,并且还可以配置有压力机HMI 114(人机接口),即压力机控制面板或图形化压力机控制面板。
单独的控制器即压力机安全控制器120被配置成连接到所有压力机安全开关、以及配置在压力机上或其周围的紧急停止开关。压力机安全控制器120包括压力机安全控制器PLC 121,其也连接到马达驱动器101,并且配置成在通过断开开关或通过按压警报或紧急按钮而检测到不安全情形时停止压力机运动。压力机安全控制器PLC 121也连接到离合器和制动器操作阀或开关126,并且也配置成在出现不安全情形时停止压力机运动。压力机安全控制器PLC可以从安全设备如紧急停止按钮122、门开关123、光帘(light curtain)124、安全块(safety block)125和/或从离合器和制动器阀126接收输入。
图1示出了根据本发明一实施例的改良压力机线的示意性布局。该布局或控制拓扑结构将压力机设置为自动化系统中的集成部件,而非将其设置为附加到自动化系统的设备。
图1示出了简单的压力机线,包括一个改良机械压力机100的简单单元。压力机100配置有用于该压力机的主电驱动马达的驱动器101(或电驱动控制器101)。如同图2的现有技术一样,压力机的运动由压力机控制器110控制。然而,在根据本发明一实施例的控制层次的较高级别,压力机100的运动还由自动化控制器200控制,其中自动化控制器200可以是PLC。自动化控制器200通过控制现场总线117连接到第一装载设备118、压力机控制器110、以及第二装载或卸载设备119。自动化控制器200可以配置有装载HMI 115,以便对压力机装载操作进行控制、编程和/或监视,并且/或者配置有卸载HMI 116,以便对压力机装载/卸载操作进行控制、编程和/或监视。自动化控制器200还可以配置有用于压力机线的控制、编程和/或监视的HMI 214。
图1还示出了单独的自动化安全控制器128,其可以是PLC。自动化安全控制器128通过安全现场总线127连接到压力机安全控制器120,并且由此连接到安全控制PLC 121、以及两个装载设备118、119。在该示例性视图中,示出了机器人118是装载设备,而第二机器人119作为卸载设备工作。工作流方向如箭头F所示从左向右。如该图所示,压力机线的所有安全功能由一个控制器即自动化安全控制器128控制。压力机控制器110可以以与现有技术相同的方式连接到单独的压力机安全控制器120,以便如果在断开开关或者通过按压警报或紧急按钮而检测到不安全情形时停止压力机运动。压力机控制器110可以配置有用于压力机运动的控制和/或监视的压力机HMI 114,例如图形用户接口。诸如压力机控制器111的控制器可以是PLC或者可以是任何适合的工业控制器、工业PC、耐震PC或工业处理器等。
图1的布局或控制拓扑结构的一个重要方面是自动化控制PLC 200通过控制现场总线117连接到压力机控制器PLC 111。它还连接到装载/卸载设备即机器人118、119的控制器(未示出)。在该控制拓扑结构中,由自动化控制器200控制的任何控制对象可以被配置成作为任何其它设备的从设备进行控制。这样,在压力机循环中的任何点,压力机110可以作为装载机器人118的从设备进行控制,或者相反;卸载设备119可以作为压力机100的从设备进行控制,或者相反。例如,根据不同的设备到达下列位置的时间,可以在任何给定的压力机循环中安排根据本发明一实施例的控制信号的时序:
-压力机到达卸载位置;接着
-卸载器机器人移动以卸载工件;在清除时,接着
-装载器机器人移动到新工件;在离开压力机时,接着:
-压力机通过模具保护位置,并且运行新压力机循环。
图15示出了同步的示意图,其中一个第一设备作为另一个设备的从设备工作,即处于从设备状态,或者在“自由”状态下工作,其中该设备不是另一个设备的从设备。这样,在针对压力机的高层,该图示出了压力机可以在循环期间改变其同步状态:
-从压力机自由(pf)开始,刚好在卸载凸轮(UC)之前变成
-压力机与装载器同步(p s to L),直到模具保护(DP),接着
-压力机自由(pf)...
接着,位于中层的卸载器设备或机器人的同步状态被示出为
-在DP之后,设为卸载器自由(UL f)
-接近UC,设为卸载器与压力机同步(UL s to p)
-在UC之后,设为卸载器自由(UL f)
-在接近DP之前,卸载器将角色切换为用于下一压力机的装载器,并且与下一压力机的卸载器同步(UL>L next p,s to n UL)
-在DP之后,设为卸载器自由(UL f)。
接着,位于最低层的装载器设备或机器人的同步状态被示出为
-接近UC,设为装载器自由(L f)
-在UC之后,设为装载器与卸载器同步(L s to UL)
-在卸载器开始离开压力机之后,将装载器设为装载器自由(Lf),并且
-在DP之后,装载器将角色切换为用于前一压力机的卸载器,并且与前一压力机同步(L>UL prev p,s to pp)。
在这些同步模式中,压力机或诸如装载器/卸载器的设备可以仅具有从设备状态或自由状态。
图18示出了同步机制,其中压力机或其它设备或机器人可以是主设备和/或从设备。该图在左边示出了机器人R1可以是压力机1的主设备,即R1作为装载器工作,并且压力机1与R1同步。在循环的后继或其它或重叠部分,压力机1是机器人R2的主设备,机器人R2担当压力机1的卸载器。对于循环的这一部分,卸载器运动由压力机1的前进支配。机器人R2也可以是压力机2的装载器。在这种情况下,第二“三角形”,在对压力机2装载时,机器人R2是压力机2的主设备。接着,压力机2又变成其卸载器即机器人R3的主设备。在上述压力机循环的开头,装载器机器人1作为卸载器机器人R2的从设备工作,仅仅在卸载器机器人R2开始离开压力机时,才完全进入压力机。这样,在循环的一个部分期间,压力机或其它设备可以具有主设备的同步状态,而在该循环的另一个(或同一或重叠)部分期间,它可以具有从设备的同步状态。还示出了诸如机器人R1、R2等的设备可以具有多于一个角色,并且在循环的一个部分用作一个压力机的卸载器,而在该循环的另一个部分用作装载器。下面还结合图17即机器人控制单元包括同步功能的实施例来描述此方法,其中机器人或压力机可以在压力机循环的一个部分作为从设备被驱动,而在同一压力机循环的另一个部分自由运行、或者作为主设备进行驱动。
根据本发明的另一个重要方面是使用能够具有可变压力机循环的改良机械压力机,如在美国60/765183中公开的伺服压力机和/或在WO/SE2006/050055中公开的混合型压力机。可以以可变化控制的速度来驱动并且因此控制这样的压力机,以便使压力机运动与其它设备的运动同步。一旦离合器接合并且压力机循环的运动开始,传统的具有飞轮和离合器的机械压力机就具有固定的运动循环。这样,通过组合上面结合图1所述的改良压力机控制拓扑结构并且将其应用到变速压力机上,实现了改良压力机线,其具有可用于对质量要求和/或生产和/或能量使用约束进行优化的更多的自由度。
典型地,通过连续地使“从”机器人的运动与“主”机器人的运动相适配来实现两个机器人之间的同步。这样,如果在任何时刻主机器人的运动由于某种原因而延迟,则该延迟立即反映到从机器人的运动中。以同样的方式,如果主设备在任何时刻加速,则该偏差也被从设备模仿。如果主设备的运动相对平稳,则这种同步正确地起作用,即,从设备接收运动基准,而没有太多噪声或者期望平均值左右的变化。让其起作用的另一个条件是从设备应该具有足够的与其质量或惯性相关的可用功率,以便使其能够遵循主设备的运动。主设备和从设备是具有类似运动能力的类似机器时通常是这样。
因为与压力机惯性相比,压力机驱动器仅仅具有有限的可用功率,所以使压力机与装载器机器人同步的情况更具挑战性。可能是在要求压力机与装载器同步的压力机循环部分的期间,它可能以全马达转矩工作,首先将压力机减速到静止,然后可能将压力机反转到下一压力机循环的期望开始位置,并且最后将压力机从静止加速直至高速度。在以正或负全运动转矩的这些运动部分之间,可能存在短的压力机静止或恒速(零转矩)的时段,但是在很多情况下,该工作使用全转矩,以获得最短可能压力机时间(例如,参见图8(现有技术)、图9中的T2)。此外,只要充分地打开压力机,以便卸载器和装载器机器人在压力机内自由地移动,就可能不需要使压力机运动与装载器(或卸载器)运动相适配。例如,这不同于装载器与卸载器同步,其中需要连续同步,以便在装载的某个时间期间使装载器尽可能地接近于卸载器。压力机与装载器的同步应当仅仅确保在一个时刻(装载器运动中的一个位置),压力机位于特定点DP。
在压力机驱动器使用全转矩的运动分布中,由于下列原因,传统方式的同步是不可能的或不期望的。通常优化压力机的运动分布,以便给出最短可能循环时间。为此,压力机-在不依赖于装载器机器人的运动部分中-必须以最高的可能或容许速度运动。这样,在装载器离开压力机的点,即,压力机与机器人的同步停止的点,压力机必须已经处于非常高的速度。为了达到该速度,驱动器典型地必须从开始位置以全转矩加速。在该运动部分中使压力机减速(以便同步)的任何企图将负面地影响该循环的非同步部分中的压力机运动的持续时间。因为驱动器已经给予全转矩,所以进一步加速压力机以便同步的任何企图可能失败。
发明人已经确定装载器机器人的运动,特别是该运动的最后部分是高度可预测的。不考虑机器人的精确运动,将提前例如一秒以上充分知道在什么时刻装载器机器人将离开压力机。可以使用该知识来以这样的方式预先计划压力机的运动,使得不仅压力机在机器人离开压力机的同一时刻达到期望的同步点,而且压力机以非常高的速度达到该点以便获得最短可能循环时间。根据在达到这样的同步点之前剩下多长时间,通过使用下列方法中的任何一种或任何组合,可以将压力机的运动调节成以最优方式达到同步点:
-转矩改变、速度改变;
-在适当点(位置、时刻)暂停运动(一段时间的静止),如
-在最初计划的运动中没有暂停的点引入暂停;
-增加暂停的持续时间;
-减小暂停的持续时间;
-运动中的反转的改变,例如
-在运动中引入最初没有的反转部分(单向压制,从单向运动改变为“交替双向”运动);
-压力机改变旋转方向的一个或多个位置的改变(适用于双向运动和“交替双向”运动两者);
-去除反转部分;
-没有零速点的运动中的最小速度点的改变(假定连续压力机运动,其中使压力机减速,以便向卸载器和装载器给予时间);
-在压力机循环结束时更早地或更晚地减速。
这样,在一实施例中,可以如下配置控制层次:
1:压力机的卸载器机器人从设备;接着
2:卸载器机器人的装载器机器人从设备;接着
3:装载器机器人的压力机从设备;
其中,在第一级别可以以高精度来预测压力机将到达卸载凸轮位置的时间,以便进行同步。第三级别特别地采用压力机运动的变速控制的能力,其对于上述类型的伺服压力机或混合型压力机可用。
图3示出了根据本发明另一实施例的改良压力机线。同样,每个设备控制器连接到控制现场总线117,并且从属于自动化控制器PLC 200。自动化安全控制器、压力机线HMI和安全现场总线将如图1所示,但是已经从图3中省去以便简化该图。示出了自动化控制器PLC 200被配置成控制三个压力机100a-c。压力机100a配置有装载器机器人118a和卸载器机器人119a。卸载器机器人119a还可以用作第二压力机100b的装载器,在这种情况下可以将其表示为119a/118b,以表示这种多于一个功能的可能性。压力机100a如前所述配置有压力机控制器110a和安全控制器120a,其将如图1所示连接到安全现场总线(未示出)。
示出了改良的电驱动控制器配置210。示出了压力机100a-c的三个驱动马达Ma-c,每个由诸如驱动器101c的驱动设备供电。在该示例中,该电驱动设备是可以以受控方式向马达供给功率的转换器。通过该改良,所有三个转换器由一个整流器201即诸如逆变器的单个功率设备供电,其中该单个功率设备向一个或多个马达供给功率,每个马达驱动多个压力机中的一个。多驱动器可以任选地包括一个或多个逆变器。这样的多驱动器201还可以任选地向其它压力机线设备供给功率,如液力泵、冷却设备、转移设备、转盘等。功率供给装置包括与电力网的连接PWR、以及功率管理设备、装置或功能。例如,限制飞轮马达加上辅助第二马达的总功率或峰值功率的功率限制器装置。用于处理模具信息的单元或功能D、以及用于同步机器人运动的单元或功能SC与功率供给装置的控制功能相关联。单元或功能D还例如通过控制现场总线117连接到自动化控制PLC200。模具信息处理功能D还可以包括在自动化控制器PLC 200内,或者可以以与SC功能可分布的方式类似的某种其它方式分布。
