WO2007026617A1 - 発現ベクター、それを導入した形質転換体、および異種タンパク質の製造方法 - Google Patents

発現ベクター、それを導入した形質転換体、および異種タンパク質の製造方法 Download PDF

Info

Publication number
WO2007026617A1
WO2007026617A1 PCT/JP2006/316752 JP2006316752W WO2007026617A1 WO 2007026617 A1 WO2007026617 A1 WO 2007026617A1 JP 2006316752 W JP2006316752 W JP 2006316752W WO 2007026617 A1 WO2007026617 A1 WO 2007026617A1
Authority
WO
WIPO (PCT)
Prior art keywords
heterologous protein
expression vector
promoter
expression
gene
Prior art date
Application number
PCT/JP2006/316752
Other languages
English (en)
French (fr)
Inventor
Yasuko Fujita
Hideki Tohda
Yuko Hama
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2007533214A priority Critical patent/JPWO2007026617A1/ja
Priority to EP06783041A priority patent/EP1930423A4/en
Publication of WO2007026617A1 publication Critical patent/WO2007026617A1/ja
Priority to US12/037,117 priority patent/US7790450B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts

Definitions

  • the present invention uses an expression vector used in the fission yeast Schizosaccharomvces pombe, a transformant having the expression vector introduced into Schizosaccharomyces pombe, and the transformant.
  • the present invention relates to a method for producing a heterologous protein.
  • the present invention relates to a method for producing a heterologous protein that controls gene expression by the presence or absence of specific stress by using a promoter of a heat shock protein gene of Schizosaccharomyces bomb, thereby enabling control of the production time of the target heterologous protein.
  • Schizosaccharomyces bomb (hereinafter referred to as S. pombe) is a yeast that is completely different from the budding yeast Saccharomyces cerevisiae. It is already known that various mechanisms such as chromosome structure, genome replication mechanism, RNA splicing mechanism, transcription mechanism, and post-translational modification are greatly different from other yeasts, and some of them are similar to animal cells. For this reason, it is widely used as a model for eukaryotes (see Non-Patent Document 1).
  • S. pombe Due to its various characteristics, S. pombe is positioned as a unicellular eukaryote that is closer to higher animal cells, and is a very useful yeast as a host for the expression of foreign genes, particularly higher animal-derived genes. Conceivable. In particular, it is known to be suitable for expression of genes derived from animal cells including humans (see Patent Documents 1 to 7).
  • a promoter that normally promotes transcription of a foreign gene encoding the heterologous protein is required.
  • a promoter in a gene originally possessed by S. pombe or a promoter possessed by another organism or virus is used.
  • the promoters used for heterologous protein expression using S. pombe as a host include the adhl promoter (constitutive expression) inherent to S.
  • pombe the ftpl promoter, and the invl promoter (suppressed by glucose: Patent Document 5), ctr4 promoter (suppressed by copper ions), nmtl promoter ( Promoters such as hCMV, SV40, Ca are known.
  • Viral promoters such as MV (constitutive expression) are known.
  • Patent Document 1 Japanese Patent No. 2776085
  • Patent Document 2 Japanese Patent Laid-Open No. 07-163373
  • Patent Document 3 International Publication No. 96Z23890 Pamphlet
  • Patent Document 4 JP-A-10-234375
  • Patent Document 5 Japanese Patent Application Laid-Open No. 11-1992094
  • Patent Document 6 JP 2000-136199 A
  • Patent Document 7 Japanese Patent Publication No. 2000-262284
  • Patent or 1 Giga—Hama and Kumagai, eds., Foreign gene expression m nss ion yeast Schizosaccharomyces pombe, Springer-Verlag, (1997).
  • promoters used to express heterologous proteins by genetic engineering using S. pombe as a host are limited to several types, including those derived from S. pombe and viruses. . Furthermore, none of these can regulate expression (adhl, hCMV, SV40, and CaMV promoters), and it takes a long time to induce expression (nmtl promoter). In order to initiate induction, cells are growing. The medium composition must be modified in (Nmtl, fbpl, in vl, ctr4 promoter), and co-expression of a repressing factor (Ca MV modified promoter) is necessary for complete expression suppression.
  • the present inventors have found that the use of the promoter of the heat shock protein gene of S. pombe as a promoter that facilitates expression control enables more efficient heterologous protein expression.
  • the present invention has been completed by finding that it can be manufactured. That is, this invention consists of the following.
  • a method for producing a heterologous protein comprising culturing the transformant according to 5 or 6 above to produce a heterologous protein and collecting the heterologous protein.
  • the growth medium is exchanged for expression induction or waiting for the depletion of inhibitors (such as glucose) in the medium.
  • inhibitors such as glucose
  • the promoter of the heat shock protein according to the present invention can promptly induce expression by a very simple method in which cells are exposed to a temperature higher than the culture temperature to give heat stress.
  • the promoter can induce expression by multiple types of stress other than heat, such as cadmium, osmotic pressure increasing agents, hydrogen peroxide, and ethanol, and the induction method is selected according to the characteristics of the host (for example, a hyperthermosensitive strain). It has the advantage that it can be selected. Therefore, the gene expression system of the present invention using the promoter is considered to be a very useful gene expression system having both high convenience and versatility.
  • FIG. 1 Induction of GFP expression by heat stress and cadmium stress.
  • the arrows on the right side of the figure indicate the approximate ratio when the molecular weight of GFP is approximately 27 kDa, and the numbers at the bottom of the figure assume the signal intensity at 0 hours as 1.
  • FIG. 4 Induction of GFP expression by heat stress when hspl6 promoter region of various lengths is used.
  • the heterologous protein produced by the expression vector system of the present invention is a protein that the host does not originally have, and since the host is S. pombe in the present invention, S. pombe originally has it. There is no protein.
  • the heterologous protein of the present invention is not particularly limited, but is preferably a protein produced by an animal or plant that is a multicellular organism. Particularly preferred are proteins produced by mammals (including humans). When such proteins are produced using a prokaryotic microbial host such as E. coli, there are many cases where highly active proteins cannot be obtained, and when animal cells such as CHO cells are used as the host. The production efficiency is usually low.
  • Heat shock protein is a chaperone that is synthesized when cells or individuals undergo a temperature change (heat shock) 5-10 ° C higher than normal temperature. It is a general term for proteins that function as a protein that inhibits thermal denaturation and aggregation of proteins.
  • heat shock in addition to heat shock, in vivo synthesis of heat shock proteins is induced by various chemical substances such as inhibitors of electron transport systems, transition metals, SH reagents, ethanol, and the like.
  • the factors that may cause these induction stimuli are selected, and the present invention It is possible to induce protein synthesis using this system.
  • a particularly preferable inductive stimulus is heat stress, for example, heat shock.
  • an osmotic pressure increasing agent, hydrogen peroxide, and ethanol can also be used for suitable induction stimulation.
  • Heat shock proteins are widely conserved from bacteria to higher animals.
  • S. pombe's remnants ⁇ ⁇ ⁇ * ⁇ Tabe 1 ⁇ S (b.pombe GeneDB; http://www.genedb.org/gene db / pombe /) is well known, and it is There are at least 17 genes classified as shock protein genes.
  • hspl6 which encodes one of the low-molecular heat shock proteins is the most strongly induced of these 17 genes. SPBC3E7.02c).
  • Microarray analysis reveals that the expression level increases about 70 times before heat stress is applied (D. Chen et al. Mol. Biol. Cell 14 (2003), 214-229).
  • the promoter of the heat shock protein gene of the present invention means any of the promoters of these heat shock protein genes, and the promoter of hspl6 (hereinafter referred to as hspl6 promoter) is particularly preferable. Furthermore, when the hspl6 promoter is used as the promoter of the heat shock protein gene, it is particularly preferable to use a region consisting of a region of 1000 bp or more upstream from the 5 'end of the ORF of hspl6.
  • the regulatory region of hspl6, including the hspl6 promoter consists of the region up to 1800 bp upstream of the 5 'end of the ORF. Therefore, as the hspl6 promoter, it is preferable to use a region from 1000 bp upstream to 1800 bp upstream of the 5 ′ end of ORF.
  • the expression vector of the present invention As a specific operation method for constructing the expression vector of the present invention, a known method can be used. For example, the operation method described in the literature [J. Sambrook et al., “Molecular Cloning 2nd ed, Cold Spring Harbor Laboratory Press (1989)] can be used. And at least the foreign gene encoding the heterologous protein is
  • the vector used in the present invention is preferably a multicloning vector for S. pombe, which is inserted into a site on the vector controlled by the promoter of the heat shock protein gene.
  • a multicloning vector is a vector having a multicloning site, and an expression vector is obtained by introducing a desired foreign gene into the multicloning site.
  • An expression vector is a vector having a foreign gene, and is used for the expression of a heterologous protein encoded by a foreign gene.
  • the plug motor gene is located upstream of the heterologous protein gene and controls the expression of the gene.
  • the inducible promoter gene is located upstream of the multicloning site by introducing the heterologous protein gene into the multicloning site.
  • the promoter gene of the present invention is a promoter gene of S. pombe
  • S. pombe is optimal as a host transformed with the expression vector of the present invention.
  • examples of the strain of S. pombe used in the present invention include ATCC38399 (leul_32h_) and AT CC38436 (ura4-294h_), which can be obtained from American 'Type' Culture 'Collection (American Type Culture Collection).
  • ATCC38399 leul_32h_
  • AT CC38436 ura4-294h_
  • a method for transforming S. pombe using an expression vector is known, for example, by the lithium acetate method [K. Okazaki et al., Nucleic Acids Res., 18, 6485-6489 (1990)]. This transformant is obtained.
  • the heterologous protein is S. pombe can be grown without being expressed (or expressed with low expression level).
  • the amount of cells with high proliferation efficiency can be increased efficiently compared to when there is a load.
  • the temperature at which heat stress is applied is at least 5 ° C higher than the previous culture temperature, preferably at least 10 ° C higher.
  • the upper limit of the temperature at which heat stress is applied is the maximum temperature at which S.pombe can survive. Therefore, the culture temperature at the time of thermal stress is 5 ° C or higher, preferably 10 ° C or higher, higher than the culture temperature before applying thermal stress, and 30 to 55 ° C, preferably 35 ° C. -50 ° C, more preferably 40-45 ° C.
  • the time for applying heat stress is not particularly limited, but the effect can be confirmed in several minutes or more, and is 1 to 29 hours, preferably 1 to 15 hours.
  • cadmium-added powder it is added as cadmium ions.
  • salt and cadmium were shown as preferred, but this is not a limitation.
  • the final concentration of cadmium is 0.1 to 1.5 mM, more preferably 0.5 to 1.0 mM.
  • the culture time is preferably up to 5 hours, more preferably up to 3 hours.
  • an osmotic pressure increasing agent such as a high concentration electrolyte or sorbitol is added to increase the osmotic pressure.
  • a high concentration of potassium chloride was shown as suitable, but the present invention is not limited to this.
  • the final concentration of potassium is from 0.1 to 2.0 M, more preferably from 0.5 to 1.5 M.
  • the addition time is not particularly limited, but is preferably 1 to 12 hours, more preferably about 1 to 10 hours.
  • the final concentration is 0.1 to 1.5 mM, more preferably 0.5 to 1.
  • the culture time is not particularly limited, but is preferably 1 to 15 hours, more preferably about 1 to 12 hours.
  • the final concentration is from 5 to 20 V / V%, more preferably from 5 to 15 V / V%.
  • the culture time is not particularly limited, but is preferably 1 to 20 hours, more preferably about 1 to 15 hours.
  • the above conditions may be processed singly or in combination.
  • the combined effect can be easily confirmed by comparing the expression levels.
  • the heterologous protein By controlling the inducing stimulus such as stress conditions for the growth of S. pombe and the expression of the heterologous protein, the heterologous protein can be produced more efficiently. In addition, this control makes it possible to more efficiently produce a heterologous protein whose production amount is low or expression is difficult when a conventional promoter is used.
  • Medium for culturing the transformant is known, such as nutrient medium such as YPD medium [MDR ose et al, Methods In Yeast enetics, old Spring Harbor Labolatory Pres (1990)] or MB medium A minimal medium [K. Okazaki et al, Nucleic Acids Res., 18, 6485-6489 (1990)] can be used.
  • the transformant is usually cultured at 16 to 42 ° C, preferably 25 to 37 ° C for 8 to 168 hours, preferably 48 to 96 hours. Either shaking culture or stationary culture is possible, but stirring and aeration may be added if necessary.
  • a cell extract containing the target heterologous protein can be taken out by ultrasonic disruption or mechanical disruption, and the target heterologous protein can be isolated and purified therefrom.
  • the target heterologous protein when the target heterologous protein is secreted outside the cell, the target heterologous protein can be isolated and purified from the culture medium (see, for example, WO96 / 23890).
  • the isolation and purification method for obtaining the produced protein a known method using a difference in solubility such as salting out or solvent precipitation, dialysis, ultrafiltration or gel electrophoresis Methods using molecular weight differences such as ion exchange chromatography, methods utilizing specific charge differences such as ion exchange chromatography, methods utilizing specific affinity such as affinity mouth chromatography, and hydrophobic properties such as reversed-phase high-performance liquid chromatography. Examples include a method using a difference, a method using a difference in isoelectric point such as isoelectric focusing, and the like.
  • Isolation As a method for confirming the purified protein, a known Western blotting method or activity measurement method can be used.
  • the structure of the purified protein can be revealed by amino acid analysis, amino terminal analysis, primary structure analysis, and the like.
  • a heterologous protein expression vector was constructed using the promoter region of hspl6 as the promoter of the heat shock protein gene of S. pombe and using GFP (green fluorescent protein) as the heterologous protein.
  • PEGFP-Nl manufactured by CLONTECH
  • Hindlll site and Ndel site are added side by side to the 5 'end of the upstream primer used for PCR, and the downstream primer is added.
  • An Xhol site was added to one 5 'end.
  • the sequences of all primers below are shown in Table 1 (GFPS and GFPAS) (SEQ ID NOs: 1 and 2).
  • the amplified DNA fragment was digested with Hindlll and Xhol, then incorporated into the multicloning site of the subcloning vector pB S-SK + (manufactured by STRATAGENE), and this plasmid was further digested with BamHI and Ndel.
  • genomic DNA derived from the fission yeast ARC039 strain was used as a cage, and a DNA fragment approximately 1800 bp above the translation start point of hspl6 was amplified by PCR.
  • the BamHI site was added to the 5 'end of the upstream primer used for PCR, and the Ndel site was added to the 5' end of the downstream primer (Table 1, -1.8S and hspl6AS) (SEQ ID NO: 3 and 6).
  • the amplified DNA fragment was deleted with BamHI and Ndel and incorporated into pBS-SK + containing the GFP gene described above.
  • the hspl6 promoter + GFP fragment constructed in this way was excised from pBS-SK + by digesting with Xhol and Notl, and the multicloning site of the cleavage yeast expression vector pAL- (SK +) (see the literature by Morita et al. Below). Incorporated.
  • This plasmid was transformed into ARC039 strain by a simple transformation method developed by Morita et al. (T. Morita and K. Takegawa. Yeast 21 (2004), 613-617.) To obtain a transformant.
  • the GFP expression level increased 1 hour after applying heat stress to the cells. Thereafter, the GFP expression level continued to increase over time, and after 12 hours, it was revealed that the GFP expression level was about 46 times that before heat stress was applied. Even when cadmium stress is applied, the amount of GFP expression increases, and the force at which the increase in GFP expression almost stops 3 hours after cadmium stress is applied. The expression level after 12 hours is approximately 12 times that before cadmium stress is applied. Met.
  • the GFP induction under various stresses of potassium chloride, hydrogen peroxide, and ethanol was examined in detail by Western analysis.
  • Various stresses were applied to the cells, and a part of the cells were collected after 0, 1, 3, 6, 12 hours from the beginning, and Western analysis was performed according to the same procedure as above, and the amount of GFP contained in each sample was determined. Compared.
  • the expression level of GFP induced by potassium potassium, hydrogen peroxide, and ethanol is weaker than that in the case of heat stress, but from 10 times the expression level before applying various stresses. Increased to 20 times.
  • hspl6 promoter region required for regulation of downstream gene expression.
  • a Genomic DNA derived from the ARC039 strain was used as a saddle, and a DNA fragment approximately 1200 bp or 600 bp upstream from the translation start point of hspl6 was amplified by PCR.
  • a BamHI site was attached to the 5 'end of the upstream primer used for PCR (Table 1, -1.2S and -0.6S) (SEQ ID NOs: 4 and 5).
  • the downstream primer the above-described hspl6AS was used.
  • the promoter according to the present invention can promptly induce expression by a very simple method of applying heat stress to the bacterial cells. Furthermore, since expression can be induced by various stresses other than heat, there is an advantage that the induction method can be selected according to the characteristics of the host. Therefore, the gene expression system of the present invention using the promoter is considered to be a very useful gene expression system having both high convenience and versatility.
  • the Japanese patent application 2005-247819 filed on August 29, 2005, Akito Ida the entire contents of the claims, drawings and abstract is cited here, and the specification of the present invention is disclosed. As it is incorporated.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 分裂酵母シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)を宿主として用いる場合、従来のプロモーターの使用では生産量が低い、または発現が困難であって、異種タンパク質の製造を可能にしうる異種タンパク質発現系の提供。  本発明は、分裂酵母シゾサッカロミセス・ポンベで使用される発現ベクター、シゾサッカロミセス・ポンベにその発現ベクターを導入した形質転換体、およびその形質転換体を使用した異種タンパク質の製造方法、特にシゾサッカロミセス・ポンベの熱ショックタンパク質遺伝子のプロモーターを用いることによって特定のストレスの有無による遺伝子発現制御を行い、目的異種タンパク質の産生時期を制御可能とする異種タンパク質の製造方法を提供する。

Description

発現ベクター、それを導入した形質転換体、および異種タンパク質の製 造方法
技術分野
[0001] 本発明は、分裂酵母シゾサッカロミセス ·ボンべ(Schizosaccharomvces pombe)で 使用される発現ベクター、シゾサッカロミセス 'ボンベにその発現ベクターを導入した 形質転換体、およびその形質転換体を使用した異種タンパク質の製造方法に関する 。特にシゾサッカロミセス 'ボンベの熱ショックタンパク質遺伝子のプロモーターを用い ることによって特定のストレスの有無による遺伝子発現制御を行い、 目的異種タンパ ク質の産生時期を制御可能とする異種タンパク質の製造方法に関する。
背景技術
[0002] シゾサッカロミセス.ボンべ(以下、 S.pombeという)は出芽酵母サッカロミセス.セレビ シェとは進化系統的に全く異なる酵母である。すでに、染色体構造、ゲノム複製機構 、 RNAスプライシング機構、転写機構、翻訳後修飾等の諸機構が他の酵母と大きく 異なり、その一部は動物細胞と類似していることが知られている。このため真核生物 のモデルとして広く用いられている(非特許文献 1参照)。
[0003] S.pombeはその様々な特徴から、より高等動物細胞に近い単細胞真核生物であると 位置づけられ、外来遺伝子、特に高等動物由来遺伝子の発現用宿主として非常に 有用な酵母であると考えられる。特にヒトを含む動物細胞由来の遺伝子の発現に適 してレ、ることが知られてレ、る(特許文献 1〜特許文献 7参照)。
[0004] S.pombeを宿主として異種タンパク質を発現させるためには、通常異種タンパク質を コードする外来遺伝子の転写を促進するプロモーターが必要である。そのプロモータ 一としては、 S.pombeが本来有している遺伝子中のプロモーターや他の生物やウィル スが有するプロモーターが使用されている。現在、 S.pombeを宿主とした異種タンパク 質発現において利用されるプロモーターとしては、 S.pombeが本来有する adhlのプロ モーター(構成的発現)、 ftplのプロモーター、 invlのプロモーター(グルコースで抑 制:特許文献 5参照)、 ctr4のプロモーター(銅イオンで抑制)、 nmtlのプロモーター( チアミンで抑制)などの遺伝子のプロモーターが知られており、また hCMV、 SV40、 Ca
MV (構成的発現)などのウィルスのプロモーターが知られてレ、る。
特許文献 1:特許第 2776085号公報
特許文献 2:特開平 07— 163373号公報
特許文献 3:国際公開第 96Z23890号パンフレット
特許文献 4 :特開平 10— 234375号公報
特許文献 5:特開平 11一 192094号公報
特許文献 6 :特開 2000— 136199号公報
特許文献 7:特開 2000— 262284号公幸艮
特許又 1: Giga—Hama and Kumagai, eds., f oreign gene expression m nss ion yeast Schizosaccharomyces pombe, Springer-Verlag, (1997).
発明の開示
発明が解決しょうとする課題
[0005] S.pombeを宿主として遺伝子工学的に異種タンパク質を発現させるために使用され るプロモーターとしては、上記のように S.pombe由来、ウィルス由来等をあわせても数 種類に限られている。しかもこれらはいずれも、発現制御が不可能(adhl、 hCMV、 SV 40、 CaMVのプロモーター)、発現誘導に長時間を要する(nmtlのプロモーター)、誘 導を開始するためには菌体の生育途中での培地組成の改変が必要 (nmtl、 fbpl、 in vl、 ctr4のプロモーター)、完全な発現抑制の為には抑制因子の共発現が必要(Ca MVの改変型プロモーター)といった欠点を有する。
課題を解決するための手段
[0006] 本発明者らは以上の点を鑑み検討を行った結果、発現制御が容易なプロモーター として S.pombeの熱ショックタンパク質遺伝子のプロモーターを使用することにより、よ り効率的に異種タンパク質の製造を行うことができることを見出し本発明を完成した。 すなわち本発明は以下よりなる。
[0007] 1.外来遺伝子がコードする異種タンパク質をシゾサッカロミセス ·ボンべ(Schizosacch aromvces pombe)を宿主として産生させるための発現ベクターであって、シゾサッカ 口ミセス 'ボンベの熱ショックタンパク質遺伝子が有するプロモーターと該プロモータ 一に支配された外来遺伝子とを含む発現ベクター。
2.熱ショックタンパク質遺伝子が hspl6である、前項 1に記載の発現ベクター。
3. hspl6のプロモーターが、 hspl6の ORFの 5'末端側の上流 1000 bp以上の領域か らなる、前項 2に記載の発現ベクター。
4. シゾサッカロミセス 'ボンべ (Schizosaccharomvces pombe)用マノレチクロ一二ング ベクターに、シゾサッカロミセス 'ボンベの熱ショックタンパク質遺伝子が有するプロモ 一ターと該プロモーターに支配される外来遺伝子とを導入することを特徴とするシゾ サッカロミセス 'ボンべを宿主として前記外来遺伝子がコードする異種タンパク質を産 生させるための発現ベクターを構築する方法。
5.シゾサッカロミセス 'ボンべ(Schizosaccharomvces pombe)を前項 1、 2または 3に 記載の発現ベクターで形質転換してなる形質転換体。
6. シゾサッカロミセス 'ボンべ (Schizosaccharomvces pombe)を前項 4に記載の方法 で構築された発現ベクターで形質転換してなる形質転換体。
7.前項 5または 6に記載の形質転換体を培養して異種タンパク質を産生させて採取 することを特徴とする異種タンパク質の製造方法。
8.形質転換体を培養し、次いで該形質転換体に誘導刺激を与えて異種タンパク質 の産生を誘導する、前項 7に記載の異種タンパク質の製造方法。
9.誘導刺激が、熱ストレスである前項 8に記載の異種タンパク質の製造方法。
10.誘導刺激が、カドミウム、浸透圧上昇剤、過酸化水素、エタノールから選ばれる 少なくとも一つの添加による、前項 8または 9に記載の異種タンパク質の製造方法。 発明の効果
現在用いられている S.pombeを宿主とした遺伝子発現系の多くでは、発現誘導の為 に生育培地を交換する、あるいは培地中の抑制物質(グルコース等)の枯渴を待つ、 とレ、つた手順が必要である。一方本発明に係る熱ショックタンパク質のプロモーター は、菌体に培養温度よりも高い温度に曝して熱ストレスを与えるという極めて簡便な 方法で速やかな発現誘導が可能である。さらに、該プロモーターはカドミウム、浸透 圧上昇剤、過酸化水素、エタノールといった熱以外の複数種類のストレスによる発現 誘導が可能であり、宿主の特徴 (例えば高熱感受性株など)に応じて誘導方法を選 択出来るという利点を持つ。従って該プロモーターを用いる本発明の遺伝子発現系 は、高い簡便性と汎用性を併せ持つ、非常に有用な遺伝子発現系であると考えられ る。
図面の簡単な説明
[0009] [図 1]熱ストレスおよびカドミウムストレスによる GFP発現誘導。図右側の矢印は GFPの 分子量である約 27 kDaを、図下の数字は 0時間目のシグナルの強さを 1としたときの およその比を示す。
[図 2]各種ストレスによる GFP発現誘導。
[図 3]それぞれ、熱、塩ィ匕カリウム、過酸化水素、エタノールによる GFP発現誘導。図 下の数字は 0時間目のシグナルの強さを 1としたときのおよその比を示す。
[図 4]様々な長さの hspl6プロモーター領域を用いた場合の熱ストレスによる GFP発現 誘導。
発明を実施するための最良の形態
[0010] 本発明の発現ベクターの系によって産生される異種タンパク質とは、宿主が本来有 していないタンパク質であり、本発明において宿主は S.pombeであるので、 S.pombeが 本来有していないタンパク質である。本発明の異種タンパク質は特に限定されるもの ではないが、多細胞生物である動物や植物が産生するタンパク質が好ましい。特に 哺乳動物(ヒトを含む)の産生するタンパク質が好ましレ、。このようなタンパク質は E.col iなどの原核細胞微生物宿主を用いて製造した場合には、活性の高いタンパク質が 得られない場合が多ぐまた CHO細胞などの動物細胞を宿主として用いた場合には 、通常産生効率が低い。本発明における S.pombeを宿主とする異種タンパク質発現 系を用いる場合はこれらの問題が解決される。
[0011] 熱ショックタンパク質(heatshock protein、 hsp)とは、細胞や個体が平常温度より 5 〜10°C高い温度変化 (熱ショック)を急激に受けたときにその合成が誘導され、シャぺ ロンとして機能することによってタンパク質の熱変性や凝集を阻害するタンパク質の 総称である。熱ショックタンパク質の生体内合成は、熱ショックの他、様々な化学物質 、例えば電子伝達系の阻害剤、遷移金属、 SH試薬、エタノールなどによっても誘導さ れる。本発明では、これらの誘導刺激の可能性があるファクターを選択して、本発明 の系を使ったタンパク質合成の誘導が可能である。特に好ましい誘導刺激は、熱に よるストレスであって、例えば熱ショックが例示される。その他、カドミウム、浸透圧上昇 剤、過酸化水素、エタノールの添加も好適な誘導刺激が可能である。
[0012] 熱ショックタンパク質は、バクテリアから高等動物にわたって広く保存されている。 S. pombeの退伝子酉 ΰ列ァ* ~タべ1 ~ス (b.pombe GeneDB; http://www.genedb.org/gene db/pombe/)は公知であり、分裂酵母には熱ショックタンパク質遺伝子に分類される 遺伝子が少なくとも 17個存在する。 S.pombe野生型株に 39°Cの熱ストレスを与えた場 合、これら 17個の遺伝子のうち、最も強く発現が誘導されるのは低分子熱ショックタン パク質のひとつをコードする hspl6 (SPBC3E7.02c)である。その発現量は熱ストレスを 与える前の約 70倍に上昇することがマイクロアレイ解析により明らかにされている(D. Chen et al. Mol. Biol. Cell 14 (2003) , 214-229·)。
[0013] 本発明の熱ショックタンパク質遺伝子のプロモーターは、これら熱ショックタンパク質 遺伝子が有するプロモーターのレ、ずれかを意味し、特に上記 hspl6が有するプロモ 一ター(以下、 hspl6プロモーターという)が好ましい。さらに、熱ショックタンパク質遺 伝子のプロモーターとして hspl6プロモーターを用いた場合、特に hspl6の ORFの 5' 末端側の上流 1000 bp以上の領域からなる部分を用いることが好ましレ、。 hspl6プロ モーターを含む hspl6の調節領域は ORFの 5'末端側の上流 1800 bpまでの領域から なる。したがって、 hspl6プロモーターとしては、 ORFの 5'末端側の上流 1000 bpまで の領域〜 1800 bpまでの領域を使用することが好ましい。
[0014] 本発明の発現ベクターを構築するための具体的操作方法としては、公知の方法を 使用することができる。例えば、文献 [J. Sambrook et al., "Molecular Cloning 2nd ed,, Cold Spring Harbor Laboratory Press(1989)]に記載されている操作方法を 使用できる。そして少なくとも、前記異種タンパク質をコードする外来遺伝子は、熱シ ョックタンパク質遺伝子が有するプロモーターが支配するベクター上の部位に揷入さ れる。本発明で使用するベクターは S.pombe用のマルチクローニングベクターを使うこ とが好ましい。
[0015] マルチクローニングベクターとはマルチクローニングサイトを有するベクターであり、 マルチクローニングサイトに所望の外来遺伝子を導入することにより発現ベクターを 構築することができる。発現ベクターは外来遺伝子を有するベクターであり、外来遺 伝子でコードされた異種タンパク質の発現に用いられる。発現ベクターにおいて、プ 口モーター遺伝子は異種タンパク質遺伝子の上流部に位置し、該遺伝子の発現を 制御する。マルチクローニングベクターにおいては、マルチクローニングサイトに異種 タンパク質遺伝子が導入されることにより、誘導プロモーター遺伝子はマルチクロー ユングサイトの上流部に位置する。
[0016] 本発明のプロモーター遺伝子が S.pombeが有するプロモーター遺伝子であることか ら、本発明の発現ベクターで形質転換される宿主としては、 S.pombeが最適である。 本発明で用いる S.pombeの菌株としては、例えば ATCC38399 (leul_32h_)または AT CC38436 (ura4-294h_)等が挙げられ、これらは、アメリカン'タイプ'カルチャー'コレ クシヨン(American Type Culture Collection)から入手できる。発現ベクターを用い て S.pombeを形質転換する方法は公知であり、例えば酢酸リチウム法 [K. Okazaki e t al., Nucleic Acids Res., 18, 6485-6489 (1990)]等によって、 S.pombeの形質 転換体が得られる。
[0017] 本発明の発現ベクターで S.pombeを形質転換してなる形質転換体を通常の培養条 件下(熱ストレスなどのストレスを与えない条件下)で培養した場合は、異種タンパク 質を発現することはなく(あるいは少ない発現量で発現して) S.pombeを増殖させるこ とができる。この過程では、異種タンパク質の発現という負荷がないことから負荷があ る場合に比較して増殖の効率が高ぐ細胞量を効率的に増大することができる。
[0018] 次に、熱ストレスなどの誘導刺激を与えた条件下で前記形質転換体を培養すると、 プロモーターが該ストレスにより活性化してそれに支配された外来遺伝子の転写が促 進され、異種タンパク質が発現する。この誘導刺激条件下の培養では、通常の条件 下での培養に比較して S.pombeの増殖量は少なくなるのが通例である力 前段の培 養により細胞量が多くなつていることにより、培養システム全体として多量の異種タン ノ ク質が産生される。ここで熱ストレスは、誘導刺激の一つであり、誘導刺激は前記 のように種々効果を確認することによってその他の手段も利用可能である。誘導刺激 の手段としては、好適には、熱、カドミウム、浸透圧上昇剤、過酸化水素、エタノール 等の添加によって達成できる。 [0019] 熱による場合、熱ストレスを与える温度はそれまでの培養温度よりも少なくとも 5°C高 い温度、好ましくは少なくとも 10°C高い温度が採用される。熱ストレスを与える温度の 上限は S.pombeの生存可能な最高温度となる温度である。したがって、熱ストレス時 の培養温度は、熱ストレスを与える前の培養温度に対して 5°C以上、好ましくは 10°C 以上、高い温度であって、かつ、 30〜55°C、好ましくは 35〜50°C、より好ましくは 40〜 45°Cである。熱ストレスを与える時間は、特に制限されるものではなレ、が、数分以上 で効果が確認でき、 1〜29時間、好適には 1〜15時間である。
[0020] カドミウム添カ卩による場合は、カドミウムイオンとして添加する。事例では塩ィ匕カドミゥ ムを好適なものとして示したがこれに限定されない。カドミウムの最終濃度は、 0.1〜1. 5mMまで、より好ましくは 0.5〜1.0 mMまでである。培養する時間は、好適には 5時 間まで、より好ましくは 3時間までである。
[0021] 浸透圧上昇剤の場合は、高濃度の電解質やソルビトールなどの浸透圧上昇剤を添 カロして浸透圧を高める。事例では高濃度の塩ィ匕カリウムを好適なものとして示したが これに限定されない。カリウムの最終濃度は、 0.1〜2.0 Mまで、より好ましくは 0.5〜1. 5 Mまでである。添加する時間は、特に制限されないが好適には 1〜12時間まで、よ り好ましくは 1〜10時間程度である。
[0022] 過酸化水素の場合は、その最終濃度は、 0.1〜1.5 mMまで、より好ましくは 0.5〜1.
0 mMまでである。培養する時間は、特に制限されないが好適には 1〜15時間まで、 より好ましくは 1〜12時間程度である。
エタノールの場合は、その最終濃度は、 5〜20 V/V%まで、より好ましくは 5〜 15 V/V%までである。培養する時間は、特に制限されないが、好適には 1〜20時間まで 、より好ましくは 1〜15時間程度である。
[0023] 上記の条件は、単独でまたは複数組み合わせて処理を行なってもよレ、。組み合わ せ効果は、発現量を比較することで容易に確認可能である。
[0024] 力べして S.pombeの増殖と異種タンパク質の発現をストレス条件等の誘導刺激を制 御することにより、より効率的に異種タンパク質の産生を行うことができる。また、この 制御により従来のプロモーターを使用した場合には産生量が低いまたは発現が困難 であった異種タンパク質をより効率的に産生することができる。 [0025] 形質転換体を培養するための培地は公知であり、 YPD培地等の栄養培地 [M. D.R ose et al, Methods In Yeast enetics , し old Spring Harbor Labolatory P ress (1990)]または MB培地等の最少培地 [K.Okazaki et al, Nucleic Acids Res. ,18, 6485-6489 (1990)]等を使用できる。形質転換体の培養は、通常 16〜42°C、好 ましくは 25〜37°Cで、 8〜168時間、好ましくは 48〜96時間行う。振盪培養と静置培養 のいずれも可能であるが、必要に応じて撹拌や通気をカ卩えてもよい。
[0026] 培養した形質転換体細胞を超音波破砕や機械的破砕により目的異種タンパク質を 含む細胞抽出液を取り出しそこから目的異種タンパク質を単離 ·精製することができ る。また、 目的異種タンパク質が細胞外に分泌される場合は培養液から目的異種タ ンパク質を単離 '精製することができる(例えば、 WO96/23890参照)。
[0027] 前記産生したタンパク質を取得するための単離'精製法としては、公知の、塩析ま たは溶媒沈澱法等の溶解度の差を利用する方法、透析、限外濾過またはゲル電気 泳動法等の分子量の差を利用する方法、イオン交換クロマトグラフィ等の荷電の差を 利用する方法、ァフィ二ティーク口マトグラフィ等の特異的親和性を利用する方法、逆 相高速液体クロマトグラフィ等の疎水性の差を利用する方法、等電点電気泳動法等 の等電点の差を利用する方法等が挙げられる。
[0028] 単離 '精製したタンパク質の確認方法としては、公知のウェスタンブロッテイング法ま たは活性測定法等が挙げられる。精製されたタンパク質は、アミノ酸分析、ァミノ末端 分析、一次構造解析などによりその構造を明らかにすることができる。
実施例
[0029] 以下に本発明を具体的な実施例によりさらに詳細に説明する力 S、これらは最適の 態様の一を例示するものであって、本発明はこれらに限定されるものではない。
[0030] <遺伝子発現系の構築 >
S.pombeの熱ショックタンパク質遺伝子が有するプロモーターとして、 hspl6のプロモ 一ター領域を用い、異種タンパク質として GFP (緑色蛍光タンパク質)を用い、異種タ ンパク発現ベクターを構築した。 GFP遺伝子を含む pEGFP-Nl (CLONTECH社製)を 铸型とし、 PCRにて GFPの DNA断片を増幅した。 PCRに用いた上流側のプライマーの 5'末端側には Hindlllサイトおよび Ndelサイトを並べて付加し、また下流側のプライマ 一の 5'末端側には Xholサイトを付加した。以下全てのプライマーの配列を表 1に示す (GFPSおよび GFPAS) (配列番号 1および 2)。
[0031] 増幅された DNA断片を Hindlllと Xholで消化した後、サブクローニング用ベクター pB S-SK+ (STRATAGENE社製)のマルチクローニングサイトに組み込み、さらにこのプラ スミドを BamHIおよび Ndelで消化した。また、分裂酵母 ARC039株(下記森田らの文献 参照)由来のゲノム DNAを鎳型とし、 PCRにて hspl6の翻訳開始点より約 1800 bp上 流域の DNA断片を増幅した。 PCRに用いた上流側プライマーの 5'末端側には BamHI サイトを、また下流側プライマーの 5'末端側には Ndelサイトを付加した (表 1、 -1.8Sお よび hspl6AS) (配列番号 3および 6)。増幅された DNA断片を BamHIおよび Ndelで消 化し、前述の GFP遺伝子を含む pBS-SK+に組み込んだ。このようにして構築された hs pl6プロモーター +GFP断片を、 Xholおよび Notl消化により pBS-SK+より切り出し、分 裂酵母発現用ベクター pAL-(SK+) (下記森田らの文献参照)のマルチクローニンダサ イトに組み込んだ。このプラスミドを、森田ら(T.Morita and K. Takegawa. Yeast 2 1 (2004), 613-617.)の開発した簡易形質転換法により ARC039株に形質転換し、形 質転換体を得た。
[0032] [表 1コ プライマー 配列(關中の小 字豁分ほ制:麵秦サイト付加部分を承す)
GFPS ^- taa ttcatATGGTGAGCAAGGGCG-f 番咢 1 }
GEPAS ®«#t2) •1.8S
Figure imgf000010_0001
(配判癱号 3)
•I.2S 5'*gtttigttocAAGAG(I 4 GCTrcCGTO (β列薷号 4)
•0.6 S ^-gtttggatecGTGCATCAOC CMTTGffi- 國 )
Figure imgf000010_0002
( 列薷母 6)
[0033] <熱またはカドミウムストレスによる異種タンパク質発現誘導の確認 >
上記のようにして得られた形質転換体を用レ、、熱ストレスによる GFP発現誘導が可 能か否かについて検討した。また、 hspl6発現がカドミウムによっても強く誘導されるこ と(D. Chen et al. Mol. Biol. Cell 14 (2003), 214-229.)から、カドミウムストレ スによる GFP誘導が可能かどうかも同時に検討した。形質転換体を選択液体培地 (M M- Leu ; EMM培地にゥラシル、アルギニン、リジン、グルタミン酸、ヒスチジン、アデ二 ンを終濃度 75 μ g/mlになるように添加したもの)で、 28°C下にて対数増殖期初期(OD 600=約 0.3)まで培養した後、菌体を 42°C下に移しそのまま振とう培養を継続した。ま た、菌体に最終濃度 1 mMの塩化カドミウムを添加しそのまま 28°C下にて振とう培養 を継続した。菌体に各ストレスを与え初めてから 0、 1、 3、 6、 12時間後に菌体の一部を 回収し、ガラスビーズ破砕により総タンパク質を抽出した。その後抗 GFP抗体を用い たウェスタン解析により、各サンプノレ中に含まれる GFP量を比較検討した。なお SDS- PAGEには 12%アクリルアミドゲルを用レ、、各サンプルは 1レーンあたり 20 μ gの総タン ノ ク質を使用した。
[0034] その結果、図 1に示すように菌体に熱ストレスを与えて 1時間後には、 GFP発現量が 増加した。その後、経時的に GFP発現量が増加し続け、 12時間後には熱ストレスを与 える前の約 46倍となることが明らかになった。カドミウムストレスを与えた場合にも GFP 発現量は増加し、カドミウムストレスを与えて 3時間後には GFP発現量の増加がほぼ 止まった力 12時間後の発現量はカドミウムストレスを与える前の約 12倍であった。
[0035] <熱またはカドミウム以外の各種ストレス等の誘導刺激による異種タンパク質発現誘 導の確認 >
熱、カドミウム以外の各種誘導刺激によって GFP発現が誘導されるか否かについて 検討した。選択液体培地 (MM-Leu)で、 28°C下にて対数増殖期初期(OD600=約 0.3 )まで培養した形質転換体を 5 mlずつ分注し、最終濃度 1 mMの塩化水銀、塩化マ ンガン、第 3塩化鉄、硝酸銀、塩化亜鉛、 0.8 M塩化ナトリウム、 0.5 M塩化リチウム、 1 M 塩化カリウム、 10 mM塩化カルシウム、 0.5 mM過酸化水素、 10 mMカフエイ ン、 10% エタノール、 1 Mソルビトールを添加した後 28°Cにて浸透培養を継続した。 各種誘導刺激を与えて 3時間後に菌体を回収し、顕微鏡にて観察した。
[0036] その結果、図 2に示すように熱およびカドミウム以外に、塩化カリウム、過酸化水素、 エタノールによって GFP産生が強く誘導されることが明らかになった。
[0037] く塩ィ匕カリウム、過酸化水素およびエタノールによる異種タンパク質発現誘導の検討 >
塩ィ匕カリウム、過酸化水素、エタノールの各種ストレス下における GFP誘導を、ゥェ スタン解析により詳細に検討した。選択液体培地 (MM-Leu)で、 28°C下にて対数増 殖期初期 OD600=約 0.3)まで培養した 3つの菌体に、最終濃度 1 Mの塩ィ匕カリウム、 0.5 mM過酸化水素、 10 V/V%エタノールを各々添加しそのまま振とう培養を継続し た。菌体に各種ストレスを与え初めてから 0、 1、 3、 6、 12時間後に菌体の一部を回収 し、前述と同じ手順に従ってウェスタン解析を行レ、、各サンプノレ中に含まれる GFP量 を比較した。
[0038] その結果、図 3に示すように塩ィヒカリウム、過酸化水素およびエタノールによって誘 導される GFP発現量は、熱ストレスの場合より弱いものの、各種ストレスを与える前の 発現量の 10倍から 20倍にまで増加した。
[0039] <遺伝子発現制御に必要な hspl6プロモーター領域の長さの検討 >
下流遺伝子の発現制御に必要な hspl6プロモーター領域の長さの検討を行った。 A RC039株由来のゲノム DNAを铸型とし、 PCRにて hspl6の翻訳開始点より約 1200 bp あるいは 600 bp上流域の DNA断片を増幅した。 PCRに用いた上流側プライマーの 5' 末端側には BamHIサイトを付カ卩した(表 1、-1.2Sおよび- 0.6S) (配列番号 4および 5)。 下流側プライマーはレ、ずれも上述の hspl6ASを用いた。
[0040] 上記と同じ手順により、 hspl6のプロモーター領域 1200bpあるいは 600bpの下流に G FP遺伝子を連結した遺伝子断片を構築し、分裂酵母発現用ベクター pAL-(SK+)のマ ルチクロ一ユングサイトに組み込んだ後 ARC039株に形質転換した。得られた各形質 転換体を選択液体培地(MM-Leu)で、 28°C下にて対数増殖期初期(OD600=約 0.3) まで培養した後、 42°C下に移し、振とう培養を継続した。菌体に各ストレスを与え初め てから 0、 1、(3)、 6、 12時間後に菌体の一部を回収し、前述と同じ手順に従ってゥェ スタン解析を行レ、、各サンプル中に含まれる GFP量を比較した。
[0041] その結果、図 4に示すように 1200bp領域を用いた場合、 1800bp領域を用いた場合 と同様に、 GFP発現は通常温度下では抑制されており、熱ストレスによって強く誘導さ れた。一方 600bp領域を用いた場合、菌体が通常温度下にある時点で既に強い GFP 発現が見られ、熱ストレスを与えた後も発現量はほとんど増加しなかった。この結果よ り、 hspl6プロモーターを用いて下流遺伝子の発現を制御する場合、翻訳開始点より 600bp程度までの長さの領域では不十分であること、 1200bp程度までの長さの領域 では発現制御が可能であることが示唆された。よって、発現制御のためには hspl6の ORFの 5'末端側の上流 1000 bp以上の領域からなる部分を用いることが好ましいと考 られる。
産業上の利用可能性
上記したように、本発明に係るプロモーターは、菌体に熱ストレスを与えるという極 めて簡便な方法で速やかな発現誘導が可能である。さらに熱以外の各種ストレスに よる発現誘導が可能であるため、宿主の特徴に応じて誘導方法を選択出来るという 利点を持つ。従って該プロモーターを用いる本発明の遺伝子発現系は、高い簡便性 と汎用性を併せ持つ、非常に有用な遺伝子発現系であると考えられる。 なお、 2005年 8月 29曰に出願された日本特許出願 2005— 247819号の明糸田書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。

Claims

請求の範囲
[1] 外来遺伝子がコードする異種タンパク晳をシゾサッカロミセス ·ボンべ(Schizosaccha romvces pombe)を宿主として産生させるための発現ベクターであって、シゾサッカロ ミセス 'ボンベの熱ショックタンパク質遺伝子が有するプロモーターと該プロモーター に支配された外来遺伝子とを含む発現ベクター。
[2] 熱ショックタンパク質遺伝子が hspl6である、請求項 1に記載の発現ベクター。
[3] hspl6のプロモーターが、 hspl6の ORFの 5'末端側の上流 1000 bp以上の領域から なる、請求項 2に記載の発現ベクター。
[4] シゾサッカロミセス 'ボンべ (Schizosaccharomvces pombe)用マノレチタローニングべ クタ一に、シゾサッカロミセス 'ボンベの熱ショックタンパク質遺伝子が有するプロモー ターと該プロモーターに支配される外来遺伝子とを導入することを特徴とするシゾサ ッカロミセス ·ボンべを宿主として前記外来遺伝子がコードする異種タンパク質を産生 させるための発現ベクターを構築する方法。
[5] シゾサッカロミセス 'ボンベ(Schizosaccharomvces pombe)を請求項 1、 2または 3に 記載の発現ベクターで形質転換してなる形質転換体。
[6] シゾサッカロミセス.ボンべ (Schizosaccharomvces pombe)を請求項 4に記載の方法 で構築された発現ベクターで形質転換してなる形質転換体。
[7] 請求項 5または 6に記載の形質転換体を培養して異種タンパク質を産生させて採取 することを特徴とする異種タンパク質の製造方法。
[8] 形質転換体を培養し、次レ、で該形質転換体に誘導刺激を与えて異種タンパク質の 産生を誘導する、請求項 7に記載の異種タンパク質の製造方法。
[9] 誘導刺激が、熱ストレスである請求項 8に記載の異種タンパク質の製造方法。
[10] 誘導刺激が、カドミウム、浸透圧上昇剤、過酸化水素、エタノールから選ばれる少な くとも一つの添加による、請求項 8または 9に記載の異種タンパク質の製造方法。
PCT/JP2006/316752 2005-08-29 2006-08-25 発現ベクター、それを導入した形質転換体、および異種タンパク質の製造方法 WO2007026617A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007533214A JPWO2007026617A1 (ja) 2005-08-29 2006-08-25 発現ベクター、それを導入した形質転換体、および異種タンパク質の製造方法
EP06783041A EP1930423A4 (en) 2005-08-29 2006-08-25 EXPRESSION VECTOR, TRANSFORMANT IN WHICH THE EXPRESSION VECTOR IS INTRODUCED AND PROCESS FOR THE PRODUCTION OF A HETEROLOGOUS PROTEIN
US12/037,117 US7790450B2 (en) 2005-08-29 2008-02-26 Expression vector, a transformant carrying the same and a method for producing heterologous protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005247819 2005-08-29
JP2005-247819 2005-08-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/037,117 Continuation US7790450B2 (en) 2005-08-29 2008-02-26 Expression vector, a transformant carrying the same and a method for producing heterologous protein

Publications (1)

Publication Number Publication Date
WO2007026617A1 true WO2007026617A1 (ja) 2007-03-08

Family

ID=37808711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316752 WO2007026617A1 (ja) 2005-08-29 2006-08-25 発現ベクター、それを導入した形質転換体、および異種タンパク質の製造方法

Country Status (4)

Country Link
US (1) US7790450B2 (ja)
EP (1) EP1930423A4 (ja)
JP (1) JPWO2007026617A1 (ja)
WO (1) WO2007026617A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038802A1 (ja) 2008-10-01 2010-04-08 旭硝子株式会社 宿主、形質転換体およびその製造方法、ならびにo-グリコシド型糖鎖含有異種蛋白質の製造方法
WO2010087344A1 (ja) 2009-01-27 2010-08-05 旭硝子株式会社 シゾサッカロミセス・ポンベの形質転換方法および形質転換体、ならびに異種蛋白質の製造方法
WO2011021629A1 (ja) 2009-08-21 2011-02-24 旭硝子株式会社 形質転換体およびその製造方法、ならびに乳酸の製造方法
WO2012060389A1 (ja) 2010-11-05 2012-05-10 旭硝子株式会社 シゾサッカロミセス属酵母の形質転換体およびその製造方法
WO2012128260A1 (ja) 2011-03-24 2012-09-27 旭硝子株式会社 シゾサッカロミセス属酵母の形質転換体、該形質転換体の製造方法、β-グルコシダーゼの製造方法、およびセルロースの分解方法
WO2013111754A1 (ja) 2012-01-23 2013-08-01 旭硝子株式会社 発現ベクターおよび蛋白質の製造方法
WO2014030644A1 (ja) 2012-08-20 2014-02-27 旭硝子株式会社 シゾサッカロミセス・ポンベ変異体の形質転換体、およびクローニングベクター
WO2015076393A1 (ja) 2013-11-22 2015-05-28 旭硝子株式会社 形質転換体およびその製造方法、ならびに乳酸の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509677A (ja) 2008-11-28 2012-04-26 エンプレサ ブラジレイラ デ ペスキサ アグロペクアリア−エンブラパ オクテニジン組成物

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503709A (ja) * 1998-02-19 2002-02-05 ブロムリー,ピーター 遺伝子治療における治療用遺伝子のストレスプロモーターによる調節:その組成物及び方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2776085B2 (ja) 1990-09-14 1998-07-16 旭硝子株式会社 ベクター
JP3689920B2 (ja) 1993-10-05 2005-08-31 旭硝子株式会社 マルチクローニングベクター、発現ベクター、および異種蛋白質の生産
EP0773296B1 (en) 1995-02-03 2006-09-13 Asahi Glass Company Ltd. Secretory signal gene and expression vector having the same
JPH10234375A (ja) 1997-02-28 1998-09-08 Asahi Glass Co Ltd マルチクローニングベクター
EP1015612B1 (en) * 1997-05-27 2005-01-26 Hanil Synthetic Fiber Co., Ltd. Process for preparing recombinant proteins using highly efficient expression vector from saccharomyces cerevisiae
WO1999023223A1 (en) * 1997-10-31 1999-05-14 Asahi Glass Company Ltd. Induction promoter gene and secretory signal gene usable in $i(schizosaccharomyces pombe), expression vectors having the same, and use thereof
JP3968618B2 (ja) 1997-10-31 2007-08-29 旭硝子株式会社 シゾサッカロミセス・ポンベで使用可能な誘導プロモータ、誘導発現ベクター、およびそれらの利用
JP2000136199A (ja) 1998-10-29 2000-05-16 Asahi Glass Co Ltd シゾサッカロミセス・ポンベで使用可能なシグナルペプチド、分泌型発現ベクター、およびそれらを用いたタンパク質生産方法
JP4305998B2 (ja) 1999-03-18 2009-07-29 旭硝子株式会社 シゾサッカロミセス・ポンベの形質転換方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503709A (ja) * 1998-02-19 2002-02-05 ブロムリー,ピーター 遺伝子治療における治療用遺伝子のストレスプロモーターによる調節:その組成物及び方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN D. ET AL.: "Global transcriptional responses of fissio yeast to environmental stress", MOL. BIOL. CELL, vol. 14, no. 1, 2003, pages 214 - 229, XP003009855 *
ISHIKAWA H. ET AL.: "Saibo Seibutsugaku Jiten", 25 February 2005, KABUSHIKI KAISHA ASAKURA SHOTEN, pages: 349 - 380-383, XP003009853 *
KAYSER K.J. ET AL.: "Inducible and constitutive expression using new plasmid and integrative expression vectors for thermus sp", LETT. APPL. MICROBIOL., vol. 32, no. 6, 2001, pages 412 - 418, XP003009854 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038802A1 (ja) 2008-10-01 2010-04-08 旭硝子株式会社 宿主、形質転換体およびその製造方法、ならびにo-グリコシド型糖鎖含有異種蛋白質の製造方法
WO2010087344A1 (ja) 2009-01-27 2010-08-05 旭硝子株式会社 シゾサッカロミセス・ポンベの形質転換方法および形質転換体、ならびに異種蛋白質の製造方法
WO2011021629A1 (ja) 2009-08-21 2011-02-24 旭硝子株式会社 形質転換体およびその製造方法、ならびに乳酸の製造方法
WO2012060389A1 (ja) 2010-11-05 2012-05-10 旭硝子株式会社 シゾサッカロミセス属酵母の形質転換体およびその製造方法
WO2012128260A1 (ja) 2011-03-24 2012-09-27 旭硝子株式会社 シゾサッカロミセス属酵母の形質転換体、該形質転換体の製造方法、β-グルコシダーゼの製造方法、およびセルロースの分解方法
WO2013111754A1 (ja) 2012-01-23 2013-08-01 旭硝子株式会社 発現ベクターおよび蛋白質の製造方法
WO2014030644A1 (ja) 2012-08-20 2014-02-27 旭硝子株式会社 シゾサッカロミセス・ポンベ変異体の形質転換体、およびクローニングベクター
JPWO2014030644A1 (ja) * 2012-08-20 2016-07-28 旭硝子株式会社 シゾサッカロミセス・ポンベ変異体の形質転換体、およびクローニングベクター
US9765347B2 (en) 2012-08-20 2017-09-19 Asahi Glass Company, Limited Transformant of Schizosaccharomyces pombe mutant and cloning vector
WO2015076393A1 (ja) 2013-11-22 2015-05-28 旭硝子株式会社 形質転換体およびその製造方法、ならびに乳酸の製造方法

Also Published As

Publication number Publication date
EP1930423A1 (en) 2008-06-11
EP1930423A4 (en) 2009-12-09
US7790450B2 (en) 2010-09-07
JPWO2007026617A1 (ja) 2009-03-05
US20080286833A1 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
WO2007026617A1 (ja) 発現ベクター、それを導入した形質転換体、および異種タンパク質の製造方法
JP6113736B2 (ja) 調節可能なプロモーター
JP2010524440A (ja) 発現系
JP2018522565A (ja) プロモーター変異体
EP3663319A1 (en) Preparation method for novel fusion protein and use of fusion protein for improving protein synthesis
CN108949869B (zh) 无碳源阻遏毕赤酵母表达系统、其建立方法及应用
CN110093284B (zh) 一种在细胞中提高蛋白合成效率的方法
CN110408635B (zh) 一种含有链霉亲和素元件的核酸构建物在蛋白质表达、纯化中的应用
JP2021528985A (ja) 転写因子の使用によってタンパク質発現を増加させるための手段及び方法
KR20200089734A (ko) 뉴클레아제 시스템의 녹-아웃에 의한 시험관 내 생합성 활성을 조절하기 위한 방법
JP5662363B2 (ja) 難発現性タンパク質の分泌のためのタンパク質融合因子(tfp)を明らかにする方法、タンパク質融合因子(tfp)ライブラリーを製造する方法、及び難発現性タンパク質の組み換え的生産方法
JP2012527227A (ja) 発現エンハンサーを含む真核宿主細胞
WO2016088824A1 (ja) セントロメアdna配列を含むベクター及びその用途
WO2006013859A1 (ja) 酵母プロモーター
WO2017163946A1 (ja) 誘導型プロモーター
RU2756852C2 (ru) Рекомбинантная плазмида, способ её конструирования и штамм дрожжей Komagataella pastoris - продуцент иммунного интерферона-гамма собаки
Dede et al. Construction and dynamic characterization of a Tetrahymena thermophila macronuclear artificial chromosome
KR20070101190A (ko) 재조합단백질 생산용 단백질융합인자
KR20050076603A (ko) 재조합단백질 생산용 단백질융합인자
EA044473B1 (ru) Рекомбинантная плазмида, способ её конструирования и штамм дрожжей komagataella pastoris - продуцент иммунного интерферона-гамма собаки
JP2009539401A (ja) 小胞体ストレス反応を調節するハンセヌラポリモルファの新規遺伝子、およびこれを用いて分泌効果を増加させる方法
KR20050075661A (ko) 재조합 단백질 생산용 맞춤형 단백질융합인자의 초고속선별 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007533214

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006783041

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE