US20020119443A1 - Prodrugs of phosphonate nucleotide analogues and methods for selecting and making same - Google Patents

Prodrugs of phosphonate nucleotide analogues and methods for selecting and making same Download PDF

Info

Publication number
US20020119443A1
US20020119443A1 US09/909,560 US90956001A US2002119443A1 US 20020119443 A1 US20020119443 A1 US 20020119443A1 US 90956001 A US90956001 A US 90956001A US 2002119443 A1 US2002119443 A1 US 2002119443A1
Authority
US
United States
Prior art keywords
activity
target tissue
prodrug
pmpa
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/909,560
Other languages
English (en)
Inventor
Mark Becker
Harlan Chapman
Tomas Cihlar
Eugene Eisenberg
Gong-Xin He
Michael Kernan
William Lee
Ernest Prisbe
John Rohloff
Mark Sparacino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gilead Sciences Inc
Original Assignee
Gilead Sciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22821718&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20020119443(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US09/909,560 priority Critical patent/US20020119443A1/en
Application filed by Gilead Sciences Inc filed Critical Gilead Sciences Inc
Assigned to GILEAD SCIENCES, INC. reassignment GILEAD SCIENCES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BECKER, MARK W., ROHLOFF, JOHN C., SPARACINO, MARK L., CIHLAR, TOMAS, KERNAN, MICHAEL R., PRISBE, ERNEST J., CHAPMAN, HARLAN H., EISENBERG, EUGENE J., LEE, WILLIAM A., HE, GONG-XIN
Publication of US20020119443A1 publication Critical patent/US20020119443A1/en
Priority to US10/354,207 priority patent/US20030219727A1/en
Priority to US10/785,497 priority patent/US20060024659A1/en
Priority to US10/798,692 priority patent/US7390791B2/en
Priority to US11/031,251 priority patent/US20050124584A1/en
Priority to US11/031,252 priority patent/US20050124585A1/en
Priority to US11/031,228 priority patent/US20050159392A1/en
Priority to US11/031,250 priority patent/US20050124583A1/en
Priority to US12/110,829 priority patent/US7803788B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • C07F9/65616Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings containing the ring system having three or more than three double bonds between ring members or between ring members and non-ring members, e.g. purine or analogs
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/18Testing for antimicrobial activity of a material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity

Definitions

  • This application relates to prodrugs of methoxyphosphonate nucleotide analogues. In particular it relates to improved methods for making and identifying such prodrugs.
  • Prodrugs of methoxyphosphonate nucleotide analogues intended for antiviral or antitumor therapy while known, traditionally have been selected for their systemic effect.
  • prodrugs have been selected for enhanced bioavailability, i.e., ability to be absorbed from the gastrointestinal tract and converted rapidly to parent drug to ensure that the parent drug is available to all tissues.
  • bioavailability i.e., ability to be absorbed from the gastrointestinal tract and converted rapidly to parent drug to ensure that the parent drug is available to all tissues.
  • the objective of this invention is, among other advantages, to produce less toxicity to bystander tissues and greater potency of the parental drug in tissues which are the targets of therapy with the parent methoxyphosphonate nucleotide analogue.
  • a screening method for identifying a methoxyphosphonate nucleotide analogue prodrug conferring enhanced activity in a target tissue comprising:
  • step (d) determining the relative antiviral activity conferred by the prodrug in the tissues in step (c).
  • the target tissue are sites where HIV is actively replicated and/or which serve as an HIV reservoir, and the non-target tissue is an intact animal.
  • selecting lymphoid tissue as the target tissue for the practice of this method for HIV led to identification of prodrugs that enhance the delivery of active drug to such tissues.
  • a preferred compound of this invention which has been identified by this method has the structure (1),
  • Ra is H or methyl
  • a preferred compound of this invention has the structure (2)
  • R 1 is an oxyester which is hydrolyzable in vivo, or hydroxyl
  • B is a heterocyclic base
  • R 2 is hydroxyl, or the residue of an amino acid bonded to the P atom through an amino group of the amino acid and having each carboxy substituent of the amino acid optionally esterified, but not both of R 1 and R 2 are hydroxyl;
  • E is —(CH 2 )2—, —CH(CH 3 )CH 2 —, —CH(CH 2 F)CH 2 —, —CH(CH 2 OH)CH 2 —, —CH(CH ⁇ CH 2 )CH 2 —, —CH(C ⁇ CH)CH 2 —, —CH(CH 2 N 3 )CH 2 —,
  • the broken line represents an optional double bond
  • R 4 and R 5 are independently hydrogen, hydroxy, halo, amino or a substituent having 1-5 carbon atoms selected from acyloxy, alkyoxy, alkylthio, alkylamino and dialkylamino;
  • R 6 and R 6′ are independently H, C 1 -C 6 alkyl, C 1 -C 6 hydroxyalkyl, or C 2 -C 7 alkanoyl;
  • R 7 is independently H, C 1 -C 6 alkyl, or are taken together to form —O— or —CH 2 —;
  • R 8 is H, C 1 -C 6 alkyl, C 1 -C 6 hydroxyalkyl or C 1 -C 6 haloalkyl;
  • R 9 is H, hydroxymethyl or acyloxymethyl
  • the diastereomers of structure (3) are designated the (S) isomers at the phosphorus chiral center.
  • Preferred embodiments of this invention are the diastereomerically enriched compounds having the structure (5a)
  • R 5 is methyl or hydrogen
  • R 6 independently is H, alkyl, alkenyl, alkynyl, aryl or arylalkyl, or R 6 independently is alkyl, alkenyl, alkynyl, aryl or arylalkyl which is substituted with from 1 to 3 substituents selected from alkylamino, alkylaminoalkyl, dialkylaminoalkyl, dialkylamino, hydroxyl, oxo, halo, amino, alkylthio, alkoxy, alkoxyalkyl, aryloxy, aryloxyalkyl, arylalkoxy, arylalkoxyalkyl, haloalkyl, nitro, nitroalkyl, azido, azidoalkyl, alkylacyl, alkylacylalkyl, carboxyl, or alkylacylamino;
  • R 7 is the side chain of any naturally-occurring or pharmaceutically acceptable amino acid and which, if the side chain comprises carboxyl, the carboxyl group is optionally esterified with an alkyl or aryl group;
  • R 11 is amino, alkylamino, oxo, or dialkylamino
  • R 12 is amino or H
  • a preferred embodiment of this invention is the compound of structure (6), 9-[(R)-2-[[(S)-[[(S)-1-(isopropoxycarbonyl)ethyl]amino]phenoxyphosphinyl]methoxy]propyl]adenine, also designated herein GS-7340
  • Another preferred embodiment of this invention is the fumarate salt of structure (5) (structure (7)), 9-[(R)-2-[[(S)-[[(S)-1-isopropoxycarbonyl)ethyl]amino]phenoxyphosphinyl]methoxy]propyl]adenine fumarate (1:1), also designated herein GS-7340-2
  • compositions containing pharmaceutically acceptable excipients are used in effective doses in the therapy or prophylaxis of viral (particularly HIV or hepadnaviral) infections.
  • a method for the facile manufacture of 9-[2-(phosphonomethoxy)propyl]adenine (hereinafter “PMPA” or 9-[2-(phosphonomethoxy)ethyl] adenine (hereinafter “PMEA”) using magnesium alkoxide comprises combining 9-(2-hydroxypropyl)adenine or 9-(2-hydroxyethyl)adenine, protected p-toluenesulfonyloxymethylphosphonate and magnesium alkoxide, and recovering PMPA or PMEA, respectively.
  • the methoxyphosphonate nucleotide analogue parent drugs for use in this screening method are compounds having the structure A—OH 2 P(O)(OH) 2 wherein A is the residue of a nucleoside analogue. These compounds are known per se and are not part of this invention. More particularly, the parent compounds comprise a heterocyclic base B and an aglycon E, in general having the structure
  • group B is defined below and group E is defined above.
  • group E is defined above. Examples are described in U.S. Pat. Nos. 4,659,825, 4,808,716, 4,724,233, 5,142,051, 5,130,427, 5,650,510, 5,663,159, 5,302,585, 5,476,938, 5,696,263, 5,744,600, 5,688,778, 5,386,030, 5,733,896, 5,352,786, and No. 5,798,340, and EP 821,690 and 654,037.
  • the prodrugs for use in the screening method of this invention are covalently modified analogues of the parent methoxyphosphonate nucleotide analogues described in the preceding paragraph.
  • the phosphorus atom of the parent drug is the preferred site for prodrug modification, but other sites are found on the heterocyclic base B or the aglycon E.
  • Many such prodrugs are already known. Primarily, they are esters or amidates of the phosphorus atom, but also include substitutions on the base and aglycon. None of these modifications per se is part of this invention and none are to be considered limiting on the scope of the invention herein.
  • the phosphorus atom of the methoxyphosphonate nucleotide analogues contains two valences for covalent modification such as amidation or esterification (unless one phosphoryl hydroxyl is esterified to an aglycon E hydroxyl substituent, whereupon only one phosphorus valence is free for substitution).
  • the esters typically are aryloxy.
  • the amidates ordinarily are naturally occurring monoamino acids having free carboxyl group(s) esterified with an alkyl or aryl group, usually phenyl, cycloalkyl, or t-, n- or s- alkyl groups.
  • Suitable prodrugs for use in the screening method of this invention are disclosed for example in U.S. Pat. No.
  • any prodrug which is potentially believed to be capable of being converted in vivo within target tissue cells to the free methoxyphosphonate nucleotide analogue parent drug, e.g., whether by hydrolysis, oxidation, or other covalent transformation resulting from exposure to biological tissues, is suitable for use in the method of this invention.
  • Such prodrugs may not be known at this time but are identified in the future and thus become suitable candidates available for testing in the method of this invention. Since the prodrugs are simply candidates for screening in the methods their structures are not relevant to practicing or enabling the screening method, although of course their structures ultimately are dispositive of whether or not a prodrug will be shown to be selective in the assay.
  • pro-moieties bound to the parent drug may be the same or different.
  • each prodrug to be used in the screening assay will differ structurally from the other prodrugs to be tested. Distinct, i.e. structurally different, prodrugs generally are selected on the basis of either their stereochemistry or their covalent structure, or these features are varied in combination.
  • Each prodrug tested desirably is structurally and stereochemically substantially pure, else the output of the screening assay will be less useful. It is of course within the scope of this invention to test only a single prodrug in an individual embodiment of the method of this invention, although typically then one would compare the results with prior studies with other prodrugs.
  • Chiral sites are at the phosphorus atom and are also found in its substituents.
  • amino acid used in preparing amidates may be D or L forms, and the phosphonate esters or the amino acid esters can contain chiral centers as well.
  • Chiral sites also are found on the nucleoside analogue portion of the molecules, but these typically are already dictated by the stereochemistry of the parent drug and will not be varied as part of the screen.
  • the R isomer of PMPA is preferred as it is more active than the corresponding S isomer.
  • these diasteromers or enantiomers will be chirally enriched if not pure at each site so that the results of the screen will be more meaningful.
  • distinctiveness of stereoisomers is conferred by enriching or purifying the stereoisomer (typically this will be a diastereomer rather than an enantiomer in the case of most methoxyphosphonate nucleotide analogues) free of other stereoisomers at the chiral center in question, so that each test compound is substantially homogeneous.
  • substantially homogeneous or chirally enriched we mean that the desired stereoisomer constitutes greater than about 60% by weight of the compound, ordinarily greater than about 80% and preferably greater than about 95%.
  • the remaining steps of the screening method of this invention are used to identify a prodrug possessing the required selectivity for the target tissue.
  • the prodrugs are labeled with a detectable group, e.g. radiolabeled, in order to facilitate detection later in tissues or cells.
  • a label is not required since other suitable assays for the prodrug or its metabolites (including the parent drug) can also be employed. These assays could include mass spectrometry, HPLC, bioassays or immunoassays for instance.
  • the assay may detect the prodrug and any one or more of its metabolites, but preferably the assay is conducted to detect only the generation of the parent drug. This is based on the assumption (which may not be warranted in all cases) that the degree and rate of conversion of prodrug to antivirally active parent diphosphate is the same across all tissues tested. Otherwise, one can test for the diphosphate.
  • the target tissue preferably will be lymphoid tissue when screening for prodrugs useful in the treatment of HIV infection.
  • Lymphoid tissue will be known to the artisan and includes CD4 cells, lymphocytes, lymph nodes, macrophages and macrophage-like cells including monocytes such as peripheral blood monocytic cells (PBMCs) and glial cells.
  • Lymphoid tissue also includes non-lymphoid tissues that are enriched in lymphoid tissues or cells, e.g. lung, skin and spleen.
  • Other targets for other antiviral drugs of course will be the primary sites of replication or latency for the particular virus concerned, e.g., liver for hepatitis and peripheral nerves for HSV.
  • target tissues for tumors will in fact be the tumors themselves. These tissues are all well-known to the artisan and would not require undue experimentation to select.
  • target tissue can be infected by the virus.
  • Non-target tissues or cells also are screened as part of the method herein. Any number or identity of such tissues or cells can be employed in this regard. In general, tissues for which the parent drug is expected to be toxic will be used as non-target tissues. The selection of a non-target tissue is entirely dependent upon the nature of the prodrug and the activity of the parent. For example, non-hepatic tissues would be selected for prodrugs against hepatitis, and untransformed cells of the same tissue as the tumor will suffice for the antitumor-selective prodrug screen.
  • the method of this invention is distinct from studies typically undertaken to determine oral bioavailability of prodrugs.
  • the objective is to identify a prodrug which passes into the systemic circulation substantially converted to parent drug.
  • the objective is to find prodrugs that are not metabolized in the gastrointestinal tract or circulation.
  • target tissues to be evaluated in the method of this invention generally do not include the small intestines or, if the intestines are included, then the tissues also include additional tissues other than the small intestines.
  • the target and non-target tissues used in the screening method of this invention typically will be in an intact living animal.
  • Prodrugs containing esters are more desirably tested in dogs, monkeys or other animals than rodents; mice and rat plasma contains high circulating levels of esterases that may produce a misleading result if the desired therapeutic subject is a human or higher mammal.
  • tissue shall not be construed to require organized cellular structures, or the structures of tissues as they may be found in nature, although such would be preferred. Rather, the term “tissue” shall be construed to be synonymous with cells of a particular source, origin or differentiation stage.
  • the target and non-target tissue may in fact be the same tissue, but the tissues will be in different biological status.
  • the method herein could be used to select for prodrugs that confer activity in virally-infected tissue (target tissue) but which remain substantially inactive in virally-uninfected cells (corresponding non-target tissue).
  • the same strategy would be employed to select prophylactic prodrugs, i.e., prodrugs metabolized to antivirally active forms incidental to viral infection but which remain substantially unmetabolized in uninfected cells.
  • prodrugs could be screened in transformed cells and the untransformed counterpart tissue. This would be particularly useful in comparative testing to select prodrugs for the treatment of hematological malignancies, e.g. leukemias.
  • tissue selective prodrugs are thought to be selectively taken up by target cells and/or selectively metabolized within the cell, as compared to other tissues or cells.
  • the unique advantage of the methoxyphosphonate prodrugs herein is that their metabolism to the dianion at physiological pH ensures that they will be unable to diffuse back out of the cell. They therefore remain effective for lengthy periods of time and are maintained at elevated intracellular concentrations, thereby exhibiting increased potency.
  • the mechanisms for enhanced activity in the target tissue are believed to include enhanced uptake by the target cells, enhanced intracellular retention, or both mechanisms working together.
  • the manner in which selectivity or enhanced delivery occurs in the target tissue is not important. It also is not important that all of the metabolic conversion of the prodrug to the parent compound occurs within the target tissue. Only the final drug activity-conferring conversion need occur in the target tissue; metabolism in other tissues may provide intermediates finally converted to antiviral forms in the target tissue.
  • the degree of selectivity or enhanced delivery that is desired will vary with the parent compound and the manner in which it is measured (% dose distribution or parent drug concentration). In general, if the parent drug already possess a generous therapeutic window, a low degree of selectivity may be sufficient for the desired prodrug. On the other hand, toxic compounds may require more extensive screening to identify selective prodrugs. The relative expense of the method of this invention can be reduced by screening only in the target tissue and tissues against which the parent compound is known to be relatively toxic, e.g. for PMEA, which is nephrotoxic at higher doses, the primary focus will be on kidney and lymphoid tissues.
  • the step of determining the relative antiviral activity of a prodrug in the selected tissues ordinarily is accomplished by assaying target and non-target tissues for the relative presence or activity of a metabolite of the prodrug, which metabolite is known to have, or is converted to, a metabolite having antiviral or antitumor activity.
  • a metabolite of the prodrug which metabolite is known to have, or is converted to, a metabolite having antiviral or antitumor activity.
  • the active metabolite is the diphosphate of the phosphonate parent compounds. It is this metabolite that is incorporated into the viral nucleic acid, thereby truncating the elongating nucleic acid strand and halting viral replication.
  • Metabolites of the prodrug can be anabolic metabolites, catabolic metabolites, or the product of anabolism and catabolism together. The manner in which the metabolite is produced is not important in the practice of the method of this invention.
  • the method of this invention is not limited to assaying a metabolite which per se possesses antiviral or antitumor activity. Instead, one can assay inactive precursors of the active metabolites.
  • Precursors of the antivirally active diphosphate metabolite include the monophosphate of the parent drug, monophosphates of other metabolites of the parent drug (e.g., an intermediate modification of a substituent on the heterocyclic base), the parent itself and metabolites generated by the cell in converting the prodrug to the parent prior to phosphorylation.
  • the precursor structures may vary considerably as they are the result of cellular metabolism. However, this information is already known or could be readily determined by one skilled in the art.
  • step (d) of the method herein calls for determining the activity, activity can be either measured directly or extrapolated.
  • Step (d) only requires assessment of the activity conferred by the prodrug as it interacts with the tissue concerned, and this may be based on extrapolation or other indirect measurement.
  • Step (d) of the method of this invention calls for determining the “relative” activity of the prodrug. It will be understood that this does not require that each and every assay or series of assays necessarily must also contain runs with the selected non-target tissue. On the contrary, it is within the scope of this invention to employ historical controls of the non-target tissue or tissues, or algorithms representing results to be expected from such non-target tissues, in order to provide the benchmark non-target activity.
  • step (d) The results obtained in step (d) are then used optimally to select or identify a prodrug which produces greater antiviral activity in the target tissue than in the non-target tissue. It is this prodrug that is selected for further development.
  • prodrug candidates can be undertaken before the practice of the method of this invention.
  • the prodrug will need to be capable of passing largely unmetabolized through the gastrointestinal tract, it will need to be substantially stable in blood, and it should be able to permeate cells at least to some degree. In most cases it also will need to complete a first pass of the hepatic circulation without substantial metabolism.
  • Such prestudies are optional, and are well-known to those skilled in the art.
  • antiviral activity is applicable to antitumor prodrugs of methoxyphosphonate nucleotide analogues as well.
  • these include, for example, prodrugs of PMEG, the guanyl analogue of PMEA.
  • cytotoxic phosphonates such as PMEG are worthwhile candidates to pursue as their cytotoxicity in fact confers their antitumor activity.
  • a compound identified by this novel screening method then can be entered into a traditional preclinical or clinical program to confirm that the desired objectives have been met.
  • a prodrug is considered to be selective if the activity or concentration of parent drug in the target tissue (% dose distribution) is greater than 2 ⁇ , and preferably 5 ⁇ , that of the parent compound in non-target tissue.
  • a prodrug candidate can be compared against a benchmark prodrug. In this case, selectivity is relative rather than absolute. Selective prodrugs will be those resulting in greater than about 10 ⁇ concentration or activity in the target tissue as compared with the prototype, although the degree of selectivity is a matter of discretion.
  • an improved method for manufacture of preferred starting materials (parent drugs) of this invention PMEA and (R)-PMPA.
  • this method comprises reacting 9-(2-hydroxypropyl)adenine (HPA) or 9-(2-hydroxyethyl) adenine (HEA) with a magnesium alkoxide, thereafter adding the protected aglycon synthon p-toluene-sulfonyloxymethylphosphonate (tosylate) to the reaction mixture, and recovering PMPA or PMEA, respectively.
  • HPA is the enriched or isolated R enantiomer. If a chiral HPA mixture is used, R-PMPA can be isolated from the chiral PMPA mixture after the synthesis is completed.
  • the tosylate is protected by lower alkyl groups, but other suitable groups will be apparent to the artisan. It may be convenient to employ the tosylate presubstituted with the prodrug phosphonate substituents which are capable of acting as protecting groups in the tosylation reaction, thereby allowing one to bypass the deprotection step and directly recover prodrug or an intermediate therefore.
  • the alkyl group of the magnesium alkoxide is not critical and can be any C 1 -C 6 branched or normal alkyl, but is preferably t-butyl (for PMPA) or isopropyl (for PMEA).
  • the reaction conditions also are not critical, but preferably comprise heating the reaction mixture at about 70-75° C. with stirring or other moderate agitation.
  • the product is deprotected (usually with bromotrimethylsilane where the tosylate protecting group is alkyl), and the product then recovered by crystallization or other conventional method as will be apparent to the artisan.
  • heterocyclic base B is selected from the structures
  • R 15 is H, OH, F, Cl, Br, I, OR 16 SH, SR 16 , NH 2 , or NHR 17 ;
  • R 16 is C 1 -C 6 alkyl or C 2 -C 6 alkenyl including CH 3 , CH 2 CH 3 , CH 2 CCH, CH 2 CHCH 2 and C 3 H 7 ;
  • R 17 is C 1 -C 6 alkyl or C 2 -C 6 alkenyl including CH 3 , CH 2 CH 3 , CH 2 CCH, CH 2 CHCH 2 , and C 3 H 7 ;
  • R 18 is N, CF, CCl, CBr, CI, CR 19 , CSR 19 , or COR 19 ;
  • R 19 is H, C 1 -C 9 alkyl, C 2 -C 9 alkenyl, C 2 -C 9 alkynyl, C 1 -C 9 alkyl-C 1 -C 9 alkoxy, or C 7 -C 9 aryl-alkyl unsubstituted or substituted by OH, F, Cl, Br or I, R 19 therefore including —CH 3 , —CH 2 CH 3 , —CHCH 2 , —CHCHBr, —CH 2 CH 2 Cl, —CH 2 CH 2 F, —CH 2 CCH, —CH 2 CHCH 2 , —C 3 H 7 , —CH 2 OH, —CH 2 OCH 3 , —CH 2 OC 2 H 5 , —CH 2 OCCH, —CH 2 OCH 2 CHCH 2 , —CH 2 C 3 H 7 , —CH 2 CH 2 OH, —CH 2 CH 2 OCH 3 , —CH 2 CH 2 OC 2
  • R 20 is N or CH
  • R 21 is N, CH, CCN, CCF 3 , CC ⁇ CH or CC(O)NH 2 ;
  • R 22 is H, OH, NH 2 , SH, SCH 3 , SCH 2 CH 3 , SCH 2 CCH, SCH 2 CHCH 2 , SC 3 H 7 , NH(CH 3 ), N(CH 3 ) 2 , NH(CH 2 CH 3 ), N(CH 2 CH 3 ) 2 , NH(CH 2 CCH), NH(CH 2 CHCH 2 ), NH(C 3 H 7 ), halogen (F, Cl, Br or I) or X wherein X is —(CH 2 ) m (O) n (CH 2 ) m N(R 10 ) 2 wherein each m is independently 0-2, n is 0-1, and
  • R 10 independently is
  • both R 10 are joined together with N to form a saturated or unsaturated C 2 -C 5 heterocycle containing one or two N heteroatoms and optionally an additional O or S heteroatom,
  • R 10 groups which is substituted with 1 to 3 halo, CN or N 3 ; but optionally at least one R 10 group is not H;
  • R 23 is H, OH, F, Cl, Br, I, SCH 3 , SCH 2 CH 3 , SCH 2 CCH, SCH 2 CHCH 2 , SC 3 H 7 , OR 16 , NH 2 , NHR 17 or R 7 ;
  • R 24 is O, S or Se.
  • B also includes both protected and unprotected heterocyclic bases, particularly purine and pyrimidine bases.
  • Protecting groups for exocyclic amines and other labile groups are known (Greene et al. “Protective Groups in Organic Synthesis”) and include N-benzoyl, isobutyryl, 4,4′-dimethoxytrityl (DMT) and the like.
  • DMT 4,4′-dimethoxytrityl
  • the selection of protecting group will be apparent to the ordinary artisan and will depend upon the nature of the labile group and the chemistry which the protecting group is expected to encounter, e.g. acidic, basic, oxidative, reductive or other conditions.
  • Exemplary protected species are N 4 -benzoylcytosine, N 6 -benzoyladenine, N 2 -isobutyrylguanine and the like.
  • Protected bases have the formulas Xa.1, XIa.1, XIb.1, XIIa.1 or XIIIa.1
  • R 18 , R 20 , R 21 , R 24 have the meanings previously defined;
  • R 22A is R 39 or R 22 provided that R 22 is not NH 2 ;
  • R 23A is R 39 or R 23 provided that R 23 is not NH 2 ;
  • R 39 is NHR 40 , NHC(O)R 36 or CR 41 N(R 38 ) 2 wherein R 36 is CI-C19 alkyl C 1 -C 19 alkenyl C 3 -C 10 aryl, adamantoyl, alkylanyl, or C 3 -C 10 aryl substituted with 1 or 2 atoms or groups selected from halogen, methyl, ethyl, methoxy, ethoxy, hydroxy and cyano;
  • R 38 is C 1 -C 10 alkyl, or both R 38 together are 1-morpholino, 1-piperidine or 1-pyrrolidine;
  • R 40 is C 1 -C 1a alkyl, including methyl, ethyl,
  • R 39 is present at R 22A or R 23A , both R 39 groups on the same base will generally be the same.
  • Exemplary R 36 are phenyl, phenyl substituted with one of the foregoing R 36 aryl substituents, —C 10 H 15 (where C 10 H 15 is 2-adamantoyl), —CH 2 -C 6 H 5 , —C 6 H 5 , —CH(CH 3 ) 2 , —CH 2 CH 3 , methyl, butyl, t-butyl, heptanyl, nonanyl, undecanyl, or undecenyl.
  • Specific bases include hypoxanthine, guanine, adenine, cytosine, inosine, thymine, uracil, xanthine, 8-aza derivatives of 2-aminopurine, 2,6-diaminopurine, 2-amino-6-chloropurine, hypoxanthine, inosine and xanthine; 7-deaza-8-aza derivatives of adenine, guanine, 2-aminopurine, 2,6-diaminopurine, 2-amino-6-chloropurine, hypoxanthine, inosine and xanthine; 1-deaza derivatives of 2-aminopurine, 2,6-diaminopurine, 2-amino-6-chloropurine, hypoxanthine, inosine and xanthine; 7-deaza derivatives of 2-aminopurine, 2,6-diaminopurine, 2-amino-6-chloropurine
  • B is a 9-purinyl residue selected from guanyl, 3-deazaguanyl, 1-deazaguanyl, 8-azaguanyl, 7-deazaguanyl, adenyl, 3-deazaadenyl, 1-dezazadenyl, 8-azaadenyl, 7-deazaadenyl, 2,6-diaminopurinyl, 2-aminopurinyl, 6-chloro-2-aminopurinyl and 6-thio-2-aminopurinyl, or a B′ is a 1-pyrimidinyl residue selected from cytosinyl, 5-halocytosinyl, and 5-(C 1 -C 3 -alkyl)cytosinyl.
  • R 22 independently is halo, oxygen, NH 2 , X or H, but optionally at least one R 22 is X;
  • X is —(CH 2 ) m (O) n (CH 2 ) m N(R 10 ) 2 wherein m is 0-2, n is 0-1, and
  • R 10 independently is
  • C 1 -C 15 alkyl C 2 -C 5 alkenyl, C 6 -C 5 arylalkenyl, C 6 -C 15 arylalkynyl, C 2 -C 15 alkynyl, C 1 -C 6 -alkylamino-C 1 -C 6 alkyl, C 5 -C 15 aralkyl, C 6 -C 15 heteroaralkyl, C 5 -C 6 aryl, C 2 -C 6 heterocycloalkyl,
  • both R 10 are joined together with N to form a saturated or unsaturated C 2 -C 5 heterocycle containing one or two N heteroatoms and optionally an additional O or S heteroatom,
  • R 10 groups are substituted with 1 to 3 halo, CN or N 3 ; but optionally at least one R 10 group is not H; and
  • Z is N or CH, provided that the heterocyclic nucleus varies from purine by no more than one Z.
  • E groups represent the aglycons employed in the methoxyphosphonate nucleotide analogues.
  • the E group is —CH(CH 3 )CH 2 — or —CH 2 CH 2 —.
  • the side groups at chiral centers in the aglycon be substantially solely in the (R) configuration (except for hydroxymethyl, which is the enriched (S) enantiomer).
  • R 1 is an in vivo hydrolyzable oxyester having the structure —OR 35 or —OR 6 wherein R 35 is defined in column 64, line 49 of U.S. Pat. No. 5,798,340, herein incorporated by reference, and R 6 is defined above.
  • R 1 is aryloxy, ordinarily unsubstituted or para-substituted (as defined in R 6 ) phenoxy.
  • R 2 is an amino acid residue, optionally provided that any carboxy group linked by less than about 5 atoms to the amidate N is esterified.
  • R 2 typically has the structure
  • n 1 or 2;
  • R 12 independently is H or C 1 -C 9 alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N, COOR 11 and halogen; C 3 -C 6 aryl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N, COORS and halogen; or C 3 -C 9 aryl-alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N, COOR 11 and halogen;
  • R 13 independently is C(O)—OR 11 ; amino; amide; guanidinyl; imidazolyl; indolyl; sulfoxide; phosphoryl; C 1 -C 3 alkylamino; C 1 -C 3 alkyldiamino; C 1 -C 6 alkenylamino; hydroxy; thiol; C 1 -C 3 alkoxy; C 1 -C 3 alkthiol; (CH 2 ) n COOR 11 ; C 1 -C 6 alkyl which is unsubstituted or substituted with OH, halogen, SH, NH 2 , phenyl, hydroxyphenyl or C 7 -C 10 alkoxyphenyl; C 2 -C 6 alkenyl which is unsubstituted or substituted with OH, halogen, SH, NH 2 , phenyl, hydroxyphenyl or C 7 -C 10 alkoxyphenyl; and C 6
  • R 14 is H or C 1 -C 9 alkyl or C 1 -C 9 alkyl independently substituted with OH, halogen, COOR 11 , O or N; C 3 -C 6 aryl; C 3 -C 6 aryl which is independently substituted with OH, halogen, COOR 11 , O or N; or C 3 -C 6 arylalkyl which is independently substituted with OH, halogen, COOR 11 , O or N.
  • the invention includes metabolites in which the phenoxy and isopropyl esters have been hydrolyzed to —OH.
  • the de-esterified enriched phosphonoamidate metabolites of compounds (5a), 5(b) and (6) are included within the scope of this invention.
  • Aryl and “O” or “N” substitution are defined in column 16, lines 42-58, of U.S. Pat. No. 5,798,340.
  • the amino acids are in the natural or l amino acids. Suitable specific examples are set forth in U.S. Pat. No.5,798,340, for instance Table 4 and col. 8-10 therein.
  • Alkyl as used herein is a normal, secondary, tertiary or cyclic hydrocarbon. Unless stated to the contrary alkyl is C 1 -C 12 . Examples are —CH 3 , —CH 2 CH 3 , —CH 2 CH 2 CH 3 , —CH(CH 3 ) 2 , —CH 2 CH 2 CH 2 CH 3 ), —CH 2 CH(CH 3 ) 2 , —CH(CH 3 )CH 2 CH 3 , -C(CH 3 ) 3 , —CH 2 CH 2 CH 2 CH 2 CH 3 , —CH(CH 3 )CH 2 CH 2 CH 3 , —CH(CH 2 CH 3 ) 2 , —C(CH 3 ) 2 CH 2 CH 3 ), —CH(CH 3 )CH(CH 3 ) 2 , —CH 2 CH 2 CH(CH 3 ) 2 ), —CH 2 CH(CH 3 )CH 2 CH 3 , —CH 2 CH 2 CH 2 , —CH 2 CH(CH
  • the prodrug compounds of this invention are provided in the form of free base or the various salts enumerated in U.S. Pat. No. 5,798,340, and are formulated with pharmaceutically acceptable excipients or solvating diluents for use as pharmaceutical products also as set forth in U.S. Pat. No. 5,798,340.
  • These prodrugs have the antiviral and utilities already established for the parent drugs (see U.S. Pat. 5,798,340 and other citations relating to the methoxyphosphonate nucleotide analogues). It will be understood that the diastereomer of structure (4) at least is useful as an intermediate in the chemical production of the parent drug by hydrolysis in vitro, regardless of its relatively unselective character as revealed in the studies herein.
  • bromotrimethylsilane (73.9 g, 0.478 mol) was added and the mixture heated to 77° C. for 3 hours. When complete, the reaction was heated to 80° C. and volatiles were removed via atmospheric distillation. The residue was dissolved into water (120 ml) at 50° C. and then extracted with ethyl acetate (101 ml). The pH of the aqueous phase was adjusted to pH 1.1 with sodium hydroxide, seeded with authentic (R)-PMPA, and the pH of the aqueous layer was readjusted to pH 2.1 with sodium hydroxide. The resulting slurry was stirred at room temperature overnight. The slurry was cooled to 4° C. for three hours.
  • a glass-lined reactor was charged with anhydrous PMPA, (I) (14.6 kg, 50.8 mol), phenol (9.6 kg, 102 mol), and 1-methyl-2-pyrrolidinone (39 kg). The mixture was heated to 85° C. and triethylamine (6.3 kg, 62.3 mol) added. A solution of 1,3-dicyclohexylcarbodiimide (17.1 kg, 82.9 mol) in 1-methyl-2-pyrrolidinone (1.6 kg) was then added over 6 hours at 100° C. Heating was continued for 16 hours. The reaction was cooled to 45° C., water (29 kg) added, and cooled to 25° C. Solids were removed from the reaction by filtration and rinsed with water (15.3 kg).
  • Half the product solution was purified by chromatography over a 38 ⁇ 38 cm bed of 22 kg silica gel 60, 230 to 400 mesh. The column was eluted with 480 kg acetone. The purification was repeated on the second half of the oil using fresh silica gel and acetone. Clean product bearing fractions were concentrated under reduced pressure to an oil. Acetonitrile (19.6 kg) was charged to the oil and the mixture concentrated under reduced pressure. Acetonitrile (66.4 kg) was charged and the solution chilled to 0° to ⁇ 5° C. for 16 hours.
  • the oil was combined with fumaric acid (0.77 g, 6.6 mmol) and acetonitrile (40 mL) and heated to reflux to give a homogeneous solution.
  • the solution was cooled in an ice bath and solids isolated by filtration.
  • the solid GS-7171 fumarate salt was dried under reduced pressure to 3.7 g.
  • the salt (3.16 g, 5.3 mmol) was suspended in dichloromethane (30 mL) and stirred with potassium carbonate solution (5 mL, 2.5 M in water) until the solid dissolved.
  • the organic layer was isolated, then washed with water (5 mL), dried over anhydrous sodium sulfate, and concentrated under reduced pressure to afford 2.4 g III as a tan foam.
  • Chiralpak AS is a proprietary packing material manufactured by Diacel and sold in North America by Chiral Technologies, Inc. (U.S. Pat. Nos. 5,202,433, RE 35,919, 5,434,298, 5,434,299 and 5,498,752).
  • Chiralpak AS is a chiral stationary phase (CSP) comprised of amylosetris[(S)- ⁇ -methylbenzyl carbamate] coated onto a silica gel support.
  • the GS-7171 diastereomeric mixture was dissolved in mobile phase, and approximately 1 g aliquots of GS-7171 were pumped onto the chromatographic system.
  • the undesired diastereomer, designated GS-7339 was the first major broad (approx. 15 min. duration) peak to elute from the column.
  • the mobile phase was immediately switched to 100% methyl alcohol, which caused the desired diastereomer, designated GS-7340 (IV), to elute as a sharp peak from the column with the methyl alcohol solvent front.
  • the methyl alcohol was used to reduce the over-all cycle time.
  • both diastereomers were collected as a single large fractions containing one of the purified diastereomers (>99.0% single diastereomer).
  • the mobile phase solvents were removed in vacuo to yield the purified diastereomer as a friable foam.
  • GS-7340 IV.
  • GS-7171 (III) 2.8 kg, was purified by simulated moving bed chromatography over 10 cm by 5 cm beds of packing (Chiral Technologies Inc., 20 micron Chiralpak AS coated on silica gel) (1.2 kg). The columns were eluted with 30% methanol in acetonitrile. Product bearing fractions were concentrated to a solution of IV in acetonitrile (2.48 kg). The solution solidified to a crystalline mass wet with acetonitrile on standing.
  • GS-7171 (III) was chromatographed by reverse phase HPLC to separate the diastereomers using the following summary protocol.
  • Mobile Phase A—0.02% (85%) H 3 P0 4 in water:acetonitrile (95:5)
  • a Flow Rate 1.2 mL/min
  • Temperature Ambient Detection: UV at 260 nm
  • Sample Solution 20 mM sodium phosphate buffer
  • GS-7340 IV.
  • a solution of GS-7171 (III) in acetonitrile was concentrated to an amber foam (14.9 g) under reduced pressure.
  • the foam was dissolved in acetonitrile (20 mL) and seeded with a crystal of IV.
  • the mixture was stirred overnight, cooled to 5° C., and solids isolated by filtration.
  • GS-7340-02 (V).
  • Scheme 1 A glass-lined reactor was charged with GS-7340 (IV), (1.294 kg, 2.71 mol), fumaric acid (284 g, 2.44 mol), and acetonitrile (24.6 kg). The mixture was heated to reflux to dissolve the solids, filtered while hot and cooled to 5° C. for 16 hours. The product was isolated by filtration, rinsed with acetonitrile (9.2 kg), and dried to 1329 g (V) as a white powder: mp 119.7°-121.1° C.; [ ⁇ ] D 20 -41.7° (c 1.0, acetic acid).
  • the oil was purified by chromatography over a 15 ⁇ 13 cm bed of 1.2 kg silica gel 60, 230 to 400 mesh.
  • the column was eluted with a gradient of dichloromethane and methanol. Product bearing fractions were concentrated under reduced pressure to afford 211 g VI (Scheme 3) as a tan foam.
  • the diastereomeric mixture was purified using the conditions described for GS-7171 in Example 3A except for the following: Mobile Phase (Initial) GS-7120-Acetonitrile:Isopropyl Alcohol (98:2) (Final) 100% Methyl Alcohol Elution Profile GS-7341 (diastereomer B) GS-7342 (diastereomer A)
  • the diastereomeric mixture was purified using the conditions described for GS-7171 (Example 3A) except for the following: Mobile Phase (Initial) GS-7120-Acetonitrile:Isopropyl Alcohol (95:5) (Final) 100% Methyl Alcohol Elution Profile GS-7115 (diastereomer B) GS-7114 (diastereomer A)
  • GS-7097 Phenyl PMPA, Ethyl L-Alanyl Amidate.
  • Phenyl PMPA (15.0 g, 41.3 mmol)
  • L-alanine ethyl ester hydrochloride (12.6 g, 83 mmol)
  • triethylamine (11.5 mL, 83 mmol) were slurried together in 500 mL pyridine under dry N 2 .
  • This suspension was combined with a solution of triphenylphosphlne (37.9 g, 145 mmol), Aldrithiol 2 (2,2′-dipyridyl disulfide) (31.8 g, 145 mmol), and 120 mL pyridine.
  • the mixture was heated at an internal temperature of 57° C. for 15 hours.
  • the complete reaction was concentrated under vacuum to a yellow paste, 100 g.
  • the paste was purified by column chromatography over a 25 ⁇ 11 cm bed of 1.1 kg silica gel 60,230 to 400 mesh.
  • the column was eluted with 8 liters of 2% methanol in dichloromethane followed by a linear gradient over a course of 26 liters eluent up to a final composition of 13% methanol. Clean product bearing fractions were concentrated to yield 12.4 g crude (5)1 65% theory. This material was contaminated with about 15% (weight) triethylamine hydrochloride by 1 H NMR.
  • the contamination was removed by dissolving the product in 350 mL ethyl acetate, extracting with 20 mL water, drying the organic solution over anhydrous sodium sulfate, and concentrating to yield 11.1 g pure GS-7097 as a white solid, 58% yield.
  • the process also is employed to synthesize the diastereomeric mixture of GS-7003a and GS-7003b (the phenylalanyl amidate) and the mixture GS-7119 and GS-7335 (the glycyl amidate). These diastereomers are separated using a batch elution procedure such as shown in Example 3A, 6 and 7.
  • GS-7340 shows a 10-fold increase in antiviral activity relative to TDF and a 200-fold increase in plasma stability. This greater plasma stability is expected to result in higher circulating levels of GS-7340 than TDF after oral administration.
  • GS-7340 results in 10 ⁇ and 30 ⁇ the total intracellular concentration of PMPA species in PBMCs as compared to TDF and PMPA, respectively.
  • 84% of the radioactivity is due to intact GS-7340, whereas no TDF is detected at 1 hour. Since no intact TDF is detected in plasma, the 10 ⁇ difference at 1 hour between TDF and GS-7340 is the minimum difference expected in vivo.
  • the HPLC chromatogram for all three compounds in PBMCs is shown in FIG. 1. TABLE 2 PMPA Metabolites in Plasma, PBMCs and RBCs After 1 h Incubation of PMPA Prodrugs or PMPA in Human Blood.
  • Met. X and Met Y are shown in Table 5. Lower case “p” designates phosphorylation. These results were obtained after 1 hour in human blood. With increasing time, the in vitro differences are expected to increase, since 84% of GS-7340 is still intact in plasma after one hour. Because intact GS-7340 is present in plasma after oral administration, the relative clinical efficacy should be related to the IC 50 values seen in vitro.
  • IC 50 values of tenofovir, TDF, GS-7340, several nucleosides and the protease inhibitor nelfinavir are listed. As shown, nelfinavir and GS-7340 are 2-3 orders of magnitude more potent than all other nucleotides or nucleosides.
  • “Phe-methylester” is the methylphenylalaninyl monoamidate, phenyl monoester of tenofovir; “gly-methylester” is the methylglycyl monoamidate, phenyl monoester of tenofovir.
  • isomer A is believed to have the same absolute stereochemistry as GS-7340 (S), and isomer B is believed to have the same absolute stereochemistry that of GS-7339.
  • reaction mixture 20 ⁇ L
  • 60 ⁇ L of methanol containing the internal standard 60 ⁇ L
  • the mixture thus obtained was centrifuged at 15,000 G for 5 min and the supernatant was analyzed with HPLC under the conditions described below.
  • MT-2 cell extract was prepared from MT-2 cells according to the published procedure [A. Pompon, I. Lefebvre, J.-L. Imbach, S. Kahn, and D. Farquhar, “Antiviral Chemistry & Chemotherapy”, 5:91-98 (1994)] except for using HEPES buffer described below as the medium.
  • PBS phosphate-buffered saline, Sigma
  • PBS phosphate-buffered saline
  • HEPES buffer contains 0.010 M HEPES, 0.05 M potassium chloride, 0.005 M magnesium chloride, and 0.005 M dl-dithiothreitol. pH 7.4 at 37° C.
  • TBS tris-buffered saline
  • Sigma contains 0.05 M Tris, 0.0027 M potassium chloride, and 0.138 M sodium chloride. pH 7.5 at 37° C.
  • the HPLC analysis was carried out under the following conditions. Column: Zorbax R x -C 8 , 4.6 ⁇ 250 mm, 5 ⁇ (MAC-MOD Analytical, Inc.
  • PBMC Peripheral Blood Mononuclear Cell
  • Dried samples were reconstituted in 200 ⁇ l derivatization cocktail (0.34% chloroacetaldehyde in 100 mM sodium acetate, pH 4.5), vortexed, and centrifuged. Supernatant was then transferred to a clean screw-cap tube and incubated at95° C. for 40 min. Derivatized samples were then evaporated to dryness and reconstituted in 100 ⁇ l of water for HPLC analysis.
  • derivatization cocktail 0.34% chloroacetaldehyde in 100 mM sodium acetate, pH 4.5
  • the HPLC system was comprised of a P4000 solvent delivery system with AS3000 autoinjector and F2000 fluorescence detector (Thermo Separation, San Jose, Calif.).
  • the column was an Inertsil ODS-2 column (4.6 ⁇ 150 mm).
  • the mobile phases used were: A, 5% acetonitrile in 25 mM potassium phosphate buffer with 5 mM tetrabutyl ammonium bromide (TBABr), pH 6.0; B, 60% acetonitrile in 25 mM potassium phosphate buffer with 5 mM TBABr, pH 6.0.
  • the flow rate was 2 mil/min and the column temperature was maintained at 35° C. by a column oven.
  • the gradient profile was 90% A/10% B for 10 min for PMPA and 65%A/35%B for 10 min for the prodrug. Detection was by fluorescence with excitation at 236 nm and emission at 420 nm, and the injection volume was 10 ⁇ l. Data was acquired and stored by a laboratory data acquisition system (PeakPro, Beckman, Allendale, N.J.).
  • FIG. 2 shows the time course of GS 7340-2 metabolism summary of plasma and PBMC exposures following oral administration of pure diastereoisomers of the PMPA prodrugs.
  • the bar graph in FIG. 2 shows the AUC (O-24h) for tenofovir in dog PBMCs and plasma after administration of PMPA s.c., TDF and amidate ester prodrugs. All of the amidate prodrugs exhibited increases in PBMC exposure. For example, GS 7340 results in a ⁇ 21-fold increase in PBMC exposure as compared to PMPA s.c. and TDF; and a 6.25-fold and 1.29-fold decrease in plasma exposure, respectively.
  • GS-7340 isopropyl alaninyl monoamidate, phenyl monoester of tenofovir
  • GS-7340 isopropyl alaninyl monoamidate, phenyl monoester of tenofovir
  • aqueous solution 50 mM citric acid, pH 2.2
  • Plasma and peripheral blood mononuclear cells were obtained over the 24-hr period.
  • Urine and feces were cage collected over 24 hr. At 24 h after the dose, the animals were sacrificed and tissues removed for analysis. Total radioactivity in tissues was determined by oxidation and liquid scintillation counting.
US09/909,560 2000-07-21 2001-07-20 Prodrugs of phosphonate nucleotide analogues and methods for selecting and making same Abandoned US20020119443A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US09/909,560 US20020119443A1 (en) 2000-07-21 2001-07-20 Prodrugs of phosphonate nucleotide analogues and methods for selecting and making same
US10/354,207 US20030219727A1 (en) 2000-07-21 2003-01-28 Prodrugs of phosphonate nucleotide analogues
US10/785,497 US20060024659A1 (en) 2000-07-21 2004-02-24 Prodrugs of phosphonate nucleotide analogues and methods for selecting and making same
US10/798,692 US7390791B2 (en) 2000-07-21 2004-03-11 Prodrugs of phosphonate nucleotide analogues
US11/031,250 US20050124583A1 (en) 2000-07-21 2005-01-06 Prodrugs of phosphonate nucleotide analogues
US11/031,251 US20050124584A1 (en) 2000-07-21 2005-01-06 Prodrugs of phosphonate nucleotide analogues
US11/031,228 US20050159392A1 (en) 2000-07-21 2005-01-06 Prodrugs of phosphonate nucleotide analogues
US11/031,252 US20050124585A1 (en) 2000-07-21 2005-01-06 Prodrugs of phosphonate nucleotide analogues
US12/110,829 US7803788B2 (en) 2000-07-21 2008-04-28 Prodrugs of phosphonate nucoleotide analogues

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22002100P 2000-07-21 2000-07-21
US09/909,560 US20020119443A1 (en) 2000-07-21 2001-07-20 Prodrugs of phosphonate nucleotide analogues and methods for selecting and making same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/354,207 Continuation US20030219727A1 (en) 2000-07-21 2003-01-28 Prodrugs of phosphonate nucleotide analogues
US10/785,497 Continuation US20060024659A1 (en) 2000-07-21 2004-02-24 Prodrugs of phosphonate nucleotide analogues and methods for selecting and making same

Publications (1)

Publication Number Publication Date
US20020119443A1 true US20020119443A1 (en) 2002-08-29

Family

ID=22821718

Family Applications (10)

Application Number Title Priority Date Filing Date
US10/333,107 Abandoned US20040018150A1 (en) 2000-07-21 2001-07-20 Prodrugs of phosphonate nucleotide analogues and methods for selecting and making same
US09/909,560 Abandoned US20020119443A1 (en) 2000-07-21 2001-07-20 Prodrugs of phosphonate nucleotide analogues and methods for selecting and making same
US10/354,207 Abandoned US20030219727A1 (en) 2000-07-21 2003-01-28 Prodrugs of phosphonate nucleotide analogues
US10/785,497 Abandoned US20060024659A1 (en) 2000-07-21 2004-02-24 Prodrugs of phosphonate nucleotide analogues and methods for selecting and making same
US10/798,692 Active 2025-04-17 US7390791B2 (en) 2000-07-21 2004-03-11 Prodrugs of phosphonate nucleotide analogues
US11/031,228 Abandoned US20050159392A1 (en) 2000-07-21 2005-01-06 Prodrugs of phosphonate nucleotide analogues
US11/031,252 Abandoned US20050124585A1 (en) 2000-07-21 2005-01-06 Prodrugs of phosphonate nucleotide analogues
US11/031,251 Abandoned US20050124584A1 (en) 2000-07-21 2005-01-06 Prodrugs of phosphonate nucleotide analogues
US11/031,250 Abandoned US20050124583A1 (en) 2000-07-21 2005-01-06 Prodrugs of phosphonate nucleotide analogues
US12/110,829 Expired - Fee Related US7803788B2 (en) 2000-07-21 2008-04-28 Prodrugs of phosphonate nucoleotide analogues

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/333,107 Abandoned US20040018150A1 (en) 2000-07-21 2001-07-20 Prodrugs of phosphonate nucleotide analogues and methods for selecting and making same

Family Applications After (8)

Application Number Title Priority Date Filing Date
US10/354,207 Abandoned US20030219727A1 (en) 2000-07-21 2003-01-28 Prodrugs of phosphonate nucleotide analogues
US10/785,497 Abandoned US20060024659A1 (en) 2000-07-21 2004-02-24 Prodrugs of phosphonate nucleotide analogues and methods for selecting and making same
US10/798,692 Active 2025-04-17 US7390791B2 (en) 2000-07-21 2004-03-11 Prodrugs of phosphonate nucleotide analogues
US11/031,228 Abandoned US20050159392A1 (en) 2000-07-21 2005-01-06 Prodrugs of phosphonate nucleotide analogues
US11/031,252 Abandoned US20050124585A1 (en) 2000-07-21 2005-01-06 Prodrugs of phosphonate nucleotide analogues
US11/031,251 Abandoned US20050124584A1 (en) 2000-07-21 2005-01-06 Prodrugs of phosphonate nucleotide analogues
US11/031,250 Abandoned US20050124583A1 (en) 2000-07-21 2005-01-06 Prodrugs of phosphonate nucleotide analogues
US12/110,829 Expired - Fee Related US7803788B2 (en) 2000-07-21 2008-04-28 Prodrugs of phosphonate nucoleotide analogues

Country Status (37)

Country Link
US (10) US20040018150A1 (tr)
EP (3) EP1301519B2 (tr)
JP (4) JP4651264B2 (tr)
KR (2) KR100767432B1 (tr)
CN (2) CN1291994C (tr)
AP (1) AP1466A (tr)
AU (3) AU2001282941C1 (tr)
BE (1) BE2016C018I2 (tr)
BG (1) BG66037B1 (tr)
BR (1) BRPI0112646B8 (tr)
CA (3) CA2893174A1 (tr)
CY (2) CY2016008I1 (tr)
CZ (2) CZ304886B6 (tr)
DK (2) DK1301519T4 (tr)
EA (1) EA004926B1 (tr)
EE (1) EE05366B1 (tr)
ES (2) ES2536972T5 (tr)
FR (1) FR16C0013I2 (tr)
HK (2) HK1054238A1 (tr)
HR (2) HRP20160074B1 (tr)
HU (2) HU230960B1 (tr)
IL (1) IL153658A0 (tr)
IS (1) IS2985B (tr)
LT (2) LT2682397T (tr)
LU (1) LU93029I2 (tr)
MX (1) MXPA03000587A (tr)
NL (1) NL300803I2 (tr)
NO (6) NO336718B1 (tr)
NZ (3) NZ523438A (tr)
OA (1) OA12393A (tr)
PL (1) PL213214B1 (tr)
PT (2) PT2682397T (tr)
SI (2) SI2682397T1 (tr)
TR (1) TR200300055T2 (tr)
UA (1) UA75889C2 (tr)
WO (1) WO2002008241A2 (tr)
ZA (1) ZA200210271B (tr)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003090691A2 (en) * 2002-04-26 2003-11-06 Gilead Sciences, Inc. Method and compositions for identifying anti-hiv therapeutic compounds
US20040224916A1 (en) * 2003-01-14 2004-11-11 Gilead Sciences, Inc. Compositions and methods for combination antiviral therapy
WO2005042773A1 (en) * 2003-10-24 2005-05-12 Gilead Sciences, Inc. Methods and compositions for identifying therapeutic compounds
US20050153990A1 (en) * 2003-12-22 2005-07-14 Watkins William J. Phosphonate substituted kinase inhibitors
US20050215513A1 (en) * 2003-04-25 2005-09-29 Boojamra Constantine G Antiviral phosphonate analogs
US20050215525A1 (en) * 2003-04-25 2005-09-29 Gilead Sciences, Inc. Anti-infective phosphonate analogs
US20050222090A1 (en) * 2003-12-30 2005-10-06 Gilead Sciences, Inc. Anti-proliferative compounds, compositions, and methods of use thereof
US20050222180A1 (en) * 2003-12-22 2005-10-06 Maria Fardis Antiviral phosphonate analogs
US20050227947A1 (en) * 2003-04-25 2005-10-13 Chen James M Phosphonate analogs for treating metabolic diseases
US20050239054A1 (en) * 2002-04-26 2005-10-27 Arimilli Murty N Method and compositions for identifying anti-HIV therapeutic compounds
US20050256078A1 (en) * 2003-04-25 2005-11-17 Carina Cannizzaro Inosine monophosphate dehydrogenase inhibitory phosphonate compounds
US20050261237A1 (en) * 2003-04-25 2005-11-24 Boojamra Constantine G Nucleoside phosphonate analogs
US20060035866A1 (en) * 2003-04-25 2006-02-16 Carina Cannizzaro Phosphonate compounds having immuno-modulatory activity
US20060199788A1 (en) * 2003-04-25 2006-09-07 Carina Cannizzaro Anti-inflammatory phosphonate compounds
WO2006110157A2 (en) 2004-07-27 2006-10-19 Gilead Sciences, Inc. Nucleoside phosphonate conjugates as anti hiv agents
US20060264404A1 (en) * 2003-04-25 2006-11-23 Boojamra Constantine G Therapeutic phosphonate compounds
US20070027116A1 (en) * 2003-10-24 2007-02-01 Aesop Cho Therapeutic phosphonate derivatives
US20070027114A1 (en) * 2003-10-24 2007-02-01 Maria Fardis Phosphonate analogs of antimetabolites
US20070027113A1 (en) * 2003-10-24 2007-02-01 James Chen Purine nucleoside phosphorylase inhibitory phosphonate compounds
US20070281907A1 (en) * 2003-12-22 2007-12-06 Watkins William J Kinase Inhibitor Phosphonate Conjugates
US7417055B2 (en) 2003-04-25 2008-08-26 Gilead Sciences, Inc. Kinase inhibitory phosphonate analogs
US20080227754A1 (en) * 2000-07-21 2008-09-18 Becker Mark W Prodrugs of phosphonate nucleotide analogues
US7452901B2 (en) 2003-04-25 2008-11-18 Gilead Sciences, Inc. Anti-cancer phosphonate analogs
US20090247488A1 (en) * 2003-04-25 2009-10-01 Carina Cannizzaro Anti-inflammatory phosphonate compounds
US20110144050A1 (en) * 2008-07-08 2011-06-16 Gilead Sciences, Inc. Salts of hiv inhibitor compounds
US10548846B2 (en) 2015-11-09 2020-02-04 Gilead Sciences, Inc. Therapeutic compositions for treatment of human immunodeficiency virus
US10851125B2 (en) 2017-08-01 2020-12-01 Gilead Sciences, Inc. Crystalline forms of ethyl ((S)-((((2R,5R)-5-(6-amino-9H-purin-9-yl)-4-fluoro-2,5-dihydrofuran-2-yl)oxy)methyl)(phenoxy)phosphoryl(-L-alaninate
WO2021188959A1 (en) 2020-03-20 2021-09-23 Gilead Sciences, Inc. Prodrugs of 4'-c-substituted-2-halo-2'-deoxyadenosine nucleosides and methods of making and using the same
WO2022103758A1 (en) 2020-11-11 2022-05-19 Gilead Sciences, Inc. METHODS OF IDENTIFYING HIV PATIENTS SENSITIVE TO THERAPY WITH gp120 CD4 BINDING SITE-DIRECTED ANTIBODIES
US11667656B2 (en) 2021-01-27 2023-06-06 Apotex Inc. Crystalline forms of Tenofovir alafenamide
WO2023102239A1 (en) 2021-12-03 2023-06-08 Gilead Sciences, Inc. Therapeutic compounds for hiv virus infection
WO2023102523A1 (en) 2021-12-03 2023-06-08 Gilead Sciences, Inc. Therapeutic compounds for hiv virus infection
WO2023102529A1 (en) 2021-12-03 2023-06-08 Gilead Sciences, Inc. Therapeutic compounds for hiv virus infection
WO2023196875A1 (en) 2022-04-06 2023-10-12 Gilead Sciences, Inc. Bridged tricyclic carbamoylpyridone compounds and uses thereof
WO2024006982A1 (en) 2022-07-01 2024-01-04 Gilead Sciences, Inc. Therapeutic compounds useful for the prophylactic or therapeutic treatment of an hiv virus infection
WO2024044477A1 (en) 2022-08-26 2024-02-29 Gilead Sciences, Inc. Dosing and scheduling regimen for broadly neutralizing antibodies
WO2024076915A1 (en) 2022-10-04 2024-04-11 Gilead Sciences, Inc. 4'-thionucleoside analogues and their pharmaceutical use

Families Citing this family (180)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7388002B2 (en) * 2001-11-14 2008-06-17 Biocryst Pharmaceuticals, Inc. Nucleosides, preparation thereof and use as inhibitors of RNA viral polymerases
EP1450809A4 (en) * 2001-11-14 2006-07-19 Biocryst Pharm Inc NUCLEOSIDES, THEIR PREPARATION AND USE AS AN INHIBITORS OF RNA VIRUS POLYMERASES
EP1532157A4 (en) 2002-05-13 2009-02-25 Metabasis Therapeutics Inc NEW PRODRUGS FROM PMEA TO PHOSPHONIC ACID BASE AND ITS ANALOG
US20050239753A1 (en) * 2004-01-21 2005-10-27 Gilead Sciences, Inc. Methods of inhibition of MMTV-like viruses
US8411105B1 (en) 2004-05-14 2013-04-02 Nvidia Corporation Method and system for computing pixel parameters
US7079156B1 (en) 2004-05-14 2006-07-18 Nvidia Corporation Method and system for implementing multiple high precision and low precision interpolators for a graphics pipeline
US8416242B1 (en) 2004-05-14 2013-04-09 Nvidia Corporation Method and system for interpolating level-of-detail in graphics processors
US8432394B1 (en) 2004-05-14 2013-04-30 Nvidia Corporation Method and system for implementing clamped z value interpolation in a raster stage of a graphics pipeline
EP1753762B1 (en) 2004-06-08 2014-03-19 Metabasis Therapeutics, Inc. Lewis acid mediated synthesis of cyclic esters
EP1865967A4 (en) * 2005-04-08 2011-02-09 Chimerix Inc COMPOUNDS, COMPOSITIONS AND METHODS FOR TREATING VIRAL INFECTIONS AND OTHER DISEASES
EP1868628B1 (en) 2005-04-08 2014-06-11 Chimerix, Inc. Compounds, compositions and methods for the treatment of poxvirus infections
CN100359315C (zh) * 2005-05-26 2008-01-02 林维宣 兽药残留能力验证样品及制备方法
TWI375560B (en) 2005-06-13 2012-11-01 Gilead Sciences Inc Composition comprising dry granulated emtricitabine and tenofovir df and method for making the same
TWI471145B (zh) 2005-06-13 2015-02-01 Bristol Myers Squibb & Gilead Sciences Llc 單一式藥學劑量型
US8076303B2 (en) 2005-12-13 2011-12-13 Spring Bank Pharmaceuticals, Inc. Nucleotide and oligonucleotide prodrugs
CN100396689C (zh) * 2006-03-07 2008-06-25 中国医学科学院医药生物技术研究所 一组具有抑制hiv-1/hbv病毒复制活性的替诺福韦单酯化合物
EA016995B1 (ru) 2006-05-16 2012-09-28 Джилид Сайэнс, Инк. Соль карбоновой кислоты фосфонамидного производного 2,6-диаминопурина, способы и средства для лечения новообразований и лечения злокачественных новообразований крови, набор, стерильный водный раствор и композиция
EP2046792B1 (en) * 2006-07-12 2015-02-25 Mylan Laboratories Limited Process for the preparation of tenofovir
US20080261913A1 (en) * 2006-12-28 2008-10-23 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of liver disorders
US7964580B2 (en) 2007-03-30 2011-06-21 Pharmasset, Inc. Nucleoside phosphoramidate prodrugs
CA2693176C (en) * 2007-06-26 2015-02-03 Song Jin Treatment and prevention systems for acid mine drainage and halogenated contaminants
US8441497B1 (en) * 2007-08-07 2013-05-14 Nvidia Corporation Interpolation of vertex attributes in a graphics processor
CN101977610B (zh) * 2008-01-25 2012-05-16 奇默里克斯公司 治疗病毒感染的方法
TWI444384B (zh) 2008-02-20 2014-07-11 Gilead Sciences Inc 核苷酸類似物及其在治療惡性腫瘤上的用途
NZ588796A (en) * 2008-04-25 2012-07-27 Cipla Ltd Crystalline form of tenofovir disoproxil and a process for its preparation
US8173621B2 (en) 2008-06-11 2012-05-08 Gilead Pharmasset Llc Nucleoside cyclicphosphates
CA2729168A1 (en) * 2008-07-02 2010-02-04 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
WO2010075517A2 (en) 2008-12-23 2010-07-01 Pharmasset, Inc. Nucleoside analogs
MX2011006891A (es) 2008-12-23 2011-10-06 Pharmasset Inc Fosforamidatos de nucleosidos.
EA019295B1 (ru) * 2008-12-23 2014-02-28 Джилид Фармассет, Ллс. Соединения пуриновых нуклеозидов и способ их получения
TWI583692B (zh) 2009-05-20 2017-05-21 基利法瑪席特有限責任公司 核苷磷醯胺
US8618076B2 (en) 2009-05-20 2013-12-31 Gilead Pharmasset Llc Nucleoside phosphoramidates
US8614200B2 (en) 2009-07-21 2013-12-24 Chimerix, Inc. Compounds, compositions and methods for treating ocular conditions
SI2480559T1 (sl) 2009-09-21 2013-10-30 Gilead Sciences, Inc. Postopki in intermediati za pripravo 1'-ciano-karbanukleozidnih analogov
AU2011216243B2 (en) 2010-02-12 2015-07-09 Chimerix, Inc. Nucleoside phosphonate salts
HUE034239T2 (en) 2010-03-31 2018-02-28 Gilead Pharmasset Llc Method for Crystallization of (S) -isopropyl 2 - (((S) (perfluorophenoxy) (phenoxy) phosphoryl) amino) propanoate \ t
PL3290428T3 (pl) 2010-03-31 2022-02-07 Gilead Pharmasset Llc Tabletka zawierająca krystaliczny (S)-2-(((S)-(((2R,3R,4R,5R)-5-(2,4-diokso-3,4-dihydropirymidyn-1(2H)-ylo)-4-fluoro-3-hydroksy-4-metylotetrahydrofuran-2-ylo)metoksy)(fenoksy)fosforylo)amino)propanian izopropylu
CA2795054A1 (en) 2010-04-01 2011-10-06 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
EP2563367A4 (en) 2010-04-26 2013-12-04 Chimerix Inc METHODS OF TREATING RETROVIRAL INFECTIONS AND ASSOCIATED DOSAGE REGIMES
ES2524398T3 (es) 2010-07-19 2014-12-09 Gilead Sciences, Inc. Métodos para la preparación de profármacos de fosforoamidato diastereoméricamente puros
WO2012012776A1 (en) 2010-07-22 2012-01-26 Gilead Sciences, Inc. Methods and compounds for treating paramyxoviridae virus infections
EP2646453A1 (en) 2010-11-30 2013-10-09 Gilead Pharmasset LLC Compounds
WO2012079035A1 (en) 2010-12-10 2012-06-14 Sigmapharm Laboratories, Llc Highly stable compositions of orally active nucleotide analogues or orally active nucleotide analogue prodrugs
ZA201103820B (en) 2010-12-13 2012-01-25 Laurus Labs Private Ltd Process for the preparation of tenofovir
CA2843324A1 (en) 2011-03-31 2012-11-15 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
US9550803B2 (en) 2011-05-06 2017-01-24 University Of Southern California Method to improve antiviral activity of nucleotide analogue drugs
WO2012159047A1 (en) 2011-05-19 2012-11-22 Gilead Sciences, Inc. Processes and intermediates for preparing anti-hiv agents
AU2014271320B2 (en) * 2011-08-16 2017-02-23 Gilead Sciences, Inc. Tenofovir alafenamide hemifumarate
PE20141328A1 (es) * 2011-08-16 2014-10-04 Gilead Sciences Inc Tenofovir alafenamida hemifumarato
DE202012013074U1 (de) 2011-09-16 2014-10-29 Gilead Pharmasset Lcc Zusammensetzungen zur Behandlung von HCV
PT3333173T (pt) 2011-10-07 2019-09-10 Gilead Sciences Inc Métodos de preparação de análogos de nucleótidos antivirais
AU2016228317B2 (en) * 2011-10-07 2018-07-19 Gilead Sciences, Inc. Methods for preparing anti-viral nucleotide analogs
AU2014215976B2 (en) * 2011-10-07 2016-06-30 Gilead Sciences, Inc. Methods for preparing anti-viral nucleotide analogs
US8889159B2 (en) 2011-11-29 2014-11-18 Gilead Pharmasset Llc Compositions and methods for treating hepatitis C virus
JP6113185B2 (ja) 2011-12-22 2017-04-12 ジェロン・コーポレーションGeron Corporation テロメラーゼ基質およびテロメア長作用因子としてのグアニンアナログ
AU2013204727A1 (en) * 2012-02-03 2013-08-22 Gilead Sciences, Inc. Therapeutic compounds
AU2012327170A1 (en) 2012-02-03 2013-08-22 Gilead Sciences, Inc. Therapeutic compounds
CN103665043B (zh) 2012-08-30 2017-11-10 江苏豪森药业集团有限公司 一种替诺福韦前药及其在医药上的应用
GB201215696D0 (en) * 2012-09-03 2012-10-17 Ithemba Pharmaceuticals Pty Ltd A process for the preparation of (R)-9-[2-(Phosphonometh-Oxy)propyl]adenine (PMPA)
JP2015536940A (ja) * 2012-10-29 2015-12-24 シプラ・リミテッド 抗ウイルス性ホスホネート類似体及びその製造方法
CN102899327B (zh) * 2012-11-06 2014-06-11 清华大学深圳研究生院 一种抗病毒的小核酸及其温度敏感型凝胶制剂与应用
AU2013347538B2 (en) * 2012-11-16 2017-04-27 Merck Sharp & Dohme Corp. Purine inhibitors of human phosphatidylinositol 3-kinase delta
CN103848869B (zh) * 2012-12-04 2016-12-21 上海医药工业研究院 制备替诺福韦的方法
CN103848868B (zh) * 2012-12-04 2017-04-12 蚌埠丰原涂山制药有限公司 制备替诺福韦的方法
SG10201706949VA (en) 2013-01-31 2017-09-28 Gilead Pharmasset Llc Combination formulation of two antiviral compounds
CN104072539B (zh) * 2013-03-25 2017-03-29 安徽贝克联合制药有限公司 替诺福韦双(4‑乙酰氨基苯酚氧基)酯及其制备方法和其应用
EP3000898B1 (en) * 2013-05-21 2020-11-18 Hitgen Inc. Drug target capturing method
CA2914381A1 (en) 2013-06-07 2014-12-11 Cipla Limited An efficient process for separation of diastereomers of 9-[(r)-2-[[(r,s)-[[(s)-1-(isopropoxycarbonyl)ethyl]amino]-phenoxyphosphinyl] methoxy]propyl]adenine
EP4005560A1 (en) 2013-08-27 2022-06-01 Gilead Pharmasset LLC Combination formulation of two antiviral compounds
WO2015040640A2 (en) * 2013-09-20 2015-03-26 Laurus Labs Private Limited An improved process for the preparation of tenofovir alafenamide or pharmaceutically acceptable salts thereof
EP2860185A1 (en) 2013-10-09 2015-04-15 Zentiva, k.s. An improved process for the preparation of Tenofovir disoproxil and pharmaceutically acceptable salts thereof
IN2013CH05455A (tr) * 2013-11-27 2015-08-07 Laurus Labs Private Ltd
ES2842123T3 (es) * 2014-01-14 2021-07-12 Mylan Laboratories Ltd Purificación de tenofovir alafenamida y sus intermedios
TWI660965B (zh) 2014-01-15 2019-06-01 美商基利科學股份有限公司 泰諾福韋之固體形式
CN104804042B (zh) * 2014-01-24 2018-01-19 齐鲁制药有限公司 核苷酸膦酸酯类化合物、其药物组合物、制备方法及用途
US9463194B2 (en) 2014-02-05 2016-10-11 Gilead Sciences, Inc. Methods of treating patients co-infected with HIV and tuberculosis
CN114404427A (zh) 2014-02-13 2022-04-29 配体药物公司 前药化合物及其用途
CN105814068B (zh) * 2014-02-27 2017-08-04 四川海思科制药有限公司 一种取代的氨基磷酸酯类衍生物、其制备方法及其应用
CN105001262B (zh) * 2014-04-18 2017-09-01 四川海思科制药有限公司 芳基取代的磷酰胺类衍生物及其在医学上的应用
WO2015161781A1 (zh) * 2014-04-21 2015-10-29 四川海思科制药有限公司 一种核苷类似物及其中间体的制备方法
CN105085571A (zh) * 2014-05-20 2015-11-25 四川海思科制药有限公司 替诺福韦艾拉酚胺复合物及其制备方法和用途
CN105518012B (zh) * 2014-06-25 2018-03-02 四川海思科制药有限公司 一种取代的氨基酸硫酯类化合物、其组合物及应用
JP2017520545A (ja) 2014-07-02 2017-07-27 リガンド・ファーマシューティカルズ・インコーポレイテッド プロドラッグ化合物およびそれらの使用
KR101703257B1 (ko) 2014-09-30 2017-02-06 한미정밀화학주식회사 고순도의 (r)-9-[2-(포스포노메톡시)프로필]아데닌의 제조방법
KR101703258B1 (ko) 2014-12-30 2017-02-06 한미정밀화학주식회사 고순도의 (r)-9-[2-(포스포노메톡시)프로필]아데닌의 제조방법
WO2016052930A1 (ko) * 2014-09-30 2016-04-07 한미정밀화학주식회사 고순도의 (r)-9-[2-(포스포노메톡시)프로필]아데닌의 제조방법
EP3203995A4 (en) 2014-10-09 2019-05-15 Board of Regents of the University of Nebraska COMPOSITIONS AND METHODS FOR DELIVERY OF THERAPEUTIC AGENTS
TWI767201B (zh) 2014-10-29 2022-06-11 美商基利科學股份有限公司 絲狀病毒科病毒感染之治療
CN105646584B (zh) * 2014-11-12 2018-09-28 四川海思科制药有限公司 替诺福韦艾拉酚胺富马酸盐晶型及其制备方法和用途
CN104558036A (zh) * 2014-12-11 2015-04-29 杭州和泽医药科技有限公司 一种替诺福韦艾拉酚胺半反丁烯二酸盐晶型及其制备方法
AU2015373104B2 (en) 2015-01-03 2020-07-09 Mylan Laboratories Limited Processes for the preparation of amorphous tenofovir alafenamide hemifumarate and a premix thereof
WO2016187160A1 (en) * 2015-05-16 2016-11-24 Godx, Inc. Point of need testing device and methods of use thereof
CN106188139B (zh) 2015-05-29 2020-02-18 江苏天士力帝益药业有限公司 替诺福韦单苄酯磷酸酰胺前药、其制备方法及应用
CZ2015384A3 (cs) 2015-06-05 2016-12-14 Zentiva, K.S. Pevné formy Tenofovir alafenamidu
AU2016277859B2 (en) * 2015-06-17 2019-08-01 Gilead Sciences, Inc. Co-crystals, salts and solid forms of tenofovir alafenamide
EP4070787B1 (en) 2015-06-30 2023-03-01 Gilead Sciences, Inc. Pharmaceutical formulations
CN107849071B (zh) 2015-08-10 2021-03-09 默沙东公司 抗病毒的β氨基酸酯膦酰二胺化合物
TWI620754B (zh) * 2015-08-26 2018-04-11 Method for preparing amino phosphate derivative and preparation method thereof
TWI616452B (zh) * 2015-08-26 2018-03-01 Preparation method of nucleoside analog and intermediate thereof
TWI616453B (zh) * 2015-08-27 2018-03-01 Substituted amino acid thioester compounds, compositions and uses thereof
WO2017037608A1 (en) * 2015-08-28 2017-03-09 Laurus Labs Private Limited Solid forms of tenofovir alafenamide and salts thereof, processes for its preparation and pharmaceutical compositions thereof
CN114366745A (zh) 2015-09-16 2022-04-19 吉利德科学公司 治疗沙粒病毒科和冠状病毒科病毒感染的方法
CN106800573B (zh) * 2015-11-25 2020-03-10 四川海思科制药有限公司 一种核苷酸膦酸酯一水合物及其制备方法和在医药上的应用
US10745428B2 (en) 2015-12-10 2020-08-18 Idenix Pharmaceuticals Llc Antiviral phosphodiamide prodrugs of tenofovir
CN106866737B (zh) * 2015-12-11 2020-11-20 南京圣和药物研发有限公司 膦酸衍生物及其应用
US10450335B2 (en) 2015-12-15 2019-10-22 Merck Sharp & Dohme Corp. Antiviral oxime phosphoramide compounds
WO2017118928A1 (en) 2016-01-06 2017-07-13 Lupin Limited Process for the separation of diastereomers of tenofovir alafenamide
WO2017134089A1 (en) 2016-02-02 2017-08-10 Sandoz Ag Crystalline forms of tenofovir alafenamide monofumarate
CN107709288A (zh) * 2016-02-03 2018-02-16 四川海思科制药有限公司 一种磷酰胺衍生物及制备方法和用途
CN108350007B (zh) * 2016-03-01 2020-04-10 深圳市塔吉瑞生物医药有限公司 一种取代的腺嘌呤化合物及其药物组合物
CN107179355B (zh) * 2016-03-11 2021-08-10 广东东阳光药业有限公司 一种分离检测替诺福韦艾拉酚胺及其有关物质的方法
CZ2016156A3 (cs) 2016-03-17 2017-09-27 Zentiva, K.S. Způsob přípravy diastereomerně čistého Tenofoviru Alafenamidu nebo jeho solí
CN107226826A (zh) * 2016-03-25 2017-10-03 江苏奥赛康药业股份有限公司 替诺福韦艾拉酚胺富马酸盐化合物及其药物组合物
WO2017211325A1 (zh) 2016-06-05 2017-12-14 上海诚妙医药科技有限公司 富马酸替诺福韦艾拉酚胺盐的新晶型、制备方法及其用途
CN106543227B (zh) * 2016-06-20 2018-02-02 杭州和泽医药科技有限公司 一种腺嘌呤衍生物的膦酸酯前药及其在医药上的应用
WO2017221189A1 (en) * 2016-06-22 2017-12-28 Laurus Labs Limited An improved process for the preparation of tenofovir alafenamide or pharmaceutically acceptable salts thereof
CN106317116A (zh) * 2016-08-19 2017-01-11 张红利 磷酰胺核苷类化合物及其药学上可接受的盐与应用、药物组合物
US10449208B2 (en) 2016-08-25 2019-10-22 Merck Sharp & Dohme Corp. Antiviral prodrugs of tenofovir
CN106380484A (zh) * 2016-08-29 2017-02-08 杭州百诚医药科技股份有限公司 一种替诺福韦艾拉酚胺的新晶型及其制备方法
WO2018042331A1 (en) 2016-08-31 2018-03-08 Glaxosmithkline Intellectual Property (No.2) Limited Combinations and uses and treatments thereof
WO2018051250A1 (en) 2016-09-14 2018-03-22 Viiv Healthcare Company Combination comprising tenofovir alafenamide, bictegravir and 3tc
EP3532069A4 (en) 2016-10-26 2020-05-13 Merck Sharp & Dohme Corp. ARYL-AMIDE PHOSPHODIAMIDE COMPOUNDS ANTIVIRALS
CN106565785B (zh) * 2016-11-09 2019-11-12 周雨恬 一种具有抗hbv/hiv活性的核苷氨基磷酸酯类化合物及其盐和用途
CN108129514A (zh) * 2016-12-01 2018-06-08 北京美倍他药物研究有限公司 磷酸/膦酸衍生物的单一异构体及其医药用途
MX2019007262A (es) * 2016-12-22 2019-09-05 Merck Sharp & Dohme Compuestos antivirales de bencilamina fosfodiamida.
MA47094A (fr) 2016-12-22 2021-05-26 Idenix Pharmaceuticals Llc Promédicaments d'ester aliphatique antiviral de ténofovir
WO2018115046A1 (en) 2016-12-23 2018-06-28 Sandoz Ag Crystalline solid forms of tenofovir alafenamide
AR110768A1 (es) 2017-01-31 2019-05-02 Gilead Sciences Inc Formas cristalinas de tenofovir alafenamida
WO2018153977A1 (en) 2017-02-24 2018-08-30 Hexal Ag Stable composition of tenofovir alafenamide
RU2659388C1 (ru) 2017-02-28 2018-07-02 Васильевич Иващенко Александр Нуклеотиды, включающие N-[(S)-1-циклобутоксикарбонил]фосфорамидатный фрагмент, их аналоги и их применение
US20190374557A1 (en) * 2017-02-28 2019-12-12 Alexandre Vasilievich Ivachtchenko Cyclobutyl (S)-2-[[[(R)-2-(6-aminopurin-9-yl)-1-methyl-ethoxy]methyl-phenoxy-phosphoryl]amino]-propanoates, and production process and application thereof
CN106866739B (zh) * 2017-03-10 2018-11-02 华东师范大学 一种(r)-1-(6-氨基-9h-嘌呤-9-基)2-苯酯的制备方法
KR102460968B1 (ko) 2017-03-14 2022-11-01 길리애드 사이언시즈, 인코포레이티드 고양이 코로나바이러스 감염의 치료 방법
CA3054822A1 (en) 2017-03-20 2018-09-27 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hiv post-exposure prophylaxis
CN108794530A (zh) * 2017-04-26 2018-11-13 上海医药工业研究院 一种替诺福韦丙酚酰胺盐晶型及其制备方法和用途
ES2938859T3 (es) 2017-05-01 2023-04-17 Gilead Sciences Inc Una forma cristalina de (S)-2-etilbutilo 2-(((S)-(((2R,3S,4R,5R)-5-(4-aminopirrolo[2,1-f][1,2,4]triazin-7-il)-5-ciano-3,4-dihidroxitetrahidrofuran-2-il)metoxi)(fenoxi)fosforil)amino)propanoato
KR102379965B1 (ko) * 2017-05-19 2022-03-29 주식회사 종근당 테노포비르의 효율적인 제조방법
CN107266499B (zh) * 2017-06-05 2019-07-02 珠海优润医药科技有限公司 一种抗病毒化合物及其制备方法
WO2019003251A1 (en) 2017-06-30 2019-01-03 Cipla Limited PHARMACEUTICAL COMPOSITIONS
TW201919648A (zh) 2017-07-11 2019-06-01 美商基利科學股份有限公司 用於治療病毒感染之含rna聚合酶抑制劑與環糊精的組合物
WO2019021319A1 (en) 2017-07-27 2019-01-31 Cipla Limited PHARMACEUTICAL COMPOSITIONS
AR112412A1 (es) 2017-08-17 2019-10-23 Gilead Sciences Inc Formas de sal de colina de un inhibidor de la cápside del vih
CN107655987B (zh) * 2017-09-08 2020-11-03 厦门蔚扬药业有限公司 一种替诺福韦艾拉酚胺及其异构体的hplc检测方法
CN107522743A (zh) * 2017-09-30 2017-12-29 深圳科兴生物工程有限公司 一种半富马酸替诺福韦艾拉酚胺工业化连续生产方法
WO2019084020A1 (en) 2017-10-24 2019-05-02 Gilead Sciences, Inc. METHODS OF TREATING PATIENTS CO-INFECTED BY A VIRUS AND TUBERCULOSIS
CN109942633B (zh) * 2017-12-20 2021-08-31 上海新礼泰药业有限公司 替诺福韦艾拉酚胺中间体的制备方法
CN109942632B (zh) * 2017-12-20 2021-08-31 上海博志研新药物研究有限公司 替诺福韦艾拉酚胺中间体的制备方法
WO2019130354A1 (en) 2017-12-30 2019-07-04 Cipla Limited Polymorphic forms of (9-[(r)-2-[[(s)-[[(s)-1- (isopropoxycarbonyl)ethyl]amino]phenoxy phosphinyl]methoxy]propyl] adenine and pharmaceutically acceptable salts thereof
JP7181938B2 (ja) * 2018-01-10 2022-12-01 ヌクオリオン ファーマシューティカルズ インコーポレイテッド ホスホロ(ン)アミダートアセタールおよびホスファ(ホナ)ートアルセタール化合物
US11839623B2 (en) * 2018-01-12 2023-12-12 Board Of Regents Of The University Of Nebraska Antiviral prodrugs and formulations thereof
JP7083398B2 (ja) 2018-02-15 2022-06-10 ギリアード サイエンシーズ, インコーポレイテッド ピリジン誘導体およびhiv感染を処置するためのその使用
TWI823164B (zh) 2018-02-16 2023-11-21 美商基利科學股份有限公司 用於製備有療效化合物之方法及中間物
CN108101943B (zh) * 2018-02-28 2020-11-24 顾世海 一种替诺福韦前药或可药用盐及其在医药上的应用
US11458136B2 (en) 2018-04-09 2022-10-04 Board Of Regents Of The University Of Nebraska Antiviral prodrugs and formulations thereof
TWI814350B (zh) 2018-07-16 2023-09-01 美商基利科學股份有限公司 用於治療hiv之蛋白殼抑制劑
WO2020018399A1 (en) 2018-07-19 2020-01-23 Merck Sharp & Dohme Corp. Phosphinic amide prodrugs of tenofovir
KR20210060573A (ko) 2018-09-19 2021-05-26 길리애드 사이언시즈, 인코포레이티드 Hiv 예방용 인테그라제 억제제
WO2021011891A1 (en) 2019-07-18 2021-01-21 Gilead Sciences, Inc. Long-acting formulations of tenofovir alafenamide
AU2020318808A1 (en) 2019-07-19 2022-02-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services HIV pre-exposure prophylaxis
EP4017476A1 (en) 2019-08-19 2022-06-29 Gilead Sciences, Inc. Pharmaceutical formulations of tenofovir alafenamide
US20220298185A1 (en) * 2019-08-22 2022-09-22 Emory University Nucleoside Prodrugs and Uses Related Thereto
US20220372171A1 (en) * 2019-09-20 2022-11-24 Abbott Rapid Diagnostics International Unlimited Company Antibody directed against tenofovir and derivatives thereof
AU2020391466A1 (en) 2019-11-26 2022-07-07 Gilead Sciences, Inc. Capsid inhibitors for the prevention of HIV
TW202313067A (zh) 2020-01-27 2023-04-01 美商基利科學股份有限公司 治療sars cov-2感染之方法
EP4085062A1 (en) 2020-02-20 2022-11-09 Cipla Limited Novel salts and/or co-crystals of tenofovir alafenamide
JP2023516087A (ja) 2020-03-12 2023-04-17 ギリアード サイエンシーズ, インコーポレイテッド 1’-シアノヌクレオシドを調製する方法
WO2021202669A2 (en) 2020-04-01 2021-10-07 Reyoung Corporation Nucleoside and nucleotide conjugate compounds and uses thereof
CN115362004A (zh) 2020-04-06 2022-11-18 吉利德科学公司 1’-氰基取代的碳核苷类似物的吸入制剂
KR20210125298A (ko) 2020-04-08 2021-10-18 주식회사 파마코스텍 테노포비어 알라펜아미드 헤미타르트레이트의 신규한 제조방법
EP4143199A1 (en) 2020-04-21 2023-03-08 Ligand Pharmaceuticals, Inc. Nucleotide prodrug compounds
JP2023528810A (ja) 2020-05-29 2023-07-06 ギリアード サイエンシーズ, インコーポレイテッド レムデシビル治療方法
KR20230028486A (ko) 2020-06-24 2023-02-28 길리애드 사이언시즈, 인코포레이티드 1'-시아노 뉴클레오시드 유사체 및 이의 용도
CN115996925A (zh) 2020-06-25 2023-04-21 吉利德科学公司 用于治疗hiv的衣壳抑制剂
CN113970612B (zh) * 2020-07-22 2023-08-01 北京四环制药有限公司 一种高效液相色谱法测定丙酚替诺福韦有关物质的方法
TW202228722A (zh) 2020-08-27 2022-08-01 美商基利科學股份有限公司 用於治療病毒感染之化合物及方法
CN112336695B (zh) * 2020-09-28 2023-01-03 华北制药华坤河北生物技术有限公司 一种富马酸丙酚替诺福韦片剂及其制备方法和有关物质的检测方法
CN113214322B (zh) * 2021-04-30 2022-10-25 山东立新制药有限公司 替诺福韦绿色环保的制备方法
WO2022251594A1 (en) * 2021-05-27 2022-12-01 Antios Therapeutics, Inc. Pharmacokinetics and dose-related improvments in subjects treated with phosphoramidate clevudine prodrugs
CN114369120A (zh) * 2022-01-28 2022-04-19 石家庄龙泽制药股份有限公司 一种丙酚替诺福韦关键中间体的制备方法
WO2023167944A1 (en) 2022-03-02 2023-09-07 Gilead Sciences, Inc. Compounds and methods for treatment of viral infections

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS233665B1 (en) 1983-01-06 1985-03-14 Antonin Holy Processing of isomere o-phosphonylmethylderivative of anantiomere racemic vicinal diene
CS263951B1 (en) 1985-04-25 1989-05-12 Antonin Holy 9-(phosponylmethoxyalkyl)adenines and method of their preparation
CS263952B1 (en) 1985-04-25 1989-05-12 Holy Antonin Remedy with antiviral effect
CS264222B1 (en) 1986-07-18 1989-06-13 Holy Antonin N-phosphonylmethoxyalkylderivatives of bases of pytimidine and purine and method of use them
US5650510A (en) 1986-11-18 1997-07-22 Institute Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic Antiviral phosphonomethoxyalkylene purine and pyrimidine derivatives
US5057301A (en) 1988-04-06 1991-10-15 Neorx Corporation Modified cellular substrates used as linkers for increased cell retention of diagnostic and therapeutic agents
US5053215A (en) * 1988-05-26 1991-10-01 University Of Florida NMR-assayable ligand-labelled trifluorothymidine containing composition and method for diagnosis of HSV infection
US5744600A (en) 1988-11-14 1998-04-28 Institute Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic Phosphonomethoxy carbocyclic nucleosides and nucleotides
US5688778A (en) 1989-05-15 1997-11-18 Institute Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic Nucleoside analogs
JP2648516B2 (ja) 1989-07-27 1997-09-03 ダイセル化学工業株式会社 立体異性体の分離法
US5624898A (en) * 1989-12-05 1997-04-29 Ramsey Foundation Method for administering neurologic agents to the brain
JP2925753B2 (ja) 1990-02-23 1999-07-28 ダイセル化学工業株式会社 光学異性体の分離方法
US5302585A (en) 1990-04-20 1994-04-12 Institute Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic Use of chiral 2-(phosphonomethoxy)propyl guanines as antiviral agents
PT97407B (pt) * 1990-04-20 1998-08-31 Rega Stichting Processo para a preparacao de (r)-9-{2-(fosfono-metoxi)-propil}-guanina
SK280313B6 (sk) 1990-04-24 1999-11-08 �Stav Organick� Chemie A Biochemie Av �R N-(3-fluór-2-fosfonylmetoxypropyl)deriváty purínov
US5627165A (en) * 1990-06-13 1997-05-06 Drug Innovation & Design, Inc. Phosphorous prodrugs and therapeutic delivery systems using same
US5177064A (en) * 1990-07-13 1993-01-05 University Of Florida Targeted drug delivery via phosphonate derivatives
CS276072B6 (en) 1990-08-06 1992-03-18 Ustav Organicke Chemie A Bioch (2R)-2-/DI(2-PROPYL)PHOSPHONYLMETHOXY/-3-p-TOLUENESULFONYLOXY -1- TRIMETHYLACETOXYPROPANE AND PROCESS FOR PREPARING THEREOF
EP0574386B1 (en) 1990-08-10 2000-06-28 Institute Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic Novel process for the preparation of nucleotides
DE69129650T2 (de) * 1990-09-14 1999-03-25 Acad Of Science Czech Republic Wirkstoffvorläufer von Phosphonaten
US5827819A (en) * 1990-11-01 1998-10-27 Oregon Health Sciences University Covalent polar lipid conjugates with neurologically active compounds for targeting
US5208221A (en) * 1990-11-29 1993-05-04 Bristol-Myers Squibb Company Antiviral (phosphonomethoxy) methoxy purine/pyrimidine derivatives
CZ284678B6 (cs) 1991-05-20 1999-01-13 Ústav Organické Chemie A Biochemie Avčr Di(2-propyl)estery 1-fluor-2-fosfonomethoxy-3-p -toluensulfonyloxypropanů, způsob jejich přípravy a použití
JP3010816B2 (ja) 1991-08-22 2000-02-21 ダイセル化学工業株式会社 光学分割における光学異性体と溶媒との回収方法、溶媒の循環使用方法、および光学異性体の再利用方法
US5498752A (en) 1991-08-22 1996-03-12 Daicel Chemical Industries, Ltd. Process for recovering optical isomers and solvent, process for using solvent by circulation and process for reusing optical isomers in optical resolution
AU661347B2 (en) 1991-10-11 1995-07-20 Institute Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic Antiviral acyclic phosphonomethoxyalkyl substituted, alkenyl and alkynyl purine and pyrimidine derivatives
US6057305A (en) 1992-08-05 2000-05-02 Institute Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic Antiretroviral enantiomeric nucleotide analogs
IL106998A0 (en) * 1992-09-17 1993-12-28 Univ Florida Brain-enhanced delivery of neuroactive peptides by sequential metabolism
US6413949B1 (en) * 1995-06-07 2002-07-02 D-Pharm, Ltd. Prodrugs with enhanced penetration into cells
WO1995007919A1 (en) * 1993-09-17 1995-03-23 Gilead Sciences, Inc. Method for dosing therapeutic compounds
WO1995007920A1 (en) 1993-09-17 1995-03-23 Gilead Sciences, Inc. Nucleotide analogs
US5798340A (en) * 1993-09-17 1998-08-25 Gilead Sciences, Inc. Nucleotide analogs
US5656745A (en) * 1993-09-17 1997-08-12 Gilead Sciences, Inc. Nucleotide analogs
GB9505025D0 (en) 1995-03-13 1995-05-03 Medical Res Council Chemical compounds
US5977061A (en) 1995-04-21 1999-11-02 Institute Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic N6 - substituted nucleotide analagues and their use
DE69629112T2 (de) * 1995-05-26 2004-04-22 Genta Inc., San Diego Verfahren zur synthese von phosphororganischen verbindungen
US5717095A (en) * 1995-12-29 1998-02-10 Gilead Sciences, Inc. Nucleotide analogs
NZ325704A (en) 1995-12-29 2000-02-28 Gilead Sciences Inc Nucleotide analogs
US5874577A (en) * 1996-04-03 1999-02-23 Medichem Research, Inc. Method for the preparing 9-12-(Diethoxyphosphonomethoxy)ethyl!adenine and analogues thereof
US5922695A (en) * 1996-07-26 1999-07-13 Gilead Sciences, Inc. Antiviral phosphonomethyoxy nucleotide analogs having increased oral bioavarilability
CA2261619C (en) * 1996-07-26 2006-05-23 Gilead Sciences, Inc. Nucleotide analogs
US5739314A (en) 1997-04-25 1998-04-14 Hybridon, Inc. Method for synthesizing 2'-O-substituted pyrimidine nucleosides
ES2187989T3 (es) 1997-07-25 2003-06-16 Gilead Sciences Inc Composicion de analogos de nucleotido y procedimiento de sintesis.
ATE277936T1 (de) 1997-07-25 2004-10-15 Gilead Sciences Inc Verfahren zur herstellung von adefovir dipivoxil
US5935946A (en) 1997-07-25 1999-08-10 Gilead Sciences, Inc. Nucleotide analog composition and synthesis method
EP1037649B1 (en) * 1997-12-17 2009-09-30 Enzon, Inc. Polymeric prodrugs of amino- and hydroxyl-containing bioactive agents
IL137164A0 (en) 1998-01-23 2001-07-24 Newbiotics Inc Enzyme catalyzed therapeutic agents
US6169078B1 (en) * 1998-05-12 2001-01-02 University Of Florida Materials and methods for the intracellular delivery of substances
EP1090032A2 (en) * 1998-06-20 2001-04-11 Washington University Membrane-permeant peptide complexes for medical imaging, diagnostics, and pharmaceutical therapy
US6169879B1 (en) * 1998-09-16 2001-01-02 Webtv Networks, Inc. System and method of interconnecting and using components of home entertainment system
GB9821058D0 (en) 1998-09-28 1998-11-18 Univ Cardiff Chemical compound
TWI230618B (en) 1998-12-15 2005-04-11 Gilead Sciences Inc Pharmaceutical compositions of 9-[2-[[bis[(pivaloyloxy)methyl]phosphono]methoxy]ethyl]adenine and tablets or capsules containing the same
DK1150988T3 (da) 1999-02-12 2003-09-29 Glaxo Group Ltd Phosphoramidat og mono-, di- og triphosphorsyreestere af (1R,cis)-4-(6-amino-9H-purin-9-yl)-2-cyclopenten-1-methanol som antivirale midler
JP4651264B2 (ja) * 2000-07-21 2011-03-16 ギリアード サイエンシーズ, インコーポレイテッド ホスホネートヌクレオチドアナログのプロドラッグならびにこれを選択および作製するための方法。
US7034109B2 (en) * 2000-10-13 2006-04-25 Christophe Bonny Intracellular delivery of biological effectors
US20020119433A1 (en) * 2000-12-15 2002-08-29 Callender Thomas J. Process and system for creating and administering interview or test

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080227754A1 (en) * 2000-07-21 2008-09-18 Becker Mark W Prodrugs of phosphonate nucleotide analogues
US7803788B2 (en) 2000-07-21 2010-09-28 Gilead Sciences, Inc. Prodrugs of phosphonate nucoleotide analogues
US20050239054A1 (en) * 2002-04-26 2005-10-27 Arimilli Murty N Method and compositions for identifying anti-HIV therapeutic compounds
US20070190523A1 (en) * 2002-04-26 2007-08-16 Gabriel Birkus Method and compositions for identifying anti-hiv therapeutic compounds
WO2003090691A2 (en) * 2002-04-26 2003-11-06 Gilead Sciences, Inc. Method and compositions for identifying anti-hiv therapeutic compounds
WO2003090691A3 (en) * 2002-04-26 2006-02-09 Gilead Sciences Inc Method and compositions for identifying anti-hiv therapeutic compounds
EP1620445A2 (en) * 2002-04-26 2006-02-01 Gilead Sciences, Inc. Method and compositions for identifying anti-hiv therapeutic compounds
US20040224916A1 (en) * 2003-01-14 2004-11-11 Gilead Sciences, Inc. Compositions and methods for combination antiviral therapy
EP1923063A2 (en) 2003-01-14 2008-05-21 Gilead Sciences, Inc. Compositions and methods for combination antiviral therapy
US7645747B2 (en) 2003-04-25 2010-01-12 Gilead Sciences, Inc. Therapeutic phosphonate compounds
US20110071101A1 (en) * 2003-04-25 2011-03-24 Boojamra Constantine G Nucleoside Phosphonate Analogs
US20050215525A1 (en) * 2003-04-25 2005-09-29 Gilead Sciences, Inc. Anti-infective phosphonate analogs
US20090275535A1 (en) * 2003-04-25 2009-11-05 Boojamra Constantine G Antiviral phosphonate analogs
US20090247488A1 (en) * 2003-04-25 2009-10-01 Carina Cannizzaro Anti-inflammatory phosphonate compounds
US20050227947A1 (en) * 2003-04-25 2005-10-13 Chen James M Phosphonate analogs for treating metabolic diseases
US7407965B2 (en) 2003-04-25 2008-08-05 Gilead Sciences, Inc. Phosphonate analogs for treating metabolic diseases
US20050256078A1 (en) * 2003-04-25 2005-11-17 Carina Cannizzaro Inosine monophosphate dehydrogenase inhibitory phosphonate compounds
US20050261237A1 (en) * 2003-04-25 2005-11-24 Boojamra Constantine G Nucleoside phosphonate analogs
US20100022467A1 (en) * 2003-04-25 2010-01-28 Boojamra Constantine G Anti-cancer phosphonate analogs
US20050136397A1 (en) * 2003-04-25 2005-06-23 Mcdermott Martin Methods and compositions for identifying therapeutic compounds
US20060035866A1 (en) * 2003-04-25 2006-02-16 Carina Cannizzaro Phosphonate compounds having immuno-modulatory activity
US20060199788A1 (en) * 2003-04-25 2006-09-07 Carina Cannizzaro Anti-inflammatory phosphonate compounds
US20090227543A1 (en) * 2003-04-25 2009-09-10 Carina Cannizzaro Phosphonate compounds having immuno-modulatory activity
US20060264404A1 (en) * 2003-04-25 2006-11-23 Boojamra Constantine G Therapeutic phosphonate compounds
US20050215513A1 (en) * 2003-04-25 2005-09-29 Boojamra Constantine G Antiviral phosphonate analogs
US20090181930A1 (en) * 2003-04-25 2009-07-16 Carina Cannizzaro Kinase inhibitory phosphonate analogs
US7470724B2 (en) 2003-04-25 2008-12-30 Gilead Sciences, Inc. Phosphonate compounds having immuno-modulatory activity
US7452901B2 (en) 2003-04-25 2008-11-18 Gilead Sciences, Inc. Anti-cancer phosphonate analogs
US7432261B2 (en) 2003-04-25 2008-10-07 Gilead Sciences, Inc. Anti-inflammatory phosphonate compounds
US7429565B2 (en) 2003-04-25 2008-09-30 Gilead Sciences, Inc. Antiviral phosphonate analogs
US7427636B2 (en) 2003-04-25 2008-09-23 Gilead Sciences, Inc. Inosine monophosphate dehydrogenase inhibitory phosphonate compounds
US8022083B2 (en) 2003-04-25 2011-09-20 Gilead Sciences, Inc. Antiviral phosphonate analogs
US7273716B2 (en) 2003-04-25 2007-09-25 Gilead Sciences, Inc. Methods and compositions for identifying therapeutic compounds with GS-7340 ester hydrolase
US8871785B2 (en) 2003-04-25 2014-10-28 Gilead Sciences, Inc. Antiviral phosphonate analogs
US7300924B2 (en) 2003-04-25 2007-11-27 Gilead Sciences, Inc. Anti-infective phosphonate analogs
US7417055B2 (en) 2003-04-25 2008-08-26 Gilead Sciences, Inc. Kinase inhibitory phosphonate analogs
US9139604B2 (en) 2003-04-25 2015-09-22 Gilead Sciences, Inc. Antiviral phosphonate analogs
US20080167270A1 (en) * 2003-04-25 2008-07-10 Boojamra Constantine G Anti-infective phosphonate analogs
US20070027116A1 (en) * 2003-10-24 2007-02-01 Aesop Cho Therapeutic phosphonate derivatives
US20050136396A1 (en) * 2003-10-24 2005-06-23 Mcdermott Martin Methods and compositions for identifying therapeutic compounds
US7273717B2 (en) 2003-10-24 2007-09-25 Gilead Sciences, Inc. Methods and compositions for identifying therapeutic compounds with GS-9005 ester hydrolase B
US7427624B2 (en) 2003-10-24 2008-09-23 Gilead Sciences, Inc. Purine nucleoside phosphorylase inhibitory phosphonate compounds
WO2005042773A1 (en) * 2003-10-24 2005-05-12 Gilead Sciences, Inc. Methods and compositions for identifying therapeutic compounds
WO2005042772A1 (en) * 2003-10-24 2005-05-12 Gilead Sciences, Inc. Methods and compositions for identifying therapeutic compounds
WO2005047898A3 (en) * 2003-10-24 2005-09-15 Gilead Sciences Inc Methods and compositions for identifying therapeutic compounds
US7432273B2 (en) 2003-10-24 2008-10-07 Gilead Sciences, Inc. Phosphonate analogs of antimetabolites
US20050136398A1 (en) * 2003-10-24 2005-06-23 Mcdermott Martin Methods and compositions for identifying therapeutic compounds
US20070027114A1 (en) * 2003-10-24 2007-02-01 Maria Fardis Phosphonate analogs of antimetabolites
US20090156558A1 (en) * 2003-10-24 2009-06-18 Maria Fardis Phosphonate analogs of antimetabolites
US20070027113A1 (en) * 2003-10-24 2007-02-01 James Chen Purine nucleoside phosphorylase inhibitory phosphonate compounds
WO2005047898A2 (en) * 2003-10-24 2005-05-26 Gilead Sciences, Inc. Methods and compositions for identifying therapeutic compounds
US20080287471A1 (en) * 2003-12-22 2008-11-20 Maria Fardis 4'-Substituted Carbovir And Abacavir-Derivatives As Well As Related Compounds With Hiv And Hcv Antiviral Activity
US20070281907A1 (en) * 2003-12-22 2007-12-06 Watkins William J Kinase Inhibitor Phosphonate Conjugates
US7432272B2 (en) 2003-12-22 2008-10-07 Gilead Sciences, Inc. Antiviral analogs
US20050222180A1 (en) * 2003-12-22 2005-10-06 Maria Fardis Antiviral phosphonate analogs
US20050153990A1 (en) * 2003-12-22 2005-07-14 Watkins William J. Phosphonate substituted kinase inhibitors
US20090149400A1 (en) * 2003-12-30 2009-06-11 Gilead Sciences, Inc. Anti-proliferative compounds, compositions, and methods of use thereof
US7553825B2 (en) * 2003-12-30 2009-06-30 Gilead Sciences, Inc. Anti-proliferative compounds, compositions, and methods of use thereof
US8088754B2 (en) 2003-12-30 2012-01-03 Gilead Sciences, Inc. Anti-proliferative compounds, compositions, and methods of use thereof
US20050222090A1 (en) * 2003-12-30 2005-10-06 Gilead Sciences, Inc. Anti-proliferative compounds, compositions, and methods of use thereof
US20090291922A1 (en) * 2003-12-30 2009-11-26 Gilead Sciences, Inc. Anti-proliferative compounds, compositions, and methods of use thereof
US8268802B2 (en) 2003-12-30 2012-09-18 Gilead Sciences, Inc. Anti-proliferative compounds, compositions, and methods of use thereof
US20090131372A1 (en) * 2004-04-26 2009-05-21 Chen James M Phosphonate analogs for treating metabolic diseases
EP1778251B1 (en) * 2004-07-27 2011-04-13 Gilead Sciences, Inc. Nucleoside phosphonate conjugates as anti hiv agents
NO339020B1 (no) * 2004-07-27 2016-11-07 Gilead Sciences Inc Fosfonat-prolegemiddel av en 2’-fluor-2’,3’-didehydro-2’,3’-dideoksyadenosinanalog som anti-HIV-middel
WO2006110157A2 (en) 2004-07-27 2006-10-19 Gilead Sciences, Inc. Nucleoside phosphonate conjugates as anti hiv agents
US20090202470A1 (en) * 2004-07-27 2009-08-13 Gilead Sciences, Inc. Phosphonate Analogs of Hiv Inhibitor Compounds
NO342571B1 (no) * 2004-07-27 2018-06-18 Gilead Sciences Inc Fosfonatanaloger til HIV-inhibitorsammensetninger
US20090012037A1 (en) * 2004-07-27 2009-01-08 Gilead Science, Inc. Antiviral Compounds
US20070049754A1 (en) * 2004-07-27 2007-03-01 Gilead Sciences, Inc. Phosphonate analogs of HIV inhibitor compounds
NO20161612A1 (no) * 2004-07-27 2007-04-26 Gilead Sciences Inc Fosfonatanaloger til HIV-inhibitorforbindelser
US8318701B2 (en) 2004-07-27 2012-11-27 Gilead Sciences, Inc. Phosphonate analogs of HIV inhibitor compounds
US8329926B2 (en) 2004-07-27 2012-12-11 Gilead Sciences, Inc. Antiviral compounds
US9579332B2 (en) 2004-07-27 2017-02-28 Gilead Sciences, Inc. Phosphonate analogs of HIV inhibitor compounds
US8697861B2 (en) 2004-07-27 2014-04-15 Gilead Sciences, Inc. Antiviral compounds
EP1778249A2 (en) * 2004-07-27 2007-05-02 Gilead Sciences, Inc. Nucleoside phosphonate conjugates as anti hiv agents
US7871991B2 (en) 2004-07-27 2011-01-18 Gilead Sciences, Inc. Phosphonate analogs of HIV inhibitor compounds
EP1778251A2 (en) * 2004-07-27 2007-05-02 Gilead Sciences, Inc. Nucleoside phosphonate conjugates as anti hiv agents
US9457035B2 (en) 2004-07-27 2016-10-04 Gilead Sciences, Inc. Antiviral compounds
US8951986B2 (en) 2008-07-08 2015-02-10 Gilead Sciences, Inc. Salts of HIV inhibitor compounds
US8658617B2 (en) 2008-07-08 2014-02-25 Gilead Sciences, Inc. Salts of HIV inhibitor compounds
US9783568B2 (en) 2008-07-08 2017-10-10 Gilead Sciences, Inc. Salts of HIV inhibitor compounds
US20110144050A1 (en) * 2008-07-08 2011-06-16 Gilead Sciences, Inc. Salts of hiv inhibitor compounds
US9381206B2 (en) 2008-07-08 2016-07-05 Gilead Sciences, Inc. Salts of HIV inhibitor compounds
US11744802B2 (en) 2015-11-09 2023-09-05 Gilead Sciences, Inc. Therapeutic compositions for treatment of human immunodeficiency virus
US10548846B2 (en) 2015-11-09 2020-02-04 Gilead Sciences, Inc. Therapeutic compositions for treatment of human immunodeficiency virus
US10851125B2 (en) 2017-08-01 2020-12-01 Gilead Sciences, Inc. Crystalline forms of ethyl ((S)-((((2R,5R)-5-(6-amino-9H-purin-9-yl)-4-fluoro-2,5-dihydrofuran-2-yl)oxy)methyl)(phenoxy)phosphoryl(-L-alaninate
WO2021188959A1 (en) 2020-03-20 2021-09-23 Gilead Sciences, Inc. Prodrugs of 4'-c-substituted-2-halo-2'-deoxyadenosine nucleosides and methods of making and using the same
WO2022103758A1 (en) 2020-11-11 2022-05-19 Gilead Sciences, Inc. METHODS OF IDENTIFYING HIV PATIENTS SENSITIVE TO THERAPY WITH gp120 CD4 BINDING SITE-DIRECTED ANTIBODIES
US11667656B2 (en) 2021-01-27 2023-06-06 Apotex Inc. Crystalline forms of Tenofovir alafenamide
WO2023102239A1 (en) 2021-12-03 2023-06-08 Gilead Sciences, Inc. Therapeutic compounds for hiv virus infection
WO2023102523A1 (en) 2021-12-03 2023-06-08 Gilead Sciences, Inc. Therapeutic compounds for hiv virus infection
WO2023102529A1 (en) 2021-12-03 2023-06-08 Gilead Sciences, Inc. Therapeutic compounds for hiv virus infection
WO2023196875A1 (en) 2022-04-06 2023-10-12 Gilead Sciences, Inc. Bridged tricyclic carbamoylpyridone compounds and uses thereof
EP4310087A1 (en) 2022-04-06 2024-01-24 Gilead Sciences, Inc. Bridged tricyclic carbamoylpyridone compounds and uses thereof
WO2024006982A1 (en) 2022-07-01 2024-01-04 Gilead Sciences, Inc. Therapeutic compounds useful for the prophylactic or therapeutic treatment of an hiv virus infection
WO2024044477A1 (en) 2022-08-26 2024-02-29 Gilead Sciences, Inc. Dosing and scheduling regimen for broadly neutralizing antibodies
WO2024076915A1 (en) 2022-10-04 2024-04-11 Gilead Sciences, Inc. 4'-thionucleoside analogues and their pharmaceutical use

Also Published As

Publication number Publication date
EE200300029A (et) 2004-10-15
NZ536942A (en) 2006-03-31
HUP0301307A2 (hu) 2003-09-29
FR16C0013I1 (fr) 2016-05-27
JP2010174033A (ja) 2010-08-12
CA2725819C (en) 2015-09-22
KR20030022295A (ko) 2003-03-15
US20060024659A1 (en) 2006-02-02
AU8294101A (en) 2002-02-05
IS2985B (is) 2017-09-15
NO20131717L (no) 2003-03-20
NZ535408A (en) 2006-09-29
CA2416757A1 (en) 2002-01-31
KR20060105807A (ko) 2006-10-11
LU93029I2 (fr) 2016-06-14
CA2893174A1 (en) 2002-01-31
SI2682397T1 (sl) 2017-08-31
BRPI0112646B1 (pt) 2017-10-17
MXPA03000587A (es) 2004-04-05
EP1301519A2 (en) 2003-04-16
CZ2003413A3 (cs) 2003-12-17
CY2016008I2 (el) 2016-12-14
OA12393A (en) 2006-04-18
JP2011140506A (ja) 2011-07-21
LTC1301519I2 (lt) 2023-02-27
AU2005225039B2 (en) 2008-09-25
EP1301519B1 (en) 2015-02-25
US7390791B2 (en) 2008-06-24
WO2002008241A2 (en) 2002-01-31
US20050124585A1 (en) 2005-06-09
AU2001282941C1 (en) 2016-12-22
HRP20160074B1 (hr) 2021-09-03
US20040018150A1 (en) 2004-01-29
JP5063554B2 (ja) 2012-10-31
LTPA2016009I1 (lt) 2016-04-25
CN1443189A (zh) 2003-09-17
EP2682397A1 (en) 2014-01-08
HRP20030047B1 (hr) 2016-02-26
EP2682397B1 (en) 2017-04-19
NO2016006I2 (no) 2016-04-19
NO20120466L (no) 2003-03-20
EE05366B1 (et) 2010-12-15
FR16C0013I2 (fr) 2016-09-09
CZ304886B6 (cs) 2015-01-07
ES2627903T3 (es) 2017-08-01
DK1301519T3 (en) 2015-05-26
US20030219727A1 (en) 2003-11-27
NO20150909L (no) 2003-03-20
EA200300188A1 (ru) 2003-06-26
US7803788B2 (en) 2010-09-28
BE2016C018I2 (tr) 2020-08-20
CY1119411T1 (el) 2018-03-07
CA2725819A1 (en) 2002-01-31
LT2682397T (lt) 2017-06-12
US20050009043A1 (en) 2005-01-13
DK1301519T4 (da) 2021-12-20
PT2682397T (pt) 2017-05-31
HUS1900027I1 (hu) 2021-03-29
AP2003002724A0 (en) 2003-06-30
US20050124583A1 (en) 2005-06-09
KR100767432B1 (ko) 2007-10-17
HUS000494I2 (hu) 2021-03-29
NO20030270L (no) 2003-03-20
CZ304734B6 (cs) 2014-09-10
EP1301519B2 (en) 2021-11-10
ES2536972T5 (es) 2022-04-06
KR100749160B1 (ko) 2007-08-14
JP2009062383A (ja) 2009-03-26
AU2005225039A1 (en) 2005-11-10
AP1466A (en) 2005-09-22
EP3235823A1 (en) 2017-10-25
HRP20160074A8 (hr) 2016-07-29
IL153658A0 (en) 2003-07-06
CY2016008I1 (el) 2016-12-14
HUP0301307A3 (en) 2005-12-28
JP4651264B2 (ja) 2011-03-16
PL213214B1 (pl) 2013-01-31
ZA200210271B (en) 2003-12-31
PL360490A1 (en) 2004-09-06
TR200300055T2 (tr) 2004-12-21
HRP20160074A2 (hr) 2016-03-11
BR0112646A (pt) 2003-06-24
BG66037B1 (bg) 2010-11-30
BRPI0112646B8 (pt) 2021-05-25
PT1301519E (pt) 2015-06-11
NO336718B1 (no) 2015-10-26
NO20030270D0 (no) 2003-01-20
HK1054238A1 (en) 2003-11-21
CN1706855A (zh) 2005-12-14
UA75889C2 (uk) 2006-06-15
ES2536972T3 (es) 2015-06-01
CN1291994C (zh) 2006-12-27
NO2016006I1 (no) 2016-04-19
US20050124584A1 (en) 2005-06-09
JP2004504402A (ja) 2004-02-12
BG107572A (bg) 2003-11-28
NZ523438A (en) 2005-02-25
SI1301519T1 (sl) 2015-07-31
AU2001282941B2 (en) 2006-04-27
JP5111551B2 (ja) 2013-01-09
EA004926B1 (ru) 2004-10-28
DK2682397T3 (da) 2017-06-19
CN100402539C (zh) 2008-07-16
US20080227754A1 (en) 2008-09-18
HU230960B1 (hu) 2019-06-28
WO2002008241A3 (en) 2002-08-29
HK1243711A1 (zh) 2018-07-20
CA2416757C (en) 2011-02-15
NO2023006I1 (no) 2023-02-03
US20050159392A1 (en) 2005-07-21
HRP20030047A2 (en) 2007-08-31
IS6689A (is) 2003-01-17
NL300803I2 (tr) 2016-06-30

Similar Documents

Publication Publication Date Title
US7803788B2 (en) Prodrugs of phosphonate nucoleotide analogues
AU2001282941A1 (en) Prodrugs of phosphonate nucleotide analogues and methods for selecting and making same

Legal Events

Date Code Title Description
AS Assignment

Owner name: GILEAD SCIENCES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BECKER, MARK W.;CHAPMAN, HARLAN H.;CIHLAR, TOMAS;AND OTHERS;REEL/FRAME:012191/0415;SIGNING DATES FROM 20010821 TO 20010909

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION