WO2010038802A1 - 宿主、形質転換体およびその製造方法、ならびにo-グリコシド型糖鎖含有異種蛋白質の製造方法 - Google Patents

宿主、形質転換体およびその製造方法、ならびにo-グリコシド型糖鎖含有異種蛋白質の製造方法 Download PDF

Info

Publication number
WO2010038802A1
WO2010038802A1 PCT/JP2009/067081 JP2009067081W WO2010038802A1 WO 2010038802 A1 WO2010038802 A1 WO 2010038802A1 JP 2009067081 W JP2009067081 W JP 2009067081W WO 2010038802 A1 WO2010038802 A1 WO 2010038802A1
Authority
WO
WIPO (PCT)
Prior art keywords
sugar chain
gene
heterologous protein
transformant
glycoside
Prior art date
Application number
PCT/JP2009/067081
Other languages
English (en)
French (fr)
Inventor
薫 竹川
祐子 浜
英毅 東田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP09817834.6A priority Critical patent/EP2341139B1/en
Priority to JP2010531894A priority patent/JP5652206B2/ja
Priority to CN200980139731.1A priority patent/CN102985541B/zh
Publication of WO2010038802A1 publication Critical patent/WO2010038802A1/ja
Priority to US13/077,333 priority patent/US8663948B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/18Baker's yeast; Brewer's yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/005Glycopeptides, glycoproteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to a host, a transformant, a method for producing the same, and a method for producing an O-glycoside-type sugar chain-containing heterologous protein.
  • Glycosylation of secreted proteins and the like in eukaryotes is one of the important processes in post-translational modification and is managed by various enzymes related to the endoplasmic reticulum and Golgi apparatus.
  • a sugar chain bound to a protein by glycosylation is formed by mannose (Man), galactose (Gal), N-acetylglucosamine or the like.
  • the sugar chains that bind to proteins include N-glycoside type sugar chains that bind to the nitrogen atoms of amides of asparagine residues and O-glycoside type sugar chains that bind to oxygen atoms of hydroxyl groups of serine and threonine residues. There are two types.
  • a genetic engineering production method using a transformant into which a gene encoding a target heterologous protein (protein that is not originally produced by a host) is introduced is widely used.
  • the host is considered to be best to use eukaryotic microorganisms when producing eukaryotic proteins, and yeast is often used because it does not contain substances that adversely affect the human body.
  • yeast is often used because it does not contain substances that adversely affect the human body.
  • Schizosaccharomyces pombe (hereinafter referred to as “S. pombe”), which is a fission yeast, is a budding yeast such as Schizosaccharomyces cerevisiae (hereinafter referred to as “S. cerevisiae”).
  • S. cerevisiae Schizosaccharomyces cerevisiae
  • the cell cycle, chromosomal structure, RNA splicing, etc. are said to be more similar to those of animal cells, and post-translational modification of the
  • S.M A heterologous protein having an O-glycoside type sugar chain in which the sugar chain structure is controlled to a disaccharide structure using Pombe as a host and the sugar chain structure is O-Man-Gal (a sugar chain in which mannose and galactose are bonded in order to the oxygen atom of the heterologous protein)
  • O-Man-Gal a sugar chain in which mannose and galactose are bonded in order to the oxygen atom of the heterologous protein
  • the host of the present invention is a strain of S. cerevisiae in which the omh1 gene has been deleted or inactivated.
  • the transformant of the present invention has a S. cerevisiae having the omh1 gene deleted or inactivated. It contains a gene encoding a heterologous protein using Pombe as a host.
  • the transformant of the present invention further includes a gene encoding a secretory signal functioning in the Schizosaccharomyces pombe bound to the 5 ′ end of the gene encoding the heterologous protein.
  • the wild-type protein corresponding to the heterologous protein is preferably a protein having an O-glycoside type sugar chain.
  • the method for producing the transformant of the present invention is a method for producing S. cerevisiae having the omh1 gene deleted or inactivated. Pombe is used as a host, and a gene encoding a heterologous protein is incorporated into the host. Further, the method for producing a transformant of the present invention preferably has a gene encoding a secretory signal functioning in Schizosaccharomyces pombe at the 5 ′ end side of the gene encoding the heterologous protein. . Furthermore, in the method for producing a transformant of the present invention, the wild type protein corresponding to the heterologous protein is preferably a heterologous protein having an O-glycoside type sugar chain.
  • the method for producing an O-glycoside type sugar chain-containing heterologous protein according to the present invention comprises culturing the transformant and producing the produced heterologous protein having an O-glycoside type sugar chain having a disaccharide structure of O-Man-Gal. This is a method for producing a heterologous protein having an O-glycoside type sugar chain.
  • the sugar chain of the heterologous protein having the produced O-glycoside-type sugar chain is the sugar chain of the wild-type heterologous protein corresponding to the heterologous protein.
  • the sugar chain structure preferably has a disaccharide structure of O-Man-Gal. Furthermore, in the method for producing an O-glycoside type sugar chain-containing heterologous protein of the present invention, it is preferable to obtain a heterologous protein having an O-glycoside type sugar chain from a culture medium in which the transformant is cultured.
  • the Pombe host is useful as a host for producing a heterologous protein having an O-glycoside type sugar chain having a disaccharide structure of O-Man-Gal. S. of the present invention.
  • a heterologous protein having an O-glycoside type sugar chain in which the sugar chain structure is controlled to a disaccharide structure of O-Man-Gal can be obtained.
  • a transformant from which a heterologous protein having an O-glycoside type sugar chain in which the sugar chain structure is controlled to a disaccharide structure of O-Man-Gal is obtained. be able to.
  • an O-glycoside sugar chain-containing heterologous protein having a sugar chain structure controlled to a disaccharide structure of O-Man-Gal can be produced using the transformant.
  • FIG. 6 is a view showing the result after culturing in Example 3.
  • 4 is a photograph of non-denatured PAGE showing the analysis result of acid phosphatase in Example 4.
  • FIG. 3 is an SDS-PAGE photograph showing the results of analysis of chitinase in Examples 5-12.
  • FIG. 14 shows the results of analyzing the sugar chain structure by normal phase HPLC in Examples 13 to 19.
  • FIG. 14 shows the results of normal phase HPLC analysis of the sugar chain structure in Example 20.
  • A pREP41-GFP
  • B pREP41-omh1-GFP
  • FIG. 20 shows the observation results of cells in Example 20.
  • A Nomarski optical system mounting observation device, (b) fluorescence microscope (GFP observation), (c) fluorescence microscope (RFP observation).
  • FIG. 26 is a result of reverse phase HPLC analysis of a sugar chain structure of a preparatively purified disaccharide in Example 25.
  • the host of the present invention is a strain of S. cerevisiae in which the omh1 gene has been deleted or inactivated. It is a host composed of pombe and is useful as a host for producing the transformant of the present invention.
  • a transformant of the present invention is produced by introducing a gene encoding a heterologous protein (hereinafter also referred to as “heterologous protein gene”) into this host.
  • the transformant of the present invention produces a heterologous protein having an O-glycoside type sugar chain having a disaccharide structure of O-Man-Gal.
  • the produced O-glycoside type sugar is produced.
  • a heterologous protein having a chain is obtained.
  • heterologous protein refers to the host S. cerevisiae. It means a protein that is not naturally produced by pombe (wild-type S. pombe does not have a gene encoding the protein).
  • the heterologous protein is preferably a protein produced by humans or other mammals from the viewpoint of excellent industrial value.
  • the “wild-type protein corresponding to a heterologous protein” refers to a protein produced by a cell of an organism that produces the heterologous protein (an organism other than S. pombe).
  • the heterologous protein produced by the transformant of the present invention may be different in sugar chain from this wild type protein.
  • the heterologous protein produced by the transformant of the present invention is an O-glycoside type sugar chain-containing heterologous protein having a sugar chain having a disaccharide structure of O-Man-Gal, and has a structure other than the disaccharide structure of O-Man-Gal. It is a heterologous protein that has substantially no O-glycoside type sugar chain.
  • the wild-type protein is a gene encoding a protein (glycoprotein) having an O-glycoside type sugar chain.
  • heterologous proteins include S. Examples include chitinase not produced by pombe, granulocyte colony stimulating factor (G-CSF), and the like.
  • G-CSF granulocyte colony stimulating factor
  • the expressed heterologous protein is fused to the endoplasmic reticulum or Golgi by fusing a secretory signal to the N-terminus.
  • a heterologous protein having an O-glycoside-type sugar chain can be obtained depending on the amino acid sequence and the secondary structure or tertiary structure of the protein.
  • a chimeric sequence having a DNA sequence encoding an appropriate secretion signal may be used.
  • S. used as a host Pombe is a yeast belonging to the genus Schizosaccharomyces, which is particularly excellent in acid resistance compared to other yeasts, has a similar cell cycle, chromosome structure, RNA splicing, etc. to those of animal cells, and is a produced protein This post-translational modification is a microorganism thought to be close to that of animal cells.
  • the host of the present invention is S. cerevisiae.
  • Pombe is a mutant type having a chromosome in which the omh1 gene is deleted or inactivated. This variant of S. Pombe maintains the above characteristics, and a transformant obtained by introducing a heterologous protein gene into this host also maintains the above characteristics.
  • the omh1 gene (SPBC19C7.12c, accession number: O60160) It is one of the genes encoding omh1p described later, which is an enzyme (protein) that synthesizes an O-glycoside type sugar chain in pombe, and is an enzyme gene that plays a major role in the synthesis thereof.
  • the accession number represents a registration number of the protein database Uniprot (URL: http://www.Uniprot.org/).
  • the synthesis of the O-glycoside type sugar chain is initiated by O-mannosyltransferase expressed from the PMT gene family as in the case of Schizosaccharomyces cerevisiae (S. cerevisiae). This gene is highly conserved from yeast to multicellular organisms.
  • mannose is added to serine residues and threonine residues in proteins by O-mannosyltransferase encoded by the PMT gene family.
  • S. After the first mannose is added to the protein, S. In S. cerevisiae, as described above, ⁇ 1,2-mannosyltransferase and ⁇ 1,3-mannosyltransferase encoded by the KTR gene family and the MNN1 gene family are involved in sugar chain elongation. On the other hand, S.M. The gene of the enzyme involved in the elongation of the O-glycoside type sugar chain in Pombe has not been identified so far.
  • S.I In the Pombe chromosome, S. A gene (omh gene, O-glycoside ⁇ 1,2-mannosyltransferase homologues) having high homology with the KTR gene (gene encoding ⁇ 1,2-mannosyltransferase) family involved in the elongation reaction of O-glycosidic sugar chains of S. cerevisiae Examined.
  • KTR gene gene encoding ⁇ 1,2-mannosyltransferase
  • FIG. A comparison of the amino acid sequences of the Kre2 gene, the Ktr1 gene, the Ktr3 gene of the K. cerevisiae KTR gene family and the respective proteins encoded by the omh1 to omh6 genes is shown.
  • the homology of the nucleotide sequence of the omh1 gene to the omh5 gene is 33 to 55% with respect to the Kre2 gene, Ktr1 gene, and Ktr3 gene subfamily of the KTR gene family of S. cerevisiae.
  • the omh6 gene has lower homology than the omh1 to omh5 genes.
  • ⁇ 1,2-mannosyltransferase (hereinafter referred to as “Kre2p”) encoded by the Kre2 gene has an EPD (Glu247-Pro248-Asp249) site corresponding to the DXD motif of various known glycosyltransferases ( FIG. 1).
  • the ⁇ 1,2-mannosyltransferase encoded by the omh1 gene to omh6 gene (hereinafter referred to as “omh1p” to “omh6p”, respectively) also has a corresponding site, and the aspartic acid residue at position 249 has no serine residue.
  • omh1p to omh6p are involved in sugar chain elongation by the same mechanism as Kre2p. That is, Kre2p interacts with the phosphate group of the donor sugar nucleotide (GDP-mannose) by coordination of divalent cation with glutamic acid at position 247, and the tyrosine residue at position 220 (marked with a circle in FIG. 1). It plays an important role in sugar transfer between the donor sugar nucleotide and the terminal mannose of the acceptor. Similarly to Kre2p, it is considered that omh1p to omh6p also undergo sugar transfer due to the contribution of tyrosine residues.
  • the omh1 gene is a gene encoding an enzyme that plays an important role in the elongation reaction of O-glycoside type sugar chains.
  • the transformant of the present invention by deleting or inactivating the omh1 gene, omh1p is not expressed, and the structure of the O-glycoside type sugar chain that binds to the heterologous protein produced by the transformant is O-Man- Controlled by Gal. This is thought to be because omh1p ( ⁇ 1,2-mannosyltransferase) encoded by the omh1 gene contributes to the reaction of binding the second mannose to the first mannose bound to the protein. .
  • Omh1 gene to omh6 gene are all S.P. It is not a gene essential for the growth of pombe, and even if the omh1 gene is inactivated or deleted, the phenotype of the cell is not particularly changed. Therefore, the transformant of the present invention has the omh1 gene inactivated or deleted, but can stably produce an O-glycoside-type sugar chain-containing heterologous protein.
  • a known method can be used as a method for deleting or inactivating the omh1 gene. Specifically, a gene can be deleted by using the Latour method (described in Nucleic Acids Res (2006) 34: e11 and International Publication No. 2007/063919 pamphlet). In addition, mutation isolation methods using mutants (Yeast Molecular Genetics Experimental Method, 1996, Society Publishing Center) and random mutation methods using PCR (polymerase chain reaction) (PCR Methods Applications (PCR Methods) Appl.), 1992, Vol. 2, p.28-33.) Etc., the gene can be inactivated by introducing a mutation into a part of the gene.
  • the transformant of the present invention can be obtained by introducing a heterologous protein gene into a host in which the omh1 gene of the present invention has been deleted or inactivated.
  • the heterologous protein gene may have a part encoding a secretory signal in addition to the part encoding the target heterologous protein.
  • This secretory signal-encoding portion is a portion encoding a secretory signal that functions in a cell of an organism (other than S. pombe) that produces a heterologous protein, and a protein having a secretory signal at the N-terminus was expressed in the cell.
  • the secretory signal portion is deleted in the cell, and then a heterologous protein having no secretory signal is secreted from the cell.
  • the heterologous protein gene has a portion encoding a secretion signal
  • the secretion signal needs to function also in the host of the present invention.
  • the secretion signal does not function in the host of the present invention, it is preferable to use a secretion signal that functions in the host instead of the non-functional secretion signal.
  • secretion signals that function in the host of the present invention include S. cerevisiae. The secretion signal possessed by Pombe is preferred. This S.I.
  • a protein to which this secretory signal is bound is expressed on the N-terminal side of the heterologous protein, and then in the host of the present invention described above.
  • This secretion signal is deleted.
  • the secretory signal gene functioning in the pombe the secretory signal gene described in WO 96/23890 is preferable. In particular, it is preferable to use a gene encoding the secretion signal P3 described in this document.
  • an expression vector having a heterologous protein gene is used.
  • the heterologous protein gene does not include a secretory signal gene that functions in the host, it preferably includes a secretory signal gene that functions in the host.
  • the heterologous protein gene contains a secretory signal gene that does not function in the host, use the heterologous protein gene from which the secretory signal gene has been removed, and use a secretory signal gene that functions in the host instead.
  • the vector further includes a promoter that normally functions in the host, and may further include any one or more of a terminator, a 5′-untranslated region, and a 3′-untranslated region. The promoter is the host S. cerevisiae.
  • any substance that functions in a pombe and can express a heterologous protein may be used.
  • the promoter in the present invention include promoters derived from animal cell viruses described in JP-A-5-15380, JP-A-7-163373, and JP-A-10-234375.
  • the SV40 promoter is preferred.
  • JP-A-11-192094 International Publication No. 2007/26617 pamphlet and the like.
  • Various promoters known as promoters that can function in the pombe can be used.
  • heterologous protein gene can be introduced not only into the host chromosome in the form of an expression vector to obtain a transformant, but also into the host chromosome in the form of an expression cassette.
  • the expression cassette has the above promoter and secretion signal together with the heterologous protein gene, and is usually integrated into the host chromosome using the homologous recombination method.
  • a method for integrating a heterologous protein gene into a chromosome using an expression cassette As a method for transforming pombe, it is preferable to use the method described in JP-A-2000-262284. If the expression cassette is integrated into the chromosome, it is easy to suppress the loss of the ability to produce a heterologous protein containing an O-glycoside-type sugar chain due to the expression cassette dropping out of the cell during the culture of the transformant.
  • the expression cassette is S. cerevisiae.
  • two or more expression cassettes are preferably incorporated from the viewpoint of improving the productivity of a heterologous protein containing an O-glycoside type sugar chain.
  • the vectors as described above are S. Introduce into Pombe cells and transform.
  • the transformed transformant can be selected using the antibiotic resistance gene or auxotrophic marker.
  • a transformant can be selected by using a medium containing the antibiotic.
  • antibiotic resistance genes include neomycin resistance genes.
  • auxotrophic marker include orotidine phosphate decarboxylase gene (ura4 gene) and isopropylmalate dehydrogenase gene (leu1 gene).
  • ura4 gene orotidine phosphate decarboxylase gene
  • leu1 gene isopropylmalate dehydrogenase gene
  • Examples of the selection method include the following methods. Screening is performed with a medium capable of selecting transformants using the auxotrophic marker, and a plurality of colonies obtained are selected. Next, after separately cultivating them, the expression level of the heterologous protein in each culture solution is examined, and a transformant with a higher expression level of the heterologous protein is selected. Moreover, the number of the expression cassettes integrated in the chromosome can be examined by performing genome analysis by pulse field gel electrophoresis on the selected transformants.
  • the method for producing an O-glycoside sugar chain-containing heterologous protein of the present invention is a method for culturing the transformant of the present invention and obtaining a heterologous protein having an O-glycoside sugar chain produced by the transformant. is there.
  • a known yeast culture medium can be used as the culture solution. Containing carbon sources, nitrogen sources, inorganic salts, etc. that can be utilized by Pombe; Any material that can efficiently culture pombe is acceptable.
  • a natural medium or a synthetic medium may be used as the culture solution.
  • Examples of the carbon source include sugars such as glucose, fructose, and sucrose, and carbohydrates such as starch. Among these, glucose or sucrose is preferable.
  • Examples of the nitrogen source include ammonium salts of inorganic acids such as ammonia, ammonium sulfate, ammonium chloride, and ammonium acetate, peptone, meat extract, and yeast extract. Of these, ammonium sulfate or yeast extract is preferable.
  • Examples of inorganic salts include magnesium phosphate, magnesium sulfate, and sodium chloride. Among these, magnesium phosphate is preferable.
  • the culture solution may contain proteolipid.
  • the culture can be performed by shaking culture, stirring culture, or the like.
  • the culture temperature is preferably 16 to 37 ° C, more preferably 25 to 32 ° C.
  • the culture time can be determined as appropriate.
  • the culture may be batch culture or continuous culture.
  • continuous culture for example, an O-glycoside-type sugar chain-containing heterologous protein is obtained from a culture solution cultured for a certain period of time, the culture supernatant is collected, and the culture solution is added again to the culture supernatant and cultured. The method of culturing continuously is mentioned. By performing continuous culture, the productivity of the O-glycoside-type sugar chain-containing heterologous protein is further improved.
  • a known protein purification method can be used to obtain an O-glycoside-type sugar chain-containing heterologous protein from the culture solution.
  • S. cerevisiae having a chromosome in which the omh1 gene is deleted or inactivated By using a transformant using pombe as a host, an O-glycoside sugar chain-containing heterologous protein in which the O-glycoside sugar chain is controlled by O-Man-Gal can be obtained.
  • Example 1 Cloning and omh gene disruption Using ura4 as a selection marker, omh1 gene to omh6 gene were disrupted. Using the sense and antisense primers shown in Table 1, From the pombe genomic DNA, three DNA fragments (1.3 kb, 1.6 kb, 1.25 kb) each containing a part or all of the omh1, om2 and omh3 genes were amplified and subcloned. As the vector, pGEM-T Easy vector and pGEM-T vector (Promega) were used.
  • the vector was cleaved within the omh1 gene by restriction enzyme treatment with KpnI and EcoRI, and a ura4 + cassette (1.6 kb) was inserted at that position to obtain a vector in which the omh1 gene was disrupted.
  • a vector in which the omh2 gene was disrupted using restriction enzymes EcoRV and HindIII, and a vector in which the omh3 gene was disrupted using restriction enzymes EcoRI and XhoI were obtained.
  • S. cerevisiae lacking uracil synthesis ability was used.
  • the Pombe ARC039 strain (haploid) was transformed and selected with a uracil selection medium to obtain an omh1 mutant strain having a disrupted omh1 gene.
  • An omh2 mutant having a disrupted omh2 gene and an omh3 mutant having a disrupted omh3 gene were also constructed in the same manner. Confirmation that the desired omh1 mutant, omh2 mutant, and omh3 mutant were obtained was performed by Southern blotting and PCR.
  • a loxP cassette vector (pBS loxP-ura4-loxP, described in Biosci Biotechnol Biochem, 68, 545-550 (2004)) was used for disruption of the omh4 gene to omh6 gene.
  • the upstream fragment of the omh4 gene was amplified by PCR using a sense primer and an antisense primer (Table 1) having XhoI and HindIII restriction enzyme sites, respectively, and the downstream fragment was expressed as an EcoRI and BamHI restriction enzyme site, respectively. Amplified by PCR using sense primers and antisense primers (Table 1). These amplified fragments were treated with appropriate restriction enzymes, respectively, and then inserted into the pBS loxP-ura4-loxP vector.
  • the upstream and downstream fragments of the omh4 gene were respectively present on both sides of the loxP-ura4-loxP cassette.
  • the located omh4 gene disruption vector was obtained.
  • the vector for omh5 gene disruption and the vector for omh6 gene disruption were obtained by the same method using the sense primer and antisense primer shown in Table 1. Using DNA fragments obtained by linearizing these vectors, S. aureus lacking the ability to synthesize uracil.
  • the Pombe ARC039 strain (haploid) was transformed and selected with a uracil selective medium to obtain omh4 mutant, omh5 mutant, and omh6 mutant, respectively.
  • Example 2 Observation of cell morphology
  • the omh1 to omh6 mutants obtained in Example 1 were cultured overnight at 30 ° C and 37 ° C in a YES medium (5 ml), and then equipped with a Nomarski optical system. Their cell morphology was observed with an observation device.
  • wild type S. cerevisiae. Pombe was also cultured in the same manner as each mutant strain, and the cell morphology was observed. The results are shown in FIGS. 2 (a) to (g). In FIG.
  • omh1p encoded by omh1 gene This indicates that it is not involved in the formation of the sugar chain structure essential for the structure and function of Pombe's normal cell wall.
  • the omh6 mutant showed a phenotype different from the wild type.
  • Example 3 Temperature dependence and antibiotic resistance (hygromycin B) Each culture solution after the culture in Example 2 was diluted with water so that the OD 600 would be 0.5 (corresponding to 10 7 cells / ml). After further 10-fold dilution (10 ⁇ 1 in FIG. 3, leftmost column), 7 ⁇ l of this was streaked into YES medium (agar medium), 30 ° C. (FIG. 3 (a)), and 37 ° C. (FIG. 3). The cells were cultured for 3 days under the conditions of 3 (c)). Similarly, a YES medium (5 ml) containing 20 ⁇ g / ml hygromycin B (0.005% by mass) was also cultured overnight at 30 ° C. (FIG.
  • FIGS. 3 (a) to 3 (c) those having an OD 600 of 0.5 in order from the left are diluted 10 times (10 ⁇ 1 , 10 ⁇ 2 , 10 ⁇ 3 , 10 ⁇ 4 ) under each condition. The culture result of a thing is shown.
  • the omh1 mutant, omh2 mutant, omh4 mutant, and omh5 mutant are less affected by temperature and hygromycin B, and wild type S. It was found that it grows at a rate that does not change significantly from Pombe. On the other hand, in the omh3 mutant and the omh6 mutant, the growth rate decreased in culture at 37 ° C. and culture in a medium containing hygromycin B.
  • Example 4 Analysis of acid phosphatase
  • omh1 mutant to omh6 mutant By analyzing the influence of omh1 mutant to omh6 mutant on acid phosphatase, the influence of omh1p to omh6p on the elongation of N-glycoside type sugar chain was examined. After culturing the ARC039 strain and the omh1 mutant to omh6 mutant strains in a YES medium (5 ml) at 30 ° C. until the OD 600 was 1.5, 1.5 ⁇ 10 8 cells were obtained by centrifugation.
  • the cells are based on MM medium described in MMP medium (Methods Enzymol, 194,795-823 (1991), and contain 14.6 mM sodium acetate instead of disodium hydrogen phosphate and potassium hydrogen phthalate. Culture medium. ) And was incubated at 30 ° C. for 3 hours to induce the production of acid phosphatase. Next, the obtained cells were collected by centrifugation, washed with Tris-HCl buffer (62.5 mM, pH 6.8), and then ice-cooled 200 ⁇ l of lysate (62.5 mM Tris-HCl, pH 6).
  • Lane 1 is wild type S. cerevisiae. Pombe
  • lane 2 is the omh1 mutant
  • lane 3 is the omh2 mutant
  • lane 4 is the omh3 mutant
  • lane 5 is the omh4 mutant
  • lane 6 is the omh5 mutant
  • lane 7 is the result of electrophoresis in the omh6 mutant.
  • the mobility of acid phosphatase in electrophoresis is as follows: omh1 mutant strain to omh6 mutant strain and wild type S. cerevisiae. There was no change with Pombe and it was equivalent. From this result, it was found that omh1p to omh6p are not involved in the elongation of the N-glycoside type sugar chain.
  • chitinase expression medium (based on MM medium, 0.1% (w / v) instead of 2% (w / v) glucose. / Vv) containing glucose and 2% (w / v) fructose)) and incubated at 30 ° C. for 3 hours. Thereafter, chitinase was collected from the supernatant of the medium, and O-glycoside type sugar chain was elongated by SDS (Sodium dodecyl sulfate) -PAGE (Poly-Acrylamide Gel Electrophoresis) using 6% (w / v) polyacrylamide gel. analyzed.
  • SDS sodium dodecyl sulfate
  • PAGE Poly-Acrylamide Gel Electrophoresis
  • chitinase Recovery of chitinase from the medium was performed as shown below. Chitin beads (20 mg, Sigma) were added to the medium, and the mixture was stirred at 4 ° C. for 12 hours and centrifuged to give a pellet. The pellet was washed 3 times with sodium buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl), and chitinase was extracted by boiling for 5 minutes with SDS sample buffer (50 ⁇ l). Gel staining was performed with Coomassie Brilliant Blue R-250.
  • Examples 6 to 12 Wild type S. Chimase was analyzed in the same manner as in Example 5 for pombe (Example 6) and omh2 mutant to omh6 (Examples 7 to 11) mutants.
  • S. S. cerevisiae (Example 12) was cultured in YPD medium (10 ml) at 30 ° C., and chitinase was separated by SDS-PAGE using 6% (w / v) polyacrylamide gel in the same manner as in Example 5. The results are shown in FIG. Lane 1 is S. Cerevisiae, lane 2 is wild type S. cerevisiae.
  • lane 3 is the omh1 mutant
  • lane 4 is the omh2 mutant
  • lane 5 is the omh3 mutant
  • lane 6 is the omh4 mutant
  • lane 7 is the omh5 mutant
  • lane 8 is the result of electrophoresis in the omh6 mutant.
  • the molecular weight of chitinase was determined using the 83 kDa and 175 kDa markers.
  • the molecular weight of chitinase was about 100 kDa, and the elongation of the O-glycoside type sugar chain was significantly impaired. From this result, it was confirmed that the omh1 gene is deeply involved in the elongation of O-glycoside type sugar chains.
  • the sugar chain of the glycoprotein (O-glycoside-type sugar chain-containing heterologous protein) obtained from Pombe and omh1 mutant to omh6 mutant is hydrolyzed, converted to pyridylamino (PA) and analyzed by HPLC (High performance liquid chromatography). went.
  • PA pyridylamino
  • HPLC High performance liquid chromatography
  • Example 14 Wild type S. For Pombe (Example 14) and omh2 mutant to omh6 mutant (Examples 15 to 19), the normal phase HPLC analysis of the sugar chain was performed in the same manner as in Example 13.
  • Example 14 also collects the five major peaks detected and examines how these peaks change after treatment with jack bean alpha mannosidase and coffee bean alpha galactosidase. The corresponding sugar chain structure was confirmed.
  • FIG. 6 shows wild type S. cerevisiae.
  • Peak 2G was Gal-Man-PA
  • Peak 2M was Man-Man-PA
  • Peak 3G was Gal-Man-Man-PA
  • Peak 3M was Man-Man-Man-PA.
  • Peak 4i was a mixture of sugar chains having four sugars.
  • the sugar chains in the omh2 mutant to omh6 mutant (FIGS. 6 (c) to (g)) are wild-type S. mutans. It was almost the same as that of Pombe (FIG. 6 (a)), and there was no change.
  • the omh1 gene was isolated from wild type S. After amplification by PCR from the genomic DNA of pombe, cleavage sites of restriction enzymes BglII and NotI were introduced and treated with these restriction enzymes, vector pREP41-GFP (vector pTN197 obtained from pREP41, Mol Biol Cell, 12, 3955) The vector pREP41-omh1-GFP having a gene expressing omh1p in which GFP (green fluorescent protein) was bound at the C-terminal was obtained by cloning at the corresponding site of (-3972 (2001)).
  • the vector pAU-Gms1 having a gene expressing Gms1p UDP galactose transporter encoded by the Gms1 gene
  • RFP red fluorescent protein
  • the omh1 mutant strain transformed with pREP41-GFP or pREP41-omh1-GFP was cultured in MM medium not containing leucine at 30 ° C. until stationary phase.
  • the results of normal phase HPLC analysis of this in the same manner as in Example 13 are shown in FIGS. 7 (a) (pREP41-GFP) and (b) (pREP41-omh1-GFP).
  • FIGS. 8 (a) to (c) The results are shown in FIGS. 8 (a) to (c).
  • FIG. 8 (a) is an observation apparatus equipped with a Nomarski optical system
  • FIG. 8 (b) is an observation of pREP41-GFP with a fluorescence microscope
  • FIG. 8 (c) is an observation of pAU-Gms1-RFP. Is.
  • omh1p-GFP (omh1p bound with GFP) was localized at the same place as Gms1p-RFP (Gms1p bound with RFP).
  • Gms1p is a protein that transports galactose necessary for sugar chain synthesis. From this result, it was also confirmed that the omh1 gene is involved in the synthesis of O-glycoside type sugar chains.
  • chitinase was collected from the supernatant of the medium, and the purity of the chitinase was confirmed by SDS-PAGE using 6% (w / v) polyacrylamide gel.
  • the recovery of chitinase from the medium was performed as follows. After adding chitin (400 mg, manufactured by Wako Pure Chemical Industries, Ltd.) to the medium, the mixture was stirred at 4 ° C. for 12 hours and centrifuged to form a pellet.
  • the pellet was washed three times with sodium buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl), and SDS sample buffer (63 mM Tris-HCl (pH 6.8), 10% (v / v) glycerol, 2% (w / v) Chitinase was extracted by boiling for 5 minutes with SDS, 0.002% (w / v) BPB, 1 ml). Gel staining was performed with Coomassie Brilliant Blue R-250.
  • Example 22 The omh1 mutant was analyzed for chitinase in the same manner as in Example 21. The results of Examples 21 and 22 are shown in FIG. Lane 1 shows wild type S. cerevisiae. Pombe, lane 2 shows the results of the omh1 mutant.
  • the sugar chain of chitinase (O-glycoside-type sugar chain-containing heterologous protein) purified from Pombe wild strain and omh1 mutant was liberated by hydrazine decomposition, and the reducing end was converted to pyridylamino (PA) and analyzed by HPLC.
  • Example 23 In Example 21, in order to remove SDS from the chitinase extracted from chitin, dialysis was performed against MilliQ water (ultra pure water), followed by lyophilization. S. 1 mg of lyophilized powder was obtained from the pombe wild strain. Next, 0.3 mg of lyophilized chitinase was subjected to hydrazine decomposition using Hydra Club C-206 (manufactured by J Oil Mills). Next, the obtained free sugar chain sample is heated with a pyridylaminating agent (20 ⁇ l) at 90 ° C. for 60 minutes, and then a reducing agent (20 ⁇ l) is added and heated at 80 ° C. for 35 minutes to reduce the sugar chain.
  • a pyridylaminating agent (20 ⁇ l) at 90 ° C. for 60 minutes
  • a reducing agent (20 ⁇ l) is added and heated at 80 ° C. for 35 minutes to reduce the sugar chain.
  • 2-Aminopyridine was added to the terminal. Excess pyridylaminating agent and reducing agent were removed by extraction with phenol / chloroform (volume ratio 50/50). Next, normal phase HPLC analysis (column: Amide-80 column (4.6 mm ⁇ 75 mm), manufactured by Tosoh Corporation) was performed on the obtained sample. The molecular size of the sugar chain was determined by PA-labeled standard markers, PA-mannose, PA-maltose, and PA-isomaltooligosaccharide (Takara Bio Inc.).
  • Example 24 In Example 22, in order to remove SDS from the chitinase extracted from chitin, dialysis was performed against MilliQ water, followed by lyophilization. 0.5 mg of lyophilized powder was obtained from the omh1 mutant. Thereafter, normal phase HPLC analysis was carried out in the same manner as in Example 23. The results of normal phase HPLC analysis of Examples 23 and 24 are shown in FIG. In FIG. Pombe wild strain, (b) shows the result of omh1 mutant.
  • Example 25 S.
  • the disaccharide peak was preparatively purified and subjected to reverse phase HPLC analysis (column: ODS-80Ts column (4.6 mm ⁇ 150 mm), manufactured by Tosoh Corporation) was performed. Further, after the pre-purified disaccharide was digested with ⁇ -galactosidase (Sigma G8507, derived from coffee beans) and digested with ⁇ -mannosidase (Sigma M7257, derived from Jack beans), the reverse was similarly applied. Phase HPLC analysis was performed.
  • FIG. (A) and (e) in FIG. 11 show the retention times of Man-PA and Man-Man-PA (Man ⁇ 1-2Man-PA), which are standard sugar chains.
  • 11 (b) to 11 (d) show S.I.
  • FIG. 11 (f) to (h) show the analysis results of the omh1 mutant
  • FIGS. 11 (b) and (f) show the results of preparative purification
  • (c) and (g). ) Shows the analysis results after ⁇ -galactosidase digestion
  • (d) and (f) show the analysis results after ⁇ -mannosidase digestion.
  • the transformant of the present invention can produce a heterologous protein in which the structure of the O-glycoside sugar chain to be bound is controlled. Therefore, the method for producing an O-glycoside sugar chain-containing heterologous protein using the transformant can be suitably used in the medical field and the like.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 S.ポンベを宿主として用い、糖鎖構造を特定の構造に制御したO-グリコシド型糖鎖を有する異種蛋白質を得ることのできる形質転換体、該形質転換体の製造方法、および該形質転換体を得るための宿主、ならびにO-グリコシド型糖鎖含有異種蛋白質の製造方法を提供することを目的する。  omh1遺伝子が欠失または失活した染色体を有するS.ポンベからなる宿主であって、遺伝子工学的方法により異種蛋白質をコードする遺伝子を発現させ、さらに発現した異種蛋白質に糖鎖を結合させて、特定のO-グリコシド型糖鎖を有する異種蛋白質を産生させるための宿主。また、該宿主を用いた形質転換体およびその製造方法、ならびに該形質転換体を用いたO-グリコシド型糖鎖含有異種蛋白質の製造方法。

Description

宿主、形質転換体およびその製造方法、ならびにO-グリコシド型糖鎖含有異種蛋白質の製造方法
 本発明は、宿主、形質転換体およびその製造方法、ならびにO-グリコシド型糖鎖含有異種蛋白質の製造方法に関する。
 真核生物における分泌蛋白質等のグリコシル化は、翻訳後修飾の中でも重要な過程の一つであり、小胞体やゴルジ体に関連する様々な酵素によって管理されている。グリコシル化により蛋白質に結合される糖鎖は、マンノース(Man)やガラクトース(Gal)、N-アセチルグルコサミン等により形成される。蛋白質に結合する糖鎖には、アスパラギン残基のアミドの窒素原子に結合するN-グリコシド型糖鎖と、セリン残基やトレオニン残基の水酸基の酸素原子に結合するO-グリコシド型糖鎖の2種類がある。このような糖鎖は、蛋白質への安定性の付与や、細胞との相互作用に影響していると言われている。そのため、医薬品製造を目的として、N-グリコシド型糖鎖が結合された蛋白質を製造する技術の開発が試みられている(例えば、特許文献1および2参照)。
 N-グリコシド型糖鎖については、様々な知見が集積されているが、O-グリコシド型糖鎖については知見が少ない。通常、生体では様々な構造を有するO-グリコシド型糖鎖が結合した蛋白質が産生されるが、特に医薬品の製造においては、蛋白質に結合する糖鎖の構造を特定のものに制御することが重要である。そこで、O-グリコシド型糖鎖を有する蛋白質についても、特定の糖鎖構造を有するものを高い生産性で製造する技術が求められている。
 目的の蛋白質を高い生産性で製造する方法としては、目的の異種蛋白質(宿主が本来産生しない蛋白質)をコードする遺伝子を導入した形質転換体を用いる遺伝子工学的な製造方法が広く用いられている。宿主は、真核生物由来の蛋白質を製造する場合、真核生物である微生物を用いることが最も良いと考えられており、人体に悪影響を及ぼす物質を含まない点から、酵母が多く用いられている。なかでも、分裂酵母であるシゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)(以下、「S.ポンベ」という。)は、シゾサッカロミセス・セレビシエ(以下、「S.セレビシエ」という。)等の出芽酵母に比べて、細胞周期や染色体の構造、RNAスプライシング等が動物細胞のものにより類似していると言われ、産生される蛋白質の翻訳後修飾も動物細胞のそれに近いと考えられている。
 S.セレビシエにおけるO-グリコシド型糖鎖の合成は、PMT遺伝子ファミリーがコードするO-マンノシルトランスフェラーゼにより、蛋白質のセリン残基またはトレオニン残基の酸素にマンノースが結合されることにより開始される(非特許文献1および2参照)。その後、糖鎖の伸長には、KTR遺伝子ファミリーがコードするα1,2-マンノシルトランスフェラーゼと、MNN1遺伝子ファミリーがコードするα1,3-マンノシルトランスフェラーゼが関与している(非特許文献3参照)。
 一方、S.ポンベについてはO-グリコシド型糖鎖の伸長に関与する遺伝子は特定されていなかった。
 S.ポンベを用いた異種蛋白質の製造については、S.ポンベ内で機能するプロモーターや分泌シグナル遺伝子、マルチクローニングベクター等が開発されている。しかし、S.ポンベにおけるO-グリコシド型糖鎖の糖鎖修飾に関与する遺伝子については、よくわかっていなかったため、これまでO-グリコシド型糖鎖の構造を制御することはできなかった。
 以上のことから、S.ポンベを用いて特定のO-グリコシド型糖鎖を有する異種蛋白質を製造する方法が望まれている。
特表2004-501642号公報 特表2005-514021号公報
Strahl-Bolsinger S, Gentzsch M and Tanner W, Biochim Biophys Acta, 1426, 297-307 (1999). Girrbach V and Strahl S, J Biol Chem, 278, 12554-12562 (2003) Lussier M, Sdicu M and Bussey H, Biochim Biophys Acta, 1426, 323-334 (1999)
 そこで本発明では、S.ポンベを宿主として用い、糖鎖構造をO-Man-Gal(異種蛋白質の酸素原子に、マンノース、ガラクトースの順に結合した糖鎖)なるジサッカライド構造に制御したO-グリコシド型糖鎖を有する異種蛋白質を得ることのできる形質転換体、および該形質転換体の製造方法を提供することを目的とする。また、この形質転換体を得るためのS.ポンベ宿主を提供することを目的とする。
 さらに、本発明では、前記形質転換体を用いたO-グリコシド型糖鎖含有異種蛋白質の製造方法を提供することを目的とする。
 本発明の宿主は、omh1遺伝子が欠失または失活したS.ポンベからなる宿主であって、遺伝子工学的方法により異種蛋白質をコードする遺伝子を発現させ、さらに発現した異種蛋白質に糖鎖を結合させて、O-Man-Galなるジサッカライド構造のO-グリコシド型糖鎖を有する異種蛋白質を産生させるための、宿主である。
 本発明の形質転換体は、omh1遺伝子が欠失または失活したS.ポンベを宿主とし、異種蛋白質をコードする遺伝子を含む。
 また、本発明の形質転換体は、さらに、前記異種蛋白質をコードする遺伝子の5’末端に結合した前記シゾサッカロミセス・ポンベ内で機能する分泌シグナルをコードする遺伝子を含むことが好ましい。
 さらに、本発明の形質転換体は、前記異種蛋白質に対応する野生型蛋白質が、O-グリコシド型糖鎖を有している蛋白質であることが好ましい。
 本発明の形質転換体の製造方法は、omh1遺伝子が欠失または失活したS.ポンベを宿主とし、異種蛋白質をコードする遺伝子を前記宿主に組み込むことを特徴とする。
 また、本発明の形質転換体の製造方法は、前記異種蛋白質をコードする遺伝子の5’末端側にシゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)内で機能する分泌シグナルをコードする遺伝子を有することが好ましい。
 さらに、本発明の形質転換体の製造方法は、前記異種蛋白質に対応する野生型蛋白質がO-グリコシド型糖鎖を有している異種蛋白質であることが好ましい。
 本発明のO-グリコシド型糖鎖含有異種蛋白質の製造方法は、前記形質転換体を培養し、産生されたO-Man-Galなるジサッカライド構造を有するO-グリコシド型糖鎖を有する異種蛋白質を取得することを特徴とするO-グリコシド型糖鎖を有する異種蛋白質を製造する方法である。
 また、本発明のO-グリコシド型糖鎖含有異種蛋白質の製造方法では、産生されるO-グリコシド型糖鎖を有する異種蛋白質の糖鎖が、当該異種蛋白質に対応する野生型異種蛋白質の糖鎖の有無や糖鎖構造にかかわりなく、O-Man-Galなるジサッカライド構造を有することが好ましい。
 さらに、本発明のO-グリコシド型糖鎖含有異種蛋白質の製造方法では、形質転換体を培養した培養液からO-グリコシド型糖鎖を有する異種蛋白質を取得することが好ましい。
 本発明のS.ポンベの宿主は、O-Man-Galなるジサッカライド構造のO-グリコシド型糖鎖を有する異種蛋白質を産生させるための宿主として有用である。
 本発明のS.ポンベを宿主とした形質転換体によれば、糖鎖構造をO-Man-Galなるジサッカライド構造に制御したO-グリコシド型糖鎖を有する異種蛋白質を得ることができる。
 また、本発明の形質転換体の製造方法によれば、糖鎖構造をO-Man-Galなるジサッカライド構造に制御したO-グリコシド型糖鎖を有する異種蛋白質が得られる形質転換体を製造することができる。
 また、本発明によれば、前記形質転換体を用いて、糖鎖構造をO-Man-Galなるジサッカライド構造に制御したO-グリコシド型糖鎖含有異種蛋白質を製造することができる。
KTRファミリーおよびomh遺伝子がコードする蛋白質のアミノ酸配列を示した図である。 例2において細胞形態を観察した結果を示す図である。 例3における培養後の結果を示した図である。 例4における酸性ホスファターゼの分析結果を示した非変性PAGEの写真である。(レーン1)野生型S.ポンベ、(レーン2)omh1変異株、(レーン3)omh2変異株、(レーン4)omh3変異株、(レーン5)omh4変異株、(レーン6)omh5変異株、(レーン7)omh6変異株。 例5~12におけるキチナーゼを分析した結果を示すSDS-PAGEの写真である。(レーン1)S.セレビシエ、(レーン2)野生型S.ポンベ、(レーン3)omh1変異株、(レーン4)omh2変異株、(レーン5)omh3変異株、(レーン6)omh4変異株、(レーン7)omh5変異株、(レーン8)omh6変異株。 例13~19において糖鎖構造を順相HPLCにより分析した結果を示した図である。(a)野生型S.ポンベ、(b)omh1変異株、(c)omh2変異株、(d)omh3変異株、(e)omh4変異株、(f)omh5変異株、(g)omh6変異株。 例20における糖鎖構造の順相HPLC分析結果を示した図である。(a)pREP41-GFP、(b)pREP41-omh1-GFP。 例20における細胞の観察結果を示した図である。(a)ノマルスキー光学系搭載観察装置、(b)蛍光顕微鏡(GFP観察)、(c)蛍光顕微鏡(RFP観察)。 例21および22におけるキチナーゼを分析した結果を示すSDS-PAGEの写真である。(レーン1)S.ポンベ野生株、(レーン2)omh1変異株。 例23および24における糖鎖構造の順相HPLC分析結果を示した図である。(a)S.ポンベ野生株、(b)omh1変異株。 例25における分取精製したジサッカライドの糖鎖構造の逆相HPLC分析結果である。(a)および(e)標準糖鎖、(b)~(d)S.ポンベ野生株、(f)~(h)omh1変異株。
 本発明の宿主は、omh1遺伝子が欠失または失活したS.ポンベからなる宿主であり、本発明の形質転換体を製造するための宿主として有用である。異種蛋白質をコードする遺伝子(以下、「異種蛋白質遺伝子」ともいう。)をこの宿主に導入して、本発明の形質転換体が製造される。本発明の形質転換体は、O-Man-Galなるジサッカライド構造のO-グリコシド型糖鎖を有する異種蛋白質を産生し、本発明の蛋白質の製造方法では、産生されたこのO-グリコシド型糖鎖を有する異種蛋白質を取得する。
 本発明において「異種蛋白質」とは、宿主であるS.ポンベが本来産生しない(野生型のS.ポンベが、その蛋白質をコードする遺伝子を有しない)蛋白質を意味する。異種蛋白質は、産業的価値に優れる点から、ヒトや他の哺乳動物が産生する蛋白質であることが好ましい。「異種蛋白質の対応する野生型蛋白質」とは、異種蛋白質を産生する生物(S.ポンベ以外の生物)の細胞が産生する蛋白質をいう。本発明の形質転換体が産生する異種蛋白質は、この野生型蛋白質と糖鎖が異なっていてもよい。本発明の形質転換体が産生する異種蛋白質は、O-Man-Galなるジサッカライド構造の糖鎖を有するO-グリコシド型糖鎖含有異種蛋白質であり、O-Man-Galなるジサッカライド構造以外のO-グリコシド型糖鎖を実質的に有しない異種蛋白質である。
 異種蛋白質遺伝子としては、O-グリコシド型糖鎖の構造がO-Man-Gal(酸素原子にマンノース、ガラクトースの順に糖が結合した糖鎖構造)に制御されたO-グリコシド型糖鎖含有異種蛋白質が安定して得られやすい点から、野生型の蛋白質がO-グリコシド型糖鎖を有している蛋白質(糖蛋白質)をコードする遺伝子であることが好ましい。このような異種蛋白質としては、例えば、S.ポンベが産生しないキチナーゼ、顆粒球コロニー刺激因子(G-CSF)などが挙げられる。
 また、本発明の形質転換体では、野生型がO-グリコシド型糖鎖を有さない異種蛋白質であっても、N末端に分泌シグナルを融合させることにより、発現した異種蛋白質を小胞体やゴルジ体へ輸送することができるため、アミノ酸配列や、その蛋白質の二次構造や三時構造によっては、O-グリコシド型糖鎖を有する異種蛋白質を得ることができる。野生型においてN末端に分泌シグナルを有さない蛋白質の場合は、適当な分泌シグナルをコードするDNA配列を備えたキメラ配列としてもよい。
(宿主)
 宿主として用いるS.ポンベは、シゾサッカロミセス属に属する酵母であり、他の酵母に比べて特に耐酸性に優れており、細胞周期や染色体の構造、RNAスプライシング等が動物細胞のものにより類似し、産生される蛋白質の翻訳後修飾も動物細胞のそれに近いと考えられる微生物である。本発明の宿主であるS.ポンベは、omh1遺伝子を欠失または失活させた染色体を有する変異型である。この変異型のS.ポンベは、上記特徴を維持しており、また、この宿主に異種蛋白質遺伝子を導入して得られる形質転換体も上記特徴を維持している。
 omh1遺伝子(SPBC19C7.12c、アクセッション番号:O60160)は、S.ポンベ内でO-グリコシド型糖鎖を合成する酵素(蛋白質)である後述のomh1pをコードする遺伝子の一つであり、特にその合成において主要な役割を果たす酵素の遺伝子である。なお、本明細書において、アクセッション番号とは、蛋白質データベースUniprot(URL:http://www.Uniprot.org/)の登録番号を表わす。
 O-グリコシド型糖鎖の合成は、シゾサッカロミセス・セレビシエ(S.セレビシエ)の場合と同様、PMT遺伝子ファミリーから発現されるO-マンノシルトランスフェラーゼにより開始される。この遺伝子は酵母から多細胞生物まで高度に保存されており、S.ポンベにおいてもPMT遺伝子ファミリーがコードするO-マンノシルトランスフェラーゼにより、蛋白質中のセリン残基やトレオニン残基にマンノースが付加される。
 蛋白質に1つ目のマンノースが付加された後、S.セレビシエでは、前述のようにKTR遺伝子ファミリーおよびMNN1遺伝子ファミリーによりコードされているα1,2-マンノシルトランスフェラーゼとα1,3-マンノシルトランスフェラーゼが糖鎖の伸長に関わる。これに対し、S.ポンベにおけるO-グリコシド型糖鎖の伸長に関与する酵素の遺伝子は、これまで特定されていなかった。
 そこで本発明者等は、S.ポンベの染色体において、S.セレビシエのO-グリコシド型糖鎖の伸長反応に関与するKTR遺伝子(α1,2-マンノシルトランスフェラーゼをコードする遺伝子)ファミリーと相同性の高い遺伝子(omh遺伝子、O-glycoside α1,2-mannosyltransferase homologues)を調べた。その結果、S.ポンベ内でO-グリコシド型糖鎖の伸長に関与する酵素の6つの遺伝子、SPBC19C7.12c(omh1遺伝子)、SPBC16H5.09c(omh2遺伝子、アクセッション番号:O42944)、SPCC777.07(omh3遺伝子、アクセッション番号:O74546)、SPBC1773.08c(omh4遺伝子、アクセッション番号:O94565)、SPBC32H8.08c(omh5遺伝子、アクセッション番号:Q96WW1)、およびSPAC959.04c(omh6遺伝子、アクセッション番号:Q9P4X2)を見つけた。また、前記MNN1遺伝子と相同性の高い遺伝子は、S.ポンベにおいては見つからなかった。
 図1に、S.セレビシエのKTR遺伝子ファミリーのKre2遺伝子、Ktr1遺伝子、Ktr3遺伝子と、omh1遺伝子~omh6遺伝子によりコードされるそれぞれの蛋白質のアミノ酸配列の比較を示す。
 S.セレビシエのKTR遺伝子ファミリーのKre2遺伝子、Ktr1遺伝子、Ktr3遺伝子のサブファミリーに対する、omh1遺伝子~omh5遺伝子の塩基配列の相同性は33~55%である。一方、omh6遺伝子は、omh1遺伝子~omh5遺伝子に比べると相同性が低い。
 Kre2遺伝子がコードするα1,2-マンノシルトランスフェラーゼ(以下、「Kre2p」という。)は、公知の様々なグリコシルトランスフェラーゼが有するDXDモチーフに相当するEPD(Glu247-Pro248-Asp249)部位を有している(図1)。omh1遺伝子~omh6遺伝子がコードするα1,2-マンノシルトランスフェラーゼ(以下、それぞれ「omh1p」~「omh6p」という。)もこれに相当する部位を有しており、249位のアスパラギン酸残基はセリン残基、グリシン残基、グルタミン酸残基に変化しているものもあるが、247位のグルタミン酸は高度に保存されている。このことから、omh1p~omh6pは、Kre2pと同じ機構で糖鎖の伸長に関与していると考えられる。すなわち、Kre2pは247位のグルタミン酸が2価のカチオンの配位により供与体の糖ヌクレオチド(GDP-マンノース)のリン酸基と相互作用し、220位のチロシン残基(図1の○印)が前記供与体の糖ヌクレオチドと、受容体の末端のマンノースとの間の糖転移に重要な役割を果たしている。omh1p~omh6pについても、Kre2pと同様に、チロシン残基の寄与による糖転移が行われると考えられる。
 また、Kre2pとomh1p~omh6pとの間では、7つのシステイン残基(図1の●印)の位置も保存されている。その他にも、多くの部位でアミノ酸配列が高度に保存されている(図1の反転部分)。このとから、omh1p~omh6pは、Kre2pと同様の三次元構造を有していると考えられる。
 また、Kre2pにおいて前記供与体および受容体に結合して活性部位となるアミノ酸配列(YNLCHFWSNFEI、図1下線部)も、omh1p~omh6pにおいて高度に保存されていることからも、omh1p~omh6pはKre2pと同様の機構で糖鎖伸長を行うと考えられる。
 これらのomh遺伝子の中でもomh1遺伝子は、O-グリコシド型糖鎖の伸長反応において重要な役割を担っている酵素をコードしている遺伝子である。本発明の形質転換体では、omh1遺伝子を欠失または失活させることで、omh1pが発現せず、形質転換体が産生する異種蛋白質に結合するO-グリコシド型糖鎖の構造がO-Man-Galに制御される。
 これは、omh1遺伝子がコードするomh1p(α1,2-マンノシルトランスフェラーゼ)が、蛋白質に結合した1つ目のマンノースに対し、2つめのマンノースを結合させる反応に寄与しているためであると考えられる。すなわち、omh1遺伝子を欠失または失活させることにより、1つ目のマンノースに2つ目のマンノースを結合させることができなくなるため、ガラクトシルトランスフェラーゼにより1つ目のマンノースにガラクトースが結合すると考えられる。
 omh1遺伝子~omh6遺伝子は、いずれもS.ポンベの生育に必須な遺伝子ではなく、またomh1遺伝子を失活または欠失させても細胞の表現型は特に変化しない。そのため、本発明の形質転換体は、omh1遺伝子を失活または欠失させているが、O-グリコシド型糖鎖含有異種蛋白質を安定して製造することができる。
 また、S.ポンベでは、omh1遺伝子を欠失または失活させた場合に、omh1遺伝子の機能は、omh2遺伝子~omh6遺伝子の過剰発現によっては補われない。また、omh2遺伝子~omh5遺伝子のいずれか1つを破壊しても、野生型と同じO-グリコシド型糖鎖含有蛋白質が産生されることから、これらの遺伝子がコードする酵素は、いずれも3つ目のマンノースの付加に関わっているか、もしくは糖鎖の合成に余剰の機能を有していると考えられる。
 omh1遺伝子を欠失または失活させる方法としては、公知の方法を用いることができる。具体的には、Latour法(Nucreic Acids Res(2006)34:e11、および国際公開第2007/063919号パンフレット等に記載)を用いることにより遺伝子を欠失させることができる。また、変異剤を用いた突然変異分離法(酵母分子遺伝学実験法、1996年、学会出版センター)や、PCR(ポリメラーゼ連鎖反応)を利用したランダム変異法(ピーシーアール・メソッズ・アプリケーション(PCR Methods Appl.)、1992年、第2巻、p.28-33.)等により遺伝子の一部に変異を導入することにより該遺伝子を失活させることができる。
(形質転換体)
 本発明の形質転換体は、上記本発明のomh1遺伝子を欠失または失活した宿主に異種蛋白質遺伝子を導入することにより得られる。異種蛋白質遺伝子は、目的異種蛋白質をコードする部分以外に分泌シグナルをコードする部分を有していてもよい。この分泌シグナルをコードする部分は、異種蛋白質を産生する生物(S.ポンベ以外)の細胞において機能する分泌シグナルをコードする部分であり、その細胞内でN末端に分泌シグナルを有する蛋白質が発現した後、細胞内で分泌シグナル部分が削除され、その後、細胞から分泌シグナルを有していない異種蛋白質が分泌される。異種蛋白質遺伝子が分泌シグナルをコードする部分を有している場合は、その分泌シグナルは、上記本発明の宿主においても機能する必要がある。その分泌シグナルが上記本発明の宿主において機能しない場合は、その機能しない分泌シグナルの代わりに、上記宿主において機能する分泌シグナルを使用することが好ましい。
 上記本発明の宿主において機能する分泌シグナルとしては、S.ポンベが有する分泌シグナルが好ましい。このS.ポンベが有する分泌シグナルをコードする遺伝子を異種蛋白質遺伝子の5’末端側に結合させることにより、異種蛋白質のN末端側にこの分泌シグナルが結合した蛋白質が発現し、次いで上記本発明の宿主内で、この分泌シグナルが削除される。S.ポンベ内で機能する分泌シグナル遺伝子としては、国際公開第96/23890号パンフレット記載の分泌シグナル遺伝子が好ましい。特に、この文献記載の分泌シグナルP3をコードする遺伝子を使用することが好ましい。
 宿主を形質転換するためには、異種蛋白質遺伝子を有する発現ベクターが使用される。異種蛋白質遺伝子が宿主内で機能する分泌シグナルの遺伝子を含まない場合は、宿主内で機能する分泌シグナルの遺伝子を含むことが好ましい。なお、異種蛋白質遺伝子が宿主内で機能しない分泌シグナルの遺伝子を含む場合は、その分泌シグナルの遺伝子を除去した異種蛋白質遺伝子を使用し、代わりに宿主内で機能する分泌シグナルの遺伝子を使用することが好ましい。ベクターには、さらに通常宿主内で機能するプロモーターを含み、さらにターミネーター、5’-非翻訳領域、3’-非翻訳領域のいずれか1つ以上が含まれていてもよい。プロモーターは、宿主であるS.ポンベ内で機能して異種蛋白質を発現できるものであればよい。
 本発明におけるプロモーターとしては、例えば、特開平5-15380号公報、特開平7-163373号公報、および特開平10-234375号公報に記載されている動物細胞ウイルス由来のプロモーターが挙げられ、CMVプロモーター、SV40プロモーターが好ましい。そのほか、特開平11-192094号公報、国際公開第2007/26617号パンフレットなどに記載のS.ポンベ内で機能しうるプロモーターとして知られている種々のプロモーターを使用できる。
 異種蛋白質遺伝子を有する発現ベクターを使用してS.ポンベを形質転換する方法は、上記公知例をはじめ種々知られており、その公知の方法を使用できる。上記以外の具体例としては、例えば、特開2000-262284号公報、特開2003-310269号公報、特開2005-198612号公報などに記載のベクターやそれを用いた形質転換方法を採用できる。異種蛋白質遺伝子は、発現ベクターの形で宿主の染色体外に導入して形質転換体を得ることができるばかりでなく、発現カセットの形で宿主の染色体に導入することができる。発現カセットは、異種蛋白質遺伝子とともに上記プロモーターや分泌シグナルなどを有し、通常、相同組換え法を使用して宿主の染色体に組み込む。発現カセットを使用して染色体に異種蛋白質遺伝子を組み込む方法でS.ポンベを形質転換する方法としては、上記特開2000-262284号公報に記載の方法を用いることが好ましい。発現カセットが染色体に組み込まれていれば、形質転換体の培養中に発現カセットが細胞から脱落してO-グリコシド型糖鎖含有異種蛋白質の産生能が失われることを抑制しやすい。また、発現カセットをS.ポンベの染色体に組み込む場合には、O-グリコシド型糖鎖含有異種蛋白質の生産性が向上する点から、組み込まれる発現カセットは2個以上であることが好ましい。
 以上説明したようなベクターをS.ポンベの細胞に導入して形質転換する。形質転換した形質転換体は、前記抗生物質耐性遺伝子や栄養要求性マーカーを用いて選択することができる。
 抗生物質耐性遺伝子を有するベクターを用いた場合には、その抗生物質を含有する培地を用いることにより形質転換体を選択することができる。抗生物質耐性遺伝子としては、例えば、ネオマイシン耐性遺伝子が挙げられる。また、栄養要求性マーカーとしては、例えば、オロチジンリン酸デカルボキシラーゼ遺伝子(ura4遺伝子)や、イソプロピルリンゴ酸デヒドロゲナーゼ遺伝子(leu1遺伝子)が挙げられる。
 栄養要求性マーカーを用いる場合は、例えば、ura4遺伝子を欠失または失活させてウラシル要求性としたS.ポンベを宿主とし、ura4遺伝子を有する前記ベクターにより形質転換した後、ウラシル要求性が消失したものを選択することにより、ベクターが組み込まれた形質転換体を得ることができる。
 選択する方法としては、例えば、以下に示す方法が挙げられる。前記栄養要求性マーカーにより形質転換体を選択できる培地によりスクリーニングし、得られたコロニーから複数を選択する。次に、それらを別々に液体培養した後、それぞれの培養液における異種蛋白質の発現量を調べ、異種蛋白質の発現量がより多い形質転換体を選択する。また、それら選択した形質転換体に対してパルスフィールドゲル電気泳動法によるゲノム解析を行うことにより、染色体に組み込まれた発現カセットの数を調べることができる。
[O-グリコシド型糖鎖含有異種蛋白質の製造方法]
 本発明のO-グリコシド型糖鎖含有異種蛋白質の製造方法は、本発明の形質転換体を培養し、該形質転換体により産生されるO-グリコシド型糖鎖を有する異種蛋白質を取得する方法である。
 培養液には、公知の酵母培養培地を用いることができ、S.ポンベが資化しうる炭素源、窒素源、無機塩類等を含有し、S.ポンベの培養を効率良く行えるものであればよい。
培養液としては、天然培地を用いてもよく、合成培地を用いてもよい。
 炭素源としては、例えば、グルコース、フルクトース、スクロース等の糖、デンプン等の炭水化物が挙げられる。中でも、グルコースまたはスクロースが好ましい。
 窒素源としては、例えば、アンモニア、硫酸アンモニウム、塩化アンモニウム、酢酸アンモニウム等の無機酸のアンモニウム塩、ペプトン、肉エキス、酵母エキスが挙げられる。中でも、硫酸アンモニウムまたは酵母エキスが好ましい。
 無機塩類としては、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウムが挙げられる。中でも、リン酸マグネシウムが好ましい。
 また、培養液にはプロテオリピドが含まれていてもよい。
 培養は、振とう培養、攪拌培養等により行うことができる。
 また、培養温度は、16~37℃であることが好ましく、25~32℃がより好ましい。また、培養時間は適宜決定することができる。
 また、培養は、回分培養であってもよく、連続培養であってもよい。
 連続培養は、例えば、一定時間培養した培養液からO-グリコシド型糖鎖含有異種蛋白質を取得するとともに培養上清を回収し、該培養上清に再び培養液を加えて培養することを繰り返して連続的に培養する方法が挙げられる。連続培養を行うことにより、O-グリコシド型糖鎖含有異種蛋白質の生産性がより向上する。
 培養液からのO-グリコシド型糖鎖含有異種蛋白質の取得は、公知の蛋白質精製方法を用いることができる。
 以上説明したように、本発明によれば、omh1遺伝子が欠失または失活した染色体を有するS.ポンベを宿主とした形質転換体を用いることで、O-グリコシド型糖鎖がO-Man-Galに制御されたO-グリコシド型糖鎖含有異種蛋白質を得ることができる。
 以下、実施例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。また、本実施例における形質転換は、酢酸リチウム法もしくはエレクトロポレーション法(Electroporation)により行った。
[例1]クローニングおよびomh遺伝子の破壊
 選択マーカーとしてura4を用い、omh1遺伝子~omh6遺伝子の破壊を行った。
 表1に示すセンスプライマーおよびアンチセンスプライマーを用い、野生型S.ポンベのゲノムDNAから、omh1遺伝子、omh2遺伝子、omh3遺伝子の一部または全部をそれぞれ含む3つのDNA断片(1.3kb、1.6kb、1.25kb)を増幅し、サブクローニングを行った。ベクターには、pGEM-T EasyベクターおよびpGEM-Tベクター(Promega)を用いた。
 サブクローニング後、KpnIおよびEcoRIによる制限酵素処理によりベクターのomh1遺伝子内で切断を起こし、その位置にura4カセット(1.6kb)を挿入することにより、omh1遺伝子を破壊したベクターを得た。同様に、制限酵素EcoRVおよびHindIIIを用いてomh2遺伝子を破壊したベクター、制限酵素EcoRIおよびXhoIを用いてomh3遺伝子を破壊したベクターを得た。
 次に、破壊されたomh1遺伝子をそれぞれ有するベクターを直線状にしたDNA断片を用い、ウラシル合成能が欠損したS.ポンベのARC039株(一倍体)を形質転換し、ウラシル選択培地により選択することで、破壊されたomh1遺伝子を有するomh1変異株を得た。破壊されたomh2遺伝子を有するomh2変異株、および破壊されたomh3遺伝子を有するomh3変異株も同様の方法で構築した。所望のomh1変異株、omh2変異株、omh3変異株が得られていることの確認は、サザンブロット法およびPCRにより行った。
 omh4遺伝子~omh6遺伝子の破壊には、loxPカセットベクター(pBS loxP-ura4-loxP、Biosci Biotechnol Biochem, 68,545-550(2004)に記載)を用いた。
 omh4遺伝子の上流側の断片を、XhoIとHindIIIの制限酵素サイトをそれぞれ有するセンスプライマーおよびアンチセンスプライマー(表1)によりPCRで増幅し、下流側の断片を、EcoRIとBamHIの制限酵素サイトをそれぞれ有するセンスプライマーおよびアンチセンスプライマー(表1)によりPCRで増幅した。これらの増幅断片を、それぞれ適した制限酵素により処理した後、pBS loxP-ura4-loxPベクターに挿入し、loxP-ura4-loxPカセットの両側にomh4遺伝子の上流側の断片と下流側の断片がそれぞれ位置するomh4遺伝子破壊用のベクターを得た。また、表1に示すセンスプライマーおよびアンチセンスプライマーを用い、同様の方法で、omh5遺伝子破壊用のベクターおよびomh6遺伝子破壊用のベクターを得た。
 これらのベクターを直線状にしたDNA断片を用い、ウラシル合成能が欠損したS.ポンベのARC039株(一倍体)を形質転換し、ウラシル選択培地により選択することで、それぞれomh4変異株、omh5変異株、omh6変異株を得た。
Figure JPOXMLDOC01-appb-T000001
[例2]細胞形態の観察
 例1で得られたomh1変異株~omh6変異株を、YES培地(5ml)にて、30℃および37℃でそれぞれ一晩培養した後、ノマルスキー光学系を搭載した観察装置により、それらの細胞形態を観察した。
 また、比較対象として、野生型S.ポンベについても各変異株と同様の培養を行い、細胞形態を観察した。結果を図2(a)~(g)に示す。図2において、(a)が野生型S.ポンベ、(b)がomh1変異株、(c)がomh2変異株、(d)がomh3変異株、(e)がomh4変異株、(f)がomh5変異株、(g)がomh6変異株における観察結果である。
 図2に示すように、omh1変異株~omh6変異株の全ての変異株が生育可能であり、omh1遺伝子~omh6遺伝子は、いずれも生育に必須の遺伝子ではないことがわかった。また、omh1変異株~omh5変異株については、omh1遺伝子~omh5遺伝子のうちいずれか一つが破壊されていても、細胞の表現型が野生型S.ポンベと同じであった。omh1変異株の表現型が野生型S.ポンベと同じであることは、omh1遺伝子がコードするomh1pが、野生型S.ポンベの通常の細胞壁の構成や機能に必須の糖鎖構造の形成には関わっていないことを示している。
 一方、omh6変異株では、野生型とは異なる表現型を示した。
[例3]温度依存性および抗生物質耐性(ハイグロマイシンB)
 例2の培養後の各々の培養液を、水によりOD600が0.5(細胞数10個/mlに相当)となるように希釈した。さらに10倍希釈(図3中の10-1、一番左側の列)した後、そのうち7μlをYES培地(寒天培地)にストリークし、30℃(図3(a))、および37℃(図3(c))の条件で3日間培養した。また、同様に、20μg/mlハイグロマイシンB(0.005質量%)を含有するYES培地(5ml)でも30℃でそれぞれ一晩培養した(図3(b))。また、早期に急激な増殖が見られる場合は、更に10倍ずつ希釈していき、同様の条件で培養を行った。図3(a)~(c)には、各条件において、左側から順にOD600が0.5のものを10倍ずつ希釈(10-1、10-2、10-3、10-4)したものの培養結果を示す。
 図3に示すように、omh1変異株、omh2変異株、omh4変異株、およびomh5変異株は、温度やハイグロマイシンBの影響が小さく、野生型S.ポンベと大きく変らない速度で生育することがわかった。
 一方、omh3変異株とomh6変異株では、37℃での培養、およびハイグロマイシンBを含有する培地における培養において生育速度が低下した。
[例4]酸性ホスファターゼの分析
 omh1変異株~omh6変異株における酸性ホスファターゼへの影響を分析することにより、omh1p~omh6pのN-グリコシド型糖鎖の伸長への影響を調べた。
 ARC039株およびomh1変異株~omh6変異株を、それぞれYES培地(5ml)にて30℃でOD600が1.5となるまで培養した後、遠心分離により1.5×10個の細胞を得て、さらに該細胞をMMP培地(Methods Enzymol,194,795-823(1991)に記載のMM培地を基礎とし、リン酸水素二ナトリウムおよびフタル酸水素カリウムの代わりに14.6mM酢酸ナトリウムを含有する培地。
)の5mlに再懸濁し、30℃で3時間温置することにより酸性ホスファターゼの産生を誘導した。
 次いで、得られた細胞を遠心分離して回収し、Tris-HCl緩衝液(62.5mM、pH6.8)にて洗浄した後、氷冷した200μlの溶菌液(62.5mM Tris-HCl、pH6.8、1mM EDTA、2mMフッ化フェニルメチルスルホニル、0.1mMジチオスレイトール、10%(v/v)グリセロール)に懸濁して懸濁液を得た。
 その後、ミニビーズビーター8(Mini Bead Beater-8、バイオスペック・プロダクツ社製)を用いて、直径0.5mmのガラスビーズによる前記懸濁液の攪拌(4℃、30秒間)を5度行い、細胞溶解物を得た。細胞溶解物を6%(w/v)ポリアクリルアミドゲル(非変性)にて電気泳動し、活性染色(Yeast,18,903-904(2001)に記載の方法)を行った。結果を図4に示す。レーン1は野生型S.ポンベ、レーン2はomh1変異株、レーン3はomh2変異株、レーン4はomh3変異株、レーン5はomh4変異株、レーン6はomh5変異株、レーン7はomh6変異株における電気泳動の結果である。
 図4に示すように、電気泳動における酸性ホスファターゼの移動度は、omh1変異株~omh6変異株と野生型S.ポンベとでは変化がなく、同等であった。この結果から、omh1p~omh6pは、N-グリコシド型糖鎖の伸長には関与していないことがわかった。
<異種発現した出芽酵母キチナーゼ(分泌蛋白質)の糖鎖構造解析(1)>
[例5]
 S.セレビシエのキチナーゼ(Cts1)遺伝子[5’末端側にS.セレビシエの分泌シグナル遺伝子を含有]とS.ポンベのnmt1プロモーターとを有するベクターpREP41-ScCTS1(文献:N. Tanaka et al., Biochem Biophys Res Commun (2005) 330:813-820.参照)を使用してomh1変異株を形質転換(文献:T. Morita and K. Takegawa, Yeast (2004) 21:613-617.、および特開2005-198612号公報参照)した。次いで、ロイシンを含有していないMM培地(5ml)を用いて定常期まで培養し、キチナーゼの発現培地(MM培地を基礎とし、2%(w/v)グルコースの代わりに0.1%(w/vv)グルコースおよび2%(w/v)フルクトースを含有する。)の10mlに移して30℃で3時間温置した。その後、培地の上澄みからキチナーゼを回収し、6%(w/v)ポリアクリルアミドゲルを用いたSDS(Sodium dodecyl sulfate)-PAGE(Poly-Acrylamide Gel Electrophoresis)にてO-グリコシド型糖鎖の伸長を分析した。
培地からのキチナーゼの回収は、以下に示すように行った。培地にキチンビーズ(20mg、シグマ)を加えた後、4℃で12時間撹拌し、遠心してペレットとした。該ペレットをナトリウム緩衝液(50mMTris-HCl、pH7.5、150mMNaCl)で3回洗浄し、SDSサンプル緩衝液(50μl)で5分間ボイル(boil)することによりキチナーゼを抽出した。ゲルの染色は、Coomassie Brilliant Blue R-250により行った。
[例6~12]
 野生型S.ポンベ(例6)、omh2変異株~omh6(例7~11)変異株について、例5と同様の方法でキチナーゼの分析を行った。また、S.セレビシエ(例12)をYPD培地(10ml)にて30℃で培養し、例5と同様にして6%(w/v)ポリアクリルアミドゲルを用いたSDS-PAGEにてキチナーゼを分離した。結果を図5に示す。レーン1はS.セレビシエ、レーン2は野生型S.ポンベ、レーン3はomh1変異株、レーン4はomh2変異株、レーン5はomh3変異株、レーン6はomh4変異株、レーン7はomh5変異株、レーン8はomh6変異株における電気泳動の結果である。キチナーゼの分子量は、83kDaと175kDaのマーカーを用いて決定した。
 図5に示すように、野生型S.ポンベ(例6、レーン2)およびS.セレビシエ(例12、レーン1)におけるキチナーゼは、ほぼ同等の移動度(分子量約130kDaに相当)であった。また、omh2変異株~omh6変異株(例7~例11、レーン4~8)におけるキチナーゼについても移動度は影響を受けず、S.セレビシエのキチナーゼとほぼ同等であった。これに対し、omh1変異株(例5、レーン3)においては、キチナーゼの分子量が約100kDaとなり、O-グリコシド型糖鎖の伸長が著しく損なわれていた。この結果から、omh1遺伝子が、O-グリコシド型糖鎖の伸長に深く関わっていることが確認された。
 次に、O-グリコシド型糖鎖の構造に関する更なる情報を得るため、野生型S.ポンベおよびomh1変異株~omh6変異株で得られた糖蛋白質(O-グリコシド型糖鎖含有異種蛋白質)の糖鎖をヒドラジン分解し、ピリジルアミノ(PA)化してHPLC(High performance liquid chromatography)により分析を行った。
[例13]
 YES培地によりomh1変異株を30℃で定常期まで培養し、そこから細胞表面のガラクトマンナンを抽出し、凍結乾燥状態のガラクトマンナンを得た(Methods Enzymol,185,440-470(1990)に記載の方法)。次に、凍結乾燥状態のガラクトマンナン2mgを無水ヒドラジン0.2mlとともに60℃で6時間加熱し、ヒドラジンを蒸発させ、カチオン交換樹脂(Dowex50W-x2(H))に通してナトリウムイオンを除去した。次に、得られたサンプルをピリジルアミノ化剤(20μl)とともに90℃で60分加熱し、還元剤(20μl)を加えて80℃で35分加熱することにより、糖鎖の還元末端に2-アミノピリジンを付加した。余分なピリジルアミノ化剤および還元剤は、フェノール/クロロホルム(体積比は50/50)抽出により除去した。
 次に、得られたサンプルについて順相HPLC分析(カラム:Asahipak NH2P-50 column(4.6mm×50mm)、昭和電工社製)を行った。糖鎖の分子サイズは、PA(ピリジルアミノ)ラベルした標準マーカーであるPA化マンノース、PA化マルトース、PA化イソマルトオリゴ糖(タカラバイオ社製)により決定した。
[例14~19]
 野生型S.ポンベ(例14)およびomh2変異株~omh6変異株(例15~19)についても例13と同様にして糖鎖の順相HPLC分析を行った。また、例14では、検出された5つの主要なピークを回収し、ジャック豆αマンノシダーゼやコーヒー豆αガラクトシダーゼによる処理後、それらのピークがどのように変化するかを調べ、それら5つのピークにそれぞれ相当する糖鎖構造を確認した。
 例13~19の順相HPLC分析の結果を図6に示す。図6において、(a)は野生型S.ポンベ、(b)はomh1変異株、(c)はomh2変異株、(d)はomh3変異株、(e)はomh4変異株、(f)はomh5変異株、(g)はomh6変異株における順相HPLC分析の結果である。
 図6(a)に示すように、野生型S.ポンベでは、5つの主要なピーク(2G、2M、3G、3M、4i)が確認された。ピーク2GはGal-Man-PA、ピーク2MはMan-Man-PA、ピーク3GはGal-Man-Man-PA、ピーク3MはMan-Man-Man-PAであった。また、ピーク4iは4つの糖を有する糖鎖の混合物であった。
 omh2変異株~omh6変異株(図6(c)~(g))における糖鎖は、野生型S.ポンベのもの(図6(a))とほぼ同等であり、変化がなかった。
 これに対し、omh1変異株では3つ以上の糖を有する糖鎖の量が極端に少なくなっており、そのほとんどがピーク2Gとなっていた(図6(b))。また、omh1変異株で得られたピーク2Gをジャック豆αマンノシダーゼおよびコーヒー豆αガラクトシダーゼにより処理したところ、αマンノシダーゼによる処理では分解されず、αガラクトシダーゼにより分解されて、全てMan-PA(図6(a)のピークM1に相当)となった。
 これらの結果から、omh1変異株では、1つ目のマンノースにα1,2結合で2つ目のマンノースが結合することが抑制されており、omh1遺伝子がO-グリコシド型糖鎖の伸長に重要な役割を果たしていることが示された。
[例20]
 omh1遺伝子を、野生型S.ポンベのゲノムDNAからPCRにより増幅し、制限酵素BglIIおよびNotIの切断部位を導入して、それら制限酵素により処理した後、ベクターpREP41-GFP(pREP41から得たベクターpTN197、Mol Biol Cell,12,3955-3972(2001)に記載)の相当する部位に挿入してクローニングすることにより、C末端にGFP(緑色蛍光蛋白質)が結合したomh1pを発現する遺伝子を有するベクターpREP41-omh1-GFPを得た。また、Yeast,18,745-757(2001)に記載の方法により、RFP(赤色蛍光蛋白質)が結合したGms1p(Gms1遺伝子によりコードされるUDPガラクトース輸送体)を発現する遺伝子を有するベクターpAU-Gms1-RFPを得た。
 omh1変異株を、pREP41-GFPまたはpREP41-omh1-GFPで形質転換したものを、ロイシンを含有しないMM培地により30℃で定常期まで培養した。これを例13と同様の方法で順相HPLC分析した結果を図7(a)(pREP41-GFP)および(b)(pREP41-omh1-GFP)に示す。
 また、omh1変異株を、pREP41-omh1-GFPまたはpAU-Gms1-RFPで形質転換したものを、ウラシルおよびロイシンを含有しないMM培地により30℃で培養した。その後、回収した細胞(OD600=0.5)を観察した。その結果を図8(a)~(c)に示す。図8(a)はノマルスキー光学系を搭載した観察装置により観察したもの、図8(b)は蛍光顕微鏡によりpREP41-GFPを観察したもの、図8(c)はpAU-Gms1-RFPを観察したものである。
 図7(a)に示すように、pREP41-GFPを含むomh1変異株では、確認されたピークは例13と同様であり、3つ以上の糖を有する糖鎖は、ほとんど合成されていなかった。一方、図7(b)に示すように、pREP41-omh1-GFPを含むomh1変異株では、例14の野生型S.ポンベと同様の5つの主要なピークが確認された。これは、導入したベクターからomh1pが発現することで、1つ目のマンノースに2つ目のマンノースが結合することができるようになったためである。
 また、図8(a)~(c)に示すように、omh1p-GFP(GFPが結合したomh1p)は、Gms1p-RFP(RFPが結合したGms1p)と同じ場所に局在していた。Gms1pは、糖鎖の合成に必要なガラクトースを輸送する蛋白質であり、この結果からも、omh1遺伝子がO-グリコシド型糖鎖の合成に関与していることが確認された。
<異種発現した出芽酵母キチナーゼの糖鎖構造解析(2)>
[例21]
 S.セレビジエのキチナーゼ(Cts1)遺伝子とS.ポンベのインベルターゼプロモーターとシグナルペプチドをコードするDNA配列とを有するベクターpFM1-1-ScCts1を使用して、S.ポンベの野生株を形質転換し、ロイシンを含有していないMM培地(ただし、2%(w/v)グルコースの代わりに8%(w/v)グルコースを含有する。)100mlで定常期まで培養し、キチナーゼの発現培地(MM培地を基礎とし、2%(w/v)グルコースの代わりに0.05%(w/v)グルコースおよび3%(v/v)グリセロールを含有する。)の100mlに移して、30℃で12時間震盪培養を行った。その後、培地の上澄みからキチナーゼを回収し、6%(w/v)ポリアクリルアミドゲルを用いたSDS-PAGEにてキチナーゼの精製度を確認した。培地からのキチナーゼの回収は、以下のようにして行った。培地にキチン(400mg、和光純薬社製)を加えた後、4℃で12時間撹拌し、遠心してペレットとした。ペレットをナトリウム緩衝液(50mMTris-HCl、pH7.5、150mMNaCl)で3回洗浄し、SDSサンプル緩衝液(63mMトリス塩酸(pH6.8)、10%(v/v)グリセロール、2%(w/v)SDS、0.002%(w/v)BPB、1ml)で5分間ボイルすることによりキチナーゼを抽出した。ゲルの染色はCoomassie Brilliant Blue R-250により行った。
[例22]
 omh1変異株について、例21と同様の方法でキチナーゼの解析を行った。
 例21および22の結果を図9に示す。レーン1は野生株S.ポンベ、レーン2はomh1変異株の結果を示す。
 図9に示すように、レーン1およびレーン2において単一バンドが検出されており、S.ポンベ野生株およびomh1変異株から回収したキチナーゼは、ともに単一タンパク質として精製されたことが確認された。また、例6(図5、レーン2)と同様に、omh1変異株では分子量の減少が見られた。
 次に、O-グリコシド型糖鎖の構造に関する更なる情報を得るため、S.ポンベ野生株およびomh1変異株から精製したキチナーゼ(O-グリコシド型糖鎖含有異種蛋白質)の糖鎖をヒドラジン分解により遊離し、還元末端をピリジルアミノ(PA)化してHPLCにより分析を行った。
[例23]
 例21においてキチンから抽出したキチナーゼからSDSを除去するために、MilliQ水(超純水)に対して透析を行った後、凍結乾燥を行った。S.ポンベ野生株から1mgの凍結乾燥粉末を得た。
 次に、凍結乾燥粉末のキチナーゼ0.3mgをヒドラクラブC-206(Jオイルミルズ社製)を用いてヒドラジン分解を行った。次に、得られた遊離糖鎖サンプルをピリジルアミノ化剤(20μl)とともに90℃で60分加熱し、次いで還元剤(20μl)を加えて、80℃で35分加熱することにより、糖鎖の還元末端に2-アミノピリジンを付加した。余分なピリジルアミノ化剤および還元剤はフェノール/クロロホルム(体積比は50/50)抽出により除去した。
 次に、得られたサンプルについて、順相HPLC分析(カラム:Amide-80 column(4.6mm×75mm)、東ソー社製)を行った。糖鎖の分子サイズは、PAラベルした標準マーカーであるPA化マンノース、PA化マルトース、PA化イソマルトオリゴ糖(タカラバイオ社製)により決定した。
[例24]
 例22においてキチンから抽出したキチナーゼからSDSを除去するために、MilliQ水に対して透析を行った後、凍結乾燥を行った。omh1変異株から0.5mgの凍結乾燥粉末を得た。その後、例23と同様にして、順相HPLC分析を行った。
 例23および24の順相HPLC分析の結果を図10に示す。図10において、(a)はS.ポンベ野生株、(b)はomh1変異株の結果を示す。
 図10(a)に示すように、S.ポンベ野生株では、主にジサッカライド(図10の(Hex)-PA)、テトラサッカライド(図10の(Hex)-PA)に相当するピークが確認された。これに対し、図10(b)に示すように、omh1変異株では、ほぼジサッカライドに相当するピークのみが確認された。
[例25]
 S.ポンベ野生株(例23)およびomh1変異株(例24)で確認されたジサッカライドのピークの構造を詳細に分析するために、ジサッカライドのピークを分取精製し、逆相HPLC分析(カラム:ODS-80Ts column(4.6mm×150mm)、東ソー社製)を行った。また、分取精製したジサッカライドに対してα-ガラクトシダーゼ(シグマ社製G8507、コーヒー豆由来)による消化、α-マンノシダーゼ(シグマ社製M7257、ジャック豆由来)による消化を行った後に、同様に逆相HPLC分析を行った。
 逆相HPLC分析の結果を図11に示す。図11の(a)と(e)は標準糖鎖であるMan-PAとMan-Man-PA(Manα1-2Man-PA)の保持時間を示す。また、図11(b)~(d)はS.ポンベ野生株の分析結果、図11(f)~(h)はomh1変異株の分析結果を示しており、図11の(b)および(f)が分取精製後、(c)および(g)がα-ガラクトシダーゼ消化後、(d)および(f)がα-マンノシダーゼ消化後の分析結果である。
 図11(b)、および(f)に示すように、S.ポンベ野生株およびomh1変異株のジサッカライドは、主に単一ピークからなることが確認され、Manα1-2Man-PAの標準糖鎖の保持時間とは異なることが確認された。また、両株のジサッカライドサンプルは、α-マンノシダーゼによる処理では分解されず(図11の(d)と(h))、α-ガラクトシダーゼにより分解されて全てMan-PAとなった(図11の(c)と(g))。
 これらの結果から、S.ポンベ野生株で発現させたキチナーゼのジサッカライドが主にO-Man-Galからなること、omh1変異株で発現させたキチナーゼの全ての糖鎖がO-Man-Galからなることが示され、異種タンパク質発現時にも、その糖鎖構造が細胞表面のガラクトマンナンと同様の糖鎖構造からなることが示された。
 本発明の形質転換体は、結合するO-グリコシド型糖鎖の構造を制御した異種蛋白質を製造することができる。そのため、該形質転換体を用いたO-グリコシド型糖鎖含有異種蛋白質の製造方法は、医療分野等に好適に使用できる。

 なお、2008年10月1日に出願された日本特許出願2008-256354号、及び2009年5月15日に出願された日本特許出願2009-119280号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (10)

  1.  omh1遺伝子が欠失または失活したシゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)からなる宿主であって、遺伝子工学的方法により異種蛋白質をコードする遺伝子を発現させ、さらに発現した異種蛋白質に糖鎖を結合させて、O-Man-Galなるジサッカライド構造のO-グリコシド型糖鎖を有する異種蛋白質を産生させるための、宿主。
  2.  omh1遺伝子が欠失または失活したシゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)を宿主とし、異種蛋白質をコードする遺伝子を含む形質転換体。
  3.  さらに、前記異種蛋白質をコードする遺伝子の5’末端に結合した前記シゾサッカロミセス・ポンベ内で機能する分泌シグナルをコードする遺伝子を含む、請求項2に記載の形質転換体。
  4.  前記異種蛋白質に対応する野生型蛋白質が、O-グリコシド型糖鎖を有している蛋白質である、請求項2または3に記載の形質転換体。
  5.  omh1遺伝子が欠失または失活したシゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)を宿主とし、異種蛋白質をコードする遺伝子を前記宿主に組み込むことを特徴とする形質転換体の製造方法。
  6.  前記異種蛋白質をコードする遺伝子の5’末端側にシゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)内で機能する分泌シグナルをコードする遺伝子を有する、請求項5に記載の形質転換体の製造方法。
  7.  前記異種蛋白質に対応する野生型蛋白質がO-グリコシド型糖鎖を有している異種蛋白質である、請求項5または6に記載の形質転換体の製造方法。
  8.  請求項2~4のいずれかに記載の形質転換体を培養し、産生されたO-Man-Galなるジサッカライド構造を有するO-グリコシド型糖鎖を有する異種蛋白質を取得することを特徴とするO-グリコシド型糖鎖含有異種蛋白質の製造方法。
  9.  産生されるO-グリコシド型糖鎖を有する異種蛋白質の糖鎖が、当該異種蛋白質に対応する野生型異種蛋白質の糖鎖の有無や糖鎖構造にかかわりなく、O-Man-Galなるジサッカライド構造を有する、請求項8に記載のO-グリコシド型糖鎖含有異種蛋白質の製造方法。
  10.  形質転換体を培養した培養液からO-グリコシド型糖鎖を有する異種蛋白質を取得する、請求項8または9に記載のO-グリコシド型糖鎖含有異種蛋白質の製造方法。
PCT/JP2009/067081 2008-10-01 2009-09-30 宿主、形質転換体およびその製造方法、ならびにo-グリコシド型糖鎖含有異種蛋白質の製造方法 WO2010038802A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09817834.6A EP2341139B1 (en) 2008-10-01 2009-09-30 Host, transformant, method for producing the transformant, and method for producing heterogeneous protein containing o-glycoside type sugar chain
JP2010531894A JP5652206B2 (ja) 2008-10-01 2009-09-30 宿主、形質転換体およびその製造方法、ならびにo−グリコシド型糖鎖含有異種蛋白質の製造方法
CN200980139731.1A CN102985541B (zh) 2008-10-01 2009-09-30 宿主、转化体及其制造方法、以及含o-糖苷型糖链的异源蛋白质的制造方法
US13/077,333 US8663948B2 (en) 2008-10-01 2011-03-31 Host, transformant and method for producing the transformant and method for producing O-glycosylated heterologous protein

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-256354 2008-10-01
JP2008256354 2008-10-01
JP2009119280 2009-05-15
JP2009-119280 2009-05-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/077,333 Continuation US8663948B2 (en) 2008-10-01 2011-03-31 Host, transformant and method for producing the transformant and method for producing O-glycosylated heterologous protein

Publications (1)

Publication Number Publication Date
WO2010038802A1 true WO2010038802A1 (ja) 2010-04-08

Family

ID=42073561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067081 WO2010038802A1 (ja) 2008-10-01 2009-09-30 宿主、形質転換体およびその製造方法、ならびにo-グリコシド型糖鎖含有異種蛋白質の製造方法

Country Status (6)

Country Link
US (1) US8663948B2 (ja)
EP (1) EP2341139B1 (ja)
JP (1) JP5652206B2 (ja)
KR (1) KR20110063650A (ja)
CN (1) CN102985541B (ja)
WO (1) WO2010038802A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515380A (ja) 1990-09-14 1993-01-26 Asahi Glass Co Ltd ベクター
JPH07163373A (ja) 1993-10-05 1995-06-27 Asahi Glass Co Ltd マルチクローニングベクター、発現ベクター、および異種蛋白質の生産
WO1996023890A1 (fr) 1995-02-03 1996-08-08 Asahi Glass Company Ltd. Gene de signal de secretion et vecteur d'expression comprenant ce signal
JPH10234375A (ja) 1997-02-28 1998-09-08 Asahi Glass Co Ltd マルチクローニングベクター
JPH11192094A (ja) 1997-10-31 1999-07-21 Asahi Glass Co Ltd シゾサッカロミセス・ポンベで使用可能な誘導プロモータ、誘導発現ベクター、およびそれらの利用
JP2000262284A (ja) 1999-03-18 2000-09-26 Asahi Glass Co Ltd シゾサッカロミセス・ポンベの形質転換方法
JP2003310269A (ja) 2002-04-25 2003-11-05 Asahi Glass Co Ltd マツエバクターキトサナーゼの製造方法
JP2004501642A (ja) 2000-06-28 2004-01-22 グライコフィ, インコーポレイテッド 改変された糖タンパク質を生成するための方法
JP2005514021A (ja) 2001-12-27 2005-05-19 グライコフィ, インコーポレイテッド 哺乳動物型糖質構造を操作するための方法
JP2005198612A (ja) 2004-01-19 2005-07-28 Asahi Glass Co Ltd 酵母の形質転換方法
WO2007026617A1 (ja) 2005-08-29 2007-03-08 Asahi Glass Company, Limited 発現ベクター、それを導入した形質転換体、および異種タンパク質の製造方法
WO2007063919A1 (ja) 2005-11-29 2007-06-07 Asahi Glass Company, Limited 染色体改変方法
JP2008256354A (ja) 1997-08-01 2008-10-23 Eurokera Snc ガラスセラミックプレート及びその製造方法
JP2009119280A (ja) 1999-06-25 2009-06-04 Oratec Interventions Inc 組織を電気外科切除するための電極

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1592786A (zh) * 2000-12-05 2005-03-09 宾夕法尼亚州立研究基金会 在酵母菌中高效生产异源性蛋白质的方法和组合物
ATE420198T1 (de) * 2002-04-26 2009-01-15 Kirin Pharma Kk Methylotrophe hefe,die eine zuckerkette eines säugers herstellt
MX2011001706A (es) * 2008-08-12 2011-03-24 Glycofi Inc Vectores mejorados y cepas de levadura para produccion de proteina: sobreexpresion de ca2+ atpasa.

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515380A (ja) 1990-09-14 1993-01-26 Asahi Glass Co Ltd ベクター
JPH07163373A (ja) 1993-10-05 1995-06-27 Asahi Glass Co Ltd マルチクローニングベクター、発現ベクター、および異種蛋白質の生産
WO1996023890A1 (fr) 1995-02-03 1996-08-08 Asahi Glass Company Ltd. Gene de signal de secretion et vecteur d'expression comprenant ce signal
JPH10234375A (ja) 1997-02-28 1998-09-08 Asahi Glass Co Ltd マルチクローニングベクター
JP2008256354A (ja) 1997-08-01 2008-10-23 Eurokera Snc ガラスセラミックプレート及びその製造方法
JPH11192094A (ja) 1997-10-31 1999-07-21 Asahi Glass Co Ltd シゾサッカロミセス・ポンベで使用可能な誘導プロモータ、誘導発現ベクター、およびそれらの利用
JP2000262284A (ja) 1999-03-18 2000-09-26 Asahi Glass Co Ltd シゾサッカロミセス・ポンベの形質転換方法
JP2009119280A (ja) 1999-06-25 2009-06-04 Oratec Interventions Inc 組織を電気外科切除するための電極
JP2004501642A (ja) 2000-06-28 2004-01-22 グライコフィ, インコーポレイテッド 改変された糖タンパク質を生成するための方法
JP2005514021A (ja) 2001-12-27 2005-05-19 グライコフィ, インコーポレイテッド 哺乳動物型糖質構造を操作するための方法
JP2003310269A (ja) 2002-04-25 2003-11-05 Asahi Glass Co Ltd マツエバクターキトサナーゼの製造方法
JP2005198612A (ja) 2004-01-19 2005-07-28 Asahi Glass Co Ltd 酵母の形質転換方法
WO2007026617A1 (ja) 2005-08-29 2007-03-08 Asahi Glass Company, Limited 発現ベクター、それを導入した形質転換体、および異種タンパク質の製造方法
WO2007063919A1 (ja) 2005-11-29 2007-06-07 Asahi Glass Company, Limited 染色体改変方法

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
"Koubo Bunshi Idengaku Jikken-Hou", 1996, JAPAN SCIENTIFIC SOCIETIES PRESS
BIOSCI BIOTECHNOL BIOCHEM, vol. 68, 2004, pages 545 - 550
DATABASE DDBJ/EMBL/GENBANK [online] 9 May 2008 (2008-05-09), WOOD,V. ET AL., XP008146781, Database accession no. NM_001022088 *
GEMMILL, TR ET AL.: "Schizosaccharomyces pombe produces novel GalO-2Man1-3 O-linked oligosaccharides.", GLYCOBIOLOGY, vol. 9, no. 5, 1999, pages 507 - 515, XP008146782 *
GIRRBACH V, STRAHL S, J BIOL CHEM, vol. 278, 2003, pages 12554 - 12562
IKEDA, Y. ET AL.: "Identification and characterization of a gene required for alphal,2-mannose extension in the O-linked glycan synthesis pathway in Schizosaccharomyces pombe.", FEMS YEAST RES, vol. 9, no. 1, 9 February 2009 (2009-02-09), pages 115 - 125, XP008146783 *
LUSSIER M, SDICU M, BUSSEY H, BIOCHIM BIOPHYS ACTA, vol. 1426, 1999, pages 323 - 334
LUSSIER, M. ET AL.: "Functional characterization of the YUR1, KTR1, and KTR2 genes as members of the yeast KRE2/MNT1 mannosyltransferase gene family.", J BIOL CHEM, vol. 271, no. 18, 1996, pages 11001 - 11008, XP002109538 *
LUSSIER, M. ET AL.: "The KTR and MNN1 mannosyltransferase families of Saccharomyces cerevisiae.", BIOCHIM BIOPHYS ACTA, vol. 1426, no. 2, 1999, pages 323 - 334, XP004276260 *
METHODS ENZYMO, vol. 194, 1991, pages 795 - 823
METHODS ENZYMOL, vol. 18, 1990, pages 440 - 470
MOL BIOL CELL, vol. 12, 2001, pages 3955 - 3972
N. TANAKA ET AL., BIOCHEM BIOPHYS RES COMMUN, vol. 330, 2005, pages 813 - 820
NUCREIC ACIDS RES, vol. 34, 2006, pages E11
PCR METHODS APPL., vol. 2, 1992, pages 28 - 33
STRAHL-BOLSINGER S, GENTZSCH M, TANNER W, BIOCHIM BIOPHYS ACTA, vol. 1426, 1999, pages 297 - 307
T. MORITA, K. TAKEGAWA, YEAST, vol. 21, 2004, pages 613 - 617
YEAST, vol. 18, 2001, pages 745 - 757
YEAST, vol. 18, 2001, pages 903 - 904

Also Published As

Publication number Publication date
KR20110063650A (ko) 2011-06-13
US20110287481A1 (en) 2011-11-24
EP2341139B1 (en) 2016-05-04
EP2341139A1 (en) 2011-07-06
EP2341139A4 (en) 2012-12-12
US8663948B2 (en) 2014-03-04
CN102985541A (zh) 2013-03-20
JP5652206B2 (ja) 2015-01-14
CN102985541B (zh) 2016-03-30
JPWO2010038802A1 (ja) 2012-03-01

Similar Documents

Publication Publication Date Title
US5821090A (en) Riboflavin-biosynthesis in fungi
EP2912162B1 (en) Pichia pastoris strains for producing predominantly homogeneous glycan structure
US9017969B2 (en) Sugar-chain modified yeast and method for producing glycoprotein using the same
KR101105718B1 (ko) 돌리칠 포스페이트 만노스 의존알파-1,3-만노실트랜스퍼라제를 코딩하는 한세눌라폴리모르파 기원의 신규 유전자와 상기 유전자가 결손된한세눌라 폴리모르파 변이주를 이용한 재조합 당단백질생산 방법
KR101779890B1 (ko) 레반 과당전이효소 생산능이 향상된 균주 및 이를 이용한 디프럭토스 언하이드리드 iv 생산방법
JP5652206B2 (ja) 宿主、形質転換体およびその製造方法、ならびにo−グリコシド型糖鎖含有異種蛋白質の製造方法
US8003349B2 (en) YLMPO1 gene derived from yarrowia lipolytica and a process for preparing a glycoprotein not being mannosylphosphorylated by using a mutated yarrowia lipolytica in which YLMPO1 gene is disrupted
KR100604994B1 (ko) 알파1,6-만노실트랜스퍼라제를 코딩하는 한세눌라폴리모르파 기원의 신규 유전자 및 상기 유전자가 결손된한세눌라 폴리모르파 변이주를 이용한 재조합 당단백질생산 방법
JP2770010B2 (ja) 酵母のマンノース−1−リン酸転移を正に制御する遺伝子ならびにこの遺伝子の欠損変異株を利用する高マンノース型中性糖鎖の製造方法
KR102142423B1 (ko) 신규 세포벽 분해 변이 효모 균주 및 이를 이용한 글루타치온 생산방법
JP6757341B2 (ja) アスペルギルス属微生物が生産するタンパク質のn型糖鎖構造を改変する方法
JP6507469B2 (ja) アスペルギルス属微生物が生産するタンパク質のn型糖鎖構造を改変する方法
JP6474477B2 (ja) マーカー遺伝子
KR101826927B1 (ko) 레반슈크라제 생산능이 향상된 균주 및 이를 이용한 레반 생산방법
JP2007517519A (ja) 組み換えタンパク質生産用タンパク質融合因子の超高速選別方法及びこれによって選別されたタンパク質融合因子
WO2012060389A1 (ja) シゾサッカロミセス属酵母の形質転換体およびその製造方法
JP6274502B2 (ja) 相同組換えの頻度が増大されたクリプトコッカス属のウラシル要求性の菌株を取得する方法
JP2019071912A (ja) アスペルギルス属微生物が生産するタンパク質のn型糖鎖構造を改変する方法
KR101960450B1 (ko) 당근 Hsp17.7 유전자를 포함하는 사카로미세스 속 미생물을 이용하여 산물을 생산하는 방법
JP2008220172A (ja) 酵母の製造方法、酵母、及び糖タンパク質又はβ−グルカンの製造方法
Berends et al. Identification of alg3 in the mushroom-forming fungus Schizophyllum commune and analysis of the Δ alg3 knockout mutant
WO2023144739A1 (en) Glycoengineering of thermothelomyces heterothallica
WO2017002733A1 (ja) クローニングベクター
WO2008136564A1 (en) A novel ylmpo1 gene derived from yarrowia lipolytica and a process for preparing a glycoprotein not being mannosylphosphorylated by using a mutated yarrowia lipolytica in which ylmpo1 gene is disrupted
KR20180107624A (ko) 베타 아가레이즈를 코딩하는 유전자를 포함하는 셀룰로파가 옴니베스코리아 w5c 균주 및 이의 응용

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980139731.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817834

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010531894

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117006891

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009817834

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2416/DELNP/2011

Country of ref document: IN