WO2002000879A2 - Methods for producing modified glycoproteins - Google Patents
Methods for producing modified glycoproteins Download PDFInfo
- Publication number
- WO2002000879A2 WO2002000879A2 PCT/US2001/020553 US0120553W WO0200879A2 WO 2002000879 A2 WO2002000879 A2 WO 2002000879A2 US 0120553 W US0120553 W US 0120553W WO 0200879 A2 WO0200879 A2 WO 0200879A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- host
- enzymes
- glycosylation
- glcnac
- enzyme
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/005—Glycopeptides, glycoproteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2477—Hemicellulases not provided in a preceding group
- C12N9/2488—Mannanases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01113—Mannosyl-oligosaccharide 1,2-alpha-mannosidase (3.2.1.113), i.e. alpha-1,2-mannosidase
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/04—Fusion polypeptide containing a localisation/targetting motif containing an ER retention signal such as a C-terminal HDEL motif
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/05—Fusion polypeptide containing a localisation/targetting motif containing a GOLGI retention signal
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
Definitions
- the present invention is directed to methods and compositions by which fungi or other eukaryotic microorganisms can be genetically modified to produce glycosylated proteins (glycoproteins) having patterns of glycosylation similar to glycoproteins produced by animal cells, especially human cells, which are useful as human or animal therapeutic agents.
- glycosylated proteins glycoproteins
- Glycosylation Pathways De novo synthesized proteins may undergo further processing in cells, known as post-translational modification.
- sugar residues may be added enzymatically, a process known as glycosylation.
- glycosylation The resulting proteins bearing covalently linked oligosaccharide side chains are known as glycosylated proteins or glycoproteins.
- Bacteria typically do not glycosylate proteins; in cases where glycosylation does occur it usually occurs at nonspecific sites in the protein (Moens and Vanderleyden, Arch. Microbiol. 1997 168(3): 169- 175).
- Eukaryotes commonly attach a specific oligosaccharide to the side chain of a protein asparagine residue, particularly an asparagine which occurs in the sequence Asn-Xaa-Ser/Thr/Cys (where Xaa represents any amino acid).
- an N-glycan Following attachment of the saccharide moiety, known as an N-glycan, further modifications may occur in vivo. Typically these modifications occur via an ordered sequence of enzymatic reactions, known as a cascade.
- Different organisms provide different glycosylation enzymes (glycosyltransferases and glycosidases) and different glycosyl substrates, so that the final composition of a sugar side chain may vary markedly depending upon the host.
- microorganisms such as filamentous fungi and yeast
- a complex N-glycan means a structure with typically two to six outer branches with a sialyllactosamine sequence linked to an inner core structure Man 3 Glc ⁇ Ac 2 .
- a complex N- glycan has at least one branch, and preferably at least two, of alternating Glc ⁇ Ac and galactose (Gal) residues that terminate in oligosaccharides such as, for example: ⁇ eu ⁇ Ac-; ⁇ euAc 2-6Gal ⁇ Ac ⁇ l-; NeuAc ⁇ 2-3Gal ⁇ l- 3GalNAc ⁇ l-; NeuAc ⁇ 2-3/6Gal ⁇ l-4GlcNAc ⁇ l-; GlcNAc ⁇ l-4Gal ⁇ l- (mucins only); Fuc ⁇ l-2Gal ⁇ l -(blood group H).
- Glc ⁇ Ac and galactose (Gal) residues that terminate in oligosaccharides such as, for example: ⁇ eu ⁇ Ac-; ⁇ euAc 2-6Gal ⁇ Ac ⁇ l-; NeuAc ⁇ 2-3Gal ⁇ l- 3GalNAc ⁇ l-; NeuAc ⁇ 2-3/6Gal ⁇ l
- Sulfate esters can occur on galactose, GalNAc, and GlcNAc residues, and phosphate esters can occur on mannose residues.
- NeuAc Neuro: neuraminic acid; Ac:acetyl
- NeuGl N-glycolylneuraminic acid
- Complex N- glycans may also have intrachain substitutions of bisecting Glc ⁇ Ac and core fucose (Fuc).
- Human glycosylation begins with a sequential set of reactions in the endoplasmatic reticulum (ER) leading to a core oligosaccharide structure, which is transferred onto de novo synthesized proteins at the asparagine residue in the sequence Asn-Xaa-Ser/Thr (see Figure 1 A). Further processing by glucosidases and mannosidases occurs in the ER before the nascent glycoprotein is transferred to the early Golgi apparatus, where additional mannose residues are removed by Golgi-specific 1,2- mannosidases. Processing continues as the protein proceeds through the Golgi.
- ER endoplasmatic reticulum
- N-acetylglucosamine transferases GnT I, GnT II, GnT III, GnT IV GnT V GnT VI
- mannosidase II fucosyltransferases add and remove specific sugar residues (see Figure IB).
- ST galactosyl tranferases and sialyltransferases
- the protein N-glycans of animal glycoproteins have bi-, tri-, or tetra-antennary structures, and may typically include galactose, fucose, and N-acetylglucosamine. Commonly the terminal residues of the N-glycans consist of sialic acid.
- Figure IB A typical structure of a human N-glycan is shown in Figure IB.
- N-glycans of animal glycoproteins typically include galactose, fucose, and terminal sialic acid. These sugars are not generally found on glycoproteins produced in yeast and filamentous fungi.
- nucleotide sugar precursors e.g. UDP-N-acetylglucosamine, UDP- N-acetylgalactosamine, CMP-N-acetylneuraminic acid, UDP-galactose, GDP-fucose etc.
- UDP-N-acetylglucosamine UDP- N-acetylgalactosamine
- CMP-N-acetylneuraminic acid UDP-galactose
- GDP-fucose etc.
- Glycosyl transfer reactions typically yield a side product which is a nucleoside diphosphate or monophosphate. While monophosphates can be directly exported in exchange for nucleoside triphosphate sugars by an antiport mechanism, diphosphonucleosides (e.g. GDP) have to be cleaved by phosphatases (e.g. GDPase) to yield nucleoside monophosphates and inorganic phosphate prior to being exported.
- phosphatases e.g. GDPase
- UDP is known to be a potent inhibitor of glycosyltransferases and the removal of this glycosylation side product is important in order to prevent glycosyltransferase inhibition in the lumen of the Golgi (Khatara et al.,
- Glycosyltransferases and mannosidases line the inner (luminal) surface of the ER and Golgi apparatus and thereby provide a catalytic surface that allows for the sequential processing of glycoproteins as they proceed through the ER and Golgi network.
- the multiple compartments of the cis, medial, and trans Golgi and the trans Golgi Network (TGN), provide the different localities in which the ordered sequence of glycosylation reactions can take place.
- glycoprotein proceeds from synthesis in the ER to full maturation in the late Golgi or TGN, it is sequentially exposed to different glycosidases, mannosidases and glycosyltransferases such that a specific N-glycan structure may be synthesized.
- the enzymes typically include a catalytic domain, a stem region, a membrane spanning region and an ⁇ - terminal cytoplasmic tail. The latter three structural components are responsible for directing a glycosylation enzyme to the appropriate locus. Localization sequences from one organism may function in other organisms.
- ⁇ -2,6- sialyltransferase ( ⁇ -2,6-ST) from rats, an enzyme known to localize in the rat trans Golgi, was shown to also localize a reporter gene (invertase) in the yeast Golgi (Schwientek, et al., 1995).
- invertase invertase
- yeast Golgi yeast Golgi
- a full length GalT from humans was not even synthesized in yeast, despite demonstrably high transcription levels.
- the transmembrane region of the same human GalT fused to an invertase reporter was able to direct localization to the yeast Golgi, albeit it at low production levels.
- Schwientek and co-workers have shown that fusing 28 amino acids of a yeast mannosyltransferase (Mntl), a region containing an N-terminal cytoplasmic tail, a transmembrane region and eight amino acids of the stem region, to the catalytic domain of human GalT are sufficient for Golgi localization of an active GalT (Schwientek et al. 1995 J. Biol. Chem. 270(10):5483-5489).
- Other galactosyltransferases appear to rely on interactions with enzymes resident in particular organelles since after removal of their transmembrane region they are still able to localize properly.
- Improper localization of a glycosylation enzyme may prevent proper functioning of the enzyme in the pathway.
- Aspergillus nidulans which has numerous ⁇ -l,2-mannosidases (Eades and Hintz, 2000 Gene 255(l):25-34), does not add GlcNAc to Man 5 GlcNAc 2 when transformed with the rabbit GnT I gene, despite a high overall level of GnT I activity (Kalsner et al., 1995).
- GnT I although actively expressed, may be incorrectly localized such that the enzyme is not in contact with both of its substrates: the nascent N-glycan of the glycoprotein and UDP-Glc ⁇ Ac.
- the host organism may not provide an adequate level of UDP- Glc ⁇ Ac in the Golgi.
- glycoproteins are typically immunogenic in humans and show a reduced half-life in vivo after administration (Takeuchi, 1997).
- Specific receptors in humans and animals can recognize terminal mannose residues and promote the rapid clearance of the protein from the bloodstream. Additional adverse effects may include changes in protein folding, solubility, susceptibility to proteases, trafficking, transport, compartmentalization, secretion, recognition by other proteins or factors, antigenicity, or allergenicity. Accordingly, it has been necessary to produce therapeutic glycoproteins in animal host systems, so that the pattern of glycosylation is identical or at least similar to that in humans or in the intended recipient species. In most cases a mammalian host system, such as mammalian cell culture, is used.
- transgenic animals such as goats, sheep, mice and others (Dente Prog. Clin. Biol. 1989 Res. 300:85-98, Ruther et al., 1988 Cell 53(6):847- 856; Ware, J., et al. 1993 Thrombosis and Haemostasis 69(6): 1194-
- Recombinant human proteins expressed in the above-mentioned host systems may still include non-human glycoforms (Raju et al., 2000 Annals Biochem. 283(2):123-132).
- fraction of the N-glycans may lack terminal sialic acid, typically found in human glycoproteins.
- Substantial efforts have been directed to developing processes to obtain glycoproteins that are as close as possible in structure to the human forms, or have other therapeutic advantages.
- Glycoproteins having specific glycoforms may be especially useful, for example in the targeting of therapeutic proteins.
- the addition of one or more sialic acid residues to a glycan side chain may increase the lifetime of a therapeutic glycoprotein in vivo after administration.
- the mammalian host cells may be genetically engineered to increase the extent of terminal sialic acid in glycoproteins expressed in the cells.
- sialic acid may be conjugated to the protein of interest in vitro prior to administration using a sialic acid transferase and an appropriate substrate.
- changes in growth medium composition or the expression of enzymes involved in human glycosylation have been employed to produce glycoproteins more closely resembling the human forms (S. Weikert, et al., Nature Biotechnology, 1999, 17, 1116-1121; Werner, ⁇ oe, et al 1998 Arzneistoffforschung 48(8):870- 880; Weikert, Papac et al., 1999; Andersen and Goochee 1994 Cur. Opin.Biotechnol.5: 546-549; Yang and Butler 2000 Biotechnol.Bioengin.68(4): 370-380).
- cultured human cells may be used.
- the virus or other infectious agent may compromise the growth of the culture, while in other cases the agent may be a human pathogen rendering the therapeutic protein product unfit for its intended use.
- many cell culture processes require the use of complex, temperature-sensitive, animal-derived growth media components, which may carry pathogens such as bovine spongiform encephalopathy (BSE) prions.
- BSE bovine spongiform encephalopathy
- pathogens are difficult to detect and/or difficult to remove or sterilize without compromising the growth medium.
- use of animal cells to produce therapeutic proteins necessitates costly quality controls to assure product safety.
- Transgenic animals may also be used for manufacturing high- volume therapeutic proteins such as human serum albumin, tissue plasminogen activator, monoclonal antibodies, hemoglobin, collagen, f ⁇ brinogen and others.
- transgenic goats and other transgenic animals can be genetically engineered to produce therapeutic proteins at high concentrations in the milk
- the process is costly since every batch has to undergo rigorous quality control.
- Animals may host a variety of animal or human pathogens, including bacteria, viruses, fungi, and prions.
- scrapies and bovine spongiform encephalopathy testing can take about a year to rule out infection.
- the production of therapeutic compounds is thus preferably carried out in a well-controlled sterile environment, e.g. under Good Manufacturing Practice (GMP) conditions.
- GMP Good Manufacturing Practice
- transgenic animal technology relies on different animals and thus is inherently non-uniform.
- external factors such as different food uptake, disease and lack of homogeneity within a herd, may effect glycosylation patterns of the final product. It is known in humans, for example, that different dietary habits result in differing glycosylation patterns.
- Transgenic plants have been developed as a potential source to obtain proteins of therapeutic value.
- high level expression of proteins in plants suffers from gene silencing, a mechanism by which the genes for highly expressed proteins are down-regulated in subsequent plant generations.
- plants add xylose and/or ⁇ - 1,3 -linked fucose to protein N-glycans, resulting in glycoproteins that differ in structure from animals and are immunogenic in mammals (Altmann, Marz et al., 1995 Glycoconj. J. 12(2);150-155).
- it is generally not practical to grow plants in a sterile or GMP environment and the recovery of proteins from plant tissues is more costly than the recovery from fermented microorganisms.
- glycoprotein Production Using Eukarvotic Microorganisms The lack of a suitable expression system is thus a significant obstacle to the low-cost and safe production of recombinant human glycoproteins.
- Production of glycoproteins via the fermentation of microorganisms would offer numerous advantages over the existing systems. For example, fermentation-based processes may offer (a) rapid production of high concentrations of protein; (b) the ability to use sterile, well-controlled production conditions (e.g.
- GMP conditions the ability to use simple, chemically defined growth media; (d) ease of genetic manipulation; (e) the absence of contaminating human or animal pathogens; (f) the ability to express a wide variety of proteins, including those poorly expressed in cell culture owing to toxicity etc.; (g) ease of protein recovery (e.g. via secretion into the medium).
- fermentation facilities are generally far less costly to construct than cell culture facilities.
- bacteria including species such as Escherichia coli commonly used to produce recombinant proteins, do not glycosylate proteins in a specific manner like eukaryotes.
- Various methylotrophic yeasts such as Pichia pastoris, Pichia methanolica, and Hansenula polymorpha, are particularly useful as eukaryotic expression systems, since they are able to grow to high cell densities and/or secrete large quantities of recombinant protein.
- glycoproteins expressed in these eukaryotic microorganisms differ substantially in N-glycan structure from those in animals. This has prevented the use of yeast or filamentous fungi as hosts for the production of many useful glycoproteins.
- glycosyltransferases have been separately cloned and expressed in S. cerevisiae (GalT, GnT I), Aspergillus nidulans (GnT I) and other fungi (Yoshida et al., 1999, Kalsner et al., 1995 Glycoconj. J. 12(3):360-370, Schwientek et al., 1995).
- GalT, GnT I Aspergillus nidulans
- fungi Yoshida et al., 1999, Kalsner et al., 1995 Glycoconj. J. 12(3):360-370, Schwientek et al., 1995.
- N-glycans with human characteristics were not obtained.
- Yeasts produce a variety of mannosyltransferases e.g. 1,3- mannosyltransferases (e.g. M ⁇ 1 in S. cerevisiae) (Graham and Emr, 1991 J. Cell. Biol. 114(2):207-218), 1,2-mannosyltransferases (e.g. KTR/KRE family from S. cerevisiae), 1,6-mannosyltransferases (OCH1 from 5 cerevisiae), mannosylphosphate transferases (M ⁇ 4 and MNN6 from S. cerevisiae) and additional enzymes that are involved in endogenous glycosylation reactions. Many of these genes have been deleted individually, giving rise to viable organisms having altered glycosylation profiles. Examples are shown in Table 1. Table 1. Examples of yeast strains having altered mannosylation
- Japanese Patent Application Public No. 8-336387 discloses an OCH1 mutant strain of Pichia pastoris.
- the OCH1 gene encodes 1,6-mannosyltransferase, which adds a mannose to the glycan structure Man 8 GlcNAc 2 to yield Man 9 GlcNAc 2 .
- the Man 9 GlcNAc 2 structure is then a substrate for further mannosylation in vivo, leading to the hypermannosylated glycoproteins that are characteristic of yeasts and typically may have at least 30-40 mannose residue per N-glycan.
- proteins glycosylated with Man 8 Glc ⁇ Ac are accumulated and hypermannosylation does not occur.
- the structure Man 8 GlcNAc is not a substrate for animal glycosylation enzymes, such as human UDP-GlcNAc transferase I, and accordingly the method is not useful for producing proteins with human glycosylation patterns.
- yeast Saccharomyces cerevisiae 1998 expressed ⁇ -l,2-mannosidase from Asperg ⁇ llus saitoi in the yeast Saccharomyces cerevisiae.
- a signal peptide sequence (His-Asp-Glu-Leu) was engineered into the exogenous mannosidase to promote retention in the endoplasmic reticulum.
- the yeast host was a mutant lacking three enzyme activities associated with hypermannosylation of proteins: l,6-mannosyltransferase (OCH7); 1,3- mannosyltransferase (MNNl); and mannosylphosphatetransferase (MNN4).
- the N-glycans of the triple mutant host thus consisted of the structure Man 8 Glc ⁇ Ac 2 , rather than the high mannose forms found in wild-type S. cerevisiae.
- the N-glycans of a model protein (carboxypeptidase Y) were trimmed to give a mixture consisting of 27 mole % Man 5 Glc ⁇ Ac 2 , 22 mole % Man 6 GlcNAc 2 , 22 mole % Man 7 GlcNAc 2 , 29 mole % Man 8 GlcNAc 2 . Trimming of the endogenous cell wall glycoproteins was less efficient, only 10 mole % of the N-glycans having the desired Man 5 Glc ⁇ Ac 2 structure.
- strains which: do not express certain enzymes which create the undesirable complex structures characteristic of the fungal glycoproteins, which express exogenous enzymes selected either to have optimal activity under the conditions present in the fungi where activity is desired, or which are targeted to an organelle where optimal activity is achieved, and combinations thereof wherein the genetically engineered eukaryote expresses multiple exogenous enzymes required to produce "human-like" glycoproteins.
- the microorganism is engineered to express an exogenous c - 1 ,2-mannosidase enzyme having an optimal pH between 5.1 and 8.0, preferably between 5.9 and 7.5.
- the exogenous enzyme is targeted to the endoplasmic reticulum or Golgi apparatus of the host organism, where it trims N-glycans such as Man 8 Glc ⁇ Ac 2 to yield Man 5 GlcNAc 2 .
- the latter structure is useful because it is identical to a structure formed in mammals, especially humans; it is a substrate for further glycosylation reactions in vivo and/or in vitro that produce a finished N-glycan that is similar or identical to that formed in mammals, especially humans; and it is not a substrate for hypermannosylation reactions that occur in vivo in yeast and other microorganisms and that render a glycoprotein highly irnrnunogenic in animals.
- the glycosylation pathway of an eukaryotic microorganism is modified by (a) constructing a D ⁇ A library including at least two genes encoding exogenous glycosylation enzymes; (b) transforming the microorganism with the library to produce a genetically mixed population expressing at least two distinct exogenous glycosylation enzymes; (c) selecting from the population a microorganism having the desired glycosylation phenotype.
- the D ⁇ A library includes chimeric genes each encoding a protein localization sequence and a catalytic activity related to glycosylation. Organisms modified using the method are useful for producing glycoproteins having a glycosylation pattern similar or identical to mammals, especially humans.
- the glycosylation pathway is modified to express a sugar nucleotide transporter enzyme.
- a nucleotide diphosphatase enzyme is also expressed. The transporter and diphosphatase improve the efficiency of engineered glycosylation steps, by providing the appropriate substrates for the glycosylation enzymes in the appropriate compartments, reducing competitive product inhibition, and promoting the removal of nucleoside diphosphates.
- Figure 1 A is a schematic diagram of typical fungal N-glycosylation pathway.
- Figure IB is a schematic diagram of a typical human N-glycosylation pathway.
- the methods and recombinant lower eukaryotic strains described herein are used to make "humanized glycoproteins".
- the recombinant lower eukaryotes are made by engineering lower eukaryotes which do not express one or more enzymes involved in production of high mannose structures to express the enzymes required to produce human-like sugars.
- a lower eukaryote is a unicellular or filamentous fungus.
- a "humanized glycoprotein” refers to a protein having attached thereto N- glycans including less than four mannose residues, and the synthetic intermediates (which are also useful and can be manipulated further in vitro) having at least five mannose residues.
- the glycoproteins produced in the recombinant lower eukaryotic strains contain at least 27 mole % of the Man5 intermediate. This is achieved by cloning in a better mannosidase, i.e., an enzyme selected to have optimal activity under the conditions present in the organisms at the site where proteins are glycosylated, or by targeting the enzyme to the organelle where activity is desired.
- eukaryotic strains which do not express one or more enzymes involved in the production of high mannose structures are used. These strains can be engineered or one of the many such mutants already described in yeasts, including a hypermannosylation-minus (OCH1) mutant in Pichia pastoris. The strains can be engineered one enzyme at a time, or a library of genes encoding potentially useful enzymes can be created, and those strains having enzymes with optimal activities or producing the most "human-like" glycoproteins, selected.
- N-glycan Man 5 Glc ⁇ Ac 2 are particularly useful since (a) lacking a high degree of mannosylation (e.g. greater than 8 mannoses per N-glycan, or especially 30-40 mannoses), they show reduced immunogenicity in humans; and (b) the N-glycan is a substrate for further glycosylation reactions to form an even more human-like glycoform, e.g. by the action of Glc ⁇ Ac transferase I to form Glc ⁇ AcMan 5 Glc ⁇ Ac 2 .
- a high degree of mannosylation e.g. greater than 8 mannoses per N-glycan, or especially 30-40 mannoses
- the N-glycan is a substrate for further glycosylation reactions to form an even more human-like glycoform, e.g. by the action of Glc ⁇ Ac transferase I to form Glc ⁇ AcMan 5 Glc ⁇ Ac 2 .
- Man 5 GlcNAc 2 must be formed in vivo in a high yield, at least transiently, since all subsequent glycosylation reactions require Man 5 GlcNAc 2 or a derivative thereof. Accordingly, a yield is obtained of greater than 27 mole %, more preferably a yield of 50-100 mole %, glycoproteins in which a high proportion of N-glycans have Man 5 Glc ⁇ Ac2. It is then possible to perform further glycosylation reactions in vitro, using for example the method of U.S. Patent No. 5,834,251 to Maras and Contreras. In a preferred embodiment, at least one further glycosylation reaction is performed in vivo. In a highly preferred embodiment thereof, active forms of glycosylating enzymes are expressed in the endoplasmic reticulum and/or Golgi apparatus. Host Microorganisms
- Yeast and filamentous fungi have both been successfully used for the production of recombinant proteins, both intracellular and secreted (Cereghino, J. L. and J. M. Cregg 2000 FEMS Microbiology Reviews 24(1): 45-66; Harkki, A., et al. 1989 Bio-Technology 7(6): 596; Berka, R. M., et al. 1992 Abstr.Papers Amer. Chem.Soc.203: 121-BIOT; Svetina, M., et al. 2000 J.Biotechnol. 76(2-3): 245-251.
- the first step the transfer of the core oligosaccharide structure to the nascent protein, is highly conserved in all eukaryotes including yeast, fungi, plants and humans (compare Figures 1 A and IB).
- Subsequent processing of the core oligosaccharide differs significantly in yeast and involves the addition of several mannose sugars.
- This step is catalyzed by mannosyltransferases residing in the Golgi (e.g. OCH1, MNT1, MNNl, etc.), which sequentially add mannose sugars to the core oligosaccharide.
- the resulting structure is undesirable for the production of humanoid proteins and it is thus desirable to reduce or eliminate mannosyl transferase activity.
- Mutants of 5. cerevisiae, deficient in mannosyl transferase activity e.g. ochl or mnn9 mutants
- Other oligosacharide processing enzymes, such as mannosylphophate transferase may also have to be eliminated depending on the host's particular endogenous glycosylation pattern.
- After reducing undesired endogenous glycosylation reactions the formation of complex N- glycans has to be engineered into the host system. This requires the stable expression of several enzymes and sugar-nucleotide transporters. Moreover, one has to locate these enzymes in a fashion such that a sequential processing of the maturing glycosylation structure is ensured.
- glycoproteins especially glycoproteins used therapeutically in humans.
- Such therapeutic proteins are typically administered by injection, orally, pulmonary, or other means.
- target glycoproteins include, without limitation: erythropoietin, cytokines such as interferon- ⁇ , interferon- ⁇ , interferon- ⁇ , interferon- ⁇ , and granulocyte-CSF, coagulation factors such as factor VIII, factor IX, and human protein C, soluble IgE receptor -chain, IgG, IgM, urokinase, chymase, and urea trypsin inhibitor, IGF-binding protein, epidermal growth factor, growth hormone-releasing factor, annexin V fusion protein, angiostatin, vascular endothelial growth factor-2, myeloid progenitor inhibitory factor- 1, amd osteoprotegerin.
- cytokines such as interferon- ⁇ , interferon- ⁇ , interferon- ⁇ , interferon- ⁇ , and granulocyte-CSF
- coagulation factors such as factor VIII, factor IX, and human protein C
- soluble IgE receptor -chain IgG
- the first step involves the selection or creation of a lower eukaryote that is able to produce a specific precursor structure of Man 5 GlcNAc 2 , which is able to accept in vivo GlcNAc by the action of a GlcNAc transferase I.
- This step requires the formation of a particular isomeric structure of Man 5 GlcNAc 2 .
- This structure has to be formed within the cell at a high yield (in excess of 30%) since all subsequent manipulations are contingent on the presence of this precursor.
- Man 5 GlcNAc 2 structures are necessary for complex N-glycan formation, however, their presence is by no means sufficient, since Man 5 GlcNAc 2 may occur in different isomeric forms, which may or may not serve as a substrate for GlcNAc transferase I. Most glycosylation reactions are not complete and thus a particular protein generally contains a range of different carbohydrate structures (i.e. glycoforms) on its surface. The mere presence of trace amounts (less than 5%) of a particular structure like Man 5 GlcNAc 2 is of little practical relevance. It is the formation of a particular, GlcNAc transferase I accepting intermediate (Structure I) in high yield (above 30%), which is required. The formation of this intermediate is necessary and subsequently allows for the in vivo synthesis of complex N-glycans.
- the method described herein may be used to engineer the glycosylation pattern of a wide range of lower eukaryotes (e.g. Hansenula polymorpha, Pichia stiptis, Pichia methanolica, Pichia sp, Kluyveromyces sp, Candida albicans, Aspergillus nidulans, Trichoderma reseei etc.).
- Pichia pastoris is used to exemplify the required manipulation steps.
- P.pastoris processes Man 9 GlcNAc 2 structures in the ER with a 1,2- ⁇ - mannosidase to yield Man 8 GlcNAc 2 .
- Mannosyltransferases Through the action of several mannosyltransferases, this structure is then converted to hypermannosylated structures (Man >9 GlcNAc 2 ), also known as mannans.
- Man >9 GlcNAc 2 also known as mannans.
- P. pastoris is able to add non-terminal phosphate groups, through the action of mannosylphosphate transferases to the carbohydrate structure. This is contrary to the reactions found in mammalian cells, which involve the removal of mannose sugars as opposed to their addition. It is of particular importance to eliminate the ability of the fungus to hypermannosylate the existing Man 8 GlcNAc 2 structure. This can be achieved by either selecting for a fungus that does not hypermannosylate, or by genetically engineering such a fungus.
- genes that are involved in this process have been identified in Pichia pastoris and by creating mutations in these genes one is able to reduce the production of "undesirable” glycoforms.
- Such genes can be identified by homology to existing mannosyltransferases (e.g. OCH1, MNN4, MNN6, MNNl), found in other lower eukaryotes such as C. albicans, Pichia angusta or S. cerevisiae or by mutagenizing the host strain and selecting for a phenotype with reduced mannosylation.
- PCR primers examples of which are shown in Table 2
- genes or gene fragments encoding such enzymes as probes to identify homologues in DNA libraries of the target organism.
- one may be able to complement particular phenotypes in related organisms. For example, in order to obtain the gene or genes encoding 1,6- mannosyltransferase activity in P. pastoris, one would carry out the following steps.
- OCH1 mutants of S. cerevisiae are temperature sensitive and are slow growers at elevated temperatures.
- Such mutants of S. cerevisiae may be found at http://genome- www.stanford.edu/Saccharomyces/ and are commercially available at http://www.resgen.com/products/YEASTD.php3. Mutants that display a normal growth phenotype at elevated temperature, after having been transformed with a P. pastoris DNA library, are likely to carry an OCH1 homologue of P. pastoris.
- Such a library can be created by partially digesting chromosomal DNA of P. pastoris with a suitable restriction enzyme and after inactivating the restriction enzyme ligating the digested DNA into a suitable vector, which has been digested with a compatible restriction enzyme.
- Suitable vectors are pRS314, a low copy (CEN6/ARS4) plasmid based on pBluescript containing the Trpl marker (Sikorski, R. S., and Hieter, P., 1989, Genetics 122, pg 19-27) or pFL44S, a high copy (2 ⁇ ) plasmid based on a modified pUC19 containing the URA3 marker (Bonneaud, N., et al., 1991, Yeast 7, pg. 609-615).
- Such vectors are commonly used by academic researchers or similar vectors are available from a number of different vendors such as Invitrogen (Carlsbad, CA), Pharmacia (Piscataway, NJ), New England Biolabs (Beverly, MA). Examples are pYES/GS, 2 ⁇ origin of replication based yeast expression plasmid from Invitrogen, or Yep24 cloning vehicle from New England Biolabs. After ligation of the chromosomal DNA and the vector one may transform the DNA library into strain of S. cerevisiae with a specific mutation and select for the correction of the corresponding phenotype. After sub-cloning and sequencing the DNA fragment that is able to restore the wild-type phenotype, one may use this fragment to eliminate the activity of the gene product encoded by OCH1 in P. pastoris.
- genomic sequence of a particular fungus of interest is known, one may identify such genes simply by searching publicly available DNA databases, which are available from several sources such as NCBI, Swissprot etc. For example by searching a given genomic sequence or data base with a known 1,6 mannosyltransferase gene (OCH1) from S. cerevisiae, one can able to identify genes of high homology in such a genome, which a high degree of certainty encodes a gene that has 1 ,6 mannosyltransferase activity. Homologues to several known mannosyltransferases from S.cerevisiae in P. pastoris have been identified using either one of these approaches.
- OCH1 1,6 mannosyltransferase gene
- genes have similar functions to genes involved in the mannosylation of proteins in S. cerevisiae and thus their deletion may be used to manipulate the glycosylation pattern in P. pastoris or any other fungus with similar glycosylation pathways.
- the creation of gene knock-outsj once a given target gene sequence has been determined, is a well-established technique in the yeast and fungal molecular biology community, and can be carried out by anyone of ordinary skill in the art (R. Rothsteins, (1991) Methods in Enzymology, vol. 194, p. 281). In fact, the choice of a host organism may be influenced by the availability of good transformation and gene disruption techniques for such a host.
- URA3 may be used as a marker to ensure the selection of a transformants that have integrated a construct.
- flanking the URA3 marker with direct repeats one may first select for transformants that have integrated the construct and have thus disrupted the target gene. After isolation of the transformants, and their characterization, one may counter select in a second round for those that are resistant to 5'FOA. Colonies that able to survive on plates containing 5'FOA have lost the URA3 marker again through a crossover event involving the repeats mentioned earlier. This approach thus allows for the repeated use of the same marker and facilitates the disruption of multiple genes without requiring additional markers.
- Eliminating specific mannosyltransferases such as 1,6 mannosyltransferase (OCH1), mannosylphosphate transferases (MNN4, MNN6, or genes complementing lb d mutants) in P. pastoris, allows for the creation of engineered strains of this organism which synthesize primarily Man 8 GlcNAc 2 and thus can be used to further modify the glycosylation pattern to more closely resemble more complex human glycoform structures.
- a preferred embodiment of this method utilizes known DNA sequences, encoding known biochemical glycosylation activities to eliminate similar or identical biochemical functions in P. pastoris, such that the glycosylation structure of the resulting genetically altered P. pastoris strain is modified. Table 2.
- M A or C
- R A or G
- a or T A or T
- S C or G
- a or G or T, B C or G or T,
- N G or A or T or C.
- Mannosidase into the Genetically Engineered Host
- the process described herein enables one to obtain such a structure in high yield for the purpose of modifying it to yield complex N-glycans.
- a successful scheme to obtain suitable Man 5 GlcNAc2 structures must involve two parallel approaches: (1) reducing endogenous mannosyltransferase activity and (2) removing 1,2- ⁇ - mannose by mannosidases to yield high levels of suitable Man 5 GlcNAc 2 structures. What distinguishes this method from the prior art is that it deals directly with those two issues. As the work of Chiba and coworkers demonstrates, one can reduce Man 8 GlcNAc 2 structures to a Man 5 GlcNAc 2 isomer in S.
- a preferred process utilizes an - mannosidase in vivo, where the pH optimum of the mannosidase is within 1.4 pH units of the average pH optimum of other representative marker enzymes localized in the same organelle(s).
- the pH optimum of the enzyme to be targeted to a specific organelle should be matched with the pH optimum of other enzymes found in the same organelle, such that the maximum activity per unit enzyme is obtained.
- Table 3 summarizes the activity of mannosidases from various sources and their respective pH optima.
- Table 4 summarizes their location.
- Man 5 GlcNAc2 structure required to accept subsequent addition of GlcNAc by GnT I Any enzyme or combination of enzymes that has/have shown to generate a structure that can be converted to GlcNAcMan 5 GlcNAc 2 by GnT I in vitro would constitute an appropriate choice.
- This knowledge may be obtained from the scientific literature or experimentally by determining that a potential mannosidase can convert Man 8 GlcNAc 2 -PA to Man 5 GlcNAc 2 -PA and then testing, if the obtained Man 5 GlcNAc 2 -PA structure can serve a substrate for GnT I and UDP-GlcNAc to give GlcNAcMan 5 GlcNAc 2 in vitro.
- mannosidase IA from a human or murine source would be an appropriate choice.
- the ⁇ -l,2-mannosidase enzyme should have optimal activity at a pH between 5.1 and 8.0. In a preferred embodiment, the enzyme has an optimal activity at a pH between 5.9 and 7.5. The optimal pH may be determined under in vitro assay conditions.
- Preferred mannosidases include those listed in Table 3 having appropriate pH optima, e.g. Aspergillus nidulans, Homo sapiens IA(Golgi), Homo sapiens IB (Golgi), Lepidopteran insect cells (IPLB-SF21AE), Homo sapiens, mouse IB (Golgi), and Xanthomonas manihotis.
- a single cloned mannosidase gene is expressed in the host organism.
- the encoded mannosidases should all have pH optima within the preferred range of 5.1 to 8.0, or especially between 5.9 and 7.5.
- mannosidase activity is targeted to the ER or cis Golgi, where the early reactions of glycosylation occur.
- a second step of the process involves the sequential addition of sugars to the nascent carbohydrate structure by engineering the expression of glucosyltransferases into the Golgi apparatus.
- This process first requires the functional expression of GnT I in the early or medial Golgi apparatus as well as ensuring the sufficient supply of UDP-GlcNAc. Integration Sites Since the ultimate goal of this genetic engineering effort is a robust protein production strain that is able to perform well in an industrial fermentation process, the integration of multiple genes into the fungal chromosome involves careful planing. The engineered strain will most likely have to be transformed with a range of different genes, and these genes will have to be transformed in a stable fashion to ensure that the desired activity is maintained throughout the fermentation process.
- any combination of the following enzyme activities will have to be engineered into the fungal protein expression host: sialyltransferases, mannosidases, fucosyltransferases, galactosyltransferases, glucosyltransferases, GlcNAc transferases, ER and Golgi specific transporters (e.g. sym and antiport transporters for UDP-galactose and other precursors), other enzymes involved in the processing of oligosaccharides, and enzymes involved in the synthesis of activated oligosaccharide precursors such as UDP-galactose, CMP-N-acetylneuraminic acid.
- sialyltransferases mannosidases
- fucosyltransferases fucosyltransferases
- galactosyltransferases galactosyltransferases
- glucosyltransferases glucosyltransferases
- Glycosyltransferases and mannosidases line the inner (luminal) surface of the ER and Golgi apparatus and thereby provide a "catalytic" surface that allows for the sequential processing of glycoproteins as they proceed through the ER and Golgi network.
- the multiple compartments of the cis, medial, and trans Golgi and the trans-Golgi Network (TGN) provide the different localities in which the ordered sequence of glycosylation reactions can take place.
- glycoprotein proceeds from synthesis in the ER to full maturation in the late Golgi or TGN, it is sequentially exposed to different glycosidases, mannosidases and glycosyltransferases such that a specific carbohydrate structure may be synthesized.
- Much work has been dedicated to revealing the exact mechanism by which these enzymes are retained and anchored to their respective organelle.
- the evolving picture is complex but evidence suggests that stem region, membrane spanning region and cytoplasmic tail individually or in concert direct enzymes to the membrane of individual organelles and thereby localize the associated catalytic domain to that locus.
- Targeting sequences are well known and described in the scientific literature and public databases, as discussed in more detail below with respect to libraries for selection of targeting sequences and targeted enzymes.
- a library including at least two genes encoding exogeneous glycosylation enzymes is transformed into the host organism, producing a genetically mixed population. Transformants having the desired glycosylation phenotypes are then selected from the mixed population.
- the host organism is a yeast, especially P. pastoris, and the host glycosylation pathway is modified by the operative expression of one or more human or animal glycosylation enzymes, yielding protein N- glycans similar or identical to human glycoforms.
- the D ⁇ A library includes genetic constructs encoding fusions of glycosylation enzymes with targeting sequences for various cellular loci involved in glycosylation especially the ER, cis Golgi, medial Golgi, or trans Golgi.
- modifications to glycosylation which can be effected using method are: (1) engineering an eukaryotic microorganism to trim mannose residues from Man 8 Glc ⁇ Ac2 to yield Man 5 GlcNAc2 as a protein N- glycan; (2) engineering an eukaryotic microorganism to add an N-acetylglucosamine (Glc ⁇ Ac) residue to Man 5 Glc ⁇ Ac 2 by action of GlcNAc transferase I; (3) engineering an eukaryotic microorganism to functionally express an enzyme such as an N-acetylglucosamine transferase (GnT I, GnT II, GnT III, GnT IV, GnT V, GnT VI), mannosidase II, fucosyltransferase, galactosyl tranferase (GalT) or sialyltransferases (ST).
- N-acetylglucosamine transferase GnT I
- the host organism is transformed two or more times with D ⁇ A libraries including sequences encoding glycosylation activities. Selection of desired phenotypes may be performed after each round of transformation or alternatively after several transformations have occurred. Complex glycosylation pathways can be rapidly engineered in this manner.
- each library construct includes at least two exogenous genes encoding glycosylation enzymes.
- promoters include, for example, the AOX1, AOX2, DAS, and P40 promoters.
- selectable marker such as a gene to impart drug resistance or to complement a host metabolic lesion. The presence of the marker is useful in the subsequent selection of transformants; for example, in yeast the URA3, HIS4, SUC2, G418, BLA, or SHBLE genes may be used.
- the library may be assembled directly from existing or wild-type genes.
- the D ⁇ A library is assembled from the fusion of two or more sub-libraries.
- one useful sub-library includes D ⁇ A sequences encoding any combination of enzymes such as sialyltransferases, mannosidases, fucosyltransferases, galactosyltransferases, glucosyltransferases, and GlcNAc transferases.
- the enzymes are of human origin, although other mammalian, animal, or fungal enzymes are also useful.
- genes are truncated to give fragments encoding the catalytic domains of the enzymes.
- the enzymes may then be redirected and expressed in other cellular loci.
- the choice of such catalytic domains may be guided by the knowledge of the particular environment in which the catalytic domain is subsequently to be active. For example, if a particular glycosylation enzyme is to be active in the late Golgi, and all known enzymes of the host organism in the late Golgi have a certain pH optimum, then a catalytic domain is chosen which exhibits adequate activity at that pH.
- Another useful sub-library includes DNA sequences encoding signal peptides that result in localization of a protein to a particular location within the ER, Golgi, or trans Golgi network. These signal sequences may be selected from the host organism as well as from other related or unrelated organisms.
- Membrane-bound proteins of the ER or Golgi typically may include, for example, N-terminal sequences encoding a cytosolic tail (ct), a transmembrane domain (tmd), and a stem region (sr). The ct, tmd, and sr sequences are sufficient individually or in combination to anchor proteins to the inner (lumenal) membrane of the organelle.
- a preferred embodiment of the sub-library of signal sequences includes ct, tmd, and/or sr sequences from these proteins.
- Still other useful sources of signal sequences include retrieval signal peptides, e.g. the tetrapeptides HDEL or KDEL, which are typically found at the C-terminus of proteins that are transported retrograde into the ER or Golgi.
- Still other sources of signal sequences include (a) type II membrane proteins, (b) the enzymes listed in Table 3, (c) membrane spanning nucleotide sugar transporters that are localized in the Golgi, and (d) sequences referenced in Table 5.
- MNN1 S. 1,3- Golgi (trans) cerevisiae mannosyltransferase
- signal sequences are selected which are appropriate for the enzymatic activity or activities which are to be engineered into the host.
- signal sequences are selected which are appropriate for the enzymatic activity or activities which are to be engineered into the host.
- a modified microorganism capable of terminal sialylation of nascent N-glycans a process which occurs in the late Golgi in humans, it is desirable to utilize a sub-library of signal sequences derived from late Golgi proteins.
- the trimming of Man 8 Glc ⁇ Ac 2 by an ⁇ -l,2-mannosidase to give
- Man 5 GlcNAc 2 is an early step in complex N-glycan formation in humans. It is therefore desirable to have this reaction occur in the ER or early Golgi of an engineered host microorganism. A sub-library encoding ER and early Golgi retention signals is used.
- a DNA library is then constructed by the in-frame ligation of a sub-library including DNA encoding signal sequences with a sub-library including DNA encoding glycosylation enzymes or catalytically active fragments thereof.
- the resulting library includes synthetic genes encoding fusion proteins.
- signal sequences may be inserted within the open reading frame of an enzyme, provided the protein structure of individual folded domains is not disrupted.
- a DNA library transformed into the host contains a large diversity of sequences, thereby increasing the probability that at least one transformant will exhibit the desired phenotype. Accordingly, prior to transformation, a DNA library or a constituent sub- library may be subjected to one or more rounds of gene shuffling, error prone PCR, or in vitro mutagenesis.
- the DNA library is then transformed into the host organism.
- yeast any convenient method of DNA transfer may be used, such as electroporation, the lithium chloride method, or the spheroplast method.
- integration occurs via homologous recombination, using techniques known in the art.
- DNA library elements are provided with flanking sequences homologous to sequences of the host organism. In this manner integration occurs at a defined site in the host genome, without disruption of desirable or essential genes.
- library DNA is integrated into the site of an undesired gene in a host chromosome, effecting the disruption or deletion of the gene.
- library DNA may be introduced into the host via a chromosome, plasmid, retroviral vector, or random integration into the host genome.
- Recyclable marker genes such as ura3, which can be selected for or against, are especially suitable.
- transformants displaying the desired glycosylation phenotype are selected. Selection may be performed in a single step or by a series of phenotypic enrichment and/or depletion steps using any of a variety of assays or detection methods. Phenotypic characterization may be carried out manually or using automated high-throughput screening equipment. Commonly a host microorganism displays protein N-glycans on the cell surface, where various glycoproteins are localized. Accordingly intact cells may be screened for a desired glycosylation phenotype by exposing the cells to a lectin or antibody that binds specifically to the desired N-glycan. A wide variety of oligosaccharide-specific lectins are available commercially (EY).
- antibodies to specific human or animal N-glycans are available commercially or may be produced using standard techniques.
- An appropriate lectin or antibody may be conjugated to a reporter molecule, such as a chromophore, fluorophore, radioisotope, or an enzyme having a chromogenic substrate (Guillen et al., 1998. Proc.
- Screening may then be performed using analytical methods such as spectrophotometry, fluorimetry, fluorescence activated cell sorting, or scintillation counting.
- analytical methods such as spectrophotometry, fluorimetry, fluorescence activated cell sorting, or scintillation counting.
- Protein isolation may be carried out by techniques known in the art.
- an enzyme such as endo- ⁇ -N-acetylglucosaminidase (Genzyme Co., Boston, MA) may be used to cleave the N-glycans from glycoproteins. Isolated proteins or N-glycans may then be analyzed by liquid chromatography (e.g.
- U.S. Patent No. 5,595,900 teaches several methods by which cells with desired extracellular carbohydrate structures may be identified. Prior to selection of a desired transformant, it may be desirable to deplete the transformed population of cells having undesired phenotypes. For example, when the method is used to engineer a functional mannosidase activity into cells, the desired transformants will have lower levels of mannose in cellular glycoprotein. Exposing the transformed population to a lethal radioisotope of mannose in the medium depletes the population of transformants having the undesired phenotype, i.e. high levels of incorporated mannose.
- cytotoxic lectin or antibody directed against an undesirable N-glycan, may be used to deplete a transformed population of undesired phenotypes.
- the enzyme For a glycosyltransferase to function satisfactorily in the Golgi, it is necessary for the enzyme to be provided with a sufficient concentration of an appropriate nucleotide sugar, which is the high-energy donor of the sugar moiety added to a nascent glycoprotein.
- nucleotide sugars to the appropriate compartments are provided by expressing an exogenous gene encoding a sugar nucleotide transporter in the host microorganism.
- the choice of transporter enzyme is influenced by the nature of the exogenous glycosyltransferase being used.
- a GlcNAc transferase may require a UDP-GlcNAc transporter
- a fucosyltransferase may require a GDP- fucose transporter
- a galactosyltransferase may require a UDP-galactose transporter
- a sialyltransferase may require a CMP-sialic acid transporter.
- the added transporter protein conveys a nucleotide sugar from the cytosol into the Golgi apparatus, where the nucleotide sugar may be reacted by the glycosyltransferase, e.g. to elongate an N-glycan.
- the reaction liberates a nucleoside diphosphate or monophosphate, e.g. UDP, GDP, or
- nucleoside diphosphate As accumulation of a nucleoside diphosphate inhibits the further activity of a glycosyltransferase, it is frequently also desirable to provide an expressed copy of a gene encoding a nucleotide diphosphatase.
- the diphosphatase (specific for UDP or GDP as appropriate) hydrolyzes the diphosphonucleoside to yield a nucleoside monosphosphate and inorganic phosphate.
- the nucleoside monophosphate does not inhibit the glycotransferase and in any case is exported from the Golgi by an endogenous cellular system.
- Suitable transporter enzymes which are typically of mammalian origin, are described below. Examples The use of the above general method may be understood by reference to the following non-limiting examples. Examples of preferred embodiments are also summarized in Table 6.
- Example 1 Engineering of P. pastoris with -l,2-Mannosidase to produce insulin.
- An -l,2-mannosidase is required for the trimming of Man 8 GlcNAc 2 to yield Man 5 GlcNAc 2 , an essential intermediate for complex N-glycan formation.
- An OCH1 mutant of P. pastoris is engineered to express secreted human interferon- ⁇ under the control of an aox promoter.
- a D ⁇ A library is constructed by the in-frame ligation of the catalytic domain of human mannosidase IB (an ⁇ -l,2-mannosidase) with a sub-library including sequences encoding early Golgi localization peptides.
- the D ⁇ A library is then transformed into the host organism, resulting in a genetically mixed population wherein individual transformants each express interferon- ⁇ as well as a synthetic mannosidase gene from the library. Individual transformant colonies are cultured and the production of interferon is induced by addition of methanol. Under these conditions, over 90% of the secreted protein includes interferon- ⁇ . Supernatants are purified to remove salts and low-molecular weight contaminants by C 18 silica reversed-phase chromatography.
- Desired transformants expressing appropriately targeted, active ⁇ -l,2-mannosidase produce interferon- ⁇ including N-glycans of the structure Man 5 Glc ⁇ Ac 2 , which has a reduced molecular mass compared to the interferon of the parent strain.
- the purified supernatants including interferon- ⁇ are analyzed by MALDI-TOF mass spectroscopy and colonies expressing the desired form of interferon- ⁇ are identified.
- GlcNAc Transferase I activity is required for the maturation of complex N-glycans.
- Man 5 Glc ⁇ Ac 2 may only be trimmed by mannosidase II, a necessary step in the formation of human glycoforms, after the addition of GlcNAc to the terminal ⁇ -1,3 mannose residue by GlcNAc Transferase I (Schachter, 1991 Glycobiology 1(5):453-461).
- a library is prepared including DNA fragments encoding suitably targeted GlcNAc Transferase I genes.
- the host organism is a strain, e.g. a yeast, that is deficient in hypermannosylation (e.g.
- an OCH1 mutant provides the substrate UDP-GlcNAc in the Golgi and/or ER, and provides N-glycans of the structure Man 5 Glc ⁇ Ac 2 in the Golgi and/or ER.
- the transformants are screened for those having the highest concentration of terminal GlcNAc on the cell surface, or alternatively secrete the protein having the highest terminal GlcNAc content.
- a visual method e.g. a staining procedure
- a specific terminal GlcNAc binding antibody e.g. a specific terminal GlcNAc binding antibody
- a lectin e.g. a lectin.
- the desired transformants exhibit reduced binding of certain lectins specific for terminal mannose residues.
- a human glycoform in a microorganism it is desirable in order to generate a human glycoform in a microorganism to remove the two remaining terminal mannoses from the structure GlcNAcMan 5 GlcNAc 2 by action of a mannosidase II.
- a DNA library including sequences encoding cis and medial Golgi localization signals is fused in-frame to a library encoding mannosidase II catalytic domains.
- the host organism is a strain, e.g. a yeast, that is deficient in hypermannosylation (e.g. an OCH1 mutant) and provides N-glycans having the structure Glc ⁇ AcMan 5 Glc ⁇ Ac2 in the Golgi and/or ER.
- the enzymes ⁇ 2,3 -sialyltransferase and ⁇ 2,6-sialyltransferase add terminal sialic acid to galactose residues in nascent human N-glycans, leading to mature glycoproteins. In human the reactions occur in the trans Golgi or TG ⁇ . Accordingly a D ⁇ A library is constructed by the in-frame fusion of sequences encoding sialyltransferase catalytic domains with sequences encoding trans Golgi or TG ⁇ localization signals.
- the host organism is a strain, e.g. a yeast, that is deficient in hypermannosylation (e.g.
- Example 6 Method of engineering strains to express GDP-Fucose Transporter.
- the rat liver Golgi membrane GDP-fucose transporter has been identified and purified by Puglielli, L. and C. B. Hirschberg 1999 J Biol. Chem. 274(50):35596-35600.
- the corresponding gene can be identified using standard techniques, such as N-terminal sequencing and Southern blotting using a degenerate D ⁇ A probe.
- the intact gene can is then be expressed in a host microorganism that also expresses a fucosyltransferase.
- Example 7 Method of engineering strains to express UDP-Galactose Transporter
- UDP-galactose (UDP-Gal) transporter has been cloned and shown to be active in S. cerevisiae. (Kainuma, M., et al. 1999 Glycobiology 9(2): 133-141).
- a second human UDP-galactose transporter (hUGTl) has been cloned and functionally expressed in Chinese Hamster Ovary Cells. Aoki, K., et al. 1999 J.Biochem. 126(5): 940-950.
- Segawa and coworkers have cloned a UDP-galactose transporter from Schizosaccharomyces pombe (Segawa, H., et al. 1999 Febs Letters 451(3): 295-298).
- CMP-Sialic Acid Transporter Human CMP-sialic acid transporter (hCST) has been cloned and expressed in Lee 8 CHO cells by Aoki and coworkers (1999). Molecular cloning of the hamster CMP-sialic acid transporter has also been achieved (Eckhardt and Gerardy Schahn 1997 Eur. J. Biochem. 248(1): 187-192). The functional expression of the murine CMP-sialic acid transporter was achieved in Saccharomyces cerevisiae by Berninsone, P., et al. 1997 J
- EBI European Bioinformatics Institute
- bovine cDNA (partial), Narimatsu et al (1986) Proc. Natl. Acad. Sci. USA 83:4720-4724
- human cDNA (partial) Uejima et al (1992) Cancer Res. 52:6158- 6163 29.
- human cDNA (carcinoma) Appert et al (1986) Biochem. Biophys.
- human gene (partial), Wang et al (1993) J. Biol. Chem. 268:4355- 4361 45. human gene (5 1 flank), Aasheim et al (1993) Eur. J. Biochem.
- yeast expression systems can be obtained from sources such as the American Type Culture Collection, Rockville, MD. Vectors are commercially available from a variety of sources.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mycology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Diabetes (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Botany (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Endocrinology (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Emergency Medicine (AREA)
Priority Applications (11)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP01954606A EP1297172B1 (en) | 2000-06-28 | 2001-06-27 | Methods for producing modified glycoproteins |
| DK04025648T DK1522590T3 (da) | 2000-06-28 | 2001-06-27 | Fremgangsmåde til fremstilling af modificerede glykoproteiner |
| DE60114830T DE60114830T2 (de) | 2000-06-28 | 2001-06-27 | Verfahren zur herstellung modifizierter glycoproteine |
| CA002412701A CA2412701A1 (en) | 2000-06-28 | 2001-06-27 | Methods for producing modified glycoproteins |
| AT01954606T ATE309385T1 (de) | 2000-06-28 | 2001-06-27 | Verfahren für die herstellung modifizierter glykoproteine |
| AU7684201A AU7684201A (en) | 2000-06-28 | 2001-06-27 | Methods for producing modified glycoproteins |
| MXPA03000105A MXPA03000105A (es) | 2000-06-28 | 2001-06-27 | Metodo para producir glicoproteinas modificadas. |
| KR1020027017911A KR100787073B1 (ko) | 2000-06-28 | 2001-06-27 | 변형된 당단백질의 제조방법 |
| AU2001276842A AU2001276842B2 (en) | 2000-06-28 | 2001-06-27 | Methods for producing modified glycoproteins |
| NZ523476A NZ523476A (en) | 2000-06-28 | 2001-06-27 | Methods for humanizing glycosylation of recombinant glycoproteins expressed in lower eukaryotes |
| JP2002506194A JP2004501642A (ja) | 2000-06-28 | 2001-06-27 | 改変された糖タンパク質を生成するための方法 |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US21435800P | 2000-06-28 | 2000-06-28 | |
| US60/214,358 | 2000-06-28 | ||
| US21563800P | 2000-06-30 | 2000-06-30 | |
| US60/215,638 | 2000-06-30 | ||
| US27999701P | 2001-03-30 | 2001-03-30 | |
| US60/279,997 | 2001-03-30 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2002000879A2 true WO2002000879A2 (en) | 2002-01-03 |
| WO2002000879A3 WO2002000879A3 (en) | 2002-09-06 |
Family
ID=27395978
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2001/020553 Ceased WO2002000879A2 (en) | 2000-06-28 | 2001-06-27 | Methods for producing modified glycoproteins |
Country Status (15)
| Country | Link |
|---|---|
| US (13) | US7029872B2 (enExample) |
| EP (5) | EP2322644A1 (enExample) |
| JP (2) | JP2004501642A (enExample) |
| KR (1) | KR100787073B1 (enExample) |
| AT (2) | ATE309385T1 (enExample) |
| AU (2) | AU7684201A (enExample) |
| CA (1) | CA2412701A1 (enExample) |
| CY (1) | CY1109639T1 (enExample) |
| DE (2) | DE60139720D1 (enExample) |
| DK (2) | DK1522590T3 (enExample) |
| ES (2) | ES2252261T3 (enExample) |
| MX (1) | MXPA03000105A (enExample) |
| NZ (1) | NZ523476A (enExample) |
| PT (1) | PT1522590E (enExample) |
| WO (1) | WO2002000879A2 (enExample) |
Cited By (60)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2003091431A1 (en) * | 2002-04-26 | 2003-11-06 | Kirin Beer Kabushiki Kaisha | Methylotroph producing mammalian type sugar chain |
| WO2004003205A1 (en) * | 2002-06-29 | 2004-01-08 | Korea Research Institute Of Bioscience And Biotechnology | Hansenula polymorpha mutant strains with defect in outer chain biosynthesis and the production of recombinant glycoproteins using the same strains |
| WO2003078637A3 (en) * | 2002-03-19 | 2004-03-11 | Plant Res Int Bv | Optimizing glycan processing in plants |
| WO2004028545A1 (en) * | 2002-09-25 | 2004-04-08 | Astrazeneca Ab | A COMBINATION OF A LONG-ACTING β2-AGONIST AND A GLUCOCORTICOSTEROID IN THE TREATMENT OF FIBROTIC DISEASES |
| WO2004003194A3 (en) * | 2002-06-26 | 2004-04-22 | Flanders Interuniversity Inst | Protein glycosylation modification in pichia pastoris |
| WO2004074458A3 (en) * | 2003-02-20 | 2004-12-29 | Piotr Bobrowicz | N-acetylglucosaminyltransferase iii expression in lower eukaryotes |
| WO2004074499A3 (en) * | 2003-02-20 | 2005-01-27 | Tillman U Gerngross | Combinatorial dna library for producing modified n-glycans in lower eukaryotes |
| WO2004074498A3 (en) * | 2003-02-20 | 2005-06-23 | Stephen R Hamilton | Expression of class 2 mannosidase and class iii mannosidase in lower eukaryotic cells |
| WO2005090552A3 (en) * | 2004-03-17 | 2006-01-26 | Glycofi Inc | Method of engineering a cytidine monophosphate-sialic acid synthetic pathway in fungi and yeast |
| WO2006014725A1 (en) * | 2004-07-21 | 2006-02-09 | Glycofi, Inc. | IMMUNOGLOBULINS COMPRISING PREDOMINANTLY A GlcNAcMAN5GLCNAC2 GLYCOFORM |
| US6998267B1 (en) | 1998-12-09 | 2006-02-14 | The Dow Chemical Company | Method for manufacturing glycoproteins having human-type glycosylation |
| WO2006026992A1 (en) * | 2004-09-07 | 2006-03-16 | Novozymes A/S | Altered structure of n-glycans in a fungus |
| JP2006518598A (ja) * | 2003-02-20 | 2006-08-17 | スティーブン アール. ハミルトン, | 真核生物における糖タンパク質の改変におけるエンドマンノシダーゼ |
| WO2006071856A3 (en) * | 2004-12-23 | 2006-10-05 | Glycofi Inc | Immunoglobulins comprising predominantly a man5glcnac2 glycoform |
| JP2007511223A (ja) * | 2003-11-14 | 2007-05-10 | リサーチ・コーポレーション・テクノロジーズ・インコーポレーテッド | メチロトローフ酵母における蛋白質グリコシル化の修飾 |
| WO2007087384A2 (en) | 2006-01-23 | 2007-08-02 | Amgen Inc. | Methods for modulating mannose content of recombinant proteins |
| WO2007130638A2 (en) | 2006-05-05 | 2007-11-15 | Glycofi, Inc | Production of sialylated n-glycans in lower eukaryotes |
| US7326681B2 (en) | 2000-06-28 | 2008-02-05 | Glycofi, Inc. | Methods for producing modified glycoproteins |
| WO2008095797A1 (fr) | 2007-02-02 | 2008-08-14 | Glycode | Levures génétiquement modifiées pour la production de glycoprotéines homogènes |
| EP1937305A4 (en) * | 2005-09-09 | 2008-10-08 | Glycofi Inc | IMMUNOGLOBULIN CONTAINING PRESENTLY A MAN7GLCNAC2, MAN8GLCNAC2 GLYCOFORM |
| EP2028275A3 (en) * | 2000-06-30 | 2009-05-06 | VIB vzw | Protein glycosylation modification in pichia pastoris |
| EP1861504B1 (en) * | 2005-03-07 | 2009-12-16 | Plant Research International B.V. | Glycoengineering in mushrooms |
| WO2010036898A1 (en) | 2008-09-25 | 2010-04-01 | Glycosyn, Inc. | Compositions and methods for engineering probiotic yeast |
| US7781647B2 (en) | 1999-10-26 | 2010-08-24 | Stichting Dienst Landbouwkundig Onderzoek | Mammalian-type glycosylation in transgenic plants expressing mammalian β1,4-galactosyltransferase |
| US7795002B2 (en) | 2000-06-28 | 2010-09-14 | Glycofi, Inc. | Production of galactosylated glycoproteins in lower eukaryotes |
| EP2270008A1 (en) | 2005-05-20 | 2011-01-05 | Novartis AG | 1,3-dihydro-imidazo[4,5-c]quinolin-2-ones as lipid kinase and/or pi3 kinases inhibitors |
| US7867730B2 (en) | 2004-01-30 | 2011-01-11 | Korea Research Institute Of Biosciences And Biotechnology, Inc. | Hansenula polymorpha gene coding for α 1,6-mannosyltransferase and process for the production of recombinant glycoproteins with Hansenula polymorpha mutant strain deficient in the same gene |
| WO2010138502A3 (en) * | 2009-05-26 | 2011-02-24 | Momenta Pharmaceuticals, Inc. | Production of glycoproteins |
| US7897842B2 (en) | 2002-03-19 | 2011-03-01 | Plant Research International B.V. | GnTIII expression in plants |
| EP2359685A1 (en) | 2001-12-27 | 2011-08-24 | GlycoFi, Inc. | Methods to engineer mammalian-type carbohydrate structures |
| EP1737969A4 (en) * | 2004-04-15 | 2011-09-28 | Glycofi Inc | PRODUCTION OF GALACTOSYLATED GLYCOPROTEINS IN LESS EUKARYONTS |
| EP1747280A4 (en) * | 2004-04-29 | 2011-11-09 | Glycofi Inc | PROCESS FOR REDUCING OR ELIMINATING ALPHA-MANNOSIDASE RESISTANT GLYCANES IN THE PREPARATION OF GLYCOPROTEINS |
| US8106169B2 (en) | 2002-11-27 | 2012-01-31 | Phyton Holdings, Llc | Plant production of immunoglobulins with reduced fucosylation |
| WO2012013823A2 (en) | 2010-07-30 | 2012-02-02 | Glycode | A yeast artificial chromosome carrying the mammalian glycosylation pathway |
| US8187858B2 (en) | 2005-10-27 | 2012-05-29 | Korea Research Institute Of Bioscience And Biotechnology | Hansenula polymorpha gene coding for dolichyl-phosphate-mannose dependent alpha-1,3-mannosyltransferase and process for the production of recombinant glycoproteins with Hansenula polymorpha mutant strain deficient in the same gene |
| WO2012127045A1 (en) | 2011-03-23 | 2012-09-27 | Glycode | A yeast recombinant cell capable of producing gdp-fucose |
| US8309795B2 (en) | 2001-01-19 | 2012-11-13 | Phyton Holdings, Llc | Method for secretory production of glycoprotein having human-type sugar chain using plant cell |
| WO2012175874A1 (fr) | 2011-06-22 | 2012-12-27 | Lfb Biotechnologies | Utilisation d'un anticorps anti-cd20 a haute adcc pour le traitement de la maladie de waldenstrom |
| WO2013013193A1 (en) | 2011-07-20 | 2013-01-24 | Zepteon, Incorporated | Polypeptide separation methods |
| US8367374B2 (en) | 2003-01-22 | 2013-02-05 | Roche Glycart Ag | Fusion constructs and use of same to produce antibodies with increased Fc receptor binding affinity and effector function |
| EP2617732A1 (en) | 2012-01-19 | 2013-07-24 | Vib Vzw | Tools and methods for expression of membrane proteins |
| AU2012227297B2 (en) * | 2003-02-20 | 2013-11-14 | Glycofi, Inc. | Combinatorial DNA Library for Producing Modified N-Glycans in Lower Eukaryotes |
| WO2014096672A1 (fr) | 2012-12-17 | 2014-06-26 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | Utilisation d'anticorps monoclonaux pour le traitement de l'inflammation et d'infections bacteriennes |
| US8815580B2 (en) | 2008-08-08 | 2014-08-26 | Vib Vzw | Cells producing glycoproteins having altered glycosylation patterns and method and use thereof |
| US8829276B2 (en) | 2007-04-17 | 2014-09-09 | Stichting Dienst Landbouwkundig Onderzoek | Mammalian-type glycosylation in plants by expression of non-mammalian glycosyltransferases |
| WO2015032899A1 (en) | 2013-09-05 | 2015-03-12 | Vib Vzw | Cells producing fc containing molecules having altered glycosylation patterns and methods and use thereof |
| EP2780462A4 (en) * | 2011-10-31 | 2015-04-29 | Merck Sharp & Dohme | MANIPULATED PICHIA STRAINS WITH IMPROVED FERMENTATION EFFICIENCY AND N-GLYCOSYLATION QUALITY |
| WO2015107307A1 (fr) | 2014-01-17 | 2015-07-23 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | Immunoglobuline anti-toxine du charbon |
| US9170249B2 (en) | 2011-03-12 | 2015-10-27 | Momenta Pharmaceuticals, Inc. | N-acetylhexosamine-containing N-glycans in glycoprotein products |
| WO2017006052A2 (fr) | 2015-07-06 | 2017-01-12 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | UTILISATION DE FRAGMENTS Fc MODIFIÉS EN IMMUNOTHÉRAPIE |
| US9695244B2 (en) | 2012-06-01 | 2017-07-04 | Momenta Pharmaceuticals, Inc. | Methods related to denosumab |
| US9758553B2 (en) | 2008-05-30 | 2017-09-12 | Merck Sharp & Dohme Corp. | Yeast strain for the production of proteins with terminal alpha-1,3-linked galactose |
| US9921210B2 (en) | 2010-04-07 | 2018-03-20 | Momenta Pharmaceuticals, Inc. | High mannose glycans |
| EP3524626A1 (en) | 2007-03-22 | 2019-08-14 | Biogen MA Inc. | Binding proteins, including antibodies, antibody derivatives and antibody fragments, that specifically bind cd154 and uses thereof |
| US10450361B2 (en) | 2013-03-15 | 2019-10-22 | Momenta Pharmaceuticals, Inc. | Methods related to CTLA4-Fc fusion proteins |
| US10464996B2 (en) | 2013-05-13 | 2019-11-05 | Momenta Pharmaceuticals, Inc. | Methods for the treatment of neurodegeneration |
| US11293012B2 (en) | 2015-07-09 | 2022-04-05 | Vib Vzw | Cells producing glycoproteins having altered N- and O-glycosylation patterns and methods and use thereof |
| US11390855B2 (en) | 2008-12-19 | 2022-07-19 | Chr. Hansen HMO GmbH | Synthesis of fucosylated compounds |
| CN115386009A (zh) * | 2022-04-26 | 2022-11-25 | 江苏靶标生物医药研究所有限公司 | 一种膜联蛋白v与血管生成抑制剂融合蛋白的构建方法和应用 |
| US11661456B2 (en) | 2013-10-16 | 2023-05-30 | Momenta Pharmaceuticals, Inc. | Sialylated glycoproteins |
Families Citing this family (446)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5545553A (en) * | 1994-09-26 | 1996-08-13 | The Rockefeller University | Glycosyltransferases for biosynthesis of oligosaccharides, and genes encoding them |
| DE60139467D1 (de) * | 2000-05-17 | 2009-09-17 | Mitsubishi Tanabe Pharma Corp | Verfahren zur herstellung von proteinen unter reduktion von mannosephosphat in der zuckerkette und dadurch hergestelltes glykoprotein |
| US20060029604A1 (en) * | 2000-06-28 | 2006-02-09 | Gerngross Tillman U | Immunoglobulins comprising predominantly a GlcNAc2Man3GlcNAc2 glycoform |
| US8697394B2 (en) * | 2000-06-28 | 2014-04-15 | Glycofi, Inc. | Production of modified glycoproteins having multiple antennary structures |
| US20060024304A1 (en) * | 2000-06-28 | 2006-02-02 | Gerngross Tillman U | Immunoglobulins comprising predominantly a Man5GlcNAc2 glycoform |
| US20060034830A1 (en) * | 2000-06-28 | 2006-02-16 | Gerngross Tillman U | Immunoglobulins comprising predominantly a GalGlcNAcMan5GLcNAc2 glycoform |
| US20060034828A1 (en) * | 2000-06-28 | 2006-02-16 | Gerngross Tillman U | Immunoglobulins comprising predominantly a GlcNAcMAN5GLCNAC2 glycoform |
| JP4986370B2 (ja) | 2000-12-22 | 2012-07-25 | マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ | Rgmおよびそのモジュレーターの用途 |
| TWI324181B (en) | 2001-04-16 | 2010-05-01 | Martek Biosciences Corp | Product and process for transformation of thraustochytriales microorganisms |
| US7696163B2 (en) | 2001-10-10 | 2010-04-13 | Novo Nordisk A/S | Erythropoietin: remodeling and glycoconjugation of erythropoietin |
| US7214660B2 (en) * | 2001-10-10 | 2007-05-08 | Neose Technologies, Inc. | Erythropoietin: remodeling and glycoconjugation of erythropoietin |
| US7265085B2 (en) * | 2001-10-10 | 2007-09-04 | Neose Technologies, Inc. | Glycoconjugation methods and proteins/peptides produced by the methods |
| US7157277B2 (en) | 2001-11-28 | 2007-01-02 | Neose Technologies, Inc. | Factor VIII remodeling and glycoconjugation of Factor VIII |
| US7265084B2 (en) * | 2001-10-10 | 2007-09-04 | Neose Technologies, Inc. | Glycopegylation methods and proteins/peptides produced by the methods |
| US8008252B2 (en) * | 2001-10-10 | 2011-08-30 | Novo Nordisk A/S | Factor VII: remodeling and glycoconjugation of Factor VII |
| US7226903B2 (en) | 2001-10-10 | 2007-06-05 | Neose Technologies, Inc. | Interferon beta: remodeling and glycoconjugation of interferon beta |
| ES2561985T3 (es) | 2001-10-10 | 2016-03-01 | Ratiopharm Gmbh | Remodelación y glicoconjugación de anticuerpos |
| US7179617B2 (en) | 2001-10-10 | 2007-02-20 | Neose Technologies, Inc. | Factor IX: remolding and glycoconjugation of Factor IX |
| US7795210B2 (en) | 2001-10-10 | 2010-09-14 | Novo Nordisk A/S | Protein remodeling methods and proteins/peptides produced by the methods |
| US7439043B2 (en) * | 2001-10-10 | 2008-10-21 | Neose Technologies, Inc. | Galactosyl nucleotide sugars |
| US7173003B2 (en) | 2001-10-10 | 2007-02-06 | Neose Technologies, Inc. | Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF |
| US7297511B2 (en) * | 2001-10-10 | 2007-11-20 | Neose Technologies, Inc. | Interferon alpha: remodeling and glycoconjugation of interferon alpha |
| US7125843B2 (en) | 2001-10-19 | 2006-10-24 | Neose Technologies, Inc. | Glycoconjugates including more than one peptide |
| US7399613B2 (en) | 2001-10-10 | 2008-07-15 | Neose Technologies, Inc. | Sialic acid nucleotide sugars |
| US7473680B2 (en) * | 2001-11-28 | 2009-01-06 | Neose Technologies, Inc. | Remodeling and glycoconjugation of peptides |
| US20060034829A1 (en) * | 2001-12-27 | 2006-02-16 | Gerngross Tillman U | Immunoglobulins comprising predominantly a MAN3GLCNAC2 glycoform |
| US20060024292A1 (en) * | 2001-12-27 | 2006-02-02 | Gerngross Tillman U | Immunoglobulins comprising predominantly a Gal2GlcNAc2Man3GlcNAc2 glycoform |
| US6964784B2 (en) * | 2002-03-07 | 2005-11-15 | Optigenex, Inc. | Method of preparation and composition of a water soluble extract of the bioactive component of the plant species uncaria for enhancing immune, anti-inflammatory, anti-tumor and dna repair processes of warm blooded animals |
| MXPA04012496A (es) | 2002-06-21 | 2005-09-12 | Novo Nordisk Healthcare Ag | Glicoformos del factor vii pegilados. |
| RU2407796C2 (ru) * | 2003-01-22 | 2010-12-27 | Гликарт Биотекнолоджи АГ | КОНСТРУКЦИИ СЛИЯНИЯ И ИХ ПРИМЕНЕНИЕ ДЛЯ ПОЛУЧЕНИЯ АНТИТЕЛ С ПОВЫШЕННЫМИ АФФИННОСТЬЮ СВЯЗЫВАНИЯ Fc-РЕЦЕПТОРА И ЭФФЕКТОРНОЙ ФУНКЦИЕЙ |
| DE10303974A1 (de) | 2003-01-31 | 2004-08-05 | Abbott Gmbh & Co. Kg | Amyloid-β(1-42)-Oligomere, Verfahren zu deren Herstellung und deren Verwendung |
| CN102212019B (zh) | 2003-03-14 | 2015-05-27 | 蔚所番有限公司 | 支化水溶性聚合物及其缀合物 |
| SG155777A1 (en) | 2003-04-09 | 2009-10-29 | Neose Technologies Inc | Glycopegylation methods and proteins/peptides produced by the methods |
| WO2004091499A2 (en) * | 2003-04-09 | 2004-10-28 | Neose Technologies, Inc. | Intracellular formation of peptide conjugates |
| US8791070B2 (en) | 2003-04-09 | 2014-07-29 | Novo Nordisk A/S | Glycopegylated factor IX |
| EP1624847B1 (en) | 2003-05-09 | 2012-01-04 | BioGeneriX AG | Compositions and methods for the preparation of human growth hormone glycosylation mutants |
| WO2005012484A2 (en) | 2003-07-25 | 2005-02-10 | Neose Technologies, Inc. | Antibody-toxin conjugates |
| US9357755B2 (en) * | 2003-10-28 | 2016-06-07 | The University Of Wyoming | Production of human glycosylated proteins in silk worm |
| WO2005042753A1 (en) * | 2003-10-28 | 2005-05-12 | Chesapeake Perl, Inc. | Production of human glycosylated proteins in transgenic insects |
| US20050100965A1 (en) | 2003-11-12 | 2005-05-12 | Tariq Ghayur | IL-18 binding proteins |
| US7842661B2 (en) | 2003-11-24 | 2010-11-30 | Novo Nordisk A/S | Glycopegylated erythropoietin formulations |
| US20070254834A1 (en) * | 2003-11-24 | 2007-11-01 | Defrees Shawn | Glycopegylated Erythropoietin |
| US8633157B2 (en) | 2003-11-24 | 2014-01-21 | Novo Nordisk A/S | Glycopegylated erythropoietin |
| US20080305992A1 (en) | 2003-11-24 | 2008-12-11 | Neose Technologies, Inc. | Glycopegylated erythropoietin |
| US7956032B2 (en) * | 2003-12-03 | 2011-06-07 | Novo Nordisk A/S | Glycopegylated granulocyte colony stimulating factor |
| US20080318850A1 (en) * | 2003-12-03 | 2008-12-25 | Neose Technologies, Inc. | Glycopegylated Factor Ix |
| US20060040856A1 (en) | 2003-12-03 | 2006-02-23 | Neose Technologies, Inc. | Glycopegylated factor IX |
| EP2341128A1 (en) * | 2003-12-24 | 2011-07-06 | GlycoFi, Inc. | Methods for eliminating mannosylphosphorylation of glycans in the production of glycoproteins |
| JP5743368B2 (ja) | 2004-01-08 | 2015-07-01 | ラショファーム ゲーエムベーハー | ペプチドのo結合型グリコシル化 |
| US20050265988A1 (en) * | 2004-03-18 | 2005-12-01 | Byung-Kwon Choi | Glycosylated glucocerebrosidase expression in fungal hosts |
| JP5752582B2 (ja) * | 2004-04-29 | 2015-07-22 | グライコフィ, インコーポレイテッド | 糖タンパク質の作製においてアルファ−マンノシダーゼ抵抗性グリカンを減少させるか又は排除する方法 |
| ES2339953T5 (es) * | 2004-05-04 | 2020-05-06 | Novo Nordisk Healthcare Ag | Glicoformas de factor VII ligadas a O y método de fabricación |
| US20080300173A1 (en) | 2004-07-13 | 2008-12-04 | Defrees Shawn | Branched Peg Remodeling and Glycosylation of Glucagon-Like Peptides-1 [Glp-1] |
| US8268967B2 (en) | 2004-09-10 | 2012-09-18 | Novo Nordisk A/S | Glycopegylated interferon α |
| WO2006035057A1 (en) * | 2004-09-29 | 2006-04-06 | Novo Nordisk Health Care Ag | Modified proteins |
| HUE026826T2 (en) | 2004-10-29 | 2016-07-28 | Ratiopharm Gmbh | Modeling and glycopegylation of fibroblast growth factor (FGF) |
| US9029331B2 (en) | 2005-01-10 | 2015-05-12 | Novo Nordisk A/S | Glycopegylated granulocyte colony stimulating factor |
| US20060246544A1 (en) * | 2005-03-30 | 2006-11-02 | Neose Technologies,Inc. | Manufacturing process for the production of peptides grown in insect cell lines |
| EP1871795A4 (en) * | 2005-04-08 | 2010-03-31 | Biogenerix Ag | COMPOSITIONS AND METHOD FOR PRODUCING GLYCOSYLATION MUTANTS OF A PROTEASE-RESISTANT HUMAN GROWTH HORMONE |
| EP1891231A4 (en) * | 2005-05-25 | 2011-06-22 | Novo Nordisk As | GLYCOPEGYLATED FACTOR IX |
| UA96922C2 (en) * | 2005-06-30 | 2011-12-26 | Эббот Леборейториз | Il-12/p40 binding protein |
| TWI323734B (en) | 2005-08-19 | 2010-04-21 | Abbott Lab | Dual variable domain immunoglobulin and uses thereof |
| JP2009515508A (ja) * | 2005-08-19 | 2009-04-16 | ネオス テクノロジーズ インコーポレイテッド | グリコpeg化因子viiおよび因子viia |
| EP2500353A3 (en) | 2005-08-19 | 2012-10-10 | Abbott Laboratories | Dual variable domain immunoglobulin and uses thereof |
| US20070105755A1 (en) | 2005-10-26 | 2007-05-10 | Neose Technologies, Inc. | One pot desialylation and glycopegylation of therapeutic peptides |
| US20090215992A1 (en) * | 2005-08-19 | 2009-08-27 | Chengbin Wu | Dual variable domain immunoglobulin and uses thereof |
| US7612181B2 (en) * | 2005-08-19 | 2009-11-03 | Abbott Laboratories | Dual variable domain immunoglobulin and uses thereof |
| JP2009507040A (ja) * | 2005-09-02 | 2009-02-19 | グライコフィ, インコーポレイテッド | 主としてglcnacman3glcnac2糖形態を含む免疫グロブリン |
| CN101313216A (zh) * | 2005-09-22 | 2008-11-26 | 普洛茨股份有限公司 | 酵母突变体中产生的糖基化多肽及其使用方法 |
| EP1928905B1 (de) | 2005-09-30 | 2015-04-15 | AbbVie Deutschland GmbH & Co KG | Bindungsdomänen von proteinen der repulsive guidance molecule (rgm) proteinfamilie und funktionale fragmente davon sowie deren verwendung |
| US20090048440A1 (en) | 2005-11-03 | 2009-02-19 | Neose Technologies, Inc. | Nucleotide Sugar Purification Using Membranes |
| ES2534465T3 (es) | 2005-11-15 | 2015-04-23 | Glycofi, Inc. | Producción de glucoproteínas con O-glucosilación reducida |
| SG10201706600VA (en) | 2005-11-30 | 2017-09-28 | Abbvie Inc | Monoclonal antibodies and uses thereof |
| KR20080090408A (ko) | 2005-11-30 | 2008-10-08 | 아보트 러보러터리즈 | 항-Aβ 글로불로머 항체, 이의 항원-결합 잔기, 상응하는하이브리도마, 핵산, 벡터, 숙주 세포, 당해 항체의 제조방법, 당해 항체를 포함하는 조성물, 당해 항체의 용도 및당해 항체의 사용 방법 |
| US20090060921A1 (en) * | 2006-01-17 | 2009-03-05 | Biolex Therapeutics, Inc. | Glycan-optimized anti-cd20 antibodies |
| WO2007084922A2 (en) * | 2006-01-17 | 2007-07-26 | Biolex Therapeutics, Inc. | Compositions and methods for humanization and optimization of n-glycans in plants |
| US20090181041A1 (en) * | 2006-01-23 | 2009-07-16 | Jan Holgersson | Production of proteins carrying oligomannose or human-like glycans in yeast and methods of use thereof |
| AU2007251256B2 (en) * | 2006-01-26 | 2013-03-07 | Recopharma Ab | Compositions and methods for inhibiting viral adhesion |
| DK2004819T3 (en) * | 2006-04-05 | 2015-10-05 | Danisco Us Inc | FILAMENTOUS FUNGI WITH REDUCED CONTENT OF UDP-GALACTOFURANOSE |
| US20070287160A1 (en) * | 2006-04-21 | 2007-12-13 | Chou Judy H | Methods for high throughput screening of cell lines |
| US7851438B2 (en) * | 2006-05-19 | 2010-12-14 | GlycoFi, Incorporated | Erythropoietin compositions |
| CA2651456A1 (en) * | 2006-05-19 | 2007-11-29 | Glycofi, Inc. | Recombinant vectors |
| CA2653104C (en) * | 2006-05-24 | 2016-08-02 | Universite De Provence (Aix Marseille I) | Preparation and uses of gene sequences encoding chimerical glycosyltransferases with optimized glycosylation activity |
| AR078117A1 (es) | 2006-06-20 | 2011-10-19 | Protech Pharma S A | Una muteina recombinante del interferon alfa humano glicosilado, un gen que codifica para dicha muteina, un metodo de produccion de dicho gen, un metodo para obtener una celula eucariota productora de dicha muteina, un metodo para producir dicha muteina, un procedimiento para purificar dicha muteina |
| US20080248959A1 (en) * | 2006-07-21 | 2008-10-09 | Neose Technologies, Inc. | Glycosylation of peptides via o-linked glycosylation sequences |
| US7879799B2 (en) * | 2006-08-10 | 2011-02-01 | Institute For Systems Biology | Methods for characterizing glycoproteins and generating antibodies for same |
| MY161894A (en) | 2006-09-08 | 2017-05-15 | Abbvie Bahamas Ltd | Interleukin-13 binding proteins |
| JP2010505874A (ja) | 2006-10-03 | 2010-02-25 | ノヴォ ノルディスク アー/エス | ポリペプチドコンジュゲートの精製方法 |
| JP5298021B2 (ja) | 2006-10-12 | 2013-09-25 | ジェネンテック, インコーポレイテッド | リンホトキシン−αに対する抗体 |
| EP1916259A1 (en) | 2006-10-26 | 2008-04-30 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Anti-glycoprotein VI SCFV fragment for treatment of thrombosis |
| US20080207487A1 (en) * | 2006-11-02 | 2008-08-28 | Neose Technologies, Inc. | Manufacturing process for the production of polypeptides expressed in insect cell-lines |
| US8455626B2 (en) | 2006-11-30 | 2013-06-04 | Abbott Laboratories | Aβ conformer selective anti-aβ globulomer monoclonal antibodies |
| AR064464A1 (es) * | 2006-12-22 | 2009-04-01 | Genentech Inc | Anticuerpos anti - receptor del factor de crecimiento insulinico |
| EP2148691B1 (en) | 2007-02-05 | 2015-05-20 | Apellis Pharmaceuticals, Inc. | Compstatin analogues for use in the treatment of inflammatory conditions of the respiratory system |
| WO2008104386A2 (en) | 2007-02-27 | 2008-09-04 | Abbott Gmbh & Co. Kg | Method for the treatment of amyloidoses |
| JP2010519930A (ja) * | 2007-03-07 | 2010-06-10 | グライコフィ, インコーポレイテッド | 糖タンパク質の修飾フコシル化を用いる産生 |
| PT3199180T (pt) | 2007-03-08 | 2022-04-01 | Univ Monash | Anticorpos epha3 para o tratamento de tumores sólidos |
| RS52845B (sr) | 2007-04-03 | 2013-12-31 | Biogenerix Ag | Postupci tretmana korišćenjem glikopegiliranog g-csf |
| EP2508613A3 (en) | 2007-04-03 | 2012-11-28 | Oxyrane UK Limited | Glycosylation of molecules |
| US20080256056A1 (en) * | 2007-04-10 | 2008-10-16 | Yahoo! Inc. | System for building a data structure representing a network of users and advertisers |
| BRPI0811466A2 (pt) | 2007-05-07 | 2014-10-14 | Medimmune Llc | Anticorpo anti-icos isolado, ácido nucleico, vetor, célula isolada, métodos para produzir um anticorpo, para tratar uma doença ou distúrbio, para tratar ou prevenir a rejeição em um paciente de transplante humano, para tratar uma malignidade de célula t em um ser humano, para esgotar células t que expressam icos em um paciente humano, para romper a arquitetura do centro germinal em um órgão linfóide secundário de um primata, para esgotar células b centrais germinais de órgão linfóide secundário de um primata, e para esgotar células b comutadas em classes circulantes em um primata, e, composição farmacêutica. |
| DK3072525T3 (en) | 2007-05-14 | 2018-04-30 | Astrazeneca Ab | PROCEDURES FOR REDUCING BASOFILE CELL LEVELS |
| US20090053167A1 (en) * | 2007-05-14 | 2009-02-26 | Neose Technologies, Inc. | C-, S- and N-glycosylation of peptides |
| US20090175847A1 (en) * | 2007-05-30 | 2009-07-09 | Abbott Laboratories | Humanized antibodies to ab (20-42) globulomer and uses thereof |
| US20090232801A1 (en) * | 2007-05-30 | 2009-09-17 | Abbot Laboratories | Humanized Antibodies Which Bind To AB (1-42) Globulomer And Uses Thereof |
| JP5876649B2 (ja) | 2007-06-12 | 2016-03-02 | ラツィオファルム ゲーエムベーハーratiopharm GmbH | ヌクレオチド糖の改良製造法 |
| US8207112B2 (en) | 2007-08-29 | 2012-06-26 | Biogenerix Ag | Liquid formulation of G-CSF conjugate |
| US8637435B2 (en) * | 2007-11-16 | 2014-01-28 | Merck Sharp & Dohme Corp. | Eukaryotic cell display systems |
| CA2705925C (en) | 2007-12-19 | 2019-03-12 | Glycofi, Inc. | Yeast strains for protein production |
| US8999668B2 (en) * | 2008-01-03 | 2015-04-07 | Cornell Research Foundation, Inc. | Glycosylated protein expression in prokaryotes |
| JP2011514157A (ja) * | 2008-02-20 | 2011-05-06 | グライコフィ, インコーポレイテッド | 蛋白質生産用ベクター及び酵母株 |
| ES2476690T3 (es) | 2008-02-27 | 2014-07-15 | Novo Nordisk A/S | Moléculas conjugadas del Factor VIII |
| US8962803B2 (en) | 2008-02-29 | 2015-02-24 | AbbVie Deutschland GmbH & Co. KG | Antibodies against the RGM A protein and uses thereof |
| US8877686B2 (en) * | 2008-03-03 | 2014-11-04 | Glycofi, Inc. | Surface display of recombinant proteins in lower eukaryotes |
| WO2009114641A1 (en) * | 2008-03-11 | 2009-09-17 | Genentech, Inc. | Antibodies with enhanced adcc function |
| CN102076355B (zh) | 2008-04-29 | 2014-05-07 | Abbvie公司 | 双重可变结构域免疫球蛋白及其用途 |
| MX2010011957A (es) | 2008-05-02 | 2011-03-04 | Novartis Ag Star | Moleculas de union basadas en fibronectina mejoradas y usos de las mismas. |
| KR101603917B1 (ko) | 2008-05-09 | 2016-03-17 | 애브비 인코포레이티드 | 최종 당화 산물의 수용체(rage)에 대한 항체 및 이의 용도 |
| SG191639A1 (en) | 2008-06-03 | 2013-07-31 | Abbott Lab | Dual variable domain immunoglobulins and uses thereof |
| AU2009256246B2 (en) | 2008-06-03 | 2013-07-18 | Abbvie Inc. | Dual variable domain immunoglobulins and uses thereof |
| BRPI0915825A2 (pt) | 2008-07-08 | 2015-11-03 | Abbott Lab | proteínas de ligação à prostaglandina e2 usos das mesmas |
| AU2009268585C1 (en) | 2008-07-08 | 2014-10-02 | Abbvie Inc. | Prostaglandin E2 dual variable domain immunoglobulins and uses thereof |
| US8067339B2 (en) | 2008-07-09 | 2011-11-29 | Merck Sharp & Dohme Corp. | Surface display of whole antibodies in eukaryotes |
| JP2011530311A (ja) | 2008-08-12 | 2011-12-22 | グライコフィ, インコーポレイテッド | タンパク質製造のための改良されたベクターおよび酵母株:Ca2+ATPアーゼ過剰発現 |
| WO2010038802A1 (ja) | 2008-10-01 | 2010-04-08 | 旭硝子株式会社 | 宿主、形質転換体およびその製造方法、ならびにo-グリコシド型糖鎖含有異種蛋白質の製造方法 |
| EP2358392B1 (en) | 2008-11-12 | 2019-01-09 | MedImmune, LLC | Antibody formulation |
| SG171812A1 (en) * | 2008-12-04 | 2011-07-28 | Abbott Lab | Dual variable domain immunoglobulins and uses thereof |
| RU2526250C2 (ru) * | 2008-12-19 | 2014-08-20 | Момента Фармасьютикалз, Инк. | Способы, относящиеся к модифицированным гликанам |
| WO2010075249A2 (en) | 2008-12-22 | 2010-07-01 | Genentech, Inc. | A method for treating rheumatoid arthritis with b-cell antagonists |
| PE20120586A1 (es) * | 2009-01-29 | 2012-06-17 | Abbott Lab | Proteinas de union a il-1 |
| US20110165063A1 (en) * | 2009-01-29 | 2011-07-07 | Abbott Laboratories | Il-1 binding proteins |
| US8030026B2 (en) | 2009-02-24 | 2011-10-04 | Abbott Laboratories | Antibodies to troponin I and methods of use thereof |
| WO2010099153A2 (en) | 2009-02-25 | 2010-09-02 | Merck Sharp & Dohme Corp. | Metabolic engineering of a galactose assimilation pathway in the glycoengineered yeast pichia pastoris |
| PE20160653A1 (es) | 2009-03-05 | 2016-07-24 | Abbvie Inc | Proteinas de union a il-17 |
| NZ594950A (en) | 2009-03-06 | 2013-06-28 | Kalobios Pharmaceuticals Inc | Treatment of leukemias and chronic myeloproliferative diseases with antibodies to epha3 |
| US8283162B2 (en) * | 2009-03-10 | 2012-10-09 | Abbott Laboratories | Antibodies relating to PIVKAII and uses thereof |
| EA024695B1 (ru) * | 2009-03-16 | 2016-10-31 | Сефалон Острэйлиа Пти Лтд. | Гуманизированные антитела с противоопухолевой активностью |
| ES2752196T3 (es) | 2009-03-16 | 2020-04-03 | Dsm Ip Assets Bv | Producción de proteínas en microorganismos del filo Labyrinthulomycota |
| BRPI1016055A2 (pt) | 2009-04-27 | 2016-05-10 | Novartis Ag | composição e métodos de uso para anticorpos terapêuticos específicos para a subunidade beta i do receptor de il-12 |
| NO2424895T3 (enExample) | 2009-04-27 | 2018-02-03 | ||
| EP2435476A4 (en) * | 2009-05-27 | 2013-04-17 | Synageva Biopharma Corp | ANTIBODIES OBTAINED FROM BIRDS |
| EP2456463A4 (en) * | 2009-07-24 | 2013-12-04 | Merck Sharp & Dohme | RECOMBINANT ECTODOMENA EXPRESSION OF HERPES SIMPLEX VIRUS GLYCOPROTEINS IN YEAST |
| PE20121647A1 (es) | 2009-08-29 | 2012-12-31 | Abbvie Inc | Proteinas terapeuticas de union a dll4 |
| TW201119673A (en) | 2009-09-01 | 2011-06-16 | Abbott Lab | Dual variable domain immunoglobulins and uses thereof |
| WO2011029823A1 (en) | 2009-09-09 | 2011-03-17 | Novartis Ag | Monoclonal antibody reactive with cd63 when expressed at the surface of degranulated mast cells |
| JP5990102B2 (ja) | 2009-09-29 | 2016-09-07 | ユニフェルシテイト ヘント | ホスホ−6−マンノースへのマンノース−1−ホスホ−6−マンノース結合の加水分解 |
| PT2488554T (pt) | 2009-10-14 | 2019-09-13 | Humanigen Inc | Anticorpos para epha3 |
| UY32948A (es) | 2009-10-15 | 2011-02-28 | Abbott Lab | Inmunoglobulinas con dominio variable dual y usos de las mismas |
| CN104031961A (zh) | 2009-10-16 | 2014-09-10 | 默沙东公司 | 生产成熟的人促红细胞生成素的方法以及包含获自该方法的人促红细胞生成素的组合物 |
| UY32979A (es) * | 2009-10-28 | 2011-02-28 | Abbott Lab | Inmunoglobulinas con dominio variable dual y usos de las mismas |
| EP2494030A4 (en) | 2009-10-30 | 2013-03-27 | Merck Sharp & Dohme | METHOD FOR THE PRODUCTION OF THERAPEUTIC PROTEINS IN PICHIA PASTORIS WITHOUT DIPEPTIDYL-AMINOPEPTIDASE ACTIVITY |
| MX2012004993A (es) | 2009-10-30 | 2012-06-12 | Merck Sharp & Dohme | Metodos para la produccion de proteinas recombinantes con eficiencias de secrecion mejoradas. |
| US20120213728A1 (en) * | 2009-10-30 | 2012-08-23 | Merck | Granulocyte-colony stimulating factor produced in glycoengineered pichia pastoris |
| WO2011051327A2 (en) | 2009-10-30 | 2011-05-05 | Novartis Ag | Small antibody-like single chain proteins |
| TW201121568A (en) | 2009-10-31 | 2011-07-01 | Abbott Lab | Antibodies to receptor for advanced glycation end products (RAGE) and uses thereof |
| WO2011051466A1 (en) | 2009-11-02 | 2011-05-05 | Novartis Ag | Anti-idiotypic fibronectin-based binding molecules and uses thereof |
| EP2496257A4 (en) | 2009-11-05 | 2013-02-27 | Cephalon Australia Pty Ltd | TREATMENT OF CANCER CHARACTERIZED BY THE MUTATION OF KRAS OR BRAF GENES |
| BR112012011980A2 (pt) | 2009-11-19 | 2021-09-08 | Oxyrane Uk Limited | Métodos de produzir células transformadas de yarrowia lipolytica e proteínas-alvocompreendendo n-glicanos, células transformadas de yarrowia lipolytica e suas culturas, bem como composição compreendendo glicoproteínas |
| RU2012127383A (ru) | 2009-12-02 | 2014-01-10 | Акселерон Фарма Инк. | Композиции и способы для увеличения времени полужизни fc-слитых белков в сыворотке |
| KR20120118002A (ko) | 2009-12-08 | 2012-10-25 | 애보트 게엠베하 운트 콤파니 카게 | 망막 신경 섬유 층 변성의 치료에 사용하기 위한 rgm a 단백질에 대한 모노클로날 항체 |
| AU2010334974A1 (en) | 2009-12-22 | 2012-07-12 | Novartis Ag | Tetravalent CD47-antibody constant region fusion protein for use in therapy |
| IN2012DN06278A (enExample) * | 2009-12-28 | 2015-09-25 | Dsm Ip Assets Bv | |
| US20110195448A1 (en) * | 2009-12-28 | 2011-08-11 | James Casey Lippmeier | Recombinant Thraustochytrids that Grow on Xylose, and Compositions, Methods of Making, and Uses Thereof |
| CN107746869A (zh) | 2009-12-28 | 2018-03-02 | 赛诺菲疫苗技术公司 | 微藻中异源多肽的生产,微藻胞外体、组合物及其制备方法和用途 |
| WO2011092233A1 (en) | 2010-01-29 | 2011-08-04 | Novartis Ag | Yeast mating to produce high-affinity combinations of fibronectin-based binders |
| CN102858949B (zh) * | 2010-02-24 | 2016-07-06 | 默沙东公司 | 用于增加在巴氏毕赤酵母中生产的治疗性糖蛋白上的n-糖基化位点占据的方法 |
| SG10201501562VA (en) | 2010-03-02 | 2015-04-29 | Abbvie Inc | Therapeutic dll4 binding proteins |
| EP2558494B1 (en) | 2010-04-15 | 2018-05-23 | AbbVie Inc. | Amyloid-beta binding proteins |
| JP6066900B2 (ja) | 2010-04-26 | 2017-01-25 | エータイアー ファーマ, インコーポレイテッド | システイニルtRNA合成酵素のタンパク質フラグメントに関連した治療用、診断用および抗体組成物の革新的発見 |
| US8961960B2 (en) | 2010-04-27 | 2015-02-24 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of isoleucyl tRNA synthetases |
| JP6008837B2 (ja) | 2010-04-28 | 2016-10-19 | エータイアー ファーマ, インコーポレイテッド | アラニルtRNA合成酵素のタンパク質フラグメントに関連した治療用、診断用および抗体組成物の革新的発見 |
| US8986680B2 (en) | 2010-04-29 | 2015-03-24 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of Asparaginyl tRNA synthetases |
| WO2011139907A2 (en) | 2010-04-29 | 2011-11-10 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of valyl trna synthetases |
| US8961961B2 (en) | 2010-05-03 | 2015-02-24 | a Tyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related protein fragments of arginyl-tRNA synthetases |
| AU2011248227B2 (en) | 2010-05-03 | 2016-12-01 | Pangu Biopharma Limited | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-alpha-tRNA synthetases |
| JP6008841B2 (ja) | 2010-05-03 | 2016-10-19 | エータイアー ファーマ, インコーポレイテッド | メチオニルtRNA合成酵素のタンパク質フラグメントに関連した治療用、診断用および抗体組成物の革新的発見 |
| EP2566499B1 (en) | 2010-05-04 | 2017-01-25 | aTyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of p38 multi-trna synthetase complex |
| EP2571532B1 (en) | 2010-05-14 | 2017-05-03 | Abbvie Inc. | Il-1 binding proteins |
| EP2568996B1 (en) | 2010-05-14 | 2017-10-04 | aTyr Pharma, Inc. | Therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-beta-trna synthetases |
| WO2011149999A2 (en) | 2010-05-27 | 2011-12-01 | Merck Sharp & Dohme Corp. | Method for preparing antibodies having improved properties |
| CN103096913B (zh) | 2010-05-27 | 2017-07-18 | Atyr 医药公司 | 与谷氨酰胺酰‑tRNA合成酶的蛋白片段相关的治疗、诊断和抗体组合物的创新发现 |
| CA2800281C (en) | 2010-06-01 | 2021-01-12 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of lysyl-trna synthetases |
| US20120009196A1 (en) | 2010-07-08 | 2012-01-12 | Abbott Laboratories | Monoclonal antibodies against hepatitis c virus core protein |
| UY33492A (es) | 2010-07-09 | 2012-01-31 | Abbott Lab | Inmunoglobulinas con dominio variable dual y usos de las mismas |
| CA2804416C (en) | 2010-07-12 | 2020-04-28 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glycyl-trna synthetases |
| US9120862B2 (en) | 2010-07-26 | 2015-09-01 | Abbott Laboratories | Antibodies relating to PIVKA-II and uses thereof |
| TW201206473A (en) | 2010-08-03 | 2012-02-16 | Abbott Lab | Dual variable domain immunoglobulins and uses thereof |
| US20130177555A1 (en) | 2010-08-13 | 2013-07-11 | Medimmune Limited | Monomeric Polypeptides Comprising Variant FC Regions And Methods Of Use |
| US9062101B2 (en) | 2010-08-14 | 2015-06-23 | AbbVie Deutschland GmbH & Co. KG | Amyloid-beta binding proteins |
| WO2012022734A2 (en) | 2010-08-16 | 2012-02-23 | Medimmune Limited | Anti-icam-1 antibodies and methods of use |
| CA2808577C (en) | 2010-08-19 | 2018-09-25 | Abbott Laboratories | Anti-ngf antibodies and their use |
| JP5964304B2 (ja) | 2010-08-25 | 2016-08-03 | エータイアー ファーマ, インコーポレイテッド | チロシルtRNA合成酵素のタンパク質フラグメントに関連した治療用、診断用および抗体組成物の革新的発見 |
| CN103260639A (zh) | 2010-08-26 | 2013-08-21 | Abbvie公司 | 双重可变结构域免疫球蛋白及其用途 |
| CA2812870C (en) | 2010-09-29 | 2020-06-09 | Oxyrane Uk Limited | Mannosidases capable of uncapping mannose-1-phospho-6-mannose linkages and demannosylating phosphorylated n-glycans and methods of facilitating mammalian cellular uptake of glycoproteins |
| SG189110A1 (en) | 2010-09-29 | 2013-05-31 | Oxyrane Uk Ltd | De-mannosylation of phosphorylated n-glycans |
| JP2013543384A (ja) | 2010-10-05 | 2013-12-05 | ノバルティス アーゲー | 抗−il12rベータ1抗体ならびに自己免疫性および炎症性疾患の処置おけるその使用 |
| US9365846B2 (en) | 2010-12-01 | 2016-06-14 | Merck Sharp & Dohme Corp. | Surface, anchored Fc-bait antibody display system |
| EP2648750B1 (en) | 2010-12-10 | 2017-01-25 | Novartis AG | Antibody formulation |
| US20120275996A1 (en) | 2010-12-21 | 2012-11-01 | Abbott Laboratories | IL-1 Binding Proteins |
| MY163368A (en) | 2010-12-21 | 2017-09-15 | Abbvie Inc | Il-1-alpha and -beta bispecific dual variable domain immunoglobulins and their use |
| PT2673373T (pt) | 2011-02-08 | 2018-12-05 | Medimmune Llc | Anticorpos que ligam especificamente a toxina alfa de staphylococcus aureus e métodos de utilização |
| EP2678440B1 (en) | 2011-02-25 | 2018-05-23 | Merck Sharp & Dohme Corp. | Yeast strain for the production of proteins with modified o-glycosylation |
| EP2702077A2 (en) | 2011-04-27 | 2014-03-05 | AbbVie Inc. | Methods for controlling the galactosylation profile of recombinantly-expressed proteins |
| PL2707391T3 (pl) | 2011-05-13 | 2018-04-30 | Gamamabs Pharma | Przeciwciała przeciwko her3 |
| CN103582650A (zh) | 2011-05-25 | 2014-02-12 | 默沙东公司 | 用于制备具有改善性质的含Fc多肽的方法 |
| WO2012172521A1 (en) | 2011-06-16 | 2012-12-20 | Novartis Ag | Soluble proteins for use as therapeutics |
| AU2012273955A1 (en) | 2011-06-22 | 2014-01-09 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Anti-Axl antibodies and uses thereof |
| WO2012175691A1 (en) | 2011-06-22 | 2012-12-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Anti-axl antibodies and uses thereof |
| PL2726099T3 (pl) | 2011-07-01 | 2018-12-31 | Novartis Ag | Sposób leczenia zaburzeń metabolicznych |
| HK1198328A1 (zh) | 2011-07-13 | 2015-04-02 | Abbvie Inc. | 使用抗il-13抗體治療哮喘的方法和組合物 |
| JP5800160B2 (ja) * | 2011-10-03 | 2015-10-28 | 国立研究開発法人産業技術総合研究所 | 複合型糖鎖加水分解酵素 |
| CN104093739A (zh) | 2011-10-24 | 2014-10-08 | 艾伯维公司 | 针对tnf的免疫结合剂 |
| JP2014533659A (ja) | 2011-10-24 | 2014-12-15 | アッヴィ・インコーポレイテッド | スクレロスチンに対するイムノバインダー |
| CN104203982B (zh) | 2011-10-28 | 2018-08-31 | 特瓦制药澳大利亚私人有限公司 | 多肽构建体及其用途 |
| US9328367B2 (en) | 2011-10-28 | 2016-05-03 | Merck Sharp & Dohme Corp. | Engineered lower eukaryotic host strains for recombinant protein expression |
| ES2749349T3 (es) | 2011-11-07 | 2020-03-19 | Medimmune Llc | Proteínas de unión multiespecíficas y multivalentes y usos de las mismas |
| KR101457514B1 (ko) | 2011-11-21 | 2014-11-03 | 한국생명공학연구원 | 우렁쉥이(멍게) 유래의 시알산 전이효소 및 이를 이용한 시알화 복합당질 합성 방법 |
| BR112014015156A2 (pt) | 2011-12-20 | 2020-10-27 | Indiana University Research And Technology Corporation | análogos de insulina à base de ctp, seus métodos de produção e uso no tratamento de hiperglicemia, bem como sequência de ácido nucleico e célula hospedeira |
| WO2013102042A2 (en) | 2011-12-30 | 2013-07-04 | Abbvie Inc. | Dual specific binding proteins directed against il-13 and/or il-17 |
| PE20190907A1 (es) | 2012-01-27 | 2019-06-26 | AbbVie Deutschland GmbH and Co KG | Composicion y metodo para el diagnostico y el tratamiento de las enfermedades asociadas a la degeneracion de las neuritas |
| JP6170077B2 (ja) | 2012-02-16 | 2017-07-26 | エータイアー ファーマ, インコーポレイテッド | 自己免疫および炎症疾患を処置するためのヒスチジルtRNA合成酵素 |
| CN104379162B (zh) | 2012-03-15 | 2017-03-15 | 奥克西雷恩英国有限公司 | 用于治疗蓬佩氏病的方法和材料 |
| WO2013158273A1 (en) | 2012-04-20 | 2013-10-24 | Abbvie Inc. | Methods to modulate c-terminal lysine variant distribution |
| US9067990B2 (en) | 2013-03-14 | 2015-06-30 | Abbvie, Inc. | Protein purification using displacement chromatography |
| WO2013158279A1 (en) | 2012-04-20 | 2013-10-24 | Abbvie Inc. | Protein purification methods to reduce acidic species |
| KR20150013503A (ko) | 2012-05-11 | 2015-02-05 | 머크 샤프 앤드 돔 코포레이션 | 표면 앵커링된 경쇄 미끼 항체 디스플레이 시스템 |
| DK2852610T3 (en) | 2012-05-23 | 2018-09-03 | Glykos Finland Oy | PRODUCTION OF FUCOSYLED GLYCOPROTEIN |
| AU2013271564A1 (en) | 2012-06-06 | 2014-12-04 | Zoetis Services Llc | Caninized anti-NGF antibodies and methods thereof |
| US9216219B2 (en) | 2012-06-12 | 2015-12-22 | Novartis Ag | Anti-BAFFR antibody formulation |
| WO2014004549A2 (en) | 2012-06-27 | 2014-01-03 | Amgen Inc. | Anti-mesothelin binding proteins |
| WO2014011955A2 (en) | 2012-07-12 | 2014-01-16 | Abbvie, Inc. | Il-1 binding proteins |
| AU2013291964B2 (en) | 2012-07-18 | 2017-12-14 | Glycotope Gmbh | Novel therapeutic treatments with anti-HER2 antibodies having a low fucosylation |
| US9512214B2 (en) | 2012-09-02 | 2016-12-06 | Abbvie, Inc. | Methods to control protein heterogeneity |
| JOP20200308A1 (ar) | 2012-09-07 | 2017-06-16 | Novartis Ag | جزيئات إرتباط il-18 |
| WO2014066134A1 (en) | 2012-10-22 | 2014-05-01 | Merck Sharp & Dohme Corp. | Crz1 mutant fungal cells |
| CN110438023A (zh) | 2012-10-23 | 2019-11-12 | 研究技术股份有限公司 | 产生显著均质的聚糖结构的巴斯德毕赤酵母菌株 |
| WO2014064203A1 (en) | 2012-10-26 | 2014-05-01 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Lyve-1 antagonists for preventing or treating a pathological condition associated with lymphangiogenesis |
| HK1212359A1 (en) | 2012-11-01 | 2016-06-10 | Abbvie Inc. | Anti-vegf/dll4 dual variable domain immunoglobulins and uses thereof |
| EP2733153A1 (en) | 2012-11-15 | 2014-05-21 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for the preparation of immunoconjugates and uses thereof |
| US9707276B2 (en) | 2012-12-03 | 2017-07-18 | Merck Sharp & Dohme Corp. | O-glycosylated carboxy terminal portion (CTP) peptide-based insulin and insulin analogues |
| US9764006B2 (en) | 2012-12-10 | 2017-09-19 | The General Hospital Corporation | Bivalent IL-2 fusion toxins |
| WO2014090948A1 (en) | 2012-12-13 | 2014-06-19 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Serpin spn4a and biologically active derivatives thereof for use in the treatment of cancer |
| CN105228650B (zh) | 2012-12-18 | 2018-11-16 | 美国洛克菲勒大学 | 用于hiv预防和治疗的聚糖修饰的抗-cd4抗体 |
| WO2014100542A1 (en) | 2012-12-21 | 2014-06-26 | Abbvie, Inc. | High-throughput antibody humanization |
| US9458244B2 (en) | 2012-12-28 | 2016-10-04 | Abbvie Inc. | Single chain multivalent binding protein compositions and methods |
| HK1216894A1 (zh) | 2012-12-28 | 2016-12-09 | Abbvie Inc. | 多價結合蛋白組合物 |
| EA201591324A1 (ru) | 2013-01-16 | 2016-01-29 | Инсерм (Энститю Насьональ Де Ля Сантэ Э Де Ля Решерш Медикаль) | Полипептид растворимого рецептора 3 фактора роста фибробластов (fgr3) для применения с целью предотвращения или лечения нарушений, связанных с замедлением роста скелета |
| EP2948177A1 (en) | 2013-01-22 | 2015-12-02 | AbbVie Inc. | Methods for optimizing domain stability of binding proteins |
| AP2015008584A0 (en) | 2013-02-08 | 2015-07-31 | Novartis Ag | Anti-il-17a antibodies and their use in treating autoimmune and inflammatory disorders |
| EP2956169B1 (en) | 2013-02-12 | 2018-04-11 | THE UNITED STATES OF AMERICA, represented by the S | Monoclonal antibodies that neutralize norovirus |
| BR112015019341A2 (pt) | 2013-02-13 | 2017-08-22 | Lab Francais Du Fractionnement | Anticorpo anti-tnf-alfa, composição que compreende o anticorpo, método para produzir uma população de anticorpos, células epiteliais da glândula mamária, mamífero não humano transgênico, e, composição de anticorpo anti-tnf monoclonal |
| US9944689B2 (en) | 2013-03-07 | 2018-04-17 | The General Hospital Corporation | Human CTLA4 mutants and use thereof |
| CA2905010A1 (en) | 2013-03-12 | 2014-09-18 | Abbvie Inc. | Human antibodies that bind human tnf-alpha and methods of preparing the same |
| SMT202400297T1 (it) | 2013-03-13 | 2024-09-16 | The United States Of America As Represented By The Secretary Department Of Health And Human Services | Proteine f del rsv pre-fusione e loro uso |
| CN105209616A (zh) | 2013-03-14 | 2015-12-30 | 雅培制药有限公司 | 用于改进的抗体检测的hcv ns3重组抗原及其突变体 |
| WO2014158900A1 (en) | 2013-03-14 | 2014-10-02 | Indiana University Research And Technology Corporation | Insulin-incretin conjugates |
| WO2014158272A1 (en) | 2013-03-14 | 2014-10-02 | Abbott Laboratories | Hcv antigen-antibody combination assay and methods and compositions for use therein |
| WO2014143343A1 (en) | 2013-03-14 | 2014-09-18 | Abbott Laboratories | Hcv core lipid binding domain monoclonal antibodies |
| US9017687B1 (en) | 2013-10-18 | 2015-04-28 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same using displacement chromatography |
| WO2014151878A2 (en) | 2013-03-14 | 2014-09-25 | Abbvie Inc. | Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosacharides |
| ES2708565T3 (es) | 2013-03-15 | 2019-04-10 | Atyr Pharma Inc | Conjugados de Fc-histidil-ARNt sintetasa |
| JP2016522793A (ja) | 2013-03-15 | 2016-08-04 | アッヴィ・インコーポレイテッド | IL−1βおよび/またはIL−17に対して指向された二重特異的結合タンパク質 |
| CN105229030A (zh) | 2013-04-22 | 2016-01-06 | 葛莱高托普有限公司 | 用具有低岩藻糖基化的抗-egfr抗体的抗-癌治疗 |
| ES2774976T3 (es) | 2013-04-29 | 2020-07-23 | Teva Pharmaceuticals Australia Pty Ltd | Anticuerpos anti-CD38 y fusiones con interferón alfa-2b atenuado |
| US11117975B2 (en) | 2013-04-29 | 2021-09-14 | Teva Pharmaceuticals Australia Pty Ltd | Anti-CD38 antibodies and fusions to attenuated interferon alpha-2B |
| AR096236A1 (es) | 2013-05-09 | 2015-12-16 | The Us Secretary Dept Of Health And Human Services Nat Inst Of Health Office Of Tech Transfer | Anticuerpos de dominio simple vhh dirigidos a norovirus gi.1 y gii.4 y sus usos |
| TW201536318A (zh) | 2013-08-14 | 2015-10-01 | Novartis Ag | 治療偶發性包涵體肌炎之方法 |
| WO2015044379A1 (en) | 2013-09-27 | 2015-04-02 | INSERM (Institut National de la Santé et de la Recherche Médicale) | A dyrk1a polypeptide for use in preventing or treating metabolic disorders |
| WO2015050959A1 (en) | 2013-10-01 | 2015-04-09 | Yale University | Anti-kit antibodies and methods of use thereof |
| SG10202103140XA (en) | 2013-10-02 | 2021-05-28 | Medimmune Llc | Neutralizing anti-influenza a antibodies and uses thereof |
| US9598667B2 (en) | 2013-10-04 | 2017-03-21 | Abbvie Inc. | Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins |
| US9181337B2 (en) | 2013-10-18 | 2015-11-10 | Abbvie, Inc. | Modulated lysine variant species compositions and methods for producing and using the same |
| US9085618B2 (en) | 2013-10-18 | 2015-07-21 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same |
| HRP20192080T1 (hr) | 2013-10-31 | 2020-02-07 | Resolve Therapeutics, Llc | Terapeutske fuzije nukleaza-albumine i postupci |
| RU2704228C2 (ru) | 2013-11-07 | 2019-10-24 | Инсерм (Институт Насьональ Де Ла Сант Эт Де Ла Решерш Медикаль) | Неконкурентные в отношении нейрегулина аллостерические антитела против человеческого her3 и их применения |
| US20150139988A1 (en) | 2013-11-15 | 2015-05-21 | Abbvie, Inc. | Glycoengineered binding protein compositions |
| DK3098310T3 (en) | 2014-01-21 | 2019-04-23 | Synplogen Co Ltd | METHOD OF PREPARING DNA UNIT COMPOSITION AND PROCEDURE FOR PRODUCING CONCATENAT DNA |
| CN110845616A (zh) | 2014-03-21 | 2020-02-28 | 艾伯维公司 | 抗-egfr抗体及抗体药物偶联物 |
| TW201622746A (zh) | 2014-04-24 | 2016-07-01 | 諾華公司 | 改善或加速髖部骨折術後身體復原之方法 |
| UA119352C2 (uk) | 2014-05-01 | 2019-06-10 | Тева Фармасьютикалз Острейліа Пті Лтд | Комбінація леналідоміду або помалідоміду і конструкції анти-cd38 антитіло-атенуйований інтерферон альфа-2b та спосіб лікування суб'єкта, який має cd38-експресуючу пухлину |
| US20170291939A1 (en) | 2014-06-25 | 2017-10-12 | Novartis Ag | Antibodies specific for il-17a fused to hyaluronan binding peptide tags |
| RU2739952C2 (ru) | 2014-07-15 | 2020-12-30 | МЕДИММЬЮН, ЭлЭлСи | Нейтрализующие антитела к вирусу гриппа b и пути их применения |
| CA2954974A1 (en) | 2014-07-21 | 2016-01-28 | Glykos Finland Oy | Production of glycoproteins with mammalian-like n-glycans in filamentous fungi |
| JO3663B1 (ar) | 2014-08-19 | 2020-08-27 | Merck Sharp & Dohme | الأجسام المضادة لمضاد lag3 وأجزاء ربط الأنتيجين |
| KR102050082B1 (ko) | 2014-08-19 | 2019-11-29 | 머크 샤프 앤드 돔 코포레이션 | 항-tigit 항체 |
| JP6657230B2 (ja) | 2014-09-24 | 2020-03-04 | インディアナ ユニヴァーシティ リサーチ アンド テクノロジー コーポレイション | インクレチン−インスリンコンジュゲート |
| US9982061B2 (en) | 2014-10-01 | 2018-05-29 | Medimmune Limited | Antibodies to ticagrelor and methods of use |
| EA037749B1 (ru) | 2014-10-29 | 2021-05-18 | Тева Фармасьютикалз Острэйлиа Пти Лтд | ВАРИАНТЫ ИНТЕРФЕРОНА 2b |
| WO2016069889A1 (en) | 2014-10-31 | 2016-05-06 | Resolve Therapeutics, Llc | Therapeutic nuclease-transferrin fusions and methods |
| WO2016077457A1 (en) | 2014-11-11 | 2016-05-19 | Clara Foods Co. | Methods and compositions for egg white protein production |
| US10072070B2 (en) | 2014-12-05 | 2018-09-11 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Potent anti-influenza A neuraminidase subtype N1 antibody |
| ES2764299T3 (es) | 2014-12-09 | 2020-06-02 | Inst Nat Sante Rech Med | Anticuerpos monoclonales humanos contra AXL |
| WO2016094881A2 (en) | 2014-12-11 | 2016-06-16 | Abbvie Inc. | Lrp-8 binding proteins |
| WO2016135041A1 (en) | 2015-02-26 | 2016-09-01 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Fusion proteins and antibodies comprising thereof for promoting apoptosis |
| WO2016160976A2 (en) | 2015-03-30 | 2016-10-06 | Abbvie Inc. | Monovalent tnf binding proteins |
| EP3091033A1 (en) | 2015-05-06 | 2016-11-09 | Gamamabs Pharma | Anti-human-her3 antibodies and uses thereof |
| TWI716405B (zh) | 2015-05-07 | 2021-01-21 | 美商艾吉納斯公司 | 抗ox40抗體及其使用方法 |
| EP3298044B1 (en) | 2015-05-22 | 2021-08-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Human monoclonal antibodies fragments inhibiting both the cath-d catalytic activity and its binding to the lrp1 receptor |
| UY36692A (es) | 2015-05-29 | 2016-12-30 | Abbvie Inc | Anticuerpos anti-cd40 y usos de los mismos |
| MX389708B (es) | 2015-06-01 | 2025-03-20 | Medimmune Llc | Neutralizacion de moleculas de union anti-influenza y usos de las mismas. |
| TW201710286A (zh) | 2015-06-15 | 2017-03-16 | 艾伯維有限公司 | 抗vegf、pdgf及/或其受體之結合蛋白 |
| US10358497B2 (en) | 2015-09-29 | 2019-07-23 | Amgen Inc. | Methods of treating cardiovascular disease with an ASGR inhibitor |
| CA3001676C (en) | 2015-10-12 | 2022-12-06 | Aprogen Kic Inc. | Anti-cd43 antibody and use thereof for cancer treatment |
| JO3555B1 (ar) | 2015-10-29 | 2020-07-05 | Merck Sharp & Dohme | جسم مضاد يبطل فعالية فيروس الالتهاب الرئوي البشري |
| MX2018007406A (es) | 2015-12-16 | 2018-08-15 | Merck Sharp & Dohme | Anticuerpos anti-lag3 y fragmentos de enlace al antigeno. |
| WO2017117539A1 (en) | 2015-12-30 | 2017-07-06 | Northwestern University | Cell-free glycoprotein synthesis (cfgps) in prokaryotic cell lysates enriched with components for glycosylation |
| JP6991978B2 (ja) | 2016-01-27 | 2022-02-03 | メディミューン,エルエルシー | 定められるグリコシル化パターンを有する抗体を調製するための方法 |
| AU2017214692B2 (en) | 2016-02-06 | 2021-11-04 | Epimab Biotherapeutics, Inc. | Fabs-in-tandem immunoglobulin and uses thereof |
| SG11201805941WA (en) | 2016-02-17 | 2018-09-27 | Novartis Ag | Tgfbeta 2 antibodies |
| WO2017162678A1 (en) | 2016-03-22 | 2017-09-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Humanized anti-claudin-1 antibodies and uses thereof |
| CA3019588A1 (en) | 2016-04-20 | 2017-10-26 | Merck Sharp & Dohme Corp. | Cmv neutralizing antigen binding proteins |
| AU2017277422A1 (en) | 2016-06-08 | 2019-01-03 | Abbvie Inc. | Anti-EGFR antibody drug conjugates |
| MX2018015272A (es) | 2016-06-08 | 2019-08-12 | Abbvie Inc | Anticuerpos anti-cd98 y conjugados de anticuerpo y farmaco. |
| WO2017214339A1 (en) | 2016-06-08 | 2017-12-14 | Abbvie Inc. | Anti-b7-h3 antibodies and antibody drug conjugates |
| PL3458479T4 (pl) | 2016-06-08 | 2021-07-26 | Abbvie Inc. | Przeciwciała anty-b7-h3 i koniugaty przeciwciało-lek |
| JP2019521975A (ja) | 2016-06-08 | 2019-08-08 | アッヴィ・インコーポレイテッド | 抗egfr抗体薬物コンジュゲート |
| JP2019521106A (ja) | 2016-06-08 | 2019-07-25 | アッヴィ・インコーポレイテッド | 抗egfr抗体薬物コンジュゲート |
| MX2018015268A (es) | 2016-06-08 | 2019-08-12 | Abbvie Inc | Anticuerpos anti-cd98 y conjugados de anticuerpo y farmaco. |
| WO2017214456A1 (en) | 2016-06-08 | 2017-12-14 | Abbvie Inc. | Anti-cd98 antibodies and antibody drug conjugates |
| CN109563167A (zh) | 2016-06-08 | 2019-04-02 | 艾伯维公司 | 抗b7-h3抗体和抗体药物偶联物 |
| DK3478830T3 (da) | 2016-07-01 | 2024-05-21 | Resolve Therapeutics Llc | Optimerede binucleasefusioner og metoder |
| US10829795B2 (en) | 2016-07-14 | 2020-11-10 | Northwestern University | Method for rapid in vitro synthesis of glycoproteins via recombinant production of N-glycosylated proteins in prokaryotic cell lysates |
| EP3487522A4 (en) | 2016-07-19 | 2020-04-01 | Teva Pharmaceuticals Australia Pty Ltd | Anti-cd47 combination therapy |
| ES3041722T3 (en) | 2016-07-29 | 2025-11-14 | Inst Nat Sante Rech Med | Antibodies targeting tumor associated macrophages and uses thereof |
| NL2017267B1 (en) | 2016-07-29 | 2018-02-01 | Aduro Biotech Holdings Europe B V | Anti-pd-1 antibodies |
| NL2017270B1 (en) | 2016-08-02 | 2018-02-09 | Aduro Biotech Holdings Europe B V | New anti-hCTLA-4 antibodies |
| TWI765900B (zh) | 2016-08-03 | 2022-06-01 | 中國大陸商軒竹(北京)醫藥科技有限公司 | 哌唑黴素(plazomicin)抗體及使用方法 |
| NZ750001A (en) | 2016-08-16 | 2025-09-26 | Epimab Biotherapeutics Inc | Monovalent asymmetric tandem fab bispecific antibodies |
| JP6949106B2 (ja) | 2016-08-23 | 2021-10-13 | メディミューン リミテッド | 抗vegf−a抗体ならびにそれらの使用 |
| CN109863171B (zh) | 2016-08-23 | 2023-08-04 | 免疫医疗有限公司 | 抗vegf-a和抗ang2抗体及其用途 |
| US20190270821A1 (en) | 2016-09-13 | 2019-09-05 | Humanigen, Inc. | Epha3 antibodies for the treatment of pulmonary fibrosis |
| JOP20190055A1 (ar) | 2016-09-26 | 2019-03-24 | Merck Sharp & Dohme | أجسام مضادة ضد cd27 |
| BR112019008345A8 (pt) | 2016-10-25 | 2023-03-07 | Inst Nat Sante Rech Med | Anticorpos monoclonais ligados à isoforma transmembrana cd160 |
| CN108367075B (zh) | 2016-11-23 | 2022-08-09 | 免疫方舟医药技术股份有限公司 | 4-1bb结合蛋白及其用途 |
| EP3551225A1 (en) | 2016-12-07 | 2019-10-16 | Agenus Inc. | Antibodies and methods of use thereof |
| JP7350313B2 (ja) | 2016-12-16 | 2023-09-26 | ブルーフィン バイオメディシン, インコーポレイテッド | 抗cubドメイン含有タンパク質1(cdcp1)抗体、抗体薬物コンジュゲート、およびその使用方法 |
| US11471538B2 (en) | 2017-02-10 | 2022-10-18 | INSERM (Institut National de la Santéet de la Recherche Medicale) | Methods and pharmaceutical compositions for the treatment of cancers associated with activation of the MAPK pathway |
| CN110392697A (zh) | 2017-03-02 | 2019-10-29 | 国家医疗保健研究所 | 对nectin-4具有特异性的抗体及其用途 |
| US11883434B2 (en) | 2017-03-15 | 2024-01-30 | Nutech Ventures | Extracellular vesicles and methods of using |
| CA3054837A1 (en) | 2017-03-24 | 2018-09-27 | Novartis Ag | Methods for preventing and treating heart disease |
| TW201902935A (zh) | 2017-03-29 | 2019-01-16 | 開曼群島商瑞華藥業集團 | 蛋白質結合物 |
| TWI796329B (zh) | 2017-04-07 | 2023-03-21 | 美商默沙東有限責任公司 | 抗-ilt4抗體及抗原結合片段 |
| SG11201908813QA (en) | 2017-04-13 | 2019-10-30 | Aduro Biotech Holdings Europe B V | Anti-sirp alpha antibodies |
| US11932694B2 (en) | 2017-04-19 | 2024-03-19 | Bluefin Biomedicine, Inc. | Anti-VTCN1 antibodies and antibody drug conjugates |
| WO2018219956A1 (en) | 2017-05-29 | 2018-12-06 | Gamamabs Pharma | Cancer-associated immunosuppression inhibitor |
| CN118994394A (zh) | 2017-06-12 | 2024-11-22 | 蓝鳍生物医药公司 | 抗-il1rap抗体和抗体药物缀合物 |
| UY37758A (es) | 2017-06-12 | 2019-01-31 | Novartis Ag | Método de fabricación de anticuerpos biespecíficos, anticuerpos biespecíficos y uso terapéutico de dichos anticuerpos |
| GB201710838D0 (en) | 2017-07-05 | 2017-08-16 | Ucl Business Plc | Bispecific antibodies |
| US11898187B2 (en) | 2017-08-15 | 2024-02-13 | Northwestern University | Protein glycosylation sites by rapid expression and characterization of N-glycosyltransferases |
| JP7374091B2 (ja) | 2017-08-22 | 2023-11-06 | サナバイオ, エルエルシー | 可溶性インターフェロン受容体およびその使用 |
| UA128472C2 (uk) | 2017-08-25 | 2024-07-24 | Файв Прайм Терапеутікс Інк. | B7-h4 антитіла і методи їх використання |
| EP3694552A1 (en) | 2017-10-10 | 2020-08-19 | Tilos Therapeutics, Inc. | Anti-lap antibodies and uses thereof |
| WO2019148410A1 (en) | 2018-02-01 | 2019-08-08 | Merck Sharp & Dohme Corp. | Anti-pd-1 antibodies |
| WO2019148412A1 (en) | 2018-02-01 | 2019-08-08 | Merck Sharp & Dohme Corp. | Anti-pd-1/lag3 bispecific antibodies |
| CN111868089B (zh) | 2018-02-21 | 2025-08-22 | 戊瑞治疗有限公司 | B7-h4抗体给药方案 |
| BR112020016986A2 (pt) | 2018-02-21 | 2021-03-02 | Five Prime Therapeutics, Inc. | formulações de anticorpo contra b7-h4 |
| CA3091801A1 (en) | 2018-03-02 | 2019-09-06 | Five Prime Therapeutics, Inc. | B7-h4 antibodies and methods of use thereof |
| CA3093772C (en) | 2018-03-12 | 2024-04-16 | Zoetis Services Llc | Anti-ngf antibodies and methods thereof |
| US11530432B2 (en) | 2018-03-19 | 2022-12-20 | Northwestern University | Compositions and methods for rapid in vitro synthesis of bioconjugate vaccines in vitro via production and N-glycosylation of protein carriers in detoxified prokaryotic cell lysates |
| US11725224B2 (en) | 2018-04-16 | 2023-08-15 | Northwestern University | Methods for co-activating in vitro non-standard amino acid (nsAA) incorporation and glycosylation in crude cell lysates |
| JP7368453B2 (ja) | 2018-05-03 | 2023-10-24 | シャンハイ エピムアブ バイオセラピューティクス カンパニー リミテッド | Pd-1およびlag-3に対する高親和性抗体ならびにそれらから作製された二重特異性結合タンパク質 |
| US12290533B2 (en) | 2018-06-06 | 2025-05-06 | Nutech Ventures | Extracellular vesicles and methods of using |
| WO2020072127A2 (en) | 2018-08-03 | 2020-04-09 | Northwestern University | On demand, portable, cell-free molecular sensing platform |
| AU2019325329A1 (en) * | 2018-08-21 | 2021-04-08 | Clara Foods Co. | Modification of protein glycosylation in microorganisms |
| KR20210061341A (ko) | 2018-09-13 | 2021-05-27 | 더 보드 오브 리젠츠 오브 더 유니버시티 오브 텍사스 시스템 | 신규한 lilrb4 항체 및 이의 용도 |
| JP7618950B2 (ja) | 2018-09-19 | 2025-01-22 | インサーム (インスティテュート ナショナル デ ラ サンテ エ デ ラ ルシェルシェ メディカル) | 免疫チェックポイント治療に抵抗性のある癌の治療のための方法および医薬組成物 |
| WO2020076969A2 (en) | 2018-10-10 | 2020-04-16 | Tilos Therapeutics, Inc. | Anti-lap antibody variants and uses thereof |
| KR20210076025A (ko) | 2018-10-15 | 2021-06-23 | 파이브 프라임 테라퓨틱스, 인크. | 암 병용 요법 |
| JP2022512860A (ja) | 2018-11-06 | 2022-02-07 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | 白血病幹細胞を根絶することによる急性骨髄性白血病の治療のための方法および医薬組成物 |
| WO2020120786A1 (en) | 2018-12-14 | 2020-06-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Isolated mhc-derived human peptides and uses thereof for stimulating and activating the suppressive function of cd8+cd45rclow tregs |
| KR20210113261A (ko) | 2019-01-04 | 2021-09-15 | 리졸브 테라퓨틱스, 엘엘씨 | 뉴클레아제 융합 단백질을 사용한 쇼그렌병의 치료 |
| US12404533B2 (en) | 2019-01-11 | 2025-09-02 | Northwestern University | Bioconjugate vaccines' synthesis in prokaryotic cell lysates |
| WO2020148207A1 (en) | 2019-01-14 | 2020-07-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Human monoclonal antibodies binding to hla-a2 |
| US12325884B2 (en) | 2019-03-04 | 2025-06-10 | Northwestern University | Riboswitch-based fluoride sensing in cell-free extract |
| CN114630838A (zh) | 2019-05-20 | 2022-06-14 | 法国国家健康和医学研究院 | 新的抗cd25抗体 |
| EP3983437A1 (en) | 2019-06-12 | 2022-04-20 | Novartis AG | Natriuretic peptide receptor 1 antibodies and methods of use |
| DK3997118T3 (da) | 2019-07-11 | 2025-03-24 | Clara Foods Co | Drikkevaresammensætning, der indeholder rekombinant ovomucoid-protein |
| US12096784B2 (en) | 2019-07-11 | 2024-09-24 | Clara Foods Co. | Protein compositions and consumable products thereof |
| WO2021009263A1 (en) | 2019-07-16 | 2021-01-21 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antibodies having specificity for cd38 and uses thereof |
| US10927360B1 (en) | 2019-08-07 | 2021-02-23 | Clara Foods Co. | Compositions comprising digestive enzymes |
| WO2021067526A1 (en) | 2019-10-02 | 2021-04-08 | Alexion Pharmaceuticals, Inc. | Complement inhibitors for treating drug-induced complement-mediated response |
| US20220363776A1 (en) | 2019-10-04 | 2022-11-17 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical composition for the treatment of ovarian cancer, breast cancer or pancreatic cancer |
| US12226410B2 (en) | 2019-10-18 | 2025-02-18 | Northwestern University | Methods for enhancing cellular clearance of pathological molecules via activation of the cellular protein ykt6 |
| US20230040928A1 (en) | 2019-12-09 | 2023-02-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antibodies having specificity to her4 and uses thereof |
| JP2023511197A (ja) | 2020-01-21 | 2023-03-16 | イッサム・リサーチ・ディベロップメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシティ・オブ・エルサレム・リミテッド | 培養培地での植物タンパク質相同体の利用 |
| CA3167027A1 (en) | 2020-02-05 | 2021-08-12 | Larimar Therapeutics, Inc. | Tat peptide binding proteins and uses thereof |
| CA3175140A1 (en) | 2020-03-12 | 2021-09-16 | Immune-Onc Therapeutics, Inc. | Novel anti-lilrb4 antibodies and derivative products |
| TWI896628B (zh) | 2020-03-26 | 2025-09-11 | 美國凡德貝爾大學 | 針對嚴重急性呼吸症候群冠狀病毒2(SARS-CoV-2)之人單株抗體 |
| EP4132971A1 (en) | 2020-04-09 | 2023-02-15 | Merck Sharp & Dohme LLC | Affinity matured anti-lap antibodies and uses thereof |
| KR20230017207A (ko) | 2020-04-30 | 2023-02-03 | 사이로파 비.브이. | 항-cd103 항체 |
| CA3180683A1 (en) | 2020-05-12 | 2021-11-18 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | New method to treat cutaneous t-cell lymphomas and tfh derived lymphomas |
| IL297977A (en) | 2020-05-17 | 2023-01-01 | Astrazeneca Uk Ltd | Sars-cov-2 antibodies and methods of selecting and using the same |
| CA3183835A1 (en) | 2020-06-25 | 2021-12-30 | Jeanne E. Baker | High affinity antibodies targeting tau phosphorylated at serine 413 |
| CA3165342A1 (en) | 2020-06-29 | 2022-01-06 | James Arthur Posada | Treatment of sjogren's syndrome with nuclease fusion proteins |
| US20240279328A1 (en) * | 2020-07-02 | 2024-08-22 | The Johns Hopkins University | Methods to glycoengineer proteins |
| US20230323299A1 (en) | 2020-08-03 | 2023-10-12 | Inserm (Institut National De La Santé Et De La Recherch Médicale) | Population of treg cells functionally committed to exert a regulatory activity and their use for adoptive therapy |
| CA3190280A1 (en) | 2020-08-10 | 2022-02-17 | Astrazeneca Uk Limited | Sars-cov-2 antibodies for treatment and prevention of covid-19 |
| WO2022106663A1 (en) | 2020-11-20 | 2022-05-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Anti-cd25 antibodies |
| CN116917318A (zh) | 2020-11-20 | 2023-10-20 | 法国国家健康和医学研究院 | 抗cd25抗体 |
| WO2022120064A1 (en) | 2020-12-03 | 2022-06-09 | The Board Of Regents Of The University Of Texas System | Methods for identifying lilrb-blocking antibodies |
| WO2022130182A1 (en) | 2020-12-14 | 2022-06-23 | Novartis Ag | Reversal binding agents for anti-natriuretic peptide receptor 1 (npr1) antibodies and uses thereof |
| EP4276466A4 (en) | 2021-01-08 | 2024-12-18 | Beijing Hanmi Pharmaceutical Co., Ltd. | ANTIBODY SPECIFICALLY BINDING WITH PD-L1 AND ANTIGEN-BINDING FRAGMENT OF ANTIBODY |
| EP4276111A4 (en) | 2021-01-08 | 2025-04-30 | Beijing Hanmi Pharmaceutical Co., Ltd. | Antibody specifically binding to 4-1bb and antigen-binding fragment of antibody |
| WO2022148412A1 (zh) | 2021-01-08 | 2022-07-14 | 北京韩美药品有限公司 | 特异性结合cd47的抗体及其抗原结合片段 |
| WO2022153212A1 (en) | 2021-01-13 | 2022-07-21 | Axon Neuroscience Se | Antibodies neutralizing sars-cov-2 |
| AR124681A1 (es) | 2021-01-20 | 2023-04-26 | Abbvie Inc | Conjugados anticuerpo-fármaco anti-egfr |
| WO2022200303A1 (en) | 2021-03-23 | 2022-09-29 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for the diagnosis and treatment of t cell-lymphomas |
| US20240382592A1 (en) | 2021-04-09 | 2024-11-21 | Institut National de la Santé et de la Recherche Médicale | Methods for the treatment of anaplastic large cell lymphoma |
| IL308134A (en) | 2021-06-22 | 2023-12-01 | Novartis Ag | BISPECIFIC ANTIBODIES FOR USE IN THE TREATMENT OF HIDRADENITIS SUPPURATIVA |
| US20240425606A1 (en) | 2021-08-30 | 2024-12-26 | Lassen Therapeutics 1, Inc. | Anti-il-11ra antibodies |
| TW202342095A (zh) | 2021-11-05 | 2023-11-01 | 英商阿斯特捷利康英國股份有限公司 | 用於治療和預防covid—19之組成物 |
| EP4186529B1 (en) | 2021-11-25 | 2025-07-09 | Veraxa Biotech GmbH | Improved antibody-payload conjugates (apcs) prepared by site-specific conjugation utilizing genetic code expansion |
| CA3238627A1 (en) | 2021-11-25 | 2023-06-01 | Christine Kohler | Improved antibody-payload conjugates (apcs) prepared by site-specific conjugation utilizing genetic code expansion |
| US20250051440A1 (en) | 2021-12-14 | 2025-02-13 | Institut National de la Santé et de la Recherche Médicale | Depletion of nk cells for the treatment of adverse post-ischemic cardiac remodeling |
| EP4472740A1 (en) | 2022-01-31 | 2024-12-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Cd38 as a biomarker and biotarget in t-cell lymphomas |
| TW202342510A (zh) | 2022-02-18 | 2023-11-01 | 英商Rq生物科技有限公司 | 抗體 |
| JP2025510997A (ja) | 2022-03-30 | 2025-04-15 | ノバルティス アーゲー | 抗ナトリウム利尿ペプチド受容体1(npr1)抗体を使用して障害を治療する方法 |
| EP4508432A1 (en) | 2022-04-11 | 2025-02-19 | Institut National de la Santé et de la Recherche Médicale | Methods for the diagnosis and treatment of t-cell malignancies |
| WO2023198874A1 (en) | 2022-04-15 | 2023-10-19 | Institut National de la Santé et de la Recherche Médicale | Methods for the diagnosis and treatment of t cell-lymphomas |
| WO2023209177A1 (en) | 2022-04-29 | 2023-11-02 | Astrazeneca Uk Limited | Sars-cov-2 antibodies and methods of using the same |
| WO2023222886A1 (en) | 2022-05-20 | 2023-11-23 | Depth Charge Ltd | Antibody-cytokine fusion proteins |
| WO2024003310A1 (en) | 2022-06-30 | 2024-01-04 | Institut National de la Santé et de la Recherche Médicale | Methods for the diagnosis and treatment of acute lymphoblastic leukemia |
| EP4558161A1 (en) | 2022-07-21 | 2025-05-28 | Technische Universität Dresden | M-csf for use in the prophylaxis and/or treatment of viral infections in states of immunosuppression |
| EP4309666A1 (en) | 2022-07-21 | 2024-01-24 | Technische Universität Dresden | M-csf for use in the prophylaxis and/or treatment of viral infections in states of immunosuppression |
| EP4558823A1 (en) | 2022-07-22 | 2025-05-28 | Institut National de la Santé et de la Recherche Médicale | Garp as a biomarker and biotarget in t-cell malignancies |
| WO2024023283A1 (en) | 2022-07-29 | 2024-02-01 | Institut National de la Santé et de la Recherche Médicale | Lrrc33 as a biomarker and biotarget in cutaneous t-cell lymphomas |
| WO2024052503A1 (en) | 2022-09-08 | 2024-03-14 | Institut National de la Santé et de la Recherche Médicale | Antibodies having specificity to ltbp2 and uses thereof |
| JP2025536268A (ja) | 2022-10-12 | 2025-11-05 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | T細胞悪性腫瘍におけるバイオマーカー及びバイオターゲットとしてのcd81 |
| CN115590017B (zh) * | 2022-11-04 | 2023-09-12 | 中国农业大学 | 一种通过降低线粒体温度提高卵母细胞冷冻效果的方法 |
| WO2024147113A1 (en) | 2023-01-05 | 2024-07-11 | Glycoera Ag | Glycoengineered polypeptides targeting anti-podocyte autoantibodies and uses thereof |
| EP4646440A1 (en) | 2023-01-05 | 2025-11-12 | GlycoEra AG | Glycoengineered polypeptides targeting immunoglobulin a and complexes comprising the same |
| WO2024147111A1 (en) | 2023-01-05 | 2024-07-11 | Glycoera Ag | Glycoengineered polypeptides targeting anti-neutrophil autoantibodies and uses thereof |
| CN120530131A (zh) | 2023-01-06 | 2025-08-22 | 拉森医疗公司 | 抗il-18bp抗体 |
| TW202430560A (zh) | 2023-01-06 | 2024-08-01 | 美商拉森醫療公司 | 抗il-18bp抗體 |
| WO2024170543A1 (en) | 2023-02-14 | 2024-08-22 | Institut National de la Santé et de la Recherche Médicale | Anti-cd44 antibodies and uses thereof |
| WO2024218743A1 (en) | 2023-04-21 | 2024-10-24 | Glycoera Ag | Multi-functional molecules comprising glycans and uses thereof |
| WO2025012417A1 (en) | 2023-07-13 | 2025-01-16 | Institut National de la Santé et de la Recherche Médicale | Anti-neurotensin long fragment and anti-neuromedin n long fragment antibodies and uses thereof |
| WO2025027529A1 (en) | 2023-07-31 | 2025-02-06 | Advesya | Anti-il-1rap antibody drug conjugates and methods of use thereof |
| WO2025068957A1 (en) | 2023-09-29 | 2025-04-03 | Novartis Ag | Bispecific antibodies for use in lowering the risk of cardiovascular disease events in subjects known to be a carrier of clonal expansion of hematopoietic cell lines with somatic mutations |
| WO2025120015A1 (en) | 2023-12-06 | 2025-06-12 | Institut National de la Santé et de la Recherche Médicale | Cd5 targeting antibodies with depleting and t or b-cell activation effects |
| TW202530255A (zh) | 2023-12-15 | 2025-08-01 | 法商亞維西亞有限公司 | 抗il-1rap結合結構域及其抗體-藥物偶聯物 |
| WO2025147696A1 (en) | 2024-01-05 | 2025-07-10 | Resolve Therapeutics, Llc | Treatment of symptoms associated with sars-cov viral infection or a prior sars-cov viral infection with nuclease agents |
| WO2025215516A1 (en) | 2024-04-08 | 2025-10-16 | Glycoera Ag | Glycoengineered polypeptides targeting igg4 autoantibodies and uses thereof |
| WO2025224297A1 (en) | 2024-04-26 | 2025-10-30 | Institut National de la Santé et de la Recherche Médicale | Antibodies having specificity to tgfbi and uses thereof |
| WO2025238052A1 (en) | 2024-05-15 | 2025-11-20 | Institut National de la Santé et de la Recherche Médicale | Depletion of plasmacytoid dendritic cells for the treatment of respiratory viral infections |
| WO2025242732A1 (en) | 2024-05-21 | 2025-11-27 | Institut National de la Santé et de la Recherche Médicale | Pan antibodies against sars-cov-2 spike protein and uses thereof for therapeutical purposes |
Family Cites Families (124)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US513854A (en) * | 1894-01-30 | Clevis | ||
| US4166329A (en) * | 1978-10-10 | 1979-09-04 | Herbig Charles A | Adjustable arch support for shoes |
| US4414329A (en) | 1980-01-15 | 1983-11-08 | Phillips Petroleum Company | Biochemical conversions by yeast fermentation at high cell densities |
| NZ199722A (en) | 1981-02-25 | 1985-12-13 | Genentech Inc | Dna transfer vector for expression of exogenous polypeptide in yeast;transformed yeast strain |
| US4617274A (en) | 1981-10-29 | 1986-10-14 | Phillips Petroleum Company | Biochemical conversions by yeast fermentation at high cell densities |
| US4775622A (en) | 1982-03-08 | 1988-10-04 | Genentech, Inc. | Expression, processing and secretion of heterologous protein by yeast |
| KR850004274A (ko) | 1983-12-13 | 1985-07-11 | 원본미기재 | 에리트로포이에틴의 제조방법 |
| US4655231A (en) * | 1984-01-09 | 1987-04-07 | Advanced Tobacco Products, Inc. | Snuff and preparation thereof |
| US4808537A (en) | 1984-10-30 | 1989-02-28 | Phillips Petroleum Company | Methanol inducible genes obtained from pichia and methods of use |
| US4855231A (en) | 1984-10-30 | 1989-08-08 | Phillips Petroleum Company | Regulatory region for heterologous gene expression in yeast |
| US4885242A (en) | 1984-10-30 | 1989-12-05 | Phillips Petroleum Company | Genes from pichia histidine pathway and uses thereof |
| US4837148A (en) | 1984-10-30 | 1989-06-06 | Phillips Petroleum Company | Autonomous replication sequences for yeast strains of the genus pichia |
| US4879231A (en) | 1984-10-30 | 1989-11-07 | Phillips Petroleum Company | Transformation of yeasts of the genus pichia |
| US5166329A (en) | 1985-10-25 | 1992-11-24 | Phillips Petroleum Company | DNA encoding the alcohol oxidase 2 gene of yeast of the genus Pichia |
| US4882279A (en) | 1985-10-25 | 1989-11-21 | Phillips Petroleum Company | Site selective genomic modification of yeast of the genus pichia |
| US5032516A (en) | 1985-10-25 | 1991-07-16 | Phillips Petroleum Company | Pichia pastoris alcohol oxidase II regulatory region |
| US4818700A (en) | 1985-10-25 | 1989-04-04 | Phillips Petroleum Company | Pichia pastoris argininosuccinate lyase gene and uses thereof |
| US4935349A (en) | 1986-01-17 | 1990-06-19 | Zymogenetics, Inc. | Expression of higher eucaryotic genes in aspergillus |
| US5837518A (en) * | 1986-01-31 | 1998-11-17 | Genetics Institute, Inc. | Thrombolytic proteins |
| US4812405A (en) | 1986-02-18 | 1989-03-14 | Phillips Petroleum Company | Double auxotrophic mutants of Pichia pastoris and methods for preparation |
| US5272066A (en) * | 1986-03-07 | 1993-12-21 | Massachusetts Institute Of Technology | Synthetic method for enhancing glycoprotein stability |
| US4925796A (en) | 1986-03-07 | 1990-05-15 | Massachusetts Institute Of Technology | Method for enhancing glycoprotein stability |
| US4857467A (en) | 1986-07-23 | 1989-08-15 | Phillips Petroleum Company | Carbon and energy source markers for transformation of strains of the genes Pichia |
| US5002876A (en) | 1986-09-22 | 1991-03-26 | Phillips Petroleum Company | Yeast production of human tumor necrosis factor |
| US4683293A (en) | 1986-10-20 | 1987-07-28 | Phillips Petroleum Company | Purification of pichia produced lipophilic proteins |
| US4929555A (en) | 1987-10-19 | 1990-05-29 | Phillips Petroleum Company | Pichia transformation |
| US5135854A (en) | 1987-10-29 | 1992-08-04 | Zymogenetics, Inc. | Methods of regulating protein glycosylation |
| US4816700A (en) * | 1987-12-16 | 1989-03-28 | Intel Corporation | Two-phase non-overlapping clock generator |
| US5004688A (en) | 1988-04-15 | 1991-04-02 | Phillips Petroleum Company | Purification of hepatitis proteins |
| US5047335A (en) | 1988-12-21 | 1991-09-10 | The Regents Of The University Of Calif. | Process for controlling intracellular glycosylation of proteins |
| US5122465A (en) | 1989-06-12 | 1992-06-16 | Phillips Petroleum Company | Strains of pichia pastoris created by interlocus recombination |
| US5032519A (en) | 1989-10-24 | 1991-07-16 | The Regents Of The Univ. Of California | Method for producing secretable glycosyltransferases and other Golgi processing enzymes |
| US5595900A (en) | 1990-02-14 | 1997-01-21 | The Regents Of The University Of Michigan | Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids, or as free molecules, and for the isolation of cloned genetic sequences that determine these structures |
| US5324663A (en) | 1990-02-14 | 1994-06-28 | The Regents Of The University Of Michigan | Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids, or as free molecules, and for the isolation of cloned genetic sequences that determine these structures |
| DE4028800A1 (de) | 1990-09-11 | 1992-03-12 | Behringwerke Ag | Gentechnische sialylierung von glykoproteinen |
| CA2058820C (en) | 1991-04-25 | 2003-07-15 | Kotikanyad Sreekrishna | Expression cassettes and vectors for the secretion of human serum albumin in pichia pastoris cells |
| US5962294A (en) | 1992-03-09 | 1999-10-05 | The Regents Of The University Of California | Compositions and methods for the identification and synthesis of sialyltransferases |
| US5602003A (en) | 1992-06-29 | 1997-02-11 | University Of Georgia Research Foundation | N-acetylglucosaminyltransferase V gene |
| EP0726318A1 (en) | 1993-05-14 | 1996-08-14 | The Upjohn Company | An acceptor polypeptide for an N-acetylgalactosaminyltransferase |
| US5484590A (en) | 1993-09-09 | 1996-01-16 | La Jolla Cancer Research Foundation | Expression of the developmental I antigen by a cloned human cDNA encoding a member of a β-1,6-N-acetylglucosaminyltransferase gene family |
| US6300113B1 (en) * | 1995-11-21 | 2001-10-09 | New England Biolabs Inc. | Isolation and composition of novel glycosidases |
| US5683899A (en) * | 1994-02-03 | 1997-11-04 | University Of Hawaii | Methods and compositions for combinatorial-based discovery of new multimeric molecules |
| US6069235A (en) * | 1994-02-23 | 2000-05-30 | Monsanto Company | Method for carbohydrate engineering of glycoproteins |
| US6204431B1 (en) | 1994-03-09 | 2001-03-20 | Abbott Laboratories | Transgenic non-human mammals expressing heterologous glycosyltransferase DNA sequences produce oligosaccharides and glycoproteins in their milk |
| HU221001B1 (hu) * | 1994-03-17 | 2002-07-29 | Merck Patent Gmbh. | Egyláncú anti-EGFR Fv-k és anti-EGFR ellenanyagok |
| WO1995034663A1 (en) | 1994-06-13 | 1995-12-21 | Banyu Pharmaceutical Co., Ltd. | Gene coding for glycosyltransferase and use thereof |
| US5545553A (en) | 1994-09-26 | 1996-08-13 | The Rockefeller University | Glycosyltransferases for biosynthesis of oligosaccharides, and genes encoding them |
| PT784054E (pt) * | 1994-09-27 | 2002-05-31 | Yamanouchi Pharma Co Ltd | Derivados de tetraidroquinoxalinadiona 1,2,3,4 e sua utilizacao como antagonistas do receptor glutamato |
| DE4439759C1 (de) * | 1994-11-07 | 1996-02-01 | Siemens Ag | Photodiodenarray |
| US5849904A (en) | 1994-12-22 | 1998-12-15 | Boehringer Mannheim Gmbh | Isolated nucleic acid molecules which hybridize to polysialyl transferases |
| US5834251A (en) | 1994-12-30 | 1998-11-10 | Alko Group Ltd. | Methods of modifying carbohydrate moieties |
| JP2810635B2 (ja) | 1995-04-03 | 1998-10-15 | 理化学研究所 | 新規糖鎖合成酵素 |
| JPH08336387A (ja) | 1995-06-12 | 1996-12-24 | Green Cross Corp:The | ピキア属酵母由来の糖鎖伸長タンパク及びそのdna |
| CZ89098A3 (cs) * | 1995-09-29 | 1998-09-16 | Glycim Oy | Syntetické polylaktosaminy obsahující až multivalentní sLEX a metody pro jejich použití |
| JP3348336B2 (ja) * | 1995-10-26 | 2002-11-20 | 株式会社豊田中央研究所 | 吸着ヒートポンプ |
| US5910570A (en) | 1995-11-13 | 1999-06-08 | Pharmacia & Upjohn Company | Cloned DNA encoding a UDP-GalNAc: polypeptide N-acetylgalactosaminy-ltransferase |
| WO1998005768A1 (en) | 1996-08-02 | 1998-02-12 | The Austin Research Institute | Improved nucleic acids encoding a chimeric glycosyltransferase |
| ATE290068T1 (de) | 1996-12-12 | 2005-03-15 | Kirin Brewery | Beta 1-4 n-acetylglucosaminyltransferase sowie das für diese kodierende gen |
| US5945314A (en) | 1997-03-31 | 1999-08-31 | Abbott Laboratories | Process for synthesizing oligosaccharides |
| US20040191256A1 (en) * | 1997-06-24 | 2004-09-30 | Genentech, Inc. | Methods and compositions for galactosylated glycoproteins |
| US7029870B1 (en) * | 1997-07-03 | 2006-04-18 | Human Genome Sciences, Inc. | Gabaa receptor epsilon subunits |
| PL339773A1 (en) * | 1997-09-05 | 2001-01-02 | Glycim Oy | Synthetic bivalent polylactose amines containing slex and method of using them |
| JPH11103158A (ja) | 1997-09-26 | 1999-04-13 | Olympus Optical Co Ltd | プリント配線板へのフリップチップ実装方法および実装構造 |
| US7244601B2 (en) | 1997-12-15 | 2007-07-17 | National Research Council Of Canada | Fusion proteins for use in enzymatic synthesis of oligosaccharides |
| JPH11221079A (ja) | 1998-02-04 | 1999-08-17 | Kyowa Hakko Kogyo Co Ltd | 糖転移酵素および該酵素をコードするdna |
| WO1999040208A1 (en) | 1998-02-05 | 1999-08-12 | The General Hospital Corporation | In vivo construction of dna libraries |
| JP4334141B2 (ja) | 1998-04-20 | 2009-09-30 | グリカート バイオテクノロジー アクチェンゲゼルシャフト | 抗体依存性細胞傷害性を改善するための抗体のグリコシル化操作 |
| US6324663B1 (en) * | 1998-10-22 | 2001-11-27 | Vlsi Technology, Inc. | System and method to test internal PCI agents |
| US6870565B1 (en) | 1998-11-24 | 2005-03-22 | Micron Technology, Inc. | Semiconductor imaging sensor array devices with dual-port digital readout |
| ATE475714T1 (de) * | 1998-12-09 | 2010-08-15 | Phyton Holdings Llc | Verfahren zur herstellung von glycoprotein mit menschlichem glycosylierungsbild |
| CA2369292C (en) | 1999-04-09 | 2010-09-21 | Kyowa Hakko Kogyo Co. Ltd. | Method of modulating the activity of functional immune molecules |
| CA2382184A1 (en) * | 1999-08-19 | 2001-03-01 | Kirin Beer Kabushiki Kaisha | Novel yeast mutants and process for producing glycoprotein containing mammalian type sugar chain |
| WO2001025406A1 (en) | 1999-10-01 | 2001-04-12 | University Of Victoria Innovation & Development Corporation | Mannosidases and methods for using same |
| AU1604401A (en) | 1999-11-19 | 2001-05-30 | Human Genome Sciences, Inc. | 18 human secreted proteins |
| WO2001060860A2 (en) | 2000-02-17 | 2001-08-23 | Millennium Predictive Medicine, Inc. | Genes differentially expressed in human prostate cancer and their use |
| US6410246B1 (en) * | 2000-06-23 | 2002-06-25 | Genetastix Corporation | Highly diverse library of yeast expression vectors |
| US20060034828A1 (en) * | 2000-06-28 | 2006-02-16 | Gerngross Tillman U | Immunoglobulins comprising predominantly a GlcNAcMAN5GLCNAC2 glycoform |
| US20060029604A1 (en) * | 2000-06-28 | 2006-02-09 | Gerngross Tillman U | Immunoglobulins comprising predominantly a GlcNAc2Man3GlcNAc2 glycoform |
| US7598055B2 (en) * | 2000-06-28 | 2009-10-06 | Glycofi, Inc. | N-acetylglucosaminyltransferase III expression in lower eukaryotes |
| US20060257399A1 (en) * | 2000-06-28 | 2006-11-16 | Glycofi, Inc. | Immunoglobulins comprising predominantly a Man5GIcNAc2 glycoform |
| US20060034830A1 (en) * | 2000-06-28 | 2006-02-16 | Gerngross Tillman U | Immunoglobulins comprising predominantly a GalGlcNAcMan5GLcNAc2 glycoform |
| US7449308B2 (en) * | 2000-06-28 | 2008-11-11 | Glycofi, Inc. | Combinatorial DNA library for producing modified N-glycans in lower eukaryotes |
| US20060024304A1 (en) * | 2000-06-28 | 2006-02-02 | Gerngross Tillman U | Immunoglobulins comprising predominantly a Man5GlcNAc2 glycoform |
| KR100787073B1 (ko) * | 2000-06-28 | 2007-12-21 | 글리코파이, 인크. | 변형된 당단백질의 제조방법 |
| US7795002B2 (en) * | 2000-06-28 | 2010-09-14 | Glycofi, Inc. | Production of galactosylated glycoproteins in lower eukaryotes |
| US8697394B2 (en) * | 2000-06-28 | 2014-04-15 | Glycofi, Inc. | Production of modified glycoproteins having multiple antennary structures |
| US7863020B2 (en) * | 2000-06-28 | 2011-01-04 | Glycofi, Inc. | Production of sialylated N-glycans in lower eukaryotes |
| US7625756B2 (en) * | 2000-06-28 | 2009-12-01 | GycoFi, Inc. | Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells |
| EP2267135A3 (en) * | 2000-06-30 | 2011-09-14 | Vib Vzw | Protein glycosylation modification in pichia pastoris |
| US6946292B2 (en) * | 2000-10-06 | 2005-09-20 | Kyowa Hakko Kogyo Co., Ltd. | Cells producing antibody compositions with increased antibody dependent cytotoxic activity |
| US7064191B2 (en) * | 2000-10-06 | 2006-06-20 | Kyowa Hakko Kogyo Co., Ltd. | Process for purifying antibody |
| JP4655388B2 (ja) | 2001-03-05 | 2011-03-23 | 富士レビオ株式会社 | タンパク質の生産方法 |
| CA2448148A1 (en) | 2001-05-25 | 2002-12-05 | Incyte Genomics, Inc. | Carbohydrate-associated proteins |
| CA2455365C (en) * | 2001-08-03 | 2014-07-29 | Glycart Biotechnology Ag | Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity |
| GB0120311D0 (en) * | 2001-08-21 | 2001-10-17 | Immunoporation Ltd | Treating cells |
| WO2003025148A2 (en) | 2001-09-19 | 2003-03-27 | Nuvelo, Inc. | Novel nucleic acids and polypeptides |
| ATE430580T1 (de) * | 2001-10-25 | 2009-05-15 | Genentech Inc | Glycoprotein-zusammensetzungen |
| US20060034829A1 (en) * | 2001-12-27 | 2006-02-16 | Gerngross Tillman U | Immunoglobulins comprising predominantly a MAN3GLCNAC2 glycoform |
| KR101001243B1 (ko) * | 2001-12-27 | 2010-12-17 | 글리코파이, 인크. | 포유동물-유형 탄수화물 구조의 설계 방법 |
| US20060024292A1 (en) * | 2001-12-27 | 2006-02-02 | Gerngross Tillman U | Immunoglobulins comprising predominantly a Gal2GlcNAc2Man3GlcNAc2 glycoform |
| US7332299B2 (en) * | 2003-02-20 | 2008-02-19 | Glycofi, Inc. | Endomannosidases in the modification of glycoproteins in eukaryotes |
| US7514253B2 (en) | 2003-05-16 | 2009-04-07 | Glycofi, Inc. | URA5 gene and methods for stable genetic integration in yeast |
| CA2816222A1 (en) * | 2003-06-16 | 2005-03-03 | Medimmune Vaccines, Inc. | Influenza hemagglutinin and neuraminidase variants |
| EP2341128A1 (en) * | 2003-12-24 | 2011-07-06 | GlycoFi, Inc. | Methods for eliminating mannosylphosphorylation of glycans in the production of glycoproteins |
| JP2007525146A (ja) * | 2003-12-30 | 2007-09-06 | ガムリンク エー/エス | 生分解性ポリマーを含み且つ分解性を促進させたチューインガム |
| CA2558635A1 (en) * | 2004-03-17 | 2005-09-29 | Glycofi, Inc. | Method of engineering a cytidine monophosphate-sialic acid synthetic pathway in fungi and yeast |
| US20050265988A1 (en) * | 2004-03-18 | 2005-12-01 | Byung-Kwon Choi | Glycosylated glucocerebrosidase expression in fungal hosts |
| AU2005233387B2 (en) | 2004-04-15 | 2011-05-26 | Glycofi, Inc. | Production of galactosylated glycoproteins in lower eukaryotes |
| US7465577B2 (en) * | 2004-04-29 | 2008-12-16 | Glycofi, Inc. | Methods for reducing or eliminating α-mannosidase resistant glycans for the production of glycoproteins |
| CA2573745A1 (en) | 2004-07-21 | 2007-01-12 | Glycofi, Inc. | Immunoglobulins comprising predominantly a glcnac2man3glcnac2 glycoform |
| CA2573541A1 (en) | 2004-07-21 | 2006-02-09 | Glycofi, Inc. | Immunoglobulins comprising predominantly a man3glcnac2 glycoform |
| EP1771477A2 (en) | 2004-07-21 | 2007-04-11 | Glycofi, Inc. | Immunoglobulins comprising predominantly a gal2glcnac2man3glcnac2 glycoform |
| WO2006014725A1 (en) | 2004-07-21 | 2006-02-09 | Glycofi, Inc. | IMMUNOGLOBULINS COMPRISING PREDOMINANTLY A GlcNAcMAN5GLCNAC2 GLYCOFORM |
| EP1771478A2 (en) | 2004-07-21 | 2007-04-11 | Glycofi, Inc. | Immunoglobulins comprising predominantly a man5glcnac2 glycoform |
| WO2006071856A2 (en) | 2004-12-23 | 2006-07-06 | Glycofi, Inc. | Immunoglobulins comprising predominantly a man5glcnac2 glycoform |
| WO2006071280A1 (en) | 2004-12-23 | 2006-07-06 | Glycofi, Inc. | Immunoglobulins comprising predominantly a ga1g1cnacman5glcnac2 glycoform |
| US7849651B2 (en) * | 2005-05-31 | 2010-12-14 | Kubota Matsushitadenko Exterior Works, Ltd. | Wall materials bracket and insulating wall structure |
| JP2009507040A (ja) | 2005-09-02 | 2009-02-19 | グライコフィ, インコーポレイテッド | 主としてglcnacman3glcnac2糖形態を含む免疫グロブリン |
| JP2009507482A (ja) | 2005-09-09 | 2009-02-26 | グライコフィ, インコーポレイテッド | 主にman7glcnac2、man8glcnac2グリコフォームを含むイムノグロブリン |
| ES2534465T3 (es) * | 2005-11-15 | 2015-04-23 | Glycofi, Inc. | Producción de glucoproteínas con O-glucosilación reducida |
| US20080274162A1 (en) * | 2007-05-04 | 2008-11-06 | Jeffrey Nessa | Method, composition, and delivery mode for treatment of prostatitis and other urogenital infections using a probiotic rectal suppository |
| TW201028431A (en) * | 2008-10-31 | 2010-08-01 | Lonza Ag | Novel tools for the production of glycosylated proteins in host cells |
| JP2011039027A (ja) * | 2009-07-14 | 2011-02-24 | Pacific Ind Co Ltd | 金属調樹脂カバー及びその製造方法並びに車両用ドアハンドル |
| US9439972B2 (en) * | 2012-09-10 | 2016-09-13 | Ad Lunam Labs, Inc. | Antifungal serum |
-
2001
- 2001-06-27 KR KR1020027017911A patent/KR100787073B1/ko not_active Expired - Fee Related
- 2001-06-27 DE DE60139720T patent/DE60139720D1/de not_active Expired - Lifetime
- 2001-06-27 WO PCT/US2001/020553 patent/WO2002000879A2/en not_active Ceased
- 2001-06-27 MX MXPA03000105A patent/MXPA03000105A/es active IP Right Grant
- 2001-06-27 CA CA002412701A patent/CA2412701A1/en not_active Abandoned
- 2001-06-27 US US09/892,591 patent/US7029872B2/en not_active Expired - Fee Related
- 2001-06-27 EP EP10011297A patent/EP2322644A1/en not_active Withdrawn
- 2001-06-27 DK DK04025648T patent/DK1522590T3/da active
- 2001-06-27 PT PT04025648T patent/PT1522590E/pt unknown
- 2001-06-27 EP EP09004758A patent/EP2119793A1/en not_active Withdrawn
- 2001-06-27 EP EP01954606A patent/EP1297172B1/en not_active Revoked
- 2001-06-27 EP EP04025648A patent/EP1522590B1/en not_active Revoked
- 2001-06-27 DE DE60114830T patent/DE60114830T2/de not_active Revoked
- 2001-06-27 EP EP10012383.5A patent/EP2339013B1/en not_active Expired - Lifetime
- 2001-06-27 NZ NZ523476A patent/NZ523476A/en not_active IP Right Cessation
- 2001-06-27 AU AU7684201A patent/AU7684201A/xx active Pending
- 2001-06-27 AT AT01954606T patent/ATE309385T1/de not_active IP Right Cessation
- 2001-06-27 JP JP2002506194A patent/JP2004501642A/ja active Pending
- 2001-06-27 DK DK01954606T patent/DK1297172T3/da active
- 2001-06-27 AT AT04025648T patent/ATE440959T1/de active
- 2001-06-27 AU AU2001276842A patent/AU2001276842B2/en not_active Ceased
- 2001-06-27 ES ES01954606T patent/ES2252261T3/es not_active Expired - Lifetime
- 2001-06-27 ES ES04025648T patent/ES2330330T3/es not_active Expired - Lifetime
-
2005
- 2005-09-30 US US11/240,432 patent/US7326681B2/en not_active Expired - Fee Related
- 2005-10-11 US US11/249,061 patent/US7923430B2/en not_active Expired - Fee Related
- 2005-11-01 US US11/265,444 patent/US20070178551A1/en not_active Abandoned
- 2005-11-10 US US11/271,217 patent/US20070105127A1/en not_active Abandoned
- 2005-11-10 US US11/271,235 patent/US7629163B2/en not_active Expired - Fee Related
-
2007
- 2007-10-30 US US11/981,408 patent/US8211691B2/en not_active Expired - Fee Related
-
2009
- 2009-08-27 US US12/549,062 patent/US7981660B2/en not_active Expired - Fee Related
- 2009-11-25 CY CY20091101214T patent/CY1109639T1/el unknown
-
2010
- 2010-10-11 US US12/901,843 patent/US20110020870A1/en not_active Abandoned
-
2011
- 2011-03-17 JP JP2011059620A patent/JP2011167194A/ja active Pending
-
2012
- 2012-05-01 US US13/461,111 patent/US20120322100A1/en not_active Abandoned
-
2013
- 2013-07-03 US US13/934,551 patent/US20130295604A1/en not_active Abandoned
-
2014
- 2014-05-07 US US14/271,475 patent/US20140234902A1/en not_active Abandoned
-
2015
- 2015-10-30 US US14/927,519 patent/US20160068880A1/en not_active Abandoned
Cited By (142)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8241909B2 (en) | 1998-12-09 | 2012-08-14 | Phyton Holdings, Llc | Method for manufacturing glycoproteins having human-type glycosylation |
| US8853370B2 (en) | 1998-12-09 | 2014-10-07 | Phyton Holdings, Llc | Plant-produced glycoprotein comprising human-type sugar chain |
| US7388081B2 (en) | 1998-12-09 | 2008-06-17 | Dfb Biotech, Inc. | Method for manufacturing glycoproteins having human-type glycosylation |
| US6998267B1 (en) | 1998-12-09 | 2006-02-14 | The Dow Chemical Company | Method for manufacturing glycoproteins having human-type glycosylation |
| US8907163B2 (en) | 1999-10-26 | 2014-12-09 | Stichting Dienst Landbouwkundig Onderzoek | Transgenic plants expressing galactosyltransferase and sialyl transferase |
| US7781647B2 (en) | 1999-10-26 | 2010-08-24 | Stichting Dienst Landbouwkundig Onderzoek | Mammalian-type glycosylation in transgenic plants expressing mammalian β1,4-galactosyltransferase |
| US8193415B2 (en) | 1999-10-26 | 2012-06-05 | Stichting Dienst Landbouwkundig Onderzock | Plant expressing mammalian β1,4-galactosyltransferase and β1,3-glucuronyltransferase |
| US7598055B2 (en) | 2000-06-28 | 2009-10-06 | Glycofi, Inc. | N-acetylglucosaminyltransferase III expression in lower eukaryotes |
| US7449308B2 (en) | 2000-06-28 | 2008-11-11 | Glycofi, Inc. | Combinatorial DNA library for producing modified N-glycans in lower eukaryotes |
| US7625756B2 (en) | 2000-06-28 | 2009-12-01 | GycoFi, Inc. | Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells |
| US8815544B2 (en) | 2000-06-28 | 2014-08-26 | Glycofi, Inc. | Production of galactosylated glycoproteins in lower eukaryotes |
| US7863020B2 (en) | 2000-06-28 | 2011-01-04 | Glycofi, Inc. | Production of sialylated N-glycans in lower eukaryotes |
| US7326681B2 (en) | 2000-06-28 | 2008-02-05 | Glycofi, Inc. | Methods for producing modified glycoproteins |
| US7795002B2 (en) | 2000-06-28 | 2010-09-14 | Glycofi, Inc. | Production of galactosylated glycoproteins in lower eukaryotes |
| EP2267135A3 (en) * | 2000-06-30 | 2011-09-14 | Vib Vzw | Protein glycosylation modification in pichia pastoris |
| EP2028275A3 (en) * | 2000-06-30 | 2009-05-06 | VIB vzw | Protein glycosylation modification in pichia pastoris |
| US9359628B2 (en) | 2000-06-30 | 2016-06-07 | Vib, Vzw | Protein glycosylation modification in methylotrophic yeast |
| US8354268B2 (en) | 2000-06-30 | 2013-01-15 | Vib, Vzw | Protein glycosylation modification in methylotrophic yeast |
| US8663971B2 (en) | 2000-06-30 | 2014-03-04 | Vib, Vzw | Protein glycosylation modification in methylotrophic yeast |
| US8309795B2 (en) | 2001-01-19 | 2012-11-13 | Phyton Holdings, Llc | Method for secretory production of glycoprotein having human-type sugar chain using plant cell |
| US8735656B2 (en) | 2001-01-19 | 2014-05-27 | Phyton Holdings, Llc | Method of expressing galactosyltransferase and inhibiting xylosyltransferase or fucosyltransferase in a transgenic plant cell for secretory production of glycoproteins having human-type sugar chains |
| EP2359685A1 (en) | 2001-12-27 | 2011-08-24 | GlycoFi, Inc. | Methods to engineer mammalian-type carbohydrate structures |
| US8932825B2 (en) | 2001-12-27 | 2015-01-13 | Glycofi Inc. | Method to engineer mammalian-type carbohydrate structures |
| US7601891B2 (en) | 2002-03-19 | 2009-10-13 | Plant Research International B.V. | Optimizing glycan processing plants |
| US9255277B2 (en) | 2002-03-19 | 2016-02-09 | Stichting Dienst Landbouwkundig Onderzoek | GNTIII expression in plants |
| WO2003078637A3 (en) * | 2002-03-19 | 2004-03-11 | Plant Res Int Bv | Optimizing glycan processing in plants |
| US7897842B2 (en) | 2002-03-19 | 2011-03-01 | Plant Research International B.V. | GnTIII expression in plants |
| EP2339004A1 (en) * | 2002-03-19 | 2011-06-29 | Stichting Dienst Landbouwkundig Onderzoek | Optimizing glycan processing in plants |
| CN100532558C (zh) * | 2002-03-19 | 2009-08-26 | 国际植物研究所 | 在植物中优化聚糖生成 |
| US8927810B2 (en) | 2002-03-19 | 2015-01-06 | Stichting Dienst Landbouwkundig Onderzoek | Optimizing glycan processing in plants |
| US8058508B2 (en) | 2002-03-19 | 2011-11-15 | Stichting Dienst Landbouwkundig Onderzoek | Optimizing glycan processing in plants |
| US8492613B2 (en) | 2002-03-19 | 2013-07-23 | Stichting Dienst Landbouwkundig Onderzoek | GNTIII expression in plants |
| WO2003091431A1 (en) * | 2002-04-26 | 2003-11-06 | Kirin Beer Kabushiki Kaisha | Methylotroph producing mammalian type sugar chain |
| US7972809B2 (en) | 2002-04-26 | 2011-07-05 | National Institute Of Advanced Industrial Science & Technology | Methylotrophic yeast producing mammalian type sugar chain |
| US8883445B2 (en) | 2002-06-26 | 2014-11-11 | Research Corporation Technologies, Inc. | Protein glycosylation modification in methylotrophic yeast |
| KR101047167B1 (ko) * | 2002-06-26 | 2011-07-07 | 브이아이비, 브이제트더블유 | 피치아 파스토리스에서의 단백질 글라이코실화 변형 |
| AU2003238051B2 (en) * | 2002-06-26 | 2008-03-13 | Research Corporation Technologies, Inc. | Protein glycosylation modification in pichia pastoris |
| WO2004003194A3 (en) * | 2002-06-26 | 2004-04-22 | Flanders Interuniversity Inst | Protein glycosylation modification in pichia pastoris |
| US7252933B2 (en) | 2002-06-26 | 2007-08-07 | Flanders Interuniversity Institute For Biotechnology | Protein glycosylation modification in methylotrophic yeast |
| EP2302047A1 (en) * | 2002-06-26 | 2011-03-30 | Research Corporation Technologies, Inc. | Protein glycosylation modification in Pichia pastoris |
| WO2004003205A1 (en) * | 2002-06-29 | 2004-01-08 | Korea Research Institute Of Bioscience And Biotechnology | Hansenula polymorpha mutant strains with defect in outer chain biosynthesis and the production of recombinant glycoproteins using the same strains |
| WO2004028545A1 (en) * | 2002-09-25 | 2004-04-08 | Astrazeneca Ab | A COMBINATION OF A LONG-ACTING β2-AGONIST AND A GLUCOCORTICOSTEROID IN THE TREATMENT OF FIBROTIC DISEASES |
| US8106169B2 (en) | 2002-11-27 | 2012-01-31 | Phyton Holdings, Llc | Plant production of immunoglobulins with reduced fucosylation |
| US8367374B2 (en) | 2003-01-22 | 2013-02-05 | Roche Glycart Ag | Fusion constructs and use of same to produce antibodies with increased Fc receptor binding affinity and effector function |
| US8859234B2 (en) | 2003-01-22 | 2014-10-14 | Roche Glycart Ag | Fusion constructs and use of same to produce antibodies with increased Fc receptor binding affinity and effector function |
| JP2013233151A (ja) * | 2003-01-22 | 2013-11-21 | Glycart Biotechnology Ag | 増加したFcレセプター結合親和性およびエフェクター機能を有する抗体を作製するための融合構築物およびその使用 |
| EP2083084A1 (en) | 2003-02-20 | 2009-07-29 | Glycofi, Inc. | Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells |
| WO2004074458A3 (en) * | 2003-02-20 | 2004-12-29 | Piotr Bobrowicz | N-acetylglucosaminyltransferase iii expression in lower eukaryotes |
| EP2196540A2 (en) | 2003-02-20 | 2010-06-16 | Glycofi, Inc. | Combinatorial DNA library for producing modified N-Glycans in lower eukaryotes |
| EP2196540A3 (en) * | 2003-02-20 | 2010-09-22 | GlycoFi, Inc. | Combinatorial DNA library for producing modified N-Glycans in lower eukaryotes |
| JP2010207235A (ja) * | 2003-02-20 | 2010-09-24 | Glycofi Inc | 改変されたn−グリカンを下等真核生物において産生するためのコンビナトリアルdnaライブラリー |
| AU2004213868B2 (en) * | 2003-02-20 | 2010-05-20 | Glycofi, Inc. | Production of modified glycoproteins having multiple antennary structures |
| JP2010187693A (ja) * | 2003-02-20 | 2010-09-02 | Glycofi Inc | 真核生物における糖タンパク質の改変におけるエンドマンノシダーゼ |
| WO2004074499A3 (en) * | 2003-02-20 | 2005-01-27 | Tillman U Gerngross | Combinatorial dna library for producing modified n-glycans in lower eukaryotes |
| JP2011019521A (ja) * | 2003-02-20 | 2011-02-03 | Glycofi Inc | 下等真核生物におけるn−アセチルグルコサミニルトランスフェラーゼiii発現 |
| US8999671B2 (en) | 2003-02-20 | 2015-04-07 | Glycofi, Inc. | Production of sialylated N-glycans in lower eukaryotes |
| WO2004074461A3 (en) * | 2003-02-20 | 2005-03-17 | Piotr Bobrowicz | Production of modified glycoproteins having multiple antennary structures |
| WO2004074498A3 (en) * | 2003-02-20 | 2005-06-23 | Stephen R Hamilton | Expression of class 2 mannosidase and class iii mannosidase in lower eukaryotic cells |
| AU2004213869B2 (en) * | 2003-02-20 | 2010-03-04 | Glycofi, Inc. | Combinatorial DNA library for producing modified N-glycans in lower eukaryotes |
| EP2316963A1 (en) | 2003-02-20 | 2011-05-04 | GlycoFi, Inc. | Combinatorial DNA library for producing modified N-glycans in lower eukaryotes |
| EP2333096A2 (en) | 2003-02-20 | 2011-06-15 | GlycoFi, Inc. | Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells |
| EP2333095A1 (en) | 2003-02-20 | 2011-06-15 | GlycoFi, Inc. | Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells |
| AU2004213859B2 (en) * | 2003-02-20 | 2010-01-07 | Glycofi, Inc. | N-acetylglucosaminyltransferase III expression in lower eukaryotes |
| JP2006518601A (ja) * | 2003-02-20 | 2006-08-17 | ティルマン ユー. ガーングロス, | 改変されたn−グリカンを下等真核生物において産生するためのコンビナトリアルdnaライブラリー |
| EP2088201A1 (en) | 2003-02-20 | 2009-08-12 | Glycofi, Inc. | Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells |
| EP2080809A1 (en) | 2003-02-20 | 2009-07-22 | Glycofi, Inc. | Production of modified glycoproteins having multiple antennary structures |
| JP2006518598A (ja) * | 2003-02-20 | 2006-08-17 | スティーブン アール. ハミルトン, | 真核生物における糖タンパク質の改変におけるエンドマンノシダーゼ |
| JP2006518597A (ja) * | 2003-02-20 | 2006-08-17 | ピオトル ボブロウィッツ, | 下等真核生物におけるn−アセチルグルコサミニルトランスフェラーゼiii発現 |
| AU2012227297B2 (en) * | 2003-02-20 | 2013-11-14 | Glycofi, Inc. | Combinatorial DNA Library for Producing Modified N-Glycans in Lower Eukaryotes |
| EP2333096A3 (en) * | 2003-02-20 | 2011-10-05 | GlycoFi, Inc. | Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells |
| JP4787737B2 (ja) * | 2003-02-20 | 2011-10-05 | グライコフィ, インコーポレイテッド | 真核生物における糖タンパク質の改変におけるエンドマンノシダーゼ |
| EP1599595B2 (en) † | 2003-02-20 | 2013-08-21 | GlycoFi, Inc. | N -acetylglucosaminyltransferase iii expression in lower eukaryotes |
| US8299228B2 (en) | 2003-02-20 | 2012-10-30 | Glycofi, Inc. | Expression of Class 2 mannosidase and Class III mannosidase in lower eukaryotic cells |
| US8298811B2 (en) | 2003-02-20 | 2012-10-30 | Glycofi, Inc. | Expression of Class 2 mannosidase and Class III mannosidase in lower eukaryotic cells |
| US8268609B2 (en) | 2003-02-20 | 2012-09-18 | Glycofi, Inc. | Production of sialylated N-glycans in lower eukaryotes |
| AU2010201036B2 (en) * | 2003-02-20 | 2011-12-01 | Glycofi, Inc. | Production of Modified Glycoproteins Having Multiple Antennary Structures |
| US7332299B2 (en) | 2003-02-20 | 2008-02-19 | Glycofi, Inc. | Endomannosidases in the modification of glycoproteins in eukaryotes |
| AU2004291886B2 (en) * | 2003-11-14 | 2009-04-30 | Research Corporation Technologies, Inc. | Modification of protein glycosylation in methylotrophic yeast |
| JP2007511223A (ja) * | 2003-11-14 | 2007-05-10 | リサーチ・コーポレーション・テクノロジーズ・インコーポレーテッド | メチロトローフ酵母における蛋白質グリコシル化の修飾 |
| JP4794455B2 (ja) * | 2003-11-14 | 2011-10-19 | リサーチ コーポレイション テクノロジーズ,インコーポレイテッド | メチロトローフ酵母における蛋白質グリコシル化の修飾 |
| US8058053B2 (en) | 2003-11-14 | 2011-11-15 | Vib, Vzw | Modification of protein glycosylation in methylotrophic yeast |
| EP1706480A4 (en) * | 2003-11-14 | 2007-06-13 | Res Corp Technologies Inc | MODIFICATION OF PROTEIN LYCOSYLATION IN METHYLOTROPHIC YEAST |
| US7507573B2 (en) | 2003-11-14 | 2009-03-24 | Vib, Vzw | Modification of protein glycosylation in methylotrophic yeast |
| US7867730B2 (en) | 2004-01-30 | 2011-01-11 | Korea Research Institute Of Biosciences And Biotechnology, Inc. | Hansenula polymorpha gene coding for α 1,6-mannosyltransferase and process for the production of recombinant glycoproteins with Hansenula polymorpha mutant strain deficient in the same gene |
| WO2005090552A3 (en) * | 2004-03-17 | 2006-01-26 | Glycofi Inc | Method of engineering a cytidine monophosphate-sialic acid synthetic pathway in fungi and yeast |
| EP2365089A1 (en) | 2004-03-17 | 2011-09-14 | GlycoFi, Inc. | Method of engineering a cytidine monophosphate-sialic acid synthetic pathway in fungi and yeast |
| EP1737969A4 (en) * | 2004-04-15 | 2011-09-28 | Glycofi Inc | PRODUCTION OF GALACTOSYLATED GLYCOPROTEINS IN LESS EUKARYONTS |
| EP1747280A4 (en) * | 2004-04-29 | 2011-11-09 | Glycofi Inc | PROCESS FOR REDUCING OR ELIMINATING ALPHA-MANNOSIDASE RESISTANT GLYCANES IN THE PREPARATION OF GLYCOPROTEINS |
| WO2006014725A1 (en) * | 2004-07-21 | 2006-02-09 | Glycofi, Inc. | IMMUNOGLOBULINS COMPRISING PREDOMINANTLY A GlcNAcMAN5GLCNAC2 GLYCOFORM |
| WO2006026992A1 (en) * | 2004-09-07 | 2006-03-16 | Novozymes A/S | Altered structure of n-glycans in a fungus |
| WO2006071856A3 (en) * | 2004-12-23 | 2006-10-05 | Glycofi Inc | Immunoglobulins comprising predominantly a man5glcnac2 glycoform |
| EP1861504B1 (en) * | 2005-03-07 | 2009-12-16 | Plant Research International B.V. | Glycoengineering in mushrooms |
| EP2292617A1 (en) | 2005-05-20 | 2011-03-09 | Novartis AG | 1,3-dihydro-imidazo[4,5-c]quinolin-2-ones as lipid kinase and/or pi3 kinase inhibitors |
| EP2270008A1 (en) | 2005-05-20 | 2011-01-05 | Novartis AG | 1,3-dihydro-imidazo[4,5-c]quinolin-2-ones as lipid kinase and/or pi3 kinases inhibitors |
| EP1937305A4 (en) * | 2005-09-09 | 2008-10-08 | Glycofi Inc | IMMUNOGLOBULIN CONTAINING PRESENTLY A MAN7GLCNAC2, MAN8GLCNAC2 GLYCOFORM |
| US8685671B2 (en) | 2005-10-27 | 2014-04-01 | Korea Research Institute Of Bioscience And Biotechnology | Process for producing recombinant glycoproteins by culturing a Hansenula polymorpha mutant strain |
| US8187858B2 (en) | 2005-10-27 | 2012-05-29 | Korea Research Institute Of Bioscience And Biotechnology | Hansenula polymorpha gene coding for dolichyl-phosphate-mannose dependent alpha-1,3-mannosyltransferase and process for the production of recombinant glycoproteins with Hansenula polymorpha mutant strain deficient in the same gene |
| US12344668B2 (en) | 2006-01-23 | 2025-07-01 | Amgen Inc. | Methods for modulating mannose content of recombinant proteins |
| WO2007087384A2 (en) | 2006-01-23 | 2007-08-02 | Amgen Inc. | Methods for modulating mannose content of recombinant proteins |
| US10829551B2 (en) | 2006-01-23 | 2020-11-10 | Amgen Inc. | Methods for modulating mannose content of recombinant proteins |
| WO2007087384A3 (en) * | 2006-01-23 | 2007-10-18 | Amgen Inc | Methods for modulating mannose content of recombinant proteins |
| US8354105B2 (en) | 2006-01-23 | 2013-01-15 | Amgen Inc. | Methods for modulating mannose content of recombinant proteins |
| US9359435B2 (en) | 2006-01-23 | 2016-06-07 | Amgen Inc. | Methods for modulating mannose content of recombinant proteins |
| EA016153B1 (ru) * | 2006-01-23 | 2012-02-28 | Эмджен Инк. | Способы регулирования содержания маннозы в рекомбинантных белках |
| WO2007130638A2 (en) | 2006-05-05 | 2007-11-15 | Glycofi, Inc | Production of sialylated n-glycans in lower eukaryotes |
| WO2008095797A1 (fr) | 2007-02-02 | 2008-08-14 | Glycode | Levures génétiquement modifiées pour la production de glycoprotéines homogènes |
| EP3524626A1 (en) | 2007-03-22 | 2019-08-14 | Biogen MA Inc. | Binding proteins, including antibodies, antibody derivatives and antibody fragments, that specifically bind cd154 and uses thereof |
| US8829276B2 (en) | 2007-04-17 | 2014-09-09 | Stichting Dienst Landbouwkundig Onderzoek | Mammalian-type glycosylation in plants by expression of non-mammalian glycosyltransferases |
| US9745594B2 (en) | 2007-04-17 | 2017-08-29 | Stichting Dienst Landbouwkundig Onderzoek | Mammalian-type glycosylation in plants by expression of a zebrafish glycosyltransferase |
| US9758553B2 (en) | 2008-05-30 | 2017-09-12 | Merck Sharp & Dohme Corp. | Yeast strain for the production of proteins with terminal alpha-1,3-linked galactose |
| US8815580B2 (en) | 2008-08-08 | 2014-08-26 | Vib Vzw | Cells producing glycoproteins having altered glycosylation patterns and method and use thereof |
| WO2010036898A1 (en) | 2008-09-25 | 2010-04-01 | Glycosyn, Inc. | Compositions and methods for engineering probiotic yeast |
| US11390855B2 (en) | 2008-12-19 | 2022-07-19 | Chr. Hansen HMO GmbH | Synthesis of fucosylated compounds |
| WO2010138502A3 (en) * | 2009-05-26 | 2011-02-24 | Momenta Pharmaceuticals, Inc. | Production of glycoproteins |
| US9921210B2 (en) | 2010-04-07 | 2018-03-20 | Momenta Pharmaceuticals, Inc. | High mannose glycans |
| WO2012013823A2 (en) | 2010-07-30 | 2012-02-02 | Glycode | A yeast artificial chromosome carrying the mammalian glycosylation pathway |
| US9890410B2 (en) | 2011-03-12 | 2018-02-13 | Momenta Pharmaceuticals, Inc. | N-acetylhexosamine-containing N-glycans in glycoprotein products |
| US9170249B2 (en) | 2011-03-12 | 2015-10-27 | Momenta Pharmaceuticals, Inc. | N-acetylhexosamine-containing N-glycans in glycoprotein products |
| WO2012127045A1 (en) | 2011-03-23 | 2012-09-27 | Glycode | A yeast recombinant cell capable of producing gdp-fucose |
| WO2012175874A1 (fr) | 2011-06-22 | 2012-12-27 | Lfb Biotechnologies | Utilisation d'un anticorps anti-cd20 a haute adcc pour le traitement de la maladie de waldenstrom |
| WO2013013193A1 (en) | 2011-07-20 | 2013-01-24 | Zepteon, Incorporated | Polypeptide separation methods |
| EP2780462A4 (en) * | 2011-10-31 | 2015-04-29 | Merck Sharp & Dohme | MANIPULATED PICHIA STRAINS WITH IMPROVED FERMENTATION EFFICIENCY AND N-GLYCOSYLATION QUALITY |
| US11479791B2 (en) | 2012-01-19 | 2022-10-25 | Vib Vzw | Tools and methods for expression of membrane proteins |
| US9890217B2 (en) | 2012-01-19 | 2018-02-13 | Vib Vzw | Tools and methods for expression of membrane proteins |
| WO2013107905A1 (en) | 2012-01-19 | 2013-07-25 | Vib Vzw | Tools and methods for expression of membrane proteins |
| EP2617732A1 (en) | 2012-01-19 | 2013-07-24 | Vib Vzw | Tools and methods for expression of membrane proteins |
| US9695244B2 (en) | 2012-06-01 | 2017-07-04 | Momenta Pharmaceuticals, Inc. | Methods related to denosumab |
| WO2014096672A1 (fr) | 2012-12-17 | 2014-06-26 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | Utilisation d'anticorps monoclonaux pour le traitement de l'inflammation et d'infections bacteriennes |
| EP3514175A1 (fr) | 2012-12-17 | 2019-07-24 | Laboratoire Français du Fractionnement et des Biotechnologies | Utilisation d'anticorps monoclonaux pour le traitement de l'inflammation et d'infections bacteriennes |
| US10450361B2 (en) | 2013-03-15 | 2019-10-22 | Momenta Pharmaceuticals, Inc. | Methods related to CTLA4-Fc fusion proteins |
| US10464996B2 (en) | 2013-05-13 | 2019-11-05 | Momenta Pharmaceuticals, Inc. | Methods for the treatment of neurodegeneration |
| US11352415B2 (en) | 2013-05-13 | 2022-06-07 | Momenta Pharmaceuticals, Inc. | Methods for the treatment of neurodegeneration |
| US12297256B2 (en) | 2013-05-13 | 2025-05-13 | Momenta Pharmaceuticals, Inc. | Methods for the treatment of neurodegeneration |
| US10202590B2 (en) | 2013-09-05 | 2019-02-12 | Vib Vzw | Cells producing Fc-containing molecules having altered glycosylation patterns and methods and use thereof |
| WO2015032899A1 (en) | 2013-09-05 | 2015-03-12 | Vib Vzw | Cells producing fc containing molecules having altered glycosylation patterns and methods and use thereof |
| US11421209B2 (en) | 2013-09-05 | 2022-08-23 | Vib Vzw | Cells producing Fc containing molecules having altered glycosylation patterns and methods and use thereof |
| US11661456B2 (en) | 2013-10-16 | 2023-05-30 | Momenta Pharmaceuticals, Inc. | Sialylated glycoproteins |
| WO2015107307A1 (fr) | 2014-01-17 | 2015-07-23 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | Immunoglobuline anti-toxine du charbon |
| WO2017006052A2 (fr) | 2015-07-06 | 2017-01-12 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | UTILISATION DE FRAGMENTS Fc MODIFIÉS EN IMMUNOTHÉRAPIE |
| US11293012B2 (en) | 2015-07-09 | 2022-04-05 | Vib Vzw | Cells producing glycoproteins having altered N- and O-glycosylation patterns and methods and use thereof |
| CN115386009A (zh) * | 2022-04-26 | 2022-11-25 | 江苏靶标生物医药研究所有限公司 | 一种膜联蛋白v与血管生成抑制剂融合蛋白的构建方法和应用 |
| CN115386009B (zh) * | 2022-04-26 | 2023-12-01 | 江苏靶标生物医药研究所有限公司 | 一种膜联蛋白v与血管生成抑制剂融合蛋白的构建方法和应用 |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1297172B1 (en) | Methods for producing modified glycoproteins | |
| AU2001276842A2 (en) | Methods for producing modified glycoproteins | |
| AU2001276842A1 (en) | Methods for producing modified glycoproteins | |
| US8067551B2 (en) | Combinatorial DNA library for producing modified N-glycans in lower eukaryotes | |
| US8999671B2 (en) | Production of sialylated N-glycans in lower eukaryotes |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2412701 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2001276842 Country of ref document: AU |
|
| ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2002 506194 Kind code of ref document: A Format of ref document f/p: F |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020027017911 Country of ref document: KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 523476 Country of ref document: NZ |
|
| WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2003/000105 Country of ref document: MX |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2001954606 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 2001954606 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 1020027017911 Country of ref document: KR |
|
| WWP | Wipo information: published in national office |
Ref document number: 523476 Country of ref document: NZ |
|
| WWG | Wipo information: grant in national office |
Ref document number: 523476 Country of ref document: NZ |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2001954606 Country of ref document: EP |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2001276842 Country of ref document: AU |