用于设备、机器人和压力机运动的同步计算(SC)的功能可以包括在独立的单元内,如图中的SC所示。同步计算和用于同步功能的算法可以任选地包括在用于控制机器人118、119等的一个或多个机器人控制单元中(参见下面图17的实施例)或包括在驱动器101a-c之一中、或在多驱动器210中。该功能还可以以某种方式分布在系统中。同步计算功能SC典型地在必要时使用来自一个或多个压力机、机器人及其它设备的位置信息来计算用于与运动同步操作和与点同步操作的同步数据。
根据本发明的一个或多个实施例,诸如图3的压力机线的改良压力机线可以包括一个或多个改良压力机。例如,一个或多个压力机可以包括在压力机线内,其中多个压力机对相同或相关产品操作。在压力机线环境中,适用于优化单个独立压力机的压力机循环的优化和协调方法中的一些可以扩展于多种工艺上。这样,例如,所回收的能量可以由其它机器而不仅仅由一个独立的改良压力机消耗。可以优化或协调多于一个机器的组合峰值功率或能量使用,以例如减少总的峰值功率消耗、或者减少功率使用中的潜在破坏性峰值或尖峰。这样的对压力机线的总体功率使用的考虑还可能引入对加速、减速时间等的约束,其可以在如参考图7b-d所述的给定压力机循环或方法中被考虑到。例如,为了实现生产循环的最短可能时间,如在图13的步骤60中,尽可能快地对压力机加速;但是可以将该加速改变为小于最大值,以避免整个压力机线的瞬时功率峰值。第一加速步骤60可以不是线性的,并且可以被配置成与一时间段,即装载器插入工件所需的时间量相匹配,并因此花费至少给定时间而达到DP角而非最大和/或直线加速。类似地,通常例如结合图13的步骤62、66而执行的再生制动可以配置有这样的约束,即将返回能量提供给同一压力机、另一机器、压力机线或电网中的任何一个。可以围绕改良压力机的其它方面配置压力机之间的这种协调或优化。例如,在优化压力机线时,可以选择或者调整每个压力机上运行的每个压力机循环中的开始/停止位置。这允许以更大的自由度来配置压力机线的最优总生产时间。
图5示出了根据本发明一实施例的改良机械压力机的示意性布局。它以简化的方式示出了压力机压头23、偏心驱动轮27、压力机齿轮机构29和电驱动马达22。它还示出了马达电源和控制装置22a和21b。该图示出了压力机压头23,其由偏心驱动轮27或曲柄和连杆25以上下运动S来驱动。偏心驱动轮反过来由压力机齿轮机构29驱动,压力机齿轮机构29以简化的横截面示出,其中齿轮齿用交叉影线表示。由驱动马达22通过压力机齿轮机构来驱动偏心轮。可以是伺服马达的驱动马达22配置有逆变器22a和整流器21b,其连接到电网或电力网(未示出)。其它马达控制装置可以替代。该图还示出了任选的紧急制动器31a和任选的齿轮箱33,需要时可以将其中的任一个添加到压力机。应当观察到,该实施例通常不包括飞轮和离合器。
图5示出了压力机压头23,其由偏心驱动轮27或曲柄和连杆25以上下运动S来驱动。其它机械传动是公知的,其中一些适于从马达传送动力并且机械地驱动滑块。例如,滚珠螺旋系统,用于将来自压力机中的变速电马达的旋转驱动运动转变为压力机滑块或压头的线性运动。类似地,特定双连杆和/或关节机构还可以替代为偏心机构。
驱动马达可以具有如同所示的交流电源,或直流电源。马达速度控制装置可以是频率转换器、如同所示的逆变器/整流器、或者其它马达速度控制装置。所示实施例具有相对大的驱动马达。可替换地,使用较小的马达,并且将其布置在包括额外惯性的配置中。该额外惯性可以采取小的恒定连接的飞轮、或具有高惯性的马达、或高惯性齿轮箱33或其它机械装置的形式。该额外惯性还可以是以某种方式可变的或可拆卸的。
图6示出了如WO/SE2006/050055中所述的改良混合型压力机。除了用于驱动压力机的飞轮35的第一驱动马达20之外,它还包括至少一个第二驱动马达22。在该示例中,一个整流器21b向至少两个逆变器21a、22a供电,逆变器21a、22a分别向飞轮驱动马达20和辅助第二驱动马达22供电。与功率在由马达消耗之前从一个整流器传递到另一整流器的拓扑结构相比,该配置具有较低损耗的优点。取而代之,功率通过整流器21b和逆变器21a、22a之间的共享直流链路从一个马达去往另一个马达。示出了任选的齿轮箱39、以及任选的紧急制动器31。
以传统的机械压力机来简要地讨论图4的现有技术。图4还示出了根据现有技术的传统压力机循环的示意图。压力机循环通常在上止点或者说TDC开始,并且例如以顺时针方向移动。在压力机在预压制阶段开始关闭时,出现这样的点,在其之后压力机已经关闭到如此程度,使得不再有足够的间隙来装入工件而不损坏压力机模具或装载器。按照曲柄角测量的该点被称作模具保护或模具保护角DP。(该点可以用其它术语以其它方式引用,例如,压力机冲程中的位置、压头和模具之间的离TDC或BDC的直线距离等。)压力机循环向着180度和下止点BDC继续。撞击工件,点I,并且在压制阶段P期间对工件进行压制或模锻、冲孔、深冲压成形等。该循环以顺时针方向继续而通过下止点BDC,并且压力机打开并达到点UC,即卸载凸轮。卸载凸轮角(UC)在此用来表示在成型之后充分打开模具以取回和卸载部件的限制点或时间。模具保护角和卸载凸轮角两者都可以随着不同物品的生产而在一定程度上变化,典型地取决于所使用的毛坯、以及通过模具对毛坯向下冲压成形的深度、以及压力机冲程的长度。
从图4的循环图中可以看出,为了卸载已加工的工件或装载新的毛坯、工件而接近压力机是在UC和DP之间的时间T1期间。即使压力机可能在循环之间停止,该时间也是受限的,并且通常被计划成尽可能短。可用于卸载/装载的时间由DP和P之间、以及同样地压制P和UC之间的时段C来限制。传统压力机循环中的所有点DP、P、DC是固定的。
图9示出了改良压力机生产循环的其它方面,其涉及将毛坯或工件装载到压力机中,并且随后在压制(模锻、冲孔等)阶段之后移除工件。在压力机循环开始时压力机是打开的并且可以装载毛坯。当压力机在预压制阶段开始关闭时,出现在此被称作模具保护角的点DP。相应地,在压制阶段之后的非压制阶段也存在一个点,在其后压力机已经充分打开,使得可以移除工件而不损坏工件或模具。按照曲柄角来测量的该点被称作卸载凸轮角。卸载凸轮角(UC)在此用来表示在成型之后模具正在打开并且已经打开得足以取回和卸载工件的限制点或时间。模具保护角和卸载凸轮角两者都可以随着不同物品的生产而在一定程度上变化,典型地取决于所使用的毛坯或工件、以及通过模具对工件向下冲压成形的深度。
因此在图9中,所示的压力机循环的阶段包括预压制阶段、压制阶段和后压制阶段。可以如此描述压力机循环:
●第一非压制阶段,正常加速,使得尽快达到最大压力机速度W1,或在同步时,在DP加速到尽可能快但与卸载机的到达同步的速度,并且在DP之后加速到W1;
●第二阶段保持最大压力机速度W1;
●第三非压制阶段尽可能晚地减小到Wp;
●压制阶段,具有目标压制速度,例如Wp
●在压制阶段内,根据特定的模锻/冲压成形/压制技术,目标速度Wp可以减小并且/或者保持静止;
●第四非压制阶段尽可能快地(正常)加速到W1;
●第五非压制阶段保持高速度,例如W1;
●在同步时,例如以压力机作为卸载器设备或机器人的从设备而减速到UC;
●第六非压制阶段,尽可能晚地将速度减小到零,从而使压力机在所需位置停止。
由改良控制方法提供的改良压力机循环通过缩短执行DP和UC之间的压力机循环的非压制部分所占用的时间,使生产循环的总时间短于现有技术的传统机械压力机的生产循环时间。具体而言,通过以诸如W1的增大速度来运行驱动马达,以便以大于压制速度Wp的速度驱动偏心轮,然后减小到偏心速度Wp或在循环结束时减小到零,可以缩短以T2表示的从最晚装载点DP到最早卸载点UC的时间段,这是。这通过与图8(现有技术)相比较的图9的速度分布中的T2时间差即ΔT2示意性地表示在该图上。虽然改良压力机循环主要是按照一个循环或单独的多个循环来描述的,但是其可以应用于单冲程操作和/或连续操作。在后者的情况下,压力机在生产循环之间根本不停止。
图10是根据本发明一优选实施例的操作改良压力机线的方法的流程图,其中该压力机线包括混合型机械压力机,该压力机包括至少一个第二驱动马达。该方法示出了压力机循环,包括压制阶段和多个非压制阶段。还可以将该方法描述为包括预压制阶段、压制阶段和后压制阶段,并且在这种情况下,其是在压力机循环的结束时具有反转运动的实施例。该流程图包括下列用于控制改良压力机线的压力机的块。
139压力机在开始之前等待基于同步而算出的时刻;
140a尽可能快地加速压力机,以便例如与卸载器同步,并且以高速度到达DP;
140b在DP之后尽可能快地加速到最大速度W1;
141维持W1;
142尽可能晚地将第二马达减速到压制速度Wp;
142.5接合飞轮和偏心轮之间的离合器,具有或不具有位置/速度同步;
143在压制阶段p期间,除非压制/模锻工艺所需的变化例如在压力下保持时间THS,将目标速度设置为Wp,;
143.5分离飞轮和偏心轮之间的离合器;
144将第二马达加速到W1;
145尽可能长地将第二马达维持在W1;
147准备在下一循环中与装载器同步;
148将第二马达反转到为了在下一循环中与装载器的最优同步而选择的开始位置。
150循环返回到139(否则停止)
因此,当在压力机线中存在混合型压力机即包括第二驱动马达以及第一(飞轮)驱动马达的压力机时,可以执行同步,其中第一马达(20)不总是机械地耦合到所述压力机,并且其中第二马达(22)总是机械地耦合到所述压力机。
图11示出了在循环结束时、在下一压力机循环开始之前,当反转压力机某个距离时,压力机线中的压力机的控制方法。还参见图16的示图,其示出了第一(顺时针)旋转方向RC和第二(逆时针)旋转RAC。这种交替双向循环的优点是允许直至模具保护的较长的加速期。因此,步骤40到47类似于图10的步骤137-149。
图12示出了以第一马达20即压力机线中的混合型压力机的飞轮马达为特征的控制方法。它示出了块51,其中当在压制阶段P接合离合器52之前,需要时可以将压力机的第二马达与第一马达20即飞轮马达同步。它还示出了如何在压制阶段之后,在54通过离合器分离飞轮,从而可以比Wp更快地驱动压力机。
图13描述了在不使用同步时,压力机线中的压力机的控制方法。该方法开始于:
60例如尽可能快地从开始加速到W1;
61将马达速度维持在最大速度W1;
62尽可能晚地将马达速度从W1减小到压制速度Wp;
63根据所需的冲压成形/模锻/弯曲/压制工艺,将马达目标速度设置为压制阶段P的Wp,或者设置为可变压制速度(例如,63″);
64第四非压制阶段,例如尽可能快地加速到W1;
65第五非压制阶段,将马达速度尽可能长地维持在最大速度;
66第六非压制阶段,减小到零。
该方法可以应用于改良伺服型压力机以及混合型。应当注意,在混合型压力机的情况下,如果要在压制期间减小压制速度,或者在压制阶段P期间压力机在压力下保持静止,则必须分离离合器以将飞轮从偏心轮脱离。
可以通过被称为场弱化(field weakening)的控制方法,控制多个驱动马达中的一个,以在压力机循环的一部分期间高速运行。
该方法包括控制改良压力机以便实现占用尽可能短的时间的总生产循环的步骤。可以将其它约束包括或者有条件地包括在上面用于控制压力机线的方法中,以便例如与压力机的装载/卸载要求协调或同步,和/或优化该压力机的峰值功率和/或能量消耗。例如,可以关于减速时段期间的再生制动以及加速来优化该峰值功率和/或能量消耗。
图13还示出了关于图10和11的流程图而描述的方法的变化。在特定操作中,例如在热模锻中,期望压力机在压制阶段63″期间停止,并且将工件在所施加的压力下保持一段时间,如THS所示。通常在BDC的位置或其附近执行该静止。包括一个或多个用于控制根据一个或多个实施例的改良压力机的附加功能步骤是简单的任务。
图14示出了用于将压力机与装载器设备或装载器机器人的运动同步的流程图。所涉及的驱动马达可以是单个驱动马达20或者第二或混合型马达22。该图示出了压力机循环,其开始于块:
40a向着WmaxDP加速,WmaxDP是到装载器在DP或者DP之前的时间点已经离开压力机时压力机可达到的最大速度;
40b接收装载器设备或机器人离开压力机的信号;
40c加速到最大速度W1;
41将驱动马达维持在W1。
装载器将离开压力机的时间是可预测的。控制单元计算在直到装载器在DP或刚好在DP之前离开的时间段内驱动马达的最大加速度。驱动马达如此加速,但不会在预测时间之前关闭压力机。
可以通过利用再生制动来改良或者平稳压力机的驱动马达的电能消耗。可以部分地通过再生制动来将马达减速到减小的速度或零速度。例如,在第一预压制阶段期间,马达速度从W1减小到Wp,并且在压制之后马达速度从W1减小到零。根据本发明一实施例的包括改良压力机的系统可以包括能量回收装置,其用于例如在减速或制动期间从马达回收能量。能量回收还可以配置成在系统动能的任何其它减小期间进行、或者在诸如压力机系统的惯性变化期间的部分进行。能量回收装置可以是任何回收装置,例如电的、机械的或化学的。例如,在图3中示出了能量管理设备/系统210,其可以包括功能和/或设备的组合。能量回收和管理可以涉及一个或多个电容器、电池、机械设备如飞轮、机械弹簧、或者包括可压缩流体的储蓄器的设备的使用。例如,存储在压力机的飞轮中的能量可以由另一个压力机的驱动马达20或22在能量优化方法中使用,或者在压力机循环的一部分期间由第二马达22使用以减小功耗。
所存储的能量主要在压力机循环的下列时段中的一个或多个时段期间再利用:压力机循环开始时的初始加速;压制;压制之后的再加速。所回收的能量还可以或可以替代地反馈到供电网。图3示出了向三个逆变器供电的一个整流器,这三个逆变器中的每个为100a-c所示的三个压力机的驱动马达Ma-c供电。与功率在被马达消耗之前从一个整流器传递到另一个整流器的拓扑结构相比,该配置具有较低损耗的优点。取而代之,功率通过整流器201和压力机100a-c的逆变器101a-c之间的共享直流链路从一个马达去往另一个马达。
在例如汽车工业中,典型的产量意味着改良压力机线的能量优化特性在例如减小能量消耗方面可能是非常有益的。然而,改良压力机线还可以用于需要机械压力机的其它模锻、切割、冲切(blanking)、开槽、压制或深冲压成形应用,以及甚至某种使用液压机的应用,如生产家庭用具或白色货物、工业用架(industrial shelving)、金属覆层面板、金属箱和金属家具、以及冲切硬币或铸造硬币的应用。
除了为用于成型、弯曲、模锻、冲孔、深冲压成形出金属部件等的压力机提供改良压力机线之外,包括本发明的一个或多个实施例的特征的压力机线还可以用来由塑性材料形成部件。包括如前所述的一个或多个改良机械压力机的改良压力机线还可以配置成适于模制塑性材料,热塑性和热固性塑料和/或聚合物混合物和组合物。热塑性塑料允许使用注模、热成型、吹模、挤压及其它加工技术。例如,至少注模机的压力机功能部件、模具支持器和模具夹紧功能可以由根据本发明一实施例的机械压力机实现。热塑成型压力机可以包括高速伺服控制马达,其给予压力机这样的能力,即在模制加工速度典型地达到100ipm时,以高达1,000ipm执行快速关闭。压力机可以具有几百吨直到1500吨压力或更大的中等大小。
热固性塑料在聚合物分子之间形成化学键,也被称作交联,或者在应用于橡胶材料时有时被称作硫化。某些热固物可以通过加热而进一步聚合。可以将诸如酚醛塑料和环氧树脂的材料注射或转移到热模内或挤压在热模内。RIM模制聚氨酯(反应注模)要求模子内的受控化学反应。当各成分在进入模子时混合并且反应时,由于模子也是聚合反应容器,因此不仅制造出部件,而且产生了塑性材料。聚氨酯RIM加工可以产生从非常柔性的泡沫芯部件变化到刚性实心部件的部件。部件密度也可以广泛地变化、具有从0.2到1.6的范围内的比重。在汽车工业中,该工艺广泛地用于诸如仪表板的内部部件以及诸如遮光板、挡泥板、减震器的外部部件。液压机通常用于压模。由于可以容易地改变压力机循环的参数以适应可根据塑性材料的工艺要求和部件的壁厚等而变化的产品,因此本发明是非常适合的。例如,为了调整停留时间,使用改良压力机而容易地配置模具在压力下静止的静止时间。压力机可以配置成用于范围从几秒直到一小时以上的加热或固化周期。由于因电压力机马达的伺服控制而导致的在压制工艺期间精确速度/位置控制的机会增加,改善了模制尺度容限。用于压模的压力机大小也可以是中等大小,从几百吨直到2000吨或更大。
这样的塑模压力机线可以将卸载器或其它设备与压力机同步。还可以将压力机与压力机线中的卸载器、修整器、堆叠机或其它设备同步。通过机器人将塑性材料装载到模具中以便进行模制对于大多数塑性材料将是不必要的,但是机器人或操纵臂可以用来将插入物等放置到模具中,然后在插入物的周围对塑料进行模制。可以通过卸载器或机器人卸载器移除模制产品并将其转移到剪裁、清洁、浇口去除工具或类似工艺。还可以通过机器人或其它设备来堆叠模制部件、或将其转移到另一工艺。
根据本发明的另一实施例,控制压力机的驱动马达,以便在改良压力机循环中操作压力机,其中该压力机循环扩展到大于360度的曲柄角或按照压力机打开距离表示的等效值。传统的机械压力机具有最大360度的压力机循环,并且典型地在上止点(TDC)开始和结束。
图7a示出了现有技术的标准压力机循环。它示出了一个旋转方向上的360度循环。该循环在0/360度开始和停止。示意性地表示了DP和UC的相对位置。
图7b示出了一般实施例。在图7b上表示了T1即UC和DP之间的时段T1的位置。图7c示出了压力机双向工作的实施例。顺时针循环SC,实线,从大约10点钟的Start 1开始,并且顺时针继续到大约2点钟的DPC,环绕直到大约10点钟的UCC,并且在大约2点钟的Stop 1结束。根据工艺或产品要求,开始/停止位置可以比图中所示的位置更靠近TDC,但是很少比UC角更远离。类似地,压力机接着以相反方向旋转,虚线,从大约2点钟的Start 2开始,并且逆时针继续到大约11点钟的DPAC,继续环绕到大约2点钟的UCAC,并且在大约10点钟的Stop 2结束,其中Stop 2与顺时针旋转的Start 1位置是同一位置。
图7d示出了可替换实施例,其中压力机经由大于360度的压力机循环以第一旋转方向旋转。然后,在生产循环结束时,压力机反转到开始位置。这是在图10中以流程图示出的那种类型的方法。图7d示出了大约10点钟的Start,其顺时针(实线)运行到大约1点钟的DPC,顺时针环绕到大约10点钟的UCC,继续到在大约2点钟的Stop结束。然后,压力机以逆时针方向将RAC反转到大约10点钟的开始位置。开始和停止位置可以如上面示例所示关于TDC对称地安排,或者不关于TDC对称地安排;并且开始和停止还可以设置得比图中示意性示出的更靠近于TDC。通常不将开始/停止设置得与UC角或其附近相比更远离于TDC。
根据本发明的另一实施例,提供了对用于操作包括电驱动马达的机械压力机的方法的改良,其中压力机在连续的压力机生产循环操作之间向后运动,而不是每隔一个循环改变压力机操作的旋转方向。该实施例对于由于设计或其它原因而不能在完整的压力机循环内反向驱动的压力机是特别有利的。
根据本发明优选的另一实施例,提供了对用于操作包括电驱动马达的机械压力机的方法的改良,其中部分地由机器人控制单元控制压力机。图17示出了用于压力机线的简单的单个压力机示例,其中两个机器人控制单元还包括用于压力机的控制装置。图17示出了在装载器位置配置有机器人118和在卸载器位置配置有第二机器人119的压力机100。机器人118由机器人控制单元218控制,并且机器人119由控制单元219控制。在本例中示出压力机100具有两个驱动马达,这两个驱动马达可被视为如图6所示的20、22。自动化控制器200是如图1、3所示的用于压力机自动化的监控控制器,并且如前所述通过现场总线,在本例中为Profibus 117,与压力机控制器110通信。另外,自动化控制器200与每一个机器人控制单元218和219通信。两个机器人控制单元通过另一个现场总线连接,如该示例所示,该现场总线可以是设备网DN连接。包括在机器人控制器218中的机器人控制器同步功能RS主设备通过Profibus线117′连接到RS从设备1和RS从设备2。机器人控制单元219还包括RS主设备和RS从设备。
在该实施例中,在机器人控制单元218、219中执行对同步和压力机的某些必要速度基准的计算。至少一个机器人控制单元218、219配置成能够控制机器人外部的轴。这样,在压力机循环的至少一个部分期间,机器人控制器控制压力机,如同其是该机器人的附加轴一样。例如,在图17的图解中,控制方案可以包括如下步骤:
a)控制单元218计算机器人118(作为装载器)的路径,
b)控制单元218计算W1的值,
c)控制单元218在压力机循环开始的第一W1速度部分将速度基准发送到压力机驱动器(还参见图9),这意味着压力机速度被控制,以便:
(i)加速,使得尽快达到最大压力机速度W1,或在同步时,在DP加速到尽可能快的速度,但是与卸载器的到达同步,以及
(ii)在DP之后加速到W1,
(iii)尽可能长地维持在W1。
还应当注意,在第一阶段,(i)在进行卸载的时间期间,可以将压力机和装载器机器人作为卸载器的从设备来驱动,然后在进行装载的时间期间,压力机变为装载器的从设备。
图19是根据另一优选实施例的改良压力机线的双向压力机循环的速度分布。该图示出了用于计算压力机循环中的马达速度W的设置点的一个方法。在所示压力机循环中,马达在Z1通过零点,并且反转到最大负速度Wr,然后减速并在Z2通过零点。可以为最大速度W1、在DP的速度WDP、以及压制期间的速度Wp计算设置点。这些设置点可以由计算和生成同步控制信号的机器人控制单元生成,如,图17所示的配置中的控制单元218、219。
图20示出了采用改良压力机线、在压力机循环的部分期间、相对两个压力机100n和100n+l的机器人同步的示意图。该图用箭头F表示从左到右的工作流方向。同步运动在SS开始并且在ES结束。这示出了一个同步策略的目标,即机器人应当刚好在压力机通过可以进入压力机以对其卸载的位置(卸载凸轮UC)时,到达等待卸载的点。就压力机循环而言,该图的圆形部分示出了循环同步运动SS在大约1点钟开始,并且刚好在大约10点钟之前的ES结束。
一个或多个微处理器(或处理器或计算机)包括中央处理单元CPU,其如参考例如图10-14所述执行根据本发明的一个或多个方面的方法的步骤。借助于一个或多个计算机程序执行该一个或多个方法,其中该一个或多个计算机程序至少部分地存储在该一个或多个处理器可访问的存储器中。应当理解,用于执行根据本发明的方法的计算机程序还可以运行在一个或多个通用工业微处理器或计算机而非一个或多个专用计算机或处理器上。
该计算机程序包括多个计算机程序代码元素或软件代码部分,其使计算机或处理器执行将方程式、算法、数据、存储值、计算等用于以下方法的方法:例如前面关于图10-14以及关于图9的速度分布所述的方法;在以多于一个旋转方向驱动压力机方面关于图7c、d和16所述的方法;以及在同步方面关于图15、17、18所述的方法。该程序的一部分可以如上所述存储在处理器中,但是也可以存储在ROM、RAM、PROM、EPROM或EEPROM芯片等或者其它适合的存储器装置中。这些程序的全部或一些还可以部分或完全地在本地(或集中)存储在其它适合的计算机可读介质如磁盘、CD-ROM或DVD盘、硬盘、磁光存储器存储装置上或其中,存储在易失性存储器中,存储在闪存中,作为固件来存储,或者存储在数据服务器上。还可以使用其它公知的适合介质,包括诸如Sony记忆棒(TM)的可移动存储器介质、以及其它可移动闪存、硬驱动器等。该程序还可以部分地从数据网络提供,包括诸如因特网的公用网络。所述计算机程序还可以部分地配置为能够或多或少同时运行在若干不同计算机或计算机系统上的分布式应用。
应当注意,虽然上面描述了本发明的示例性实施例,但是可以对所公开的解决方案进行若干变化和修改,而不脱离在所附权利要求中限定的本发明的范围。

Claims (70)

1.一种用于操作压力机线的方法,所述压力机线包括具有至少一个电驱动马达(20)的至少一个机械压力机、压头(23)、用于操作所述压力机的机械装置(27、25)、及用于加载(118)、卸载(119)或压制(100)的至少一个其它设备,并且所述压力机如此设置,使得在压力机循环的至少一个压制(P)或非压制部分期间改变至少一个所述电驱动马达的速度(W),特征在于所述压力机能够被配置作为所述至少一个其他设备的从设备或者所述至少一个其他设备能够被配置作为所述压力机的从设备,以使所述压力机的运动与所述压力机线中的所述至少一个其它设备的运动或位置同步并优化所述压力机线的循环时间。
2.根据权利要求1所述的方法,其还包括:在压力机循环的至少一个压制或非压制部分期间控制所述其它设备,以及使所述其它设备的运动与所述压力机、所述压力机线中的另一个压力机或另一个设备的运动同步。
3.根据权利要求1或2所述的方法,其还包括:控制所述压力机,以及在压力机循环的至少一个压制或非压制部分期间使所述压力机或所述其它设备的运动同步,其中所述压力机和所述另一个设备是设备的从设备或是自由的。
4.根据权利要求1所述的方法,其还包括:控制所述其它设备,以及在压力机循环的第一部分期间与所述压力机、所述线中另一个压力机或任何其它设备的运动同步,并在所述压力机循环的第二部分期间与不同设备的运动同步。
5.根据权利要求1或2所述的方法,其还包括:在压力机循环的第一部分期间,控制所述其它设备,以便与所述压力机线中所述其它设备下游的设备的运动或位置同步;以及在所述压力机循环的第二部分期间,通过控制所述其它设备的运动,使其与所述压力机线中所述其它设备上游的设备的运动或位置同步。
6.根据权利要求1或2所述的方法,其还包括:在压力机循环的第一部分期间控制所述其它设备,以使其工作得尽可能快;以及通过在所述压力机循环的第二部分期间控制所述压力机的运动,以使得尽可能快地操作所述压力机。
7.根据权利要求1所述的方法,其还包括:计算对设备(100、118、119)何时会到达所述压力机循环的部分中的特定点的预测。
8.根据权利要求7所述的方法,其还包括:将所述预测提供给另一个设备或控制器。
9.根据权利要求1所述的方法,其还包括:在压力机循环的至少一个部分期间使卸载器设备或机器人作为从设备与所述压力机同步,以及使装载器设备或机器人作为从设备与所述卸载器设备或机器人同步,以及使所述压力机作为从设备与所述装载器设备或机器人同步。
10.根据权利要求1所述的方法,其中所述其它设备是下列组中的任何一个:装载器、卸载器、机器人、另一个压力机。
11.根据权利要求1所述的方法,其中所述其它设备是至少一个装载器设备或设置成装载所述压力机的至少一个机器人。
12.根据权利要求1所述的方法,其中所述其它设备是至少一个卸载器设备或设置成卸载所述压力机的至少一个机器人。
13.根据权利要求9、10或11所述的方法,其中被设置成装载、相应地卸载所述压力机的所述装载器或卸载器设备或机器人还被设置为另一个压力机的卸载器、相应的装载器。
14.根据权利要求9或10所述的方法,其中所述装载器和/或卸载器设备被设置成作为一对来一起工作以便进行装载和/或卸载的两个设备或机器人。
15.根据权利要求14所述的方法,其中一起工作的所述两个设备或机器人中的第一个被控制作为从设备与一起工作的所述两个设备或机器人中的第二设备或机器人同步。
16.根据权利要求1、2、4和7-12中任一项所述的方法,其中机器人控制单元(218、219)计算机器人(118、119)的路径,并计算压力机的运动或位置,并将用于同步运动的控制值发送到压力机(100)的控制单元(110)或驱动单元(111)。
17.根据权利要求1、2、4和7-12中任一项所述的方法,其中机器人控制单元(218、219)计算机器人(118、119)的路径,并计算压力机的运动设置点值,并将转矩和/或速度和/或位置设置点值发送到压力机(100)的控制单元(110)或驱动单元(111)。
18.根据权利要求1所述的方法,其还包括:控制所述至少一个电驱动马达(20、22)的速度,以便对所述压力机的至少一个压力机循环进行优化。
19.根据权利要求1、2、4和7-12中任一项所述的方法,其还包括:控制所述至少一个电驱动马达的速度,以及依赖于以下的组中的参数来优化所述压力机线:下游工艺的状态、上游工艺的状态、总的功率或能量消耗、对功率消耗峰的平滑。
20.根据权利要求1所述的方法,其还包括:在压力机循环的至少一个部分期间控制所述至少一个电驱动马达(20、22)的速度,以便等待或者更慢地或以降低的功率要求或能耗来工作,同时在针对作为整体的所述压力机循环的目标时间内保持。
21.根据权利要求1、2、4和7-12中任一项所述的方法,其中所述压力机的压力机循环的至少一个压制或非压制部分期间的所述至少一个电驱动马达(20、22)的速度(W)被控制为不同的速度,并且大于所述压力机循环的压制部分期间的所述驱动马达的速度(Wp)。
22.根据权利要求1所述的方法,其中所述压力机循环可以沿生产循环的第一旋转方向执行,并延续曲柄角或偏心轮(27)旋转的360度以上。
23.根据权利要求22所述的方法,其中沿所述第一旋转方向(Sc)执行的所述压力机循环包括在每个完整压力机循环结束时反转所述驱动马达并沿第二旋转方向(SAC)操作的步骤。
24.根据权利要求1所述的方法,其中在一时间段内,所述驱动马达的速度被保持在比压制期间的马达速度(Wp)大的高速度或最大速度(W1)。
25.根据权利要求24所述的方法,其中所述驱动马达的速度从压制速度(Wp)减小,并在所述压力机循环的压制部分期间、在一时间段内趋于零速度。
26.根据权利要求25所述的方法,其中通过向所述驱动控制装置提供控制输出,所述马达被减速,且所述压力机在达到BDC或其周围时在一时间段(THS)内保持静止。
27.根据权利要求1或23所述的方法,其包括向第二驱动马达的所述驱动控制装置提供控制输出,以将所述压头移至每个压力机循环的循环开始位置,所述循环开始位置沿第二旋转方向(RAC)从前一压力机循环停止位置或零速度位置后退多度的曲柄角。
28.根据权利要求23所述的方法,其中所述压力机在第一压力机循环的停止(stop1)与第二压力机循环的开始(start2)之间从第一旋转方向(RC)向第二旋转方向(RAC)反转多度。
29.根据权利要求1所述的方法,其中所述马达被如此控制,使得在每个相继且完整的压力机循环之间,所述马达的旋转运动从第一旋转方向(C)反转方向到相反的第二旋转方向(AC)。
30.根据权利要求1、2、4、7-12、22-26和28-29中任一项所述的方法,其中部分地通过再生制动,使至少一个所述马达减速至降低的速度或零速度。
31.根据权利要求1所述的方法,其中所述驱动马达速度被可变地控制,以在到达卸载凸轮(UC)或其周围时为了同步而使压力机慢下来一时间段,并在到达下一压力机循环的模具保护(DP)位置或其周围之前使压力机重新加速。
32.如权利要求1、2、4、7-12、22-26、28-29和31中任一项所述的方法,其中所述压力机线包括至少一个压力机,所述压力机包括第二驱动马达或致动器,所述第二驱动马达或致动器设置为与所述压头如此连接,以便在压力机循环的至少一个部分期间通过向所述第二驱动马达的驱动控制装置提供控制输出来改变所述第二驱动马达的速度。
33.根据权利要求32所述的方法,其中所述第二驱动马达(22)的速度或位置被如此控制,以便在接合所述压力机的离合器(30)之前和/或同时与所述压力机的飞轮(35)或第一驱动马达(20)的速度或位置同步。
34.根据权利要求33所述的方法,其中所述离合器的操作与所述压力机的运动或位置同步,或与所述压力机的第二马达(22)同步。
35.根据权利要求33所述的方法,其中所述飞轮或第一驱动马达(20)被如此控制,以便为所述压力机或所述压力机线优化或最小化下列组中的任一项:峰值功耗、能耗、循环时间、任何组合。
36.一种包括压力机线的系统,所述压力机线包括具有至少一个电驱动马达(20、22)的至少一个机械压力机、压头(23)、用于操作所述压力机的机械装置(27、25)、及用于加载(118)、卸载(119)或压制(100)的至少一个其它设备,并且所述系统的所述压力机如此设置,使得在压力机循环的至少一个压制(P)或非压制部分期间改变至少一个所述电驱动马达的速度(W),特征在于,所述压力机能够被配置作为所述至少一个其他设备的从设备或者所述至少一个其他设备能够被配置作为所述压力机的从设备,以使所述压力机的运动与所述压力机线中的所述至少一个其它设备的运动或位置同步并优化所述压力机线的循环时间。
37.根据权利要求36所述的系统,其包括在压力机循环的第一部分期间控制所述其它设备并使所述其它设备的运动与所述压力机、为所述压力机线中另一个压力机的另一个设备的运动或位置同步的装置。
38.根据权利要求36所述的系统,其中装载器或装载器机器人是至少一个其它所述设备,而所述压力机被如此控制,以便在压力机循环的第一部分期间与所述装载器或装载器机器人的运动同步。
39.根据权利要求36或38所述的系统,其还包括用于在压力机循环的第一部分期间控制所述其它设备并与为所述压力机线中的所述压力机、另一个压力机或任何其它设备的设备的运动或位置同步以及在所述压力机循环的第二部分期间控制所述压力机的运动并与不同设备的运动或位置同步的装置。
40.根据权利要求36所述的系统,其还包括:在压力机循环的第一部分期间,控制所述其它设备,以便与为所述压力机线中的所述压力机、另一个压力机或任何其它设备的下游设备的运动或位置同步;以及在所述压力机循环的第二部分期间,通过控制所述其它设备的运动,以便使其与所述其它设备上游的不同设备的运动或位置同步。
41.根据权利要求36所述的系统,其还包括:针对作为第一和第二机器人(118、119)的第一和第二设备,通过恒定运动跟随的方法,对与所述压力机线中第二设备同步的所述压力机线中的一个第一设备进行控制。
42.根据权利要求36所述的系统,其还包括:针对作为压力机(100a-c)和机器人(118、119)的设备,通过与点或位置同步的方法,对与所述压力机线中第二设备同步的所述压力机线中的一个第一设备进行控制。
43.根据权利要求36所述的系统,其还包括:用于计算对设备(100、118、119)何时会到达所述压力机循环的部分中的特定点的预测的装置。
44.根据权利要求36或43所述的系统,其还包括:将对设备何时会到达特定点的预测提供给另一个设备或控制器的装置。
45.根据权利要求36-38和40-43中任一项所述的系统,其还包括机器人控制单元(218、219),所述机器人控制单元具有计算机器人(118、119)的路径并计算压力机的运动或位置的装置、以及将基于所述计算的用于同步运动的控制值发送到压力机(100)的控制单元(110)或驱动单元(111)的装置。
46.根据权利要求36-38和40-43中任一项所述的系统,其还包括机器人控制单元(218、219),所述机器人控制单元具有计算机器人(118、119)的路径并计算压力机的运动设置点值的装置、以及将转矩和/或速度和/或位置设置点值发送到压力机(100)的控制单元(110)或驱动单元(111)的装置。
47.根据权利要求36所述的系统,其还包括用于控制所述压力机以使其可在第一压力机循环的停止(stop)与第二压力机循环的开始(start)之间从第一旋转方向(Rc)向第二旋转方向(RAC)反转多度的装置。
48.根据权利要求36所述的系统,其还包括控制所述压力机以使得所述压力机循环沿所述第一旋转方向(Sc或Rc)执行并包括在每个完整压力机循环结束时反转所述驱动马达并沿第二旋转方向(SAC或RAC)工作的步骤的装置。
49.根据权利要求36的系统,其还包括能量或功率管理装置,所述管理装置包括功率限制器装置,用于限制飞轮马达(20)和辅助的第二马达(22)的总消耗的总功率或峰值功率。
50.根据权利要求36的系统,其中所述压力机被设置成由至少两个处理器(111、121)或CPU来控制,其中一个处理器对安全设备进行控制,而第二处理器对其余设备进行控制。
51.根据权利要求36或50的系统,其中所述压力机的马达驱动器(20、22)由控制处理器或CPU来控制,并用来使压力机从一个速度加速到另一个速度。
52.根据权利要求50所述的系统,其中所述至少两个处理器(111、121)或CPU被设置成借助于工业现场总线(117、127)连接于所述系统中。
53.根据权利要求36所述的系统,其中所述压力机线是多个压力机线之一。
54.根据权利要求36所述的系统,其中用于压力机运动和/或设备运动的控制器包括用来对用于压力机线中的同步进行计算的装置(SC、218、219)。
55.根据权利要求36所述的系统,其中用于所述压力机线的控制器包括用来对用于压力机线中的同步进行计算的装置(SC、218、219)。
56.根据权利要求36所述的系统,其中所述压力机线被设置有至少一个电源设备,所述电源设备包括至少一个整流器(201),其被设置成为所述压力机线的所述压力机、另一个压力机(Ma-c)或其它设备(118、119)中所包括的多于一个电马达(20、22)同时供电。
57.根据权利要求56所述的系统,其中用于所述压力机线的所述至少一个电源设备包括下列的组中的任何设备:单个整流器、单个直流链路、多个逆变器。
58.根据权利要求57所述的系统,其中所述至少一个电源的电源设备(21b、201)被设置成为包括多于一个电马达的所述压力机供电。
59.根据权利要求36所述的系统,其中所述至少一个机械压力机包括用于操作压力机的机械装置,包括下列的组中的任何传动类型:曲柄、转向节、连杆、压头、螺杆、齿条类型的机构。
60.根据权利要求36所述的系统,其中所述至少一个机械压力机包括用于对至少一个所述驱动马达(20、22)的速度和/或位置进行测量的装置。
61.根据权利要求36所述的系统,其中所述系统包括至少一个所述机械压力机,所述机械压力机包括亦设置成驱动所述压力机的至少一个第二或辅助驱动马达(22)。
62.根据权利要求36所述的系统,其中所述系统包括能量恢复装置或存储装置,用于恢复经同步和/或优化的所述压力机中的能量,以使所述压力机线的峰值功耗最小。
63.根据权利要求36所述的系统,其中所述系统包括能量恢复装置或存储装置,用于恢复经同步和/或优化的所述压力机中的能量,以使所述压力机线的能耗最小
64.根据权利要求36所述的系统,其中所述系统包括所述压力机,其中一个或多个马达被如此控制,以使所述压力机的运动与至少一个所述其它设备中的一个或多个同步,使得一个第一马达(20)不总是以机械方式耦合到所述压力机,而第二马达(22)总是以机械方式耦合到所述压力机。
65.根据权利要求45所述的系统,其中所述控制单元(110、218、219)中的每个包括一个或多个计算机程序,所述计算机程序存储于处理器或存储器存储装置中,用于控制至少一个压力机的第二驱动马达的速度和转矩。
66.根据权利要求45或65所述的系统,其中所述机器人控制单元(218、219)计算机器人(118、119)的路径,并计算压力机的运动或位置,并将用于同步运动的控制值发送到压力机(100)的控制单元(110)或驱动单元(111)。
67.根据权利要求45所述的系统,其中所述控制单元(110、218、219)中的每个包括一个或多个计算机程序,所述计算机程序存储于处理器或存储器存储装置中,用于控制(50-55、60-66)压力机以便优化压力机循环时间。
68.根据权利要求45所述的系统,其中所述控制单元(110、218、219)中的每个包括一个或多个计算机程序,所述计算机程序存储于处理器或存储器存储装置中,用于控制(50-55、60-66)压力机以便优化压力机循环的峰值功率的使用。
69.一种根据权利要求36-68中任一项所述的包括压力机线的系统的应用,针对单个行程、连续操作或二者,用于下列的组中的对金属毛坯或工件的任何一种操作:压制、弯曲、模锻、深冲压成形、切割、开槽、冲切、铸造、冲孔。
70.一种根据权利要求36-68中任一项所述的包括压力机线的系统的应用,针对单个行程、连续操作或二者,用于下列的组中对包含塑料的材料的任何一种操作:压制、模制、压模、反应模制、反应注模、吹模、捏模、注模、热塑性模制。
CN200710003549.6A 2006-02-06 2007-02-06 压力机线系统和方法 Active CN101024309B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US76518306P 2006-02-06 2006-02-06
US76518206P 2006-02-06 2006-02-06
US60/765,183 2006-02-06
US60/765,182 2006-02-06
EP06011673.8A EP1815972B1 (en) 2006-02-06 2006-06-06 Press line system and method
EP06011673.8 2006-06-06

Publications (2)

Publication Number Publication Date
CN101024309A CN101024309A (zh) 2007-08-29
CN101024309B true CN101024309B (zh) 2014-03-19

Family

ID=39877965

Family Applications (3)

Application Number Title Priority Date Filing Date
CN2006800522861A Active CN101370646B (zh) 2006-02-06 2006-06-08 机械压力机驱动系统及方法
CN200710003549.6A Active CN101024309B (zh) 2006-02-06 2007-02-06 压力机线系统和方法
CN2007100035481A Expired - Fee Related CN101015961B (zh) 2006-02-06 2007-02-06 一种机械压力机及其驱动方法和包括该机械压力机的系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2006800522861A Active CN101370646B (zh) 2006-02-06 2006-06-08 机械压力机驱动系统及方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2007100035481A Expired - Fee Related CN101015961B (zh) 2006-02-06 2007-02-06 一种机械压力机及其驱动方法和包括该机械压力机的系统

Country Status (8)

Country Link
US (3) US8302452B2 (zh)
EP (2) EP1815972B1 (zh)
JP (2) JP5342242B2 (zh)
KR (3) KR101211985B1 (zh)
CN (3) CN101370646B (zh)
BR (2) BRPI0621325A2 (zh)
ES (2) ES2452022T3 (zh)
WO (1) WO2007091118A1 (zh)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2452022T3 (es) * 2006-02-06 2014-03-31 Abb Research Ltd. Sistema de línea de prensas y método
JP5037244B2 (ja) * 2006-07-10 2012-09-26 ハイデルベルガー ドルツクマシーネン アクチエンゲゼルシヤフト 機械における電気駆動装置の、制御されたエネルギー消費
KR100945884B1 (ko) * 2007-11-14 2010-03-05 삼성중공업 주식회사 내장형 로봇 제어 시스템
EP2105290A1 (de) * 2008-03-26 2009-09-30 Desch Antriebstechnik GmbH & Co. KG Antrieb für eine Arbeitsmaschine, insbesondere Pressenantrieb, sowie eine Arbeitsmaschine, insbesondere Umformpresse
EP2192458B2 (de) * 2008-11-28 2014-12-31 Siemens Aktiengesellschaft Steuerungskomponente und Verfahren für ein Energiemanagement einer industriellen Automatisierungsanordnung
KR101403265B1 (ko) * 2008-12-05 2014-06-02 에이비비 리써치 리미티드 피크 전력을 제한하는 생산 시스템에서의 방법
DE102009049847A1 (de) * 2009-10-19 2011-04-21 Dorst Technologies Gmbh & Co. Kg Metall- oder Keramikpulver-Presse und Steuerverfahren dafür
DE102009050390A1 (de) * 2009-10-22 2011-04-28 Müller Weingarten AG Arbeitsverfahren und Einrichtung zum Betreiben von Pressen
FR2951989B1 (fr) * 2009-10-30 2012-02-03 Medelpharm Installation pour la realisation d'un produit solide a partir d'un ou de plusieurs materiaux pulverulents
JP5761839B2 (ja) * 2010-08-12 2015-08-12 株式会社エイチアンドエフ 鋼板のホットプレス方法
US8535752B2 (en) * 2010-10-20 2013-09-17 L&P Property Management Company Automated powder-coating method
JP5688983B2 (ja) * 2011-01-28 2015-03-25 アイダエンジニアリング株式会社 サーボプレスシステム
DE102011000473B4 (de) * 2011-02-02 2017-07-13 Langenstein & Schemann Gmbh Pressmaschine und Verfahren zum Pressen von Werkstücken
KR101040927B1 (ko) 2011-03-30 2011-06-16 (주)플록마스터 슬러지 파쇄용 믹스장치
CN103517789B (zh) * 2011-05-12 2015-11-25 株式会社Ihi 运动预测控制装置和方法
RU2494432C2 (ru) * 2011-07-12 2013-09-27 Открытое акционерное общество "Уральское конструкторское бюро транспортного машиностроения" Способ включения и выключения электроустановки и устройство (варианты) для его реализации
CA2846130C (en) * 2011-08-22 2016-01-05 Marwood Metal Fabrication Limited Forming press
JP6178791B2 (ja) * 2011-09-02 2017-08-09 ブルックス オートメーション インコーポレイテッド ロボット移送装置の時間最適軌道
JP5838681B2 (ja) * 2011-09-16 2016-01-06 いすゞ自動車株式会社 アクチュエータの制御方法及びアクチュエータの制御装置
JP5770584B2 (ja) * 2011-09-27 2015-08-26 住友重機械工業株式会社 鍛造プレス装置およびその制御方法
JP5770586B2 (ja) * 2011-09-28 2015-08-26 住友重機械工業株式会社 鍛造プレス装置およびその制御方法
ITMI20111867A1 (it) 2011-10-13 2013-04-14 Gima Spa Procedimento per il comando e controllo del motore elettrico di un gruppo d'automazione e sistema connesso
US9221091B2 (en) * 2011-11-04 2015-12-29 Northwestern University System and method for incremental forming
DE102012109150A1 (de) * 2012-09-27 2014-03-27 Schuler Pressen Gmbh Verfahren und Einrichtung zum Betreiben einer Werkzeugmaschine wie Presse mit linear bewegbarem Hubelement
WO2014063262A1 (en) * 2012-10-22 2014-05-01 Güdel Group AG Method for the determination of workpiece transport trajectories in a multiple station press
CN103213127B (zh) * 2013-03-29 2016-01-20 山东轻工业学院 一种压机-机器人同步运动动作协调方法
CN103433926B (zh) * 2013-08-08 2015-09-30 中国船舶重工集团公司第七一六研究所 一种多机器人协调控制装置及其方法
CN103760841A (zh) * 2013-12-23 2014-04-30 芜湖常瑞汽车部件有限公司 一种汽车车身冲压线控制系统
US9694804B2 (en) * 2014-03-27 2017-07-04 Ford Global Technologies, Llc Delaying lash crossing for a modular hybrid transmission
CN104378044B (zh) * 2014-11-27 2016-08-31 深圳市迈凯诺电气有限公司 双盘摩擦压力机智能节电器及节电方法
CN105109093B (zh) * 2015-07-27 2016-11-23 东莞市银通机械科技有限公司 一种全自动智能油压机加工系统
US10245802B2 (en) 2015-07-28 2019-04-02 Toyota Motor Engineering & Manufacturing North America, Inc. Die compatibility adaptor for machine press communication
CN108136705A (zh) * 2015-09-28 2018-06-08 会田工程技术有限公司 冲压生产线的运转控制装置和运转控制方法
JP6551531B2 (ja) * 2015-09-30 2019-07-31 富士通株式会社 製造状態表示システム、製造状態表示方法および製造状態表示プログラム
CN105203405B (zh) * 2015-10-29 2018-07-24 江苏利柏特股份有限公司 一种异种钢焊接工艺评定用弯曲试验装置
JP6613851B2 (ja) * 2015-11-30 2019-12-04 株式会社デンソーウェーブ ロボットシステム
CN106925705B (zh) * 2015-12-30 2018-07-06 台达电子工业股份有限公司 变频器及其适用的锻压机系统及控制方法
EP3402106B1 (en) * 2016-01-04 2019-12-04 Zhejiang Libiao Robots Co., Ltd. Method and system for synchronization between robot and server
CN105666520B (zh) * 2016-04-01 2017-08-25 哈尔滨工业大学 一种基于齿轮传动的欠驱动机械臂手腕
DE112017004812T5 (de) * 2016-09-26 2019-06-06 Fanuc America Corporation Automatische synchronisierung von pressmaschinen und robotern
EP3315267B1 (de) * 2016-10-25 2019-12-04 Siemens Aktiengesellschaft Verfahren zur optimierung von bewegungsprofilen, verfahren zur bereitstellung von bewegungsprofilen, steuereinrichtung, anlage und computerprogrammprodukt
CN108435814B (zh) * 2017-02-16 2021-09-07 宇部兴产机械株式会社 挤压机和挤压机的控制方法
CN107020344B (zh) * 2017-04-26 2018-07-31 天津市天锻压力机有限公司 模锻液压机的工艺管控方法
ES2697058B2 (es) 2017-07-19 2019-07-08 Fagor Arrasate S Coop Método de control para una instalación de prensas, e instalación asociada
CN107487618B (zh) * 2017-07-27 2019-01-25 四川航天长征装备制造有限公司 末修贮箱安装设备
DE102017124335A1 (de) * 2017-10-18 2019-04-18 Hsf Automation Gmbh Antriebsvorrichtung, Vorrichtung zum Nutenstanzen und Verfahren zum Antreiben einer Vorrichtung zum Nutenstanzen
CN108127952A (zh) * 2017-11-08 2018-06-08 广州雅松智能设备有限公司 一种新型的垃圾处理设备
CN108115965A (zh) * 2017-11-08 2018-06-05 广州雅松智能设备有限公司 一种改进型的垃圾处理设备
CN107830087A (zh) * 2017-11-09 2018-03-23 江门市华海纸品有限公司 一种基于纸品流水线制作的刹车装置
CN107913965B (zh) * 2017-12-29 2019-06-11 芜湖市恒浩机械制造有限公司 一种矩形零件三面自动锻造装置
DE102018108862A1 (de) * 2018-04-13 2019-10-17 Wafios Aktiengesellschaft Biegevorrichtung mit Werkstückführung durch Mehrgelenkarmroboter
CN108543851A (zh) * 2018-05-14 2018-09-18 严涛涛 一种自动化金属冲压设备
ES2930363T3 (es) * 2018-08-06 2022-12-09 Siemens Ag Determinación de al menos un índice de un proceso de conformación en una servoprensa
FR3085495B1 (fr) * 2018-08-30 2021-03-05 Commissariat Energie Atomique Procede de compensation automatique de charge pour un cobot ou un exosquelette de membre superieur
CN109213011B (zh) * 2018-09-06 2020-12-04 安徽万朗磁塑股份有限公司 一种智能冰箱门封生产线控制系统
ES2934802T3 (es) * 2018-09-18 2023-02-27 Siemens Ag Planificación de movimiento para un sistema de transporte de una instalación de servoprensas
KR102035604B1 (ko) * 2018-11-05 2019-10-23 리얼룩앤컴퍼니 주식회사 3d 포밍필름 제조 장치 및 이를 이용한 3d 포밍필름 제조 방법
CN109732968A (zh) * 2019-02-28 2019-05-10 合肥工业大学 一种大型混动伺服螺旋压力机
DK3725502T3 (da) 2019-04-18 2023-05-22 Lapmaster Wolters Gmbh Fremgangsmåde til drift af et finstansesystem
DE202020102763U1 (de) * 2019-08-07 2020-06-17 Kunshan Xinlante Intelligent Equipment Technology Co., Ltd. Neuartiges elektronisches selbsttätig durchstoßendes Verbindungssystem nach Servomagazinbauart
CN111559113A (zh) * 2020-05-06 2020-08-21 西门子工厂自动化工程有限公司 一种多序压机控制方法和运动控制装置
WO2022159471A1 (en) 2021-01-19 2022-07-28 Milwaukee Electric Tool Corporation Rotary power tool
JP7064063B1 (ja) * 2021-09-30 2022-05-09 ファナック株式会社 制御装置
WO2023104302A1 (de) * 2021-12-08 2023-06-15 Bruderer Ag Verfahren zum betrieb einer stanzpresse
WO2023139763A1 (ja) * 2022-01-21 2023-07-27 ファナック株式会社 制御装置
WO2023139764A1 (ja) * 2022-01-21 2023-07-27 ファナック株式会社 制御装置
EP4272569A1 (en) * 2022-05-05 2023-11-08 Poly-clip System GmbH & Co. KG Clipping machine with energy recovering
CN117380813B (zh) * 2023-10-26 2024-04-05 江苏瑞金装备科技有限公司 一种汽车前地板侧梁的成型冲压工艺

Family Cites Families (174)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE884278C (de) 1941-07-17 1953-07-27 Weingarten Ag Maschf Mechanische Presse, insbesondere Ziehpresse
DE905700C (de) 1943-06-26 1954-03-04 Weingarten Ag Maschf Mechanische Presse, insbesondere Ziehpresse mit mehreren Arbeitsgeschwindigkeiten
GB1179447A (en) 1967-06-02 1970-01-28 Danley Machine Corp Power Press Acceleration Control System
FR1534030A (fr) * 1967-06-14 1968-07-26 Bliss Co Synchronisation d'une ligne de presses
JPS5229026B1 (zh) * 1968-09-18 1977-07-29
US3685756A (en) * 1969-02-26 1972-08-22 Chain Gear Inc Method and apparatus for slitting belt
US3675098A (en) * 1970-06-11 1972-07-04 Danly Machine Corp Digital control of press synchronization
US3991350A (en) * 1970-09-07 1976-11-09 Kabushiki Kaisha Komatsu Seisakusho Shaft angle adjustment of a synchronized tandem-press production line
US3752098A (en) * 1971-04-05 1973-08-14 Gerber Scientific Instr Co Method and apparatus for translating an article and a tool relative to one another
US3847079A (en) * 1972-05-04 1974-11-12 H Dahlgren Method of printing sheets
US3844142A (en) * 1973-03-16 1974-10-29 Mc Graw Edison Co Laundry system using hydraulic extractor
US3908980A (en) * 1973-08-02 1975-09-30 Alexander Fowler Work loading, unloading, and positioning means for handling sheet material in power presses and the like
US3906826A (en) * 1974-03-29 1975-09-23 Bmr Enterprises Workpiece indexing apparatus for machine tools
US3987721A (en) * 1974-04-17 1976-10-26 Donald R. Alexander Apparatus for manufacturing automobile license plates
US3997067A (en) * 1974-10-24 1976-12-14 Sony Corporation Apparatus for transporting successive printed circuit boards to and from a work station
US4089203A (en) * 1976-04-07 1978-05-16 Wallis Bernard J Workpiece transfer mechanism
DE2625063A1 (de) * 1976-06-03 1977-12-15 Transform Verstaerkungsmasch Steuervorrichtung zur geschwindigkeitsregelung von pneumatischen und/oder hydraulischen arbeitskolben
DE2728982C2 (de) 1977-06-28 1985-12-12 L. Schuler GmbH, 7320 Göppingen Einrichtung zur Steuerung der Momentan-Geschwindigkeit des Stößels einer Presse
DE2747237A1 (de) * 1977-10-21 1979-04-26 Schuler Gmbh L Werkstuecktransportvorrichtung
JPS5553278Y2 (zh) * 1978-02-09 1980-12-10
US4445408A (en) * 1979-09-24 1984-05-01 Keith Garland B Method and apparatus for cutting continuous fibrous material
US4321864A (en) * 1980-01-22 1982-03-30 Willsey Charles H Egg breaking and contents separating machine
US4378592A (en) * 1980-08-29 1983-03-29 Danly Machine Corporation Computer directed loading and unloading devices
IT1141743B (it) * 1980-11-14 1986-10-08 Omso Spa Dispositivo ad elevata produttivita per l'alimentazione di oggetti cilindrici alle macchine da stampa serigrafiche
JPS5933486B2 (ja) * 1980-12-20 1984-08-16 株式会社明電舎 せん断機
US4341546A (en) * 1981-02-25 1982-07-27 Nitschke Norman Carl Roll drive mechanism for glass sheet processing equipment
US4378688A (en) * 1981-03-12 1983-04-05 Gulf & Western Manufacturing Company Apparatus for feeding and orienting workpieces in a press
JPS57195600A (en) * 1981-05-29 1982-12-01 Komatsu Ltd Controller for synchronized operation of combination press line
US4387632A (en) * 1981-07-20 1983-06-14 Danly Machine Corporation Control system for synchronizing power presses and associated feed mechanism with interlock features
US4408281A (en) * 1981-07-27 1983-10-04 Danly Machine Corporation Control system for synchronizing multiple presses in a line
FR2517992A1 (fr) * 1981-12-16 1983-06-17 Nantaise Biscuiterie Nouvelle machine permettant la fabrication de produits enduits tels que biscuits ou autres
JPS58176030A (ja) * 1982-04-10 1983-10-15 Nagao Tekkosho:Kk ロボツトを内蔵したプレス機
US5017083A (en) * 1982-04-16 1991-05-21 Sahlin International, Inc. Apparatus for loading and/or unloading industrial presses
US4921395A (en) * 1982-04-16 1990-05-01 Sahlin International, Inc. Apparatus for loading and/or unloading industrial presses
US4614064A (en) * 1982-06-25 1986-09-30 Kennecott Corporation Method and apparatus for cleaning workpieces
US4549419A (en) * 1982-11-30 1985-10-29 Firma Theodor Grabener Blank-feeding system for die-stamping press
US4523076A (en) * 1983-03-21 1985-06-11 Welco Industries, Inc. Automatic welding machine which provides uniform welding of a workpiece during vertical movement thereof
JPS59191528A (ja) * 1983-04-14 1984-10-30 Toyota Motor Corp 加工装置のワ−ク搬送装置
JPS6033839A (ja) * 1983-08-01 1985-02-21 Toyota Motor Corp 往復運動加工装置のロ−ダ・アンロ−ダ装置
US4579514A (en) * 1984-07-26 1986-04-01 Microdot Inc. Press loading apparatus
US4580964A (en) * 1984-07-26 1986-04-08 Microdot Inc. Press loading apparatus
US4571320A (en) * 1984-10-31 1986-02-18 General Motors Corporation Method and apparatus for loading and unloading sheet molding compound in and from a press
US4633720A (en) * 1984-12-17 1987-01-06 Dybel Frank Richard Load monitoring system for progressive dies
US4712404A (en) * 1985-01-28 1987-12-15 Chambersburg Engineering Company Method of self-regulating consistency of applied energy in a forging hammer employing input differential
US4712415A (en) * 1985-01-28 1987-12-15 Chambersburg Engineering Company Method of determining stroke length of a pneumatic forging hammer using sensed peak pressure
US4712405A (en) * 1985-01-28 1987-12-15 Chambersburg Engineering Company Method of self-regulation of output energy of forging hammers using input sensed peak of lifting fluid pressure for correction
US4693101A (en) * 1985-01-28 1987-09-15 Chambersburg Engineering Company Adaptive, self-regulating forging hammer control method
US4718263A (en) * 1985-01-28 1988-01-12 Chambersburg Engineering Co. Method of controlling output energy in a forging hammer by anticipative sensing of input parameters
US4653300A (en) * 1985-01-28 1987-03-31 Chambersburg Engineering Company Adaptive, self-regulating forging hammer control system
JPS61232100A (ja) * 1985-04-06 1986-10-16 Toyota Motor Corp 安定成形プレス条件設定方法およびその装置
JPS61266137A (ja) * 1985-05-18 1986-11-25 Sugiyama Denki Seisakusho:Kk プレス機のプレス材料送り異常検出装置
US4619395A (en) * 1985-10-04 1986-10-28 Kulicke And Soffa Industries, Inc. Low inertia movable workstation
US4653311A (en) * 1986-01-31 1987-03-31 Avondale Industries, Inc. Short stroke press with automated feed mechanism
US4648825A (en) * 1986-03-14 1987-03-10 General Electric Company Plastic molding apparatus
JPS63242763A (ja) * 1987-03-31 1988-10-07 Aida Eng Ltd ダイナミツクブレ−キ
US4912501A (en) * 1987-04-03 1990-03-27 Ricoh Company, Ltd. Automatic original circulating and feeding apparatus
JPS63252834A (ja) * 1987-04-03 1988-10-19 Ricoh Co Ltd 原稿自動循環給紙装置
US4848066A (en) * 1988-04-21 1989-07-18 Minnesota Mining And Manufacturing Company Method and apparatus for assembling blister packages
FR2631209B1 (fr) * 1988-05-11 1991-06-07 Collot Thierry Dispositif de controle du liage des balles de fourrage sur une presse agricole
JPH072088Y2 (ja) * 1988-11-15 1995-01-25 株式会社小松製作所 曲げ機械の工具位置制御装置
IT1237709B (it) * 1989-12-20 1993-06-15 Comau Spa Apparecchiatura e procedimento per il controllo del funzionamento di una linea di macchine operatrici, in particolare presse.
US5642291A (en) * 1989-12-22 1997-06-24 Amada Company, Limited Of Japan System for creating command and control signals for a complete operating cycle of a robot manipulator device of a sheet metal bending installation by simulating the operating environment
JPH04237306A (ja) * 1991-01-21 1992-08-25 Fanuc Ltd パンチプレス機械の運転再開方法
GB2258186A (en) * 1991-07-30 1993-02-03 Hadley Ind Plc Press with positioning motor
CA2061379C (en) * 1991-08-22 1995-11-14 William T. Stewart Pallet handling adjustable conveyor
US5403142A (en) * 1991-08-22 1995-04-04 Stewart-Glapat Corporation Pallet handling adjustable conveyor
JP2534944B2 (ja) * 1991-09-24 1996-09-18 アイダエンジニアリング株式会社 プレス機械
DE69304462D1 (de) * 1992-01-07 1996-10-10 Signature Tech Inc Verfahren und vorrichtung zum steuern einer presse
US5423648A (en) * 1992-01-21 1995-06-13 Fanuc Robotics North America, Inc. Method and system for quickly and efficiently transferring a workpiece from a first station to a second station
CA2091747C (en) 1992-03-16 1999-05-11 Keiichiro Hayashi Power transmission for mechanical press
US5310039A (en) * 1992-08-19 1994-05-10 Intel Corporation Apparatus for efficient transfer of electronic devices
JP2934104B2 (ja) * 1992-08-19 1999-08-16 ファナック株式会社 プレス間ワーク搬送装置
JPH06179099A (ja) 1992-12-14 1994-06-28 Komatsu Ltd トランスファプレスの制御方法および制御装置
JP2516541B2 (ja) * 1992-12-21 1996-07-24 株式会社メカトロ常磐インターナショナル プレス機械のストロ―ク作動機構及びその作動制御方法
US5695151A (en) * 1992-12-31 1997-12-09 Goss Graphic Systems, Inc. Printing press assembly with powered paper roll loader
US5483876A (en) * 1993-12-21 1996-01-16 Trantek, Incorporated Workpart transfer mechanism for stamping press
GB2285700B (en) * 1994-01-12 1998-06-24 Drallim Ind Monitoring apparatus and method
US5720421A (en) * 1994-02-28 1998-02-24 Vamco Machine & Tool, Inc. Elecronically controlled high speed press feed
DE4413047C2 (de) * 1994-04-15 1996-04-18 Roland Man Druckmasch Verfahren und Vorrichtung zur Bremsüberwachung des Gleichstrommotors einer Druckmaschine
US5572940A (en) * 1994-05-27 1996-11-12 Burton & Noonan Folding and sewing apparatus
US5588344A (en) * 1994-06-13 1996-12-31 Murata Machinery, Ltd. Electric servo motor punch press ram drive
DE4421527C2 (de) 1994-06-20 1998-06-18 Langenstein & Schemann Gmbh Kurbelantrieb einer Kurbelpresse großer Preßkraft
US7584962B2 (en) * 1994-08-09 2009-09-08 Shuffle Master, Inc. Card shuffler with jam recovery and display
JP2785719B2 (ja) * 1994-10-07 1998-08-13 村田機械株式会社 トグル式パンチプレスの制御装置
DE69529607T2 (de) * 1994-11-09 2003-09-18 Amada Co Intelligentes system zur herstellung und ausführung eines metallplattenbiegeplans
JPH08294798A (ja) * 1995-04-26 1996-11-12 Tamagawa Mach Kk 給粉装置及びその制御方法
US6084375A (en) * 1995-09-01 2000-07-04 The Vision Limited Partnership Method and apparatus for control of drive systems for cycle based processes
US5852970A (en) * 1995-11-27 1998-12-29 The Minster Machine Company Underdrive opposing action press
JP3773576B2 (ja) * 1996-02-08 2006-05-10 株式会社小松製作所 トランスファプレス
JP3719751B2 (ja) * 1996-02-08 2005-11-24 株式会社小松製作所 トランスファプレス
US5634398A (en) * 1996-03-22 1997-06-03 The Coe Manufacturing Co. Panel press with movable platens which are individually controlled with position-sensor transducers
US5644915A (en) * 1996-04-25 1997-07-08 Cincinnati, Incorporated Control system for a hydraulic press brake
JP3423149B2 (ja) * 1996-05-23 2003-07-07 株式会社小松製作所 ワークフィーダ制御装置
JP3156841B2 (ja) * 1996-06-12 2001-04-16 矢崎総業株式会社 端子圧着装置の制御方法
DE19640440C2 (de) * 1996-09-30 1998-07-16 Fraunhofer Ges Forschung Antriebsvorrichtung für einen Pressenstößel einer Umformpresse
DE19643146A1 (de) * 1996-10-18 1998-04-23 Schechtl Maschinenbau Gmbh Computersteuerbare Schwenkbiegemaschine
US6145366A (en) * 1996-11-29 2000-11-14 Komatsu Ltd. Ram control method and ram control system for press brake
JPH10230398A (ja) * 1997-02-20 1998-09-02 Minster Mach Co:The プレス生産モニタシステムおよび方法
DE59809058D1 (de) * 1997-06-02 2003-08-28 Wifag Maschf Registerhaltige Abstimmung von Druckzylindern einer Rollenrotationsmaschine
US5878789A (en) * 1997-08-25 1999-03-09 Trimecs Co., Ltd. Mechanical press machine for forming semiconductor packages
JP3437758B2 (ja) * 1998-03-31 2003-08-18 住友重機械工業株式会社 クランクプレス
US6012312A (en) * 1998-09-14 2000-01-11 Budd Canada, Inc. Double blank detector apparatus and method of operation
JP2000190098A (ja) * 1998-10-16 2000-07-11 Yamada Dobby Co Ltd サ―ボプレス機の制御装置
US6411863B1 (en) * 1998-11-02 2002-06-25 The Minster Machine Company Auxiliary control system for use with programmable logic controller in a press machine
US6240335B1 (en) * 1998-12-14 2001-05-29 Palo Alto Technologies, Inc. Distributed control system architecture and method for a material transport system
US6272892B1 (en) * 1999-03-19 2001-08-14 Sumitomo Heavy Industries, Ltd. Forging press apparatus, controller of automation device used therefor and shut height controller
US6520077B1 (en) * 1999-03-31 2003-02-18 Aida Engineering Co., Ltd. Screw press
DE19918700A1 (de) * 1999-04-26 2000-11-02 Mueller Weingarten Maschf Hydromechanischer Pressenantrieb
US6145176A (en) * 1999-05-28 2000-11-14 Morrison Berkshire, Inc. Apparatus for replacement and alignment of needle boards in a needle loom
US6182492B1 (en) * 1999-11-01 2001-02-06 E.R. St. Denis Inc. Hemming machine
JP2001191134A (ja) * 1999-12-28 2001-07-17 Ishikawajima Harima Heavy Ind Co Ltd プレス機械におけるワーク搬送装置の制御装置
JP4058872B2 (ja) 2000-01-11 2008-03-12 村田機械株式会社 パンチプレス
JP2001212781A (ja) * 2000-02-02 2001-08-07 Aida Eng Ltd ロボットの同期制御装置
EP1132790B1 (en) * 2000-02-10 2003-06-18 Fanuc Ltd Controller for machine
DE10007505B4 (de) * 2000-02-18 2007-06-14 Schuler Pressen Gmbh & Co. Kg Elektrische Antriebsvorrichtung
US6769355B1 (en) * 2000-02-29 2004-08-03 The Minster Machine Company Auto-positioning inching control
US6619088B1 (en) * 2000-10-16 2003-09-16 Aida Engineering Co., Ltd. Bottom dead center correction device for servo press machine
US20040111339A1 (en) * 2001-04-03 2004-06-10 Asyst Technologies, Inc. Distributed control system architecture and method for a material transport system
CN100421921C (zh) * 2001-04-26 2008-10-01 沙迪克株式会社 压力机械与机床
US7417386B2 (en) * 2001-05-22 2008-08-26 Rockwell Automation Technologies, Inc. Electronic line shaft
JP3716779B2 (ja) 2001-07-27 2005-11-16 村田機械株式会社 パンチプレス
DE10138664A1 (de) 2001-08-02 2003-02-20 Komage Gellner Maschf Presse und Verfahren zum Betreiben der Presse
JP2003094120A (ja) * 2001-09-25 2003-04-02 Yamada Dobby Co Ltd 積層コアの加工装置
US7124616B2 (en) * 2001-11-08 2006-10-24 Komatsu Ltd. Work transfer method for transfer press and work transfer apparatus for transfer press or press
US7216416B2 (en) * 2001-11-09 2007-05-15 Amada Company, Limited Compound processing system for sheet metal processing
KR100509376B1 (ko) * 2001-12-21 2005-08-22 아이다엔지니어링가부시끼가이샤 프레스 기계
JP4131627B2 (ja) * 2002-01-11 2008-08-13 アイダエンジニアリング株式会社 プレス機械
ITMI20020273A1 (it) * 2002-02-12 2003-08-12 Engico Srl Dispositivo fustellatore atto ad eseguire fenditure perpendicolare alla direzione di avanzamento di fogli di cartone utilizzati per la fabbr
US7542175B2 (en) * 2002-03-27 2009-06-02 Sekuworks, Llc Combined flexographic and intaglio printing press and operating system therefor
US7067010B2 (en) * 2002-04-05 2006-06-27 Biddle Harold A Indexing spray machine
DE10319550A1 (de) * 2002-05-01 2003-12-04 Murata Machinery Ltd Motorisch angetriebene Exenterpresse
JP2003320488A (ja) 2002-05-01 2003-11-11 Murata Mach Ltd モータ駆動式リンクプレス
US7002315B2 (en) * 2002-05-28 2006-02-21 Toshiba Kikai Kabushiki Kaisha Servo control device
JP2004034111A (ja) * 2002-07-04 2004-02-05 Komatsu Aatec Kk プレスの駆動装置およびその駆動方法
US7082809B2 (en) * 2002-08-01 2006-08-01 Beaver Aerospace & Defense, Inc. High capacity mechanical drive arrangement
DE10243454C5 (de) * 2002-09-19 2009-10-08 Koenig & Bauer Aktiengesellschaft Antriebsvorrichtung einer Bearbeitungsmaschine
CA2440792A1 (en) * 2002-09-27 2004-03-27 Mechworks Systems Inc. A method and system for online condition monitoring of multistage rotary machinery
JP4246470B2 (ja) * 2002-10-23 2009-04-02 株式会社放電精密加工研究所 プレス成形方法
US7353686B2 (en) * 2002-10-24 2008-04-08 Kanemitsu Corporation Press
JP4339571B2 (ja) * 2002-10-25 2009-10-07 株式会社放電精密加工研究所 プレス成形方法
US7124491B2 (en) * 2002-12-06 2006-10-24 Tesco Engineering, Inc. Hemming apparatus and method using a horizontal motion for actuating the die sets
DE10358991B4 (de) * 2002-12-17 2016-03-17 Komatsu Ltd. Steuerverfahren für eine Pressenlinie und Tandempressenlinie
DE10260127A1 (de) 2002-12-19 2004-07-15 Siemens Ag Pressvorrichtung
US7428837B2 (en) * 2003-05-01 2008-09-30 Komatsu, Ltd. Tandem press line, operation control method for tandem press line, and work transportation device for tandem press line
US20040240981A1 (en) * 2003-05-29 2004-12-02 I-Scan Robotics Robot stacking system for flat glass
DE502004007147D1 (de) * 2003-06-06 2008-06-26 Langenstein & Schemann Gmbh Verfahren und vorrichtung zum umformen eines werkstücks mit automatischer handhabung
US20050131645A1 (en) * 2003-06-09 2005-06-16 Panopoulos Peter J. Machine having automatic transport with scanning and GPS functions
JP4230851B2 (ja) * 2003-08-01 2009-02-25 株式会社小松製作所 機械駆動式タンデムプレスラインの連続運転制御装置
US20050145117A1 (en) * 2003-09-03 2005-07-07 Ruxu Du Mechanical press with controllable mechanism
JP3790759B2 (ja) * 2003-10-17 2006-06-28 ファナック株式会社 ロボットハンド及びハンドリングロボットシステム
JP4296072B2 (ja) * 2003-10-21 2009-07-15 蛇の目ミシン工業株式会社 電動プレス
US7394555B2 (en) * 2004-01-30 2008-07-01 Milliken & Company Digital control system
EP1900521A1 (de) * 2004-04-05 2008-03-19 Koenig & Bauer Aktiengesellschaft Druckeinheit einer Rollenrotationsdruckmaschine
JP4426370B2 (ja) * 2004-04-30 2010-03-03 株式会社小森コーポレーション 帯状体供給装置の制動力制御方法及び装置
EP1615090B1 (en) 2004-07-10 2008-02-20 FAGOR, S.Coop Synchronized control system of a line of machines, particularly presses
KR100546419B1 (ko) * 2004-09-03 2006-01-26 삼성전자주식회사 다이 어태치 장치, 이를 세정하는 세정 시스템 및 그세정방법
JP4587752B2 (ja) * 2004-09-15 2010-11-24 株式会社小松製作所 ハイブリッド制御サーボプレスの制御装置およびその制御方法
DE502004004148D1 (de) 2004-09-27 2007-08-02 Burkhardt Gmbh Maschinenfabrik Direktantrieb und Steuerung für eine Exzenterpresse
US7453677B2 (en) * 2004-10-06 2008-11-18 Teknic, Inc. Power and safety control hub
JP4507250B2 (ja) * 2004-10-29 2010-07-21 アイダエンジニアリング株式会社 トランスファプレス機械
US7160172B2 (en) * 2004-12-17 2007-01-09 Xyratex Technology Ltd. Multi-station disk finishing apparatus and method
ITBO20050065A1 (it) * 2005-02-10 2006-08-11 Awax Progettazione Macchina per il confezionamento di prodotti alimentari in vassoi chiusi superiormente a tenuta con un film termoplastico,particolarmente per produrre confezioni in atmosfera modificata e relativo procedimento di lavoro
US7257460B2 (en) * 2005-07-27 2007-08-14 Ravinder Venugopal Reconfigurable variable blank-holder force system and method for sheet metal stamping
FR2902550B1 (fr) * 2005-09-15 2008-08-08 Datacard Corp Machine de personnalisation a haute cadence
EP1801681A1 (en) * 2005-12-20 2007-06-27 Asea Brown Boveri Ab An industrial system comprising an industrial robot and a machine receiving movement instructions from the robot controller
AT503196B1 (de) * 2006-01-19 2008-06-15 Trumpf Maschinen Austria Gmbh Biegepresse mit beschickungseinrichtung und verfahren zu deren betrieb
ES2452022T3 (es) * 2006-02-06 2014-03-31 Abb Research Ltd. Sistema de línea de prensas y método
WO2007091935A1 (en) * 2006-02-06 2007-08-16 Abb Research Ltd Mechanical press drive system
JP4956022B2 (ja) * 2006-03-03 2012-06-20 コマツ産機株式会社 プレス機械のダイクッション制御装置
JP4787642B2 (ja) * 2006-03-22 2011-10-05 コマツ産機株式会社 プレス機械のダイクッション制御装置
JP4199270B2 (ja) * 2006-08-08 2008-12-17 ファナック株式会社 位置制御と圧力制御を切り換え実行する数値制御装置及び数値制御方法
ES2549311T3 (es) * 2007-06-06 2015-10-26 Abb Research Ltd Kit de mejora de motor para una prensa mecánica
JP2009125126A (ja) * 2007-11-20 2009-06-11 Tokai Ind Sewing Mach Co Ltd 多頭式ミシン及び多頭式ミシンの運転制御方法
JP5721388B2 (ja) * 2009-12-04 2015-05-20 株式会社日立製作所 サーボプレスの制御装置及び制御方法、並びにこの制御装置を搭載したサーボプレス

Also Published As

Publication number Publication date
KR20080091800A (ko) 2008-10-14
KR101306463B1 (ko) 2013-09-09
ES2586661T3 (es) 2016-10-18
CN101370646B (zh) 2013-09-11
ES2452022T3 (es) 2014-03-31
US20090177306A1 (en) 2009-07-09
EP1815972A3 (en) 2007-10-10
CN101015961A (zh) 2007-08-15
US8423159B2 (en) 2013-04-16
CN101024309A (zh) 2007-08-29
CN101015961B (zh) 2012-10-10
JP5252561B2 (ja) 2013-07-31
US20090007622A1 (en) 2009-01-08
KR20110036776A (ko) 2011-04-08
BRPI0707669A2 (pt) 2011-05-10
US20100234974A1 (en) 2010-09-16
WO2007091118A1 (en) 2007-08-16
BRPI0621325A2 (pt) 2011-12-06
CN101370646A (zh) 2009-02-18
EP1815972A2 (en) 2007-08-08
EP1996394A1 (en) 2008-12-03
JP2009525877A (ja) 2009-07-16
JP2009525880A (ja) 2009-07-16
KR20080092422A (ko) 2008-10-15
EP1815972B1 (en) 2013-12-18
US8302452B2 (en) 2012-11-06
EP1996394B1 (en) 2016-05-18
KR101211985B1 (ko) 2012-12-13
JP5342242B2 (ja) 2013-11-13

Similar Documents

Publication Publication Date Title
CN101024309B (zh) 压力机线系统和方法
WO2007091964A2 (en) Press line system and method
JP5042240B2 (ja) 機械プレス駆動システム
CN100451891C (zh) 微小程序段的动态前瞻处理方法及实现装置
CN101454733B (zh) 用于操作循环生产机械与装载或卸载机械协同工作的改进方法和系统
CN102227306A (zh) 生产系统中用于限制峰值功率的方法
US20090216375A1 (en) Industrial Robot Tending A Machine And A Method For Controlling An Industrial Robot Tending A Machine
CN101885247B (zh) 压力机及其送料装置的智能控制系统
JP5136847B2 (ja) サーボプレス設備とその制御方法
CN206178446U (zh) 一种数控机床的cnc加工系统
CN110695234B (zh) 一种冲压产线同步断续控制方法
KR20110122770A (ko) 기계적 프레스 구동 시스템 및 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200228

Address after: Baden, Switzerland

Patentee after: ABB Schweiz AG

Address before: Zurich

Patentee before: ABB RESEARCH Ltd.