WO1994013851A1 - Transparent conductive film, transparent conductive base material, and conductive material - Google Patents

Transparent conductive film, transparent conductive base material, and conductive material Download PDF

Info

Publication number
WO1994013851A1
WO1994013851A1 PCT/JP1993/001821 JP9301821W WO9413851A1 WO 1994013851 A1 WO1994013851 A1 WO 1994013851A1 JP 9301821 W JP9301821 W JP 9301821W WO 9413851 A1 WO9413851 A1 WO 9413851A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
transparent
atomic ratio
zinc
Prior art date
Application number
PCT/JP1993/001821
Other languages
English (en)
French (fr)
Inventor
Akira Kaijou
Masashi Ohyama
Masatoshi Shibata
Kazuyoshi Shigematsu
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to EP94903007A priority Critical patent/EP0677593B1/en
Priority to US08/446,584 priority patent/US5972527A/en
Priority to DE1993628197 priority patent/DE69328197T2/de
Priority to KR1019950702423A priority patent/KR100306565B1/ko
Publication of WO1994013851A1 publication Critical patent/WO1994013851A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G11/00Compounds of cadmium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31515As intermediate layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31609Particulate metal or metal compound-containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31935Ester, halide or nitrile of addition polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31938Polymer of monoethylenically unsaturated hydrocarbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31942Of aldehyde or ketone condensation product

Definitions

  • the present invention relates to a transparent conductive film, a conductive base material using the transparent conductive film, and a conductive material suitable as a material for obtaining the transparent conductive film.
  • Liquid crystal display devices can be made lighter and thinner, and their driving voltages are low, so they are being actively introduced into 0A devices such as personal computer card processors.
  • liquid crystal display devices having the above advantages are inevitably moving toward larger areas, more pixels, and higher definition, and high-quality liquid crystal display elements without display defects are required. ing.
  • the liquid crystal display element has a sandwich structure in which the liquid crystal is sandwiched between two transparent electrodes arranged opposite to each other, and the transparent electrode is one of the important elements in obtaining a high quality liquid crystal display element. It is.
  • the transparent electrode is manufactured by patterning a transparent conductive film formed on a transparent glass substrate into a predetermined shape by, for example, a photolithography method.In recent years, the weight of a display device has been further reduced. For this reason, attempts have been made to use high molecular films instead of transparent glass substrates.
  • the IT0 electrode occupies the mainstream as a transparent electrode, and the ITO film on which the ITO electrode is based is formed by a sputtering method or the like using IT ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ as a sputtering target.
  • the reason why the IT 0 electrode is often used as a transparent electrode is that the ITO film has high transparency, low resistance, This is because the etching characteristics (etching rate), the adhesion to the base material, and the like are good.
  • the substrate temperature it is generally necessary to set the substrate temperature to 200 to 300 ° C.
  • the ITO film is crystallized, so that the etching characteristics are good, but not excellent.
  • a polymer film or a resin substrate it is difficult to keep the substrate temperature at 200 to 300 ° C., so that an ITO film having low electric resistance and high transparency is used. Is difficult to form.
  • the etching characteristics of the ITO film can be improved by making the ITO film amorphous (see US Pat. No. 5,105,291), but when the ITO film is made amorphous, the conductivity is increased.
  • the ITO film has a relatively low wet heat resistance
  • the ITO electrode formed by molding the ITO film into a predetermined shape has a disadvantage that the conductivity and the light transmittance are liable to decrease with time as the electrode is used. are doing.
  • the low heat and humidity resistance, in which the conductivity and light transmittance decrease over time, is particularly noticeable in amorphous ITO films.
  • the present invention has been made to provide a new transparent conductive film that can be substituted for the ITO film having the above-mentioned difficulties, and a new conductive transparent substrate that can be substituted for the conductive transparent substrate using the ITO film. It is an object of the present invention to provide a transparent conductive film that has practically sufficient conductivity and light transmittance, and is excellent in wet heat resistance and etching characteristics, and a conductive transparent substrate using the transparent conductive film. Aim. Another object of the present invention is to provide a conductive material suitable as a material for obtaining the transparent conductive film.
  • Examples of the conductive film composed of an oxide containing indium and zinc as main cation elements include the following films (1) and (2).
  • Indium-containing zinc oxide transparent conductive film formed by sputtering at a substrate temperature of room temperature using a sintered body of zinc oxide containing 2 atomic% of zinc with respect to zinc atoms as a target. (See Kaikai 61-205619)
  • a coating film is formed on the substrate surface by dip coating using a coating solution containing zinc nitrate and zinc nitrate such that the atomic ratio I nZ (I n + Z n) of zinc is 0.80. After that, the coating film was subjected to a predetermined heat treatment to obtain a zinc oxide-added indium oxide film (see Japanese Patent Publication No. 5-6289).
  • the transparent conductive film of the present invention is formed by the same method (sputtering method or coating thermal decomposition method), the conductive film is more conductive than the films of (1) and (2) above. It is easy to obtain something excellent. Disclosure of the invention
  • the transparent conductive film of the present invention is a film made of a substantially amorphous oxide containing indium (In) and zinc (Zn) as main cation elements, and has an atomic ratio of In nZ (In + Zn) is in the range of 0.50 to 0.90 (hereinafter, this transparent conductive film is referred to as transparent conductive film I). Further, another transparent conductive film of the present invention has I as a main cation element. 1
  • At least one tertiary element whose valence is at least trivalent eg, tin (Sn), aluminum (A1), antimony (Sb), gallium (Ga)
  • the atomic ratio of the total amount of the third elements (all the third elements) Z (In + Zn + all the third elements) is 0.2 or less (hereinafter, this transparent conductive film is made transparent). Conductive film)).
  • the conductive transparent substrate of the present invention is provided with the above-mentioned transparent conductive film I or transparent conductive film 11 provided directly or at least via a crosslinkable resin layer on a film-shaped or sheet-shaped transparent polymer base material.
  • this conductive transparent substrate is referred to as a conductive transparent film.
  • another conductive transparent substrate of the present invention is characterized in that the above-mentioned transparent conductive film I or transparent conductive film 11 is provided on a transparent glass substrate (hereinafter, this conductive transparent substrate is referred to as a conductive transparent substrate).
  • the transparent substrate is called conductive transparent glass).
  • the conductive material of the present invention is the following conductive materials a to d.
  • a powder or sintered body composed of an oxide containing indium (I n) and zinc (Z n) as main cation elements, having the general formula In 2 Og (Z ⁇ ) m (m 2 to 20 ), And an atomic ratio I nZ (I n + Zn) of I ⁇ of 0.1 to 0.9 (hereinafter referred to as the conductive material). Is called conductive material I).
  • the conductive material I may be substantially composed of at least one kind of a hexagonal layered compound represented by the general formula, or may be one or more kinds of a hexagonal layered compound represented by the general formula.
  • At least one tertiary element having a valence of 3 or more eg, tin (S n), aluminum (A 1) , antimony (S b), gallium (G a), a flour powder or sintered body composed of an oxide containing germanium (G e)
  • the conductive material H may be optionally consist essentially of one or more of the compounds, I n 2 0 of 1 or more other crystalline or amorphous of the compounds. And may substantially consist of those containing Z or Zn0.
  • conductive material 111 a powder of substantially amorphous oxide containing indium (I n) and zinc (Z n) as the main cation elements, or from said oxide and In 20 , and Z or Z n 0; Characterized by having an atomic ratio of In (InZCln + Zn) of 0.1 to 0.9 (hereinafter, this conductive material is referred to as conductive material 111).
  • At least one third element having a valence of 3 or more eg, tin (S n), aluminum
  • FIG. 1 is a graph showing the results of XRD (X-ray diffraction) measurement of the transparent conductive film I obtained in Example 1 (calcination temperature 500 ° C, main firing temperature 500 ° C).
  • XRD X-ray diffraction
  • the transparent conductive film I of the present invention is composed of a substantially amorphous oxide containing substantially only In and Zn as main cation elements as described above.
  • the atomic ratio I nZ (I n + Z n) is 0.50 to 0.90.
  • the “substantially amorphous oxide” is defined by the internal standard method described in “Ceramic Characterization Technology” (published by the Japan Ceramic Association, 1987, pp. 44-45).
  • the crystalline material is defined and the remaining amount is made amorphous, it means an oxide having an amorphous content of 50% by weight or more.
  • the amorphous content is preferably at least 70% by weight, more preferably at least 80%. Note that oxygen in the oxide may be partially missing.
  • the oxides include all forms of oxides such as mixtures, compositions, and solid solutions.
  • the reason for limiting the atomic ratio I nZ (I n + Z n) of In in this transparent conductive film I to 0.50 to 0.90 is that if the atomic ratio is less than 0.50, the conductivity becomes low, If the atomic ratio exceeds 0.90, the etching characteristics (etching speed) become low.
  • Atomic ratio of I n I nZ (I n + Z n) The preferred range is generally 0.60 to 0.90, although it varies depending on the film production method.
  • the more preferable range of the atomic ratio I nZ (I n + Zn) of In is 0.6 to 0.80 for the film manufactured by the coating pyrolysis method, and 0.80 for the film manufactured by the sputtering method. ⁇ 0.90.
  • the atomic ratio is particularly preferably 0.60 to 0.75.
  • the crystallized one (the one having an amorphous content of less than 50% by weight as defined above) is inferior in conductivity to the amorphous one even if the composition is the same, the transparent conductive film I Is limited to amorphous ones.
  • the conductivity may be deteriorated.
  • the above-mentioned oxide can be used as a transparent conductive film by forming it into a thin film.
  • the film thickness at this time can be appropriately selected according to the application, the material of the substrate on which the transparent conductive film is provided, and the like, but is generally in the range of 3 nm to 3000 nm. If it is less than 3 nm, the conductivity tends to be insufficient, and if it exceeds 3000 nm, the light transmittance tends to decrease.
  • the transparent conductive film I made of such an oxide is a transparent conductive film that has practically sufficient conductivity and light transmittance, and is excellent in wet heat resistance and etching characteristics.
  • This transparent conductive film I can be manufactured by various methods such as a coating thermal decomposition method, a sputtering method, a CVD method, etc., but from the viewpoint of manufacturing at a low cost while easily controlling the composition. It is preferable to produce by a thermal decomposition method, and from the viewpoint of producing a high-performance film with high productivity, it is preferable to produce by a sputtering method.
  • an indium compound and a zinc compound are provided at an atomic ratio of In of In / (In + Zn).
  • a coating solution is prepared by dissolving the coating solution to a specified value, and the coating solution is applied to a predetermined substrate, baked at 300 to 65 ° C, and then subjected to a reduction treatment to achieve the purpose. Is obtained.
  • the term "coating solution in which an indium compound and a zinc compound are dissolved such that the atomic ratio of In becomes In Z (In + Zn) to a predetermined value” refers to a film finally obtained.
  • This coating solution contains a solvent and a solution stabilizer in addition to the above-mentioned zinc compound and zinc compound.
  • the indium compound include a carbonate salt such as indium acetate, an inorganic indium compound such as indium chloride, and an indium alkoxide such as indium ethoxide and indium propoxide.
  • the zinc compound include carboxylate salts such as zinc nitrate, inorganic zinc compounds such as zinc chloride, zinc fluoride, and zinc iodide, and zinc alkoxides such as zinc methoxide, zinc ethoxide, and zinc propoxide. Is received.
  • the solvent examples include water, alcohols such as methanol, ethanol, isopropyl alcohol, 2-methoxyethanol and 2-ethoxyethanol, and hydrocarbons such as toluene and benzene.
  • alcohols such as methanol, ethanol, isopropyl alcohol, 2-methoxyethanol and 2-ethoxyethanol
  • hydrocarbons such as toluene and benzene.
  • monoethanolamine, diethanolamine, alkanolamine such as triethanolamine and the like can be used.
  • 2-methoxyethanol is preferable as the solvent
  • monoethanolamine is preferable as the stabilizer.
  • Preparation of such a coating solution can be performed by mixing predetermined amounts of the zinc compound, the zinc compound, the solvent and the stabilizer. You.
  • the mixing order at this time is not particularly limited. Mixing may be performed by stirring and mixing using a conventional method such as a stirrer, and heating may be performed at this time.
  • the stirring time is preferably 0.01 to 100 hours. If it is less than 0.01 hours, it is difficult to obtain a uniform transparent solution. On the other hand, if it exceeds 100 hours, the economy becomes poor.
  • a particularly preferred stirring time is 0.1 to 10 hours ⁇ Also, when heating during stirring, the heating temperature is preferably 10 ° C or lower. Above 10 o ° c, the solvent evaporates and the solution concentration changes.
  • the concentration of the combined amount of In and Zn in the coating solution is preferably 0.01 to 10 mol%. If the content is less than 0.01 mol%, the film thickness per coating is small, and a large number of coatings are required in order to obtain a desired film thickness, resulting in poor economy. On the other hand, if it exceeds 10 mol%, the film thickness becomes uneven during coating.
  • a particularly preferred concentration of the combined amount of In and Zn is 0.1 to 5 mol%.
  • the concentration of the stabilizer in the coating solution is preferably 0.01 to 50 mo 1%. If the content is less than 0.01 mol%, it becomes difficult to dissolve the indium compound and the zinc compound in the solvent. On the other hand, if it exceeds 50 mol%, carbon generated by the decomposition of the stabilizer during firing will remain in the film even after firing, and the conductivity of the film will be reduced. Particularly preferred concentrations of the stabilizer are from 0.1 to 10 mol%.
  • the coating solution prepared as described above is applied to a substrate and then fired at 300 to 650 ° C.
  • Various materials can be used as the base material depending on the application.
  • the transparent base material soda-lime glass, lead glass, borosilicate glass, high silicate glass, non-alkali glass, alkali glass And those made of an electrically insulating transparent material such as quartz glass, high heat resistant transparent polymer and the like.
  • the base material may have an undercoat layer.
  • the undercoat layer Specific examples thereof include thin film such as Z n 0, S i 0 2 , T i 0 2.
  • the method of applying the coating solution to the substrate is not particularly limited, and various methods conventionally applied in producing a thin film from a solution can be used. Specific examples include a spray method, a dipping method, a spin coating method, and a roll coating method.
  • the firing method is not particularly limited, and methods such as normal pressure firing, vacuum firing, and pressure firing can be applied, but the firing temperature is limited to 300 to 65 ° C. .
  • the reason why the lower limit of the firing temperature is limited to 300 ° C is that if the temperature is lower than 300 ° C, the decomposition of the raw materials becomes insufficient, or the carbon generated by the decomposition of the solvent or the stabilizer causes the carbon in the fired film to be insufficient. This is because it remains in the film and lowers the conductivity of the film.
  • the reason why the upper limit of the firing temperature is limited to 65 ° C. is that if the temperature exceeds 65 ° C., the obtained film becomes crystalline, and the conductivity of the film decreases.
  • the preferred firing temperature is from 300 to 600 ° C.
  • the firing time depends on the firing temperature, but is preferably from 0.01 to 10 hours. If the time is less than 0.01 hour, the decomposition of the raw material becomes insufficient, or the carbon generated by the decomposition of the solvent or the stabilizing agent remains in the film even after firing, thereby lowering the conductivity of the film. On the other hand, if the time exceeds 10 hours, the economy becomes poor.
  • a particularly preferred baking time is 0.1 to 10 hours.
  • the baking may be performed a required number of times.
  • the reduction treatment is performed after firing as described above.
  • reduction with a reducing gas reduction with an inert gas, reduction by vacuum firing, or the like can be applied.
  • Hydrogen gas, steam, or the like can be used as the reducing gas
  • nitrogen gas, argon gas, or the like can be used as the inert gas.
  • a mixed gas of inert gas and oxygen gas, etc. Can also be used.
  • the reduction temperature is preferably from 100 to 650 ° C. If the temperature is lower than 100 ° C, it is difficult to perform sufficient reduction. On the other hand, when the temperature exceeds 650 ° C, the film becomes crystalline, and the conductivity of the film decreases. Particularly preferred reduction temperatures are between 200 and 500 ° C.
  • the reduction time depends on the reduction temperature, but is preferably 0.01 to 10 hours. If the time is less than 0.01 hours, it is difficult to perform sufficient reduction. On the other hand, if it exceeds 10 hours, the economy becomes poor. Particularly preferred reduction times are from 0.1 to 10 hours.
  • the intended transparent conductive film I of the present invention can be obtained.
  • the sputtering target used when the transparent conductive film I is provided on a predetermined base material by the sputtering method may be any as long as the transparent conductive film I can be obtained.
  • Various sputtering targets can be used depending on the composition (atomic ratio of In (InZ (In + Zn)), sputtering conditions, and the like.
  • sputtering target used for providing the transparent conductive film I on a predetermined base material by the RF or DC magnetron sputtering (hereinafter sometimes referred to as direct sputtering) method or the like are as follows. And (ii) the sputtering target.
  • the atomic ratio I nZ (I n + Z n) of In is a predetermined value means the atomic ratio I n / (I n + Z n) of In in the finally obtained film. c but to mean that the desired value within the range of 0.50 to 0.90 Specifically, a material having a desired atomic ratio I nZ (In + Zn) of In within a range of 0.45 to 0.9 is used.
  • one rodents DOO may be a sintered body comprising a mixture of indium oxide and zinc oxide, ln 2 0 3 (Z nO ) It may be a sintered body substantially consisting of one or more hexagonal layered compounds (this sintered body is one of the conductive materials I of the present invention), or a sintered body of the hexagonal layered compound. 1 or more and I n 2 0 3 Contact and Z or Z n 0 may be a sintered body consisting essentially of Tokyo (this sintered body is one of the electrically conductive material I of the present invention ).
  • the reason for limiting m to 2 to 20 in the above formula representing a hexagonal layered compound is that if m is outside the above range, the compound will not be a hexagonal layered compound.
  • a sputtering target comprising an oxide-based disc and one or more oxide-based tablets disposed on the disc.
  • the same oxide-based disk as described above can be used.
  • composition and use ratio of the oxide-based disk and oxide-based tablet are such that the atomic ratio of In in the finally obtained film InZ (In + Zn) is in the range of 0.50 to 0.90. Is appropriately determined so that the desired value is obtained. Is done.
  • the sputtering target of any of the above (i) to (ii) preferably has a purity of 98% or more. If the content is less than 98%, the moisture-heat resistance, conductivity, and light transmittance of the obtained film may be reduced due to the presence of impurities. A more preferred purity is at least 99%, and a still more preferred purity is at least 99.9%.
  • the relative density of the target is 70% or more. If the relative density is less than 70%, the film deposition rate and the film quality are likely to be reduced. A more preferable relative density is 85% or more, and further preferably 90% or more.
  • the sputtering target (i), the oxide disk and the oxide tablet (ii) can be produced, for example, as follows.
  • an indium compound and a zinc compound are mixed, the mixture obtained by this mixing is calcined to obtain a calcined product, and the calcined product is molded and sintered to obtain a sintered body of an intended oxide.
  • the indium compound and zinc compound used as raw materials are oxides or oxides after firing.
  • Indium oxide precursors and zinc oxide precursors include indium and zinc sulfides, sulfates, nitrates, halides (chlorides, bromides, etc.), carbonates, and organic salts (acetates, oxalates, etc.). Propionate, naphthenate, etc.), alkoxide (methoxide, ethoxide, etc.), organometallic complex acetyl acetatetonate, etc.).
  • nitrates, organic acid salts, alkoxides, and organometallic complexes are preferably used in order to completely decompose at low temperature and prevent impurities from remaining.
  • the mixture of the indium compound and the zinc compound is represented by the following (A) 94/13851
  • This method prepares a solution in which a precipitate forming agent is dissolved in addition to a solution in which an indium compound and a zinc compound are dissolved, or at least a solution in which an indium compound is dissolved and a solution in which at least a zinc compound is dissolved.
  • the above solution is added simultaneously or sequentially to a separately prepared container (a solvent may be added if necessary) with stirring, if necessary, to form a coprecipitate of the zinc compound and the zinc compound. is there.
  • a solution in which a precipitate forming agent is dissolved may be added to a solution in which an indium compound and a zinc compound are dissolved, or vice versa.
  • a solution in which an indium compound and a zinc compound are dissolved and a solution in which a precipitate forming agent is dissolved are separately prepared, and the two solutions are simultaneously added to a container containing a solvent while stirring to form a precipitate.
  • a solution in which an indium compound and a zinc compound are dissolved and a solution in which a precipitate forming agent is dissolved are separately prepared, and the two solutions are simultaneously added to a container containing a solvent while stirring to form a precipitate.
  • solution A a solution prepared by dissolving the indium compound and the zinc compound in an appropriate solvent (hereinafter referred to as solution A) is prepared.
  • the solvent may be appropriately selected according to the solubility of the indium compound or the zinc compound to be used.
  • water, alcohol, nonprotonic polar solvents DMS 0, NMP, sulfolane, THF, etc.
  • alcohols having 1 to 5 carbon atoms such as methanol, ethanol, isopropanol, methoxyethanol, and ethylene glycol
  • concentration of each metal in the solution A is preferably from 0.01 to 10 mol Z liter. The reason for this is that if it is less than 0.01 inol / liter, the productivity will be poor, and if it exceeds 10 niol Z liter, uneven dumping will occur.
  • acids nitric acid, hydrochloric acid, etc.
  • acetylacetons polyhydric alcohols (ethylene glycol) Etc.)
  • ethanolamines monoethanolamine, diethanolamine, etc.
  • solution B Prepare a solution in which the precipitate-forming agent is dissolved (hereinafter, referred to as solution B) together with the solution A.
  • Alkali sodium hydroxide, sodium hydroxide, sodium carbonate, sodium carbonate, sodium bicarbonate, sodium bicarbonate, sodium carbonate, ammonium hydroxide, ammonium carbonate, etc.
  • Ammonium bicarbonate, etc. organic acids (formic acid, oxalic acid, citric acid, etc.) can be used.
  • the precipitate is converted to a hydroxide, an inorganic acid salt, or an organic acid salt by a precipitate forming agent.
  • the solvent for dissolving the precipitate-forming agent and the solvent to be put in the container for forming the precipitate the above-mentioned solvents used for dissolving the indium compound, the zinc compound and the like can be used.
  • a precipitate is formed by any of the above-mentioned means, and the temperature at the time of the formation of the precipitate may be at least the melting point of the solvent and not more than the boiling point. After the formation of the precipitate, the precipitate may be aged for 1 to 50 hours.
  • the precipitate thus obtained is then subjected to solid-liquid separation and drying.
  • Solid-liquid separation of the precipitate is performed by a conventional method such as centrifugation, filtration and the like. After solid-liquid separation, it is desirable to thoroughly wash the precipitate with the solvent used for Solutions A and B or other solvents in order to remove anions and metal ions from the precipitate. Drying after solid-liquid separation is 0 to 40 to 200. Preferably, it is performed for 1 to 100 hours. If the temperature is lower than 40 ° C, drying takes too much time, and if the temperature is higher than 200 ° C, aggregation of particles tends to occur.
  • the above-mentioned indium compound is added to or before the oxide.
  • a precursor whether water-soluble or sparingly soluble
  • a method that can be used for any of the above zinc compounds that are zinc oxide or its precursor whether water-soluble or sparingly soluble.
  • an indium compound and a zinc compound are put into a mixer such as a ball mill, a dit mill, or a pearl mill, and both compounds are uniformly mixed.
  • the mixing time is preferably set to 1 to 200 hours. If the time is less than 1 hour, the homogenization tends to be insufficient, and if the time exceeds 200 hours, the productivity is reduced. Particularly preferred mixing times are from 10 to 120 hours.
  • the mixture is calcined.
  • This calcination step varies depending on the balance between temperature and time, but is preferably performed at 200 to 1200 ° C. for 1 to 100 hours. If the temperature is lower than 200 ° C or less than 1 hour, the thermal decomposition of the indium compound and the zinc compound is insufficient.If the temperature exceeds 120 ° C or exceeds 100 hours, the particles are baked. This results in coarsening of the particles.
  • Particularly preferred calcination temperature and calcination time are 2 to 50 hours at 800 to 1200 ° C.
  • a reduction treatment may be performed before and after grinding.
  • the pulverization of the calcined product is preferably performed using a ball mill, a roll mill, a pearl mill, a ditto mill, or the like so that the particle diameter becomes 0.01 to 1.0 / zm. If the particle diameter is less than 0.01 // m, the powder is likely to agglomerate, handling is poor, and it is difficult to obtain a dense sintered body. On the other hand, if it exceeds 1.0 m, it is difficult to obtain a dense sintered body. It should be noted that a sintered body having a uniform composition can be obtained by repeatedly performing calcination and pulverization.
  • the reducing gas In the case of performing reduction by gas, hydrogen, methane, CO, etc., or a mixed gas of these gases and oxygen can be used as the reducing gas.
  • the inert gas, nitrogen, argon, etc. and, c reduction temperature which can be used mixed gas of these gases and oxygen is 100 to 800 ° C preferable. If it is less than 10 o ° c, it is difficult to perform sufficient reduction. On the other hand, if the temperature exceeds 800 ° C, zinc oxide evaporates and the composition changes.
  • a particularly preferred reduction temperature is from 200 to 800 ° C.
  • Reduction time, depending on the reduction temperature is less than 0.01 to 10 hours is preferred c 0. 01 hours it is difficult to perform sufficient reduction. On the other hand, if it exceeds 10 hours, the economy becomes poor. Particularly preferred reduction times are from 0.05 to 5 hours.
  • the molding and sintering of the calcined material is performed next.
  • those treated at relatively high temperatures include zinc (Zn) and zinc (Zn) as main cation elements.
  • Zn zinc
  • ZnO zinc
  • I nZ of I n I n + Z n
  • This powder or calcined material is one of the conductive materials I of the present invention.
  • a substantially amorphous powder is obtained.
  • This powder is one of the conductive materials 111 of the present invention.
  • the above-mentioned substantially amorphous powder is reduced under the above-mentioned atmosphere at 100 to 600 for 0.01 to 10 hours, a substantially amorphous powder having excellent conductivity is obtained. can get.
  • This powder is also one of the conductive materials 111 of the present invention. Molding of the calcined powder obtained as described above is performed by die molding, injection molding, injection molding, etc. In order to obtain a sintered body with a high sintering density,
  • the shape of the molded body can be various shapes suitable as a target.
  • a molding aid such as PVA (polyvinyl alcohol), MC (methylcellulose), polywax, or oleic acid may be used.
  • the sintering temperature may be higher than the temperature at which the indium compound and the zinc compound are thermally decomposed to become oxides, and usually 800 to 170 ° C. is preferable. When the temperature exceeds 170 ° C., zinc oxide and zinc oxide are sublimated to cause a shift in composition, which is not preferable.
  • a particularly preferred sintering temperature is 1200 to 170 ° C.
  • the sintering time depends on the sintering temperature, but is preferably 1 to 50 hours, particularly preferably 2 to 10 hours.
  • the sintering may be performed in a reducing atmosphere.
  • the reducing atmosphere include an atmosphere of a reducing gas such as H 2 , methane, and CO, and an inert gas such as Ar and N 2 .
  • a reducing gas such as H 2 , methane, and CO
  • an inert gas such as Ar and N 2 .
  • HIP sintering since zinc oxide and indium oxide are easily evaporated, it is preferable to perform pressure sintering by HIP sintering or the like.
  • the transparent conductive film I of the present invention is provided on a predetermined substrate by the direct sputtering (RF or DC magnetron sputtering) method using the sputtering target (i) or (ii) described above.
  • the material of the substrate is not particularly limited, and substrates of various materials can be used according to the purpose, but it is possible to form a film while maintaining the substrate temperature at a relatively low temperature. Therefore, the transparent conductive film I is provided by the coating thermal decomposition method described above. More substrates can be used than is the case.
  • transparent substrates include those made of electrically insulating transparent polymers such as polycarbonate, polyarylate, polyester, polystyrene, polyether sulfone resin, amorphous polyolefin, and acrylic resin, soda-lime glass, Those made of electrically insulating transparent glass such as lead glass, borosilicate glass, high silicate glass, and alkali-free glass can be used.
  • electrically insulating transparent polymers such as polycarbonate, polyarylate, polyester, polystyrene, polyether sulfone resin, amorphous polyolefin, and acrylic resin, soda-lime glass.
  • electrically insulating transparent glass such as lead glass, borosilicate glass, high silicate glass, and alkali-free glass can be used.
  • the substrate may have an undercoat layer.
  • the undercoat layer include Zn0 and Si0.
  • c include thin film such as T i 0 2, when using a made of electrically insulating transparent polymer as the base material, this substrate may have a crosslinked resin layer.
  • the crosslinkable resin layer include an epoxy resin, a phenoxy ether resin, and an acrylic resin.
  • an adhesive layer and a gas barrier layer may be provided between the transparent polymer substrate and the crosslinkable resin layer. Examples of the material of the adhesive layer include epoxy-based, acryl-urethane-based, and phenoxy ether-based adhesives.
  • Gas barrier One layer material includes ethylene-vinyl alcohol copolymer, polyvinyl alcohol, polyacrylonitrile, polyvinylidene chloride, polyvinylidene fluoride and the like.
  • the conditions for performing sputtering are difficult to specify unequivocally because they vary variously depending on the method of sputtering and the characteristics of the equipment to be used.However, when using DC magnetron sputtering, the following conditions are required. It is preferable to set as follows.
  • the target applied voltage is preferably 200 to 500 V.
  • Sputtering evening degree of vacuum during the ring is less than 1 X 10- 4 Torr (lxl 0 "" 4 is lower pressure than Torr) and poor stability of the plasma, 5 x 10 - greater than 2 Torr (5 X If the pressure is higher than 10 _2 Torr), the applied voltage to the sputtering target cannot be increased. In addition, if the target applied voltage is less than 200 V, it may be difficult to obtain a good quality thin film, or the deposition rate may be limited.
  • a mixed gas of an inert gas such as an argon gas and an oxygen gas is preferable.
  • the mixing ratio (volume ratio) of the argon gas and the oxygen gas is preferably about 0.5: 0.5 to 0.99: 0.01.
  • the substrate temperature can be appropriately selected from the range of room temperature to a temperature at which the substrate is not deformed or deteriorated by heat depending on the heat resistance of the base material. The manufacturing cost increases accordingly.
  • the temperature is preferably from room temperature to 200 ° C, and when a glass substrate is used, the temperature is preferably from room temperature to 400 ° C.
  • the transparent conductive film I can be provided on a predetermined substrate by a reactive sputtering method other than the sputtering method described above.
  • a reactive sputtering method other than the sputtering method described above.
  • a sputtering target used at this time a sputtering target composed of an alloy of indium and zinc and having an atomic ratio of In of In / (In + Zn) having a predetermined value can be given.
  • the atomic ratio I nZ (In + Zn) of In is a predetermined value means that the atomic ratio I n of the finally obtained film is It means that nZ (In + Zn) is a desired value in the range of 0.50 to 0.90.
  • This alloy target may be, for example, after or zinc powders dispersed a predetermined amount of chips into the molten indium, c Note obtained by cooling this, the purity of the alloy target, the above-mentioned (i ) It is preferably 98% or more for the same reasons as in the sputtering targets of (ii) to (ii). A more preferred purity is 99% or more, and an even more preferred purity is 99.9% or more.
  • the film forming conditions are appropriately set according to the characteristics of the apparatus to be used. However, the film forming conditions similar to those of the above-described DC magnet port sputtering are preferable.
  • this transparent conductive film ⁇ is composed of at least one third element having a valence of at least three positive valences (for example, tin (Sn), A film composed of a substantially amorphous oxide containing aluminum (A 1), antimony (S b), gallium (G a), and germanium (G e), and having an atomic ratio of In (In + Zn) is 0.50 to 0.90, and the atomic ratio of the total amount of the third elements (all the third elements) / (In + Zn tenth all the third elements) is 0.2 or less. It is a membrane.
  • the “substantially amorphous oxide” is as described in the description of the transparent conductive film I.
  • the reason for limiting the atomic ratio InZ (In + Zn) of In in the transparent conductive film II to 0.50 to 0.90 is the same as the reason in the transparent conductive film I described above.
  • the preferred range of the atomic ratio I nZ (I n + Z n) of In varies depending on the method for producing the film, but is approximately 0.6. 0 to 0.90.
  • a more preferable range of the atomic ratio I nZ (I n + Z n) of In is 0.6 to 0.80 for a film manufactured by the coating pyrolysis method, and is 0.8 to 0.8 for a film manufactured by the sputtering method. 80 to 0.90.
  • the atomic ratio is particularly preferably 0.60 to 0.75.
  • the reason that the atomic ratio of the total amount of the third element (all the third elements) / (I n + Zn + the total third element) is limited to 0.2 or less is that the atomic ratio of the total amount of the third element is 0. If it exceeds 2, ions are scattered, and the conductivity of the film is excessively reduced.
  • the atomic ratio of the total amount of the third element is preferably 0.10 or less, particularly preferably 0.02 to 0.10.
  • the transparent conductive film 11 is also limited to the amorphous one.
  • the conductivity may be deteriorated.
  • the above-mentioned substantially amorphous oxide can be used as a transparent conductive film by forming it into a thin film.
  • the film thickness at this time can be appropriately selected according to the application, the material of the base material on which the transparent conductive film 11 is provided, and the like.
  • the transparent conductive film I approximately 3 ⁇ ! It is in the range of ⁇ 3000 nm. If it is less than 3 nm, the conductivity tends to be insufficient, and if it exceeds 3000 nm, the light transmittance tends to decrease.
  • the transparent conductive film 11 made of such an amorphous oxide has practically sufficient conductivity and light transmittance as well as the above-described transparent conductive film ⁇ , and has excellent heat and humidity resistance and etching characteristics. It is a conductive film.
  • the transparent conductive film 11 can also be manufactured by various methods such as a coating thermal decomposition method, a sputtering method, and a CVD method. For the same reason as described above, it is preferable to manufacture by a coating thermal decomposition method or a sputtering method.
  • Sn is particularly preferable as the third element among the above-mentioned exemplified elements. When Sn is used, the conductivity can be further improved.
  • the production of the transparent conductive film 11 by the coating pyrolysis method is performed by using, in addition to the indium compound and the zinc compound, a compound of a third element having a valence of 3 or more (eg, a tin (Sn) compound, an aluminum (A 1) compound,
  • a coating solution is prepared by dissolving at least one of antimony (Sb) compound, gallium (Ga) compound, and germanium (Ge) compound in a predetermined amount to prepare a coating solution. Differs from the production of conductive film I.
  • the other points that is, the method of preparing the coating solution, the type of the substrate, the firing method, and the reduction method of the zinc compound and the zinc compound are the same as those of the method for producing the transparent conductive film I by the coating pyrolysis method. It is.
  • the concentration of the total amount of In, Zn, and the third element (Sn, A1, Sb, Ga, Ge) in the coating solution is determined when the transparent conductive film I is obtained by the coating pyrolysis method. For the same reason as above, 0.01 to 10 mol% is preferable, and 0.1 to 5 mol% is particularly preferable.
  • the “predetermined amount of the compound of the third element” refers to the atomic ratio of the total amount of the third element (Sn, A 1, Sb, Ga, Ge, etc.) in the finally obtained film. (3 elements) / (I n + Zn + all third elements) means an amount at which the desired value is 0.2 or less.
  • Sn compound used as the compound of the third element when producing the transparent conductive film 11 by the coating thermal decomposition method include tin acetate (divalent), dimethoxytin, ethoxytin, and dipropoxytin. , Dibutoxy tin, tetramethoxy tin, tetraethoxy tin, tetrapropoxy tin, tetrabutoxy tin, tin chloride (divalent), tin chloride (tetravalent), and the like.
  • a tin compound having a divalent tin valence changes into a tin compound having a tetravalent tin valence in a process such as firing.
  • A1 compound examples include aluminum chloride, trimethoxyaluminum, trietkinaluminum, tripropoxyaluminum, and tributoxyaluminum.
  • Sb compound examples include antimony chloride (trivalent), antimony chloride (pentavalent), trimethoxyantimony, triethoxyantimony, tripropoxyantimony, and tributoxyantimony.
  • Ga compound examples include gallium chloride (trivalent), trimethoxygallium, triethoxygallium, tripropoxygallium, tributoxygallium, and the like.
  • Ge compound examples include germanium chloride (tetravalent), tetramethoxygermanium, tetraethoxygermanium, tetrapropoxygermanium, tetrabutoxygermanium and the like.
  • the production of the transparent conductive film 11 by the sputtering method is performed by the sputtering method (RF or DC magnetron sputtering method and reactive sputtering method) except that the composition of the sputtering target used is different. Method, etc.) to produce the transparent conductive film I.
  • sputtering target used when the transparent conductive film 11 is provided on a predetermined base material by a direct sputtering (RF or DC magnet opening sputtering) method or the like are as follows. iii) to (iv).
  • the atomic ratio I nZ (I n + Z n) of In is a predetermined value
  • the atomic ratio I nZ (I n + Z n) of In in the finally obtained film is It means the desired value within the range of 0.50 to 0.90.
  • those having a desired value of the atomic ratio I nZ (In + Zn) of In within the range of 0.45 to 9 are used.
  • the atomic ratio of the total amount of the third elements (all the third elements) / (In + Zn + the total third elements) is a predetermined value” means that the total amount of the third elements in the finally obtained film It means that the atomic ratio (total third elements) / (I n + Zn + total third elements) becomes a desired value of 0.2 or less.
  • the sintered body target may be a sintered body substantially consisting of a mixture of indium oxide, zinc oxide and at least one oxide of a third element, and In 2 ⁇ 3 ( ZnO)
  • a sputtering target comprising an oxide-based disc and one or more oxide-based tablets disposed on the disc.
  • the oxide-based disk may be substantially composed of indium oxide or zinc oxide, and may have at least one valence of at least three positive valences.
  • the same oxide-based disk as described above can be used.
  • Z n 2 S n, Zn 7 S b 2 Op, Z n A 1 2 0 what is essentially a One a spinel structure compound of 4, etc. and, from Z n S b 2 triple rutile structure compound such Og Those that have become practical can also be used.
  • the third element only needs to be contained in at least one of the oxide disk and the oxide tablet, and the composition and the use ratio of the oxide disk and the oxide disk are finally obtained.
  • the atomic ratio of In in the film, InZ (In + Zn) is a desired value within the range of 0.50 to 0.90, and the atomic ratio of the total amount of the third element (all the third elements) Z (I n + Zn + all third elements) is appropriately determined so as to be a desired value of 0.2 or less.
  • the purity of any of the sputtering targets (iii) to (iv) is preferably 98% or more. If it is less than 98%, the moisture-heat resistance of the resulting film may be reduced, the conductivity may be reduced, or the light transmittance may be reduced due to the presence of impurities. More preferable purity is 99% or more. More preferably, the purity is 99.9% or more.
  • the relative density of the target is preferably 70% or more. If the relative density is less than 70%, the film forming rate and the film quality are likely to be reduced. The relative density is more preferably 85% or more, and still more preferably 90% or more.
  • the sputtering target (iii) and the oxide-based disc and oxide-based tablet (iv) can be prepared, for example, by dissolving a predetermined amount of a desired third element compound in addition to the zinc compound and the zinc compound.
  • the same method as in the above-mentioned solution method (coprecipitation method) is used, except that the precipitated solution is reacted with the alkaline solution to form a precipitate.
  • a mixture is obtained in the same manner as in the above-described physical mixing method, except that the sputtering target of (i) described above and the above-mentioned ( It can be obtained in the same manner as in the oxide-based disk and oxide-based tablet of ii).
  • tin compounds such as tin acetate, tin oxalate, and tin alkoxide (dimethoxytin, ethoxytin, dipropoxytin, dibutoxy) are used as tin compounds.
  • tin, tetramethoxytin, tetraethoxytin, tetrapropoxytin, tetrabutoxytin, etc. chlorinated chloride, fluorinated tin, nitric acid, tin sulphate, etc. is used and obtained by physical mixing
  • a desired amount of tin oxide or a compound which becomes tin oxide upon firing, specifically, the above compound when obtained by using a solution method is used.
  • a tin compound having a divalent tin valence changes to a tin compound having a tin valence of 4 ′ in a process such as firing.
  • antimony chloride antimony fluoride
  • antimony alkoxide trimethoxyantimony, triethoxyantimony, tripropoxyantimony, tripropoxyantimony
  • antimony oxide or a compound that becomes antimony oxide by firing specifically using a solution method If desired, use the desired amount of said compound.
  • gallium chloride gallium alkoxide (trimethoxygallium, triethoxygallium, tripropoxygallium, tributoxygallium, etc.)
  • gallium alkoxide trimethoxygallium, triethoxygallium, tripropoxygallium, tributoxygallium, etc.
  • germanium (Ge) as the third element is obtained by a solution method, germanium chloride, germanium alkoxide (tetramethoxygermanium, tetraethoxygermanium, tetrapropoxygermanium, tetrabutoxygermanium, etc.) ) Is used in a desired amount, and when the compound is obtained by using a physical mixing method, germanium oxide or a compound which becomes germanium oxide by firing, specifically, the compound which is obtained by using a solution method, is used in a desired amount. .
  • the powder substantially consisting of O 3 and Z or Z n 0 is one of the conductive materials 11 of the present invention.
  • a powder which is obtained by changing the thermal conditions at the time of calcination and which is substantially amorphous in composition and substantially the same as any of the above conductive materials ⁇ , and which is subjected to a predetermined reduction treatment The substantially amorphous powder thus obtained is one of the conductive materials IV of the present invention.
  • the “thermal conditions during calcination” and the “predetermined reduction treatment” are the same as those for obtaining the above-described conductive material of the present invention.
  • the transparent conductive film 11 can be provided on a predetermined base material by a reactive sputtering method other than the direct sputtering method described above.
  • the production of the transparent conductive film 11 by the reactive sputtering method is performed by using zinc, zinc, and at least one third element having a valence of 3 or more (eg, Sn, A and Sb, Ga, and Ge).
  • a sputtering target made of an alloy of the following, wherein the atomic ratio of In: InZ (In + Zn) and the atomic ratio of the total amount of the third element
  • the process can be performed in the same manner as in the production of the transparent conductive film I by the reactive sputtering method, except that each of (all the third elements) / (In + Zn + all the third elements) is a predetermined value.
  • the atomic ratio I nZ (In + Z n) of In is a predetermined value
  • the atomic ratio of In in the finally obtained film In Z (I n + Z n) Is a desired value within the range of 0.50 to 0.90.
  • the atomic ratio of In, InZ (In + Zn) is in the range of 0.45 to 0.9. 1
  • the atomic ratio of the total amount of the third elements (all the third elements) / (I n + Z n + the total third elements) is a predetermined value” means that the third element in the finally obtained film is It means that the atomic ratio of the total amount (all third elements) Z (In + Zn + all third elements) is a desired value of 0.2 or less.
  • the alloy target may be, for example, a powder or chip (solid) of a predetermined amount of zinc powder or chip and at least one tertiary element having a valence of 3 or more in molten indium.
  • a powder or chip (solid) of a predetermined amount of zinc powder or chip and at least one tertiary element having a valence of 3 or more in molten indium For example, after dispersing a predetermined amount of at least one elemental (solid) powder or chip of a third element selected from the group consisting of Sn, A 1, S b, G a and G e, Can be obtained by cooling.
  • the alloy of indium and at least one third element (for example, Sn, A 1, S b, G a, G e) having a valence of 3 or more is melted. It can also be obtained by dispersing a predetermined amount of zinc powder or chips and then cooling it.
  • the purity of the alloy target is preferably 98% or more for the same reason as the sputtering targets (iii) to (iv) described above.
  • a more preferred purity is 99% or more, and an even more preferred purity is 99.9% or more.
  • the transparent conductive film I and the transparent conductive film 11 of the present invention which can be produced by the coating thermal decomposition method or the sputtering method described above, have practically sufficient conductivity and light transmittance, and are resistant to wet heat and etching. It is a transparent conductive film with excellent characteristics.
  • the transparent conductive film I and the transparent conductive film 11 of the present invention having such features are used for various applications such as a transparent electrode for a liquid crystal display element, a transparent electrode for an electroluminescence element, and a transparent electrode for a solar cell. It is suitable as a transparent electrode, a base material when such a transparent electrode is formed by an etching method, or as an anti-icing heater for an antistatic film or a window glass. / 13851 P
  • the conductive transparent film of the present invention comprises the transparent conductive film I or the transparent conductive film described above directly or at least via a crosslinkable resin layer on a film-like or sheet-like transparent polymer substrate. 11 is provided.
  • the transparent polymer substrate in the form of a film or sheet is made of polycarbonate resin, polyarylate resin, polyester resin, polyethersulfone resin, amorphous polyolefin resin, polystyrene resin, acrylic resin, etc.
  • its light transmittance is preferably 70% or more. If it is less than 70%, it is not suitable as a transparent substrate. More preferably, the transparent polymer substrate has a light transmittance of 80% or more, and more preferably has a light transmittance of 90% or more.
  • the thickness of the transparent polymer substrate is 15! // 3 mm is preferred, and 50 // m 11 mm is more preferred.
  • the transparent conductive film provided directly on the transparent polymer base material or at least via the crosslinkable resin layer may be any of the transparent conductive film I and the transparent conductive film 11 as described above, but the film thickness is 3 to no sufficient conductivity can be obtained by preferably c less than 3 nm is 3000 nm, Kura click or reduced light transmission over sexual exceeds 3000 nm, the transparent conductive film when handling the conductive transparent film Etc. may occur.
  • the preferred film thickness is 5 to 1000 nm, more preferably 10 to 800 nm.
  • the crosslinkable resin layer is preferably made of an epoxy resin, a fuoxy ether resin, an acrylic resin, or the like. Further, an adhesive layer or a gas barrier layer may be provided between the transparent polymer substrate and the crosslinkable resin layer.
  • Adhesive layer material Examples include epoxy-based, acrylurethane-based, and phenoxyether-based adhesives.
  • a gas barrier layer, a hard coat layer, and an anti-reflection layer may be provided on the surface opposite to the surface on which they are provided.
  • the conductive transparent film of the present invention has practically sufficient conductivity and light transmittance, and the transparent conductive film constituting the conductive transparent film has excellent moisture-heat resistance, and is suitable for high humidity environments. Even under the condition, there is little decrease in conductivity with time, showing stable conductivity. Further, the transparent conductive film constituting this conductive transparent film has excellent etching characteristics.
  • the conductive transparent film of the present invention having such characteristics can be obtained by etching transparent electrodes for various uses such as a transparent electrode for a liquid crystal display device, a transparent electrode for an electroluminescent device, and a transparent electrode for a solar cell. It is suitable as a base material or the like at the time of forming, or as an anti-icing heater or the like for an antistatic film or window glass.
  • This conductive transparent film can be produced by various methods, but the transparent conductive film I or the transparent conductive film is directly or at least via a crosslinkable resin layer on a film-like transparent polymer substrate.
  • the transparent conductive film I or the transparent conductive film is directly or at least via a crosslinkable resin layer on a film-like transparent polymer substrate.
  • ⁇ , RF or DC magnetron sputtering ⁇ reactive sputtering, etc. from the viewpoint of the performance and productivity of the transparent conductive film and the possibility of manufacturing while keeping the base material temperature low It is preferable to apply the sputtering method described above.
  • the production of the transparent conductive film I or the transparent conductive film H by the spattering method is as described above.
  • the conductive transparent glass of the present invention is characterized in that the transparent conductive film I or the transparent conductive film 11 is provided on a transparent glass substrate.
  • the transparent conductive film I or the transparent conductive film 11 is provided by the coating thermal decomposition method, if the atomic ratio of In (In / ln + Zn) exceeds 0.80, the conductivity of the film becomes poor. May be.
  • the transparent glass substrate various transparent glass films or plates such as soda-lime glass, lead glass, borosilicate glass, high silicate glass, and alkali-free glass can be used.
  • the type and thickness can be appropriately selected according to the intended use of the conductive transparent glass.
  • the transparent conductive film provided on the transparent glass substrate may be either the transparent conductive film I or the transparent conductive film 11 as described above, but the thickness is preferably 3 to 3000 nm. If it is less than 3 nm, sufficient conductivity cannot be obtained, and if it exceeds 3000 nm, the light transmittance of the conductive transparent glass decreases.
  • the preferred film thickness is 5 to: LOOOOnm, more preferably 10 to 800nm.
  • the conductive transparent glass of the present invention has practically sufficient conductivity and light transmittance, and the transparent conductive film constituting the conductive transparent glass has excellent moisture and heat resistance, and can be used in a high humidity environment. Even under the condition, the conductivity decreases little with time and shows stable conductivity. Further, the transparent conductive film constituting the conductive transparent glass has excellent etching characteristics.
  • the conductive transparent glass of the present invention having such characteristics can be used for transparent electrodes for various uses, such as a transparent electrode for a liquid crystal display element, a transparent electrode for an electroluminescent element, and a transparent electrode for a solar cell. It is suitable as a base material when forming by an etching method, or as an anti-icing heater for an antistatic film or a window glass.
  • This conductive transparent glass can be manufactured by various methods. However, in providing the transparent conductive film I or the transparent conductive film II on the transparent glass substrate, from the viewpoint of manufacturing at a low cost while easily controlling the composition, it is preferable to manufacture by a coating pyrolysis method, In order to produce high-performance films with high productivity, it is preferable to produce them by sputtering methods such as RF or DC magnetron sputtering or reactive sputtering. The production of the transparent conductive film I or the transparent conductive film 11 by the coating thermal decomposition method or the sputtering method is as described above.
  • the conductive material I may be substantially composed of one or more of the hexagonal layered compounds represented by the general formula, or may be one or more of the hexagonal layered compounds represented by the general formula. Alternatively, it may be substantially composed of one containing crystalline or amorphous In 2 Og and / or Zn 0.
  • the conductive material I can be obtained in the process of manufacturing the sputtering targets (i) and (ii), but the manufacturing method is not limited to this.
  • At least one third element having a valence of 3 or more for example, tin (S n), aluminum (a 1), antimony (S b), gallium (G a), a powder or a sintered body made of oxides containing germanium (G e)), the general formula I n 2 0 . (ZnO)
  • At least one compound is contained, and the atomic ratio of In (InZln + Zn) is 0.1 to 0.9, and the atomic ratio of the total amount of the third element (all the third elements) Z (In + Zn + all third elements) is not more than 0.2.
  • the conductive material 11 can be obtained in the process of manufacturing the sputtering targets (H) and (iv), but the manufacturing method is not limited to this.
  • the conductive material 11 may be made essentially of one or more of the compounds, I n 2 0 3 and Z or Z n of crystalline or amorphous in addition to one or more of the compounds 0 substantially since they may c conductive material 111 also from those containing the substantially amorphous containing Injiu beam as main cation elements as described above (I n) and zinc (Zn) powder late oxide, or a powder powder made of the oxide and I n 9 0 3 and Z or Z n 0 Prefecture, the atomic ratio I n / a I n in the powder (I n + Z n) is 0 1 to 0.9.
  • the “substantially amorphous oxide” is as described in the description of the transparent conductive film I.
  • the I n 2 0 3 and Z or Z n 0 may be a crystalline or may be amorphous.
  • the conductive material 111 can be obtained in the process of manufacturing the sputtering targets (i) and (ii), but the manufacturing method is not limited to this.
  • the conductive material IV is composed of at least one tertiary element having a valence of 3 or more (eg, Sn, A 1, S b, G a, a powder consisting of substantially powder made of an amorphous oxide or the oxide and I n q 0 3 and Z or Z nO, containing G e), the I n in the powder
  • the atomic ratio I nZ (I n + Z n) is 0.1 to 0.9
  • the atomic ratio of the total amount of the third element (all the third elements) I n + (Zn + all third elements) is 0.2 or less.
  • the atomic ratio of In, InZ (In + Zn), is preferably 0.5 to 0.9, and the atomic ratio of the total amount of the third elements (all the third elements) / (In + Zn + all the third elements) Element) is preferably 0.1 or less, particularly preferably 0.01 to 0.1.
  • the conductive material IV it is particularly preferable to include Sn as the third element from the viewpoint of improving conductivity.
  • the conductive material IV can be obtained in the process of manufacturing the sputtering targets (ii) and (iv), but the manufacturing method is not limited to this.
  • a coating pyrolysis method was used. Based on this, a transparent conductive film I was produced as follows.
  • a quartz glass plate 70 X 20 X 1.5 mm is immersed in the obtained coating solution for dip coating (coating speed: 1.2 cmZ minute), and then an electric furnace is used. And calcined at 500 ° C for 10 minutes. Repeat the above operation of calcining after dip coating for a total of 10 times After this, main firing was further performed at 500 ° C. for 1 hour.
  • the calcining temperature was set to 300 ° C, 400 ° C, and 500 ° C
  • the main firing temperature was set to 300 ° C, 400 ° C, and 600 ° C.
  • FIG. 1 shows the results of XRD measurement of the transparent conductive film I obtained by sintering at 500 ° C.
  • the composition of each transparent conductive film I was measured by X-ray photoelectron spectroscopy (XPS)
  • the atomic ratio I nZ (In + Z n) of In in any transparent conductive film I was 0. 67.
  • the film thickness of each transparent conductive film I was 200 nm.
  • Table 1 shows the results of measuring the surface resistance of each transparent conductive film I by the four-terminal method and the results of measuring the visible light (wavelength 550 nm) transmittance of each transparent conductive film I.
  • Table 1 also shows the results of a moist heat resistance test performed on each transparent conductive film I at 40 ° C and 90% RH, and the surface resistance measured after a test time of 1000 hours.
  • Table 1 also shows the results of measuring the etching rate of each transparent conductive film I using a 10-fold diluted etchant with a hydrochloric acid: nitric acid: water ratio of 1: 0.08: 1 (molar ratio). Shown in
  • a transparent conductive film (thickness: 200 nm) was obtained in the same manner as in Example 1 (calcination temperature: 500 ° C) except that the main firing temperature was changed to 700 ° C.
  • Example 1 The surface resistance and the visible light transmittance of this transparent conductive film were measured in the same manner as in Example 1, and the wet heat resistance test was performed in the same manner as in Example 1.
  • Example 1 The surface resistance after 1000 hours was measured in the same manner as in Example 1. Further, the etching rate of this transparent conductive film was measured in the same manner as in Example 1. Table 1 shows these results.
  • Example 2 The surface resistance and visible light transmittance of each transparent conductive film I were measured in the same manner as in Example 1, and the same moist heat resistance test as in Example 1 was performed. It measured similarly. Further, the etching rate of each transparent conductive film I was measured in the same manner as in Example 1. Table 1 shows these results. Comparative Example 2
  • a transparent conductive film (thickness: 200 nm) was obtained in the same manner as in Example 2 (calcination temperature: 500 ° C) except that the main firing temperature was changed to 700C.
  • the XRD measurement showed that the transparent conductive film thus obtained was crystalline.
  • the atomic ratio of In was In / (In + Zn) to be 0.75.
  • Example 1 The surface resistance and the visible light transmittance of this transparent conductive film were measured in the same manner as in Example 1, and the same moist heat resistance test as in Example 1 was performed. Was measured. Further, the etching rate of this transparent conductive film was measured in the same manner as in Example 1. Table 1 shows these results.
  • a transparent conductive film (thickness: 200 nm) was obtained in the same manner as in Example 3 (calcination temperature: 500 ° C) except that the main firing temperature was changed to 700 ° C.
  • the transparent conductive film thus obtained was crystalline according to the result of XRD measurement.
  • the composition was measured by XPS, and as a result, the atomic ratio of In was found to be 0.55 (In + Zn).
  • Example 1 The surface resistance and the visible light transmittance of this transparent conductive film were measured in the same manner as in Example 1, and the same moist heat resistance test as in Example 1 was performed. Was measured. Further, the etching rate of this transparent conductive film was measured in the same manner as in Example 1. Table 1 shows these results.
  • a transparent and uniform coating solution was prepared in the same manner as in Example 1 except that the atomic ratio InZ (In + Zn) of In in the coating solution was 0.50.
  • a transparent conductive film (thickness: 200 nm) was obtained in the same manner as in Example 1 (calcination temperature: 500 ° C) except that the main firing temperature was changed to 700 ° C.
  • Example 1 The surface resistance and the visible light transmittance of this transparent conductive film were measured in the same manner as in Example 1, and the wet heat resistance test was performed in the same manner as in Example 1. The surface resistance after 1000 hours was measured in the same manner as in Example 1. Further, the etching rate of each transparent conductive film was measured in the same manner as in Example 1. Table 1 shows the results.
  • a transparent and uniform coating solution was prepared in the same manner as in Example 1 except that the atomic ratio of In in the coating solution, InZ (In + Zn), was set to 0.33.
  • Example 1 The surface resistance and the visible light transmittance of this transparent conductive film were measured in the same manner as in Example 1, and the same moist heat resistance test as in Example 1 was performed. Was measured. Further, the etching rate of this transparent conductive film was measured in the same manner as in Example 1. Table 1 shows these results.
  • a transparent and uniform coating solution was prepared in the same manner as in Example 1 except that the atomic ratio of In in the coating solution, InZ (In + Zn), was set to 0.80.
  • Example 1 The surface resistance and visible light transmittance of this transparent conductive film were the same as in Example 1.
  • Example 1 the same moist heat resistance test as in Example 1 was performed, and the surface resistance after a test time of 1000 hours was measured in the same manner as in Example 1. Further, the etching rate of the transparent conductive film was measured in the same manner as in Example 1. Table 1 shows these results.
  • Example 1 The surface resistance and the visible light transmittance of the thus obtained indium oxide thin film were measured in the same manner as in Example 1, and the wet heat resistance test was performed in the same manner as in Example 1, and the test time was 100 hours.
  • the surface resistance was measured in the same manner as in Example 1.
  • the etching rate of the indium oxide thin film was measured in the same manner as in Example 1. Table 1 shows the results.
  • Example 1 The surface resistance and visible light transmittance of the ITO thin film thus obtained were measured in the same manner as in Example 1, and a wet heat resistance test similar to that in Example 1 was performed. Was measured in the same manner as in Example 1. The etching rate of the ITO thin film was measured in the same manner as in Example 1. Table 1 shows the results. Firing temperature (T) Visible light Surface ⁇ Resistance ( ⁇ ) Film thickness Etching speed
  • the conductive film I has conductivity equal to or higher than that of the ITO film of Comparative Example 8. Further, each of the transparent conductive films I of Examples 1 to 3 has an excellent visible light transmittance. Further, the surface resistance of each of the transparent conductive films I of Examples 1 to 3 hardly changed before and after the moist heat resistance test. This indicates that each of the transparent conductive films I of Examples 1 to 3 has excellent wet heat resistance. Further, since the etching rate of each transparent conductive film I of Examples 1 to 3 is higher than that of the ITO film of Comparative Example 8, each of the transparent conductive films I of Examples 1 to 3 has an etching characteristic. It turns out that it is excellent.
  • the transparent conductive film of Comparative Example 5 in which (I n + Z n) is out of the limited range of the present invention has the same type of starting material, firing conditions and reduction conditions as in the example.
  • the indium oxide thin film of Comparative Example 7 was inferior to each of the transparent conductive films I of Examples 1 to 3 in terms of conductivity and wet heat resistance, and the ITO film of Comparative Example 8 had excellent conductivity and visible light transmission. It is clear that the transparent conductive films I of Examples 1 to 3 are inferior in moisture and heat resistance, though having the above-mentioned ratio.
  • a transparent conductive film 11 was produced as follows based on a coating thermal decomposition method. First, 30 g of a transparent and homogeneous solution was prepared in exactly the same manner as in Example 1 using 2-methoxymethanol, monoethanolamine, indium acetate, and zinc anhydrous anhydride. Koti corresponds to ring solution) c was then prepared, this solution was added dibutoxy tin 0.
  • the transparent conductive film 11 thus obtained was an amorphous oxide of In, Zn and Sn. Further, the surface resistance and visible light transmittance of the obtained transparent conductive film were measured in the same manner as in Example 1, and the wet heat resistance test was performed in the same manner as in Example 1. The resistance was measured as in Example 1. Further, the etching rate of the transparent conductive film 11 was measured in the same manner as in Example 1. Table 2 shows the results.
  • the transparent conductive film 11 200 nm thick was prepared in the same manner as in Example 4. ).
  • the transparent conductive film 11 thus obtained was an amorphous oxide of In, Zn and A1, based on the result of the XRD measurement. Further, the surface resistance and the visible light transmittance of the obtained transparent conductive film 11 were measured in the same manner as in Example 1, and the wet heat resistance test was performed in the same manner as in Example 1. The resistance was measured as in Example 1. Further, the etching rate of the transparent conductive film 11 was measured in the same manner as in Example 1. Table 2 shows the results.
  • Example 4 a transparent conductive film H (film thickness 200 nm) was obtained.
  • the transparent conductive film 11 thus obtained was an amorphous oxide of In, Zn, and Sb from the result of the XRD measurement. Further, the surface resistance and visible light transmittance of the obtained transparent conductive film were measured in the same manner as in Example 1, and the wet heat resistance test was performed in the same manner as in Example 1. The resistance was measured as in Example 1. Further, the etching rate of the transparent conductive film 11 was measured in the same manner as in Example 1. Table 2 shows the results.
  • Gallium chloride (trivalent) 0.1 g instead of dibutoxy tin
  • the transparent conductive film II thus obtained was an amorphous oxide of In, Zn and Ga from the result of the XRD measurement. Further, the surface resistance and the visible light transmittance of the obtained transparent conductive film 11 were measured in the same manner as in Example 1, and the wet heat resistance test was performed in the same manner as in Example 1, and the test time was 100 hours. The subsequent surface resistance was measured in the same manner as in Example 1. Further, the etching rate of the transparent conductive film H was measured in the same manner as in Example 1. Table 2 shows the results.
  • a transparent conductive film 11 (thickness: 200 nm) was obtained in exactly the same manner as in Example 4.
  • the transparent conductive film 11 thus obtained was an amorphous oxide of In, Zn, and Ge. Further, the surface resistance and the visible light transmittance of the obtained transparent conductive film 11 were measured in the same manner as in Example 1, and the wet heat resistance test was performed in the same manner as in Example 1, and the test time was 100 hours. The subsequent surface resistance was measured in the same manner as in Example 1. Further, the etching rate of the transparent conductive film 11 was measured in the same manner as in Example 1. Table 2 shows the results. Table 2
  • each transparent conductive film 11 has a higher conductivity than each transparent conductive film I of Examples 1 to 3 not containing the third element. Further, each of the transparent conductive films 11 of Examples 4 to 8 has an excellent visible light transmittance (the surface resistance of each of the transparent conductive films H of Examples 4 to 8 is There is almost no change before and after the heat-moisture resistance test, which indicates that each of the transparent conductive films 11 of Examples 4 to 8 is excellent in heat-moisture resistance. Since the etching rate of each transparent conductive film 11 is higher than the etching rate of the ITO film of Comparative Example 8 shown in Table 1, each of the transparent conductive films 11 of Examples 4 to 8 has excellent etching characteristics.
  • a biaxially stretched polyester film with a thickness of 125 was used as the transparent polymer base material, and the sputtering target was a mixture of indium oxide and zinc oxide with an atomic ratio of In of 0.65 (InZ (In + Zn)).
  • the sputtering target was a mixture of indium oxide and zinc oxide with an atomic ratio of In of 0.65 (InZ (In + Zn)).
  • a conductive transparent film was manufactured in the following manner.
  • the atomic ratio of In in the transparent conductive film I, InZ (In + Zn), was determined by ICP analysis (inductively coupled plasma emission spectroscopy; SPS-1500 VR manufactured by Denshi Kogyo Co., Ltd. The same applies to the following Examples and Comparative Examples.) As a result, it was 0.67, which was the same as that of the Sparing Ring Target.
  • the crystallinity of the transparent conductive film I was determined by X-ray diffraction measurement (the model used was Rotaflex RU-200B manufactured by Rigaku Corporation. The same applies to the following Examples and Comparative Examples). It was found to be crystalline. The result of the X-ray diffraction measurement was substantially the same as FIG.
  • the conductive transparent film described above was immersed in a solution obtained by diluting an etching solution having a hydrochloric acid: nitric acid: water ratio of 1: 0.08: 1 (molar ratio) with water by a factor of 10, and a resistance value of 2 M
  • the etching rate of the transparent conductive film I was calculated from the time when the resistance became ⁇ or more. Table 3 shows these results.
  • a biaxially stretched polyester film with a thickness of 125 / m is used as the transparent polymer base material.
  • an alloy of indium and zinc has an atomic ratio of In of InZ (In + Zn) of 0.
  • a conductive transparent film was manufactured using the above 67 by the following procedure.
  • the transparent conductive film I is composed of a composition of oxide oxide and zinc oxide, and the atomic ratio of In in the transparent conductive film I InZ (I n + Zn) was 0.67 as a result of the ICP analysis. Further, as a result of examining the crystallinity of the transparent conductive film I by X-ray diffraction, it was found that the film was amorphous.
  • Example 11 the light transmittance of the conductive transparent film and the surface resistance of the transparent conductive film I were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9, and the test time was 1000 hours. The subsequent surface resistance and light transmittance were measured in the same manner as in Example 9. Further, the etching speed of the transparent conductive film I was measured in the same manner as in Example 9. Table 3 shows the results.
  • Example 11 shows that the light transmittance of the conductive transparent film and the surface resistance of the transparent conductive film I in the same manner as in Example 9.
  • a biaxially stretched polyester film with a thickness of 125; is used as a transparent polymer base material.
  • An alloy containing zinc, zinc, and Sn as a sputtering target is used.
  • the atomic ratio of In is I (In + Z n) was 0.67 and the atomic ratio of the third element, Sn, was S nZ C ln + Z n + S n)
  • a force of 0.04 was used to produce a conductive transparent film as follows. .
  • the composition of the transparent conductive film 11 of the conductive transparent film thus obtained was measured by ICP, the atomic ratio of In was 0.67, and the third element S The atomic ratio S nZ (In + Zn + Sn) of n was 0.04. Further, as a result of examining the crystallinity of this transparent conductive film 11 by X-ray diffraction, it was found that the film was amorphous.
  • Example 9 The light transmittance of the conductive transparent film and the surface resistance of the transparent conductive film 11 were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9. Resistance and light transmittance were measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film II was measured in the same manner as in Example 9. Table 3 shows the results.
  • the sputtering power was set to 100 W
  • the substrate temperature was set to 20 ° C
  • a 200 nm-thick transparent conductive film I was formed on the transparent polymer substrate by RF magnetron direct sputtering. Filmed.
  • the transparent conductive film I When the composition was measured by ICP, the atomic ratio In x (In + Zn) of In was 0.70. The crystallinity of this transparent conductive film I was examined by X-ray diffraction, and it was found that the film was amorphous.
  • the light transmittance of the conductive transparent film and the surface resistance of the transparent conductive film I were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9, and the test time was 100 hours.
  • the subsequent surface resistance and light transmittance were measured in the same manner as in Example 9.
  • the etching rate of the transparent conductive film I was measured in the same manner as in Example 9. Table 3 shows the results.
  • a transparent conductive film I having a thickness of 200 nm was replaced with a transparent polymer in the same manner as in Example 12 except that an atomic ratio of In / (In + Zn) of 0.70 was used.
  • a film was formed on a substrate.
  • the composition of the transparent conductive film I of the conductive transparent film thus obtained was measured by ICP, the atomic ratio of I ⁇ In / (I ⁇ + ⁇ ) was 0.74.
  • the crystallinity of this transparent conductive film I was examined by X-ray diffraction, and it was found that the film was amorphous.
  • the light transmittance of the conductive transparent film and the surface resistance of the transparent conductive film I were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9, and the test time was 100 hours.
  • the subsequent surface resistance and light transmittance were measured in the same manner as in Example 9.
  • the etching rate of the transparent conductive film I was measured in the same manner as in Example 9. Table 3 shows the results.
  • Example 13 Same as Example 13 except that a DC magnetron direct sputtering device was used instead of the RF magnetron direct sputtering device. In the same manner as above, a transparent conductive film I having a thickness of 200 nm was formed on a transparent polymer substrate.
  • the composition of the transparent conductive film I of the conductive transparent film thus obtained was measured by ICP, the atomic ratio of In was Inz (In + Zn) was 0.73.
  • the crystallinity of this transparent conductive film I was examined by X-ray diffraction, and it was found that the film was amorphous.
  • Example 9 The light transmittance of this conductive transparent film and the surface resistance of the transparent conductive film I were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9 to obtain a surface after a test time of 1000 hours. Resistance and light transmittance were measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film I was measured in the same manner as in Example 9. Table 3 shows the results.
  • the composition of the transparent conductive film I of the conductive transparent film thus obtained was measured by ICP, the atomic ratio I nZ of In (I n + Z n) was 0.79.
  • the crystallinity of this transparent conductive film I was examined by X-ray diffraction, and it was found that the film was amorphous.
  • Example 16 The light transmittance of this conductive transparent film and the surface resistance of the transparent conductive film I were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9 to obtain a surface after a test time of 1000 hours. Resistance and light transmittance were measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film I was measured in the same manner as in Example 9. Table 3 shows the results.
  • a transparent conductive film I having a thickness of 200 nm was formed on a transparent polymer substrate in the same manner as in Example 15 except that the substrate temperature during film formation was set at 80 ° C.
  • the composition of the transparent conductive film I of the conductive transparent film thus obtained was measured by ICP, the atomic ratio of In was Inz (In + Zn) was 0.78.
  • the crystallinity of this transparent conductive film I was examined by X-ray diffraction, and it was found that the film was amorphous.
  • Example 9 The light transmittance of this conductive transparent film and the surface resistance of the transparent conductive film I were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9 to obtain a surface after a test time of 1000 hours. Resistance and light transmittance were measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film I was measured in the same manner as in Example 9. Table 3 shows the results.
  • a transparent conductive film I having a thickness of 220 nm was formed on a transparent polymer substrate in the same manner as in Example 14 except that an atomic ratio of InZ (In + Zn) of 0.75 was used. Filmed.
  • the composition of the transparent conductive film I of the conductive transparent film thus obtained was measured by ICP, the atomic ratio In of In (In + Zn) was 0.79.
  • the crystallinity of this transparent conductive film I was examined by X-ray diffraction, and it was found that the film was amorphous.
  • the light transmittance of the conductive transparent film and the surface resistance of the transparent conductive film I were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9; The surface resistance and light transmittance of the sample were measured in the same manner as in Example 9. Furthermore, the etching rate of the transparent conductive film I was measured in the same manner as in Example 9. Table 3 shows the results.
  • a transparent conductive film 11 having a thickness of 200 nm was formed on the transparent polymer substrate.
  • the transparent conductive film 11 was composed of a composition of oxide oxide and zinc oxide containing an oxide of Sn.
  • the atomic ratio I nZ (I n + Z n) was 0.78, and the atomic ratio S nZ (I n + Zn + S n) of Sn as the third element was 0.04.
  • the crystallinity of the transparent conductive film 11 was examined by X-ray diffraction, and it was found that the film was amorphous.
  • Example 9 The light transmittance of the conductive transparent film and the surface resistance of the transparent conductive film 11 were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9. Resistance and light transmittance were measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film 11 was measured in the same manner as in Example 9. Table 3 shows the results.
  • ITO indium oxide and tin oxide
  • a 300 nm-thick transparent conductive film was formed on a transparent polymer substrate in the same manner as in Example 9 except that the substrate temperature at that time was set to 80 ° C.
  • the transparent conductive film obtained in this manner was bonded to a transparent conductive film. / 51-crystalline result determined by the X-ray diffraction, a sharp peak I n 2 0 3 was observed.
  • Example 9 The light transmittance of the conductive transparent film and the surface resistance of the transparent conductive film were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9. The light transmittance was measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film was measured in the same manner as in Example 9. Table 3 shows the results.
  • a transparent conductive film having a thickness of 200 nm was formed on the transparent polymer substrate.
  • the crystallinity of the transparent conductive film of the conductive transparent film thus obtained was examined by X-ray diffraction. As a result, a slight In 2 Og peak was observed.
  • Example 9 The light transmittance of the conductive transparent film and the surface resistance of the transparent conductive film were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9. The light transmittance was measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film was measured in the same manner as in Example 9. Table 3 shows the results.
  • Example 12 In the same manner as in Example 12, except that an indium oxide target containing zinc oxide (a sintered body having an atomic ratio of In: InZ (In + Zn) of 0, 90) was used as a sputtering target. A transparent conductive film having a thickness of 200 nm was formed on a transparent polymer substrate.
  • an indium oxide target containing zinc oxide a sintered body having an atomic ratio of In: InZ (In + Zn) of 0, 90
  • a transparent conductive film having a thickness of 200 nm was formed on a transparent polymer substrate.
  • the conductive transparent film obtained in this manner is composed of a set of transparent conductive films.
  • the composition was measured by ICP, the atomic ratio I nZ (In + Zn) of In was 0.93.
  • the crystallinity of the transparent conductive film was examined by X-ray diffraction, and it was found that the film was amorphous.
  • Example 9 The light transmittance of the conductive transparent film and the surface resistance of the transparent conductive film were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9. The light transmittance was measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film was measured in the same manner as in Example 9. Table 3 shows the results.
  • Example 12 In the same manner as in Example 12, except that an indium oxide target containing zinc oxide (a sintered body having an atomic ratio of In: InZ (In + Zn) of 0.93) was used as a sputtering target. A transparent conductive film having a thickness of 200 nm was formed on a transparent polymer substrate.
  • an indium oxide target containing zinc oxide a sintered body having an atomic ratio of In: InZ (In + Zn) of 0.93
  • a transparent conductive film having a thickness of 200 nm was formed on a transparent polymer substrate.
  • the composition of the transparent conductive film of the conductive transparent film thus obtained was measured by ICP, the atomic ratio of In was In 0.9 (In + Zn) was 0.97.
  • the crystallinity of the transparent conductive film was examined by X-ray diffraction, and it was found that the film was amorphous.
  • Example 9 The light transmittance of the conductive transparent film and the surface resistance of the transparent conductive film were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9. The light transmittance was measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film was measured in the same manner as in Example 9. Table 3 shows the results.
  • Example 16 The same procedure as in Example 16 was carried out except that an indium oxide target containing zinc oxide (a sintered body having an atomic ratio of In: InZ (In + Zn) of 0.93) was used as a sputtering target. , 200 nm thick transparent conductor An electrolytic film was formed on a transparent polymer substrate.
  • an indium oxide target containing zinc oxide a sintered body having an atomic ratio of In: InZ (In + Zn) of 0.93
  • An electrolytic film was formed on a transparent polymer substrate.
  • the composition of the transparent conductive film of the conductive transparent film thus obtained was measured by ICP.
  • the atomic ratio In: In / (In + Zn) was 0. 9 7
  • the crystallinity of the transparent conductive film was examined by X-ray diffraction peak slightly I n 2 0 3 was observed.
  • Example 9 The light transmittance of the conductive transparent film and the surface resistance of the transparent conductive film were measured in the same manner as in Example 9, and a moist heat resistance test was performed in the same manner as in Example 9, and after a test time of 100 hours.
  • the surface resistance and the light transmittance were measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film was measured in the same manner as in Example 9. Table 3 shows the results.
  • Example 12 was repeated except that a sputtering target (three indium oxide tablets, 10 mm in diameter and 5 mm in thickness) was used as a sputtering target on a zinc oxide disk of 4 inches in diameter. Similarly, a transparent conductive film having a thickness of 200 nm was formed on the transparent polymer substrate.
  • a sputtering target three indium oxide tablets, 10 mm in diameter and 5 mm in thickness
  • a transparent conductive film having a thickness of 200 nm was formed on the transparent polymer substrate.
  • the composition of the transparent conductive film of the conductive transparent film thus obtained was measured by ICP, the atomic ratio In of In (In + Zn) was 0.12.
  • the crystallinity of the transparent conductive film was examined by X-ray diffraction, and it was found that the film was amorphous.
  • Example 9 The light transmittance of the conductive transparent film and the surface resistance of the transparent conductive film were measured in the same manner as in Example 9, and a moist heat resistance test was performed in the same manner as in Example 9, and after a test time of 100 hours.
  • the surface resistance and the light transmittance were measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film was measured in the same manner as in Example 9. Table 3 shows the results.
  • Epoxy resin (epoxy resin) with a thickness of 1 G) A layer was provided by a spin coating method, and the epoxy resin was crosslinked by UV irradiation to form a crosslinkable resin layer. Thereafter, a transparent conductive film I having a thickness of 200 nm was formed on the crosslinkable resin layer in the same manner as in Example 12.
  • the composition of the transparent conductive film of the conductive transparent film thus obtained was measured by ICP, the atomic ratio In of In (In + Zn) was 0.70.
  • the crystallinity of the transparent conductive film was examined by X-ray diffraction, and it was found that the film was amorphous.
  • Example 9 The light transmittance of the conductive transparent film and the surface resistance of the transparent conductive film were measured in the same manner as in Example 9, and a moist heat resistance test was performed in the same manner as in Example 9, and after a test time of 100 hours.
  • the surface resistance and the light transmittance were measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film was measured in the same manner as in Example 9. Table 3 shows the results.
  • Example 9 Atomic ratio of In 3rd element Before test ⁇ After test 5 After type test Before test
  • Example 9 0.67 Amorphous 82.81. 6 0 14.0 3.3
  • Example 10 0.67 Crystalline 81.2 81 2.0 13.0 3.4
  • Example 11 0.67 S n (0.04) ⁇ Quality 83.0 82 6 6. 7.0.08
  • Example 12 0.70 Non Amorphous 83.83 2 21.0 22.5 4.2
  • Example 13 0.74
  • Example 14 0.7 0.7 82.6 82 16. 2 17.5 3.2 Performed ⁇ 15 0.79 Amorphous 83. 6 83 21.5 23. 0 3.9
  • Example 16 0.78 Amorphous 81. 9 8 7 19. 2 20.
  • base is X 10 ⁇ ⁇ ⁇ cm
  • each of the conductive transparent films obtained in Examples 9 to 18 has practically sufficient conductivity and light transmittance.
  • Each conductive transparent film has a small change in surface resistance (specific resistance) before and after the moisture and heat resistance test, indicating that it is excellent in moisture and heat resistance.
  • the transparent conductive film (transparent conductive film I or transparent conductive film H) constituting each conductive transparent film obtained in Examples 9 to 18 has a high etching rate, it has poor etching characteristics. It turns out that it is excellent.
  • the conductive transparent film of Comparative Example 9 provided with a crystalline ITO film as the transparent conductive film has practically sufficient conductivity and light transmittance, but before and after the moisture heat resistance test.
  • the large change in the surface resistance indicates that the wet heat resistance is poor.
  • the etching rate of the transparent conductive film (ITO film) constituting the conductive transparent film is low.
  • the conductive transparent film of Comparative Example 10 in which a microcrystalline ITO film is provided as the transparent conductive film.
  • those of Comparative Examples 11 and 12 are excellent in moisture-heat resistance, they are inferior to those of Examples 9 to 18 in terms of conductivity and etching characteristics (etching rate).
  • those of Comparative Examples 13 and 14 have low conductivity.
  • a 125 m thick non-alkaline glass is used as the transparent glass substrate, and the sputtering target is a composition of indium oxide and zinc oxide with an atomic ratio of In of 0.67 (In + Zn).
  • the conductive transparent glass was manufactured by using the sintered body as described below.
  • an argon gas purity: 99.99%)
  • an oxygen gas purity: 99.99%)
  • the composition of the transparent conductive film I of the conductive transparent glass obtained in this way was measured by ICP, and the atomic ratio of In, InZ (In + Zn), was the same as that of the sputtering target. 67. Further, as a result of examining the crystallinity of this transparent conductive film I by X-ray diffraction, it was found that the film was amorphous. The results of the X-ray diffraction measurement were substantially the same as in FIG.
  • Example 9 The light transmittance of the conductive transparent glass and the surface resistance of the transparent conductive film I were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9. Resistance and light transmittance were measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film I was measured in the same manner as in Example 9. Table 4 shows the results.
  • Al-free glass with a thickness of 125 m is used as the transparent glass substrate, and an alloy of zinc and zinc is used as the sputtering target and the atomic ratio of In is 0.67 (In + Zn).
  • a conductive transparent glass was manufactured using the method described below.
  • the transparent conductive film I is composed of a composition of zinc oxide and zinc oxide, and the atomic ratio of In in this transparent conductive film I, InZ (In + Zn), is The result of the ICP analysis was 0.67. Further, as a result of examining the crystallinity of the transparent conductive film I by X-ray diffraction, it was found that the film was amorphous.
  • Example 22 the light transmittance of the conductive transparent glass and the surface resistance of the transparent conductive film I were measured in the same manner as in Example 9, and a humidity and heat resistance test was performed in the same manner as in Example 9, and after a test time of 1000 hours.
  • the surface resistance and the light transmittance were measured in the same manner as in Example 9.
  • the etching rate of the transparent conductive film I was measured in the same manner as in Example 9. Table 4 shows the results.
  • the transparent conductive film ⁇ is oxidized. It is composed of a composition of zinc oxide and zinc oxide containing an oxide of Sn.As a result of ICP analysis, the atomic ratio of In, InZ (In + Zn), is 0.
  • the crystallinity of the transparent conductive film 11 was examined by X-ray diffraction, and it was found that the film was amorphous.
  • Example 9 The light transmittance of the conductive transparent film and the surface resistance of the transparent conductive film 11 were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9. Resistance and light transmittance were measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film 11 was measured in the same manner as in Example 9. Table 4 shows the results.
  • the composition of the transparent conductive film I of the conductive transparent glass thus obtained was measured by ICP. As a result, the atomic ratio In (In + Zn) of In was 0.70.
  • the crystallinity of the transparent conductive film I was determined by X-ray diffraction. As a result of investigation, it was found that the material was amorphous.
  • Example 9 The light transmittance of the conductive transparent glass and the surface resistance of the transparent conductive film I were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9. Resistance and light transmittance were measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film I was measured in the same manner as in Example 9. Table 4 shows the results.
  • a transparent conductive film I having a thickness of 200 nm was formed on a transparent glass substrate in the same manner as in Example 22 except that a material having an atomic ratio of InZ (In + Zn) of 0.70 was used. .
  • the composition of the transparent conductive film I of the conductive transparent glass thus obtained was measured by ICP. As a result, the atomic ratio In of In (In + Zn) was 0.74. The crystallinity of this transparent conductive film I was examined by X-ray diffraction, and it was found that the film was amorphous.
  • Example 9 The light transmittance of the conductive transparent glass and the surface resistance of the transparent conductive film I were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9. Resistance and light transmittance were measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film I was measured in the same manner as in Example 9. Table 4 shows the results.
  • a 250 nm-thick transparent conductive film I was formed on a transparent glass substrate in the same manner as in Example 24 except that the substrate temperature during film formation was set to 200 ° C.
  • the composition of the transparent conductive film I of the conductive transparent glass thus obtained was measured by ICP, and the atomic ratio of In was InZ (In + Zn). Was 0.73.
  • the crystallinity of this transparent conductive film I was examined by X-ray diffraction, and it was found that the film was amorphous.
  • Example 9 The light transmittance of the conductive transparent glass and the surface resistance of the transparent conductive film I were measured in the same manner as in Example 9, and a wet heat resistance test was performed in the same manner as in Example 9 to obtain a test time of 100 hours. The subsequent surface resistance and light transmittance were measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film I was measured in the same manner as in Example 9. Table 4 shows the results.
  • Example 24 In the same manner as in Example 24 except that a DC magnetron direct sputtering device was used instead of the RF magnetron direct sputtering device, a 250-nm-thick transparent conductive film I was formed on a transparent glass substrate.
  • the composition of the transparent conductive film I of the conductive transparent glass thus obtained was measured by ICP, and the atomic ratio of In was found to be 0.73 with the atomic ratio of In (Zn + Zn) being 0.73. there were.
  • the crystallinity of this transparent conductive film I was examined by X-ray diffraction, and it was found that the film was amorphous.
  • Example 9 The light transmittance of the conductive transparent glass and the surface resistance of the transparent conductive film I were measured in the same manner as in Example 9, and a wet heat resistance test was performed in the same manner as in Example 9 to obtain a test time of 100 hours. The subsequent surface resistance and light transmittance were measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film I was measured in the same manner as in Example 9. Table 4 shows the results.
  • Example 23 except that a zinc oxide tablet (diameter: 10 mm, thickness: 5 mm) was placed on a 4-inch diameter oxide disk as a sparing ring.
  • a transparent conductive film I having a thickness of 200 nm was formed on a transparent glass substrate.
  • the composition of the transparent conductive film I of the conductive transparent glass thus obtained was measured by ICP.
  • the atomic ratio of In was In 0.7 (In + Zn), which was 0.72.
  • the crystallinity of this transparent conductive film was examined by X-ray diffraction, and it was found that the film was amorphous.
  • Example 9 The light transmittance of the conductive transparent film and the surface resistance of the transparent conductive film were measured in the same manner as in Example 9, and a moist heat resistance test was performed in the same manner as in Example 9, and after a test time of 100 hours.
  • the surface resistance and the light transmittance were measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film was measured in the same manner as in Example 9. Table 4 shows the results.
  • a transparent conductive film having a thickness of 350 nm was formed on a transparent glass substrate.
  • the crystallinity of the transparent conductive film of the conductive transparent glass thus obtained was examined by X-ray diffraction. While measured in the same manner as 0 3 sharp peaks were observed c the surface resistance of the light transmittance and the transparent conductive film of the conductive transparent glass as in Example 9, carried out wet heat resistance test in the same manner as in Example 9 The surface resistance and the light transmittance after 1000 hours of the test were measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film was measured in the same manner as in Example 9. Table 4 shows the results.
  • a sintered body composed of a composite oxide of ITO and tin oxide (ITO) with an atomic ratio of In to Sn of In ZSn of 91 was used as the sputtering target.
  • a transparent conductive film having a thickness of 200 nm was formed on a transparent glass substrate in the same manner as in Example 23 except for the above.
  • the crystallinity of the transparent conductive film of the conductive transparent glass thus obtained was examined by X-ray diffraction. As a result, a slight In 2 On peak was observed.
  • the light transmittance of the conductive transparent glass and the surface resistance of the transparent conductive film were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9 to determine the surface resistance and the test resistance after 1000 hours.
  • the light transmittance was measured in the same manner as in Example 9.
  • the etching rate of the transparent conductive film was measured in the same manner as in Example 9. Table 4 shows the results.
  • Example 23 except that an indium oxide target containing zinc oxide (a sintered body having an atomic ratio In of In / (In + Zn) of 0.90) was used as a sputtering target. Similarly, a transparent conductive film having a thickness of 250 nm was formed on a transparent glass substrate.
  • an indium oxide target containing zinc oxide a sintered body having an atomic ratio In of In / (In + Zn) of 0.90
  • a transparent conductive film having a thickness of 250 nm was formed on a transparent glass substrate.
  • the composition of the transparent conductive film of the conductive transparent glass thus obtained was measured by ICP, the atomic ratio of In was Inz (In + Zn) was 0.93.
  • the crystallinity of this transparent conductive film was determined by X-ray diffraction, and as a result, it was found to be amorphous.
  • the light transmittance of the conductive transparent glass and the surface resistance of the transparent conductive film were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9 to determine the surface resistance and the test resistance after 1000 hours.
  • the light transmittance was measured in the same manner as in Example 9.
  • the etching rate of the transparent conductive film was measured in the same manner as in Example 9. Table 4 shows the results.
  • Example 25 was repeated except that zinc oxide-containing zinc oxide target (a sintered body having an atomic ratio of In / (In + Zn) of 0.90) was used as a sputtering target. Similarly, a transparent conductive film with a thickness of 250 nm An electrolytic film was formed on a transparent glass substrate.
  • zinc oxide-containing zinc oxide target a sintered body having an atomic ratio of In / (In + Zn) of 0.90
  • An electrolytic film was formed on a transparent glass substrate.
  • the composition of the transparent conductive film of the conductive transparent glass thus obtained was measured by ICP, the atomic ratio In / In / In + Zn of In was 0.93.
  • the crystallinity of this transparent conductive film was determined by X-ray diffraction, and as a result, it was found to be amorphous.
  • Example 9 The light transmittance of the conductive transparent glass and the surface resistance of the transparent conductive film were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9 to obtain a test after a test time of 100 hours. Surface resistance and light transmittance were measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film was measured in the same manner as in Example 9. Table 4 shows the results.
  • Example 26 except that an zinc oxide-containing zinc oxide target (a sintered body having an atomic ratio I (In + Zn) of 0.93) containing zinc oxide was used as a sputtering target. Similarly, a transparent conductive film having a thickness of 250 nm was formed on a transparent glass substrate.
  • an zinc oxide-containing zinc oxide target a sintered body having an atomic ratio I (In + Zn) of 0.93 containing zinc oxide was used as a sputtering target.
  • a transparent conductive film having a thickness of 250 nm was formed on a transparent glass substrate.
  • the composition of the transparent conductive film of the conductive transparent glass thus obtained was measured by ICP, the atomic ratio In / (In + Zn) of In was 0.97.
  • the crystallinity of this transparent conductive film was determined by X-ray diffraction, and as a result, it was found to be amorphous.
  • Example 9 The light transmittance of the conductive transparent glass and the surface resistance of the transparent conductive film were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9 to obtain a test after a test time of 100 hours. Surface resistance and light transmittance were measured in the same manner as in Example 9. Further, the etching rate of the transparent conductive film was measured in the same manner as in Example 9. Table 4 shows the results.
  • a 4-inch diameter zinc oxide disk A 220 nm-thick transparent conductive film was made transparent in the same manner as in Example 23 except that three oxide film tablets (diameter: 1 Omm, thickness: 5 mm) were arranged on the top. A film was formed on a glass substrate.
  • the composition of the transparent conductive film of the conductive transparent glass thus obtained was measured by ICP, the atomic ratio of In was Inz (In + Zn) was 0.12.
  • the crystallinity of this transparent conductive film was determined by X-ray diffraction, and as a result, it was found to be amorphous.
  • the light transmittance of the conductive transparent glass and the surface resistance of the transparent conductive film were measured in the same manner as in Example 9, and the wet heat resistance test was performed in the same manner as in Example 9 to determine the surface resistance and the test resistance after 1000 hours.
  • the light transmittance was measured in the same manner as in Example 9.
  • the etching rate of the transparent conductive film was measured in the same manner as in Example 9. Table 4 shows the results.
  • Comparative Example 16 (ITO) microcrystal 86.3 38.9. 21.0 07.3.4.25.5 200 95 Comparative Example ⁇ 0.93 Non-Bl :, quality 85.6 64.6.20.0 20 5 5. 0 5. 1 250 150 Hikin 8 0. 9 $ mouth! 3 [3 ⁇ 3 ⁇ 4 85.4 85.2 1250 1380 310 350 250 12 Comparative example 19 0.97 3 - ⁇ 84. 6 83. 18.0 18.5 4.5 4.6 250 120 Comparative example 20 0.12 83.2 81.7 260 10 57 68 220 350
  • the unit is X 10- 4 ⁇ cm
  • each of the conductive transparent glasses obtained in Examples 20 to 27 has practically sufficient conductivity and light transmittance.
  • Each conductive transparent film has a small change in surface resistance (specific resistance) before and after the moisture and heat resistance test, indicating that it is excellent in moisture and heat resistance.
  • the transparent conductive film (transparent conductive film I or transparent conductive film 11) constituting each conductive transparent glass obtained in Examples 20 to 27 has a high etching rate, It can be seen that the etching characteristics are excellent.
  • the conductive transparent glass of Comparative Example 15 in which a crystalline ITO film is provided as the transparent conductive film has excellent conductivity, light transmission, and wet heat resistance.
  • the etching rate of the ITO film is much lower than that of Examples 20 to 27.
  • the conductive transparent glass of Comparative Example 16 in which a microcrystalline ITO film was provided as the transparent conductive film was superior to that of Comparative Example 15 in the etching characteristics (etching rate) of the transparent conductive film, example 2 0 example 2 7 still low c also compared with those of the conductive transparent glass of Comparative example 1 6 also inferior to those of examples 2 0 example 2 7 in terms of heat and humidity resistance.
  • Comparative Examples 17 and 19 have practically sufficient conductivity and light transmittance, and are also excellent in wet heat resistance, but are performed in terms of the etching characteristics (etching rate) of the transparent conductive film.
  • Comparative Examples 18 and 20 have low conductivity.
  • the transparent conductive film I thus obtained was amorphous. Further, the atomic ratio of In to this transparent conductive film I, InZ (In + Zn), was 0.88 as a result of the ICP analysis.
  • Example 29 The surface resistance and light transmittance (wavelength of test light: 550 nm) of this transparent conductive film I were measured, and the etching rate was measured in the same manner as in Example 9. The specific resistance was calculated. Table 5 shows the results.
  • Example 29 The surface resistance and light transmittance (wavelength of test light: 550 nm) of this transparent conductive film I were measured, and the etching rate was measured in the same manner as in Example 9. The specific resistance was calculated. Table 5 shows the results. Example 29
  • a transparent glass substrate (# 7059 manufactured by Koingen Co., Ltd.) was used as the transparent glass substrate, and a 200 nm-thick transparent conductive film I was placed on the glass plate under the same conditions as in Example 28 except for the above. Provided.
  • the transparent conductive film I thus obtained was amorphous.
  • the atomic ratio In x (In + Zn) of In in this transparent conductive film I was 0.88 as a result of the ICP analysis.
  • Example 30 The surface resistance, light transmittance and etching rate of the transparent conductive film I were measured in the same manner as in Example 28. After heating this transparent conductive film I at 200 ° C. for 1 hour, its surface resistance was measured. Further, the specific resistance of the transparent conductive film I before and after heating was calculated. Table 5 shows the results.
  • Example 30 The surface resistance, light transmittance and etching rate of the transparent conductive film I were measured in the same manner as in Example 28. After heating this transparent conductive film I at 200 ° C. for 1 hour, its surface resistance was measured. Further, the specific resistance of the transparent conductive film I before and after heating was calculated. Table 5 shows the results. Example 30
  • a transparent conductive film I having a thickness of 100 nm was formed on the glass plate under the same conditions as in Example 29 except that the substrate temperature was 200 ° C. As a result of X-ray diffraction measurement, it was confirmed that the transparent conductive film I thus obtained was amorphous. In addition, the atomic ratio In x (In + Zn) of In in this transparent conductive film I was 0.88 as a result of the ICP analysis.
  • Example 31 The surface resistance, light transmittance and etching rate of the transparent conductive film I were measured in the same manner as in Example 28. After heating this transparent conductive film I at 200 ° C. for 1 hour, its surface resistance was measured. Further, the specific resistance of the transparent conductive film I before and after heating was calculated. Table 5 shows the results.
  • Example 31 The surface resistance, light transmittance and etching rate of the transparent conductive film I were measured in the same manner as in Example 28. After heating this transparent conductive film I at 200 ° C. for 1 hour, its surface resistance was measured. Further, the specific resistance of the transparent conductive film I before and after heating was calculated. Table 5 shows the results. Example 31
  • the transparent conductive film I thus obtained was amorphous.
  • the atomic ratio In x (In + Zn) of In in the transparent conductive film I was 0.88 as a result of ICP analysis.
  • the surface resistance, light transmittance and etching rate of the transparent conductive film I were measured in the same manner as in Example 28. The specific resistance was calculated. Table 5 shows these results.
  • a transparent glass substrate (# 7059 manufactured by Koingen Co., Ltd.) was used as the transparent glass substrate, and the other conditions were the same as in Example 31, and a 250 nm-thick transparent conductive film I was placed on the glass plate. Provided.
  • Example 33 As a result of X-ray diffraction measurement, it was confirmed that the transparent conductive film I thus obtained was amorphous. In addition, the atomic ratio In x (In + Zn) of In in this transparent conductive film I was 0.87 as a result of ICP analysis. 51 The surface resistance, light transmittance and etching rate of this transparent conductive film I were measured in the same manner as in Example 28. After heating the transparent conductive film I at 200 ° C. for 1 hour, the surface resistance was measured. Further, the specific resistance of the transparent conductive film I before and after heating was calculated. Table 5 shows the results. Example 33
  • I n 2 0 3 (Z n 0) atomic ratio of the sintered body target (I n consisting of hexagonal layered compound you express 4 and I n and 2 Og I nZ ln + Zi O.80, relative density 87%), and under the same conditions as in Example 32, a transparent conductive film I having a thickness of 210 nm was provided on the glass plate.
  • Example 34 As a result of X-ray diffraction measurement, it was confirmed that the transparent conductive film I thus obtained was amorphous. Further, as a result of the ICP analysis, the atomic ratio of In in this transparent conductive film I, InZ (In + Zn), was 0.84. The surface resistance, light transmittance and etching rate of the transparent conductive film I were measured in the same manner as in Example 28. After heating this transparent conductive film I at 200 ° C. for 1 hour, its surface resistance was measured. Further, the specific resistance of the transparent conductive film I before and after heating was calculated. Table 5 shows the results. Example 34
  • this transparent conductive film In 11 As a result of X-ray diffraction measurement, it was confirmed that the transparent conductive film 11 thus obtained was amorphous. Also, as a result of the ICP analysis, this transparent conductive film In 11, the atomic ratio of In, InZ (In + Zn), was 0.87, and the atomic ratio of Sn, SnZ (In + Zn + Sn), was 0.02.
  • I n 9 0 3 (Z n 0) hexagonal layered compound you express in and I n 2 0 3 consists Metropolitan sintered body sputtering evening one Getting preparative (I n the atomic ratio I n / ( (In + Zn) 0.90, relative density of 80%), and under the same conditions as in Example 29, a transparent conductive film having a thickness of 300 nm was provided on the glass plate.
  • Example 28 The surface resistance, light transmittance and etching rate of this transparent conductive film were measured in the same manner as in Example 28. After heating the transparent conductive film at 200 ° C. for 1 hour, the surface resistance was measured. Furthermore, the specific resistance of the transparent conductive film before and after heating was calculated. Table 5 shows the results.
  • IT 0 target as a sputtering coater Getting preparative (I n 0 3 -. 5 wt% S n 0 2) with the others under the same conditions as in Example 3 0, wherein the transparent conductive film having a thickness of 1 0 0 nm glass Provided on a plate.
  • An epoxy resin (epoxy acrylate) layer having a thickness of 1 ⁇ m was provided on the transparent polymer substrate by a spin coating method, and the epoxy resin was cross-linked by UV irradiation to form a cross-linkable resin layer. Thereafter, a transparent conductive film I having a thickness of 200 nm was formed on the crosslinkable resin layer in the same manner as in Example 33. As a result of X-ray diffraction measurement, it was confirmed that the transparent conductive film I thus obtained was amorphous. Further, as a result of the ICP analysis, the atomic ratio of In in this transparent conductive film I, InZ (In + Zn), was 0.84. The surface resistance, light transmittance and etching rate of the transparent conductive film I were measured in the same manner as in Example 28. The specific resistance was calculated. Table 5 shows these results.
  • PE indicates 2f stretched polyester film, and glass indicates non-alkali glass.
  • PE of the practice () 35 is provided with flaky ⁇ fat; S
  • Target F. to 1 TO Target - shows the (0 1 n 2 3 5wt% S n 0 3 ⁇ 4).
  • each of the transparent conductive films obtained in Examples 28 to 35 has practically sufficient conductivity and transparency, and also has excellent etching characteristics.
  • each of the values obtained in Examples 29, 30, 30, 32, 33, 34, and 35 was obtained. It can be seen that the transparent conductive film has excellent thermal stability of specific resistance.
  • the transparent conductive films obtained in Example 28, Example 31 and Example 35 were subjected to a heat treatment to confirm the thermal stability of the specific resistance because the heat resistance of the substrate was low.
  • the transparent conductive film obtained in Example 28 is substantially the same as the transparent conductive film obtained in Example 29, the transparent conductive film obtained in Example 31 is also used.
  • Example 32 Is substantially the same as the transparent conductive film obtained in Example 32, so that the transparent conductive film obtained in Example 35 is substantially the same as the transparent conductive film obtained in Example 33. It is presumed that the transparent conductive films of Examples 28, 31 and 35 also have excellent thermal stability of specific resistance because they are of the same quality.
  • the transparent conductive film of Comparative Example 21 in which the atomic ratio In of In is outside the limited range of the present invention has practically sufficient conductivity and transparency. At the same time, it has excellent etching characteristics, but its thermal stability is very low. Further, the crystalline transparent conductive film obtained by using the ITO target in Comparative Example 22 had excellent conductivity and transparency, but was higher than the transparent conductive films of Examples 28 to 35. Also have poor etching characteristics. All of the transparent conductive films obtained in Examples 28 to 35 were excellent in wet heat resistance.
  • the solution was dissolved in ion-exchanged water of 0 c c to prepare an aqueous solution of water.
  • the aqueous solution obtained above and the alkaline aqueous solution were simultaneously added dropwise to a 5-liter container containing 100 cc of ion-exchanged water at room temperature with vigorous stirring to allow the two solutions to react.
  • the dropping speed was adjusted so that the pH of the reaction system was maintained at 9.0.
  • the mixture was further stirred for 1 hour after the completion of the dropwise addition.
  • the total concentration of In and Zn in this reaction system was 0.3 mol / liter.
  • the obtained slurry was sufficiently washed with water, and the precipitate was collected by filtration. Then, the precipitate collected by filtration was dried at 120 ° C, and calcined at 900 ° C for 5 hours.
  • the obtained fired product was placed in a polyimide pot having a volume of 80 cc together with alumina balls having a diameter of 2 mm, and ethanol was added thereto, followed by grinding with a planetary ball mill for 2 hours.
  • a hexagonal layered compound represented by 1 n 20 , (ZnO) 3 was confirmed, and the ratio was 60 wt%.
  • the composition of the powder was substantially uniform.
  • the content of the hexagonal layered compound was determined using a powder X-ray diffractometer based on the method described in “Ceramic Characterization Technology” (published by the Ceramic Society of Japan, 1987, pp. 44-45). (The same applies to the following examples).
  • XMA X-ray microanalyzer-1) was used for composition analysis.
  • the obtained powder had an average particle diameter of 0.12 / zm and had a substantially uniform particle diameter. 51
  • the volume solid resistance of the obtained powder was 950 ⁇ cm. And-This volumetric solid resistance is measured under the conditions of 40 ° C and 90% RH.
  • the powder obtained in the above (1) was charged into a mold of 1 Omm0, and pre-molded by a mold press molding machine at a pressure of 100 kg gZcm 2 .
  • a mold press molding machine After being compacted at a pressure of 4 tZcm 2 by a cold isostatic press molding machine, it was sintered at 1300 ° C. for 5 hours to obtain a sintered body.
  • Such sintered bodies obtained as described above it was confirmed that containing 80 ⁇ % of I n 2 0 3 (Z n 0), in the hexagonal crystal lamellar compound represented by the composition and particle size substantially Was homogeneous.
  • the relative density of this sintered body was 95%.
  • the obtained slurry was sufficiently washed with water, and the precipitate was collected by filtration. Then, the precipitate collected by filtration was dried at 120 ° C overnight, and calcined at 900 ° C for 5 hours.
  • Example 36 (1) Thereafter, the obtained fired product was pulverized in the same manner as in Example 36 (1) to obtain a powder.
  • the powder obtained was subjected to X-ray diffraction measurement, the generation of I n 2 0 3 (Z nO ) hexagonal layered compound represented by 5 is confirmed, met the ratio 60 wt% Was.
  • the composition of the powder was substantially uniform.
  • the obtained powder had an average particle size of 0.20 m and a substantially uniform particle size.
  • the volume solid resistance of the obtained powder was 700 ⁇ cm. This volume solid resistance was as low as 730 ⁇ cm even after 1000 hours of the moist heat resistance test under the conditions of 40 ° C and 90% RH, and it was confirmed that this powder was excellent in moist heat resistance.
  • the powder obtained in (1) was preformed and consolidated in the same manner as in Example 36 (2), and then sintered at 1350 ° C for 5 hours to obtain a sintered body.
  • Such sintered bodies obtained as described above was confirmed to consist of hexagonal layered compound represented by I n 2 0 3 (Z nO ) c, its composition and particle size was substantially uniform. The relative density of the sintered body was 96%.
  • Example 37 After preparing an aqueous solution in which an indium salt and a zinc salt were dissolved in the same manner as in Example 37 (1), 7.2 g (5 atomic%) of stannic chloride was further added thereto. Next, this aqueous solution and an alcohol prepared in the same manner as in Example 36 (1) were used. A slurry was obtained by reacting the aqueous potassium hydroxide solution in the same manner as in Example 36 (1).
  • the obtained slurry was sufficiently washed with water, and the precipitate was collected by filtration. Then, the precipitate collected by filtration is dried at 120 ° C, and calcined at 900 ° C for 5 hours.
  • Example 36 (1) Thereafter, the obtained fired product was pulverized in the same manner as in Example 36 (1) to obtain a powder.
  • the volume solid resistance of this powder was 330 ⁇ cm.
  • the volume solid resistance was as low as 350 ⁇ cm even after 1000 hours of the moist heat resistance test at 40 ° C and 90% RH, confirming that the powder was excellent in moist heat resistance.
  • the powder obtained in (1) was preformed and consolidated in the same manner as in Example 36 (2), and then sintered at 1350 ° C for 5 hours to obtain a sintered body.
  • Such sintered bodies obtained as described above was confirmed to be a hexagonal crystal lamellar compound represented by 80 wt% I n 2 0 3 (ZnO) c, the particle size was substantially uniform scratch.
  • the relative density of the sintered body was 95%.
  • the atomic ratio of In in the sintered body thus obtained, InZ (In + Zn), was determined by ICP analysis (inductively coupled plasma emission spectroscopy) using SPS-1500VR manufactured by Seiko Denshi Kogyo. The result was 0.33. The relative density of the sintered body was 88%.
  • Example 40 Crushing, mixing, calcining, molding, and sintering were performed in the same manner as in Example 40 except that 278 g of zinc oxide and 52 g of zinc oxide were used.
  • the obtained sintered body was found to be ln 20 by X-ray diffraction measurement. It was confirmed that a mixture of hexagonal layered compound and I n Ri 0 3 ⁇ 4 of (ZnO) 3.
  • Pulverization and mixing, calcination, molding, and sintering were performed in the same manner as in Example 40 except that 278 g of zinc oxide and 38 g of zinc oxide were used.
  • the resulting sintered body results of X-ray diffraction measurement, I n 2 0 3 (Z nO) 3 of hexagonal layered compound and I n.
  • a solution A was obtained by dissolving 435 g of zinc chloride tetrahydrate and 50.3 g of zinc nitrate dihydrate in 2.5 liters of methoxetanol.
  • the powder obtained in the above (1) was charged into a mold having a diameter of 4 inches and preformed by a mold press molding machine at a pressure of 100 kg / cm 2 . Then, it was compacted with a cold isostatic press at a pressure of 4 t / cm ⁇ , and calcined at ISOO kgf Zcm 2 1450 ° C for 3 hours with a hot isostatic press to obtain a sintered body. As a result of X-ray diffraction measurement, the obtained sintered body was In 20 . (Z n 0) it was confirmed that the 4 hexagonal layered compound and a mixture of I n 2 0 3.
  • Example 45 Grinding, mixing, calcination, molding, and sintering were performed in the same manner as in Example 45 except that 5 atomic% of Sn was added as the third element.
  • Solution A was obtained by dissolving 350.5 g of indium nitrate hexahydrate and 637.5 g of zinc nitrate hexahydrate in 5.00 liters of ethanol.
  • the powder thus obtained was subjected to X-ray diffraction measurement, and it was confirmed that 70 wt% of In 20 (Zn 0) 5 was formed. Further, when the volume solid resistance of the powder was measured, it was 25 ⁇ cm. The volume solid resistance was 32 ⁇ cm even after 1000 hours of the moisture resistance test under the conditions of 40 ° C and 90% RH, which proved to be excellent in moisture resistance. Analysis by SEM and XMA showed that this powder had an average particle size of 0.22 // m and had a uniform composition.
  • This molded body was degreased at 500 ° C for 10 minutes, and then sintered at 1200 ° C for 4 hours. In this way, sintered body obtained, ln 2 0 3 (Z n 0) of O Ri 90 w t% in X-ray diffraction measurement produce a ⁇ was confirmed. The density of the sintered body was 92%, and the volume resistance was 5 ⁇ 10 ′′ 3 ⁇ cm ( Example 49).
  • Solution A was obtained by dissolving 293.2 g of indium chloride tetrahydrate and 351.2 g of zinc acetate dihydrate in 5.00 liter of ethanol.
  • Example 50 Using the powder obtained in (1) above, a sintered body was obtained in the same manner as in Example 48 (2). In this way, sintered body obtained, more X-ray diffraction measurement, 80 wt% of I n 2 0 3 (ZnO) 3 production was confirmed. The density of this sintered body was 93%, and the volume resistance was 2 ⁇ 10 to ⁇ cm.
  • Example 50
  • Example 51 Using the powder obtained in (1) above, a sintered body was obtained in the same manner as in Example 48 (2). In this way, the sintered body obtained, more X-ray diffraction measurement, 8 Ow t% of I n 2 0 3 (Z n 0) F production of was confirmed. The density of the sintered body is 91%, the volume resistivity was 1 X 10- 3 ⁇ cm.
  • Example 51
  • the aqueous solution obtained above and the alkaline aqueous solution were simultaneously added dropwise to a 5-liter container containing 100 cc of ion-exchanged water at room temperature with vigorous stirring to allow the two solutions to react.
  • the dropping speed was adjusted so that the pH of the reaction system was maintained at 9.0.
  • the mixture was further stirred for 1 hour after the completion of the dropwise addition.
  • the concentration of the combined amount of In and Zn in this reaction system was 0.32 mo1 / litre.o
  • the obtained slurry was sufficiently washed with water, and the precipitate was collected by filtration. Then, the precipitate collected by filtration was dried at 120 ° C overnight.
  • the obtained dried product is fired at 600 ° C for 5 hours, and then the fired product is put together with alumina balls having a diameter of 2 mm into a polyimide pot having a capacity of 80 cc, and ethanol is added thereto.
  • a powder was obtained by crushing for 2 hours.
  • the powder thus obtained contains an amorphous portion of 60 wt% based on the result of X-ray diffraction measurement, and based on the result of composition analysis, the atomic ratio of In / In / (In + Zn ) was found to be 0.66, and the composition was substantially uniform.
  • the powder should be noted c corresponds to one of the conductive material 111, Determination of the amorphous oxide, "Characterization one cane down art ceramic box" (Japan Ceramic Society issued, 1 987, 44-45 Page), the content of the crystalline substance was quantified using a powder X-ray diffractometer, and the remaining amount was determined to be amorphous oxide (the same applies to the following Examples).
  • the powder obtained It was confirmed that the particle diameter was 0.15 / m and the particle diameter was substantially uniform.
  • the volume solid resistance of this powder was 100 ⁇ cm. This volume solid resistance is as low as 105 Qcm even after 100 hours of moisture resistance test under the conditions of 40 ° C and 90% RH (relative humidity), confirming that the obtained powder has excellent moisture resistance. Was done.
  • the obtained slurry was sufficiently washed with water, and the precipitate was collected by filtration. Then, the precipitate collected by filtration was dried at 120 ° C.
  • Example 2 Thereafter, the obtained dried product was fired at 500 ° C. for 5 hours, and the fired product was pulverized in the same manner as in Example 1 to obtain a powder.
  • the powder thus obtained may contain 70 wt% of an amorphous part based on the result of X-ray diffraction measurement, and based on the result of composition analysis, the atomic ratio of In, In Z (In + Zn ) was 0.33, and the composition was substantially uniform.
  • This powder corresponds to one of the conductive materials # 1. Further, as a result of SEM observation, it was confirmed that the obtained powder had an average particle size of 0.23 m and had a substantially uniform particle size.
  • the volume solid resistance of this powder was 550 ⁇ cm.
  • the volume solid resistance was as low as 560 Qcm even after 1000 hours of the moisture resistance test under the conditions of 40 ° C and 90% RH, and it was confirmed that the obtained powder had excellent moisture resistance.
  • Example 51 After preparing an aqueous solution in which a metal salt of indium and zinc was dissolved in the same manner as in Example 51, an aqueous solution obtained by further adding 7.7 g (5 at%) of stannic chloride was obtained. A slurry was prepared in the same manner as in Example 51 to obtain a slurry.
  • the obtained slurry was sufficiently washed with water, and the precipitate was collected by filtration. Then, the precipitate collected by filtration was dried at 120 ° C, and calcined at 600 ° C for 5 hours.
  • the mixture was put in a polyimide pot with a volume of 80 cc together with a ball mill, and ethanol was added to the mixture.
  • Example 51 Thereafter, the obtained fired product was pulverized in the same manner as in Example 51 to obtain a powder.
  • the powder thus obtained was found to contain a 60 wt% amorphous portion from the result of X-ray diffraction measurement. This powder corresponds to one of the conductive materials 111.
  • the volume solid resistance of this powder was 90 ⁇ cm.
  • the volume solid resistance was as low as lOOQ cm even after 1000 hours of the moisture resistance test under the conditions of 40 ° C and 90% RH, and it was confirmed that the obtained powder had excellent moisture resistance. .
  • the powder thus obtained was subjected to X-ray diffraction measurement. As a result, the amorphous portion was 90%, and it was confirmed that the powder was substantially amorphous. From the compositional analysis, the atomic ratio I (I n + Z n) of In was 0.67. This powder corresponds to one of the conductive materials 111.
  • the volume solid resistance of this powder was measured and found to be 5 ⁇ cm.
  • the volume solid resistance was 6 ⁇ cm even after 1 000 hours of the moisture resistance test under the conditions of 60 ° C and 95% RH, showing almost no change, indicating excellent moisture resistance.
  • Example 54 powders were prepared as in Example 54. However, the firing temperature was 350 ° C. This powder was also pale yellow.
  • the powder was subjected to X-ray diffraction measurement in the same manner as in Example 54. As a result, the amorphous portion was .80%, and it was confirmed that the powder was substantially amorphous.
  • volume solid resistance of this powder was measured and found to be 4 ⁇ cm. Soshi This volume solid resistance is 6 ⁇ cm even after 1000 hours of moisture resistance test at 600 ° C and 95% RH, and there is almost no change, indicating that it has excellent moisture resistance. all right.
  • Powders were prepared in the same manner as in Example 54 using these solutions. This powder was also pale yellow.
  • zinc nitrate hexahydrate 6 13 g and zinc nitrate hexahydrate 2 98 g 51 was dissolved in 5 liters of butanol to prepare a solution in which zinc salt and zinc salt were dissolved.
  • 451 g of oxalic acid dihydrate was dissolved in 5 liters of butanol to prepare an aqueous solution of oxalic acid.
  • Example 55 powders were prepared as in Example 55. This powder was also pale yellow.
  • volume solid resistance of this powder When the volume solid resistance of this powder was measured, it was 20 ⁇ cm. The volume solid resistance was 22 ⁇ cm even after 1000 hours of the moisture resistance test under the conditions of 60 ° C and 95% RH, showing almost no change, indicating excellent moisture resistance.
  • a solution was prepared by dissolving 102 g of acetate acetate hexahydrate and 42 g of zinc acetate in 140 milliliters of monoethanolamine and 860 milliliters of ethanol. .
  • the solution was stripped of solvent at 80 ° C. under reduced pressure, calcined at 400 for 1 hour, and pyrolyzed. Next, the powder was subjected to a reduction treatment in vacuum at 200 ° C. for 2 hours to obtain a pale yellow powder.
  • the transparent conductive films (transparent conductive films I and 11) of the present invention have practically sufficient conductivity and light transmittance.
  • it is a transparent conductive film excellent in wet heat resistance and etching characteristics. Therefore, according to the present invention, it is possible to provide a transparent conductive film having improved durability, which can be easily formed into a desired shape by an etching method.
  • the conductive transparent substrate (conductive transparent film and conductive transparent glass) of the present invention utilizes the above-mentioned transparent conductive film of the present invention, and this transparent conductive film has the above-mentioned features. Therefore, it is suitable as a base material when forming transparent electrodes for various uses by an etching method, such as a transparent electrode for a liquid crystal display element, a transparent electrode for an electroluminescence element, and a transparent electrode for a solar cell. It is also suitable as an antistatic film, an anti-freezing heater for window glass, and the like.
  • the conductive material (conductive materials I to 1V) of the present invention which is suitable as a material for obtaining the transparent conductive film of the present invention, is used as a material for conductive paint or conductive ink in addition to this use. You can also.

Description

明 細 書 透明導電膜、 導電性透明基材および導電性材料 技術分野
本発明は、 透明導電膜およびこの透明導電膜を利用した導電性基材並 びに前記透明導電膜を得るための材料等として好適な導電性材料に関す o
背景技術
液晶表示装置は軽量化、 薄型化が可能であり、 駆動電圧も低いことか ら、 パーソナルコンピュータゃヮードプロセッサ等の 0 A機器へ活発に 導入されている。 そして、 前述のような利点を有している液晶表示装置 は必然的に大面積化、 多画素化、 高精細化の方向に向かっており、 表示 欠陥のない高品質の液晶表示素子が求められている。
液晶表示素子は、 互いに対向して配置された 2つの透明電極により液 晶を挟み込んだサンドィツチ構造をなしており、 透明電極は高品質の液 晶表示素子を得るうえでの重要な要素の一つである。 この透明電極は、 例えば透明ガラス基板上に成膜した透明導電膜をフォ トリソグラフィ 一 法等により.所定形状にパターニングすることで作製されており、 近年で は表示装置のより一層の軽量化を図るため、 透明ガラス基板に代えて高 分子フィルムを用いることが試みられている。
現在、 透明電極としては I T 0電極が主流を占めており、 この I T O 電極の基となる I T O膜は、 スパッタリングターゲッ トとして I T〇を 用いたスパッ夕リング法等により成膜されている。 透明電極として I T 0電極が多用されている理由は、 I T O膜の高透明性、 低抵抗性の他、 エッチング特性 (エッチング速度) 、 基材への付着性等が良好なためで ある。
しかしながら、 電気抵抗が低くかつ透明性が高い I T O膜をスパッ夕 リング法により得るためには、 一般に基板温度を 2 0 0〜 3 0 0 °Cにす る必要があり、 このようにして I T O膜を形成した場合には I T O膜が 結晶化する結果、 そのエッチング特性は良好ではあっても優れていると はいい難いものとなる。 また、 基板として高分子フィルムや樹脂基板を 用いた場合には、 基板温度を 2 0 0〜3 0 0 °Cにすることが困難である ために、 電気抵抗が低くかつ透明性が高い I T O膜を形成することが困 難である。 I T O膜のエッチング特性は当該 I T O膜を非晶質にするこ とで向上させ得るが (米国特許第 5 1 0 5 2 9 1号明細書参照) 、 非晶 質にした場合には導電性が低下するという難点がある。 さらに、 I T O 膜は耐湿熱性が比較的低いため、 この I T O膜を所定形状に成形してな る I T O電極はその使用に伴って導電性および光透過性が経時的に低下 し易いという難点を有している。 導電性および光透過性が経時的に低下 するという耐湿熱性の低さは、 特に非晶質の I T O膜において顕著であ o
本発明は、 上述のような難点を有する I T O膜に代わり得る新たな透 明導電膜、 および I T O膜を利用した導電性透明基材に代わり得る新た な導電性透明基材を提供するためになされたものであり、 実用上十分な 導電性および光透過性を有し、 かつ、 耐湿熱性およびエッチング特性に 優れた透明導電膜およびこの透明導電膜を利用した導電性透明基材を提 することを目的とする。 また本発明は、 前記透明導電膜を得るための 材料等として好適な導電性材料を提供することをも目的とする。
本発明者らは、 I T 0中の S nを他の元素で置き換えることで I T 0 膜よりも化学的安定性の高い透明導電膜が得られるのではないかと考え 4/13851
て鋭意研究を進めた結果、 主要カチオン元素としてィンジゥム ( I n) および亜鉛 (Z n) を含有する実質的に非晶質の酸化物であって I nと Z nの比率が特定の範囲内であるものが、 実用上十分な導電性および光 透過性を有し、 かつ、 耐湿熱性およびエッチング特性に優れていること を見い出し、 本発明を完成するに至った。
主要カチオン元素としてインジウムおよび亜鉛を含有する酸化物から なる導電膜としては、 下記 (1) および (2) の膜
(1) 亜鉛原子に対して 2原子%のィンジゥムを含有する酸化亜鉛から なる焼結体をターゲッ トとして用いたスパッタリング法により基板 温度室温の条件で成膜したインジウム含有酸化亜鉛透明導電膜 (特 開昭 61— 205619号公報参照) 、
(2) 硝酸ィンジゥムと硝酸亜鉛とをィンジゥムの原子比 I nZ ( I n + Z n) が 0. 80となるように含有するコーティ ング溶液を用い たディ ップコートにより基板表面にコーティ ング膜を形成した後、 このコーティ ング膜に所定の熱処理を施して得た酸化亜鉛添加酸化 インジウム膜 (特公平 5— 6289号公報参照) 、
が知られているが、 本発明の透明導電膜は、 同種の手法 (スパッタリ ン グ法または塗布熱分解法) で成膜した場合には上記 (1) 、 (2) の膜 よりも導電性に優れたものが得やすい。 発明の開示
本発明の透明導電膜は、 主要カチオン元素としてィンジゥム ( I n) お iび亜鉛 (Z n) を含有する実質的に非晶質の酸化物からなる膜であ つて、 I nの原子比 I nZ ( I n + Z n) が 0. 50〜0. 90である ことを特徴とするものである (以下、 この透明導電膜を透明導電膜 Iと いう) 。 また、 本発明の他の透明導電膜は、 主要カチオン元素として I 1
nおよび Z nの他に価数が正 3価以上である少なく とも 1種の第 3元素 (例えば錫 (S n) 、 アルミニウム (A 1) 、 アンチモン (S b) 、 ガ リウム (G a) 、 ゲルマニウム (G e) ) を含有する実質的に非晶質の 酸化物からなる膜であって、 I nの原子比 I nZ ( I n + Z n) が 0. 50〜 0. 90、 前記第 3元素の総量の原子比 (全第 3元素) Z ( I n + Z n+全第 3元素) が 0. 2以下であることを特徴とするものである (以下、 この透明導電膜を透明導電膜 Πという) 。
本発明の導電性透明基材は、 フィルム状またはシート状の透明高分子 基材上に直接または少なくとも架橋性樹脂層を介して、 上述した透明導 電膜 Iまたは透明導電膜 11が設けられていることを特徴とするものであ る (以下、 この導電性透明基材を導電性透明フィルムという) 。 また、 本発明の他の導電性透明基材は、 透明ガラス基材上に上述した透明導電 膜 Iまたは透明導電膜 11が設けられていることを特徵とするものである (以下、 この導電性透明基材を導電性透明ガラスという) 。
そして本発明の導電性材料は、 下記 a〜 dの導電性材料である。
a. 主要カチオン元素としてインジウム (I n) および亜鉛 (Z n) を含有する酸化物からなる粉末または焼結体であって、 一般式 I n 2 Og (Z ηθ) m (m=2〜20) で表される六方晶層状化合物 を含有するとともに、 I ηの原子比 I nZ (I n + Zn) が 0. 1 〜0. 9であることを特徴とするもの (以下、 この導電性材料を導 電性材料 Iという) 。
この導電性材料 Iは、 前記一般式で表される六方晶層状化合物の ' 1種以上から実質的になっていてもよいし、 前記一般式で表され る六方晶層状化合物の 1種以上の他に結晶性または非晶性の I n 2
03 および Zまたは Z n 0を含有するものから実質的になってい もよい。 b. 主要カチオン元素としてインジウム (I n) および亜鉛 (Z n) の他に価数が正 3価以上である少なく とも 1種の第 3元素 (例えば 錫 (S n) 、 アルミニウム (A 1) 、 アンチモン (S b) 、 ガリウ ム (G a) 、 ゲルマニウム (G e) ) を含有する酸化物からなる粉 末または焼結体であって、 一般式 I n 2 03 (Z nO) m (m= 2 〜20) で表される六方晶層状化合物に前記第 3元素の少なく とも 1種を含有させてなる化合物を含有するとともに、 I nの原子比 I nZ (I n + Zn) が 0. 1〜0. 9で、 第 3元素の総量の原子比
(全第 3元素) / ( I n + Zn+全第 3元素) が 0. 2以下である ことを特徴とするもの (以下、 この導電性材料を導電性材料 11とい ラ) o
この導電性材料 Hは、 前記化合物の 1種以上から実質的になって いてもよいし、 前記化合物の 1種以上の他に結晶性または非晶性の I n2 0。 および Zまたは Z n 0を含有するものから実質的になつ ていてもよい。
c. 主要カチォン元素としてインジウム (I n) および亜鉛 (Z n) を含有する実質的に非晶質の酸化物の粉末、 または前記酸化物と I n2 0, および Zまたは Z n 0とからなる粉末であり、 I nの原子 比 I nZ Cl n + Z n) が 0. 1〜0. 9であることを特徴とする もの (以下、 この導電性材料を導電性材料 111 という) 。
d. 主要カチオン元素として I IIおよび Z nの他に価数が正 3価以上 である少なく とも 1種の第 3元素 (例えば錫 (S n) 、 アルミニゥ
' ム (A 1) 、 アンチモン (S b) 、 ガリウム (G a) 、 ゲルマニウ ム (G e) ) を含有する実質的に非晶質の酸化物の粉末、 または前 記酸化物と I ηπ 03 および または Ζ η 0とからなる粉末であり、 I ηの原子比 I nZ ( I η + Ζ η) が 0. 1〜0. 9で、 第 3元素 の総量の原子比 (全第 3元素) / (I n + Zn+全第 3元素) が 0. 2以下であることを特徵とするもの (以下、 この導電性材料を導電 性材料 IVという) 。 図面の簡単な説明
図 1は実施例 1で得られた透明導電膜 I (仮焼温度 500°C、 本焼成 温度 500°C) についての XRD (X線回折) 測定の結果を示すグラフ である。 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。
まず本発明の透明導電膜 Iについて説明すると、 この透明導電膜 Iは、 前述したように主要カチオン元素として実質的に I nおよび Z nのみを 含有する実質的に非晶質の酸化物からなり、 I nの原子比 I nZ (I n + Z n) は 0. 50〜0. 90である。 ここで、 「実質的に非晶質の酸 化物」 とは、 『セラミ ックスのキャラクタリゼーショ ン技術』 (社団法 人窯業協会発行, 1987, 44〜45頁) に記載の内部標準法により 結晶質を定義し、 残量を非晶質とした場合に、 非晶質の含有量が 50重 量%以上である酸化物を意味する。 この非晶質の含有量は好ましくは 7 0重量%以上であり、 さらに好ましくは 80%以上である。 なお、 前記 酸化物中の酸素は部分的に欠損している場合がある。 また、 この酸化物 には混合物、 組成物、 固溶体等の全ての形態の酸化物が含まれる。
'この透明導電膜 Iにおける I nの原子比 I nZ (I n + Z n) を 0. 50〜0. 90に限定する理由は、 前記原子比が 0. 50未満では導電 性が低くなり、 前記原子比が 0. 90を超えるとエツチング特性 (ェッ チング速度) が低くなるからである。 I nの原子比 I nZ ( I n + Z n) の好ましい範囲は、 膜の製造方法によっても異なるが概ね 0. 60〜0. 90である。 I nの原子比 I nZ (I n + Zn) のより好ましい範囲は、 塗布熱分解法により製造した膜では 0. 6〜0. 80であり、 スパッ夕 リング法により製造した膜では 0. 80〜0. 90である。 塗布熱分解 法により製造した膜においては, 前記原子比が 0. 60〜0. 75であ ることが特に好ましい。
なお、 結晶化したもの (前述の定義で非晶質の含有量が 50重量%を 下回るもの) は組成が同じであっても非晶質のものより導電性に劣るの で、 透明導電膜 Iは非晶質のものに限定される。 また、 塗布熱分解法に より得た膜では、 I nの原子比 I nZ ( I n + Z n) が 0. 80を超え ると導電性が悪くなることがある。
上述の酸化物は、 薄膜にすることで透明導電膜として利用することが 可能になる。 このときの膜厚は用途や当該透明導電膜が設けられている 基材の材質等に応じて適宜選択可能であるが、 概ね 3 nm〜 3000 n mの範囲'内である。 3 nm未満では導電性が不十分となり易く、 300 0 nmを超えると光透過性が低下し易い。
このような酸化物からなる透明導電膜 Iは、 実用上十分な導電性およ び光透過性を有し、 かつ、 耐湿熱性およびエッチング特性に優れた透明 導電膜である。
この透明導電膜 Iは塗布熱分解法、 スパッタリ ング法、 CVD法等、 種々の方法により製造することが可能であるが、 組成を容易に制御しつ つ低コス卜で製造するうえからは塗布熱分解法により製造することが好 ましく、 性能の高い膜を高い生産性の下に製造するうえからはスパッ夕 リング法により製造することが好ましい。
塗布熱分解法により透明導電膜 Iを製造する場合は、 例えば、 インジ ゥム化合物および亜鉛化合物を I nの原子比 I n/ ( I n + Z n) が所 定の値となるように溶解させたコーティ ング溶液を調製し、 このコーテ ィ ング溶液を所定の基材に塗布して 3 0 0〜6 5 0 °Cで焼成した後に還 元処理して目的とする透明導電膜 Iを得る。 ここで、 「インジウム化合 物および亜鉛化合物を I nの原子比 I n Z ( I n + Z n ) が所定の値と なるように溶解させたコーティ ング溶液」 とは、 最終的に得られる膜に おける I nの原子比 I ( I n + Z n ) が 0 . 5 0〜0 . 9 0の範囲 内の所望値となるようにインジゥム化合物および亜鉛化合物を溶解させ たコーティ ング溶液を意味する。
このコーティ ング溶液は、 上述したィンジゥム化合物および亜鉛化合 物の他に、 溶剤および溶液の安定化剤を含む。
ここで、 ィンジゥム化合物の具体例としては酢酸ィンジゥム等のカル ボン酸塩、 塩化ィンジゥム等の無機ィンジゥム化合物、 インジウムエト キシドやインジウムプロポキシド等のィンジゥムアルコキシドが挙げら れる。 また、 亜鉛化合物の具体例としては齚酸亜鉛等のカルボン酸塩、 塩化亜鉛, フッ化亜鉛, ヨウ化亜鉛等の無機亜鉛化合物、 亜鉛メ トキシ ド, 亜鉛エトキシド, 亜鉛プロボキシド等の亜鉛アルコキシドが挙げら れる。
溶剤としては水や、 メタノール, エタノール, イソプロピルアルコー ル, 2—メ トキシエタノール, 2—エトキシエタノール等のアルコール 類、 トルエン, ベンゼン等の炭化水素等を用いることができ、 溶液の安 定化剤としてはモノエタノールァミ ン, ジエタノールァミ ン, トリエタ ノールアミ ン等のアル力ノールアミ ン等を用いることができる。 これら の'中でも、 溶剤としては 2—メ トキシエタノールが好ましく、 安定化剤 としてはモノエタノールァミ ンが好ましい。
このようなコーティ ング溶液の調製は、 所定量のィンジゥム化合物、 亜鉛化合物、 溶剤および安定化剤を混合することにより行うことができ る。 このときの混合順序は特に限定されるものではない。 混合はスター ラー等の常法による攪拌混合でよく、 このとき加熱してもよい。
攪拌時間は 0. 01〜100時間が好ましい。 0. 01時間未満では 均一な透明溶液を得ることが困難である。 一方、 100時間を超えると 経済性に乏しくなる。 特に好ましい攪拌時間は 0. 1〜10時間である < また攪拌時に加熱する場合、 加熱温度は 10 o°c以下にすることが好ま しい。 10 o°cを超えると溶媒が蒸発し、 溶液濃度が変化する。
コーティ ング溶液における I nと Z nの合量の濃度は、 0. 01〜1 0 mol%とすることが好ましい。 0. 01 mol%未満ではコーティ ング 1回あたりの膜厚が薄く、 所望の膜厚を得るためには多数回のコーティ ングが必要になるため、 経済性に乏しくなる。 一方、 10 mol%を超え るとコーティ ング時に膜厚にむらが生じる。 I nと Znの合量の特に好 ましい濃度は 0. 1〜5 mol%である。
また、 コーティ ング溶液における安定化剤の濃度は、 0. 01〜50 mo 1%とすることが好ましい。 0. 01 mol%未満ではイ ンジウム化合 物および亜鉛化合物の溶剤への溶解が困難になる。 一方、 50 mol%を 超えると、 焼成時に安定化剤が分解することにより生じる炭素が焼成後 も膜中に残存するようになり、 膜の導電性を低下させる。 安定化剤の特 に好ましい濃度は 0. l〜10 mol%である。
塗布熱分解法による透明導電膜 Iの製造では、 上述のようにして調製 したコーティ ング溶液を基材に塗布した後に 300〜650°Cで焼成す る。 基材としては用途に応じて種々のものを用いることができるが、 例 えば透明基材としてはソ一ダ石灰ガラス、 鉛ガラス、 硼硅酸ガラス、 高 硅酸ガラス、 無アルカリガラス、 アルカリガラス、 石英ガラス、 高耐熱 性透明ポリマー等の電気絶縁性透明材料からなるものが挙げられる。 な お、 基材はアンダーコート層を有していてもよい。 アンダーコート層の 具体例としては Z n 0、 S i 0 2 、 T i 0 2 等の薄膜が挙げられる。 コーティ ング溶液を基材に塗布する際の塗布方法は特に限定されるも のではなく、 溶液から薄膜を製造する際に従来より適用されている種々 の方法を用いることができる。 具体例としてはスプレー法、 ディ ッピン グ法、 スピンコート法、 ロールコート法等が挙げられる。
また、 焼成方法も特に限定されるものではなく、 常圧焼成、 真空焼成、 加圧焼成等の方法を適用することができるが、 焼成温度は 3 0 0〜6 5 0 °Cに限定される。 焼成温度の下限を 3 0 0 °Cに限定する理由は、 3 0 0 °C未満では原料の分解が不十分となったり、 溶剤あるいは安定化剤の 分解により生じた炭素が焼成後の膜中に残存して膜の導電性を低下させ るからである。 一方、 焼成温度の上限を 6 5 0 °Cに限定する理由は、 6 5 0 °Cを超えると得られる膜が結晶質となり、 膜の導電性が低下するか らである。 好ましい焼成温度は 3 0 0〜6 0 0 °Cである。
焼成時間は、 焼成温度にもよるが、 0 . 0 1〜1 0時間が好ましい。 0 . 0 1時間未満では原料の分解が不十分となったり、 溶剤あるいは安 定化剤の分解により生じた炭素が焼成後も膜中に残存して膜の導電性を 低下させる。 一方、 1 0時間を超えると経済性に乏しくなる。 特に好ま しい焼成時間は 0 . 1〜1 0時間である。
なお、 塗布した後に焼成するという操作を 1回行っただけでは所望の 膜厚が得られない場合には、 焼成を必要回数行ってもよい。
塗布熱分解法による透明導電膜 Iの製造では、 上述のようにして焼成 した後に還元処理を行う。 還元方法としては還元性ガスによる還元、 不 活性ガスによる還元、 真空焼成による還元等を適用することができる。 還元性ガスとしては水素ガスや水蒸気等を用いることができ、 不活性ガ スとしては窒素ガスやアルゴンガス等を用いることができる。 また、 温 和な条件で還元を行う場合には、 不活性ガスと酸素ガスとの混合ガス等 を用いることもできる。
還元温度は 100〜650°Cが好ましい。 100°C未満では十分な還 元を行うことが困難である。 一方、 650°Cを超えると膜が結晶質とな り、 膜の導電性が低下する。 特に好ましい還元温度は 200〜500°C である。 還元時間は、 還元温度にもよるが、 0. 01〜10時間が好ま しい。 0. 01時間未満では十分な還元を行うことが困難である。 一方、 10時間を超えると経済性に乏しくなる。 特に好ましい還元時間は 0. 1〜10時間である。
上述のようにして還元処理まで行うことにより、 目的とする本発明の 透明導電膜 Iを得ることができる。
次に、 透明導電膜 Iの製造に好適な他の方法であるスパッタリング法 について説明する。
スパッ夕リング法により所定の基材上に透明導電膜 Iを設ける際に用 いるスパッ夕リングタ一ゲッ トは、 透明導電膜 Iが得られるものであれ ばよく、 目的とする透明導電膜 Iの組成 (I nの原子比 ( I nZ (I n + Z n) ) やスパッタリング条件等に応じて種々のスパッ夕リング夕一 ゲッ トを用いることができる。
R Fあるいは D Cマグネトロンスパッタリ ング (以下ダイレク トスパ ッ夕リングということがある) 法等により所定の基材上に透明導電膜 I を設ける際に用いるスパッタリングターゲッ トの具体例としては、 下記 (i) 〜(ii)のスパッ夕リングターゲッ トが挙げられる。
( i ) インジウムと亜鉛とを主成分とする酸化物からなる焼結体夕一 ゲッ トで、 I nの原子比 I nZ ( I n + Z n) が所定の値のもの。 ここで、 「I nの原子比 I nZ ( I n + Z n) が所定の値のもの」 とは、 最終的に得られる膜における I nの原子比 I n/ ( I n + Z n) が 0. 50〜0. 90の範囲内の所望値となるものを意味する c 具体的には、 I nの原子比 I nZ ( I n + Z n) が 0. 45〜0. 9の範囲内の所望値のものを用いる。
この焼結体タ一ゲッ トは、 酸化インジウムと酸化亜鉛との混合物 からなる焼結体であってもよいし、 l n 2 03 (Z nO) — (m = 2〜20) で表される六方晶層状化合物の 1種以上から実質的にな る焼結体であってもよいし (この焼結体は、 本発明の導電性材料 I の 1つである) 、 前記六方晶層状化合物の 1種以上と I n 2 03 お よび Zまたは Z n 0とから実質的になる焼結体であってもよい (こ の焼結体は、 本発明の導電性材料 Iの 1つである) 。 なお、 六方晶 層状化合物を表す前記式において mを 2〜 20に限定する理由は、 mが前記範囲外では六方晶層状化合物にならないからである。
(ϋ) 酸化物系ディスクと、 このディスク上に配置した 1個以上の酸 化物系タブレツ トとからなるスパッ夕リングターゲッ ト。
酸化物系ディスクは、 酸化インジウムまたは酸化亜鉛から実質的 になるものであってもよいし、 l n 2 03 (ZnO) _ (m=2〜 20) で表される六方晶層状化合物の 1種以上から実質的になる焼 結体であってもよいし (この焼結体は、 本発明の導電性材料 Iの 1 つである) 、 I nn Og (Z nO) m (m=2〜20) で表される 六方晶層状化合物の 1種以上と I n 2 03 および Zまたは Z n 0と から実質的になる焼結体であってもよい (この焼結体は、 本発明の 導電性材料 Iの 1つである) 。
また、 酸化物系タブレツ トとしては、 上述した酸化物系ディスク と同様のものを使用できる。
酸化物系ディスクおよび酸化物系タブレツ 卜の組成並びに使用割 合は、 最終的に得られる膜における I nの原子比 I nZ ( I n + Z n) が 0. 50〜0. 90の範囲内の所望値となるように適宜決定 される。
上記(i) 〜(i i )のいずれのスパッタリングターゲッ トも、 その純度は 9 8 %以上であることが好ましい。 9 8 %未満では、 不純物の存在によ り、 得られる膜の耐湿熱性が低下したり、 導電性が低下したり、 光透過 性が低下したりすることがある。 より好ましい純度は 9 9 %以上であり、 更に好ましい純度は 9 9 . 9 %以上である。 また、 焼結体ターゲッ トを 用いる場合、 このターゲッ トの相対密度は 7 0 %以上とすることが好ま しい。 相対密度が 7 0 %未満では、 成膜速度の低下や膜質の低下をまね き易い。 より好ましい相対密度は 8 5 %以上であり、 更に好ましくは 9 0 %以上である。
なお、 上記(i) のスパッタリングタ一ゲッ ト並びに上記(i i )の酸化物 系ディスクおよび酸化物系タブレツ トは、 例えば次のようにして作るこ とができる。
すなわち、 インジウム化合物と亜鉛化合物とを混合し、 この混合で得 られた混合物を仮焼して仮焼物を得た後、 この仮焼物を成型し焼結して 目的とする酸化物の焼結体を得る。 ここで、 原料として用いるインジゥ ム化合物および亜鉛化合物は、 酸化物または焼成後に酸化物になるもの
(酸化物前駆体) であればよい。
インジウム酸化物前駆体、 亜鉛酸化物前駆体としては、 インジウム、 亜鉛の硫化物、 硫酸塩、 硝酸塩、 ハロゲン化物 (塩化物、 臭化物等) 、 炭酸塩、 有機酸塩 (酢酸塩、 しゅう酸塩、 プロピオン酸塩、 ナフテン酸 塩等) 、 アルコキシ ド (メ トキシ ド、 エトキシド等) 、 有機金属錯体 ァセチルァセトナート等) 等が挙げられる。 低温で完全に熱分解し、 不純物が残存しないようにするためには、 この中でも、 硝酸塩、 有機酸 塩、 アルコキシ ド、 有機金属錯体を用いるのが好ましい。
また、 上記のインジウム化合物と亜鉛化合物との混合物は、 下記(A) 94/13851
溶液法 (共沈法) または(B) 物理混合法により得ることが好ましい。
(A) 溶液法 (共沈法)
この方法は、 インジウム化合物および亜鉛化合物を溶解した溶液、 も しくは少なく ともインジウム化合物を溶解した溶液と少なくとも亜鉛化 合物を溶解した溶液の他に、 沈澱形成剤を溶解した溶液をそれぞれ調製 し、 別に用意した容器 (必要により溶媒を入れておいてもよい) に必要 により撹拌しながら前述の溶液を同時にあるいは順次添加混合してィン ジゥム化合物と亜鉛化合物の共沈物を形成させるものである。
またインジウム化合物と亜鉛化合物を溶解した溶液に沈澱形成剤を溶 解した溶液を添加してもよいし、 またその逆であってもよい。
インジゥム化合物と亜鉛化合物を溶解した溶液と沈澱形成剤を溶解し た溶液をそれぞれ調製し、 別に溶媒を入れた容器に撹拌しながら両者の 溶液を同時に添加混合して沈澱を形成する場合を例として以下詳細に説 明する。
まず、 上記インジウム化合物と亜鉛化合物を適当な溶媒に溶解させた 溶液 (以下溶液 Aという) を準備する。 溶媒は、 用いるインジウム化合 物または亜鉛化合物の溶解性に応じて適宜選択すればよく、 例えば、 水、 アルコール、 非プロ トン性極性溶媒 (D M S 0、 N M P、 スルホラン、 T H F等) を用いることができ、 生成する沈澱の溶解度が低いことから、 特に炭素数 1〜5のアルコール (メタノール、 エタノール、 イソプロパ ノール、 メ トキシエタノール、 エチレングリコール等) が好ましい。 溶 液 A中の各金属の濃度は 0 . 0 1〜1 0 mo l Zリ ッ トルが好ましい。 そ の'理由は 0 . 0 1 ino l /リ ッ トル未満では生産性が劣り、 1 0 nio l Zリ ッ トルを超えると不均一な沈緞が生成するからである。
さらに、 原料の溶解を促進するため、 各種溶媒により適宜、 酸 (硝酸、 塩酸等) ゃァセチルアセ トン類、 多価アルコール (エチレングリコール 等) 、 エタノールアミ ン類 (モノエタノールァミ ン、 ジエタノールアミ ン等を溶液中の金属量の 0 . 0 1〜1 0倍程度添加してもよい。
上記溶液 Aとともに、 沈澱形成剤を溶解させた溶液 (以下、 溶液 Bと いう) を準備する。 溶液 Bに溶解させる沈澱形成剤としては、 アルカリ (水酸化ナト リウム、 水酸化力リゥム、 炭酸ナト リウム、 炭酸力リゥム、 重炭酸ナト リゥム、 重炭酸力リゥム、 水酸化アンモニゥム、 炭酸アンモ 二ゥム、 重炭酸アンモニゥム等) 、 有機酸 (ギ酸、 蓚酸、 クェン酸等) 等を用いることができる。 沈澱は、 沈澱形成剤により水酸化物、 無機酸 塩、 有機酸塩となる。
また、 沈澱形成剤を溶解するための溶媒、 および沈澱を形成させる容 器に入れる溶媒としては、 インジウム化合物、 亜鉛化合物等を溶解する ために用いる前述の溶媒を用いることができる。
また、 各種溶液に用いる溶媒は、 操作上同じものを用いた方がよいが、 異なる溶媒を用いてもよい。
この方法においては上述のいずれかの手段で沈澱を形成させるが、 沈 澱形成時の温度は、 溶媒の融点以上沸点以下であればよい。 また、 沈澱 形成後に 1〜5 0時間沈澱を熟成させてもよい。
このようにして得られた沈澱物を次に固液分離、 乾燥する。 沈澱物の 固液分離は、 遠心分離、 濾過等の常法により行われる。 固液分離後、 沈 澱物から陰イオンやアル力リ金属イオン等を除去する目的で、 溶液 A、 Bに用いた溶媒またはその他の溶媒で沈澱物を十分に洗浄することが望 ましい。 固液分離後の乾燥は、 4 0〜2 0 0 で0。 1〜 1 0 0時間行 うのが好ましい。 4 0 °C未満では、 乾燥に時間がかかり過ぎ、 2 0 0 °C 以上では粒子の凝集が起きやすくなる。
(B) 物理混合法
この方法は、 上記のィンジゥム化合物が酸化ィンジゥムまたはその前 駆体 (水溶性、 難溶性を問わない) であり、 上記の亜鉛化合物が酸化亜 鉛またはその前駆体 (水溶性、 難溶性を問わない) である場合のいずれ にも行なうことができる方法であり、 インジゥム化合物と亜鉛化合物を ボールミル、 ジヱッ トミル、 パールミルなどの混合器に入れ、 両化合物 を均一に混ぜ合わせるものである。 混合時間は 1〜2 0 0時間とするの が好ましい。 1時間未満では均一化が不十分となりやすく、 2 0 0時間 を超えると生産性が低下するからである。 特に好ましい混合時間は 1 0 〜 1 2 0時間である。
上記溶液法、 物理混合法等の方法で上述のィンジゥム化合物と亜鉛化 合物の混合物を得た後、 この混合物を仮焼する。 この仮焼工程は、 温度 と時間との兼ね合いで種々異なってくるが、 2 0 0〜 1 2 0 0 °Cで 1〜 1 0 0時間行うことが好ましい。 2 0 0 °C未満または 1時間未満ではィ ンジゥム化合物と亜鉛化合物の熱分解が不十分であり、 1 2 0 0 °Cを超 えた場合または 1 0 0時間を超えた場合には粒子が焼結して粒子の粗大 化が起こる。 特に好ましい焼成温度および焼成時間は、 8 0 0〜 1 2 0 0 °Cで 2〜5 0時間である。
上述のようにして仮焼した後、 得られた仮焼物の粉砕を行なった方が 好ましく、 また必要に応じて、 粉砕前後に還元処理を行ってもよい。 仮焼物の粉砕は、 ボールミル、 ロールミル、 パールミル、 ジヱッ トミ ル等を用いて、 粒子径が 0 . 0 1〜 1 . 0 /z mになるように行うことが 好ましい。 粒子径が 0 . 0 1 // m未満では粉末が凝集しやすく、 ハンド リングが悪くなる上、 緻密な焼結体が得にくい。 一方 1 . 0 mを超え ると緻密な焼結体が得にくい。 なお仮焼と粉砕を繰り返し行なった方が 組成の均一な焼結体が得られる。
また還元処理を行う場合の還元方法としては還元性ガスによる還元、 真空焼成又は不活性ガスによる還元等を適用することができる。 還元性 51
ガスによる還元を行う場合、 還元性ガスとしては水素、 メタン、 CO等 や、 これらのガスと酸素との混合ガス等を用いることができる。 また、 不活性ガス中での焼成による還元の場合、 不活性ガスとしては、 窒素、 アルゴン等や、 これらガスと酸素との混合ガス等を用いることができる c 還元温度は 100〜800°Cが好ましい。 10 o°c未満では十分な還元 を行うことが困難である。 一方、 800°Cを超えると酸化亜鉛の蒸発が 生じて組成が変化する。 特に好ましい還元温度は 200〜800°Cであ る。 還元時間は、 還元温度にもよるが、 0. 01〜10時間が好ましい c 0. 01時間未満では十分な還元を行うことが困難である。 一方、 10 時間を超えると経済性に乏しくなる。 特に好ましい還元時間は 0. 05 〜 5時間である。
上述のようにして仮焼物 (当該仮焼物の粉末を含む) を得た後、 この 仮焼物の成型、 焼結を次に行なう。
なお、 前述の仮焼により得られた粉末または仮焼物 (還元処理を施し たものを含む) のうち比較的高温で処理したものは、 主要カチオン元素 としてィンジゥム (I n) および亜鉛 (Z n) を含有する酸化物からな り、 一般式 l n 2 03 (Z nO) m (m = 2〜 20 ) で表される六方晶 層状化合物を含有するとともに、 I nの原子比 I nZ ( I n + Z n) が 0. 1〜0. 9のものである。 この粉末または仮焼物は本発明の導電性 材料 Iの 1つである。 また、 溶液法で得られインジウム化合物と亜鉛化 合物の混合物を 200〜600°Cで 1〜100時間仮焼した場合には、 実質的に非晶質の粉末が得られる。 この粉末は本発明の導電性材料 111 の' 1つである。 さらに、 前前記の実質的に非晶質の粉末を上述の雰囲気 下、 100〜600でで0. 01〜 10時間還元した場合には、 導電性 に優れた実質的に非晶質の粉末が得られる。 この粉末も本発明の導電性 材料 111 の 1つである。 上述のようにして得た仮焼粉末の成型は、 金型成型、 铸込み成型、 射 出成型等により行なわれるが、 焼結密度の高い焼結体を得るためには、
C I P (冷間静水圧) 等で成型し、 後記する焼結処理に付するのが好ま しい。 成形体の形状は、 ターゲッ トとして好適な各種形状とすることが できる。 また、 成形するにあたっては、 P V A (ポリビニルアルコール) 、 M C (メチルセルロース) 、 ポリワックス、 ォレイン酸等の成形助剤 を用いてもよい。
成型後の焼結は、 常圧焼成、 H I P (熱間静水圧) 焼成等により行な われる。 焼結温度は、 インジウム化合物と亜鉛化合物が熱分解し、 酸化 物となる温度以上であればよく、 通常 8 0 0〜1 7 0 0 °Cが好ましい。 1 7 0 0 °Cを超えると酸化亜鉛および酸化ィンジゥムが昇華し組成のず れを生じるので好ましくない。 特に好ましい焼結温度は 1 2 0 0〜1 7 0 0 °Cである。 焼結時間は焼結温度にもよるが、 1〜5 0時間、 特に 2 〜 1 0時間が好ましい。
焼結は還元雰囲気で行なってもよく、 還元雰囲気としては、 H 2 、 メ タン、 C Oなどの還元性ガス、 A r、 N 2 などの不活性ガスの雰囲気が 挙げられる。 なお、 この場合酸化亜鉛、 酸化インジウムが蒸発しやすい ので、 H I P焼結等により加圧焼結することが望ましい。
このようにして焼結を行なうことにより、 目的とするターゲッ トを得 ることができる。
前述した(i) または(i i )のスパッタリングターゲッ ト等を用いたダイ レク トスパッタリ ング (R Fあるいは D Cマグネ トロンスパッタリ ング) 法'等により本発明の透明導電膜 Iを所定の基材上に設ける場合、 基板の 材質は特に限定されるもではなく、 目的に応じて種々の材質の基板を用 いることができるが、 基材温度を比較的低温に保ったままでの成膜が可 能であることから、 前述した塗布熱分解法により透明導電膜 Iを設ける 場合よりも多種の基材を使用することができる。 例えば透明基材として は、 ポリカーボネート, ポリアリ レート, ポリエステル, ポリスチレン, ポリエーテルスルホン系樹脂, アモルファスポリオレフイ ン、 アク リル 樹脂等の電気絶縁性透明高分子からなるものや、 ソ一ダ石灰ガラス、 鉛 ガラス、 硼硅酸ガラス、 高硅酸ガラス、 無アルカリガラス等の電気絶縁 性透明ガラスからなるもの等を用いることができる。
なお、 基材はアンダーコート層を有していてもよい。 アンダーコート 層の具体例としては Z n 0、 S i 0。 、 T i 02 等の薄膜が挙げられる c また、 基材として電気絶縁性透明高分子からなるものを用いる場合、 こ の基材は架橋性樹脂層を有していてもよい。 架橋性樹脂層の具体例とし てはエポキシ樹脂、 フヱノキシエーテル樹脂、 アクリル樹脂等が挙げら れる。 また透明高分子基材と架橋性樹脂層との間に接着層、 ガスバリヤ 一層を設けてもよい。 接着層の材質としては、 エポキシ系, アクリルゥ レタン系, フヱノキシエーテル系の接着剤等が挙げられる。 ガスバリヤ 一層の材質としては、 エチレン—ビニルアルコール共重合体、 ポリ ビニ ルアルコール、 ポリアクリルニトリル、 ポリ塩化ビニリデン、 ポリフッ 化ビニリデン等が挙げられる。
スパッ夕リ ングを行う場合の条件は、 スパッ夕リ ングの方法や用いる 装置の特性等により種々変ってくるために一概に規定することは困難で あるが、 D Cマグネトロンスパッタリング法による場合には以下のよう に設定することが好ましい。
•真空度およびタ一ゲッ ト印加電圧
スパッタリ ング時の真空度は 1 X 1 0— 4〜5 1 0— 2Τ(ΗΓ程度
(1. 3 X 1 0— 2〜 6. 7 X 1 011 P a程度) 、 より好ましくは 2 X 1 0一4〜 1 X 1 0 2T。rr (2. 7 x 1 0—に 1. 3 X 1 0 Q P a 程度) 、 更に好ましくは 3 X 1 0— 4〜5 X 1 0_3Torr (4. 0 x 1 0一2〜 6. 7 x 10-1P a程度) とする。 また、 ターゲッ ト印加電 圧は 200〜500 Vが好ましい。
スパッ夕リング時の真空度が 1 X 10— 4Torrに満たない (l x l 0""4Torrよりも圧力が低い) とプラズマの安定性が悪く、 5 x 10 — 2Torrよりも高い (5 X 10_2Torrよりも圧力が高い) とスパッ夕 リングターゲッ 卜への印加電圧を高くすることができなくなる。 ま た、 ターゲッ ト印加電圧が 200 V未満では良質の薄膜を得ること が困難になつたり、 成膜速度が制限されることがある。
•雰囲気ガス
雰囲気ガスとしては、 アルゴンガス等の不活性ガスと酸素ガスと の混合ガスが好ましい。 不活性ガスとしてアルゴンガスを用いる場 合、 このアルゴンガスと酸素ガスとの混合比 (体積比) は概ね 0. 5 : 0. 5〜0. 99 : 0. 01とすることが好ましい。
良質の薄膜を得るには、 混合比を正確に制御する必要がある。 •基板温度
基板温度 (基材の温度) は、 基材の耐熱性に応じて、 室温乃至基 板が熱により変形や変質を起こさない温度の範囲内で適宜選択可能 であるが、 高温に加熱するのに伴って製造コストが上昇する。 基材 として高分子基材を用いる場合には室温〜 200°Cが好ましく、 ガ ラス基板を用いる場合には室温〜 400°Cが好ましい。
透明導電膜 Iは、 上述したスパッタリ ング法以外に、 反応性スパッタ リング法によっても所定の基材上に設けることができる。 このとき用い るスパッタリングターゲッ トの具体例としては、 インジウムと亜鉛との 合金からなるものであって、 I nの原子比 I n/ ( I n + Z n) が所定 の値のものが挙げられる。 ここで、 「I nの原子比 I nZ ( I n + Z n) が所定の値のもの」 とは、 最終的に得られる膜における I nの原子比 I nZ (I n + Z n) が 0. 50〜0. 90の範囲内の所望値となるもの を意味する。
この合金ターゲッ トは、 例えば、 溶融インジウム中に亜鉛の粉末また はチップの所定量を分散させた後、 これを冷却することにより得られる c なお、 この合金ターゲッ トの純度は、 前述した(i) 〜(ii)のスパッタリ ングターゲッ トと同様の理由から 98%以上であることが好ましい。 よ り好ましい純度は 99%以上であり、 更に好ましい純度は 99. 9%以 上である。
反応性スパッ夕リングは用いる装置の特性に大きく依存することがあ るため、 上記合金ターゲッ トを用いて反応性スパッ夕リングを行う場合 の条件を一概に規定することは困難である。 したがって、 成膜条件は用 いる装置の特性に応じて適宜設定されることになるが、 前述の D Cマグ ネト口ンスパッタリングと同様の成膜条件が好ましい。
次に本発明の透明導電膜 Hについて説明する。
この透明導電膜 Πは、 前述したように主要カチオン元素として I nお よび Z nの他に価数が正 3価以上である少く とも 1種の第 3元素 (例え ば錫 (S n) 、 アルミニウム (A 1) 、 アンチモン (S b) 、 ガリウム (G a) , ゲルマニウム (G e) ) を含有する実質的に非晶質の酸化物 からなる膜であって、 I nの原子比 I nZ ( I n + Z n) が 0. 50〜 0. 90、 前記第 3元素の総量の原子比 (全第 3元素) / ( I n + Z n 十全第 3元素) が 0. 2以下の膜である。 ここで、 「実質的に非晶質の 酸化物」 とは、 透明導電膜 Iの説明の中で述べたとおりである。
透明導電膜 IIにおける I nの原子比 I nZ (I n + Z n) を 0. 50 〜0. 90に限定する理由は、 前述した透明導電膜 Iにおける理由と同 じである。 透明導電膜 Iの場合と同様に、 I nの原子比 I nZ ( I n + Z n) の好ましい範囲は、 膜の製造方法によっても異なるが概ね 0. 6 0〜0. 90である。 I nの原子比 I nZ (I n + Z n) のより好まし い範囲は、 塗布熱分解法により製造した膜では 0. 6〜0. 80であり、 スパッタリング法により製造した膜では 0. 80〜0. 90である。 塗 布熱分解法により製造した膜においては, 前記原子比が 0. 60〜0. 75であることが特に好ましい。
また、 第 3元素の総量の原子比 (全第 3元素) / (I n + Z n+全第 3元素) を 0. 2以下に限定する理由は、 第 3元素の総量の原子比が 0. 2を超えるとイオンの散乱が起こり、 膜の導電性が低下し過ぎるからで ある。 第 3元素の総量の原子比は 0. 10以下が好ましく、 特に 0. 0 2〜0. 10が好ましい。
なお、 前述した透明導電膜 Iと同様に、 結晶化したものは組成が同じ であつても非晶質のものより導電性に劣るので、 透明導電膜 11も非晶質 のものに限定される。 また、 塗布熱分解法により得た膜では、 I nの原 子比 I nZ (I n + Zn) が 0. 80を超えると導電性が悪くなること がある。
上述の実質的に非晶質の酸化物は、 薄膜にすることで透明導電膜とし て利用することが可能になる。 このときの膜厚は用途や当該透明導電膜 11が設けられている基材の材質等に応じて適宜選択可能であるが、 透明 導電膜 Iと同様に、 概ね 3 ηπ!〜 3000 nmの範囲内である。 3 nm 未満では導電性が不十分となり易く、 3000 nmを超えると光透過性 が低下し易い。
このような非晶質酸化物からなる透明導電膜 11は、 前述の透明導電膜 Γと同様に実用上十分な導電性および光透過性を有し、 かつ、 耐湿熱性 およびエッチング特性に優れた透明導電膜である。
この透明導電膜 11も塗布熱分解法、 スパッタリ ング法、 CVD法等、 種々の方法により製造することが可能であるが、 前述した透明導電膜 I と同様の理由から、 塗布熱分解法またはスパッタリング法により製造す ることが好ましい。 ここで、 第 3元素としては前述の例示元素の中でも S nが特に好ましい。 S nを用いた場合には導電性をより向上させるこ とができる。
塗布熱分解法による透明導電膜 11の製造は、 インジウム化合物および 亜鉛化合物の他に価数が正 3価以上である第 3元素の化合物 (例えば錫 (Sn) 化合物, アルミニウム (A 1) 化合物, アンチモン (S b) 化 合物, ガリウム (G a) 化合物, ゲルマニウム (G e) 化合物) の少な く とも 1種を所定量溶解させてコーティ ング溶液を調製する点で、 塗布 熱分解法による透明導電膜 Iの製造と異なる。 しかしながら、 他の点、 すなわち、 ィンジゥム化合物および亜鉛化合物の種類ゃコーティ ング溶 液の調製方法、 基板の種類、 焼成方法、 および還元方法については塗布 熱分解法による透明導電膜 Iの製造方法と同じである。
なお、 コーティ ング溶液における I nと Z nと第 3元素 (S n, A 1 , S b, G a, G e) の合量の濃度は、 塗布熱分解法により透明導電膜 I を得る場合と同様の理由から、 0. 01〜10 mol%が好ましく、 特に 0. 1〜5 mol%が好ましい。 また、 「第 3元素の化合物の所定量」 と は、 最終的に得られる膜における第 3元素 (S n, A 1 , S b, G a, G e等) の総量の原子比 (全第 3元素) / (I n + Zn+全第 3元素) が 0. 2以下の所望値となる量を意味する。
塗布熱分解法により透明導電膜 11を製造する際に第 3元素の化合物と して用いられる S n化合物の具体例としては、 酢酸錫 (2価) 、 ジメ ト キシ錫、 ジェトキシ錫、 ジプロポキシ錫、 ジブトキシ錫、 テトラメ トキ シ錫、 テトラエトキシ錫、 テトラプロポキシ錫、 テトラブトキシ錫、 塩 化錫 (2価) 、 塩化錫 (4価) 等が挙げられる。 ここで、 錫の原子価が 2価の錫化合物は、 焼成等の工程で錫の原子価が 4価の錫化合物に変化 "I O o
また、 A 1化合物の具体例としては塩化アルミニウム、 ト リメ トキシ アルミニウム、 ト リエトキンアルミニウム、 ト リプロポキシアルミニゥ ム、 トリブトキシアルミニウム等が挙げられる。
S b化合物の具体例としては塩化アンチモン (3価) 、 塩化アンチモ ン (5価) 、 ト リメ トキシアンチモン、 ト リエ トキシアンチモン、 ト リ プロポキシアンチモン、 トリブトキシアンチモン等が挙げられる。
G a化合物の具体例としては塩化ガリゥム (3価) 、 トリメ トキシガ リウム、 トリエトキシガリウム、 トリプロポキシガリウム、 トリブトキ シガリゥム等が挙げられる。
そして、 G e化合物の具体例としては塩化ゲルマニウム (4価) 、 テ トラメ トキシゲルマニウム、 テトラエトキシゲルマニウム、 テトラプロ ポキシゲルマニウム、 テトラブトキシゲルマニウム等が挙げられる。 また、 スパッタリ ング法による透明導電膜 1 1の製造は、 用いるスパッ 夕リ ングターゲッ トの組成が異なる点を除けば、 スパッタリ ング法 (R Fあるいは D Cマグネ トロンスパッタリ ング法および反応性スパッ夕リ ング法等) による透明導電膜 Iの製造と同様にして行うことができる。 ダイレク トスパッタリ ング (R Fあるいは D Cマグネ ト口ンスパッ夕 リ ング) 法等により所定の基材上に透明導電膜 1 1を設ける際に用いるス パッ夕リ ングタ一ゲッ トの具体例としては、 下記(i i i ) 〜(i v)のものが 挙げられる。
(i i i ) 酸化ィンジゥムと酸化亜鉛の他に価数が正 3価以上である少く ' とも 1種の第 3元素 (例えば S n, A 1 , S b, G a, G e ) を含 有する酸化物からなる焼結体ターゲッ 卜で、 I nの原子比 I n Z ( I n + Z n ) および第 3元素の総量の原子比 (全第 3元素) Z ( I n + Z n +全第 3元素) がそれぞれ所定値のもの。 3851
ここで、 「 I nの原子比 I nZ ( I n + Z n) が所定の値のもの」 とは、 最終的に得られる膜における I nの原子比 I nZ (I n + Z n) が 0. 50〜0. 90の範囲内の所望値となるものを意味する。 具体的には、 I nの原子比 I nZ ( I n + Z n) が 0. 45〜 9の範囲内の所望値のものを用いる。 また、 「第 3元素の総量の原 子比 (全第 3元素) / (I n + Zn+全第 3元素) が所定値のもの」 とは、 最終的に得られる膜における第 3元素の総量の原子比 (全第 3元素) / (I n + Zn+全第 3元素) が 0. 2以下の所望値とな るものを意味する。
この焼結体ターゲッ トは、 酸化インジウムと酸化亜鉛と少なく と も 1種の第 3元素の酸化物との混合物から実質的になる焼結体であ つてもよいし、 I n23 (Z nO) m (m = 2〜 20 ) で表され る六方晶層状化合物に少なく とも 1種の前記第 3元素を含有させて なる化合物の 1種以上から実質的になる焼結体であつてもよいし (この焼結体は、 本発明の導電性材料 Hの 1つである) 、 前記化合 物の 1種以上と I n 2 03 および または Z n 0とから実質的にな る焼結体であってもよい (この焼結体は、 本発明の導電性材料 11の 1つである) 。
(iv) 酸化物系ディスクと、 このディスク上に配置した 1個以上の酸 化物系タブレツ トとからなるスパッタリングターゲッ ト。
酸化物系ディスクは、 酸化ィンジゥムまたは酸化亜鉛から実質的 になるものであってもよいし、 価数が正 3価以上である少く とも 1
' 種の第 3元素 (例えば S n, A 1, S b, G a, G e) の酸化物と I n 2 03 および Zまたは Z n 0との混合物からなるものであって もよいし、 l n2 03 (Z nO) m (m=2〜20) で表される六 方晶層状化合物の 1種以上に少なく とも 1種の前記第 3元素を含有 させてなる化合物 (例えば Z nm I nA 10m+3 (m=2〜7) で 表される酸化インジウム ·酸化亜鉛 ·酸化アルミニウムの六方晶層 状化合物や、 Znm I nG a Om+3 (m = 2〜 7 ) で表される酸化 インジウム '酸化亜鉛 ·酸化ガリウムの六方晶層状化合物等) の 1 種以上から実質的になる焼結体であってもよいし (この焼結体は、 本発明の導電性材料 11の 1つである) 、 I n 2 03 (Z nO) _ (m=2〜20) で表される六方晶層状化合物に少なく とも 1種の 前記第 3元素を含有させてなる化合物の 1種以上と I n 2 03 およ び Zまたは Z n 0とから実質的になる焼結体であってもよい (この 焼結体は、 本発明の導電性材料 11の 1つである) 。
また、 酸化物系タブレツ トとしては、 上述した酸化物系ディスク と同様のものが使用できる。 あるいは、 Z n2 S n , Zn7 S b2 Op, Z n A 12 04 等のスピネル構造化合物から実質的にな つているものや、 Z n S b2 Og 等の三重ルチル構造化合物から実 質的になっているものを用いることもできる。
第 3元素は酸化物系ディスクおよび酸化物系タブレツ トの少く と も一方に含まれていればよく、 酸化物系ディスクおよび酸化物系夕 ブレツ 卜の組成並びに使用割合は、 最終的に得られる膜における I nの原子比 I nZ ( I n + Z n) が 0. 50〜0. 90の範囲内の 所望値で、 かつ第 3元素の総量の原子比 (全第 3元素) Z (I n + Zn+全第 3元素) が 0. 2以下の所望値となるように適宜決定さ ォ 1る o
'上記(iii) 〜(iv)のいずれのスパッタリングターゲッ トも、 その純度 は 98%以上であることが好ましい。 98%未満では、 不純物の存在に より、 得られる膜の耐湿熱性が低下したり、 導電性が低下したり、 光透 過性が低下したりすることがある。 より好ましい純度は 99%以上であ り、 更に好ましい純度は 9 9 . 9 %以上である。 また、 焼結体ターゲッ トを用いる場合、 この夕一ゲッ トの相対密度は 7 0 %以上とすることが 好ましい。 相対密度が 7 0 %未満では、 成膜速度の低下や膜質の低下を まねき易い。 より好ましい相対密度は 8 5 %以上であり、 更に好ましく は 9 0 %以上である。
なお、 上記(i i i ) のスパッタリングターゲッ ト並びに上記(i v)の酸化 物系ディスクおよび酸化物系タブレツ トは、 例えば、 ィンジゥム化合物 および亜鉛化合物の他に所望の第 3元素の化合物の所定量を溶解させた 溶液とアル力リ性溶液とを反応させて沈殿物を生成させる以外は前述し た溶液法 (共沈法) と同様にして、 また、 出発原料に所望の第 3元素の 酸化物または焼成により所望の第 3元素の酸化物となる化合物を所定量 加える以外は前述した物理混合法と同様にして混合物を得る以外は、 前 述した(i ) のスパッ夕リングターゲッ ト並びに前述した(i i)の酸化物系 ディスクおよび酸化物系タブレツ トと同様にして得ることができる。 例えば第 3元素として錫 (S n ) を含有するものを溶液法を利用して 得る場合には錫化合物として酢酸錫、 しゅう酸錫、 錫アルコキシド (ジ メ トキシ錫、 ジェトキシ錫、 ジプロポキシ錫、 ジブトキシ錫、 テトラメ トキシ錫、 テトラエトキシ錫、 テトラプロポキシ錫、 テトラブトキシ錫 等) 、 塩化鍚、 フッ化錫、 硝酸鍚、 硫酸錫等を所望量使用し、 物理混合 法を利用して得る場合には酸化錫または焼成により酸化錫となる化合物、 具体的には溶液法を利用して得る場合の前記化合物を所望量使用する。 ここで、 錫の原子価が 2価の錫化合物は、 焼成等の工程で錫の原子価が 4'価の錫化合物に変化する。
また、 第 3元素としてアルミニウム (A 1 ) を含有するものを溶液法 を利用して得る場合には塩化アルミニゥム、 アルミニウムアルコキシド (トリメ トキシアルミニウム、 トリエトキシアルミニウム、 トリプロボ /13851
キシアルミニウム、 ト リブトキシアルミニゥム等) 、 硫酸アルミニゥム、 硝酸アルミニウム、 しゅう酸アルミニウム等を所望量使用し、 物理混合 法を利用して得る場合には酸化アルミニウムまたは焼成により酸化アル ミニゥムとなる化合物、 具体的には溶液法を利用して得る場合の前記化 合物を所望量使用する。
第 3元素としてアンチモン (S b ) を含有するものを溶液法を利用し て得る場合には塩化アンチモン、 フッ化アンチモン、 アンチモンアルコ キシド (ト リメ トキシアンチモン、 トリエトキシアンチモン、 ト リプロ ポキシアンチモン、 トリブトキシアンチモン等) 、 硫酸アンチモン、 水 酸化アンチモン等を所望量使用し、 物理混合法を利用して得る場合には 酸化アンチモンまたは焼成により酸化アンチモンとなる化合物、 具体的 には溶液法を利用して得る場合の前記化合物を所望量使用する。
第 3元素としてガリウム (G a ) を含有するものを溶液法を利用して 得る場合には塩化ガリゥム、 ガリゥムアルコキシド (トリメ トキシガリ ゥム、 トリエトキシガリウム、 トリプロポキシガリウム、 トリブトキシ ガリウム等) 、 硫酸ガリウム等を所望量使用し、 物理混合法を利用して 得る場合には酸化ガリウムまたは焼成により酸化ガリウムとなる化合物、 具体的には溶液法を利用して得る場合の前記化合物を所望量使用する。 そして、 第 3元素としてゲルマニウム (G e ) を含有するものを溶液 法を利用して得る場合には塩化ゲルマニウム、 ゲルマニウムアルコキシ ド (テトラメ トキシゲルマニウム、 テトラエトキシゲルマニウム、 テト ラブロポキシゲルマニウム、 テトラブトキシゲルマニウム等) 等を所望 量使用し、 物理混合法を利用して得る場合には酸化ゲルマニウムまたは 焼成により酸化ゲルマニウムとなる化合物、 具体的には溶液法を利用し て得る場合の前記化合物を所望量使用する。
なお、 上述した(i i i ) のスパッ夕リ ングターゲッ トまたは上述した (iv)の酸化物系ディスクもしくは酸化物系タブレツ トを製造する過程で 得られる粉末 (混合物を仮焼して得た仮焼物をそのまままたは還元処理 を施した後に粉砕して得られる粉末) のうち、 l n2 0。 (Z nO) m
(m=2〜20) で表される六方晶層状化合物に少なく とも 1種の前記 第 3元素を含有させてなる化合物の 1種以上からなら粉末、 および前記 化合物の 1種以上と I n。 03 および Zまたは Z n 0とから実質的にな る粉末は、 共に本発明の導電性材料 11の 1つである。
さらに、 仮焼時の熱的条件を変えることにより得られる、 組成的には 上記導電性材料 Πのいずれかと同じで実質的に非晶質の粉末、 およびこ の粉末に所定の還元処理を施して得られる実質的に非晶質の粉末は、 共 に本発明の導電性材料 IVの 1つである。 なお、 前記 「仮焼時の熱的条件」 および前記 「所定の還元処理」 は、 前述した本発明の導電性材料 ΠΙ を 得る場合のものと同じである。
透明導電膜 11は、 上述したダイレク トスパッタリング法以外に、 反応 性スパッタリング法によっても所定の基材上に設けることができる。 反 応性スパッタリング法による透明導電膜 11の製造は、 ィンジゥムと亜鉛 と価数が正 3価以上である少く とも 1種の第 3元素 (例えば S n, Aし S b, G a, G e) との合金からなるスパッタリングターゲッ トであつ て、 I nの原子比 I nZ ( I n + Z n) および第 3元素の総量の原子比
(全第 3元素) / (I n + Z n+全第 3元素) がそれぞれ所定値である ものを用いる以外は、 反応性スパッタリング法による透明導電膜 Iの製 造と同様に行うことができる。
'ここで、 「I nの原子比 I nZ ( I n + Z n) が所定の値のもの」 と は、 最終的に得られる膜における I nの原子比 I nZ ( I n + Z n) が 0. 50〜0. 90の範囲内の所望値となるものを意味する。 具体的に は、 I nの原子比 I nZ ( I n + Z n) が 0. 45〜0. 9の範囲内の 1
所望値のものを用いる。 また、 「第 3元素の総量の原子比 (全第 3元素) / (I n + Z n+全第 3元素) が所定値のもの」 とは、 最終的に得られ る膜における第 3元素の総量の原子比 (全第 3元素) Z ( I n + Z n + 全第 3元素) が 0. 2以下の所望値となるものを意味する。
この合金ターゲッ トは、 例えば、 溶融インジウム中に亜鉛の粉末また はチップの所定量並びに価数が正 3価以上である少く とも 1種の第 3元 素の単体 (固体) の粉末またはチップ (例えば S n, A 1 , S b, G a および G eからなる群より選択される少なく とも 1種の第 3元素の単体 (固体) の粉末またはチップ) の所定量を分散させた後、 これを冷却す ることにより得られる。 また、 インジウムと価数が正 3価以上である少 く とも 1種の第 3元素 (例えば S n, A 1 , S b, G a, G e) との合 金を溶融させ、 この中に亜鉛の粉末またはチップの所定量を分散させた 後、 これを冷却することによつても得られる。
なお、 この合金ターゲッ トの純度は、 前述した(iii) 〜(iv)のスパッ 夕リングターゲッ 卜と同様の理由から、 98%以上であることが好まし い。 より好ましい純度は 99%以上であり、 更に好ましい純度は 99. 9%以上である。
以上説明した塗布熱分解法やスパッタリング法により製造することが できる本発明の透明導電膜 Iおよび透明導電膜 11は、 実用上十分な導電 性および光透過性を有し、 かつ、 耐湿熱性およびエッチング特性に優れ た透明導電膜である。 このような特徴を有する本発明の透明導電膜 Iお よび透明導電膜 11は、 液晶表示素子用の透明電極、 エレク トロルミネッ センス素子用の透明電極、 太陽電池用の透明電極等、 種々の用途の透明 電極や、 このような透明電極をエツチング法により形成する際の母材等 として、 あるいは帯電防止膜や窓ガラス等用の氷結防止ヒータ等として 好適である。 /13851 P
次に、 本発明の導電性透明基材の 1つである導電性透明フィルムにつ いて説明する。
本発明の導電性透明フィルムは、 前述したようにフィルム状またはシ 一ト状の透明高分子基材上に直接または少なく とも架橋性樹脂層を介し て、 上述した透明導電膜 Iまたは透明導電膜 11が設けられていることを 特徴とするものである。
ここで、 フィルム状またはシート状の透明高分子基材としてはポリ力 ーボネート樹脂、 ポリアリ レート樹脂、 ポリエステル樹脂、 ポリエーテ ルスルホン系樹脂、 アモルファスポリオレフィ ン樹脂、 ポリスチレン樹 脂、 アクリル樹脂等からなるものを用いることができるが、 その光透過 率は 70%以上であることが好ましい。 70%未満では透明基材として 不適である。 透明高分子基材としては光透過率が 80%以上のものがよ り好ましく、 更に好ましいものは光透過率が 90%以上のものである。 また、 透明高分子基材の厚さは 15 !〜 3 mmが好ましく、 50 // m 〜 1 mmがより好ましい。
透明高分子基材上に直接または少なく とも架橋性樹脂層を介して設け られる透明導電膜は、 上述のように透明導電膜 Iおよび透明導電膜 11の いずれでもよいが、 その膜厚は 3〜3000 nmであることが好ましい c 3 nm未満では十分な導電性が得られず、 3000 nmを超えると光透 過性が低下したり、 導電性透明フィルムを取扱う際に透明導電膜にクラ ック等が発生することがある。 好ましい膜厚は 5〜1000 nmであり、 更に好ましくは 10〜 800 nmである。
'透明高分子基材と透明導電膜との間に架橋性樹脂層を介在させる場合、 この架橋性樹脂層としてはエポキシ樹脂、 フユノキシエーテル樹脂、 ァ ク リル樹脂等からなるものが好ましい。 また透明高分子基材と架橋性樹 脂層との間には接着層やガスバリヤ一層を設けてもよい。 接着層の材質 としては、 エポキシ系、 アク リルウレタン系、 フヱノキシエーテル系の 接着剤等が挙げられる。 また、 ガスバリヤ一層の材質としては、 ェチレ ン—ビニルアルコール共重合体、 ポリビニルアルコール、 ポリアクリル 二トリル、 ポリ塩化ビニリデン、 ポリフッ化ビニリデン等が挙げられる c なお、 透明高分子基材において透明導電膜が設けられる面とは反対の 側の面には、 ガスバリヤ一層、 ハードコート層、 反射防止層を設けるこ ともできる。
本発明の導電性透明フィルムは実用上十分な導電性および光透過性を 有しており、 かつ、 この導電性透明フィルムを構成する透明導電膜は耐 湿熱性に優れており、 高湿度の環境下でも導電性の経時的な低下が小さ く、 安定した導電性を示す。 さらに、 この導電性透明フィルムを構成す る透明導電膜はェッチング特性に優れている。 このような特徴を有する 本発明の導電性透明フィルムは、 液晶表示素子用の透明電極、 エレク ト 口ルミネッセンス素子用の透明電極、 太陽電池用の透明電極等、 種々の 用途の透明電極をエッチング法により形成する際の母材等として、 ある いは帯電防止膜や窓ガラス等用の氷結防止ヒータ等として好適である。 この導電性透明フィルムは種々の方法により製造することが可能であ るが、 フィルム状の透明高分子基材上に直接または少なく とも架橋性樹 脂層を介して透明導電膜 Iまたは透明導電膜 πを設けるにあたっては、 透明導電膜の性能、 生産性の点や、 基材温度を低温に保ったままでの製 造が可能である点等から、 R Fあるいは D Cマグネトロンスパッタリン グゃ反応性スパッタリング等のスパッタリング法を適用することが好ま しい。 スパッ夕リング法による透明導電膜 Iまたは透明導電膜 Hの製造 は、 前述したとおりである。
次に、 本発明の導電性透明基材の他の 1つである導電性透明ガラスに ついて説明する。 本発明の導電性透明ガラスは、 前述したように、 透明ガラス基材上に 前述した透明導電膜 Iまたは透明導電膜 11が設けられていることを特徴 とするものである。 ただし、 塗布熱分解法により透明導電膜 Iまたは透 明導電膜 11を設けた場合には、 I nの原子比 I n/ l n + Z n) が 0. 80を超えると膜の導電性が悪くなることがある。
ここで、 透明ガラス基材としてはソーダ石灰ガラス製、 鉛ガラス製、 硼硅酸ガラス製、 高硅酸ガラス製、 無アルカリガラス製等、 種々の透明 ガラス製のフィルム状物あるいは板状物を用いることができ、 その種類 および厚さは目的とする導電性透明ガラスの用途等に応じて適宜選択さ 1/る
透明ガラス基材上に設けられる透明導電膜は、 上述のように透明導電 膜 Iおよび透明導電膜 11のいずれでもよいが、 その膜厚は 3〜3000 nmであることが好ましい。 3 nm未満では十分な導電性が得られず、 3000 nmを超えると導電性透明ガラスの光透過性が低下する。 好ま しい膜厚は 5〜: L O O O nmであり、 更に好ましくは 10〜800 nm である。
本発明の導電性透明ガラスは実用上十分な導電性および光透過性を有 しており、 かつ、 この導電性透明ガラスを構成する透明導電膜は耐湿熱 性に優れており、 高湿度の環境下でも導電性の経時的な低下が小さく、 安定した導電性を示す。 さらに、 この導電性透明ガラスを構成する透明 導電膜はェッチング特性に優れている。 このような特徴を有する本発明 の導電性透明ガラスは、 液晶表示素子用の透明電極、 エレク トロルミネ ッ'センス素子用の透明電極、 太陽電池用の透明電極等、 種々の用途の透 明電極をエッチング法により形成する際の母材等として、 あるいは帯電 防止膜や窓ガラス等用の氷結防止ヒータ等として好適である。
この導電性透明ガラスは種々の方法により製造することが可能である が、 透明ガラス基材上に透明導電膜 Iまたは透明導電膜 IIを設けるにあ たっては、 組成を容易に制御しつつ低コストで製造するうえからは塗布 熱分解法により製造することが好ましく、 性能の高い膜を高い生産性の 下に製造するうえからは R Fあるいは D Cマグネトロンスパッ夕リング や反応性スパッタリング等のスパッタリング法により製造することが好 ましい。 塗布熱分解法やスパッ夕リング法による透明導電膜 Iまたは透 明導電膜 11の製造は、 前述したとおりである。
次に本発明の導電性材料 I〜1Vについて説明する。
導電製材料 Iは、 前述したように主要カチオン元素としてインジウム (I n) および亜鉛 (Zn) を含有する酸化物からなる粉末または焼結 体であって、 一般式 l n2 03 (Z nO) m (m =2〜 20) で表され る六方晶層状化合物を含有するとともに、 I nの原子比 I nノ (I n + Zn) が 0. 1〜0. 9であることを特徴とするものである。
この導電性材料 Iは、 前記一般式で表される六方晶層状化合物の 1種 以上から実質的になっていてもよいし、 前記一般式で表される六方晶層 状化合物の 1種以上の他に結晶性または非晶性の I n2 Og および ま たは Z n 0を含有するものから実質的になっていてもよい。
導電性材料 Iは、 前記(i) , (ii)のスパッタリングターゲッ トを製造 する過程で得ることができるが、 製造方法はこれに限定されるものでは ない。
導電製材料 IIは、 前述したように主要カチオン元素としてインジウム ( I n) および亜鉛 (Z n) の他に価数が正 3価以上である少なく とも 1種の第 3元素 (例えば錫 (S n) 、 アルミニウム (A 1) 、 アンチモ ン (S b) 、 ガリウム (G a) 、 ゲルマニウム (G e) ) を含有する酸 化物からなる粉末または焼結体であって、 一般式 I n2 0。 (Z nO) m (m=2〜20) で表される六方晶層状化合物に前記第 3元素の少な く とも 1種を含有させてなる化合物を含有するとともに、 I nの原子比 I nZ l n + Zn) が 0. 1〜0. 9で、 第 3元素の総量の原子比 (全第 3元素) Z (I n + Zn+全第 3元素) が 0. 2以下であること を特徴とするものである。
導電性材料 11は、 前記(H), (iv)のスパッタリングターゲッ トを製造 する過程で得ることができるが、 製造方法はこれに限定されるものでは ない。
この導電性材料 11は、 前記化合物の 1種以上から実質的になっていて もよいし、 前記化合物の 1種以上の他に結晶性または非晶性の I n2 0 3 および Zまたは Z n 0を含有するものから実質的になっていてもよい c 導電性材料 111 は、 前述したように主要カチオン元素としてインジゥ ム (I n) および亜鉛 (Zn) を含有する実質的に非晶質の酸化物の粉 末、 または前記酸化物と I n 9 03 および Zまたは Z n 0とからなる粉 末であり、 この粉末における I nの原子比 I n/ (I n + Z n) は 0. 1〜0. 9である。 ここで 「実質的に非晶質の酸化物」 とは、 透明導電 膜 Iの説明の中でとおりである。 また、 前記 I n 2 03 および Zまたは Z n 0は、 結晶質であってもよいし非晶質であってもよい。
この導電性材料 111 は前記(i) , (ii)のスパッタリングターゲッ トを 製造する過程で得ることができるが、 製造方法はこれに限定されるもの ではない。
導電性材料 IVは、 前述したように主要カチオン元素として I nおよび Z nの他に価数が正 3価以上である少く とも 1種の第 3元素 (例えば S n, A 1 , S b, G a, G e ) を含有する実質的に非晶質の酸化物から なる粉末、 または前記酸化物と I nq 03 および Zまたは Z nOとから なる粉末であり、 この粉末における I nの原子比 I nZ ( I n + Z n) は 0. 1〜0. 9、 第 3元素の総量の原子比 (全第 3元素) ( I n + Z n+全第 3元素) は 0. 2以下である。 I nの原子比 I nZ (I n + Zn) は 0. 5〜0. 9であることが好ましく、 第三元素の総量の原子 比 (全第 3元素) / (I n + Zn+全第 3元素) は 0. 1以下が好まし く、 特に好ましくは 0. 01〜0. 1である。 この導電性材料 IVにおい ては、 導電性が向上する点から、 第 3元素として S nを含有させること が特に好ましい。
この導電性材料 IVは前記(ii), (iv)のスパッタリングターゲッ トを製 造する過程で得ることができるが、 製造方法はこれに限定されるもので はない。
以下、 本発明の実施例について説明する。
実施例 1
インジウム化合物として酢酸インジウムを、 亜鉛化合物として無水酢 酸亜鉛を、 溶剤として 2—メ トキシメタノールを、 安定化剤としてモノ エタノールアミ ンを、 基板として石英ガラス板をそれぞれ用いて、 塗布 熱分解法に基づいて以下のようにして透明導電膜 Iを製造した。
まず、 2—メ トキシメタノール 21. 5 gにモノエタノールァミ ン 4. 6 gと酢酸インジウム 3. 0 gを添加し、 10分間攪拌混合して、 透明 溶液を得た。 この透明溶液を携拌しながら、 当該透明溶液に無水齚酸亜 鉛 0. 9 gを添加し、 10分間攪拌混合して、 透明で均一なコ一ティ ン グ溶液を調製した。 このコーティ ング溶液における I nの原子比 I nZ ( I n + Z n) は 0. 67であり、 I nと Z nの合量の濃度は 0. 5 molZリ ッ トル (4 mol%) であった。
次に、 得られたコーティ ング溶液に石英ガラス板 (70 X 20 X 1. 5 mm) を浸漬してディ ップコ一ティ ング (コーティ ング速度: 1. 2 cmZ分) した後、 電気炉を用いて 500°Cで 10分間仮焼した。 ディ ップコ一ティ ングした後に仮焼するという前述の操作を計 10回繰り返 した後、 更に、 500°Cで 1時間かけて本焼成した。
この後、 400°Cで 2時間真空 (1 X 10— 2 torr) 還元して、 目的 とする透明導電膜 Iを得た。
また、 表 1に示すように、 仮焼温度を 300°C, 400°C, 500°C にするとともに本焼成温度を 300°C, 400°C, 600°Cにした以外 は全く同様にして、 別途、 計 3種の透明導電膜 Iを得た。
このようにして得られた計 4種の透明導電膜 Iは、 XRD (X線回折) 測定の結果より、 いずれも I nと Znとの非晶質酸化物であった。 なお、 500°Cで本焼成して得た透明導電膜 Iの XRD測定結果を図 1に示す。 また、 各透明導電膜 Iの組成を X線光電子分光分析 (XP S) で測定し たところ、 いずれの透明導電膜 Iにおいても I nの原子比 I nZ ( I n + Z n) は 0. 67であった。 さらに、 各透明導電膜 Iの断面の電子顕 微鏡写真からその膜厚を測定したところ、 いずれの透明導電膜 Iの膜厚 も 200 nmであった。
各透明導電膜 Iの表面抵抗を四端子法により測定した結果および各透 明導電膜 Iの可視光 (波長 550 n m) 透過率の測定結果を表 1に示す。 また、 各透明導電膜 Iについて 40°C、 90%RHの条件で耐湿熱性試 験を行い、 試験時間 1000時間後の表面抵抗をそれぞれ測定した結果 も表 1に示す。 さらに、 塩酸:硝酸:水の割合が 1 : 0. 08 : 1 (モ ル比) のエッチング液を 10倍に稀釈したものを用いて各透明導電膜 I のエツチング速度を測定した結果も表 1に示す。
比較例 1
本焼成温度を 700°Cにした以外は実施例 1と同様にして (仮焼温度 500°C) 、 透明導電膜 (膜厚 200 nm) を得た。
このようにして得られた透明導電膜は、 XRD測定の結果より結晶質 であった。 また、 その組成を XP Sで測定したところ、 I nの原子比 I !! ^ !! + !^ は 67であった。
この透明導電膜の表面抵抗および可視光透過率を実施例 1と同様にし て測定するとともに、 実施例 1と同様の耐湿熱性試験を行って試験時間
1000時間後の表面抵抗を実施例 1と同様にして測定した。 また、 こ の透明導電膜のエッチング速度を実施例 1と同様にして測定した。 これ らの結果を表 1に示す。
実施例 2
2—メ トキシメタノール 21. 91 gにモノエタノールァミ ン 4. 4 5 gと齚酸インジウム 2. 97 gを添加し、 10分間攪拌混合して透明 溶液を得た。 この透明溶液を攪拌しながら、 当該透明溶液に無水酢酸亜 鉛 0. 67 gを添加し、 10分間攪拌混合して、 透明で均一なコ一ティ ング溶液を調製した。 このコーティ ング溶液における I nの原子比 I n Z (I n + Zn) は 0. 75であり、 I nと Z nの合量の濃度は 0. 5 mol/リ ッ トル (4 mol%) であった。
この後は実施例 1と同様にして、 本焼成温度が表 1に示すように 30 0°C, 400°C, 500°C, 600°Cと異なる計 4種の透明導電膜 I (膜厚 200 nm) を得た。
このようにして得られた計 4種の透明導電膜 Iは、 XRD測定の結果 より、 いずれも I nと Z nとの非晶質酸化物であった。 また、 各透明導 電膜 Iの組成を XP Sで測定したところ、 いずれの透明導電膜 Iにおい ても I nの原子比 I nZ ( I n + Z n) は 0. 75であった。
各透明導電膜 Iの表面抵抗および可視光透過率を実施例 1と同様にし て測定するとともに、 実施例 1と同様の耐湿熱性試験を行って試験時間 1000時間後の表面抵抗を実施例 1と同様にして測定した。 また、 各 透明導電膜 Iのエッチング速度を実施例 1と同様にして測定した。 これ らの結果を表 1に示す。 比較例 2
本焼成温度を 700 Cにした以外は実施例 2と同様にして (仮焼温度 500°C) 、 透明導電膜 (膜厚 200 nm) を得た。
このようにして得られた透明導電膜は、 XRD測定の結果より結晶質 であった。 また、 その組成を XP Sで測定したところ、 I nの原子比 I n/ (I n + Z n) は 0. 75であった。
この透明導電膜の表面抵抗および可視光透過率を実施例 1と同様にし て測定するとともに、 実施例 1と同様の耐湿熱性試験を行って試験時間 1000時間後の表面抵抗を実施例 1と同様にして測定した。 また、 こ の透明導電膜のエッチング速度を実施例 1と同様にして測定した。 これ らの結果を表 1に示す。
実施例 3
2—メ トキシメタノール 21. 32 gにモノエタノールァミ ン 4. 9 3 gと酢酸インジウム 2. 41 gを添加し、 10分間攪拌混合して透明 溶液を得た。 この透明溶液を攪拌しながら、 当該透明溶液に無水酢酸亜 鉛 1. 34 gを添加し、 10分間攪拌混合して、 透明で均一なコーティ ング溶液を調製した。 このコ一ティ ング溶液における I nの原子比 I n / (I n + Z n) は 0. 55であり、 I nと Z nの合量の濃度は 0. 5 molZリ ッ トル (4 mol%) であった。
この後は実施例 1と同様にして、 本焼成温度が表 1に示すように 30 0°C, 400°C, 500°C, 600°Cと異なる計 4種の透明導電膜 I (膜厚 200 nm) を得た。
このようにして得られた計 4種の透明導電膜 Iは、 XRD測定の結果 より、 いずれも I nと Z nとの非晶質酸化物であった。 また、 各透明導 電膜 Iの組成を X P Sで測定したところ、 いずれの透明導電膜 Iにおい ても I nの原子比 I nZ ( I n + Z n) は 0. 55であった。 各透明導電膜 Iの表面抵抗および可視光透過率を実施例 1と同様にし て測定するとともに、 実施例 1と同様の耐湿熱性試験を行って試験時間 1000時間後の表面抵抗を実施例 1と同様にして測定した。 また、 各 透明導電膜 Iのエッチング速度を実施例 1と同様にして測定した。 これ らの結果を表 1に示す。
比較例 3
本焼成温度を 700°Cにした以外は実施例 3と同様にして (仮焼温度 500°C) 、 透明導電膜 (膜厚 200 nm) を得た。
このようにして得られた透明導電膜は、 X R D測定の結果より結晶質 であった。 また、 その組成を XP Sで測定したところ、 I nの原子比 I nZ (I n + Zn) は 0. 55であった。
この透明導電膜の表面抵抗および可視光透過率を実施例 1と同様にし て測定するとともに、 実施例 1と同様の耐湿熱性試験を行って試験時間 1000時間後の表面抵抗を実施例 1と同様にして測定した。 また、 こ の透明導電膜のエッチング速度を実施例 1と同様にして測定した。 これ らの結果を表 1に示す。
比較例 4
コーティ ング溶液における I nの原子比 I nZ (I n + Z n) を 0. 50とした以外は実施例 1と同様にして、 透明で均一なコーティ ング溶 液を調製した。
この後、 本焼成温度を 700°Cとした以外は実施例 1と同様にして (仮焼温度 500°C) 、 透明導電膜 (膜厚 200 nm) を得た。
このようにして得られた透明導電膜の組成を X P Sで測定したところ、 I nの原子比 I nZ ( I n + Z n) は 0. 50であった。
この透明導電膜の表面抵抗および可視光透過率を実施例 1と同様にし て測定するとともに、 実施例 1と同様の耐湿熱性試験を行って試験時間 1000時間後の表面抵抗を実施例 1と同様にして測定した。 また、 各 透明導電膜のエッチング速度を実施例 1と同様にして測定した。 これら の結果を表 1に示す。
比較例 5
コーティ ング溶液における I nの原子比 I nZ (I n + Z n) を 0. 33とした以外は実施例 1と同様にして、 透明で均一なコ一ティ ング溶 液を調製した。
この後は実施例 1と同様にしてコーティ ング、 焼成 (仮焼温度 500 °C、 本焼成温度 500°C) および還元処理を行って、 透明導電膜 (膜厚 200 nm) を得た。
このようにして得られた透明導電膜の組成を X P Sで測定したところ、 I nの原子比 I nZ ( I n + Z n) は 0. 33であった。
この透明導電膜の表面抵抗および可視光透過率を実施例 1と同様にし て測定するとともに、 実施例 1と同様の耐湿熱性試験を行って試験時間 1000時間後の表面抵抗を実施例 1と同様にして測定した。 また、 こ の透明導電膜のエッチング速度を実施例 1と同様にして測定した。 これ らの結果を表 1に示す。
比較例 6
コ一ティ ング溶液における I nの原子比 I nZ (I n + Z n) を 0. 80とした以外は実施例 1と同様にして、 透明で均一なコーティ ング溶 液を調製した。
この後は比較例 4と同様にして、 透明導電膜 (膜厚 200 nm) を得 た。
このようにして得られた透明導電膜の組成を X P Sで測定したところ、 I nの原子比 I nZ ( I n + Z n) は 0. 80であった。
この透明導電膜の表面抵抗および可視光透過率を実施例 1と同様にし て測定するとともに、 実施例 1と同様の耐湿熱性試験を行って試験時間 1 0 0 0時間後の表面抵抗を実施例 1と同様にして測定した。 また、 透 明導電膜のエッチング速度を実施例 1と同様にして測定した。 これらの 結果を表 1に示す。
比較例 7
2—メ トキシメタノール 2 2 . 2 gにモノエタノールァミ ン 4 . 0 g と酢酸インジウム 3 . 8 gを添加し、 1 0分間攪拌混合して、 透明で均 一なコーティ ング溶液を調製した。 このコーティ ング溶液における I n 濃度は 4 mo l %であった。
この後は比較例 5と同様にして、 酸化インジウム薄膜 (膜厚 2 0 0 n m) を得た。
このようにして得られた酸化ィンジゥム薄膜の表面抵抗および可視光 透過率を実施例 1と同様にして測定するとともに、 実施例 1と同様の耐 湿熱性試験を行って試験時間 1 0 0 0時間後の表面抵抗を実施例 1と同 様にして測定した。 また、 この酸化インジウム薄膜のエッチング速度を 実施例 1と同様にして測定した。 これらの結果を表 1に示す。
比較例 8
比較例 8のコーティ ング溶液に S!! じ !^ :! を 1 6 g添 加した以外は比較例 7と同様に実施して、 I T O薄膜 (S n 4 a t %, 膜 厚 2 0 0 n m) を得た。
このようにして得られた I T O薄膜の表面抵抗および可視光透過率を 実施例 1と同様にして測定するとともに、 実施例 1と同様の耐湿熱性試 験を行って試験時間 1 0 0 0時間後の表面抵抗を実施例 1と同様にして 測定した。 また、 この I T O薄膜のエッチング速度を実施例 1と同様に して測定した。 これらの結果を表 1に示す。 焼成温度 (て) 可視光 表 面 诋 抗 (ΩΖΕΙ) 膜 厚 エツ グ速度
原子比 膜の性状
仮 焼 本焼成 透過率 試 験 前 試 験 後 (n m) (nm /分)
300 300 非 80% 117 120 300
c 400 400 非晶質 80% 113 118
o / π n 280
500 500 81% 1 0 150 260
500 600 非晶質 81% 112 116 250
比糊 1 0 67 500 700 80% 15000 15130 200 99
300 300 非 s 80% 125 127 295
ll 400 400
0 75 非晶 a 80% 120 123 n 278
u n u * 1 : I nの原子比 I π ( I π + Z π ) を示す。
500 500 非【 81% 115 117 259
* 2 :酸化インジゥム ¾膜であることを示す。
500 600 非晶 κ 81% 118 121 249
* 3: S nを 4at%含有する I TOif膜を示す。 比蛟例 2 0 75 500 700 桔晶 κ 80% 14800 14900 200 95
300 300 非品 80% 1 33 134 305
π 400 400 非晶 K 80% 131 132 285
υ U U
500 500 非晶锊 81% 130 132 265
500 600 非晶質 81% 131 133 255
0 55 500 700 aun^t 80% 14700 14800 200 99
Figure imgf000045_0001
0 50 500 700 ίέ晶 80% 14500 14590 99
比^ 15 0 33 500 500 非晶質 80% 500 510 200 1000
0 80 500 700 蛣晶 S 81% 19000 19500 59
1 0*2 500 500 80% 630 10900 200 11 - 比 例 8 I T0« 500 500 80% 170 5400 200 3
表 1から明らかなように、 I nの原子比 I n ( I n + Z n ) が 0 . 5 5〜0 . 7 5の非晶質酸化物からなる実施例 1〜実施例 3の各透明導 電膜 Iは、 比較例 8の I T O膜と同等以上の導電性を有している。 また、 これら実施例 1〜実施例 3の各透明導電膜 Iはいずれも優れた可視光透 過率を有している。 さらに、 実施例 1〜実施例 3の各透明導電膜 Iの表 面抵抗は、 耐湿熱性試験の前後でほとんど変化がない。 このことから、 実施例 1〜実施例 3の各透明導電膜 Iは耐湿熱性に優れていることがわ かる。 また、 実施例 1〜実施例 3の各透明導電膜 Iのエッチング速度が 比較例 8の I T O膜よりも高いことから、 これら実施例 1〜実施例 3の ' 各透明導電膜 Iはエッチング特性に優れていることがわかる。
一方、 表 1から明らかなように、 I nの原子比 I n Z ( I n + Z n ) が 0 . 5 5〜 0 . 7 5であっても結晶質酸化物からなる比較例 1〜比較 例 3の各透明導電膜の導電性は極めて低い。 また、 I nの原子比 I n Z
( I n + Z n ) が本発明の限定範囲外である比較例 5の透明導電膜は、 表 1から明らかなように、 出発原料の種類、 焼成条件および還元条件が 同一である実施例の透明導電膜 Iよりも導電性に劣る。 そして、 比較例 7の酸化ィンジゥム薄膜は導電性および耐湿熱性の点で実施例 1〜実施 例 3の各透明導電膜 Iよりも劣り、 比較例 8の I T O膜は優れた導電性 および可視光透過率を有しているものの、 耐湿熱性については実施例 1 〜実施例 3の各透明導電膜 Iよりも劣ることが明らかである。
実施例 4
インジウム化合物として酢酸インジウムを、 亜鉛化合物として無水酢 酸亜鉛を、 第 3元素化合物としてジブトキシ錫を、 溶剤として 2—メ ト キシメタノールを、 安定化剤としてモノエタノールアミ ンを、 基板とし て石英ガラス板をそれぞれ用いて、 塗布熱分解法に基づいて以下のよう にして透明導電膜 1 1を製造した。 まず、 2—メ トキシメタノールと、 モノエタノールァミ ンと、 酢酸ィ ンジゥムと、 無水齚酸亜鉛とを用いて、 実施例 1と全く同様にして透明 で均一な溶液 30 g (実施例 1のコーティ ング溶液に相当) を調製した c 次に、 この溶液にジブトキシ錫 0. 16 gを添加し、 10分間攪拌混 合して、 透明で均一なコーティ ング溶液を調製した。 このコーティ ング 溶液における I nの原子比 I nZ (I n + Zn) は 0. 67、 第 3元素 である S nの原子比 S nZ ( I n + Z n + S n) は 0. 04、 1 11と∑ nと S nの合量の濃度は 0. 5 mo 1Zリッ トル (4 mo 1%) であった。 次いで、 得られたコーティ ング溶液にガラス板 (コーニング社製 70 59 : 70 X 20 X 1. 5 mm) を浸潰し、 実施例 1と同条件でディ ッ プコーティ ングした後、 電気炉を用いて 500°Cで 10分間仮焼した。 ディ ップコ一ティ ングした後に仮焼するという前述の操作を計 10回繰 り返した後、 更に、 500°Cで 1時間かけて本焼成した。
この後、 400°Cで 2時間真空 (1 X 10"2torr) 還元して、 目的と する透明導電膜 Π (膜厚 200 nm) を得た。
このようにして得られた透明導電膜 11は、 XRD測定の結果より、 I nと Z nと S nとの非晶質酸化物であった。 また、 得られた透明導電膜 Πの表面抵抗および可視光透過率を実施例 1と同様にして測定するとと もに、 実施例 1と同様の耐湿熱性試験を行って試験時間 1000時間後 の表面抵抗を実施例 1と同様にして測定した。 さらに、 この透明導電膜 11のエッチング速度を実施例 1と同様にして測定した。 これらの結果を 表 2に示す。
実施例 5
ジブトキシ錫に代えてトリブトキシアルミニウム 0. 15 gを用いた 以外は実施例 4と全く同様にしてコーティ ング溶液 (I nZ (I n + Z n) = 0. 67、 A 1 / ( I n + Z n + A 1 ) = 0. 04、 I nと Z n と A 1の合量の濃度 = 0. 5 molZリッ トル (4 mo 1%) ) を調製し、 このコーティ ング溶液を用いて実施例 4と全く同様にして透明導電膜 11 (膜厚 200 nm) を得た。
このようにして得られた透明導電膜 11は、 XRD測定の結果より、 I nと Znと A 1との非晶質酸化物であった。 また、 得られた透明導電膜 11の表面抵抗および可視光透過率を実施例 1と同様にして測定するとと もに、 実施例 1と同様の耐湿熱性試験を行って試験時間 1000時間後 の表面抵抗を実施例 1と同様にして測定した。 さらに、 この透明導電膜 11のエッチング速度を実施例 1と同様にして測定した。 これらの結果を 表 2に示す。
実施例 6
ジブトキシ錫に代えてトリブトキシアンチモン 0. 21 gを用いた以 外は実施例 4と全く同様にしてコーティ ング溶液 ( I nZ ( I n + Z n) =0. 67、 S b/ (I n + Zn + S b) =0. 04、 I nと Znと S bの合量の濃度 = 0. 5 molZリッ トル (4 mol%) ) を調製し、 この コーティ ング溶液を用いて実施例 4と全く同様にして透明導電膜 H (膜 厚 200 nm) を得た。
このようにして得られた透明導電膜 11は、 XRD測定の結果より、 I nと Z nと S bとの非晶質酸化物であった。 また、 得られた透明導電膜 Πの表面抵抗および可視光透過率を実施例 1と同様にして測定するとと もに、 実施例 1と同様の耐湿熱性試験を行って試験時間 1000時間後 の表面抵抗を実施例 1と同様にして測定した。 さらに、 この透明導電膜 11のエッチング速度を実施例 1と同様にして測定した。 これらの結果を 表 2に示す。
実施例 7
ジブトキシ錫に代えて塩化ガリウム (3価) 0. l l gを用いた以外 は実施例 4と全く同様にしてコーティ ング溶液 ( I nZ ( I n + Z n) = 0. 6 7、 G a / ( I n + Z n + G a ) = 0. 0 4、 I nと Z nと G aの合量の濃度 = 0. 5 molZリ ッ トル (4 mol%) ) を調製し、 この コーティ ング溶液を用いて実施例 4と全く同様にして透明導電膜 11 (膜 厚 2 0 0 nm) を得た。
このようにして得られた透明導電膜 IIは、 XRD測定の結果より、 I nと Z nと G aとの非晶質酸化物であった。 また、 得られた透明導電膜 11の表面抵抗および可視光透過率を実施例 1と同様にして測定するとと もに、 実施例 1と同様の耐湿熱性試験を行って試験時間 1 0 0 0時間後 の表面抵抗を実施例 1と同様にして測定した。 さらに、 この透明導電膜 Hのエッチング速度を実施例 1と同様にして測定した。 これらの結果を 表 2に示す。
実施例 8
ジブトキシ錫に代えてテトラプロポキシゲルマニウム 0. 1 5 gを用 いた以外は実施例 4と全く同様にしてコーティ ング溶液 ( I n/ ( I n + Z n) = 0. 6 7、 G e/ ( I n + Z n + G e) = 0. 0 4、 I nと Z nと G eの合量の濃度 = 0. 5 mo 1/リ ッ トル ( 4 mo I %) } を調製 し、 このコーティ ング溶液を用いて実施例 4と全く同様にして透明導電 膜 11 (膜厚 2 0 0 nm) を得た。
このようにして得られた透明導電膜 11は、 XRD測定の結果より、 I nと Z nと G eとの非晶質酸化物であった。 また、 得られた透明導電膜 11の表面抵抗および可視光透過率を実施例 1と同様にして測定するとと もに、 実施例 1と同様の耐湿熱性試験を行って試験時間 1 0 0 0時間後 の表面抵抗を実施例 1と同様にして測定した。 さらに、 この透明導電膜 11のエッチング速度を実施例 1と同様にして測定した。 これらの結果を 表 2に示す。 表 2
Figure imgf000050_0001
* 1 : (第 3元素) / (I n + Zn +第 3元素) を示す。
* 2: I nの原子比 I n/ (I n + Zn) を示す。
表 2から明らかなように、 I nと Z nと第 3元素 (S n、 A 1、 S b, G aまたは G e) との非晶質酸化物からなる実施例 4〜実施例 8の各透 明導電膜 11は、 第 3元素を含有していない実施例 1〜実施例 3の各透明 導電膜 Iよりも更に高い導電性を有している。 また、 これら実施例 4〜 実施例 8の各透明導電膜 11はいずれも優れた可視光透過率を有している ( さらに、 実施例 4〜実施例 8の各透明導電膜 Hの表面抵抗は、 耐湿熱性 試験の前後でほとんど変化がない。 このことから、 実施例 4〜実施例 8 の各透明導電膜 11は耐湿熱性に優れていることがわかる。 また、 実施例 4〜実施例 8の各透明導電膜 11のエツチング速度が表 1に示した比較例 8の I TO膜のエッチング速度よりも高いことから、 これら実施例 4〜 実施例 8の各透明導電膜 11はエッチング特性に優れていることがわかる c 実施例 9
透明高分子基材として厚さ 125 の 2軸延伸ポリエステルフィル ムを用い、 スパッタリングターゲッ トとして酸化ィンジゥムと酸化亜鉛 との混合物で I nの原子比 I nZ (I n + Zn) が 0. 67である焼結 体を用いて、 以下の要領で導電性透明フィルムを製造した。
まず、 透明高分子基材を D Cマグネトロンダイレク トスパッタリ ング 装置に装着し、 真空槽内を 1 X 10 "Torr以下まで減圧した。 この後、 アルゴンガス (純度 99. 99 %) と酸素ガス (純度 99. 99 %) と の混合ガス (A r : 02 = 1000 : 2. 8 (体積比) ) を真空圧 2 X 10— 3Torrまで導入し、 ターゲッ ト印加電圧を 420 Vに、 また基板温 度を 60°Cにそれぞれ設定して、 DCマグネトロンダイレク トスパッ夕 リ ングにより膜厚 250 nmの透明導電膜 Iを透明高分子基材上に成膜 した。 なお、 透明導電膜 Iの膜厚はスローン (S l o a n) 社製の DE KTAK 3030を用いた触針法により測定した (以下の実施例および 比較例においても同じ) 。 このようにして得られた導電性透明フィルムでは、 透明導電膜 Iにお ける I nの原子比 I nZ (I n + Zn) は I CP分析 (誘導結合プラズ マ発光分光分析;使用機種はセイコー電子工業社製の S P S - 1500 VR。 以下の実施例および比較例においても同じ。 ) の結果、 スパッ夕 リングターゲッ トと同一の 0. 67であった。 また、 X線回折測定 (使 用機種はリガク社製のロータフレックス RU— 200 B。 以下の実施例 および比較例においても同じ。 ) によりこの透明導電膜 Iの結晶性を調 ベた結果、 非晶質であることが判明した。 X線回折測定の結果は、 図 1 と実質的に同じであった。
また、 この導電性透明フィルムの光線透過率を UV分光測定 (使用機 種は日立製作所製の U— 3210、 試験光の波長 =550 nm) により 行うと共に、 透明導電膜 Iの表面抵抗を四端子法 (使用機種は三菱油化 社製の口レス夕 FP) により測定した。 また、 40°C、 90%RHの条 件で耐湿熱性試験を行い、 試験時間 1000時間後の表面抵抗および光 線透過率を同様にして測定した。 さらに、 塩酸:硝酸:水の割合が 1 : 0. 08 : 1 (モル比) のエッチング液を水で 10倍に稀釈した液に上 記の導電性透明フィルムを浸潰し、 抵抗値が 2 M Ω以上になった時間か ら透明導電膜 Iのエッチング速度を算出した。 これらの結果を表 3に示 す。
実施例 10
透明高分子基材として厚さ 125 /mの 2軸延伸ポリエステルフィル ムを用い、 スパッ夕リングターゲッ トとしてィンジゥムと亜鉛との合金 で I nの原子比 I nZ (I n + Zn) が 0. 67のものを用いて、 以下 の要領で導電性透明フィルムを製造した。
まず、 透明高分子基材をスパッタリ ング装置に装着し、 真空槽内を 1 X 10—5Torr以下まで減圧した。 この後、 アルゴンガス (純度 99. 9 9%) と酸素ガス (純度 99. 99 %) との混合ガス (A r : 02 = 1 000 : 2. 8 (体積比) ) を真空圧 2 X 10— 3Torrまで導入し、 夕一 ゲッ ト印加電圧を 420 Vに、 また基板温度を 140°Cにそれぞれ設定 して、 反応性スパッタリングにより膜厚 280 nmの透明導電膜 Iを透 明高分子基材上に成膜した。
このようにして得られた導電性透明フィルムでは、 透明導霉膜 Iは酸 化ィンジゥムと酸化亜鉛との組成物からなり、 この透明導電膜 Iにおけ る I nの原子比 I nZ (I n + Z n) は I CP分析の結果 0. 67であ つた。 また、 X線回折により透明導電膜 Iの結晶性を調べた結果、 非晶 質であることが判明した。
また、 この導電性透明フィルムの光線透過率と透明導電膜 Iの表面抵 抗を実施例 9と同様にして測定するとともに、 実施例 9と同様にして耐 湿熱性試験を行って試験時間 1000時間後の表面抵抗および光線透過 率を実施例 9と同様にして測定した。 さらに、 透明導電膜 Iのエツチン グ速度を実施例 9と同様にして測定した。 これらの結果を表 3に示す。 実施例 11
透明高分子基材として厚さ 125; の 2軸延伸ポリエステルフィル ムを用い、 スパッ夕リングターゲッ トとしてィンジゥムと亜鉛と S nと を含有する合金で、 I nの原子比 I ( I n + Z n) が 0. 67、 第 3元素である S nの原子比 S nZ C l n + Z n + S n) 力 0. 04のも のを用いて、 以下の要領で導電性透明フィルムを製造した。
まず、 透明高分子基材をスパッタリ ング装置に装着し、 真空槽内を 1 X 10—5Torr以下まで減圧した。 この後、 アルゴンガス (純度 99. 9 9%) と酸素ガス (純度 99. 99 %) との混合ガス (A r : 〇2 = 1 000 : 2. 8 (体積比) ) を真空圧 3 X 10—3Torrまで導入し、 ター ゲッ ト印加電圧を 350 Vに、 また基板温度を 80°Cにそれぞれ設定し 1 て、 反応性スパッタリングにより膜厚 300 nmの透明導電膜 11を透明 高分子基材上に成膜した。
このようにして得られた導電性透明フィルムについて透明導電膜 11の 組成を I C Pにより測定したところ、 I nの原子比 I nZ ( I n + Z n) は 0. 67、 第 3元素である S nの原子比 S nZ (I n + Z n + S n) は 0. 04であった。 また、 この透明導電膜 11の結晶性を X線回折によ り調べた結果、 非晶質であることが判明した。
この導電性透明フィルムの光線透過率と透明導電膜 11の表面抵抗を実 施例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性 試験を行って試験時間 1000時間後の表面抵抗および光線透過率を実 施例 9と同様にして測定した。 さらに、 透明導電膜 IIのエッチング速度 を実施例 9と同様にして測定した。 これらの結果を表 3に示す。
実施例 12
透明高分子基材として厚さ 125 μπιの 2軸延伸ポリエステルフィル ムを用い、 スパッタリングターゲッ トとして I η 2 03 (Ζ η 0) 4 で 表される六方晶層状化合物と酸化インジウム ( I η 2 03 ) とからなる 焼結体ターゲッ ト ( I ηの原子比 I nZ (I n + Zn) = 0. 67) を 用いて、 以下の要領で導電性透明フィルムを製造した。
まず、 透明高分子基材を RFマグネトロンダイレク トスパッタリング 装置に装着し、 真空槽内を 5 X 1 0 orr以下まで減圧した。 この後、 アルゴンガス (純度 99. 99 %) と酸素ガス (純度 99. 99 %) と の混合ガス (A r : O2 = 1000 : 2. 8 (体積比) ) を真空圧 3 X 10_1P aまで導入し、 スパッタ出力を 100Wに、 また基板温度を 2 0°Cにそれぞれ設定して、 RFマグネトロンダイレク トスパッタリング により膜厚 200 nmの透明導電膜 Iを透明高分子基材上に成膜した。 このようにして得られた導電性透明フィルムについて透明導電膜 Iの /13851 組成を I C Pにより測定したところ、 I nの原子比 I n Z ( I n + Z n ) は 0 . 7 0であった。 また、 この透明導電膜 Iの結晶性を X線回折によ り調べた結果、 非晶質であることが判明した。
この導電性透明フィルムの光線透過率と透明導電膜 Iの表面抵抗を実 施例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性 試験を行って試験時間 1 0 0 0時間後の表面抵抗および光線透過率を実 施例 9と同様にして測定した。 さらに、 透明導電膜 Iのエッチング速度 を実施例 9と同様にして測定した。 これらの結果を表 3に示す。
実施例 1 3
スパッタリングターゲッ トとして I n 2 0 3 ( Z n 0 ) 4 で表される 六方晶層状化合物と酸化インジウム ( I n 2 0 3 ) とからなる焼結体夕 一ゲッ トであって、 I nの原子比 I n / ( I n + Z n ) 力く 0 . 7 0のも のを用いた以外は実施例 1 2と同様にして、 膜厚 2 0 0 n mの透明導電 膜 Iを透明高分子基材上に成膜した。
このようにして得られた導電性透明フィルムについて透明導電膜 Iの 組成を I C Pにより測定したところ、 I ηの原子比 I n / ( I η + Ζ η ) は 0 . 7 4であった。 また、 この透明導電膜 Iの結晶性を X線回折によ り調べた結果、 非晶質であることが判明した。
この導電性透明フィルムの光線透過率と透明導電膜 Iの表面抵抗を実 施例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性 試験を行って試験時間 1 0 0 0時間後の表面抵抗および光線透過率を実 施例 9と同様にして測定した。 さらに、 透明導電膜 Iのエッチング速度 を実施例 9と同様にして測定した。 これらの結果を表 3に示す。
実施例 1 4
R Fマグネ トロンダイレク トスパッタリ ング装置の代わりに D Cマグ ネトロンダイレク トスパッ夕リング装置を用いた以外は実施例 1 3と同 51 様にして、 膜厚 200 nmの透明導電膜 Iを透明高分子基材上に成膜し た。
このようにして得られた導電性透明フィルムについて透明導電膜 Iの 組成を I CPにより測定したところ、 I nの原子比 I nZ (I n + Z n) は 0. 73であった。 また、 この透明導電膜 Iの結晶性を X線回折によ り調べた結果、 非晶質であることが判明した。
この導電性透明フィルムの光線透過率と透明導電膜 Iの表面抵抗を実 施例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性 試験を行って試験時間 1000時間後の表面抵抗および光線透過率を実 施例 9と同様にして測定した。 さらに、 透明導電膜 Iのエッチング速度 を実施例 9と同様にして測定した。 これらの結果を表 3に示す。
実施例 15
スパッ夕リングターゲッ トとして I n 2 03 (Z n 0) 4 で表される 六方晶層状化合物と酸化インジウム (I n 2 03 ) とからなる焼結体夕 一ゲッ トであって、 I nの原子比 I nZ ( I n + Z n) 力 0. 75のも のを用いた以外は実施例 12と同様にして、 膜厚 180 nmの透明導電 膜 Iを透明高分子基材上に成膜した。
このようにして得られた導電性透明フィルムについて透明導電膜 Iの 組成を I CPにより測定したところ、 I nの原子比 I nZ (I n + Z n) は 0. 79であった。 また、 この透明導電膜 Iの結晶性を X線回折によ り調べた結果、 非晶質であることが判明した。
この導電性透明フィルムの光線透過率と透明導電膜 Iの表面抵抗を実 施例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性 試験を行って試験時間 1000時間後の表面抵抗および光線透過率を実 施例 9と同様にして測定した。 さらに、 透明導電膜 Iのエッチング速度 を実施例 9と同様にして測定した。 これらの結果を表 3に示す。 実施例 1 6
成膜時の基板温度を 8 0°Cにした以外は実施例 1 5と同様にして、 膜 厚 200 nmの透明導電膜 Iを透明高分子基材上に成膜した。
このようにして得られた導電性透明フィルムについて透明導電膜 Iの 組成を I C Pにより測定したところ、 I nの原子比 I nZ ( I n + Z n) は 0. 78であった。 また、 この透明導電膜 Iの結晶性を X線回折によ り調べた結果、 非晶質であることが判明した。
この導電性透明フィルムの光線透過率と透明導電膜 Iの表面抵抗を実 施例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性 試験を行って試験時間 1000時間後の表面抵抗および光線透過率を実 施例 9と同様にして測定した。 さらに、 透明導電膜 Iのエッチング速度 を実施例 9と同様にして測定した。 これらの結果を表 3に示す。
実施例 1 Ί
スパッタリングターゲッ トとして I n n 03 (Z n 0) 4 で表される 六方晶層状化合物と酸化インジウム ( I n 2 03 ) とからなる焼結体夕 一ゲッ トであって、 I nの原子比 I nZ ( I n + Z n) が 0. 75のも のを用いた以外は実施例 14と同様にして、 膜厚 22 0 nmの透明導電 膜 Iを透明高分子基材上に成膜した。
このようにして得られた導電性透明フィルムについて透明導電膜 Iの 組成を I C Pにより測定したところ、 I nの原子比 I nZ ( I n + Z n) は 0. 79であった。 また、 この透明導電膜 Iの結晶性を X線回折によ り調べた結果、 非晶質であることが判明した。
この導電性透明フィルムの光線透過率と透明導電膜 Iの表面抵抗を実 ½例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性 試験を行って試験時間 1 00 0時間後の表面抵抗および光線透過率を実 施例 9と同様にして測定した。 さらに、 透明導電膜 Iのエッチング速度 を実施例 9と同様にして測定した。 これらの結果を表 3に示す。
実施例 18
スパッタリングターゲッ トとして I n 9 03 (Z n 0) 4 で表される 六方晶層状化合物に酸化錫を含有させた化合物からなる焼結体ターゲッ トであって、 I nの原子比 I nZ (I n + Zn) が 0. 75、 第 3元素 である S nの原子比 S nZ (I n + Z n + S n) が 0. 04であるもの を用いた以外は実施例 12と同様にして、 膜厚 200 nmの透明導電膜 11を透明高分子基材上に成膜した。
このようにして得られた導電性透明フィルムでは、 透明導電膜 11は酸 化ィンジゥムと酸化亜鉛との組成物に S nの酸化物が含有された組成物 からなり、 I C P分析の結果、 I nの原子比 I nZ (I n + Z n) は 0. 78、 第 3元素である S nの原子比 S nZ (I n + Zn + S n) は 0. 04であった。 また、 この透明導電膜 11の結晶性を X線回折により調べ た結果、 非晶質であることが判明した。
この導電性透明フィルムの光線透過率と透明導電膜 11の表面抵抗を実 施例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性 試験を行って試験時間 1000時間後の表面抵抗および光線透過率を実 施例 9と同様にして測定した。 さらに、 透明導電膜 11のエッチング速度 を実施例 9と同様にして測定した。 これらの結果を表 3に示す。
比較例 9
スパッタリングターゲッ トとして酸化ィンジゥムと酸化錫の複合酸化 物 ( I TO) からなる焼結体であって、 I nと S nの原子比 I nZS n が 9Z1である焼結体を用い、 かつ成膜時の基板温度を 80°Cとした以 外は実施例 9と同様にして、 膜厚 300 nmの透明導電膜を透明高分子 基材上に成膜した。
このようにして得られた導電性透明フィルムについて透明導電膜の結 / 51 晶性を X線回折により調べた結果、 I n 2 03 の鋭いピークが認められ た。
この導電性透明フィルムの光線透過率と透明導電膜の表面抵抗を実施 例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性試 験を行って試験時間 1000時間後の表面抵抗および光線透過率を実施 例 9と同様にして測定した。 さらに、 透明導電膜のエッチング速度を実 施例 9と同様にして測定した。 これらの結果を表 3に示す。
比較例 10
スパッ夕リングターゲッ トとして酸化インジウムと酸化錫の複合酸化 物 ( I TO) からなる焼結体であって、 I nと S nの原子比 I nZS n が 9Z1である焼結体を用いた以外は実施例 12と同様にして、 膜厚 2 00 nmの透明導電膜を透明高分子基材上に成膜した。
このようにして得られた導電性透明フィルムについて透明導電膜の結 晶性を X線回折により調べた結果、 わずかに I n2 Og のピークが認め られた。
この導電性透明フィルムの光線透過率と透明導電膜の表面抵抗を実施 例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性試 験を行って試験時間 1000時間後の表面抵抗および光線透過率を実施 例 9と同様にして測定した。 さらに、 透明導電膜のエッチング速度を実 施例 9と同様にして測定した。 これらの結果を表 3に示す。
比較例 1 1
スパッタリングターゲッ トとして酸化亜鉛を含有する酸化ィンジゥム ターゲッ ト (I nの原子比 I nZ (I n + Z n) が 0, 90である焼結 体) を用いた以外は実施例 12と同様にして、 膜厚 200 nmの透明導 電膜を透明高分子基材上に成膜した。
このようにして得られた導電性透明フィルムについて透明導電膜の組 51 成を I C Pにより測定したところ、 I nの原子比 I nZ ( I n + Z n) は 0. 93であった。 また、 この透明導電膜の結晶性を X線回折により 調べた結果、 非晶質であることが判明した。
この導電性透明フィルムの光線透過率と透明導電膜の表面抵抗を実施 例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性試 験を行って試験時間 1000時間後の表面抵抗および光線透過率を実施 例 9と同様にして測定した。 さらに、 透明導電膜のエッチング速度を実 施例 9と同様にして測定した。 これらの結果を表 3に示す。
比較例 12
スパッタリングターゲッ トとして酸化亜鉛を含有する酸化インジウム ターゲッ ト (I nの原子比 I nZ (I n + Z n) が 0. 93である焼結 体) を用いた以外は実施例 12と同様にして、 膜厚 200 nmの透明導 電膜を透明高分子基材上に成膜した。
このようにして得られた導電性透明フィルムについて透明導電膜の組 成を I C Pにより測定したところ、 I nの原子比 I nZ ( I n + Z n) は 0. 97であった。 また、 この透明導電膜の結晶性を X線回折により 調べた結果、 非晶質であることが判明した。
この導電性透明フィルムの光線透過率と透明導電膜の表面抵抗を実施 例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性試 験を行って試験時間 1000時間後の表面抵抗および光線透過率を実施 例 9と同様にして測定した。 さらに、 透明導電膜のエッチング速度を実 施例 9と同様にして測定した。 これらの結果を表 3に示す。
比較例 13
スパッ夕リングターゲッ トとして酸化亜鉛を含有する酸化ィンジゥム ターゲッ ト (I nの原子比 I nZ (I n + Zn) が 0. 93である焼結 体) を用いた以外は実施例 16と同様にして、 膜厚 200 nmの透明導 電膜を透明高分子基材上に成膜した。
このようにして得られた導電性透明フィルムについて透明導電膜の組 成を I C Pにより測定したところ、 I nの原子比 I n / ( I n + Z n ) は 0 。 9 7であった。 また、 この透明導電膜の結晶性を X線回折により 調べた結果、 わずかに I n 2 0 3 のピークが認められた。
この導電性透明フィルムの光線透過率と透明導電膜の表面抵抗を実施 例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性試 験を行って試験時間 1 0 0 0時間後の表面抵抗および光線透過率を実施 例 9と同様にして測定した。 さらに、 透明導電膜のエッチング速度を実 施例 9と同様にして測定した。 これらの結果を表 3に示す。
比較例 1 4
スパッタリ ングターゲッ トとして直径 4ィンチの酸化亜鉛ディスクの 上に酸化ィンジゥムタブレツ ト (直径 1 0 m m、 厚さ 5 m m) 3個を配 置したものを用いた以外は実施例 1 2と同様にして、 膜厚 2 0 0 n mの 透明導電膜を透明高分子基材上に成膜した。
このようにして得られた導電性透明フィルムについて透明導電膜の組 成を I C Pにより測定したところ、 I nの原子比 I n Z ( I n + Z n ) は 0 . 1 2であった。 また、 この透明導電膜の結晶性を X線回折により 調べた結果、 非晶質であることが判明した。
この導電性透明フィルムの光線透過率と透明導電膜の表面抵抗を実施 例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性試 験を行って試験時間 1 0 0 0時間後の表面抵抗および光線透過率を実施 例 9と同様にして測定した。 さらに、 透明導電膜のエッチング速度を実 施例 9と同様にして測定した。 これらの結果を表 3に示す。
実施例 1 9
透明高分子基材の上に厚さ 1 のエポキシ樹脂 (エポキシァクリ レ ート) 層をスピンコート法により設け、 U V照射により前記エポキシ樹 脂を架橋させて架橋性樹脂層を形成した。 この後は実施例 1 2と同様に して前記架橋性樹脂層上に膜厚 2 0 0 n mの透明導電膜 Iを成膜した。 このようにして得られた導電性透明フィルムについて透明導電膜の組 成を I C Pにより測定したところ、 I nの原子比 I n Z ( I n + Z n ) は 0 . 7 0であった。 また、 この透明導電膜の結晶性を X線回折により 調べた結果、 非晶質であることが判明した。
この導電性透明フィルムの光線透過率と透明導電膜の表面抵抗を実施 例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性試 験を行って試験時間 1 0 0 0時間後の表面抵抗および光線透過率を実施 例 9と同様にして測定した。 さらに、 透明導電膜のエッチング速度を実 施例 9と同様にして測定した。 これらの結果を表 3に示す。
(以下余白)
表 3
明 導 電 膜 光線透過率 (%) 表面抵抗 (Ω/D) 比 抵
Inの原子比 第 3 元 素 試験 前 Βΐζ ¾後 ¾験刖 5式験後 試験 前 実施例 9 0. 67 非晶質 82. 81. 6 0 14. 0 3. 3 実施例 10 0. 67 非晶質 81. 2 81 2. 0 13. 0 3. 4 実施例 11 0. 67 S n (0. 04) Τ ΒΒ質 83. 0 82 6 6. 0 7. 0 8 実施例 12 0. 70 非晶質 83. 83 2 21. 0 22. 5 4. 2 実施例 13 0. 74 非晶質 83. 2 83 0 20. 0 21. 5 4. 0 実施例 14 0. 7 82. 6 82 16. 2 17. 5 3. 2 実施^ 15 0. 79 非晶質 83. 6 83 21. 5 23. 0 3. 9 実施例 16 0. 78 非晶質 81. 9 8 7 19. 2 20. 5 8 実施例 Π 0. 79 非晶質 82. 2 8 9 14. 7 15. 8 2 実施 J18 0. 78 S n (0. 04) 非晶質 82. 0 81 8 18. 5 20. 0 7 実施例 L9 0. 70 非 質 83. 4 83 2 2 1 22. 4. 2 比铰例 9 ( I TO) B質 82. 2 81 5 18. 0 54. 0 5. 4 比較例 10 ( I TO) 微結晶 82. 6 8 5 28. 0 56. 2 5. 6 比較 0. 93 非晶質 83. 7 83 28. 5 29. 0 5. 7 比較例 12 0. 97 非晶質 83. 2 82 5 27. 0 28. 5 5. 4 比蛟例 13 0. 97 微結晶 81. 8 80 2 210 380 42 比較例 14 0. 12 Τ ΒΒ質 81. 2 8 315 360 63
* 1 :カツコ内の数値は第 3元素の原子比 (第 3元素) / (Ι η + Ζη+第 3元素) を示す。
* 2:卑位は X 10~^Ω c m
表 3から明らかなように、 実施例 9〜実施例 18で得られた各導電性 透明フィルムは、 実用上十分な導電性および光透過性を有している。 そ して、 各導電性透明フィルムは、 耐湿熱性試験の前後で表面抵抗 (比抵 抗) の変化が小さいことから、 耐湿熱性に優れていることがわかる。 ま た、 実施例 9〜実施例 18で得られた各導電性透明フィルムを構成する 透明導電膜 (透明導電膜 Iまたは透明導電膜 H) は、 そのエッチング速 度が高いことから、 エツチング特性に優れていることがわかる。
—方、 透明導電膜として結晶質の I TO膜を設けた比較例 9の導電性 透明フィルムは実用上十分な導電性および光透過性を有してはいるもの の、 耐湿熱性試験の前後で表面抵抗が大きく変化していることから、 耐 湿熱性には劣ることがわかる。 また、 この導電性透明フィルムを構成す る透明導電膜 (I TO膜) のエッチング速度は低い。 同様のことが、 透 明導電膜として微結晶質の I TO膜を設けた比較例 10の導電性透明フ ィルムについてもいえる。 また、 比較例 11および比較例 12のものは 耐湿熱性に傻れてはいるが、 導電性およびエッチング特性 (エッチング 速度) の点で実施例 9〜実施例 18のものよりも劣る。 そして、 比較例 13および比較例 14のものは導電性が低い。
実施例 20
透明ガラス基材として厚さ 125 mの無アル力リガラスを用い、 ス パッタリングターゲッ トとして酸化ィンジゥムと酸化亜鉛との組成物で I nの原子比 I nZ (I n + Zn) が 0. 67である焼結体を用いて、 以下の要領で導電性透明ガラスを製造した。
まず、 透明ガラス基材を D Cマグネトロンダイレク トスパッ夕リング 装置に装着し、 真空槽内を 1 X 10_5Torr以下まで減圧した。 この後、 アルゴンガス (純度 99. 99 %) と酸素ガス (純度 99. 99 %) と の混合ガス (A r : O„ = 1000 : 2. 8 (体積比) ) を真空圧 2 x 10— 3Torrまで導入し、 ターゲッ ト印加電圧を 420 Vに、 また基板温 度を 240°Cにそれぞれ設定して、 D Cマグネトロンダイレク トスパッ 夕リングにより膜厚 310 nmの透明導電膜 Iを透明ガラス基材上に成 膜した。
このようにして得られた導電性透明ガラスについて透明導電膜 Iの組 成を I CPにより測定したところ、 I nの原子比 I nZ (I n + Z n) はスパッタリングターゲッ トと同一の 0. 67であった。 また、 この透 明導電膜 Iの結晶性を X線回折により調べた結果、 非晶質であることが 判明した。 X線回折測定の結果は、 図 1と実質的に同じであった。
この導電性透明ガラスの光線透過率と透明導電膜 Iの表面抵抗を実施 例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性試 験を行って試験時間 1000時間後の表面抵抗および光線透過率を実施 例 9と同様にして測定した。 さらに、 透明導電膜 Iのエッチング速度を 実施例 9と同様にして測定した。 これらの結果を表 4に示す。
実施例 21
透明ガラス基材として厚さ 125 mの無アル力リガラスを用い、 ス パッタリングターゲッ トとしてィンジゥムと亜鉛との合金で I nの原子 比 I nZ ( I n + Z n) が 0. 67のものを用いて、 以下の要領で導電 性透明ガラスを製造した。
まず、 透明ガラス基材をスパッタリング装置に装着し、 真空槽内を 1 X 10_5Torr以下まで減圧した。 この後、 アルゴンガス (純度 99. 9 9%) と酸素ガス (純度 99。 99%) との混合ガス (A r : 02 = 1 0 0 0 : 2. 8 (体積比) ) を真空圧 2 X 1 (Γ3ΤΟΓΓまで導入し、 夕一 ゲッ ト印加電圧を 420 Vに、 また基板温度を 240°Cにそれぞれ設定 して、 反応性スパッタリングにより膜厚 280 nmの透明導電膜 Iを透 明ガラス基材上に成膜した。 このようにして得られた導電性透明ガラスでは、 透明導電膜 Iは酸化 ィンジゥムと酸化亜鉛との組成物からなり、 この透明導電膜 Iにおける I nの原子比 I nZ (I n + Zn) は I CP分析の結果 0. 67であつ た。 また、 X線回折により透明導電膜 Iの結晶性を調べた結果、 非晶質 であることが判明した。
また、 この導電性透明ガラスの光線透過率と透明導電膜 Iの表面抵抗 を実施例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿 熱性試験を行って試験時間 1000時間後の表面抵抗および光線透過率 を実施例 9と同様にして測定した。 さらに、 透明導電膜 Iのエッチング 速度を実施例 9と同様にして測定した。 これらの結果を表 4に示す。 実施例 22
透明ガラス基材として厚さ 125 mの無アル力リガラスを用い、 ス パッタリングターゲッ トとして酸化ィンジゥムと酸化亜鉛との組成物に 酸化錫を含有させた組成物からなる焼結体であって、 I nの原子比 I n Z (I n + Z n) が 0. 67、 第 3元素である S nの原子比 S nZ ( I n + Z n + S n) が 0. 04である焼結体を用いて、 以下の要領で導電 性透明ガラスを製造した。
まず、 透明ガラス基材を D Cマグネトロンダイレク トスパッタリング 装置に装着し、 真空槽内を 1 X 10—5Torr以下まで減圧した。 この後、 アルゴンガス (純度 99. 99%) と酸素ガス (純度 99. 99 %) と の混合ガス (A r : O2 = 1000 : 2. 8 (体積比) ) を真空圧 3 x 1' 0— 3Torrまで導入し、 ターゲッ ト印加電圧を 350 Vに、 また基板温 度を 210°Cにそれぞれ設定して、 D Cマグネトロンダイレク トスパッ 夕リングにより膜厚 300 nmの透明導電膜 11を透明ガラス基材上に成 膜した。
このようにして得られた導電性透明ガラスでは、 透明導電膜 Πは酸化 ィンジゥムと酸化亜鉛との組成物に S nの酸化物が含有された組成物か らなり、 I C P分析の結果、 I nの原子比 I nZ (I n + Zn) は 0.
67、 第 3元素である S nの原子比 S nZ (I n + Z n + S n) は 0.
04であった。 また、 この透明導電膜 11の結晶性を X線回折により調べ た結果、 非晶質であることが判明した。
この導電性透明フィルムの光線透過率と透明導電膜 11の表面抵抗を実 施例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性 試験を行って試験時間 1000時間後の表面抵抗および光線透過率を実 施例 9と同様にして測定した。 さらに、 透明導電膜 11のエッチング速度 を実施例 9と同様にして測定した。 これらの結果を表 4に示す。
実施例 23
透明ガラス基材として厚さ 125 mの無アル力リガラスを用い、 ス ノ、。ッタリングターゲッ トとして I n 2 03 (Z n 0) A で表される六方 晶層状化合物と酸化インジウム (I n。 03 ) とからなる焼結体タ一ゲ ッ ト (I nの原子比 I nZ (I n + Zn) =0. 67) を用いて、 以下 の要領で導電性透明ガラスを製造した。
まず、 透明ガラス基材を R Fマグネトロンダイレク トスパッタリング 装置に装着し、 真空槽内を 5 X 10—5Torr以下まで減圧した。 この後、 アルゴンガス (純度 99. 99%) と酸素ガス (純度 99. 99%) と の混合ガス (A r : 02 = 1000 : 2. 8 (体積比) ) を真空圧 3 x 10_1P aまで導入し、 スパッタ出力を 100Wに、 また基板温度を 2 0°Cにそれぞれ設定して、 RFマグネトロンダイレク トスパッ夕リング により膜厚 200 nmの透明導電膜 Iを透明ガラス基材上に成膜した。
'このようにして得られた導電性透明ガラスについて透明導電膜 Iの組 成を I C Pにより測定したところ、 I nの原子比 I n ( I n + Z n) は 0. 70であった。 また、 この透明導電膜 Iの結晶性を X線回折によ り調べた結果、 非晶質であることが判明した。
この導電性透明ガラスの光線透過率と透明導電膜 Iの表面抵抗を実施 例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性試 験を行って試験時間 1000時間後の表面抵抗および光線透過率を実施 例 9と同様にして測定した。 さらに、 透明導電膜 Iのエッチング速度を 実施例 9と同様にして測定した。 これらの結果を表 4に示す。
実施例 24
スパッタリングターゲッ トとして I n 2 03 (Z n 0) 4 で表される 六方晶層状化合物と酸化インジウム (I n 2 03 ) とからなる焼結体夕 一ゲッ トであって、 I nの原子比 I nZ ( I n + Z n) 力 0. 70のも のを用いた以外は実施例 22と同様にして、 膜厚 200 nmの透明導電 膜 Iを透明ガラス基材上に成膜した。
このようにして得られた導電性透明ガラスについて透明導電膜 Iの組 成を I CPにより測定したところ、 I nの原子比 I nZ (I n + Zn) は 0. 74であった。 また、 この透明導電膜 Iの結晶性を X線回折によ り調べた結果、 非晶質であることが判明した。
この導電性透明ガラスの光線透過率と透明導電膜 Iの表面抵抗を実施 例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性試 験を行って試験時間 1000時間後の表面抵抗および光線透過率を実施 例 9と同様にして測定した。 さらに、 透明導電膜 Iのエッチング速度を 実施例 9と同様にして測定した。 これらの結果を表 4に示す。
実施例 25
成膜時の基板温度を 200°Cにした以外は実施例 24と同様にして、 膜厚 250 nmの透明導電膜 Iを透明ガラス基材上に成膜した。
このようにして得られた導電性透明ガラスについて透明導電膜 Iの組 成を I C Pにより測定したところ、 I nの原子比 I nZ ( I n + Z n) は 0 . 7 3であった。 また、 この透明導電膜 Iの結晶性を X線回折によ り調べた結果、 非晶質であることが判明した。
この導電性透明ガラスの光線透過率と透明導電膜 Iの表面抵抗を実施 例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性試 験を行って試験時間 1 0 0 0時間後の表面抵抗および光線透過率を実施 例 9と同様にして測定した。 さらに、 透明導電膜 Iのエッチング速度を 実施例 9と同様にして測定した。 これらの結果を表 4に示す。
実施例 2 6
R Fマグネトロンダイレク トスパッタリング装置の代わりに D Cマグ ネトロンダイレク トスパッ夕リング装置を用いた以外は実施例 2 4と同 様にして、 膜厚 2 5 0 n mの透明導電膜 Iを透明ガラス基材上に成膜し このようにして得られた導電性透明ガラスについて透明導電膜 Iの組 成を I C Pにより測定したところ、 I nの原子比 I n Z ( I n + Z n ) は 0 . 7 3であった。 また、 この透明導電膜 Iの結晶性を X線回折によ り調べた結果、 非晶質であることが判明した。
この導電性透明ガラスの光線透過率と透明導電膜 Iの表面抵抗を実施 例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性試 験を行って試験時間 1 0 0 0時間後の表面抵抗および光線透過率を実施 例 9と同様にして測定した。 さらに、 透明導電膜 Iのエッチング速度を 実施例 9と同様にして測定した。 これらの結果を表 4に示す。
実施例 2 7
スパッ夕リ ング夕一ゲッ トとして直径 4ィンチの酸化ィンジゥムディ スクの上に酸化亜鉛タブレッ ト (直径 1 0 m m、 厚さ 5 m m) 5個を配 置したものを用いた以外は実施例 2 3と同様にして、 膜厚 2 0 0 n mの 透明導電膜 Iを透明ガラス基材上に成膜した。 このようにして得られた導電性透明ガラスについて透明導電膜 Iの組 成を I C Pにより測定したところ、 I nの原子比 I n Z ( I n + Z n ) は 0 . 7 2であった。 また、 この透明導電膜の結晶性を X線回折により 調べた結果、 非晶質であることが判明した。
この導電性透明フィルムの光線透過率と透明導電膜の表面抵抗を実施 例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性試 験を行って試験時間 1 0 0 0時間後の表面抵抗および光線透過率を実施 例 9と同様にして測定した。 さらに、 透明導電膜のエッチング速度を実 施例 9と同様にして測定した。 これらの結果を表 4に示す。
比較例 1 5
スパッタリングターゲッ トとして酸化ィンジゥムと酸化錫の複合酸化 物 ( I T O ) からなる焼結体であって、 I nと S nの原子比 I n Z S n が 9 Z lである焼結体を用いた以外は実施例 2 0と同様にして、 膜厚 3 5 0 n mの透明導電膜を透明ガラス基材上に成膜した。
このようにして得られた導電性透明ガラスについて透明導電膜の結晶 性を X線回折により調べた結果、 I n。 0 3 の鋭いピークが認められた c この導電性透明ガラスの光線透過率と透明導電膜の表面抵抗を実施例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性試験 を行って試験時間 1 0 0 0時間後の表面抵抗および光線透過率を実施例 9と同様にして測定した。 さらに、 透明導電膜のエッチング速度を実施 例 9と同様にして測定した。 これらの結果を表 4に示す。
比較例 1 6
スパッ夕リングターゲッ トとして酸化ィンジゥムと酸化錫の複合酸化 物 ( I T O ) からなる焼結体であって、 I nと S nの原子比 I n Z S n が 9 1である焼結体を用いた以外は実施例 2 3と同様にして、 膜厚 2 0 0 n mの透明導電膜を透明ガラス基材上に成膜した。 このようにして得られた導電性透明ガラスについて透明導電膜の結晶 性を X線回折により調べた結果、 わずかに I n2 O n のピークが認めら れた。
この導電性透明ガラスの光線透過率と透明導電膜の表面抵抗を実施例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性試験 を行って試験時間 1000時間後の表面抵抗および光線透過率を実施例 9と同様にして測定した。 さらに、 透明導電膜のエッチング速度を実施 例 9と同様にして測定した。 これらの結果を表 4に示す。
比較例 17
スパッ夕リングターゲッ トとして酸化亜鉛を含有する酸化インジウム ターゲッ ト (I nの原子比 I n/ ( I n + Z n) が 0. 90である焼結 体) を用いた以外は実施例 23と同様にして、 膜厚 250 nmの透明導 電膜を透明ガラス基材上に成膜した。
このようにして得られた導電性透明ガラスについて透明導電膜の組成 を I C Pにより測定したところ、 I nの原子比 I nZ (I n + Z n) は 0. 93であった。 また、 この透明導電膜の結晶性を X線回折により調 ベた結果、 非晶質であることが判明した。
この導電性透明ガラスの光線透過率と透明導電膜の表面抵抗を実施例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性試験 を行って試験時間 1000時間後の表面抵抗および光線透過率を実施例 9と同様にして測定した。 さらに、 透明導電膜のエッチング速度を実施 例 9と同様にして測定した。 これらの結果を表 4に示す。
比較例 18
スパッタリ ングタ一ゲッ トとして酸化亜鉛を含有する酸化ィンジゥム ターゲッ ト (I nの原子比 I n/ (I n + Z n) が 0. 90である焼結 体) を用いた以外は実施例 25と同様にして、 膜厚 250 nmの透明導 電膜を透明ガラス基材上に成膜した。
このようにして得られた導電性透明ガラスについて透明導電膜の組成 を I C Pにより測定したところ、 I nの原子比 I n / ( I n + Z n ) は 0 . 9 3であった。 また、 この透明導電膜の結晶性を X線回折により調 ベた結果、 非晶質であることが判明した。
この導電性透明ガラスの光線透過率と透明導電膜の表面抵抗を実施例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性試験 を行って試験時間 1 0 0 0時間後の表面抵抗および光線透過率を実施例 9と同様にして測定した。 さらに、 透明導電膜のエッチング速度を実施 例 9と同様にして測定した。 これらの結果を表 4に示す。
比較例 1 9
スパッ夕リングターゲッ トとして酸化亜鉛を含有する酸化ィンジゥム ターゲッ ト ( I nの原子比 I ( I n + Z n ) が 0 . 9 3である焼結 体) を用いた以外は実施例 2 6と同様にして、 膜厚 2 5 0 n mの透明導 電膜を透明ガラス基材上に成膜した。
このようにして得られた導電性透明ガラスについて透明導電膜の組成 を I C Pにより測定したところ、 I nの原子比 I n / ( I n + Z n ) は 0 . 9 7であった。 また、 この透明導電膜の結晶性を X線回折により調 ベた結果、 非晶質であることが判明した。
この導電性透明ガラスの光線透過率と透明導電膜の表面抵抗を実施例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性試験 を行って試験時間 1 0 0 0時間後の表面抵抗および光線透過率を実施例 9と同様にして測定した。 さらに、 透明導電膜のエッチング速度を実施 例 9と同様にして測定した。 これらの結果を表 4に示す。
比較例 2 0
スパッ夕リングターゲッ トとして直径 4ィンチの酸化亜鉛ディスクの 上に酸化ィンジゥムタブレツ ト (直径 1 Omm、 厚さ 5 mm) 3個を配 置したものを用いた以外は実施例 23と同様にして、 膜厚 220 nmの 透明導電膜を透明ガラス基材上に成膜した。
このようにして得られた導電性透明ガラスについて透明導電膜の組成 を I C Pにより測定したところ、 I nの原子比 I nZ (I n + Zn) は 0. 12であった。 また、 この透明導電膜の結晶性を X線回折により調 ベた結果、 非晶質であることが判明した。
この導電性透明ガラスの光線透過率と透明導電膜の表面抵抗を実施例 9と同様にして測定するとともに、 実施例 9と同様にして耐湿熱性試験 を行って試験時間 1000時間後の表面抵抗および光線透過率を実施例 9と同様にして測定した。 さらに、 透明導電膜のエッチング速度を実施 例 9と同様にして測定した。 これらの結果を表 4に示す。
(以下余白)
表 4
明 導 電 膜 光線透過率 (%) 表面诋抗 (Ω/Π) 比 抵 抗 膜 厚 エ ツ チ ン グ
Inの原子比 兀 素伞1 結晶系 試験 Πリ 試験後 1¾験 Βリ Si 験後 ¾験 Βリ 試験後 (nm) 速度 (nm/分) 実施例 20 0. 67 非晶質 85. 2 84. 9 7. 5 7. 7 2. 2. 4 0 355 実施例 21 0. 67 非晶質 85. 3 85. 1 8. 5 8. 7 2. 4 2. 4 280 355 実施例 22 0. 67 S n (0. 04) 非晶質 82. 82. 1 5. 6 7. 2 1. 7 2. 2 300 360 実施例 23 0. 70 非晶質 86. 86. 2 7. 5 7. 8 3. 6 200 380 実施例 24 0. 74 非晶質 85. 5 85. 3 3. 14. 0 3. 4 3. 5 250 370 実施例 25 0. 73 非晶質 85. 4 85. 3 8. 6 8. 9 2. 2 2. 2 250 360 実施例 26 0. 73 非 質 85. 6 85. 4 12. 5 12. 9 3. 2 250 375 実施例 27 0. 72 非晶質 87. 0 86. 8 18. 0 18. 5 3. 6 3. 7 200 375 比較例 15 ( I TO) 83. 4 83. 5. 0 5. 0 8 1. 8 350
比較例 16 ( I TO) 微結晶 86. 3 85. 9 21. 0 27. 3 4. 2 5. 5 200 95 比較例 Π 0. 93 非 Bl:,質 85. 6 84. 6 20. 0 20. 5 5. 0 5. 1 250 150 比謹 8 0. 9 $口! 3[3ί¾ 85. 4 85. 2 1250 1380 310 350 250 12 比較例 19 0. 97 3 -Β曰 84. 6 83. 18. 0 18. 5 4. 5 4. 6 250 120 比較例 20 0. 12 83. 2 81. 7 260 10 57 68 220 350
* 1 :カツコ内の数値は第 3元素の原子比 (第 3元素) Z (I n + Zn +第 3元素) を示す。
* 2:単位は X 10— 4Ω c m
表 4から明らかなように、 実施例 2 0〜実施例 2 7で得られた各導電 性透明ガラスは、 実用上十分な導電性および光透過性を有している。 そ して、 各導電性透明フィルムは、 耐湿熱性試験の前後で表面抵抗 (比抵 抗) の変化が小さいことから、 耐湿熱性に優れていることがわかる。 ま た、 実施例 2 0〜実施例 2 7で得られた各導電性透明ガラスを構成する 透明導電膜 (透明導電膜 Iまたは透明導電膜 1 1) は、 そのエッチング速 度が高いことから、 エツチング特性に優れていることがわかる。
一方、 透明導電膜として結晶質の I T O膜を設けた比較例 1 5の導電 性透明ガラスは導電性、 光透過性および耐湿熱性に優れているが、 この 導電性透明ガラスを構成する結晶質の I T O膜のエッチング速度は実施 例 2 0〜実施例 2 7のものよりも遥かに低い。 透明導電膜として微結晶 質の I T O膜を設けた比較例 1 6の導電性透明ガラスは、 透明導電膜の エッチング特性 (エッチング速度) の点で比較例 1 5のものよりも優れ ていはいるが、 実施例 2 0〜実施例 2 7のものと比べるとまだまだ低い c また、 比較例 1 6の導電性透明ガラスは、 耐湿熱性の点でも実施例 2 0 〜実施例 2 7のものに劣る。 比較例 1 7および比較例 1 9のものは実用 上十分な導電性および光透過性を有し、 かつ耐湿熱性にも優れているが、 透明導電膜のエッチング特性 (エッチング速度) の点で実施例 2 0〜実 施例 2 7のものよりも劣る。 そして、 比較例 1 8および比較例 2 0のも のは導電性が低い。
実施例 2 8
透明高分子基材として厚さ 1 0 0 t mの 2軸延伸ポリエステルフィル ムを用い、 スパッタリ ングターゲッ トとして、 I n 2 0 3 焼結体 (直径 4インチ、 厚さ 5 m m、 相対密度 7 3 %) の上に Z n O焼結体 (直径 1 0 m m、 厚さ 5 m m、 相対密度 8 0 %) を 3個載せたものを用いて、 以 下の要領で前記ポリエステルフィルム上に透明導電膜 Iを設けた。 まず、 前記ポリエステルフィルムを RFスパッタリング装置に装着し- 真空槽内を 1 X 10— 3P a以下まで減圧した。 この後、 アルゴンガス (純度 99. 99 %) と酸素ガスとの混合ガス (酸素ガスの濃度 =0. 28%) を 1 X 10_1P aまで導入し、 R F出力 1. 2WZc m2 、 基 板温度 20°Cの条件で膜厚 273 nmの透明導電膜 Iを前記ポリエステ ルフィルム上に成膜した。
このようにして得られた透明導電膜 Iは、 X線回折測定の結果、 非晶 質であることが確認された。 また、 この透明導電膜 Iにおける I nの原 子比 I nZ (I n + Zn) は、 I CP分析の結果、 0. 88であった。
この透明導電膜 Iの表面抵抗および光線透過率 (試験光の波長: 55 0 nm) を測定するとともに、 実施例 9と同様にしてエッチング速度を 測定した。 また、 その比抵抗を算出した。 これらの結果を表 5に示す。 実施例 29
透明ガラス基材として無アル力リガラス板 (コ一二ング社製の # 70 59) を用い、 その他は実施例 28と同条件で、 膜厚 200 nmの透明 導電膜 Iを前記ガラス板上に設けた。
このようにして得られた透明導電膜 Iは、 X線回折測定の結果、 非晶 質であることが確認された。 また、 この透明導電膜 Iにおける I nの原 子比 I nZ (I n + Z n) は、 I CP分析の結果、 0. 88であった。
この透明導電膜 Iの表面抵抗、 光線透過率およびエッチング速度を実 施例 28と同様にして測定した。 また、 この透明導電膜 Iを 200°Cで 1時間加熱した後に、 その表面抵抗を測定した。 さらに、 加熱前後にお ける透明導電膜 Iの比抵抗を算出した。 これらの結果を表 5に示す。 実施例 30
基板温度を 200°Cとし、 その他は実施例 29と同条件で、 膜厚 10 0 nmの透明導電膜 Iを前記ガラス板上に成膜した。 このようにして得られた透明導電膜 Iは、 X線回折測定の結果、 非晶 質であることが確認された。 また、 この透明導電膜 Iにおける I nの原 子比 I nZ ( I n + Z n) は、 I CP分析の結果、 0. 88であった。
この透明導電膜 Iの表面抵抗、 光線透過率およびエッチング速度を実 施例 28と同様にして測定した。 また、 この透明導電膜 Iを 200°Cで 1時間加熱した後に、 その表面抵抗を測定した。 さらに、 加熱前後にお ける透明導電膜 Iの比抵抗を算出した。 これらの結果を表 5に示す。 実施例 31
スパッタリングターゲッ トとして、 I ηη 03 (Ζ η 0) 。 で表され る六方晶層状化合物と I η 2 03 とからなる焼結体ターゲッ ト (I nの 原子比 I nZ (I n + Z n) =0. 84、 相対密度 86%) を用い、 そ の他は実施例 1と同条件で、 膜厚 300 nmの透明導電膜 Iを前記ポリ エステルフィルム上に設けた。
このようにして得られた透明導電膜 Iは、 X線回折測定の結果、 非晶 質であることが確認された。 また、 この透明導電膜 Iにおける I nの原 子比 I nZ ( I n + Z n) は、 I C P分析の結果、 0. 88であった。
この透明導電膜 Iの表面抵抗、 光線透過率およびエッチング速度を実 施例 28と同様にして測定した。 また、 その比抵抗を算出した。 これら の結果を表 5に示す。
実施例 32
透明ガラス基材として無アル力リガラス板 (コ一二ング社製の # 70 59) を用い、 その他は実施例 31と同条件で、 膜厚 250 nmの透明 導電膜 Iを前記ガラス板上に設けた。
このようにして得られた透明導電膜 Iは、 X線回折測定の結果、 非晶 質であることが確認された。 また、 この透明導電膜 Iにおける I nの原 子比 I nZ ( I n + Z n) は、 I C P分析の結果、 0. 87であった。 51 この透明導電膜 Iの表面抵抗、 光線透過率およびエッチング速度を実 施例 28と同様にして測定した。 また、 この透明導電膜 Iを 200°Cで 1時間加熱した後に、 その表面抵抗を測定した。 さらに、 加熱前後にお ける透明導電膜 Iの比抵抗を算出した。 これらの結果を表 5に示す。 実施例 33
スパッ夕リングターゲッ トとして、 I n 2 03 (Z n 0) 4 で表され る六方晶層状化合物と I n2 Og とからなる焼結体ターゲッ ト (I nの 原子比 I nZ l n + Zi O. 80、 相対密度 87%) を用い、 そ の他は実施例 32と同条件で、 膜厚 210 nmの透明導電膜 Iを前記ガ ラス板上に設けた。
このようにして得られた透明導電膜 Iは、 X線回折測定の結果、 非晶 質であることが確認された。 また、 I CP分析の結果、 この透明導電膜 Iにおける I nの原子比 I nZ (I n + Zn) は 0. 84であった。 この透明導電膜 Iの表面抵抗、 光線透過率およびエッチング速度を実 施例 28と同様にして測定した。 また、 この透明導電膜 Iを 200°Cで 1時間加熱した後に、 その表面抵抗を測定した。 さらに、 加熱前後にお ける透明導電膜 Iの比抵抗を算出した。 これらの結果を表 5に示す。 実施例 34
スパッタリングターゲッ トとして、 I n 2 03 (Z nO) 3 で表され る六方晶層状化合物と、 I n 2 03 と、 S n02 とからなる焼結体ター ゲッ ト (I nの原子比 I nZ (I n + Z n) =0. 84、 S nの原子比 S n/ (I n + Zn + S n) =0. 02、 相対密度 82%) を用い、 基 板温度を 200°Cとした以外は実施例 32と同条件で、 膜厚 100 nm の透明導電膜 IIを前記ガラス板上に設けた。
このようにして得られた透明導電膜 11は、 X線回折測定の結果、 非晶 質であることが確認された。 また、 I CP分析の結果、 この透明導電膜 11における I nの原子比 I nZ ( I n + Z n) は 0. 8 7、 S nの原子 比 S nZ ( I n + Z n + S n) は 0. 02であった。
この透明導電膜 Πの表面抵抗、 光線透過率およびエッチング速度を実 施例 28と同様にして測定した。 また、 この透明導電膜 IIを 2 00°Cで 1時間加熱した後に、 その表面抵抗を測定した。 さらに、 加熱前後にお ける透明導電膜 IIの比抵抗を算出した。 これらの結果を表 5に示す。 比較例 2 1
スパッタリングターゲッ トとして、 I n 9 03 (Z n 0) で表され る六方晶層状化合物と I n 2 03 とからなる焼結体スパッタリング夕一 ゲッ ト ( I nの原子比 I n/ ( I n + Z n) = 0. 90、 相対密度 8 0 %) を用い、 その他は実施例 29と同条件で、 膜厚 3 0 0 nmの透明導 電膜を前記ガラス板上に設けた。
このようにして得られた透明導電膜を X線回折測定した結果、 非晶質 であることが確認された。 また、 この透明導電膜における I nの原子比 I n/ ( I n + Z n) は、 I C P分析の結果、 本発明の限定範囲外であ る 0. 9 3であった。
この透明導電膜の表面抵抗、 光線透過率およびェッチング速度を実施 例 28と同様にして測定した。 また、 この透明導電膜を 2 0 0°Cで 1時 間加熱した後に、 その表面抵抗を測定した。 さらに、 加熱前後における 透明導電膜の比抵抗を算出した。 これらの結果を表 5に示す。
比較例 22
スパッタリングターゲッ トとして I T 0ターゲッ ト ( I n。 03 — 5 wt%S n 02 ) を用い、 その他は実施例 3 0と同条件で、 膜厚 1 0 0 n mの透明導電膜を前記ガラス板上に設けた。
このようにして得られた透明導電膜を X線回折測定した結果、 酸化ィ ンジゥムの結晶が確認された。 この透明導電膜の表面抵抗、 光線透過率およびェッチング速度を実施 例 1と同様にして測定した。 また、 その比抵抗を算出した。 これらの結 果を表 5に示す。
実施例 35
透明高分子基材の上に厚さ 1; umのエポキシ樹脂 (エポキシァクリ レ ート) 層をスピンコート法により設け、 UV照射により前記エポキシ樹 脂を架橋させて架橋性樹脂層を形成した。 この後は実施例 33と同様に して前記架橋性樹脂層上に膜厚 200 nmの透明導電膜 Iを成膜した。 このようにして得られた透明導電膜 Iは、 X線回折測定の結果、 非晶 質であることが確認された。 また、 I CP分析の結果、 この透明導電膜 Iにおける I nの原子比 I nZ (I n + Zn) は 0. 84であった。 この透明導電膜 Iの表面抵抗、 光線透過率およびエッチング速度を実 施例 28と同様にして測定した。 また、 その比抵抗を算出した。 これら の結果を表 5に示す。
(以下余白)
表 5
基板の 成股時の 透明導電膜における 光線透過率 エッチング
タ一ゲット†2 表面 ffi抗 (Ω/ΠΙ) 比抵抗 (X 0 ΤΩ 膜 厚 材質れ 基板温度 I nの原子比 (%) 速 度: t5 熱処理前 熱処 II後 熱 処 理 前 I熱 処 理 後 (n m) 実施例 28 PE 2 O'C 夕ーゲ 卜 A 0. 88 82. 0 2. 0 2. 7 27: 実施例 29 ガラス 20"C 夕一ゲ 卜 A 0. 88 83. 0 2. 0 17. 3. 7 200 実施例 30 ガラス 200°C 夕一ゲ ト A 0. 88 86. 0 2. 0 35. 36. 3. 7 100
PE 20°C 夕ーゲ 卜 B 0. 88 80. 0 2. 0 11. 5 3. 5 300 実施咧 32 ガラス 20V 夕ーゲ B 0. 87 83. 0 2. 0 14. 4 5. 0 3. 8 250 実施例 33 ガラス 20°C 夕ーゲ 卜 C 0. 84 83. 5 2. 1 8. 1 18. 5 3. 8 5. 9 210 実施冽 34 ガラス 200°C ターゲ 卜 D 0. 87 *4 86. 0 1. 9 32. 5 33. 0 100 実施例 35 PE * 20°C 夕一ゲ 卜 C 0. 84 82. 5 2. 0 17. 200 比铰例 21 PE 2 Or ターゲ E 0. 93 78. 0 1. 8 12. 80. 0 8 24. 0 300 比铰咧 22 ガラス 200°C ターゲ 卜 F 84. 0 0. 021 17. 8 00
* 1 : PEは 2f 延伸ポリエステルフィルムを示し、 ガラスは無アルカリガラスを示す。 なお、 実施 ( )35の P Eは架^性 ^脂; Sを設けたものである
* 2 :ターゲット八…! π2 0„ 焼袪体の上に Z n 0¾S体を 3個載せてなるターゲッ卜を示す。
夕ーゲット!?… 1 n„ 03 (ZnO) 3で表される六方晶層状化台物と 1 π23 とからなる焼桔体ターゲット (1 πの原子比 1 η/ (I π + Ζη) =
=0. 84) を示す。
ターゲット 0·· Ι n„ 03 (ZnO) 4 で表される六方品 (g状化合物と I n2 とからなる焼!^本クーゲット (I πの原子比 I η/ (I π + Ζπ) =
=0. 80) を示す。
ターゲッ D— I π2 03 (Ζ η 0) 3 で表される六方,!!)!状化合物と、 1 η9 03 と、 S η 0。 とからなる埦钴体ターゲッ ト (I ηの原子比 I η/ ( I
+ Ζη) =0. 84、 5!1の原子比511/ (I n + Zn + S η) =0. 02) を示す。
ターゲット E〜 I n2 03 (ZnO) 3で表される六方晶暦状化台物と I η2 0„ とからなる谠蛣^ターゲット ( I πの原子比 I π / ( I π + Ζ π ) =
=0. 90) を示す。
ターゲット F〜 1 TOターゲット ( 1 n2 03 — 5wt%S n 0¾ ) を示す。
* 3 : I n/ ( I n +Z n) の値を示す。
*4 : S πの原子比 S n/ ( 1 π + Z n + S π) は 0. 02。
* 5: Ψ位は iim/分
表 5から明らかなように、 実施例 2 8〜実施例 3 5で得られた各透明 導電膜は、 実用上十分な導電性および透明性を有するとともに、 優れた エッチング特性を有している。 また、 熱処理前後の比抵抗の値から明ら かなように、 実施例 2 9、 実施例 3 0、 実施例 3 2、 実施例 3 3、 実施 例 3 4および実施例 3 5で得られた各透明導電膜は、 比抵抗の熱的安定 性に優れていることがわかる。 なお、 実施例 2 8、 実施例 3 1および実 施例 3 5で得られた各透明導電膜については基材の耐熱性が低いことか ら比抵抗の熱的安定性を確かめるための熱処理を行っていないが、 実施 例 2 8で得られた透明導電膜は実施例 2 9で得られた透明導電膜と実質 的に同質であることから、 また実施例 3 1で得られた透明導電膜は実施 例 3 2で得られた透明導電膜と実質的に同質であることから、 さらに実 施例 3 5で得られた透明導電膜は実施例 3 3で得られた透明導電膜と実 質的に同質であることから、 実施例 2 8、 実施例 3 1および実施例 3 5 の各透明導電膜も比抵抗の熱的安定性に優れていると推察される。
一方、 I nの原子比 I n Z ( I n + Z n ) が本発明の限定範囲外であ る比較例 2 1の透明導電膜は、 実用上十分な導電性および透明性を有す るとともに、 優れたエッチング特性を有しているが、 その比抵抗の熱的 安定性は極めて低い。 また、 比較例 2 2で I T Oターゲッ トを用いて得 た結晶質の透明導電膜は、 導電性および透明性に優れてはいるものの、 実施例 2 8〜実施例 3 5の各透明導電膜よりもエッチング特性に劣る。 なお、 実施例 2 8〜実施例 3 5で得られたいずれの透明導電膜も、 耐 湿熱性に優れていた。
実施例 3 6
( 1 ) 導電性材料 I (粉末) の製造
まず、 硝酸インジウム 7 0 . 9 7 gと硝酸亜鉛 8 9 . 2 5 gとを 1 リ ッ トルのイオン交換水に溶解させて、 インジウム塩と亜鉛塩とが溶解し 1 た水溶液を調製した。 また、 アンモニア水 (濃度 28%) 78 gを 75
0 c cのイオン交換水に溶解させて、 アル力リ性水溶液を調製した。 次いで、 イオン交換水 100 c cが入った容積 5リッ トルの容器に、 上で得られた水溶液とアルカリ性水溶液とを室温下で激しく攪拌しなが ら同時に滴下して、 両液を反応させた。 このとき、 反応系の pHが 9. 0に保たれるように滴下速度を調節した。 そして、 滴下終了後も更に 1 時間攪拌した。 このようにして上記水溶液とアル力リ性水溶液とを反応 させることにより沈殿物が生じ、 スラリーが得られた。 なお、 この反応 系における I nおよび Z nの合量の濃度は 0. 3 mo 1/リ ッ トルであつ た。
次に、 得られたスラリーを十分に水洗した後、 沈殿物を濾取した。 そ して、 濾取した沈殿物を 120°Cでー晚乾燥した後、 900°Cで 5時間 焼成した。
この後、 得られた焼成物を直径 2 mmのアルミナボールとともに容積 80 c cのポリイミ ド製ポッ トに入れ、 エタノールを加えて、 遊星ボー ルミルで 2時間粉砕した。
このようにして得られた粉末について X線回折測定を行ったところ、
1 n2 0, (Z nO) 3 で表される六方晶層状化合物の生成が確認され、 その割合は 60 w t %であった。 また、 この粉末の組成は実質的に均一 であった。 なお、 六方晶層状化合物の含有量の定量は、 『セラミ ックス のキャラクタ リゼーシヨン技術』 (社団法人窯業協会発行、 1987年、 44〜45頁) に記載の方法に基づいて、 粉末 X線回折装置を用いて行 つた (以下の実施例においても同じ) 。 また、 組成分析には XMA (X 線マイクロアナライザ一) を用いた。
S EM (走査型電子顕微鏡) 観察の結果、 得られた粉末は平均粒子径 が 0. 12 /zmで、 実質的に均一粒径であることが確認された。 51 また、 得られた粉末の体積固体抵抗は 950 Ω cmであった。 そして- この体積固体抵抗は、 40°C、 90%RHの条件での耐湿熱性試験 10
00時間後でも 1000 Ω cmと低く、 この粉末は耐湿熱性に優れてい ることが確認された。 ここで、 体積固体抵抗 (一般に 「粉体抵抗」 と表 現されることもある) は、 試料 1 gを内径 1 Ommの樹脂製円筒 (シリ ンダ一) に入れ、 l O O k gZcm2 の加圧を行い、 テスターで抵抗を 測定し、 下式により求めた (以下の実施例においても同じ) 。
体積固体抵抗 (Ω cm)
全抵抗 (Ω) Xシリンダ一の内面積 (cm2 ) —
= 試料の厚さ (cm)
(2) 導電性材料 I (焼結体) の製造
まず、 上記 (1) で得られた粉末を 1 Omm0の金型に装入し、 金型 プレス成型機により l O O k gZcm2 の圧力で予備成型を行った。 次 に、 冷間静水圧プレス成型機により 4 tZcm2 の圧力で圧密化した後、 1300°Cで 5時間焼結して、 焼結体を得た。
このようにして得られた焼結体は I n 2 03 (Z n 0) , で表される 六方晶層状化合物を 80^ %含有することが確認され、 その組成およ び粒径は実質的に均一であった。 また、 この焼結体の相対密度は 95% のつた。
実施例 37
(1) 導電性材料 I (粉末) の製造
まず、 硝酸インジウム 50. 69 gと硝酸亜鉛 106. 248とを1 リッ トルのイオン交換水に溶解させて、 ィンジゥム塩と亜鉛塩とが溶解 した水溶液を調製し、 この水溶液と実施例 36 (1) と同様にして調製 したアルカリ性水溶液とを実施例 36 (1) と同様にして反応させて、 スラリーを得た。 なお、 この反応系における I nおよび Z nの合量の濃 度は 0. 3 mo 1 リ ッ トルであった。
次に、 得られたスラリーを十分に水洗した後、 沈殿物を濾取した。 そ して、 濾取した沈殿物を 120°Cで一晩乾燥した後、 900°Cで 5時間 焼成した。
この後、 得られた焼成物を実施例 36 (1) と同様にして粉砕して、 粉末を得た。
このようにして得られた粉末について X線回折測定を行ったところ、 I n 2 03 (Z nO) 5 で表される六方晶層状化合物の生成が確認され、 その割合は 60 w t %であった。 また、 この粉末の組成は実質的に均一 であった。 S EM観察の結果、 得られた粉末は平均粒子径が 0. 20 mで、 実質的に均一粒径であることが確認された。
また、 得られた粉末の体積固体抵抗は 700 Ω cmであった。 そして、 この体積固体抵抗は、 40°C、 90%RHの条件での耐湿熱性試験 10 00時間後でも 730 Ω cmと低く、 この粉末は耐湿熱性に優れている ことが確認された。
(2) 導電性材料 I (焼結体) の製造
上記 (1) で得られた粉末を実施例 36 (2) と同様にして予備成型 および圧密化した後、 1350°Cで 5時間焼結して、 焼結体を得た。
このようにして得られた焼結体は I n 2 03 (Z nO) c で表される 六方晶層状化合物からなることが確認され、 その組成および粒径は実質 的に均一であった。 また、 この焼結体の相対密度は 96%であった。 実施例 38
(.1) 導電性材料 Π (粉末) の製造
実施例 37 (1) と同様にしてインジウム塩と亜鉛塩とが溶解した水 溶液を調製した後、 これに更に塩化第二錫 7. 2 g (5原子%) を添加 した。 次に、 この水溶液と実施例 36 (1) と同様にして調製したアル カリ性水溶液とを実施例 36 (1) と同様にして反応させて、 スラリー を得た。
次に、 得られたスラリーを十分に水洗した後、 沈殿物を濾取した。 そ して、 濾取した沈殿物を 120°Cで乾燥した後、 900°Cで 5時間焼成 レ o
この後、 得られた焼成物を実施例 36 (1) と同様にして粉砕して、 粉末を得た。
このようにして得られた粉末について X線回折測定を行ったところ、 60 w t %の I n 2 03 (Z n 0) 5 の生成が確認された。
この粉末の体積固体抵抗は 330 Ω cmであった。 そして、 この体積 固体抵抗は、 40°C、 90%RHの条件での耐湿熱性試験 1000時間 後でも 350 Ω c mと低く、 この粉末は耐湿熱性に優れていることが確 認された。
(2) 導電性材料 Π (焼結体) の製造
上記 (1) で得られた粉末を実施例 36 (2) と同様にして予備成型 および圧密化した後、 1350°Cで 5時間焼結して、 焼結体を得た。 このようにして得られた焼結体は 80 w t % I n 2 03 (ZnO) c で表される六方晶層状化合物であると確認され、 その粒径は実質的に均 一であった。 また、 この焼結体の相対密度は 95%であった。
実施例 39
•導電性材料 I (焼結体) の製造
酸化ィンジゥム 278 gと酸化亜鉛 326 gを直径 2 mmのアルミナ ボールとともに容積 800 c cのポリイミ ド製のポッ トに入れ、 ェタノ —ルを加えて遊星ボールミルで 100時間粉砕混合した。 その後 100 0°Cで 5時間仮焼し、 更に遊星ボールミルで 24時間粉砕混合した。 この粉末を直径 4ィンチの金型に装入し、 l O O k gZcm2 の圧力 で金型プレス成型機にて予備成型を行なった。 その後、 冷間静水圧プレ ス成型機にて 4 t/cm2 の圧力で圧密化し、 熱間静水圧プレスにて 1 O O O k g f /cm2 . 1300 °Cで 3時間焼成し焼結体を得た。 得ら れた焼結体は X線回折測定の結果、 I n 2 03 (Z nO) 4 の六方晶層 状化合物であることが確認された。
このようにして得られた焼結体における I nの原子比 I nZ ( I n + Z n) は、 セイコー電子工業社製の S P S— 1500VRを用いた I C P分析 (誘導結合プラズマ発光分光分析) の結果 0. 33であった。 ま た、 焼結体の相対密度は 88%であった。
実施例 40
•導電性材料 I (焼結体) の製造
酸化ィンジゥム 175 gと酸化亜鉛 100 gを直径 2 mmのアルミナ ボールとともに容積 800 c cのポリイミ ド製のポッ トに入れ、 ェタノ ールを加えて遊星ボールミルで 100時間粉砕混合した。 その後 100 0°Cで 5時間仮焼し、 更に遊星ボールミルで 24時間粉砕混合した。 この粉末を直径 4ィンチの金型に装入し、 l O O k gZcm2 の圧力 で金型プレス成型機にて予備成型を行なった。 その後、 冷間静水圧プレ ス成型機にて 4 tZcm2 の圧力で圧密化し、 熱間静水圧プレスにて 1 500 k g f /cm2 . 1450 °Cで 3時間焼成し焼結体を得た。 得ら れた焼結体は X線回折測定の結果、 I n 2 03 (Z nO) 5 の六方晶層 状化合物と I n 2 03 との混合物であることが確認された。
このようにして得られた焼結体における I nの原子比 I nZ ( I n + Z.n) は、 I C P分析の結果 0. 50であった。 また、 焼結体の相対密 度は 93%であった。
実施例 41
•導電性材料 I (焼結体) の製造 851 酸化ィンジゥム 300 gと酸化亜鉛 80 gを用いた他は、 実施例 40 と同様に粉砕混合、 仮焼、 成型、 焼結を行った。 得られた焼結体は X線 回折測定の結果、 I n。 03 (Z nO) 3 の六方晶層状化合物と I n。
Oo との混合物であることが確認された。
このようにして得られた焼結体における I nの原子比 I nZ ( I n + Z n) は、 I CP分析の結果 0. 67であった。 また、 焼結体の相対密 度は 92%であった。
実施例 42
•導電性材料 I (焼結体) の製造
酸化ィンジゥム 278 gと酸化亜鉛 52 gを用いた他は、 実施例 40 と同様に粉碎混合、 仮焼、 成型、 焼結を行った。 得られた焼結体は X線 回折測定の結果、 l n2 0。 (ZnO) 3 の六方晶層状化合物と I nり 0¾ との混合物であることが確認された。
このようにして得られた焼結体における I nの原子比 I nZ ( I n + Z n) は、 I C P分析の結果 0. 75であった。 また、 焼結体の相対密 度は 96%であった。
実施例 43
•導電性材料 I (焼結体) の製造
酸化ィンジゥム 278 gと酸化亜鉛 38 gを用いた他は、 実施例 40 と同様に粉砕混合、 仮焼、 成型、 焼結を行った。 得られた焼結体は X線 回折測定の結果、 I n 2 03 (Z nO) 3 の六方晶層状化合物と I n。
との混合物であることが確認された。
このようにして得られた焼結体における I nの原子比 I nZ (I n + Z n) は、 I C P分析の結果、 0. 80であった。 また、 焼結体の相対 密度は 95%であった。
実施例 44 •導電性材料 I (焼結体) の製造
酸化ィンジゥム 278 gと酸化亜鉛 38 gを用いた他は実施例 40と 同様に粉砕混合、 仮焼、 成型を行い、 熱間静水圧プレスにて 1000 k g f Zcm2 、 1200°Cで 3時間焼結を行なった。 得られた焼結体は X線回折測定の結果、 Ι η 2 03 (Ζ ηΟ) , の六方晶層状化合物と I n2 O n との混合物であることが確認された。
このようにして得られた焼結体における I nの原子比 I n/ ( I n + Z n) は、 I C P分析の結果、 0. 80であった。 また、 焼結体の相対 密度は 82%であった。
実施例 45
導電性材料 I (焼結体) の製造
酸化ィンジゥム 278 gと酸化亜鉛 27. 5 gを用いた他は、 実施例 40と同様に粉砕混合、 仮焼、 成型、 焼結を行った。 得られた焼結体は X線回折測定結果、 I n 2 03 (Z nO) 3 の六方晶層状化合物と I n 2 03 との混合物であることが確認された。
このようにして得られた焼結体における I nの原子比 I nZ ( I n + Z n) は、 I CP分析の結果 0. 85であった。 また、 焼結体の相対密 度は 95%であった。
実施例 46
(1) 導電性材料 I (粉末) の製造
塩化ィンジゥム 4水和物 435 g、 鲊酸亜鉛 2水和物 50. 3 gをメ トキシェタノール 2. 5リ ッ トルに溶解して溶液 Aを得た。
一方、 しゅう酸 2水和物 250 gをエタノール 2. 5リ ッ トルに溶解 して溶液 Bを得た。
室温下、 容器にエタノール 0. 5リ ッ トルを入れて撹拌しておき、 そ こへ同じ流量に制御した溶液 Aと Bを同時に滴下した。 滴下終了後、 温 度を 40°Cに上げて沈澱物を 4時間熟成した。 その後、 沈澱物を濾過し- エタノールで洗浄し、 1 10°Cで 12時間乾燥し、 更に、 700°Cで 5 時間焼成した。 直径 2mmのアルミナボールとともに容積 800 c cの ポリイミ ド製のポッ トに入れ、 エタノールを加えて遊星ボールミルで 1 00時間粉砕混合した。 その後 1000°Cで 5時間仮焼し、 更に遊星ボ —ルミルで 24時間粉砕混合した。 この粉砕混合により, 導電性材料 I の 1つである粉末が得られた。
(2) 導電性材料 I (焼結体) の製造
上記 (1) で得られた粉末を直径 4ィンチの金型に装入し、 100 k g/cm2 の圧力で金型プレス成型機にて予備成型を行った。 その後、 冷間静水圧プレス成型機にて 4 t/cm^ の圧力で圧密化し、 熱間静水 圧プレスにて、 I S O O k g f Zcm2 1450°Cで 3時間焼成し焼 結体を得た。 得られた焼結体は X線回折測定の結果、 I n2 0。 (Z n 0) 4 の六方晶層状化合物と I n 2 03 との混合物であることが確認さ れた。
このようにして得られた焼結体における I nの原子比 I n/ ( I n + Z n) は、 I C P分析の結果、 0. 85であった。 また、 焼結体の相対 密度は 95%であった。
実施例 47
,導電性材料 11 (焼結体) の製造
第 3元素として S nを 5原子%添加した以外は実施例 45と同様に粉 砕混合、 仮焼、 成型、 焼結を行なった。 得られた焼結体は X線回折測定 の結果、 I n 2 03 (Z n 0) 3 の六方晶層状化合物と I n23 との 混合物であることが確認された。
このようにして得られた焼結体における I nの原子比 I nZ ( I n + Z n) は、 I C P分析の結果、 0. 85であった。 また、 S nの原子比 5
S n/ (I n + Z n + S n) は 0. 05であった。 また、 焼結体の相対 密度は 92 %であつた。
実施例 48
(1) I η 2 03 (ΖηΟ) , 六方晶層状化合物を含む粉末 (導電性材 料 Iの 1つ) の製造
硝酸インジウム 6水和物 350. 5 gと硝酸亜鉛 6水和物 637. 5 gをェタノール 5. 00リツ トルに溶解して溶液 Aを得た。
一方、 しゅう酸 2水和物 475. 4 gをエタノール 5. 00リ ッ トル に溶解して溶液 Bを得た。
室温下、 容器にエタノール 1. 00リツ トルを入れて撹拌しておき、 そこへ同じ流量に制御した溶液 Aと Bを同時に滴下した。 滴下終了後、 温度を 40°Cに上げて沈澱物を 4時間熟成した。 その後、 沈澱物を濾過 し、 エタノールで洗浄し、 110°Cで 12時間乾燥した。 さらに、 70 0°Cで 4時間焼成した。 ボールミルでの粉砕 (20時間) の後、 粉末を 真空中で 300°C, 4時間還元処理したところ、 淡黄色の粉末を得た。
このようにして得られた粉末の X線回折測定を行なったところ、 70 w t %の I n2 0, (Z n 0) 5 の生成が確認された。 さらに、 粉末の 体積固体抵抗を測定したところ、 25 Ω cmであった。 そしてこの体積 固体抵抗は、 40°C、 90%RHの条件での耐湿性試験 1000時間後 にも 32 Ω c mであり、 耐湿性に優れていることがわかった。 また、 S EMと XMAの分析によりこの粉末は平均粒径 0. 22 //mで均一な組 成を持つこと力わかつた。
(2) I n 03 (Z n 0) 5 六方晶層状化合物を含む焼結体 (導電性 材料の 1つ) の製造
上記 (1) で得られた粉末にポリビニルアルコールを 2w t %添加し、 .50mmの金型にて 100 k gZcm2 でプレス成形した。 さら /13851 に、 4 t/cm2 で冷間静水圧プレスにより圧密化した。
この成形体を、 500°Cで 10分間脱脂した後、 1200°Cで 4時間 焼結した。 このようにして得られた焼結体において、 X線回折測定によ り 90w t%の l n 2 03 (Z n 0) κ の生成が確認された。 また、 こ の焼結体の密度は 92%であり、 体積抵抗は 5 X 10"3Ω cmであった ( 実施例 49
(1) I n 2 03 (ZnO) 3 六方晶層状化合物を含む粉末 (導電性材 料の 1つ) の製造
塩化インジウム 4水和物 293. 2 gと酢酸亜鉛 2水和物 351. 2 gをェタノール 5. 00リ ッ トルに溶解して溶液 Aを得た。
一方、 しゅう酸 2水和物 415. 9 gをエタノール 5. 00リ ッ トル に溶解して溶液 Bを得た。
溶液 Aおよび溶液 Bを用いて、 実施例 48 (1) と同様にして淡黄色 の粉末を得た。 粉末の X線回折測定を行なったところ、 6 Ow t%の I n 9 03 (Z nO) 3 の生成が確認された。 さらに、 粉末の体積固体抵 抗を測定したところ、 18Q cmであった。 そしてこの体積固体抵抗は、 40°C、 90%RHの条件での耐湿性試験 1000時間後にも 25 Ω c mであり、 耐湿性に優れていることがわかった。 また、 S EMと XMA の分析によりこの粉末は平均粒径 0. 15 mで均一な組成を持つこと 力わ力、つナこ。
(2) I n 2 03 (ZnO) 3 六方晶層状化合物と I n93 を含む焼 結体 (導電性材料の 1つ) の製造
上記 (1) で得られた粉末を用い、 実施例 48 (2) と同様にして焼 結体を得た。 このようにして得られた焼結体において、 X線回折測定に より、 80 w t %の I n 2 03 (ZnO) 3 の生成が確認された。 この 焼結体の密度は 93%であり、 体積抵抗は 2 X 10~ Ω cmであった。 実施例 50
(1) 鍚を含有した I n 2 03 (Z n 0) 5 六方晶層状化合物を含む粉 末 (導電性材料 Πの 1つ) の製造
硝酸インジウム 6水和物 350. 5 g、 硝酸亜鉛 6水和物 637. 5 gおよびナーセム錫 ( (S n (C4 Hg ) 2 (C5 HT2 ) 2 ) 10 8 gをメ トキシエタノール 5. 00リツ トルに溶解して溶液 Aを得た。
—方、 しゅう酸 2水和物 472. 5 gをエタノール 5. 00リッ トル に溶解して溶液 Bを得た。
これらの溶液 A, Bを用いて、 実施例 48 (1) と同様に粉末を調製 した。 この粉末も淡黄色であった。
粉末の X線回折測定を行なったところ、 60w t%の I n 2 03 (Z n 0) 5 の生成が確認された。 さらに、 粉末の体積固体抵抗を測定した ところ、 15 Q cmであった。 そしてこの体積固体抵抗は、 40°C、 9 0%RHの条件での耐湿性試験 1000時間後にも 19 Ω cmであり、 耐湿性に優れていることがわかった。 また、 S EMと XMAの分析によ りこの粉末は平均粒径 0. 21; umで均一な組成を持つことがわかった c
(2) 錫を含有した I n 2 03 (Z n 0) 5 六方晶層状化合物を含む焼 結体 (導電性材料 11の 1つ) の製造
上記 (1) で得られた粉末を用い、 実施例 48 (2) と同様にして焼 結体を得た。 このようにして得られた焼結体において、 X線回折測定に より、 8 Ow t %の I n 2 03 (Z n 0) F の生成が確認された。 この 焼結体の密度は 91%であり、 体積抵抗は 1 X 10— 3Ω cmであった。 実施例 51
まず、 硝酸インジウム 1 18. 28 gと硝酸亜鉛 49. 58 gとを 1 リ ッ トルのイオン交換水に溶解させて、 ィンジゥム塩と亜鉛塩とが溶解 した水溶液を調製した。 また、 アンモニア水 (濃度 28%) 78. 0 g を 750 c cのイオン交換水に溶解させて、 アル力リ性水溶液を調製し た。 .
次いで、 イオン交換水 1 00 c cが入った容積 5 リ ッ トルの容器に、 上で得られた水溶液とアルカリ性水溶液とを室温下で激しく攪拌しなが ら同時に滴下して、 両液を反応させた。 このとき、 反応系の p Hが 9. 0に保たれるように滴下速度を調節した。 そして、 滴下終了後も更に 1 時間攪拌した。 このようにして上記水溶液とアル力リ性水溶液とを反応 させることにより沈殿物が生じ、 スラリーが得られた。 なお、 この反応 系における I nおよび Z nの合量の濃度は 0. 32 mo 1/リ ッ トルであ つた o
次に、 得られたスラリーを十分に水洗した後、 沈殿物を濾取した。 そ して、 濾取した沈殿物を 1 20°Cで一晩乾燥した。
この後、 得られた乾燥物を 600°Cで 5時間焼成した後、 焼成物を直 径 2 mmのアルミナボールとともに容積 80 c cのポリイミ ド製ポッ ト に入れ、 エタノールを加えて、 遊星ボールミルで 2時間粉砕して粉末を 得た。
このようにして得られた粉末は、 X線回折測定の結果から 60 w t % の非晶質部分を含むことが、 また組成分析の結果から I nの原子比 I n / ( I n + Z n) が 0. 66であることがそれぞれ確認され、 その組成 は実質的に均一であった。 この粉末は導電性材料 111 の 1つに相当する c なお、 非晶質酸化物の定量は、 『セラミ ックスのキャラクタリゼ一ショ ン技術』 (社団法人窯業協会発行、 1 987年、 44〜 45頁) に記載 の方法により粉末 X線回折装置を用いて結晶質物質の含有量を定量し、 その残量を非晶質酸化物であるとして行った (以下の実施例においても 同じ) 。
また、 S EM (走査型電子顕微鏡) 観察の結果、 得られた粉末は平均 粒子径が 0. 15 /mで、 実質的に均一粒径であることが確認された。 この粉末の体積固体抵抗は 100 Ω c mであった。 そして、 この体積 固体抵抗は 40°C、 90%RH (相対湿度) の条件での耐湿性試験 10 00時間後でも 105 Q cmと低く、 得られた粉末は耐湿性に優れてい ることが確認された。
実施例 52
まず、 硝酸インジウム 59. 14 gと硝酸亜鉛 99. 16 gとを 1リ ッ トルのイオン交換水に溶解させて、 インジウム塩と亜鉛塩とが溶解し た水溶液を調製し、 この水溶液と実施例 51と同様にして調製したアル カリ性水溶液とを実施例 51と同様にして反応させて、 スラリーを得た c なお、 この反応系における I nおよび Z nの合量の濃度は 0. 3 mol/ リ ッ トルであつた。
次に、 得られたスラリーを十分に水洗した後、 沈殿物を濾取した。 そ して、 濾取した沈殿物を 120°Cで一晚乾燥した。
この後、 得られた乾燥物を 500°Cで 5時間焼成した後、 焼成物を実 施例 1と同様にして粉砕して、 粉末を得た。
このようにして得られた粉末は、 X線回折測定の結果から 70 w t % の非晶質部分を含むことが、 また組成分析の結果から I nの原子比 I n Z (I n + Z n) が 0. 33であることがそれぞれ確認され、 その組成 は実質的に均一であった。 この粉末は導電性材料 Π1 の 1つに相当する。 また、 S EM観察の結果、 得られた粉末は平均粒子径が 0. 23 m で、 実質的に均一粒径であることが確認された。
この粉末の体積固体抵抗は 550 Ω cmであった。 そして、 この体積 固体抵抗は、 40°C、 90%RHの条件での耐湿性試験 1000時間後 でも 560 Q cmと低く、 得られた粉末は耐湿性に優れていることが確 認された。 実施例 53
実施例 51と同様にしてインジウムと亜鉛の金属塩を溶解した水溶液 を調製した後、 更に塩化第二錫 7. 7 g (5 a t %) を添加して得た水 溶液と、 実施例 51と同様にして調製したアル力リ性水溶液とを実施例 51と同様にして反応させてズラリ一を得た。
次に、 得られたスラリーを十分に水洗した後、 沈殿物を濾取した。 そ して、 濾取した沈殿物を 120°Cで乾燥した後、 600°Cで 5時間焼成 した。 ボールミルとともに容積 80 c cのポリイミ ド製のポッ トに入れ、 エタノールを加えて遊星ボールミルで 2時間粉砕した。
この後、 得られた焼成物を実施例 51と同様にして粉砕して、 粉末を 得た。 このようにして得られた粉末は、 X線回折測定の結果から 60 w t %の非晶質部分を含むことがわかった。 この粉末は導電性材料 111 の 1つに相当する。
この粉末の体積固体抵抗は 90 Ω cmであった。 そして、 この体積固 体抵抗は、 40°C、 90%RHの条件での耐湿性試験 1000時間後で も l O O Q cmと低く、 得られた粉末は耐湿性に優れていることが確認 された。
実施例 54
まず、 硝酸インジウム 6水和物 682 gと硝酸亜鉛 6水和物 248 g とを 5リツ トルのェタノールに溶解させて、 ィンジゥム塩と亜鉛塩とが 溶解した溶液を調製した。 また、 しゅう酸 2水和物 462 gを 5リッ ト ルのエタノールに溶解させて、 しゅう酸水溶液を調製した。
室温下、 容器にエタノール 1リ ッ トルをいれてよく撹拌しておき、 そ こへ同じ流量に制御した上記 2種の溶液を同時に滴下した。 滴下終了後、 温度を 40°Cに上げて、 4時間熟成した。 その後、 ろ過し、 エタノール でよく洗浄し、 110°Cで 12時間乾燥した。 さらに、 300°Cで 2時 間焼成した。
ボールミルでの粉碎 (20時間) の後、 粉末を真空中で 200°C、 2 時間還元処理したところ、 淡黄色の粉末を得た。
このようにして得られた粉末の X線回折測定を行ったところ、 非晶質 部分は 90%であり、 実質的に非晶質であることが確認された。 また組 成分析から、 I nの原子比 I (I n + Z n) は 0. 67であった。 この粉末は導電性材料 111 の 1つに相当する。
この粉末の体積固体抵抗を測定したところ、 5 Ω cmであった。 そし て、 この体積固体抵抗は、 60°C、 95%RHの条件での耐湿性試験 1 000時間後にも 6 Ω cmであり、 ほとんど変化がなく、 耐湿性に優れ ていることがわかった。
また、 S EMと XMAの分析によりこの粉末は平均粒径 0. 20 iwm で均一な組成を持つことがわかった。
実施例 55
まず、 塩化インジウム 4水和物 623 gと酢酸亜鉛 2水和物 82 gと を 5リ ッ トルのメ トキシェタノールに溶解させて、 ィンジゥム塩と亜鉛 塩とが溶解した溶液を調製した。 また、 しゅう酸 2水和物 494 gを 5 リ ッ トルのメ トキシェタノ一ルに溶解させて、 しゆう酸水溶液を調製し た。
これらの溶液を用いて、 実施例 54と同様に粉末を調製した。 但し、 焼成温度は 350°Cとした。 この粉末も淡黄色であった。
粉末の X線回折測定を実施例 54と同様に行ったところ、 非晶質部分 は.80%であり、 実質的に非晶質であることが確認された。 また組成分 析から I nの原子比 I nZ (I n + Zn) は 0. 85であった。 この粉 末は導電性材料 1H の 1つに相当する。
この粉末の体積固体抵抗を測定したところ、 4 Ω cmであった。 そし て、 この体積固体抵抗は、 6 0°C、 9 5%RHの条件での耐湿性試験 1 0 0 0時間後にも 6 Ω c mであり、 ほとんど変化がなく、 耐湿性に優れ ていることがわかった。
また、 S EMと XMAの分析によりこの粉末は平均粒径 0. 1 5 //m で均一な組成を持つことがわかった。
実施例 5 6
まず、 硝酸ィンジゥム 6水和物 6 8 2 gと硝酸亜鉛 6水和物 2 4 8 g とナーセム錫 1 0 8 gを 5 リツ トルのイソプロパノールに溶解させて、 インジウム塩と亜鉛塩とが溶解した溶液を調製した。 また、 しゅう酸 2 水和物 5 32 gを 5リ ツ トルのエタノールに溶解させて、 しゅう酸水溶 液を調製した。
これらの溶液を用いて、 実施例 5 4と同様に粉末を調製した。 この粉 末も淡黄色であった。
粉末の X線回折測定を行ったところ、 非晶質部分は 9 0%であり、 実 質的に非晶質であることが確認された。 また組成分析から、 I nの原子 比 I nZ ( I n + Z n) は 0. 6 7であり、 錫の原子比 S n / ( 1 n + Z n + S n) は 0. 0 9であった。 この粉末は導電性材料 I Vの 1つに相 当する。
この粉末の体積固体抵抗を測定したところ、 4 Ω c mであった。 そし て、 この体積固体抵抗は、 6 0°C、 9 5%RHの条件での耐湿性試験 1 0 0 0時間後にも 6 Ω cmであり、 ほとんど変化がなく、 耐湿性に優れ ていることがわかった。
また、 S EMと XMAの分析によりこの粉末は平均粒径 0. 1 7 /zm で均一な組成を持つことがわかった。
実施例 5 7
まず、 硝酸ィンジゥム 6水和物 6 1 3 gと硝酸亜鉛 6水和物 2 9 8 g 51 とを 5リッ トルのブタノ一ルに溶解させて、 ィンジゥム塩と亜鉛塩とが 溶解した溶液を調製した。 また、 しゅう酸 2水和物 451 gを 5リ ッ ト ルのブタノールに溶解させて、 しゆう酸水溶液を調製した。
これらの溶液を用いて、 実施例 55と同様に粉末を調製した。 この粉 末も淡黄色であった。
粉末の X線回折測定を行ったところ、 非晶質部分は 80%であり、 実 質的に非晶質であることが確認された。 また組成分析から、 I nの原子 比 I nZ ( I n + Z n) は 0. 60であった。 この粉末は導電性材料 III の 1つに相当する。
この粉末の体積固体抵抗を測定したところ、 20Ω cmであった。 そ して、 この体積固体抵抗は、 60°C、 95%RHの条件での耐湿性試験 1000時間後にも 22 Ω cmであり、 ほとんど変化がなく、 耐湿性に 優れていることがわかった。
また、 S EMと XMAの分析によりこの粉末は平均粒径 0. 19 m で均一な組成を持つことがわかった。
実施例 58
まず、 酢酸ィンジゥム 6水和物 102 gと酢酸亜鉛 42 gとを 140 ミ リ リ ッ トルのモノェタノールァミ ンと 860ミ リ リ ッ トルのエタノ一 ルに溶解させて、 溶液を調製した。
この溶液を、 減圧下、 80°Cで溶媒を除去し、 400でで1時間、 焼 成し、 熱分解させた。 次に、 粉末を真空中で 200°C、 2時間還元処理 したところ、 淡黄色の粉末を得た。
粉末の X線回折測定を行ったところ、 非晶質部分は 80%であり、 実 質的に非晶質であることが確認された。 また組成分析から、 I nの原子 比 I nZ l n + Z n) は 0. 70であった。 この粉末は導電性材料 III の 1つに相当する。 この粉末の体積固体抵抗を測定したところ、 7 Ω c mであった。 そし て、 この体積固体抵抗は、 6 0 °C、 9 5 % R Hの条件での耐湿性試験 1 0 0 0時間後にも 8 Ω c mであり、 ほとんど変化がなく、 耐湿性に優れ ていることがわかった。
また、 S E Mと X M Aの分析によりこの粉末は平均粒径 0 . 1 5 // m で均一な組成を持つことがわかった。
以上、 実施例および比較例を挙げて説明したように、 本発明の透明導 電膜 (透明導電膜 Iおよび透明導電膜 1 1) は、 実用上十分な導電性およ び光透過性を有し、 かつ、 耐湿熱性およびエッチング特性に優れた透明 導電膜である。 したがって、 本発明によれば耐久性の向上した透明導電 膜であってエツチング法により容易に所望形状に成形し得る透明導電膜 を提供することが可能になる。
また、 本発明の導電性透明基材 (導電性透明フィルムおよび導電性透 明ガラス) は上記本発明の透明導電膜を利用したものであり、 この透明 導電膜が上述の特徵を有していることから、 液晶表示素子用の透明電極、 エレク トロルミネッセンス素子用の透明電極、 太陽電池用の透明電極等、 種々の用途の透明電極をエッチング法により形成する際の母材等として 好適である他、 帯電防止膜や窓ガラス等用の氷結防止ヒータ等としても 好適である。
上記本発明の透明導電膜を得るための材料として好適な本発明の導電 性材料 (導電性材料 I〜1 V) は、 この用途の他に、 導電性塗料あるいは 導電性ィンク等の材料として利用することもできる。

Claims

請 求 の 範 囲
1. 主要カチオン元素としてインジウム (I n) および亜鉛 (Z n) を 含有する実質的に非晶質の酸化物からなる透明導電膜であって、 I n の原子比 I nZ ( I n + Z n) が 0. 50〜0. 90であることを特 徴とする透明導電膜。
2. 透明導電膜が塗布熱分解法により形成された膜である、 請求の範囲 1に記載の透明導電膜。
3. I nの原子比 I n/ ( I n + Z n) が 0. 6〜0. 8である、 請 求の範囲 2に記載の透明導電膜。
4. 透明導電膜がスパッタリング法により形成された膜である、 請求の 範囲 1に記載の透明導電膜。
5. I nの原子比 I nZ ( I n + Z n) が 0. 6〜0. 90である、 請 求の範囲 4に記載の透明導電膜。
6. I nの原子比 I nZ ( I n + Z n) が 0. 8〜0. 90である、 請 求の範囲 4に記載の透明導電膜。
7. ィンジゥム化合物および亜鉛化合物を I nの原子比 I nZ ( I n + Z n) が所定の値となるように溶解させてコ一ティ ング溶液を調製し、 このコ一ティ ング溶液を基板に塗布して 300〜650°Cで焼成した 後に還元処理して、 主要カチオン元素としてインジウム (I n) およ び亜鉛 (Z n) を含有する実質的に非晶質の酸化物からなる透明導電 膜であって、 I nの原子比 I nZ ( I n + Z n) が 0. 50〜0. 8 である透明導電膜を得ることを特徴とする透明導電膜の製造方法。
8. インジウム化合物がインジウムのカルボン酸塩, 無機インジウム化 合物およびィンジゥムアルコキシドからなる群より選択された少なく とも 1種であり、 亜鉛化合物が亜鉛のカルボン酸塩, 無機亜鉛化合物 および亜鉛アルコキシドからなる群より選択された少なく とも 1種で ある、 請求の範囲 8に記載の方法。
9. スパッタリングターゲッ トとして (A) ィンジゥムと亜鉛を主成分 とする酸化物からなる焼結体ターゲッ トであって、 I nの原子比 I n / (Ι η + Ζη) が 0. 45〜0. 9のもの、 または ( B ) 酸化物系 ディスクと、 このディスク上に配置した 1個以上の酸化物系タブレツ トとからなるターゲッ トを用い、 ダイレク トスパッ夕リング法により 主要カチオン元素としてインジウム (I n) および亜鉛 (Z n) を含 有する実質的に非晶質の酸化物からなる透明導電膜であって、 I nの 原子比 I nZ ( I n + Z n) が 0. 50〜 90である透明導電膜 を得ることを特徴とする透明導電膜の製造方法。
10. ィンジゥムと亜鉛を主成分とする酸化物からなる焼結体ターゲッ トが、 酸化ィンジゥムと酸化亜鉛との混合物からなる焼結体、 I n2 03 (ZnO) ffl (m=2〜20) で表される六方晶層状化合物の 1 種以上から実質的になる焼結体、 および I n 2 03 (Z nO) m (m =2〜20) で表される六方晶層状化合物の 1種以上と I n 2 03 お よび Zまたは Z n 0とから実質的になる焼結体とからなる群より選択 された 1種である、 請求の範囲 9に記載の方法。
11. 酸化物系ディスクカ <、 酸化インジウムから実質的になるディスク、 I n 0 03 (Z nO) m (m = 2〜 20 ) で表される六方晶層状化合 物の 1種以上から実質的になる焼結体ディスクおよび I n 2 03 (Z n 0) m (m=2〜20) で表される六方晶層状化合物の 1種以上と
I n 2 O および Zまたは Z n 0とから実質的になる焼結体ディスク からなる群より選択された 1種であり、
酸化物系タブレツ トカ^ 酸化亜鉛または酸化インジウムから実質的 になる夕ブレッ ト、 I n 2 03 (ZnO) m (m=2〜20) で表さ れる六方晶層状化合物の 1種以上から実質的になるタブレツ トおよび I n 2 03 (Z nO) m (m = 2〜 20 ) で表される六方晶層状化合 物の 1種以上と I n 2 03 および または Z n 0とから実質的になる タブレツ 卜からなる群より選択された 1種である、 請求の範囲 9に記 載の方法。
12. 主要カチオン元素としてイ ンジウム (I n) および亜鉛 (Z n) の他に価数が正 3価以上である少く とも 1種の第 3元素を含有する実 質的に非晶質の酸化物からなる透明導電膜であって、 I nの原子比 I n/ (I n + Z n) が 0. 50〜 90、 前記第 3元素の総量の原 子比 (全第 3元素) / (I n + Z n+全第 3元素) が 0. 2以下であ ることを特徴とする透明導電膜。
13. 塗布熱分解法により形成された膜である、 請求の範囲 12に記載 の透明導電膜。
14. I nの原子比 I nZ (I n + Zn) が 0. 6〜0. 8である、 請 求の範囲 13に記載の透明導電膜。
15. スパッタリング法により形成された膜である、 請求の範囲 12に 記載の透明導電膜。
16. I nの原子比 I nZ ( I n + Z n) が 0. 6〜0. 90である、 請求の範囲 15に記載の透明導電膜。
17. I nの原子比 I nZ ( I n + Z n) が 0. 8〜0. 90である、 請求の範囲 15に記載の透明導電膜。
18. インジウム化合物および亜鉛化合物の他に価数が正 3価以上であ る少く とも 1種の第 3元素の化合物を所定量溶解させて、 I nの原子 比 I nZ (I n + Z n) および第 3元素の総量の原子比 (全第 3元素) / ( I n + Z n +全第 3元素) がそれぞれ所定の値のコーティ ング溶 液を調製し、 このコーティ ング溶液を基板に塗布して 300〜650 °cで焼成した後に還元処理して、 主要カチオン元素としてインジウム
( I n) および亜鉛 (Z n) の他に錫 (S n) 、 アルミニウム (A 1 ) 、 アンチモン (S b) 、 ガリウム (G a) およびゲルマニウム (G e) からなる群より選択される少なく とも 1種の第 3元素を含有する実質 的に非晶質の酸化物からなる透明導電膜であって、 I nの原子比 I n Z ( I n + Z n) が 0. 50〜0. 8、 前記第 3元素の総量の原子比 (全第 3元素) / ( I n + Z n+全第 3元素) が 0. 2以下である透 明導電膜を得ることを特徴とする透明導電膜の製造方法。
9. インジウム化合物がインジウムのカルボン酸塩, 無機インジウム 化合物およびィンジゥムアルコキシドからなる群より選択された少な く とも 1種であり、 亜鉛化合物が亜鉛のカルボン酸塩, 無機亜鉛化合 物および亜鉛アルコキシドからなる群より選択された少なく とも 1種 である、 請求の範囲 1 8に記載の方法。
0. スパッタリングターゲッ トとして (A) 酸化ィンジゥムと酸化亜 鉛の他に価数が正 3価以上である少く とも 1種の第 3元素を含有する 酸化物からなる焼結体ターゲッ トであって、 I nの原子比 I nZ ( I n + Z n) が 0. 45〜0. 9で、 第 3元素の総量の原子比 (全第 3 元素) / ( I n + Z n+全第 3元素) が 0. 2以下のもの、 または
(B) 酸化物系ディスクと、 このディスク上に配置した 1個以上の酸 化物系タブレツ トとからなるターゲッ トを用い、 ダイレク トスパッタ リング法により主要カチオン元素としてインジウム ( I n) および亜 鉛 (Z n) の他に価数が正 3価以上である少く とも 1種の第 3元素を 含有する実質的に非晶質の酸化物からなる透明導電膜であって、 I n の原子比 I nZ ( I n + Z n) が 0. 50〜0. 90、 前記第 3元素 の総量の原子比 (全第 3元素) / ( I n + Z n+全第 3元素) が 0. 2以下である透明導電膜を得ることを特徴とする透明導電膜の製造方 法。
21. 焼結体ターゲッ トが、 インジウムと亜鉛と価数が正 3価以上であ る少く とも 1種の第 3元素との酸化物から実質的になる焼結体、 I n 2 03 (ZnO) m (m=2〜20) で表される六方晶層状化合物に 少なく とも 1種の前記第 3元素を含有させてなる化合物の 1種以上か ら実質的になる焼結体、 および l n2 03 (Z nO) m (m=2〜2 0) で表される六方晶層状化合物に少なく とも 1種の前記第 3元素を 含有させてなる化合物の 1種以上と I n 2 03 および/または Z nO とから実質的になる焼結体からなる群より選択された 1種である、 請 求の範囲 20に記載の方法。
22. フィルム状またはシート状の透明高分子基材上に、 直接または少 なく とも架橋性樹脂層を介して、 主要カチォン元素としてインジウム
(I n) および亜鉛 (Z n) を含有する実質的に非晶質の酸化物から なる透明導電膜であって、 I nの原子比 I nZ ( I n + Z n) が 0. 50〜0. 90である透明導電膜が設けられていることを特徴とする 導電性透明フィルム。
23. 透明高分子基材がポリカーボネート樹脂, ポリアリ レート樹脂, ポリエステル樹脂, ポリエーテルスルホン系樹脂, アモルファスポリ ォレフィ ン樹脂, ポリスチレン樹脂およびァク リル樹脂からなる群よ り選択された 1種からなる厚さ 15 zm〜3mmのものであり、 かつ 光透過率が 70%以上である、 請求の範囲 22に記載の導電性透明フ イルム。
24. 透明導電膜がスパッタリング法により形成された膜である、 請求 の範囲 22に記載の導電性透明フィルム。
25. 透明高分子基材において透明導電膜が設けられる面とは反対の側 の面に、 ガスバリヤ一層、 ハードコート層および反射防止層からなる 群より選択された少なく とも 1種の層を有する、 請求の範囲 22に記 載の導電性透明フィルム。
26. 透明高分子基材と透明導電膜との間に、 エポキシ樹脂、 フユノキ シエーテル樹脂およびアクリル樹脂からなる群より選択された少なく とも 1種の架橋性樹脂層を有する、 請求の範囲 22に記載の導電性透 明フィルム。
27. 透明高分子基材と架橋性樹脂層との間に、 エポキシ系, アクリル ウレタン系およびフエノキシエーテル系からなる群より選択されて 1 つの系の物質からなる接着層を有する、 請求の範囲 26に記載の導電 性透明フィルム。
28. 透明高分子基材と架橋性樹脂層との間に、 エチレン一ビニルアル コ一ル共重合体, ポリビニルアルコ一ル, ポリアク リルニトリル, ポ リ塩化ビニリデンおよびポリフッ化ビ二リデンからなる群より選択さ れて 1種のからなるガスバリヤ一層を有する、 請求の範囲 26に記載 の導電性透明フィルム。
29. スパッタリングターゲッ トとして (A) ィンジゥムと亜鉛とを主 成分とする酸化物からなる焼結体ターゲッ トであって、 I nの原子比 I nZ (I n + Z n) が 0. 45〜0. 9のもの、 または ( B ) 酸化 物系ディスクと、 このディスク上に配置した 1個以上の酸化物系タブ レツ トとからなるターゲッ トを用いたダイレク トスパッタリング法に より、 フィルム状またはシ一ト状の透明高分子基材上に直接または少 なく とも架橋性樹脂層を介して、 主要カチオン元素としてインジウム (I n) および亜鉛 (Zn) を含有する実質的に非晶質の酸化物から なる透明導電膜であって、 I nの原子比 I nZ (I n + Z n) が 0. 50〜0. 90である透明導電膜を設けることを特徴とする導電性透 明フィルムの製造方法。
30. 透明高分子基材上に、 直接または少なく とも架橋性樹脂層を介し て、 主要カチオン元素としてインジウム (I n) および亜鉛 (Z n) の他に価数が正 3価以上である少く とも 1種の第 3元素を含有する実 質的に非晶質の酸化物からなる透明導電膜であって、 I nの原子比 I nZ l n + Z n) が 0. 50〜0. 90、 前記第 3元素の総量の原 子比 (全第 3元素) / ( I n + Z n+全第 3元素) が 0. 2以下であ る透明導電膜が設けられていることを特徴とする導電性透明フィルム。
31. 透明導電膜がスパッタリング法により形成された膜である、 請求 の範囲 30に記載の導電性透明フィルム。
32. スパッタリ ングターゲッ トとして (A) 酸化ィンジゥムと酸化亜 鉛の他に価数が正 3価以上である少く とも 1種の第 3元素を含有する 酸化物からなる焼結体ターゲッ トであって、 I nの原子比 I nZ ( I n + Z n) および第 3元素の総量の原子比 (全第 3元素) Z ( I n + Z n+全第 3元素) がそれぞれ所定値のもの、 または (B) 酸化物系 ディスクと、 このディスク上に配置した 1個以上の酸化物系タブレツ 卜とからなるターゲッ トを用いたダイレク トスパッタリ ング法により、 フィルム状またはシート状の透明高分子基材上に直接または少なく と も架橋性樹脂層を介して、 主要カチオン元素としてインジウム (I n) および亜鉛 (Z n) の他に価数が正 3価以上である少く とも 1種の第 3元素を含有する実質的に非晶質の酸化物からなる透明導電膜であつ て、 I nの原子比 I nZ ( I n + Z n) が 0. 50〜0. 90、 前記 第 3元素の総量の原子比 (全第 3元素) Z ( I n + Z n十全第 3元素) が 0. 2以下である透明導電膜を設けることを特徴とする導電性透明 フィルムの製造方法。
33. 透明ガラス基材上に、 主要カチオン元素としてインジウム ( I n) および亜鉛 (Z n) を含有する実質的に非晶質の酸化物からなる透明 導電膜であって、 I nの原子比 I nZ ( I n + Z n) が 0. 50〜0. 90である透明導電膜が設けられていることを特徴とする導電性透明 ガフス。
34. 透明導電膜がスパッタリング法により形成された膜である、 請求 の範囲 33に記載の導電性透明ガラス。
35. スパッタリングターゲッ トとして (A) インジウムと亜鉛とを主 成分とする酸化物からなる焼結体ターゲッ トであって、 I nの原子比 I nZ ( I n + Z n) が 0. 45〜0. 9のもの、 または ( B ) 酸化 物系ディスクと、 このディスク上に配置した 1個以上の酸化物系タブ レツ トとからなるターゲッ トを用いたダイレク トスパッタリング法に より、 透明ガラス基材上に主要カチオン元素としてインジウム (I n) および亜鉛 (Z n) を含有する実質的に非晶質の酸化物からなる透明 導電膜であって、 I nの原子比 I ( I n + Z n) が 0. 50〜0. 90である透明導電膜を設けることを特徴とする導電性透明ガラスの 製造方法。
36. 透明ガラス基材上に、 主要カチオン元素としてインジウム (I n) および亜鉛 (Zn) の他に価数が正 3価以上である少なく とも 1種の 第 3元素を含有する実質的に非晶質の酸化物からなる透明導電膜であ つて、 I nの原子比 I nZ ( I n + Z n) が 0. 50〜0. 90、 前 記第 3元素の総量の原子比 (全第 3元素) Z (I n + Z n+全第 3元 素) が 0. 2以下である透明導電膜が設けられていることを特徴とす る導電性透明ガラス。
37. 透明導電膜がスパッタリング法により形成された膜である、 請求 の範囲 36に記載の導電性透明ガラス。
38. 主要カチオン元素としてインジウム (I n) および亜鉛 (Z n) を含有する酸化物からなる粉末または焼結体であって、 一般式 I n2 03 (Z n 0) m (m = 2〜20) で表される六方晶層状化合物を含 有するとともに、 I nの原子比 I ( I n + Z n) が 0. 1〜0. 9であることを特徴とする導電性材料。
39. 主要カチオン元素としてインジウム (I n) および亜鉛 (Z n) の他に価数が正 3価以上である少なく とも 1種の第 3元素を含有する 酸化物からなる粉末または焼結体であって、 一般式 I n2 O n (Z n 0) m (m=2〜20) で表される六方晶層状化合物に前記第 3元素 の少なく とも 1種を含有させてなる化合物を含有するとともに、 I n の原子比 I n/ (I n + Z n) が 0. 1〜0. 9で、 前記第 3元素の 総量の原子比 (全第 3元素) Z (I n + Zn+全第 3元素) が 0. 2 以下であることを特徴とする導電性材料。
40. 主要カチォン元素としてインジウム (I n) および亜鉛 (Z n) を含有する実質的に非晶質の酸化物の粉末からなり、 I nの原子比 I n/ (I n + Z n) が 0. 1〜0. 9であることを特徴とする導電性 材料。
41. 主要カチオン元素が実質的にィンジゥム ( I n) および亜鉛 (Z n) のみである、 請求の範囲 40に記載の導電性材料。
42. 主要カチオン元素として I nおよび Z nの他に価数が正 3価以上 である少く とも 1種の第 3元素を含有し、 前記第 3元素の総量の原子比 (全第 3元素) / (I n + Z n+全第 3元素) が 0. 2以下である、 請 求の範囲 40に記載の導電性材料。
PCT/JP1993/001821 1992-12-15 1993-12-15 Transparent conductive film, transparent conductive base material, and conductive material WO1994013851A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP94903007A EP0677593B1 (en) 1992-12-15 1993-12-15 Transparent conductive film, transparent conductive base material, and conductive material
US08/446,584 US5972527A (en) 1992-12-15 1993-12-15 Transparent electrically conductive layer, electrically conductive transparent substrate and electrically conductive material
DE1993628197 DE69328197T2 (de) 1992-12-15 1993-12-15 Transparente, leitende schicht, transparentes, leitendes basismaterial und leitendes material
KR1019950702423A KR100306565B1 (ko) 1992-12-15 1993-12-15 투명도전막과그의제조방법,투명도전막이형성된도전성투명필름과도전성투명유리,및도전성재료

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP33473192 1992-12-15
JP4/334745 1992-12-15
JP33474592 1992-12-15
JP4/334731 1992-12-15
JP4/336446 1992-12-16
JP4/336447 1992-12-16
JP33644792 1992-12-16
JP33644692 1992-12-16

Publications (1)

Publication Number Publication Date
WO1994013851A1 true WO1994013851A1 (en) 1994-06-23

Family

ID=27480520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001821 WO1994013851A1 (en) 1992-12-15 1993-12-15 Transparent conductive film, transparent conductive base material, and conductive material

Country Status (6)

Country Link
US (1) US5972527A (ja)
EP (1) EP0677593B1 (ja)
KR (1) KR100306565B1 (ja)
CA (1) CA2150724A1 (ja)
DE (1) DE69328197T2 (ja)
WO (1) WO1994013851A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622653A (en) * 1994-06-10 1997-04-22 Hoya Corporation Electro-conductive oxides and electrodes using the same
WO2000068456A1 (fr) * 1999-05-10 2000-11-16 Japan Energy Corporation Cible de pulverisation cathodique et procede de production de celle-ci
WO2013065786A1 (ja) * 2011-11-04 2013-05-10 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
WO2013065784A1 (ja) * 2011-11-04 2013-05-10 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
KR101378780B1 (ko) 2011-11-30 2014-03-31 한국세라믹기술원 인듐저감 박막을 적용한 유기전계발광소자 및 유기태양전지디바이스 제조방법
EP3862202A1 (en) 2020-02-05 2021-08-11 Benecke-Kaliko AG Active opacity controllable thin films for windshields

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707320A1 (en) * 1994-10-13 1996-04-17 AT&T Corp. Transparent conductors comprising zinc-indium-oxide and methods for making films
JP3361451B2 (ja) * 1998-03-24 2003-01-07 出光興産株式会社 反射型液晶表示装置用カラーフィルタ及びそれを用いた反射型液晶表示装置
JP4240423B2 (ja) * 1998-04-24 2009-03-18 中部キレスト株式会社 金属酸化物薄膜形成用ターゲット材およびその製造方法、並びに該ターゲット材を使用した金属酸化物薄膜の形成法
DE19822570C1 (de) * 1998-05-20 1999-07-15 Heraeus Gmbh W C Verfahren zum Herstellen eines Indium-Zinn-Oxid-Formkörpers
EP2610229A3 (en) * 1998-08-31 2015-02-18 Idemitsu Kosan Co., Ltd. Transparent electroconductive glass coated with transparent electroconductive film containing IZTO
WO2000054333A1 (en) * 1999-03-08 2000-09-14 Koninklijke Philips Electronics N.V. Display device
JP2000330134A (ja) * 1999-03-16 2000-11-30 Furontekku:Kk 薄膜トランジスタ基板および液晶表示装置
EP1233082B1 (en) 1999-11-25 2009-01-07 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive oxide, and method for preparing sputtering target
JP3961172B2 (ja) * 1999-11-26 2007-08-22 アルプス電気株式会社 酸化物透明導電膜と酸化物透明導電膜形成用ターゲットおよび先の酸化物透明導電膜を備えた基板の製造方法と電子機器および液晶表示装置
AU3053501A (en) * 2000-02-04 2001-08-14 Otsuka Chemical Co. Ltd. Hexagonal lamellar compound based on indium-zinc oxide and process for producing the same
DE50112658D1 (de) * 2000-10-30 2007-08-09 Fraunhofer Ges Forschung Verfahren zur Deposition von Schichtsystemen und deren Verwendung
JP2002260447A (ja) * 2000-11-17 2002-09-13 Furuya Kinzoku:Kk 透明導電膜形成用材料とその製造方法、透明導電膜、タッチパネルとその製造方法、プラズマディスプレイとその製造方法、太陽電池とその製造方法、導電性フィルムとその製造方法、熱線反射ガラスとその製造方法、液晶表示装置とその製造方法、無機エレクトロルミネッセンス素子とその製造方法、及び、有機エレクトロルミネッセンス素子とその製造方法
US6537667B2 (en) 2000-11-21 2003-03-25 Nissan Chemical Industries, Ltd. Electro-conductive oxide particle and process for its production
US6419804B1 (en) * 2000-11-22 2002-07-16 Hsu Cheng-Shen Contamination-resistant thin film deposition method
KR100778835B1 (ko) * 2000-12-28 2007-11-22 엘지.필립스 엘시디 주식회사 액정표시장치의 제조방법
KR100776505B1 (ko) * 2000-12-30 2007-11-16 엘지.필립스 엘시디 주식회사 액정표시장치의 화소전극 제조 방법
JP2002343562A (ja) * 2001-05-11 2002-11-29 Pioneer Electronic Corp 発光ディスプレイ装置及びその製造方法
KR101514766B1 (ko) 2001-07-17 2015-05-12 이데미쓰 고산 가부시키가이샤 스퍼터링 타겟 및 투명 도전막
KR101002504B1 (ko) * 2001-08-02 2010-12-17 이데미쓰 고산 가부시키가이샤 스퍼터링 타겟, 투명 전도막 및 이들의 제조방법
US20040222089A1 (en) * 2001-09-27 2004-11-11 Kazuyoshi Inoue Sputtering target and transparent electroconductive film
US20030178057A1 (en) * 2001-10-24 2003-09-25 Shuichi Fujii Solar cell, manufacturing method thereof and electrode material
US20050199861A1 (en) * 2001-12-12 2005-09-15 Wu L. W. Manufacturing method for transparent and conductive coatings
CN100396813C (zh) 2002-08-02 2008-06-25 出光兴产株式会社 溅射靶、烧结体及利用它们制造的导电膜、有机el元件及其所用的衬底
US7439007B2 (en) * 2002-12-20 2008-10-21 Ricoh Company, Ltd. Phase change information recording medium having multiple layers and recording and playback method for the medium
JP4611198B2 (ja) * 2003-03-04 2011-01-12 Jx日鉱日石金属株式会社 光情報記録媒体用の非晶質性保護膜を形成するためのスパッタリングターゲット、光情報記録媒体用の非晶質性保護膜及びその製造方法
US7825021B2 (en) * 2004-01-16 2010-11-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
CN1918672B (zh) * 2004-03-09 2012-10-03 出光兴产株式会社 薄膜晶体管、薄膜晶体管基板、液晶显示装置、溅射靶、透明导电膜、透明电极及它们的制造方法
US7300617B2 (en) * 2004-05-13 2007-11-27 David Gerling Method of making fusion cast articles
KR101294986B1 (ko) 2005-07-15 2013-08-08 이데미쓰 고산 가부시키가이샤 InㆍSm 산화물계 스퍼터링 타깃
CN103469167A (zh) 2005-09-01 2013-12-25 出光兴产株式会社 溅射靶、透明导电膜、透明电极和电极基板及其制造方法
JP4846726B2 (ja) 2005-09-20 2011-12-28 出光興産株式会社 スパッタリングターゲット、透明導電膜及び透明電極
JP4960244B2 (ja) 2005-09-22 2012-06-27 出光興産株式会社 酸化物材料、及びスパッタリングターゲット
JP5188182B2 (ja) * 2005-09-27 2013-04-24 出光興産株式会社 スパッタリングターゲット、透明導電膜及びタッチパネル用透明電極
US8679587B2 (en) * 2005-11-29 2014-03-25 State of Oregon acting by and through the State Board of Higher Education action on Behalf of Oregon State University Solution deposition of inorganic materials and electronic devices made comprising the inorganic materials
KR20080076935A (ko) * 2005-12-13 2008-08-20 이데미쓰 고산 가부시키가이샤 진공 증착용 소결체
JP5000131B2 (ja) * 2005-12-26 2012-08-15 出光興産株式会社 透明電極膜及び電子機器
US20070184573A1 (en) * 2006-02-08 2007-08-09 Guardian Industries Corp., Method of making a thermally treated coated article with transparent conductive oxide (TCO) coating for use in a semiconductor device
KR100785038B1 (ko) * 2006-04-17 2007-12-12 삼성전자주식회사 비정질 ZnO계 TFT
US8038911B2 (en) * 2006-08-10 2011-10-18 Idemitsu Kosan Co., Ltd. Lanthanoid-containing oxide target
US20080128931A1 (en) * 2006-11-30 2008-06-05 National Chiao Tung University Method for preparing nanocomposite ZnO-SiO2 fluorescent film by sputtering
KR101509663B1 (ko) * 2007-02-16 2015-04-06 삼성전자주식회사 산화물 반도체층 형성 방법 및 이를 이용한 반도체 소자제조방법
KR101334181B1 (ko) * 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
JPWO2008139860A1 (ja) 2007-05-07 2010-07-29 出光興産株式会社 半導体薄膜、半導体薄膜の製造方法、および、半導体素子
US7935964B2 (en) * 2007-06-19 2011-05-03 Samsung Electronics Co., Ltd. Oxide semiconductors and thin film transistors comprising the same
JP2010530634A (ja) * 2007-06-19 2010-09-09 サムスン エレクトロニクス カンパニー リミテッド 酸化物半導体及びそれを含む薄膜トランジスタ
US8384077B2 (en) * 2007-12-13 2013-02-26 Idemitsu Kosan Co., Ltd Field effect transistor using oxide semicondutor and method for manufacturing the same
KR101275801B1 (ko) * 2007-12-18 2013-06-18 삼성전자주식회사 산화물 반도체 타겟
EP2259272A4 (en) * 2008-03-25 2015-08-12 Toray Industries ELECTROCONDUCTIVE COMPLEX AND METHOD FOR PRODUCING THE SAME
KR101496148B1 (ko) * 2008-05-15 2015-02-27 삼성전자주식회사 반도체소자 및 그 제조방법
WO2009148154A1 (ja) * 2008-06-06 2009-12-10 出光興産株式会社 酸化物薄膜用スパッタリングターゲットおよびその製造法
KR20110111369A (ko) * 2009-02-04 2011-10-11 헬리오볼트 코오퍼레이션 인듐 함유의 투명한 전도성 산화막을 형성하는 방법과 이 방법에 사용되는 금속 타겟 및 상기 투명한 전도성 산화막을 이용하는 광발전 장치
US8529802B2 (en) * 2009-02-13 2013-09-10 Samsung Electronics Co., Ltd. Solution composition and method of forming thin film and method of manufacturing thin film transistor using the solution composition
DE102009009337A1 (de) * 2009-02-17 2010-08-19 Evonik Degussa Gmbh Verfahren zur Herstellung halbleitender Indiumoxid-Schichten, nach dem Verfahren hergestellte Indiumoxid-Schichten und deren Verwendung
US8319300B2 (en) 2009-04-09 2012-11-27 Samsung Electronics Co., Ltd. Solution composition for forming oxide thin film and electronic device including the oxide thin film
US8519435B2 (en) 2009-06-08 2013-08-27 The University Of Toledo Flexible photovoltaic cells having a polyimide material layer and method of producing same
CN102549758B (zh) * 2009-09-24 2015-11-25 株式会社半导体能源研究所 半导体器件及其制造方法
JP4843083B2 (ja) 2009-11-19 2011-12-21 出光興産株式会社 In−Ga−Zn系酸化物スパッタリングターゲット
JP4891381B2 (ja) 2009-11-19 2012-03-07 出光興産株式会社 In−Ga−Zn系焼結体、及びスパッタリングターゲット
EP2577736A2 (en) 2010-05-26 2013-04-10 The University of Toledo Photovoltaic structures having a light scattering interface layer and methods of making the same
JP5718072B2 (ja) 2010-07-30 2015-05-13 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ
DE102010047756B3 (de) * 2010-10-08 2012-03-01 Heraeus Materials Technology Gmbh & Co. Kg Sputtertarget mit amorphen und mikrokristallinen Anteilen sowie Verfahren zur Herstellung eines Sputtertargets
KR20140003315A (ko) 2011-06-08 2014-01-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 스퍼터링 타겟, 스퍼터링 타겟의 제조 방법 및 박막의 형성 방법
KR101891650B1 (ko) 2011-09-22 2018-08-27 삼성디스플레이 주식회사 산화물 반도체, 이를 포함하는 박막 트랜지스터, 및 박막 트랜지스터 표시판
KR20130049620A (ko) 2011-11-04 2013-05-14 삼성디스플레이 주식회사 표시 장치
KR20130111874A (ko) 2012-04-02 2013-10-11 삼성디스플레이 주식회사 박막 트랜지스터, 이를 포함하는 박막 트랜지스터 표시판 및 표시 장치, 그리고 박막 트랜지스터의 제조 방법
US9553201B2 (en) 2012-04-02 2017-01-24 Samsung Display Co., Ltd. Thin film transistor, thin film transistor array panel, and manufacturing method of thin film transistor
KR20130129674A (ko) 2012-05-21 2013-11-29 삼성디스플레이 주식회사 박막 트랜지스터 및 이를 포함하는 박막 트랜지스터 표시판
WO2013179676A1 (ja) 2012-05-31 2013-12-05 出光興産株式会社 スパッタリングターゲット
JP5965338B2 (ja) 2012-07-17 2016-08-03 出光興産株式会社 スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
US9885108B2 (en) 2012-08-07 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming sputtering target
KR102046996B1 (ko) 2012-10-16 2019-11-21 삼성디스플레이 주식회사 박막 트랜지스터 표시판
JP6141777B2 (ja) 2013-02-28 2017-06-07 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR20150018243A (ko) * 2013-08-09 2015-02-23 한국전자통신연구원 금속 산화물 결정의 제조방법 및 태양전지용 기판의 제조방법
TWI643969B (zh) * 2013-12-27 2018-12-11 日商半導體能源研究所股份有限公司 氧化物半導體的製造方法
US20150279671A1 (en) * 2014-03-28 2015-10-01 Industry-Academic Cooperation Foundation, Yonsei University Method for forming oxide thin film and method for fabricating oxide thin film transistor employing germanium doping
CN105677092B (zh) * 2016-01-04 2019-05-10 京东方科技集团股份有限公司 面板及其制作方法和显示装置
WO2018062041A1 (ja) 2016-09-29 2018-04-05 富士フイルム株式会社 半導体ナノ粒子含有分散液、及び、フィルム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188817A (ja) * 1985-02-18 1986-08-22 松下電器産業株式会社 透明導電膜及びその形成方法
JPS62297462A (ja) * 1986-06-18 1987-12-24 Toyota Motor Corp 高速真空成膜方法
JPS63201016A (ja) * 1987-02-10 1988-08-19 Natl Inst For Res In Inorg Mater InAlZn↓2O↓5で示される六方晶系の層状構造を有する化合物およびその製造法
JPS63265818A (ja) * 1987-04-22 1988-11-02 Natl Inst For Res In Inorg Mater InGaZn↓7O↓1↓0で示される六方晶系の層状構造を有する化合物およびその製造法
JPH01207994A (ja) * 1988-02-16 1989-08-21 Seiko Epson Corp 電磁波シールド用基材
JPH01301537A (ja) * 1988-04-01 1989-12-05 Ppg Ind Inc 高透過性低放射性物品及びその製法
JPH03254009A (ja) * 1990-03-05 1991-11-13 Mitsubishi Materials Corp 白色導電性粉末の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119611A (ja) * 1982-12-27 1984-07-10 松下電器産業株式会社 透明導電膜のパタ−ン形成方法
DE3324647A1 (de) * 1983-07-08 1985-01-17 Schott Glaswerke, 6500 Mainz Tauchverfahren zur herstellung transparenter, elektrisch leitfaehiger, dotierter indiumoxidschichten
JPS60220505A (ja) * 1984-04-16 1985-11-05 松下電器産業株式会社 透明導電膜およびその形成方法
JPS60220506A (ja) * 1984-04-16 1985-11-05 松下電器産業株式会社 透明導電膜およびその形成方法
JPS61205619A (ja) * 1985-03-08 1986-09-11 Osaka Tokushu Gokin Kk 耐熱性酸化亜鉛透明導電膜
JPH071723B2 (ja) * 1985-07-02 1995-01-11 株式会社村田製作所 薄膜抵抗体
JPS62157618A (ja) * 1985-09-18 1987-07-13 セイコーエプソン株式会社 透明導電膜の作成方法
JPH0298016A (ja) * 1988-10-03 1990-04-10 Gunze Ltd 透明導電膜及びその製造法
JPH0316954A (ja) * 1989-06-14 1991-01-24 Tosoh Corp 酸化物焼結体及びその製造法並びに用途
JPH0350148A (ja) * 1989-07-19 1991-03-04 Tosoh Corp 酸化亜鉛焼結体及びその製造法並びに用途
US5105291A (en) * 1989-11-20 1992-04-14 Ricoh Company, Ltd. Liquid crystal display cell with electrodes of substantially amorphous metal oxide having low resistivity
FR2662153A1 (fr) * 1990-05-16 1991-11-22 Saint Gobain Vitrage Int Produit a substrat en verre portant une couche conductrice transparente contenant du zinc et de l'indium et procede pour l'obtenir.
US5510173A (en) * 1993-08-20 1996-04-23 Southwall Technologies Inc. Multiple layer thin films with improved corrosion resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188817A (ja) * 1985-02-18 1986-08-22 松下電器産業株式会社 透明導電膜及びその形成方法
JPS62297462A (ja) * 1986-06-18 1987-12-24 Toyota Motor Corp 高速真空成膜方法
JPS63201016A (ja) * 1987-02-10 1988-08-19 Natl Inst For Res In Inorg Mater InAlZn↓2O↓5で示される六方晶系の層状構造を有する化合物およびその製造法
JPS63265818A (ja) * 1987-04-22 1988-11-02 Natl Inst For Res In Inorg Mater InGaZn↓7O↓1↓0で示される六方晶系の層状構造を有する化合物およびその製造法
JPH01207994A (ja) * 1988-02-16 1989-08-21 Seiko Epson Corp 電磁波シールド用基材
JPH01301537A (ja) * 1988-04-01 1989-12-05 Ppg Ind Inc 高透過性低放射性物品及びその製法
JPH03254009A (ja) * 1990-03-05 1991-11-13 Mitsubishi Materials Corp 白色導電性粉末の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0677593A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622653A (en) * 1994-06-10 1997-04-22 Hoya Corporation Electro-conductive oxides and electrodes using the same
US5681671A (en) * 1994-06-10 1997-10-28 Hoya Corporation Electro-conductive oxides and electrodes using the same
US5843341A (en) * 1994-06-10 1998-12-01 Hoya Corporation Electro-conductive oxide electrodes and devices using the same
WO2000068456A1 (fr) * 1999-05-10 2000-11-16 Japan Energy Corporation Cible de pulverisation cathodique et procede de production de celle-ci
KR100603128B1 (ko) * 1999-05-10 2006-07-20 닛코킨조쿠 가부시키가이샤 스퍼터링 타겟트
WO2013065786A1 (ja) * 2011-11-04 2013-05-10 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
WO2013065784A1 (ja) * 2011-11-04 2013-05-10 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP2013095655A (ja) * 2011-11-04 2013-05-20 Kobelco Kaken:Kk 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP2013095656A (ja) * 2011-11-04 2013-05-20 Kobelco Kaken:Kk 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
KR101378780B1 (ko) 2011-11-30 2014-03-31 한국세라믹기술원 인듐저감 박막을 적용한 유기전계발광소자 및 유기태양전지디바이스 제조방법
EP3862202A1 (en) 2020-02-05 2021-08-11 Benecke-Kaliko AG Active opacity controllable thin films for windshields

Also Published As

Publication number Publication date
EP0677593A4 (en) 1996-10-23
US5972527A (en) 1999-10-26
EP0677593A1 (en) 1995-10-18
KR100306565B1 (ko) 2001-11-30
CA2150724A1 (en) 1994-06-23
DE69328197T2 (de) 2000-08-17
DE69328197D1 (de) 2000-04-27
KR950704533A (ko) 1995-11-20
EP0677593B1 (en) 2000-03-22

Similar Documents

Publication Publication Date Title
WO1994013851A1 (en) Transparent conductive film, transparent conductive base material, and conductive material
JP3179287B2 (ja) 導電性透明基材およびその製造方法
JP2695605B2 (ja) ターゲットおよびその製造方法
Ogi et al. Direct synthesis of highly crystalline transparent conducting oxide nanoparticles by low pressure spray pyrolysis
TWI390064B (zh) indium. Samarium oxide sputtering target
JPH0971860A (ja) ターゲットおよびその製造方法
JP3864425B2 (ja) アルミニウムドープ酸化亜鉛焼結体およびその製造方法並びにその用途
JP4994068B2 (ja) 酸化物導電性材料及びその製造方法
WO2010004912A1 (ja) Ito粒子の製造方法、およびito粉末、透明導電材用塗料並びに透明導電膜
JPH06318406A (ja) 導電性透明基材およびその製造方法
JP2011198518A (ja) 導電性微粒子およびその製造方法、可視光透過型粒子分散導電体
Ehsan et al. Cobalt titanate–cobalt oxide composite thin films deposited from heterobimetallic precursor
JP5377328B2 (ja) 酸化スズ−酸化マグネシウム系スパッタリングターゲット及び透明半導体膜
JP3592295B2 (ja) インジウム亜鉛酸化物系六方晶層状化合物及びその製造方法
JP5082927B2 (ja) ZnO蒸着材の製造方法
WO2009128495A1 (ja) スパッタリングターゲット
JP2008255477A (ja) ZnO蒸着材及びそれにより形成されたZnO膜
JP2000276943A (ja) 透明導電膜
US20140044922A1 (en) Process for the formation of metal oxide nanoparticles coating of a solid substrate
JP5018553B2 (ja) ZnO蒸着材及びその製造方法並びにそれにより形成されたZnO膜
JP5169313B2 (ja) ZnO蒸着材の製造方法
JP4793537B2 (ja) 可視光透過型粒子分散導電体、導電性粒子、可視光透過型導電物品、およびその製造方法
JP4962356B2 (ja) ZnO蒸着材及びそれにより形成されたZnO膜
TWI568676B (zh) ITO powder and its manufacturing method
JP6952051B2 (ja) 赤外線遮蔽材、及び酸化スズ粒子の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994903007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2150724

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1019950702423

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1994903007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08446584

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1994903007

Country of ref document: EP