KR20170038024A - 생체 내 이미징 및 진단을 위한 장치, 디바이스 및 방법 - Google Patents

생체 내 이미징 및 진단을 위한 장치, 디바이스 및 방법 Download PDF

Info

Publication number
KR20170038024A
KR20170038024A KR1020177005420A KR20177005420A KR20170038024A KR 20170038024 A KR20170038024 A KR 20170038024A KR 1020177005420 A KR1020177005420 A KR 1020177005420A KR 20177005420 A KR20177005420 A KR 20177005420A KR 20170038024 A KR20170038024 A KR 20170038024A
Authority
KR
South Korea
Prior art keywords
wavelength
radiation
light radiation
blood vessel
catheter
Prior art date
Application number
KR1020177005420A
Other languages
English (en)
Other versions
KR102513779B1 (ko
Inventor
하오 왕
조셉 에이. 가데키
길러모 제이. 티어니
Original Assignee
더 제너럴 하스피탈 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 더 제너럴 하스피탈 코포레이션 filed Critical 더 제너럴 하스피탈 코포레이션
Publication of KR20170038024A publication Critical patent/KR20170038024A/ko
Application granted granted Critical
Publication of KR102513779B1 publication Critical patent/KR102513779B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • A61B5/0086Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters using infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0004Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Diabetes (AREA)
  • Endocrinology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Rheumatology (AREA)
  • Toxicology (AREA)
  • Urology & Nephrology (AREA)
  • Epidemiology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Endoscopes (AREA)

Abstract

해부학적 구조물 내의 염증을 진단 또는 특징짓기 위한 예시적인 방법 및 장치가 제공될 수 있다. 예를 들어, 적어도 하나의 소스 장치를 사용하여, 생체 내에서 적어도 하나의 제1 파장에서 적어도 하나의 제1 전자기 방사선을 해부학적 구조물에 제공하는 것이 가능하다. 적어도 하나의 검출기 장치로, 해부학적 구조물로부터 제공된 적어도 하나의 제2 파장에서 적어도 하나의 제2 전자기 방사선을 검출하는 것이 가능하다. 제2 방사선은 제1 방사선과 연관될 수 있고, 제1 파장은 제2 파장보다 짧을 수 있다. 제2 방사선은 인조 형광 물질을 제공하지 않고 염증에 의해 야기되는 해부학적 구조물에서의 적어도 하나의 변화로 인해 해부학적 구조물로부터 제공될 수 있다. 해부학적 구조물 내의 염증을 진단 또는 특징짓기 위해 제2 방사선에 기초하여 구조물의 적어도 하나의 특징을 결정하도록 적어도 하나의 컴퓨터 장치가 사용될 수 있다.

Description

생체 내 이미징 및 진단을 위한 장치, 디바이스 및 방법{APPARATUS, DEVICES AND METHODS FOR IN VIVO IMAGING AND DIAGNOSIS}
관련 출원에 대한 상호 참조
본 출원은 2014년 7월 25일자로 출원된 미국 가특허출원 제62/029,007호에 관한 것으로 그에 대한 우선권을 주장하며, 그 개시는 전체적으로 본 명세서에 참조로서 통합된다.
개시 분야
본 개시는 의학적 이미징에 관한 것으로서, 특히 이미징 및 진단을 위한 장치, 방법 및 장치의 예시적인 실시예에 관한 것이고, 더욱 특히 예를 들어 근적외선 자가형광(near infrared autofluorescence; NIRAF)에 의한 염증 및 산화 스트레스의 분자 이미징에 관한 것이다.
예를 들어 염증1, 산화 스트레스(예를 들어, 참고 2 참조), 세포 신호전달 경로(예를 들어, 참고 3 참조), 효소 활성(예를 들어, 참고 4 참조)2 등과 같은 인체의 중요한 분자 표현(molecular expressions)을 밝힐 수 있는 분자 이미징은 연구적 관심을 끌고 있다. 분자 정보는 암(예를 들어, 참고 5 참조), 심혈관 질병(예를 들어, 참고 6 참조), 신경퇴행성 질병(예를 들어, 참고 7 참조) 및 안과 질병(예를 들어, 참고 8 참조)과 같은 다양한 질병의 진단에 중요할 수 있다. 컴퓨터 단층촬영술(Computed tomography; CT)(예를 들어, 참고 9011 참조), 자기 공명 이미징(magnetic resonance imaging; MRI)(예를 들어, 참고 12-16 참조), 초음파 (IVUS)(예를 들어, 참고 17 및 18 참조), 광 간섭성 단층촬영술(optical coherence tomography; OCT)(예를 들어, 참고 19-22 참조) 같은 임상적으로 사용되는 의료 이미징 도구(medical imaging tools)는 해부학적 구조물의 형태학적 정보를 얻을 수는 있지만, 분자 정보(molecular information)의 검출에 국한된다. 임상적으로 사용되는 기능 이미징 도구(function imaging tools)로서, 양전자 방출 단층촬영술(positron emission tomography; PET)(예를 들어, 참고 23 참조) 및 단일 광자 방출 컴퓨터 단층촬영술(single-photon emission computed tomography; SPECT)(예를 들어, 참고 24 참조)은 약용 방사성의약품에 의존하며, 이들은 또한 해부학적 구조물의 고유한 분자 정보를 검출하는 것을 목적으로 하지 않는다.
조직상의 염증 바이오마커를 이미징하기 위해, 예를 들어 혈류 및 내강 기관과 같은 인체 내부의 상이한 세포 수용체 및 분자 종을 표지하기 위해 외인성 시약이 사용될 수 있다. 예를 들어, 근적외선 형광(near infrared fluorescent; NIRF) 염료는 대식세포(예를 들어, 참고 25 참조), 피브린(예를 들어, 참고 26 참조) 및 시스테인 프로테아제(예를 들어, 참고 26 및 27 참조)와 같은 염증과 연관된 세포, 화학 물질 및 효소를 표지하기 위해 특별히 고안되었다. 그러나 이러한 시약의 독성, 흡수 및 제거는 환자의 안전과 건강에 높은 잠재적인 위험을 초래할 수 있다. 외인성 시약의 규제 승인은 시간이 오래 걸릴 수 있고 임상 적용에 상당히 제약을 가한다.
자외선/가시광선 자가형광(예를 들어, 참고 18-31 참조), 시분해 형광/형광 수명 이미징(time resolved fluorescence/fluorescence lifetime imaging)(예를 들어, 참고 32-32 참조), 근적외선 분광법(near infrared spectroscopy; NIRS)/확산 반사율 분광법(예를 들어, 참고 36-39 참조) 및 라만 분광법(예를 들어, 참고 40-44 참조)과 같은 내인성 이미징 방법이 또한 집중적으로 연구되고 있다. 이러한 예시적인 기술은 예를 들어 콜레스테롤, 콜레스테롤 에스테르, 콜라겐 및 엘라스틴과 같은 특정 화학 정보를 검출할 수 있지만, 염증 및 산화 스트레스의 바이오마커를 평가하기에는 충분하지 않을 수 있다. 그러므로 상기의 내인성 이미징 방식에 의해 제공되는 정보를 염증 및 산화 스트레스와 직접적으로 상관시키는 것은 어렵다.
따라서, 적어도 본 명세서에서 상술한 이러한 결함을 해소하고 극복할 필요가 있을 수 있다. 예를 들어, 이는 예를 들어 조직 상의 염증을 검출하기 위한 또 다른 (예를 들어, 라벨없는 분자) 이미징 방식을 제공함으로써 수행될 수 있다.
상술한 문제점 및/또는 결함을 처리 및/또는 극복하기 위해, 근적외선 자가형광(NIRAF)을 사용하여 염증 및 산화 스트레스와 같은 중요한 생리학적 사건과 연관된 분자 정보를 결정하는 디바이스, 방법 및 장치의 예시적인 실시예가 제공된다. 예를 들어, 이러한 장치, 디바이스 및 방법은 NIRAF를 사용하여 취약한 죽상동맥경화성 플라크(atherosclerotic plaques)를 검출하는 데 사용될 수 있다.
본 개시의 예시적인 실시예에 따르면, 염증의 과정을 포함하여 신체 내에서 자연적으로 발생하는 산화 과정에 의해 변형된 해부학적 특징으로부터 고유한 자가형광의 존재를 검출하기 위한 장치, 디바이스 및 방법이 제공될 수 있다.
예를 들어, 광학 스펙트럼의 적색 및 근적외선 영역에서 광 또는 다른 전자기 방사선을 사용하여 여기된 자가형광은 생물학적 조직에서 또는 생물학적 조직의 변형에서 자동으로 생성될 수 있으며, 여기서 변형은 산화 스트레스 및 염증 활성의 결과일 수 있다.
NIRAF는 생물학적 조직에 의한 광의 광학 흡수에 의해 생성될 수 있으며, 이것은 그 다음에 NIRAF 광 또는 다른 전자기 방사선을 여기 광보다 긴 파장에서 재방사할 수 있다.
NIRAF의 대표적인 특징 중 하나는 헤모글로빈 및 수분이 저분자 흡수 단면적을 갖는 파장 영역에서 사용 및/또는 생성된 방사선/출력이 제공된다는 것이다.
이 예시적인 특징은 NIRAF 여기의 더 깊은 침투(penetration) 및 리턴(returning)하는 NIRAF 방출의 보다 양호한 전달을 용이하게 하고, 생물학적 조직 손상에 대한 위험을 감소시킬 수 있다.
수분 및 헤모글로빈에 의한 낮은 광학 흡수로 인해, NIRAF 스펙트럼은 적은 양의 파장 의존 감쇠를 제공할 수 있다. NIRAF 신호 레벨은 자가형광 부분의 농도와 직접적으로 상관될 수 있다. 고유 NIRAF 스펙트럼을 회복하기 위해, 확산 반사 분광과 같은 흡수의 파장 의존성을 정정하기 위해 요구되는 추가적인 예시적인 절차, 장치, 디바이스 및 방법이 진단학적으로 유효한 결과를 생성하는 데 요구되지 않을 수 있다.
NIRAF의 한 가지 대표적인 특징은 다파장 검출 및 추가 스펙트럼 처리 방법에 대한 요구없이 진단학적으로 유효한 결과를 얻을 수 있다는 것이다.
예시적인 NIRAF 파장의 선택은 구조 단백질 및 NADH 및 FAD와 같은 다른 공지된 생물학적 자가형광 분자로부터의 간섭 형광 신호를 감소시킬 수 있다. 예시적인 NIRAF 절차를 사용하여, 예를 들어 괴사가 아닌 지질이 풍부한, 그리고 다른 죽상동맥경화성 플라크에 대해 높은 민감도 및 특이성을 갖는 괴사 물질을 함유하는 죽상동맥경화성 플라크를 검출하는 것이 가능하다.
NIRAF 신호의 한 가지 대표적인 특징은 신호가 산화 스트레스 메커니즘을 통해 단백질 및 지질 단백질의 변형과 관련될 수 있다는 것이다.
디티로신 교차 결합은 NIRAF 신호를 생성할 수 있는 하나의 대표적인 특징일 수 있다.
본 개시의 예시적인 실시예에 따르면, 예시적인 NIRAF 절차, 장치, 디바이스 및 방법의 구현은 OCT, OFDI, SD-OCT, TD-OCT, SECM, SEE, 광음향학, 공초점 내시경 검사, 초음파 검사, 혈관 내시경 검사, 기관지 내시경 검사, 대장 내시경 검사, 및 안구 박스 검사(eye-box)와 같은 다른 구조 이미징 방식과 조합될 수 있다. NIRAF 데이터는 강도, 예를 들어 2 이상의 대역 사이의 스펙트럼 비율, 주성분 분석, 선형 최소 제곱, 웨이브렛 변환, 지원 벡터 기계 및/또는 신경 네트워크에 의해 분석될 수 있다.
본 개시의 추가적인 예시적인 실시예에 따르면, NIRAF 분석의 출력을 사용하여, 로지스틱 회귀, 판별 분석, 클러스터 분석, 요인 분석, 및 다른 감독된 및 감독되지 않은 결정 도구를 사용하여 진단 예측이 획득될 수 있다.
따라서, 본 개시의 예시적인 실시예에 따른 해부학적 구조물 내의 염증을 진단 또는 특징짓기 위한 예시적인 방법 및 장치가 제공될 수 있다. 예를 들어, 적어도 하나의 소스 장치를 사용하여, 생체 내에서 적어도 하나의 제1 파장에서 적어도 하나의 제1 전자기 방사선을 해부학적 구조물에 제공하는 것이 가능하다. 적어도 하나의 검출기 장치로, 해부학적 구조물로부터 제공된 적어도 하나의 제2 파장에서 적어도 하나의 제2 전자기 방사선을 검출하는 것이 가능하다. 제2 방사선은 제1 방사선과 연관될 수 있고, 제1 파장은 제2 파장보다 짧을 수 있다. 제2 방사선은 인조 형광 물질을 제공하지 않고 염증에 의해 야기되는 해부학적 구조물에서의 적어도 하나의 변화로 인해 해부학적 구조물로부터 제공될 수 있다. 해부학적 구조물 내의 염증을 진단 또는 특징짓기 위해 제2 방사선에 기초하여 구조물의 적어도 하나의 특징을 결정하도록 적어도 하나의 컴퓨터 장치가 사용될 수 있다.
본 개시의 다른 예시적인 실시예에 따르면, 장치 및 방법이 제공될 수 있다. 예를 들어, 카테터가 혈관 내에 삽입되도록 구성 및 구조화될 수 있다. 에너지 소스 장치로, 적어도 하나의 제1 파장에서 카테터를 통해 적어도 하나의 제1 광 방사선을 혈관에 제공하는 것이 가능하다. 또한, 검출기 장치로, 제1 파장과 상이한 적어도 하나의 제2 파장에서 카테터를 통해 적어도 하나의 제2 광 방사선을 검출하는 것이 가능하다. 제2 광 방사선은 적어도 하나의 제1 광 방사선에 의해 영향을 받는 혈관의 적어도 한 부분의 자가형광에 기초할 수 있다. 또한, 컴퓨터 장치로, 제2 광 방사선에 기초하여 혈관의 하나 이상의 특징을 결정하여 혈관의 적어도 하나의 특징을 진단 또는 특징짓는 것이 가능하다.
본 개시의 또 다른 예시적인 실시예에 따르면, 장치 및 방법이 제공될 수 있다. 예를 들어, 카테터는 혈관 내에 삽입되도록 구성 및 구조화된다. 에너지 소스 장치로, 카테터를 통해, 550nm 내지 800nm 사이인 적어도 하나의 제1 파장에서 적어도 하나의 제1 광 방사선이 혈관에 제공될 수 있다. 검출기 장치로, 640 nm 내지 900nm 사이인 적어도 하나의 제2 파장에서 적어도 하나의 제2 광 방사선을 카테터를 통해 검출하는 것이 가능하다. 제2 광 방사선은 상기 제1 광 방사선에 의해 영향을 받는 혈관의 적어도 한 부분의 자가형광에 기초할 수 있다. 또한, 컴퓨터 장치로, 제2 광 방사선에 기초하여 산화 스트레스, 칼슘, 플라크내 출혈(intraplaque hemorrhage), 단백질 변형, 지질 단백질 변형, 지질 변형 및/또는 효소 활성 중 적어도 하나를 결정하는 것이 가능하다.
본 개시의 다른 예시적인 실시예에서, 제1 파장은 600nm 내지 900nm 사이, 600 내지 800nm 사이, 650nm 내지 750nm 사이 및/또는 650nm 내지 700nm 사이일 수 있다. 제2 파장은 640nm 내지 1000nm 및/또는 640nm 내지 800nm 사이일 수 있다. 제2 파장은 이중 클래드 광섬유의 배경 방출의 파장 범위 밖에 있도록 선택될 수 있다. 파장 범위의 상단은 20nm 또는 40nm를 초과할 수 있다. 제2 파장은 복수의 제2 파장일 수 있고, 검출은 제 2 파장의 함수로서 수행될 수 있다. 검출은 염증의 특징을 추가로 특정하기 위해 제2 방사선의 방출 스펙트럼의 수학적 조작을 포함할 수 있다.
본원에 나타낸 바와 같이, 상기 특징은 산화 스트레스, 칼슘, 플라크내 출혈, 단백질 변형, 지질 단백질 변형, 지질 변형 및/또는 효소 활성 중 적어도 하나일 수 있다. 단백질 변형은 디티로신 또는 니트로티로신(dityrosine or nitrotyrosine)일 수 있고, 지질 단백질 변형은 산화된 LDL일 수 있으며, 플라크내 출혈은 내인성 포르피린을 함유할 수 있다. 적어도 하나의 제3 방사선이 샘플에 제공될 수 있고, 적어도 하나의 제4 방사선이 기준(reference)에 제공될 수 있다. 제3 및 제4 방사선 사이의 간섭인 적어도 하나의 제5 방사선이 수신(receiving)될 수 있고, 상기 결정은 추가적인 제5 방사선의 함수(function)로 수행될 수 있다. 제1 방사선은 제1 방사선과 적어도 부분적으로 공존(co-localized)할 수 있다.
본 개시의 다른 예시적인 실시예에서, 구조물은 관상 동맥일 수 있다. 제1 전자기가 관상 동맥 내에 제공될 수 있다. 관상 동맥(coronary artery)은 괴사성 플라크(necrotic plaque)가 의심되는 환자에게 있는 것일 수 있다.
본 개시의 또 다른 예시적인 실시예에 따르면, 상기 결정은 적어도 2개의 제2 파장 범위를 검출하고, 적어도 2개의 제2 파장 범위로 스펙트럼 형상 데이터 또는 상대 강도 데이터를 특징짓고, 스펙트럼 형상 또는 상대 강도 데이터(spectral shape or relative intensity data)를 훈련 데이터(training data) 세트와 비교함으로써 수행될 수 있다. 스펙트럼 형상 데이터는 제2 파장 범위의 비율로서 비교될 수 있다. 스펙트럼 형상 데이터 또는 상대 강도 데이터는 노이즈 또는 센서 파라미터로 보정될 수 있다. 특징화 프로세스는 주성분 분석 방법으로 분석하는 것을 포함할 수 있다.
본 개시의 또 다른 예시적인 실시예에서, 상기 결정은 복수의 제2 파장을 검출하고, 제2 파장으로 스펙트럼 형상 및 상대 강도를 스코어링하고, 제3 스코어를 훈련 데이터 세트와 비교하는 것을 포함할 수 있다. 또한, 제2 방사선은 640nm 내지 600nm 사이인 제1 범위 및 660nm 내지 900nm 사이인 제2 범위에서 제공될 수 있고, 상기 결정은 제1 및 제2 범위의 비율을 훈련 데이터 세트와 비교하는 것을 포함할 수 있다.
본 개시의 또 다른 예시적인 실시예에 따르면, 장치 및 방법이 제공될 수 있다. 예를 들어, 에너지 소스로, 적어도 하나의 제1 파장에서 적어도 하나의 제1 광 방사선을 구조물에 제공하는 것이 가능하다. 파장은 400nm 내지 900nm 사이로 제어될 수 있다. 검출기 장치로, 제1 파장과 상이한 적어도 하나의 제2 파장에서 적어도 하나의 제2 광 방사선을 검출하는 것이 가능하다. 제2 광 방사선은 상기 제1 광 방사선에 의해 영향을 받는 구조물의 적어도 한 부분의 자가형광에 기초할 수 있다. 또한, 컴퓨터 장치로, 제2 광 방사선에 기초하여 적어도 하나의 그래디언트 제2 이미지(gradient second image) 및 구조물의 부분(들)(the portion(s) of the structure)의 적어도 하나의 제1 이미지를 생성하는 것이 가능하다.
예를 들어, 제1 또는 제2 이미지는 공동 등록될 수 있다. 생성 절차는 OCT 이미지, IVIS 이미지, 혈관조영 이미지, CT 이미지 또는 MRI 이미지를 획득하는 것을 포함할 수 있다. 제2 이미지는 제2 광 방사선의 적어도 2개의 파장 범위의 비율의 디스플레이를 포함할 수 있다.
본 개시의 또 다른 예시적인 실시예에서, 광 간섭성 단층촬영 및/또는 NIR 형광 중 적어도 하나를 용이하게 하고 형광 신호를 송신하도록 구성된 이중 클래드 섬유 구조물을 포함하는 장치가 제공될 수 있다. 이중 클래드 섬유 구조물은 적어도 하나의 코어 및 적어도 하나의 클래딩을 포함할 수 있다. 코어 및 클래딩의 구성은 클래딩에 대한 코어의 비율이 형광 신호의 벤딩 손실의 감소 또는 최소화를 가져오도록 제공될 수 있고, 여기서 상기 구성은 배경 형광의 감소 또는 최소화를 추가로 달성한다. 이중 클래드 섬유의 배경 형광에 기초하여 형광 배경 신호를 보정하는 컴퓨터가 제공될 수 있다.
본 개시의 예시적인 실시예는 외인성 라벨을 추가할 필요가 없다는 점에서 유리할 수 있다. 일반적으로, 형광 검출을 이용하면, 진단적 또는 치료적 절차의 시간 및 복잡성을 증가시킬 수 있는 인위적 또는 외인성 형광 부분(artificial or exogenous fluorescent moiety)의 첨가가 요구될 수 있다. 본 개시의 예시적인 실시예에 따르면, 해부학적 구조물에서 발견된 디티로신 또는 다른 형광체(fluorophores)의 사용은 외인성 형광 부분을 해부학적 구조물에 첨가할 필요없이 진단 또는 특징화를 용이하게 할 수 있다.
본 개시의 예시적인 실시예의 이들 및 다른 목적, 특징 및 이점은 첨부된 청구범위와 함께 해석되는 경우 본 개시의 예시적인 실시예에 대한 다음의 상세한 설명의 판독 시에 명백해질 수 있다.
본 개시의 다른 목적, 특징 및 이점은 본 개시의 예시적인 실시예를 도시하는 첨부된 도면과 함께 해석되는 다음의 상세한 설명으로부터 명백해질 것이고, 여기서:
도 1은 본 개시에 따른 근적외선(near-infrared; NIR) 자가 형광 장치/시스템의 예시적인 실시예의 개략적인 블록도이다;
도 2는 본 개시에 따른 데이터를 수집, 처리 및 분석하는 방법의 예시적인 실시예의 흐름도이다;
도 3은 도 1에 도시된 예시적인 NIRAF 장치/시스템에 의해 얻어진 본 개시의 예시적인 자가형광 스펙트럼의 그래프이다;
도 4(a) 내지 도 4(l)은 본 개시에 따른 장치, 디바이스, 방법의 예시적인 실시예를 사용하는 4개의 대표적인 플라크로부터의 육안 병리(도 4(a) 내지 도 4(d)) 및 연관된 NIRAF 지도(도 4(i) 내지 도 4(l))의 비교의 예시의 세트이다;
도 5는 67개의 죽상동맥경화성 플라크로부터 수집된 NIRAF 강도의 예시적인 비교를 제공하는 그래프이다;
도 6(a) 및 도 6(b)는 67개의 죽상동맥경화성 플라크로부터 얻어진 NIRAF 스펙트럼의 주성분 분석으로부터의 예시적인 결과를 제공하는 그래프이다;
도 7은 67개의 죽상동맥경화성 플라크로부터 얻어진 모든 병리의 주성분 분석에 기초한 예시적인 병리학 분류도를 예시하는 산점도이다;
도 8은 본 개시의 예시적인 실시예를 사용하여 판정 선을 구성하기 위해 판별 분석을 사용하여 주성분 분석에 의해 분류되는 괴사성 코어와 병리학적 내막 비후화 병리(pathological intimal thickening pathologies) 사이의 구별을 도시하는 산점도이다;
도 9는 본 개시물의 예시적인 실시예를 사용하는 더 낮은 스펙트럼에서 예시적인 시뮬레이션된 스펙트럼 데이터에 적용된 주성분 분석을 적용하는 것에 기초한 예시적인 병리학 분류를 도시하는 또 다른 산점도이다;
도 10은 괴사성 코어 및 병리학적 내막 비후화로 분류된 플라크로부터 획득된 예시적인 자가형광 스펙트럼에 대한 스펙트럼 대역의 위치를 나타내는 그래프이다;
도 11은 본 개시의 예시적인 실시예를 사용하여 통합된 스펙트럼 대역 강도의 비연산(ratioing integrated spectral band intensities)에 기초한 또 다른 병리학 분류 기법을 도시하는 또 다른 산점도이다;
도 12는 본 개시의 예시적인 실시예를 사용하여 2개의 예시적인 여기 파장에서 상이한 병리에 대한 예시적인 NIRAF 신호 레벨을 나타내는 그래프이다;
도 13(a) 및 도 13(b)는 본 개시의 예시적인 실시예를 사용하는 새로운 비고정 박편으로부터 획득된 예시적인 NIRAF 및 조직학적 데이터의 이미지이다;
도 14(a) 및 도 14(b)는 본 개시의 예시적인 실시예를 사용하는 상관된 병리를 갖는 새로운 비고정 대동맥 박편으로부터 획득된 대표적인 죽상동맥경화성 플라크로부터 얻어진 통합된 신호 및 스펙트럼 비율 레벨을 나타내는 그래프이다;
도 15(a) 내지 도 15(d)는 본 개시의 예시적인 실시예를 사용하는 새로운 비고정 대동맥 박편으로부터 획득된 최초의 3가지 주성분에 대한 통합된 강도 및 주성분 스코어를 나타내는 이미지이다;
도 16(a) 및 도 16(b)는 인간 대동맥 조직이 산화제에 노출된 경우 자가형광에 대한 예시적인 스펙트럼 변화를 나타내는 그래프이다;
도 17(a) 및 도 17(b)는 단백질 변형 및 산화 스트레스의 강한 자가형광 바이오마커인 디티로신의 예시적인 스펙트럼 흡수 및 방출 차이를 나타내는 그래프이다;
도 18은 본 개시물의 또 다른 실시예에 따른 예시적인 디바이스/시스템/장치의 개략적인 블록도이다;
도 19(a) 및 도 19(b)는 본 개시의 예시적인 실시예에 따른 볼 렌즈 프로브를 통한 지질이 풍부한 플라크, 석회화된 플라크 및 지방 줄무늬로부터의 NIRAF 스펙트럼의 예시적인 측정을 도시하는 그래프의 세트이다;
도 20은 본 개시의 예시적인 실시예에 따른 2개의 예시적인 NIRFA 여기 파장에 의해 생성된 통합된 자가형광 및 섬유 배경 신호의 예시적인 결과 비율의 그래프이다;
도 21은 본 개시의 예시적인 실시예에 따른 다중방식 OCT-NIRAF 카테터 이미징 시스템의 개략적인 블록도를 도시한다;
도 22는 본 개시의 예시적인 실시예에 따른 다중채널 검출을 갖는 NIRAF 카테터 이미징 시스템의 개략적인 블록도를 도시한다;
도 23은 스펙트럼 비율 획득을 위한 다중 다이크로익 미러(dichroic mirrors)를 갖는 NIRAF 카테터 이미징 시스템의 개략적인 블록도를 도시한다;
도 24는 본 개시의 예시적인 실시예에 따른 2D-NIRAF 정면(en face) 강도 지도의 대표 이미지를 도시한다;
도 25(a) 및 도 25(b)는 본 개시의 예시적인 실시예에 따른 파열된 괴사성 코어 플라크로부터 획득된 예시적인 복합 OCT-NIRAF 이미지 및 대응하는 조직학도(histology)이다;
도 26은 상이한 병리학적 분류를 위해 관상동맥내 카테터를 통해 획득된 NIRAF 강도를 도시하는 위스커 박스 플롯이다;
도 27은 본 개시의 소정의 예시적인 실시예에 따른 예시적인 시스템의 예시적인 블록도이다; 그리고
도 28은 본 개시의 다른 예시적인 실시예에 따른 또 다른 방법의 예시적인 흐름도이다.
도면 전체에 걸쳐 동일한 참조 번호 및 부호는 달리 언급하지 않는 한 도시된 실시예의 유사한 특징, 요소, 구성요소 또는 부분을 지칭하기 위해 사용된다. 또한, 본 개시가 이제 도면을 참조하여 상세하게 설명되지만, 이는 예시적인 실시예와 관련하여 행해진다. 본 개시 및 첨부된 청구범위의 진정한 범위 및 사상을 벗어나지 않으면서 설명된 예시적인 실시예에 대한 변화 및 변형이 이루어질 수 있도록 의도된다.
도 1의 도면에 도시된 바와 같이, 본 개시의 예시적인 실시예에 따른 예시적인 디바이스는 에너지 소스 예를 들어 740nm의 예시적인 파장에서 광이 방출되는 협대역(0.1nm) 다이오드 레이저(110)로 구성될 수 있다. 렌즈 어셈블리(115)는 레이저 소스로부터 스퓨리어스(spurious) 방출을 제거하기 위해 쇼트 패스 필터(short pass filter, 120)를 통과할 수 있고, 이색성 빔 스플리터 필터(dichroic beam splitter filter, 125)에서 반사되어 제2 렌즈 어셈블리(130)에 의해 동맥 표본 또는 다른 샘플(140)에 포커싱되는 시준 광(collimated light)을 생성하는 데 사용될 수 있다. 동맥 표본은 온도 제어 디바이스(150)를 갖는 컴퓨터 제어되는 3차원 스테이지 상에 장착된다. 동맥 표본(140)으로부터 방출된 광은 예를 들어 180도 후방산란 기하구조에서 동일한 렌즈 어셈블리(130)에 의해 수집되고, 대략적으로 시준되고, 이색성 빔 스플리터(125)를 통해 송신되고, 롱 패스 필터를 포함하는 제2 렌즈 어셈블리(160)에 의해 포커싱된다. 어셈블리(160)는 방출된 광을 광 검출기(170)에 포커싱한다. 컴퓨터(180)(예를 들어, 도 27의 블록도에 도시된 예시적인 실시예)는 스테이지의 동작 및 에너지 소스(110)의 움직임을 제어할 수 있고, NIRAF 신호를 획득 및/또는 처리할 수 있다. 본원에서 기재된 조직/샘플은 다양한 해부학적 구조물 및/또는 생물학적 조직, 예를 들어 동맥 조직, 혈관 등을 포함할 수 있다는 것이 이해되어야 한다.
도 2는 도 1 및 도 27에 도시된 컴퓨터(180)에 의해 구현될 수 있는 데이터 수집 및 처리를 위한 본 개시에 따른 방법의 예시적인 실시예의 흐름도를 도시한다. 특히, NIR 자가 형광 및 OFDI 데이터 세트를 수집하기 위한 예시적인 방법이 제공될 수 있다. 일반적으로, 피검자 마크(fiduciary marks)가 조직을 스캐닝한 후 관심 영역(region of interest; ROI)을 나타내는 모서리 또는 자가 형광 스캔에 위치될 수 있다. OFDI 빔은 ROI와 정렬되어 스캔된다. 자가 형광 신호를 조절하기 위해 표준 데이터 처리 방법/절차가 사용될 수 있다. NIRAF 스펙트럼은 텍스트에 달리 명시되어 있지 않는 한 벌크 측정(bulk measurement)에서 내강 측면(luminal side)으로부터 얻은 것이다. 예를 들어, 도 2에 도시된 예시적인 실시예에 따르면, 부검 후 데이터(post-autopsy data)가 획득되고 전처리될 수 있다(절차 201). 그 다음에, OFDI 빔이 정렬될 수 있고, NIRAF 래스터 스캔이 수행될 수 있다(절차 202). ROI가 라벨링되고 이미지/사진이 촬영될 수 있다(절차 203). 조직학이 수행될 수 있다(절차 204). 또한, 암흑(dark) 검출기 노이즈 및 배경이 제거될 수 있고(절차 205), 예를 들어 저역 통과 필터(low pass filter)(절차 206)를 사용하여 노이즈가 제거될 수 있다. 피크 강도 지도가 생성될 수 있고(절차 207), 이는 조직학과 연계하여 또는 함께 작동할 수 있다(절차 204). 또한, 주성분 분석 및 사분 판별 분석(Principal component analysis and quadrant discrimination analysis, PCA/QDA) 능력이 수행될 수 있고, PCA 지도가 형성되어(절차 208), 조직학도(histology)와 비교될 수 있다.
도 3은 본 개시의 예시적인 실시예에 따른 장치, 디바이스 및 방법을 사용하여 상이한 죽상동맥경화성 병리로부터 획득된 대표적인 예시적 자가 형광 스펙트럼의 그래프를 도시한다. 최대 강도로 정규화된 대표적인 스펙트럼은 내막 과형성(IH), 석회화(CA), 병리학적 내막 비후화(PIT) 및 괴사성 코어(NC) 플라크에 위치한 특정 부위에서 획득될 수 있다. 정규화된 스펙트럼은 760-820nm 영역에서의 스펙트럼 형상의 차이를 보여줄 수 있으며, 이는 플라크 유형 사이의 분자 구성에서의 예시적인 변화를 나타낼 수 있다.
도 4(a) 내지 도 4(l)는 본 개시에 따른 예시적인 실시예에 따르는 장치, 디바이스 및 방법을 사용하여 4개의 대표적인 플라크로부터 육안 병리(상단의 행 - 도 4(a) 내지 4(d)) 및 연관된 NIRAF 지도(중간의 행 - 도 4(e) 내지 4(h))를 바람직한 표준 조직학도(하단의 행 - 도 4(i) 내지 도 4(l))와 비교하는 예시의 세트를 도시한다. 예를 들어, NIRAF 강도 지도는 데이터 세트에 대한 최대 강도로 정규화될 수 있다. 다음의 예시적인 도면은 이 도면에서 제공된 병리에 대응한다: 내막 과형성(도 4(a), 도 4(e), 도 4(i) 참조); 섬유석회화 플라크(도 4(b), 도 4(f) 및 도 4(j) 참조); 병리학적 내막 비후화(도 4(c), 도 4(g), 도 4(k) 참조); 괴사성 코어(도 4(d), 도 4(h), 도 4(l) 참조). 이러한 예시적인 플라크는 조직학에 의해 진단될 수 있다.
도 5는 67개의 플라크 사이의 NIRAF 강도의 예시적인 비교를 제공하는 예시적인 그래프를 도시한다. 예를 들어, 이 그래프에는 13개의 괴사성 코어 플라크, 21개의 병리학적 내막 비후화, 10개의 섬유석회화 플라크, 9개의 내막 과형성 플라크 및 14개의 섬유성 플라크가 있다. 일원 분산 분석(one-way ANOVA)을 사용하면, NC, PIT 및 CA의 NIRAF 강도는 IH 및 FB와 상당히 차이가 있을 수 있다(p<0.0001). 이는 NIRAF가 강도 정보에 기초하여 상이한 유형의 플라크를 구별할 수 있음을 의미할 수 있다.
도 6(a) 및 도 6(b)는 본 개시의 예시적인 실시예에 따라 67개의 플라크로 구성된 데이터 세트에 주성분 분석(PCA)을 적용하여 획득된 예시적인 결과를 도시한다. 이 예에서, 자가 형광 스펙트럼은 피크 강도(다른 정규화 메트릭이 사용될 수 있음)에 기초한 정규화를 통해 전처리되고, 그 다음에 특수 프로그래밍된 컴퓨터(예를 들어, 컴퓨터(180))로 표준 PCA 알고리즘/절차를 적용하기 전에 평균 중심화된다(mean centered). PCA 알고리즘/절차의 예시적인 출력은 PCA 스코어(도 6(a) 참조) 및 로딩 벡터 또는 주성분(도 6(b) 참조)이다. 이 예에서, 처음 2개의 주성분 또는 로딩 벡터는 스펙트럼 분산의 98%를 넘게 차지한다. 제2 주성분은 약 760nm 내지 820nm 사이의 예시적인 특징을 예시하며, 이는 예시적인 스펙트럼 형상 변동(spectral shape variation)과 일치할 것으로 예상된다.
도 7은 예시적인 결과를 제공하는 표와 함께, 본 개시의 예시적인 실시예에 따른 장치, 디바이스 및 방법을 사용하여 제공되는 제1 및 제2 PCA 스코어에 기초한 예시적인 산점도를 도시한다. 예를 들어, 플라크의 각각의 유형은 특정 분포를 가질 수 있다. 사분면 구별 분석(QDA)을 사용하여, 예를 들어 PCA 스코어 평면은 예를 들어 NC/PIT/CA/IH의 4개의 상이한 카테고리를 나타내는 4개의 부분 공간으로 나뉠 수 있다. 예시적인 단일잔류(leave-one-out) 전략에 따라, 민감도 및 특이성(sensitivity and specificity)을 분석하여 플라크 유형을 구분할 수 있다. 예시적인 결과에 대해 아래 표 1을 참조한다.
훈련 세트
NC PIT CA FB 민감도 특이성
NC(128곳)
102 14 8 4 79.76% 95.06%
PIT(332곳)
49 264 3 16 79.50% 81.32%
CA(84곳)
0 1 83 0 98.81% 99.8%
FB(84곳)
2 0 0 82 97.62% 99.6%
표 1 - 4개의 플라크 유형의 PCA-QDA 분류
도 8은 예시적인 결과를 제공하는 표와 함께, 본 개시의 예시적인 실시예에 따른 장치, 디바이스 및 방법을 사용하여 제공되는 병리학적 내막 비후화와 구분되는 괴사성 코어를 제공하는 제1 및 제2 예시적인 PCA 스코어에 기초한 또 다른 예시적인 산점도를 도시한다. 예를 들어, 전체적인 예시적인 정확도는 약 85%일 수 있다. 이 분석은 NIRAF 스펙트럼을 사용하여 지질이 풍부한 플라크를 검출할 뿐만 아니라 위험 가능성도 평가할 수 있는 진단적 가치를 입증할 수 있다. 다시 말해, 이 NIRAF 분석은 다른 예시적인 분광계 기반 기술보다 병리학적 내막 비후화 및 지방 줄무늬와 같은 안정한 지질이 풍부한 플라크와 괴사성 코어 플라크의 구분에 더 민감한 것으로 보인다. 예시적인 결과에 대해 아래 표 2를 참조한다.
훈련 세트
PIT로 분류 NC로 분류 결과
PIT(332곳)
281 51 SP =84.6%
NC(128곳)
19 109 SE=85.2%
표 2 - NC 및 PIT의 PCA-QDA 분류
도 9는 예시적인 결과를 제공하는 표와 함께, 본 개시의 예시적인 실시예에 따른 장치, 디바이스 및 방법을 사용하여 제공되는 감소된 스펙트럼 해상도를 갖는 예시적인 스펙트럼 데이터의 제1 및 제2 PCA 스코어에 기초한 또 다른 예시적인 산점도를 도시한다. 예를 들어, 플라크의 각각의 유형은 특정 분포를 가질 수 있다. 사분면 구별 분석(QDA)을 사용하여, PCA 스코어 평면은 예를 들어 지질(LPD)/침식(ERO)/석회화(CA)/섬유질(FB)의 4개의 상이한 카테고리를 나타내는 4개의 부분 공간으로 나뉠 수 있다. 예시적인 단일잔류 전략에 따라, 민감도 및 특이성을 분석하여 플라크 유형을 구분할 수 있다. 결과는 각각의 채널의 검출된 통합 스펙트럼 대역폭이 진단 기능의 손실없이 0.1nm 내지 10nm 사이에서 변할 수 있음을 보여줄 수 있다. 예시적인 결과에 대해 아래 표 3을 참조한다.
LPD
ERO CA FB
LPD 39
0 1 0
ERO 0
35 1 4
CA 9
0 31 0
FB 0
0 1 39
표 3 - 다중채널 PMT에 기초한 PCA-QDA
스펙트럼 대역 비율은 스펙트럼 또는 통계 모델의 요구 없이 NIRAF 스펙트럼의 세트에서의 변화를 모니터링하는 예시적인 방법을 제공할 수 있다. 스펙트럼 대역 비율은 정의된 스펙트럼 범위를 갖는 하나의 스펙트럼 대역에서 수신된 강도를 그 고유한 스펙트럼 범위(unique spectral range)를 갖는 제2 스펙트럼 대역의 통합 강도(integrated intensity)와 통합함으로써 구성된다. 도 10은 전형적인 괴사성 코어(NC) 및 병리학적 내막 비후화(PIT) 플라크로부터의 예시적인 NIRAF 스펙트럼과 비교한 예시적인 스펙트럼 통합 영역을 도시하는 그래프를 도시한다. 이 예에서, 보다 짧은 파장 대역(청색 채널)은 642-650nm의 파장 영역에 걸쳐 있고, 보다 긴 파장 대역(적색 채널)은 680-700nm 사이의 영역에 걸쳐 있다. 각각의 예시적인 스펙트럼 대역으로부터의 통합된 신호는 진단 대조(diagnostic contrast)의 또 다른 예를 제공할 수 있는 스펙트럼 비율을 구성하도록 나눠질 수 있다.
스펙트럼 대역을 정의하는 데 사용될 수 있는 스펙트럼 파라미터는 병리학적 상태, 스펙트럼 간섭물(spectral interferents)의 존재 및 배경 방출(background emission)에 기초한 스펙트럼에서의 변화에 기초하여 가장 민감한 진단 기준을 제공하도록 최적화될 수 있다. 도 11은 예시적인 결과를 제공하는 표와 함께, 본 개시의 예시적인 실시예에 따른 장치, 디바이스 및 방법을 사용하여 제공되는 통합된 스펙트럼 강도와 스펙트럼의 비율의 비교에 기초한 예시적인 진단 알고리즘을 예시하는 산점도를 도시한다. 예를 들어, 선형 구별 분석을 적용하여 괴사성 코어와 병리학적인 내막 비후 병리를 구별할 수 있는 판정 선을 생성할 수 있다. 예시적인 결과는 청색 및 적색 대역을 정의하는 스펙트럼 파라미터가 높은 민감도 및 특이성으로 NC와 PIT 병리 사이를 구별한다는 것을 보여준다. 예시적인 결과에 대해 아래 표 4를 참조한다.
훈련 세트
NC로 분류 PIT로 분류 파라미터
NC(128)
127 1 SE=99.2%
PIT(332)
14 318 SP=95.7%
합계(460)
141 319 정확도=97.46%
표 4 - 이중 채널 분류
근적외선 영역의 상이한 여기 파장을 사용하여 스펙트럼 특성을 사용해 상이한 죽상동맥경화성 플라크를 구별할 수 있는 자가형광 스펙트럼을 생성할 수 있다. 예를 들어, 도 12는 본 개시의 예시적인 실시예에 따른 장치, 디바이스 및 방법을 사용하여 633nm 및 740nm에서의 2개의 예시적인 여기 파장 사이의 예시적인 조직 신호 레벨을 평가하는 그래프를 도시한다. 도 12에서, Y축은 로그 눈금으로 제공된다. 이러한 여기 의존 신호 강도의 예시적인 비교에서, 자가형광 방출 강도는 분광계 및 검출기의 파장 의존 스펙트럼 응답에 의해 정규화되었다. 두 여기 파장은 플라크 사이의 유사한 NIRAF 대조를 보여준다. 또한, 633nm에서의 여기 광은 더 강력한 대표적인 조직 신호 레벨을 제공할 수 있다.
염증을 진단 또는 특징짓는 데 사용될 수 있는 여기 파장(제1 광 방사선 또는 제1 전자기 방사선)은 예를 들어 600nm 내지 900nm 사이, 또는 600nm 내지 850nm 사이, 또는 620nm 내지 770nm 사이, 또는 630nm 내지 750nm 사이 또는 650nm 내지 700nm 사이일 수 있다. 다른 실시예에서, 제1 파장은 400 내지 600nm 사이 또는 550 내지 600nm 사이이다. 이 파장은 예를 들어 괴사성 코어와 정상 조직 사이의 흡수 차이가 큰 곳 또는 괴사성 조직의 흡수 피크에서 선택될 수 있다. 일부 실시예에서, 여기 파장은 병리학적 내막 비후화 조직과 같은 상이한 지표 조직의 흡광도에 기초하여 선택될 수 있다.
검출되는 파장(예를 들어, 제2 광 방사선 또는 제2 전자기 방사선)은 예를 들어 자가형광 부분으로부터의 진단학적으로 적절한 방출을 최적화하고 조직 및 섬유 광학 양자로부터의 배경 복사를 최소화하도록 선택된다. 예시적인 방출은 640nm 내지 1000nm에서 최대 900nm 또는 최대 800nm의 파장 범위를 갖는다. 일부 실시예에서, 제2 광 방사선은 640nm에서 800nm까지 또는 680에서 770nm까지의 파장 범위를 갖는다. 1000nm의 상한은 Si 기반 검출기의 민감도에 기초하고, 예를 들어 InGaS 기반 검출기를 사용하여 확장할 수 있다. 따라서, 다른 검출기에 있어서는 상이한 상한이 표시될 수 있다. 일부 실시예에서, 제2 광 방사선은 20nm보다 크거나 40nm보다 큰 파장의 범위를 갖도록 선택된다. 일부 다른 실시예에서, 제2 광 방사선은 2개, 3개 또는 그 이상의 파장 범위를 갖도록 선택된다. 일부 실시예에서, 제2 광 방사선은 Si 배경의 국소 최소값을 생략하도록 선택된다. 예를 들어, 제2 광 방사선은 600cm-1 및/또는 800cm-1에서의 그리고 그 부근의 파장을 배제하도록 선택될 수 있다.
NIRAF 이미징은 또한 두께가 약 5-10㎛ 사이일 수 있는 새로운 비고정 동맥 조직에서 잘라낸 조직학적 얇은 절편에서 수행될 수 있다. 도 13(a) 및 도 13(b)는 본 개시의 예시적인 실시예에 따른 장치, 디바이스 및 방법을 사용하여 생성된 각각 예시적인 이미지 및 예시적인 NIRAF 통합 강도 지도 및 트리크롬(Trichrome)과 같은 표준 조직학 염색으로 염색된 연속 절단된 얇은 절편을 도시한다. 예시적인 NIRAF 지도는 높은 스펙트럼 강도의 영역이 백색으로 보이는 선형 그레이 스케일로 디스플레이된다. 예시적인 NIRAF 이미징은 자가형광 스펙트럼이 특정 형태학적 특징으로부터 획득되는 것을 가능하게 한다. NIRAF 지도와 염색 조직학 사이의 등록은 얇은 섬유질 캡(thin-fibrous cap), 괴사성 코어(necrotic core) 영역, 발포 세포(foam cells), 대식세포(macrophages), 호중구(neutrophils), 콜라겐 및 엘라스틴 섬유, 콜레스테롤 균열(cholesterol clefts), 석회화 및 세로이드 침착물(ceroid deposits)과 같은 특정 형태학적 특징(morphological features)에 스펙트럼 특성이 할당되는 것을 가능하게 할 수 있다. 높은 스펙트럼 강도의 영역은 괴사성 코어 플라크의 괴사 영역에 할당되어 벌크 조직 측정에서 관찰되는 자가형광이 단백질 및 지질의 변형과 같은 염증 및 산화 스트레스에 반응하는 잘 정립된 분자 레벨 과정이 있는 괴사 영역에서 생성된다는 것을 확인한다.
도 14(a)는 본 개시의 예시적인 실시예에 따라, 상이한 병리의 16개의 박편의 분석의 분석으로부터 생성될 수 있는 스펙트럼 대역 비율의 그래프를 도시한다. 오차 막대는 NC - 괴사성 코어, PIT - 병리학적 내막 비후화, IH - 전체 내막 과형성 및 내막 및 중막 영역이 PIT 및 NC 플라크에서 보고될 수 있는 하나의 표준 편차이다. 일원 분산 분석을 사용하여, 높음에서 낮음으로의 강도 순위는 NC>중막>IH
Figure pct00001
PIT>내막이다. NC는 매우 이질적이지만, 그 강도는 다른 4개의 카테고리보다 상당히 높다(p<0.01). 중막은 두 번째로 높은 강도를 가지고 있으며, 이는 아마도 조밀하게 정렬된 엘라스틴 및 평활근 섬유 때문이다. 세포 외 지질 풀(lipid pool)은 내막 및 IH와 비슷한 NIRAF 강도를 가지고 있으며, 이는 지질 침착 그 자체는 NIRAF에 기여하지 않는다는 것을 의미한다.
도 14(b)는 상이한 형태학적 특징 사이의 스펙트럼 형상의 차이를 평가하기 위한 예시적인 방법에 의해 사용될 수 있는 스펙트럼 대역 비율의 그래프를 도시한다. 예를 들어, 높음에서 낮음으로 스펙트럼 비율(청색/적색) 순위는 NC>PIT>내막
Figure pct00002
중막>IH일 수 있다. NC는 다른 4개의 카테고리보다 상당히 더 강한 적색 시프트를 보여준다(p<0.01). 이것은 벌크 조직 측정의 관찰과 일치한다. PIT는 두 번째로 강한 적색/청색 비율을 가지고 있으며, 이는 정상 조직과 NC 사이의 전이로서 PIT가 NIRAF 형광체(fluorophore)의 생성을 유도하는 특정 화학 반응과 생리적 과정을 겪는다는 것을 의미한다. 내막 및 중막은 비슷한 적색/흑색 비율을 가지며, 이는 두 성분 모두 콜라겐과 엘라스틴을 주성분으로 한다는 사실과 일치한다. IH는 플라크의 내막/중막보다 약간 낮다. 가능한 원인은 NC 및 PIT에 존재하는 염증성 활성이 내막 및 중막에서 단백질 및 지질 단백질을 변형시킬 수 있다는 점이다.
도 15(a) 내지 도 15(d)는 본 개시의 예시적인 실시예에 따른 장치, 디바이스 및 방법을 사용하여 괴사성 코어 플라크의 박편으로부터 수집된 모든 자가형광 스펙트럼에 대해 주성분 분석을 수행하여 획득된 예시적인 결과를 도시하는 이미지의 세트를 도시한다. 예시적인 박편은 포르말린 고정 또는 파라핀 포매 없이 냉동 조직으로부터 절단되었다. 본 개시에 따른 예시적인 실시예를 사용하여 자가형광 스펙트럼을 얻었다. 스펙트럼은 배경을 빼고, PCA 알고리즘을 적용하기 전에 벡터의 길이로 정규화됐다. 예를 들어, 도 15(a)는 통합 스펙트럼 강도로부터 구성되고 괴사성 코어 및 중막 양자의 영역에 위치된 높은 강도를 나타낼 수 있다. 나머지 이미지는 첫 번째 3개의 주성분으로부터 기인하는 스코어로부터 구성된다. 도 15(b)에서의 예시적인 이미지는 제1 주성분으로부터 도출된 스코어에 기초한다. 이러한 예시적인 이미지는 괴사성 코어 영역을 명확하게 윤곽을 잡을 수 있고, 중심 고강도 영역을 또한 나타낼 수 있다. 예를 들어, 첫 번째 주성분은 스펙트럼 변동의 약 95%를 넘게 차지한다. 비교를 위해, 각각 도 15(c) 및 도 15(d)에 도시된 제2 및 제3 성분에 기초한 PCA 이미지는 또한 스펙트럼 차이를 강조하고 함께 스펙트럼 변동의 약 3%를 차지할 수 있다. PCA 도출 이미지는 강도 기반 이미지와 달리 분자 구성의 변동과 관련될 수 있는 형태학적 영역을 강조한다.
도 16(a) 및 도 16(b)는 본 개시의 예시적인 실시예에 따른 장치, 디바이스 및 방법을 사용하여 생성된 자가형광 스펙트럼 특성에 대한 예시적인 변화를 도시하는 그래프의 세트를 도시한다. 예를 들어, 예시적인 질병이 없는 인간 동맥 절편은 두 개의 절반으로 균등하게 나눠질 수 있으며, 여기서 반은 10% 인산염 완충 생리 식염수에서 12시간 이상 동안 약 37℃에서 배양되고, 다른 반도 10% 인산염 완충 생리 식염수에 용해된 포화 망간(III) 아세테이트로 구성된 산화성 용액에서 동일한 시간 동안 동일한 온도에서 배양된다. 검체의 NIRAF 스펙트럼은 배양 전에(원본) 그리고 배양 후에(대조군 및 산화(control and oxidized)) 수집되었다. NIRAF 통합 강도는 도 16(a)에서 비교되며, 여기서 오차 막대는 하나의 표준 편차를 나타낸다. 원본의 강도는 도 16(a)에 나타낸 바와 같이 균질하지 않다. 망간(III) 아세테이트에 노출된 산화 조직의 강도는 조직 자가형광이 단백질을 변형시키는 산화제에 의해 증가될 수 있음을 보여주는 대조군보다 약간 높을 수 있다. NIRAF 스펙트럼 비율이 또한 도 16(b)에서 비교된다. 적색/청색 시프트로 구성된 예시적인 스펙트럼 비율은 대조군 조직에 비해 산화된 조직의 자가형광 스펙트럼에서의 예상되는 적색 시프트를 나타낸다. 대조군 샘플이 작은 스펙트럼 적색 시프트를 나타낸다는 사실은 배양 기간 동안 사소한 조직 분해 또는 산화가 일어난다는 것을 의미한다. 그러나, 포화 망간(III) 아세테이트 용액에서 배양된 샘플은 상당히 더 강한 스펙트럼 적색 시프트를 나타낸다. 이것은 NIRAF 스펙트럼 특성이 단백질 변형과 같은 산화 생성물의 존재에 민감할 수 있음을 보여준다.
디티로신 교차결합은 단백질 변형을 위한 잘 확립된 내인성 바이오마커 중 하나이고 강한 자가형광을 방출한다. 도 17(a) 및 도 17(b)는 티로신 및 인간 죽상동맥경화성 플라크와 비교한 디티로신의 흡수 및 자가형광 스펙트럼 차이를 도시하는 그래프의 세트를 도시한다. 예를 들어, 디티로신의 최대 흡수는 280nm에서이고 가시 영역을 통해 상당히 흡수할 수 있는 것에 비해, 티로신은 UV 흡수로 제한된다(도 17(a)). 633nm의 예시적인 여기 파장에서 여기될 때, 디티로신으로부터의 형광 및 예시적인 괴사성 코어(NC) 및 내막 과형성(IH) 플라크로부터의 자가형광이 도 17(b)에서 비교될 수 있다. 디티로신 스펙트럼은 현저하게 적색 시프트로 나타나고 죽상동맥경화증 진행됨에 따라 볼 수 있는 것보다 적색 시프트된 방출을 설명할 수 있다.
디티로신 교차결합에 더하여, 피브린, 피브리노겐, 리포푸신, 세로이드와 같은 추가적인 형태학적/조직학적 구조물이 또한 NIRAF 신호를 생성할 수 있다. 클로로티로신, 니트로티로신, 빌리루빈, 빌리버딘, 4-하이드록시-2-노넨알(nonenal), 하이드록시이미노다이하이드로피롤(hydroxyiminodihydropyrrole) 및 포르피린과 같은 잘 알려진 산화성 생성물이 NIRAF 신호에 기여할 수 있다.
도 18의 다이어그램에 도시된 바와 같이, 본 개시의 예시적인 실시예에 따른 예시적인 디바이스는 본 개시의 다른 예시적인 실시예에 따른 이중 클래드 섬유를 테스트하는 데 사용될 수 있다. 도 18에 도시된 이러한 예시적인 디바이스/시스템은 예컨대 예를 들어 헬륨:네온 레이저 또는 다른 광 소스에 의해 생성된 예를 들어 약 633nm의 예시적인 파장에서 광을 방출하는 협대역(0.1nm) 다이오드 레이저일 수 있거나 이를 포함할 수 있는 에너지/광/레이저 소스(1810)를 포함할 수 있다. 소스(1810)로부터의 시준 광은 쇼트 패스 필터(1815)를 통과하여 레이저 소스로부터의 스퓨리어스 방출을 제거하고, 이색성 빔 스플리터 필터(1820)에서 반사되고, 렌즈 어셈블리(1825)에 의해 이중 클래드 섬유 볼 렌즈 프로브(double clad fiber ball lens probe, 1830)로 포커싱될 수 있다. 후방 반사되고 섬유 생성(fiber-generated)된 형광은 예를 들어 180도 후방 산란 기하구조물에서 동일한 렌즈(1830)에 의해 수집되고, 이색성 빔 스플리터(1820) 및 롱 패스 필터(1840)에 의해 시준되고 필터링되어 단일 채널 검출기, 검출기 어레이 및/또는 저조도(low- light level) CCD가 장착된 f/2 NIR 분광계일 수 있는 검출기(1850)에 포커싱된다. 컴퓨터 제어는 본원에서 설명된 특수하게 프로그래밍된 컴퓨터일 수 있는 컴퓨터(1860)를 사용하여 달성될 수 있다.
도 19(a) 및 도 19(b)는 본 개시의 예시적인 실시예에 따른 이중 클래드 섬유 볼 렌즈 프로브를 통한 대표적인 괴사성 코어, 석회화 및 지방 줄무늬 플라크로부터의 NIRAF 스펙트럼의 예시적인 측정을 도시하는 그래프의 세트를 도시한다. 예시적인 미가공 스펙트럼이 도 19(a)에 도시된다. 약 680-750nm의 예시적인 방출 윈도우 내에서 추출된 조직 NIRAF 스펙트럼이 도 19(b)에 도시된다. 괴사성 코어 플라크는 섬유 배경보다 훨씬 강한 신호를 가질 수 있다.
도 20은 633nm 및 740nm에서 2개의 예시적인 파장에 의해 생성된 대표적인 지질 함유(LPD), 침식(Erosive), 석회화(CA) 및 섬유질(FB) 죽상동맥경화성 플라크로부터의 통합된 자가형광 강도의 예시적인 비율의 그래프를 도시한다. 조직 자가형광 신호는 예를 들어 이중 클래드 섬유에서 생성된 강한 실리카 라만 산란을 배제하기 위해 680-750nm 스펙트럼 윈도우(spectral window)에 걸쳐 통합된다. 통합 윈도우는 조직 자가형광 대 섬유 배경 비율을 최대화하도록 선택되었다.
NIRAF 분자 이미징 카테터 시스템은 생물학적 조직의 병리학적 상태에 대한 보다 포괄적인 시각을 제공할 수 있는 다른 미세구조물 이미징 방식과 결합될 수 있다. 본 개시에 따른 다중방식 NIRAF 이미징 카테터 시스템의 예시적인 실시예의 개략적인 블록도가 도 21에 도시되어 있다. 도 21의 이 예시적인 장치는 예를 들어 (본원에서 설명된 바와 같이 하나 이상의 프로세서를 사용하여 이미지를 생성할 수 있는) 미세구조물 이미징 시스템(2105), 단일 모드 광섬유(2110), 에너지 소스, 예를 들어 근적외선 레이저(2115), 광섬유(2120), 이중 방식 회전 접속부(dual-modality rotary junction, 2125), 투명 이미징 외장부(2130), 이중 방식 광 이미징 카테터(2135), 멀티 모드 섬유(2145), 광 검출기(2150), 데이터 획득 시스템(2155) 및 데이터 처리 및 저장 유닛/장치(2160)를 포함할 수 있다. 이들 설명된 시스템, 장치 및 요소, 또는 유사한 디바이스의 각각의 다수는 도 21의 예시적인 장치 내에 또는 그와 함께 포함되고/되거나 구현될 수 있다는 점을 이해해야 한다.
미세구조물 이미징 시스템(2105)(예를 들어, 광 주파수 도메인 이미징, 광 간섭 단층촬영, 스펙트럼 인코딩된 공초점 현미경 등의 방식 중 하나 이상을 구현하는 하나 이상의 시스템)은 조직 미세구조물에 관한 정보 및 신호를 얻기 위해 조직(2140)으로부터의 후면 반사된 광을 검출할 수 있다. NIRAF 분자 이미징 시스템은 조직(2140)으로부터 특정 분자 정보를 검출할 수 있다. 미세구조물 이미징 시스템(2105)은 단일 모드 섬유(2110)에 의해 이중 방식 회전 접속부(2125)에 연결될 수 있다. 단일 모드 또는 멀티 모드 섬유(2120)는 NIRAF 레이저(2115)를 이중 방식 회전 접속부(2125)에 연결하는 데 사용될 수 있다. 멀티 모드 섬유(2145)는 예를 들어 NIRAF 분자 이미징 방식에 있어서 이중 방식 회전 접속부(2125)를 광 검출기(2150)에 연결하여 높은 광 처리량을 달성하기 위한 바람직한 광섬유일 수 있다.
이중 방식 회전 접속부(2125)는 2개의 상이한 광학 빔을 결합하고, 고정형 이미징 시스템과 회전 및 병진 이미징 카테터(2135) 사이의 인터페이스로서의 역할을 할 수 있다. 다중방식 카테터는 투명한 이미징 외장(2130) 내에 봉입된 이중 클래드 섬유(2165), 구동샤프트 (2170) 및 원위 집속 광학계(distal focusing optics, 2175)를 포함할 수 있다. 이미징 카테터(2135)가 회전하고 병진하여 조직(2140)의 나선형 스캐닝을 수행하는 동안, 이미징 외장(2130)은 이미징 카테터(2135) 및 조직(2140)을 보호하는 데 사용될 수 있다. 광학 이미징 빔(2143)은 이중 방식 광학 이미징 카테터(2135)에 의해 조직(2140) 상으로 포커싱될 수 있다. 조직(2140)으로부터의 리턴 광 신호는 NIRAF 분자 이미징 시스템의 미세구조물 이미징 시스템(2105) 및 광학 검출기(2150)에 의해 검출된다. NIRAF 및 미세구조물 시스템(2105) 양자는 동기화될 수 있고, 신호는 데이터 획득 시스템(2155)에 의해 동시에 얻어질 수 있다. 데이터 처리 및 저장 유닛/배열/장치(2160)는 적절한 동작 및 후속하는 시각화 및 분석을 위해 실시간으로 데이터를 기록 및/또는 처리할 수 있다.
NIRAF 분자 이미징 시스템은 구성요소의 선택에 있어서 유연성을 갖는다. 소스(2115)(예를 들어, NIR 레이저 소스)는 연속파 또는 펄스 모드로 동작될 수 있으며, 단일 또는 다중모드인 광섬유(2120)에 결합될 수 있다. 섬유(2120, 2145)는 예를 들어 조직 신호 대 배경 신호 비를 개선하기 위해 낮은 배경 방출을 갖도록 선택되어야 한다. 광학 검출기(2150)는 광학 필터, 광학 어셈블리 및 단일 채널 또는 다중채널 검출을 포함할 수 있다. 단일 채널 검출은 바람직한 실시예일 수 있는 포토다이오드, 애벌런치 포토다이오드 또는 광전자 증배관의 사용을 포함할 수 있다. 단일 채널 검출의 경우에, 광학 어셈블리는 시준하기 위한 제1 렌즈, 개재된 광학 필터 및 광을 검출기에 포커싱하기 위한 제2 렌즈를 포함할 수 있다. 광학 어셈블리의 제2 실시예는 광 검출 전에 광을 시준하기 위한 제1 렌즈, 예를 들어 프리즘 또는 격자 등을 위한 분산 소자, 분산된 광을 포커싱하기 위한 제2 렌즈 및 스펙트럼 대역폭을 선택하기 위한 슬릿으로 구성될 수 있다. 다중채널 검출 기법 및/또는 구성은 예를 들어 격자, 프리즘, 분광계 또는 필터의 시리즈 등의 스펙트럼 분산 소자 및 광 검출기의 사용을 포함할 수 있다. 다중채널 검출 기법의 일 실시예는 NIRAF 방출을 분산시키기 위한 분광계, 격자 또는 프리즘 및 이를 검출하기 위한 전하 결합 검출기(CCD), 전자 증배 전하 결합 소자(EMCCD), CMOS 카메라 또는 다중채널 광전자 증배관을 포함할 수 있다. 제2 실시예는 가장 짧은 파장 대역이 먼저 반사되고 다음의 최단 대역이 뒤따르도록 배열된 일련의 이색성 필터(dichroic filters)를 사용하는 것이다. 이러한 스펙트럼 대역은 그 다음에 다수의 단일 채널 검출기에 의해 검출된다.
본 개시의 예시적인 실시예에 따르면, 예시적인 분자 이미징 시스템(2105)은 이로 제한되지는 않으나 초음파, 광음향 이미징 등을 포함하는 비광학 이미징 방식(non-optical imaging modalities)을 사용하여 그 이미지 및 비교를 개선시킬 수 있는 다른 시스템에 결합 및/또는 통합될 수 있다는 점을 당업자라면 이해해야 한다.
본 개시의 또 다른 예시적인 실시예에 따른 NIRAF 카테터 시스템의 예시적인 실시예의 개략도가 도 22에 도시된다. 이 예시적인 장치는 레이저 또는 다른 전자기 방사선 소스(2210), 광학 회전 접속부(2220), NIRAF 카테터(2230), 분광계(2260), 다중채널 검출기(2270) 및 데이터 획득 및 저장 시스템(2280)을 포함할 수 있다. 이들 설명된 시스템, 장치 및 요소, 또는 그와 유사한 것의 각각의 복수는 도 22에 도시된 예시적인 장치 내에 또는 그와 함께 포함되고/되거나 구현될 수 있다는 점을 이해해야 한다.
예를 들어, 소스(예를 들어, NIRAF 레이저)(2210) 레이저는 단일 모드 또는 다중모드일 수 있는 광섬유(2215)에 의해 광학 회전 접속부(2220)에 연결될 수 있다. 광학 회전 접속부(2220)는 고정식 이미징 시스템과 회전 및 병진 NIRAF 카테터(2230) 사이의 인터페이스로서의 역할을 할 수 있다. 회전 접속부(2220)에서, 광은 렌즈(2222)에 의해 시준되고, 다이크로익 미러(dichroic mirror, 2224)에 의해 필터링되어 레이저로부터의 스퓨리어스 방출을 제거하고, 제2 렌즈(2226)에 의해 NIRAF 이미징 카테터(2230)로 포커싱된다. NIRAF 카테터(2230)는 투명한 이미징 외장(2238) 내에 봉입된 광섬유(2232), 구동샤프트(2234), 및 원위 집속 광학계(2236)를 포함할 수 있다. 광섬유(2232)는 이중 클래드 섬유 또는 멀티 모드 섬유일 수 있다. NIRAF 카테터(2230)가 회전하고 병진하여 조직(2240)의 나선형 스캐닝을 수행하는 동안, 이미징 외장(2238)은 이미징 카테터(2230) 및 조직(2240)을 보호하는 데 사용될 수 있다. 광학 이미징 빔(2242)은 NIRAF 카테터(2230)에 의해 조직(2240) 상으로 포커싱될 수 있다. 조직(2240)으로부터의 리턴 광 신호는 광학 회전 접속부(2230)를 통해 리턴되고, 다이크로익 미러(2224)에 의해 필터링되고, 제3 렌즈(2228)에 의해 멀티 모드 섬유(2250)로 결합되고, 분광계(2260)에 전달되어 다중채널 검출기(2270)로 검출된다. 다중채널 검출기(2270)는 다중채널 광전자 증배관, 전하 결합 소자(CCD), 전자 증식 전하 결합 소자(EMCCD) 및/또는 CMOS 카메라일 수 있거나 이를 포함할 수 있다. 데이터 처리 및 저장 장치/시스템(2280)은 다중채널 검출기(2270) 및 광학 회전 접속부(2220)에 연결될 수 있다. 데이터 처리 및 저장 장치/시스템(2280)은 적절한 동작 및 후속하는 시각화 및 분석을 위해 실시간으로 데이터를 기록 및/또는 처리할 수 있다.
스펙트럼 비율의 예시적인 계산/결정은 다중 다이크로익 미러 및 단일 채널 검출기 구성을 사용하여 달성될 수 있으며, 여기서 검출된 스펙트럼 대역의 위치 및 폭은 직렬로 배열된 다이크로익 미러의 파장 의존적 투과율 및 반사 특성의 선택에 의해 제어된다. 본 개시에 따른 NIRAF 카테터 시스템의 다른 예시적인 실시예의 개략도가 도 23에 도시된다. 이 예시적인 장치는 레이저 또는 전자기 방사선 소스(2310), 광학 회전 접속부(2320), NIRAF 카테터(2330), 다중 필터 어셈블리, 다중 단일 채널 검출기(2370, 2372, 2374) 및 데이터 수집 및 저장 시스템(2380)을 포함할 수 있다. 이들 설명된 시스템, 장치 및 요소, 또는 그와 유사한 것의 각각의 다수는 도 23에 도시된 예시적인 장치 내에 및/또는 그와 함께 포함되고/되거나 구현될 수 있다는 점을 이해해야 한다.
도 22에 도시된 예시적인 실시예와 유사하게, 소스(예를 들어, NIRAF 레이저)(2310) 레이저는 단일 모드 또는 다중모드일 수 있는 광섬유(2315)에 의해 광학 회전 접속부(2320)에 연결된다. 광학 회전 접속부(2320)는 고정식 이미징 시스템과 회전 및 병진 NIRAF 카테터(2330) 사이의 인터페이스로서의 역할을 할 수 있다. 광학 이미징 빔(2342)은 NIRAF 카테터(2330)에 의해 조직(2340) 상으로 포커싱될 수 있다. 조직(2340)으로부터의 리턴 광 신호는 광학 회전 접속부(2330)를 통해 리턴되고, 멀티 모드 섬유(2350)에 결합되어 다중 필터 어셈블리로 전달된다. 다중 필터 어셈블리는 시준 렌즈(2360), 롱 패스 필터(2362), 최단 파장 차단부에서의 다이크로익 미러(2364) 및 더 긴 파장 차단부에서의 다이크로익 미러(2366)를 포함할 수 있다. 각각의 다이크로익 미러(2364, 2366)는 가장 긴 파장을 수신하는 단일 채널 검출기(2372, 2374) 및 추가 검출기(2376)와 쌍을 이룰 수 있다. 도 23은 예시적인 3 채널 검출 시스템을 도시한다. 그럼에도 불구하고, 필터링 스테이지 및 검출기의 수를 증가시킴으로써 채널의 수를 증가시키는 것이 가능하다는 점을 이해해야 한다. 데이터 처리 및 저장 장치/시스템(2380)은 다수의 검출기 및 광학 회전 접속부(2320)에 연결될 수 있다. 데이터 처리 및 저장 장치/시스템(2280)은 적절한 동작 및 후속하는 시각화 및 분석을 위해 실시간으로 데이터를 기록 및/또는 처리할 수 있다.
도 24는 도 21의 다이어그램을 참조하여 본원에 설명된 바와 같은 다중방식 OCT-NIRAF 시스템 및 카테터를 사용하여 예시적인 인간 관상 동맥으로부터 획득된 2D NIRAF 정면 강도 지도의 대표적인 이미징을 도시한다. 이 예에서는, 채취 절차 후 24시간 이내에 이미징된 새롭게 외식한(explant) 인간의 심장이 체외 이미징 연구에 사용되었다. OCT-NIRAF 이미징 전에, 카테터 접근을 용이하게 하고 관상 동맥 루멘(lumen)의 자연 지름을 유지하기 위해 루멘을 10% 인산염 완충 생리 식염수로 씻어 냈다. 2D NIRAF 강도 지도의 x축은 길이방향 풀백(pullback) 위치에 그리고 y축은 스캐닝 각도(즉, 0 내지 360도)에 대응한다. 이미지에서, 파선은 내막 과형성에 대응하는 한편 점선은 석회화된 플라크이다. 수직 축은 이미징 각도(0 내지 360도)이고 수평 축은 풀백 방향(0 내지 50mm)이다. 이미지 방향은 혈관의 근위(오른쪽) 부분에서 원위(왼쪽)이다. 색상 지도의 범위는 청색(낮은 NIRAF 강도)에서 녹색, 노란색 및 백색(가장 높은 NIRAF 강도)까지이다.
도 25(a) 및 도 25(b)는 포괄적으로 스캐닝된 관상 동맥으로부터 추출된 복합 OCT-NIRAF 이미지의 예시적인 이미지 세트 및 파열된 괴사성 코어 플라크에 대한 대응하는 조직학 절편을 도시한다. OCT-NIRAF 이미지는 본원에서 설명되고 도 21에 도시된 바와 같은 다중방식 OCT-NIRAF 시스템 및 카테터를 사용하여 생성되었다. 예시적인 OCT-NIRAF 이미지(도 25(a) 참조)에서, OCT 이미지는 플라크 파열의 존재(화살표) 및 지질 풀 또는 괴사성 코어를 의미하는 높은 감쇠 영역(별표)을 나타낸다. NIRAF 신호는 좋은 대조를 가지며 괴사성 코어 위치 상에서 높다. 대응하는 조직학 이미지(도 25(b) 참조)에서, H&E로 염색된 절편은 플라크가 파열된 얇게 덮힌(thin-capped) 섬유 죽종(fiberatheroma)이라는 것을 확인한다. 두 이미지의 기준자는 1mm이다. 이 예시적인 결과는 경피적 카테터 삽입술을 받는 살아있는 환자에서 공동 등록된 관상 동맥 내 OCT 및 NIRAF 이미징을 표준 치료로 입증할 수 있고 염증 반응 및 산화 스트레스와 관련된 바이오마커의 미세구조 및 형광 이미징을 제공한다.
도 26은 괴사성 코어(NC), 병리학적 내막 비후화(PIT), 석회화(CA) 및 내막 과형성(IH)을 포함하는 상이한 관상 동맥 병변 유형에 대한 카테터 기반 NIRAF 신호 강도의 예시적인 표시의 위스커 박스 플롯을 도시한다. NIRAF 강도는 본원에서 설명되고 도 21에 도시된 바와 같은 다중방식 OCT-NIRAF 시스템 및 카테터를 사용하여 설명된 바와 같이 사용하여 체외에서 질병이 있는 인간 관상 동맥으로부터 획득되었다. NC, PIT, CA 및 IH로부터의 NIRAF 강도는 일원 분산 분석에 따르면 통계적으로 상당히 상이했다(p<0.0005). Student's t-테스트를 사용하면, NC 플라크의 NIRAF 강도는 비 괴사성 병변의 NIRAF 강도보다 상당히 높았다(p<0.0005). 관상 동맥 내 석회화 플라크는 PIT보다 NIRAF가 약간 더 높은 것으로 나타났다. 이 발견에 대한 한 가지 가능한 이유는 이 연구에서 석회화된 관상 동맥 플라크가 진행되어 상당한 세포 외 지질과 공존한다는 것이다. 이 결과는 NIRAF가 관상 동맥에서 NC와 비 NC 플라크(CA 및 PIT)를 구분할 수 있음을 나타낸다.
또한, 본 개시의 예시적인 실시예는 예를 들어 암 및 신경 퇴행성 질병을 포함하는 다른 질병의 분석 및/또는 치료에 사용될 수 있다.
도 27은 본 개시에 따른 시스템의 예시적인 실시예의 블록도를 도시한다. 예를 들어, 본원에서 설명된 본 개시에 따른 예시적인 절차는 처리 장치 및/또는 컴퓨팅 장치(2702)에 의해 수행될 수 있다. 이러한 처리/컴퓨팅 장치/시스템(2702)은 이로 제한되지는 않으나 예를 들어 하나 이상의 마이크로프로세서를 포함할 수 있는 컴퓨터/프로세서(2704)의 전체 혹은 일부이거나 이를 포함하고, 컴퓨터 액세스 가능 매체(예를 들어, RAM, ROM, 하드 드라이브 또는 다른 저장 디바이스) 상에 저장된 명령어를 사용할 수 있다.
도 27에 도시된 바와 같이, 예를 들어 컴퓨터 액세스 가능 매체(2706)(예를 들어, 본원에서 상술된 바와 같은, 하드 디스크, 플로피 디스크, 메모리 스틱, CD-ROM, RAM, ROM, (컴팩트 디스크(CD), 디지털 다기능 디스크(DVD) 또는 블루레이 디스크(BD)(tm)와 같은) 광학 디스크, 플래시 메모리 디바이스, 메모리 카드와 같은 저장 디바이스 등 또는 이의 컬렉션)가 (예를 들어, 처리 장치(2702)와 통신하게) 제공될 수 있다. 컴퓨터 액세스 가능 매체(2706)는 그 위에 실행 가능 명령어(2708)를 포함할 수 있다. 추가적으로 또는 대안적으로, 저장 장치(2710)가 컴퓨터 액세스 가능 매체(2706)와 별도로 제공될 수 있으며, 이는 예를 들어 본원에서 상술된 바와 같은 소정의 예시적인 절차, 처리 및 방법을 실행하도록 처리 장치를 구성하기 위해 처리 장치(2702)에 명령어를 제공할 수 있다.
또한, 예시적인 처리 장치(2702)는 입/출력 인터페이스/장치(2714)와 함께 제공되거나 이를 포함할 수 있으며, 입/출력 인터페이스/장치는 예를 들어 유선 네트워크, 무선 네트워크, 인터넷, 인트라넷, 데이터 수집 프로브, 센서 등을 포함할 수 있다. I/O 인터페이스/장치(2714)는 입력 및 출력 디바이스에 대한 통신 인터페이스를 제공하는 데 사용될 수 있으며, 입력 및 출력 디바이스는 키보드, 디스플레이, 마우스, 터치 스크린, 터치리스 인터페이스(예를 들어, 제스처 인식 디바이스), 인쇄 디바이스, 라이트 펜, 광학 저장 디바이스, 스캐너, 마이크로폰, 카메라, 드라이브, 통신 케이블 및 네트워크(유선 또는 무선)를 포함할 수 있다. 도 27에 도시된 바와 같이, 예시적인 처리 장치(2702)는 예시적인 디스플레이 장치(2712)와 통신할 수 있으며, 예시적인 디스플레이 장치는 본 개시의 소정의 예시적인 실시예에 따르면, 예를 들어 처리 장치로부터 정보를 출력하는 것 이외에 처리 장치에 정보를 입력하도록 구성된 터치 스크린일 수 있다. 또한, 예시적인 디스플레이(2712) 및/또는 저장 장치(2710)는 사용자 액세스 가능 포맷 및/또는 사용자 판독 가능 포맷으로 데이터를 디스플레이 및/또는 저장하는 데 사용될 수 있다.
검출기 인터페이스가 또한 입력 및 출력 디바이스에 대한 I/O 인터페이스와 함께 작동하도록 제공될 수 있다. 검출기는 예를 들어 광전자 증배관(PMT), 포토다이오드, 애벌란시 포토다이오드 검출기(APD), 전하 결합 소자(CCD), 멀티 픽셀 광자 카운터(MPPC) 등을 포함할 수 있다. 또한, 검출기의 기능은 컴퓨터 액세스 가능 매체(2706) 상에 기록된 컴퓨터 실행 가능 명령어(예를 들어, 하나 이상의 프로그램)에 의해 실현될 수 있다.
본 개시의 또 다른 예시적인 실시예에 따르면, 도 28의 흐름도에 도시된 바와 같은 장치 및 방법이 제공될 수 있다. 예를 들어, 에너지 소스로, 적어도 하나의 제1 파장에서 적어도 하나의 제1 광 방사선을 구조물에 제공하는 것이 가능하다(절차 2810). 파장은 400nm 내지 800nm 사이이도록 제어될 수 있다(절차 2820). 검출기 장치로, 제1 파장과 상이한 적어도 하나의 제2 파장에서 적어도 하나의 제2 광 방사선을 검출하는 것이 가능하다(절차 2830). 제2 광 방사선은 상기 제1 광 방사선에 의해 영향을 받는 구조물의 적어도 한 부분의 자가형광에 기초할 수 있다. 또한, 컴퓨터 장치로, 제2 광 방사선에 기초하여 적어도 하나의 그래디언트 제2 이미지 및 구조물의 부분(들)의 적어도 하나의 제1 이미지를 생성하는 것이 가능하다(절차 2840).
예를 들어, 제1 또는 제2 이미지는 공동 등록될 수 있다. 생성 절차는 OCT 이미지, IVIS 이미지, 혈관조영 이미지, CT 이미지 또는 MRI 이미지를 획득하는 것을 포함할 수 있다. 제2 이미지는 제2 광 방사선의 적어도 2개의 파장 범위의 비율의 디스플레이를 포함할 수 있다.
전술한 설명은 단지 본 개시의 원리를 설명한다. 설명된 실시예에 대한 다양한 수정 및 변경은 본원의 교시를 고려하여 당업자에게 명백할 것이다. 실제로, 본 개시의 예시적인 실시예에 따른 장치, 시스템 및 방법은 임의의 OCT 시스템, OFDI 시스템, SD-OCT 시스템 또는 다른 이미징 시스템, 및 예를 들어 2004년 9월 8일자로 출원되었으며 2005년 5월 26일자로 국제 특허 공개 제WO 2005/047813호로 공개된 국제 특허 출원 제PCT/US2004/029148호, 2005년 11월 2일자로 출원되었으며 2006년 5월 4일자로 미국 특허 공개 제2006/0093276호로 공개된 미국 특허 출원 제11/266,779호, 및 2004년 7월 9일자로 출원되었으며 2005년 1월 27일자로 미국 특허 공개 제2005/0018201호로 공개된 미국 특허 출원 제10/501,276호 및 2002년 5월 9일자로 공개된 미국 특허 공개 제2002/0122246호에 설명된 것들과 함께 사용될 수 있고/있거나 구현할 수 있으며, 이들의 개시내용은 그 전체가 본원에 참조로 포함되어 있다. 따라서, 당업자는 본원에 명시적으로 도시되거나 설명되지는 않았지만, 본 개시의 원리를 구현하고 따라서 본 개시의 사상 및 범위 내에 있는 다수의 시스템, 장치 및 방법을 고안할 수 있음을 이해할 것이다. 또한, 선행 기술 지식이 본원에 참조로 명시적으로 포함되지 않은 한 그 전체가 명백하게 여기에 포함된다. 또한, 본원에 설명된 예시적인 실시예는 서로 함께 동작할 수 있고 그와 상호교환 가능하게 동작할 수 있다. 상기에서 본원에 참조된 모든 공보는 그 전체가 본원에 참조로 포함된다.
대표적인 참고문헌
다음 참조문헌은 전체적으로 이에 참조로서 통합된다:
1. Signore A, Mather SJ, Piaggio G, Malviya G and Dierckx RA. Molecular Imaging of Inflammation/Infection: Nuclear Medicine and Optical Imaging Agents and Methods. Chemical Reviews. 2010;110:3112-3145.
2. Su HS, Nahrendorf M, Panizzi P, Breckwoldt MO, Rodriguez E, Iwamoto Y, Aikawa E, Weissleder R and Chen JW. Vasculitis: Molecular Imaging by Targeting the Inflammatory Enzyme Myeloperoxidase. Radiology. 2012;262:181-190.

Claims (84)

  1. 해부학적 구조물 내의 염증을 진단 또는 특징짓기 위한 방법으로서,
    생체 내에서 적어도 하나의 제1 파장에서 상기 해부학적 구조물에 적어도 하나의 제1 전자기 방사선을 제공하는 단계;
    상기 해부학적 구조물로부터의 적어도 하나의 제2 파장에서 적어도 하나의 제2 전자기 방사선을 검출하는 단계로서, 상기 제2 방사선은 상기 제1 방사선과 연관되고, 상기 제1 파장은 상기 제2 파장보다 짧고, 상기 제2 방사선은 인공 형광 물질을 제공하지 않으면서 상기 염증에 의해 야기되는 상기 해부학적 구조물에서의 적어도 하나의 변화로 인해 상기 해부학적 구조물로부터 제공되는, 적어도 하나의 제2 전자기 방사선을 검출하는 단계; 및
    컴퓨터를 사용하여, 상기 제2 방사선에 기초해 상기 구조물의 적어도 하나의 특징을 결정하여 상기 해부학적 구조물 내의 상기 염증을 진단 또는 특징짓는 단계를 포함하는 방법.
  2. 제1항에 있어서, 상기 제1 파장은 600nm 내지 900nm 사이인 방법.
  3. 제1항에 있어서, 상기 제1 파장은 600nm 내지 800nm 사이인 방법.
  4. 제1항에 있어서, 상기 제1 파장은 650nm 내지 750nm 사이인 방법.
  5. 제4항에 있어서, 상기 제1 파장은 650nm 내지 700nm 사이인 방법.
  6. 제1항에 있어서, 상기 제2 파장은 640nm 내지 1000nm 사이인 방법.
  7. 제6항에 있어서, 상기 제2 파장은 640nm 내지 800nm 사이인 방법.
  8. 제6항에 있어서, 상기 제2 파장은 이중 클래드 광섬유(double clad fiber optic)의 배경 방출의 파장 범위 밖에 있도록 선택되는 방법.
  9. 제8항에 있어서, 상기 파장 범위의 상단은 20nm를 초과하는 방법.
  10. 제9항에 있어서, 상기 파장 범위의 상단은 40nm를 초과하는 방법.
  11. 제1항에 있어서, 상기 적어도 하나의 제2 파장은 복수의 제2 파장이고, 상기 검출 절차는 상기 제2 파장의 함수로서 수행되는 방법.
  12. 제11항에 있어서, 상기 결정 절차는 상기 염증의 특징을 추가로 특정하기 위해 상기 제2 방사선의 방출 스펙트럼의 수학적 조작을 포함하는 방법.
  13. 제1항에 있어서, 상기 적어도 하나의 특징은 산화 스트레스, 칼슘, 플라크내 출혈, 단백질 변형, 지질 단백질 변형, 지질 변형 또는 효소 활성 중 적어도 하나인 방법.
  14. 제13항에 있어서, 상기 단백질 변형은 디티로신 또는 니트로티로신인 방법.
  15. 제13항에 있어서, 상기 지질 단백질 변형은 산화된 LDL인 방법.
  16. 제13항에 있어서, 상기 플라크내 출혈은 내인성 포르피린을 함유하는 방법.
  17. 제1항에 있어서, 적어도 하나의 제3 방사선을 샘플에 그리고 적어도 하나의 제4 방사선을 기준(reference)에 제공하는 단계, 및 상기 제3 방사선과 상기 제4 방사선 사이의 간섭인 적어도 하나의 제5 방사선을 수신하는 단계를 더 포함하고, 상기 결정 단계는 상기 제5 방사선의 추가 함수(further function)로서 수행되는 방법.
  18. 제17항에 있어서, 상기 제1 방사선은 상기 제1 방사선과 적어도 부분적으로 공존(co-localized)하는 방법.
  19. 제1항에 있어서, 상기 구조물은 관상 동맥인 방법.
  20. 제19항에 있어서,
    상기 제1 전자기는 상기 관상 동맥 내에 제공되는 방법.
  21. 제1항에 있어서, 상기 해부학적 구조물은 괴사성 플라크를 가진 것으로 의심되는 환자의 관상 동맥인 방법.
  22. 제1항에 있어서, 상기 결정 절차는,
    적어도 2개의 제2 파장 범위를 검출하고,
    상기 적어도 2개의 제2 파장 범위로 스펙트럼 형상 데이터 또는 상대 강도 데이터를 특징짓고,
    상기 스펙트럼 형상 또는 상대 강도 데이터를 훈련 데이터 세트와 비교하는 것을 포함하는 방법.
  23. 제22항에 있어서, 상기 스펙트럼 형상 데이터는 상기 적어도 2개의 제2 파장 범위의 비율로서 비교되는 방법.
  24. 제22항에 있어서, 상기 스펙트럼 형상 데이터 또는 상대 강도 데이터는 노이즈 또는 센서 파라미터로 보정되는 방법.
  25. 제22항에 있어서, 상기 특징화 프로세스는 주성분 분석 방법으로 분석하는 것을 포함하는 방법.
  26. 제1항에 있어서, 상기 결정 절차는,
    복수의 제2 파장을 검출하고,
    상기 제2 파장으로 스펙트럼 형상 및 상대 강도를 스코어링하고,
    제3 스코어를 훈련 데이터 세트와 비교하는 것을 포함하는 방법.
  27. 제1항에 있어서,
    상기 제2 방사선은 640nm 내지 660nm 사이인 제1 범위 및 660nm 내지 740nm 사이인 제2 범위에서 제공되고, 상기 결정 절차는 상기 제1 및 제2 범위의 비율을 훈련 데이터 세트와 비교하는 것을 포함하는 방법.
  28. 해부학적 구조물 내의 염증을 진단 또는 특징짓기 위한 장치로서,
    생체 내에서 적어도 하나의 제1 파장에서 상기 해부학적 구조물에 적어도 하나의 제1 전자기 방사선을 제공하도록 구성된 적어도 하나의 소스 장치; 상기 해부학적 구조물로부터의 적어도 하나의 제2 파장에서 적어도 하나의 제2 전자기 방사선을 검출하도록 구성된 적어도 하나의 검출기 장치로서, 상기 제2 방사선은 상기 제1 방사선과 연관되고, 상기 제1 파장은 상기 제2 파장보다 짧고, 상기 제2 방사선은 인공 형광 물질을 제공하지 않으면서 상기 염증에 의해 야기되는 상기 해부학적 구조물에서의 적어도 하나의 변화로 인해 상기 해부학적 구조물로부터 제공되는 적어도 하나의 검출기 장치; 및 상기 제2 방사선에 기초해 상기 구조물의 적어도 하나의 특징을 결정하여 상기 해부학적 구조물 내의 상기 염증을 진단 또는 특징짓도록 구성된 적어도 하나의 컴퓨터 장치를 포함하는 장치.
  29. 혈관 내로 카테터를 삽입하는 단계;
    적어도 하나의 제1 파장에서 상기 혈관에 상기 카테터를 통해 적어도 하나의 제1 광 방사선을 제공하는 단계;
    상기 적어도 하나의 제1 파장과 상이한 적어도 하나의 제2 파장에서 상기 카테터를 통해 적어도 하나의 제2 광 방사선을 검출하는 단계로서, 상기 적어도 하나의 제2 광 방사선은 상기 적어도 하나의 제1 광 방사선에 의해 영향을 받는 상기 혈관의 적어도 한 부분의 자가형광에 기초하는, 적어도 하나의 제2 광 방사선을 검출하는 단계; 및
    상기 적어도 하나의 제2 광 방사선에 기초하여 상기 혈관의 적어도 하나의 특징을 결정하여 상기 혈관의 적어도 하나의 특징을 진단 또는 특징짓는 단계를 포함하는 방법.
  30. 제29항에 있어서, 상기 제1 파장은 600nm 내지 900nm 사이인 방법.
  31. 제29항에 있어서, 상기 제1 파장은 600nm 내지 800nm 사이인 방법.
  32. 제29항에 있어서, 상기 제1 파장은 650nm 내지 750nm 사이인 방법.
  33. 제32항에 있어서, 상기 제1 파장은 650nm 내지 700nm 사이인 방법.
  34. 제29항에 있어서, 상기 제2 파장은 640nm 내지 1000nm 사이인 방법.
  35. 제34항에 있어서, 상기 제2 파장은 640nm 내지 800nm 사이인 방법.
  36. 제34항에 있어서, 상기 제2 파장은 이중 클래드 광섬유의 배경 방출의 파장 범위 밖에 있도록 선택되는 방법.
  37. 제36항에 있어서, 상기 파장 범위의 상단은 20nm를 초과하는 방법.
  38. 제37항에 있어서, 상기 파장 범위의 상단은 40nm를 초과하는 방법.
  39. 제29항에 있어서, 상기 적어도 하나의 제2 파장은 복수의 제2 파장이고, 상기 검출 절차는 상기 제2 파장의 함수로서 수행되는 방법.
  40. 제39항에 있어서, 상기 결정 절차는 상기 염증의 특징을 추가로 특정하기 위해 상기 제2 방사선의 방출 스펙트럼의 수학적 조작을 포함하는 방법.
  41. 제29항에 있어서, 상기 적어도 하나의 특징은 산화 스트레스, 칼슘, 플라크내 출혈, 단백질 변형, 지질 단백질 변형, 지질 변형 또는 효소 활성 중 적어도 하나인 방법.
  42. 제41항에 있어서, 상기 단백질 변형은 디티로신 또는 니트로티로신인 방법.
  43. 제41항에 있어서, 상기 지질 단백질 변형은 산화된 LDL인 방법.
  44. 제41항에 있어서, 상기 플라크내 출혈은 내인성 포르피린을 함유하는 방법.
  45. 제29항에 있어서, 적어도 하나의 제3 방사선을 샘플에 그리고 적어도 하나의 제4 방사선을 기준에 제공하는 단계, 및 상기 제3 방사선과 상기 제4 방사선 사이의 간섭인 적어도 하나의 제5 방사선을 수신하는 단계를 더 포함하고, 상기 결정 단계는 상기 제5 방사선의 추가 함수로서 수행되는 방법.
  46. 제45항에 있어서, 상기 제1 방사선은 상기 제1 방사선과 적어도 부분적으로 공존하는 방법.
  47. 제29항에 있어서, 상기 혈관은 괴사성 플라크를 가진 것으로 의심되는 환자에서 제공되는 방법.
  48. 제29항에 있어서, 상기 결정 절차는,
    적어도 2개의 제2 파장 범위를 검출하고,
    상기 적어도 2개의 제2 파장 범위로 스펙트럼 형상 데이터 또는 상대 강도 데이터를 특징짓고,
    상기 스펙트럼 형상 또는 상대 강도 데이터를 훈련 데이터 세트와 비교하는 것을 포함하는 방법.
  49. 제48항에 있어서, 상기 스펙트럼 형상 데이터는 상기 적어도 2개의 제2 파장 범위의 비율로서 비교되는 방법.
  50. 제48항에 있어서, 상기 스펙트럼 형상 데이터 또는 상대 강도 데이터는 노이즈 또는 센서 파라미터로 보정되는 방법.
  51. 제48항에 있어서, 특징화 절차는 주성분 분석 방법으로 분석하는 것을 포함하는 방법.
  52. 제29항에 있어서, 결정 절차는,
    복수의 제2 파장들을 검출하고,
    상기 제2 파장으로 스펙트럼 형상 및 상대 강도를 스코어링하고,
    제3 스코어를 훈련 데이터 세트와 비교하는 것을 포함하는 방법.
  53. 제29항에 있어서,
    상기 제2 방사선은 640nm 내지 660nm 사이인 제1 범위 및 660nm 내지 740nm 사이인 제2 범위에서 제공되고, 상기 결정 절차는 상기 제1 및 제2 범위의 비율을 훈련 데이터 세트와 비교하는 것을 포함하는 방법.
  54. 혈관 내로 삽입되도록 구성되고 구조화된 카테터;
    적어도 하나의 제1 파장에서 상기 혈관에 상기 카테터를 통해 적어도 하나의 제1 광 방사선을 제공하도록 구성된 에너지 소스 장치;
    상기 적어도 하나의 제1 파장과 상이한 적어도 하나의 제2 파장에서 상기 카테터를 통해 적어도 하나의 제2 광 방사선을 검출하도록 구성된 검출기 장치로서, 상기 적어도 하나의 제2 광 방사선은 상기 적어도 하나의 제1 광 방사선에 의해 영향을 받는 상기 혈관의 적어도 한 부분의 자가형광에 기초하는 검출기 장치; 및
    상기 적어도 하나의 제2 광 방사선에 기초하여 상기 혈관의 적어도 하나의 특징을 결정하여 상기 혈관의 적어도 하나의 특징을 진단 또는 특징짓도록 구성된 컴퓨터 장치를 포함하는 장치.
  55. 혈관 내로 카테터를 삽입하는 단계;
    상기 카테터를 통해, 550nm 내지 900nm 사이인 적어도 하나의 제1 파장에서 상기 혈관에 적어도 하나의 제1 광 방사선을 제공하는 단계;
    상기 카테터를 통해, 640nm 내지 900nm 사이인 적어도 하나의 제2 파장에서 적어도 하나의 제2 광 방사선을 검출하는 단계로서, 상기 적어도 하나의 제2 광 방사선은 상기 적어도 하나의 제1 광 방사선에 의해 영향을 받는 상기 혈관의 적어도 한 부분의 자가형광에 기초하는 적어도 하나의 제2 광 방사선을 검출하는 단계; 및
    상기 적어도 하나의 제2 광 방사선에 기초하여 산화 스트레스, 칼슘, 플라크내 출혈, 단백질 변형, 지질 단백질 변형, 지질 변형 또는 효소 활성 중 적어도 하나를 결정하는 단계를 포함하는 방법.
  56. 제55항에 있어서, 상기 제1 파장은 600nm 내지 900nm 사이인 방법.
  57. 제55항에 있어서, 상기 제1 파장은 600nm 내지 700nm 사이인 방법.
  58. 제55항에 있어서, 상기 제2 파장은 640nm 내지 1000nm 사이인 방법.
  59. 제55항에 있어서, 상기 제2 파장은 640nm 내지 800nm 사이인 방법.
  60. 제59항에 있어서, 상기 제2 파장은 이중 클래드 광섬유의 배경 방출의 파장 범위 밖에 있도록 선택되는 방법.
  61. 제60항에 있어서, 상기 파장 범위의 상단은 20nm를 초과하는 방법.
  62. 제61항에 있어서, 상기 파장 범위의 상단은 40nm를 초과하는 방법.
  63. 제55항에 있어서, 상기 적어도 하나의 제2 파장은 복수의 제2 파장이고, 상기 검출 절차는 상기 제2 파장의 함수로서 수행되는 방법.
  64. 제63항에 있어서, 상기 결정 절차는 상기 염증의 특징을 추가로 특정하기 위해 상기 제2 방사선의 방출 스펙트럼의 수학적 조작을 포함하는 방법.
  65. 제55항에 있어서, 상기 단백질 변형은 디티로신 또는 니트로티로신인 방법.
  66. 제55항에 있어서, 상기 지질 단백질 변형은 산화된 LDL인 방법.
  67. 제55항에 있어서, 상기 플라크내 출혈은 내인성 포르피린을 함유하는 방법.
  68. 제55항에 있어서, 적어도 하나의 제3 방사선을 샘플에 그리고 적어도 하나의 제4 방사선을 기준에 제공하는 단계, 및 상기 제3 방사선과 상기 제4 방사선 사이의 간섭인 적어도 하나의 제5 방사선을 수신하는 단계를 더 포함하고, 상기 결정 단계는 상기 제5 방사선의 추가 함수로서 수행되는 방법.
  69. 제68항에 있어서, 상기 제1 방사선은 상기 제1 방사선과 적어도 부분적으로 공존하는 방법.
  70. 제55항에 있어서, 상기 혈관은 괴사성 플라크를 가진 것으로 의심되는 환자에서 제공되는 방법.
  71. 제55항에 있어서, 상기 결정 절차는,
    적어도 2개의 제2 파장 범위를 검출하고,
    상기 적어도 2개의 제2 파장 범위로 스펙트럼 형상 데이터 또는 상대 강도 데이터를 특징짓고,
    상기 스펙트럼 형상 또는 상대 강도 데이터를 훈련 데이터 세트와 비교하는 것을 포함하는 방법.
  72. 제71항에 있어서, 상기 스펙트럼 형상 데이터는 상기 적어도 2개의 제2 파장 범위의 비율로서 비교되는 방법.
  73. 제71항에 있어서, 상기 스펙트럼 형상 데이터 또는 상대 강도 데이터는 노이즈 또는 센서 파라미터로 보정되는 방법.
  74. 제71항에 있어서, 상기 특징화 프로세스는 주성분 분석 방법으로 분석하는 것을 포함하는 방법.
  75. 제55항에 있어서, 상기 결정 절차는,
    복수의 제2 파장을 검출하고,
    상기 제2 파장으로 스펙트럼 형상 및 상대 강도를 스코어링하고,
    제3 스코어를 훈련 데이터 세트와 비교하는 것을 포함하는 방법.
  76. 제55항에 있어서, 상기 결정 절차는 상기 제1 및 제2 범위의 비율을 훈련 데이터 세트와 비교하는 것을 포함하는 방법.
  77. 혈관 내로 삽입되도록 구성되고 구조화된 카테터; 상기 카테터를 통해, 550nm 내지 800nm 사이인 적어도 하나의 제1 파장에서 상기 혈관에 적어도 하나의 제1 광 방사선을 제공하도록 구성된 에너지 소스 장치; 상기 카테터를 통해, 640nm 내지 900nm 사이인 적어도 하나의 제2 파장에서 적어도 하나의 제2 광 방사선을 검출하도록 구성된 검출기 장치로서, 상기 적어도 하나의 제2 광 방사선은 상기 적어도 하나의 제1 광 방사선에 의해 영향을 받는 상기 혈관의 적어도 한 부분의 자가형광에 기초하는 검출기 장치; 및 상기 적어도 하나의 제2 광 방사선에 기초하여 산화 스트레스, 칼슘, 플라크내 출혈, 단백질 변형, 지질 단백질 변형, 지질 변형 또는 효소 활성 중 적어도 하나를 결정하도록 구성된 컴퓨터 장치를 포함하는 장치.
  78. 600 내지 900nm 사이인 적어도 하나의 제1 파장에서 구조물에 적어도 하나의 제1 광 방사선을 제공하는 단계;
    상기 제1 파장과 상이한 적어도 하나의 제2 파장에서 적어도 하나의 제2 광 방사선을 검출하는 단계로서, 상기 제2 광 방사선은 상기 제1 광 방사선에 의해 영향을 받는 상기 구조물의 적어도 한 부분의 자가형광에 기초하는, 적어도 하나의 제2 광 방사선을 검출하는 단계; 및
    상기 제2 광 방사선에 기초하여 적어도 하나의 그래디언트 제2 이미지 및 상기 구조물의 상기 적어도 한 부분의 적어도 하나의 제1 이미지를 생성하는 단계를 포함하는 이미징 방법.
  79. 제78항에 있어서, 상기 제1 또는 제2 이미지 중 적어도 하나는 공동 등록되는 이미징 방법.
  80. 제78항에 있어서, 상기 생성 절차는 OCT 이미지, IVIS 이미지, 혈관조영 이미지, CT 이미지 또는 MRI 이미지를 획득하는 것을 포함하는 이미징 방법.
  81. 제78항에 있어서, 상기 제2 이미지는 상기 제2 광 방사선의 적어도 2개의 파장 범위의 비율의 디스플레이를 포함하는 이미징 방법.
  82. 400nm 내지 900nm 사이인 적어도 하나의 제1 파장에서 구조물에 적어도 하나의 제1 광 방사선을 제공하도록 구성된 에너지 소스;
    상기 제1 파장과 상이한 적어도 하나의 제2 파장에서 적어도 하나의 제2 광 방사선을 검출하도록 구성된 검출기 장치로서, 상기 제2 광 방사선은 상기 제1 광 방사선에 의해 영향을 받는 상기 구조물의 적어도 한 부분의 자가형광에 기초하는 검출기 장치; 및
    상기 제2 광 방사선에 기초하여 적어도 하나의 그래디언트 제2 이미지 및 상기 구조물의 상기 적어도 한 부분의 적어도 하나의 제1 이미지를 생성하도록 구성된 컴퓨터 장치를 포함하는 장치.
  83. 광 간섭성 단층촬영 또는 NIR 형광 중 적어도 하나를 용이하게 하고 형광 신호를 송신하도록 구성된 이중 클래드 섬유 구조물로서, 상기 이중 클래드 섬유 구조물은 적어도 하나의 코어 및 적어도 하나의 클래딩을 포함하고, 상기 코어 및 상기 클래딩의 구성은 상기 적어도 하나의 클래딩에 대한 상기 적어도 하나의 코어의 비율이 상기 형광 신호의 벤딩 손실의 감소 또는 최소화를 일으키도록 제공되고, 상기 구성은 배경 형광의 감소 또는 최소화를 추가로 달성하는 이중 클래드 섬유 구조물을 포함하는 장치.
  84. 제83항에 있어서, 상기 이중 클래드 섬유의 배경 형광에 기초하여 형광 배경 신호를 보정하는 컴퓨터를 더 포함하는 장치.
KR1020177005420A 2014-07-25 2015-07-27 생체 내 이미징 및 진단을 위한 장치, 디바이스 및 방법 KR102513779B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462029007P 2014-07-25 2014-07-25
US62/029,007 2014-07-25
PCT/US2015/042283 WO2016015052A1 (en) 2014-07-25 2015-07-27 Apparatus, devices and methods for in vivo imaging and diagnosis

Publications (2)

Publication Number Publication Date
KR20170038024A true KR20170038024A (ko) 2017-04-05
KR102513779B1 KR102513779B1 (ko) 2023-03-24

Family

ID=55163897

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177005420A KR102513779B1 (ko) 2014-07-25 2015-07-27 생체 내 이미징 및 진단을 위한 장치, 디바이스 및 방법

Country Status (6)

Country Link
US (2) US10912462B2 (ko)
EP (1) EP3171766B1 (ko)
JP (3) JP2017525435A (ko)
KR (1) KR102513779B1 (ko)
ES (1) ES2907287T3 (ko)
WO (1) WO2016015052A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019112162A1 (ko) * 2017-12-06 2019-06-13 한국광기술원 광단층영상 시스템을 이용한 혈관 이미징 장치 및 방법
US11172826B2 (en) 2016-03-08 2021-11-16 Enspectra Health, Inc. Non-invasive detection of skin disease
WO2022131612A1 (ko) * 2020-12-15 2022-06-23 이민희 비침습 3d 혈액 영상 및 성분 분석 장치
US11633149B2 (en) 2017-04-28 2023-04-25 Enspectra Health, Inc. Systems and methods for imaging and measurement of sarcomeres

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2907287T3 (es) * 2014-07-25 2022-04-22 Massachusetts Gen Hospital Aparato para imagenología y diagnóstico in vivo
WO2016157156A1 (en) 2015-04-02 2016-10-06 Livspek Medical Technologies Inc. Method and apparatus for a spectral detector for noninvasive detection and monitoring of a variety of biomarkers and other blood constituents in the conjunctiva
EP3430381A1 (en) * 2016-03-14 2019-01-23 Massachusetts Institute Of Technology Device and method for imaging shortwave infrared fluorescence
US10996402B2 (en) 2016-03-24 2021-05-04 Canon U.S.A., Inc. Multi-channel optical fiber rotary junction
US10073006B2 (en) * 2016-04-15 2018-09-11 Viavi Solutions Inc. Brillouin and rayleigh distributed sensor
US10578422B2 (en) 2016-06-08 2020-03-03 Canon U.S.A., Inc. Devices, systems, methods and storage mediums using full range optical coherence tomography
US10952702B2 (en) 2016-06-21 2021-03-23 Canon U.S.A., Inc. Non-uniform rotational distortion detection catheter system
US10602989B2 (en) 2016-09-02 2020-03-31 Canon U.S.A., Inc. Capacitive sensing and encoding for imaging probes
EP3375353A1 (en) * 2017-03-16 2018-09-19 Universität Zürich Photoacoustic imaging of inflamed tissue
US10895692B2 (en) 2017-06-01 2021-01-19 Canon U.S.A., Inc. Fiber optic rotary joints and methods of using and manufacturing same
US10323926B2 (en) 2017-06-21 2019-06-18 Canon U.S.A., Inc. Crosstalk elimination or mitigation in optical coherence tomography
US10678044B2 (en) 2017-08-23 2020-06-09 Canon U.S.A., Inc. Beam-steering devices employing electrowetting prisms
US11259702B2 (en) * 2017-08-29 2022-03-01 Canon U.S.A., Inc. Fiber optic imaging probe having cladding mode pullback trigger, and control method therefor
US11147453B2 (en) 2017-10-03 2021-10-19 Canon U.S.A., Inc. Calibration for OCT-NIRAF multimodality probe
US11224336B2 (en) 2017-11-17 2022-01-18 Canon U.S.A., Inc. Rotational extender and/or repeater for rotating fiber based optical imaging systems, and methods and storage mediums for use therewith
US10952616B2 (en) 2018-03-30 2021-03-23 Canon U.S.A., Inc. Fluorescence imaging apparatus
US11406327B2 (en) 2018-04-17 2022-08-09 Canon U.S.A., Inc. Imaging catheter assembly
JP7075371B2 (ja) 2018-05-03 2022-05-25 キヤノン ユーエスエイ,インコーポレイテッド マルチプルイメージングモダリティにわたって関心領域を強調するためのデバイス、システム、および方法
US10743749B2 (en) * 2018-09-14 2020-08-18 Canon U.S.A., Inc. System and method for detecting optical probe connection
US10791923B2 (en) 2018-09-24 2020-10-06 Canon U.S.A., Inc. Ball lens for optical probe and methods therefor
EP3730042A1 (en) * 2019-02-07 2020-10-28 Canon U.S.A., Inc. Apparatus for reducing thermal noise and ambient light noise in fluorescence imaging
US11175126B2 (en) 2019-04-08 2021-11-16 Canon U.S.A., Inc. Automated polarization control
US11707186B2 (en) 2019-06-14 2023-07-25 Canon U.S.A., Inc. Fluorescence or auto-fluorescence trigger or triggers
US20200397239A1 (en) 2019-06-20 2020-12-24 Ethicon Llc Offset illumination of a scene using multiple emitters in a fluorescence imaging system
US11550057B2 (en) * 2019-06-20 2023-01-10 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a fluorescence imaging system
US11931009B2 (en) 2019-06-20 2024-03-19 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a hyperspectral imaging system
US11903563B2 (en) 2019-06-20 2024-02-20 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a fluorescence imaging system
US11187658B2 (en) * 2019-06-20 2021-11-30 Cilag Gmbh International Fluorescence imaging with fixed pattern noise cancellation
US20210077037A1 (en) 2019-09-17 2021-03-18 Canon U.S.A., Inc. Constructing or reconstructing 3d structure(s)
EP4030996A4 (en) 2019-09-20 2023-10-25 Canon U.S.A. Inc. ARTIFICIAL INTELLIGENCE-BASED MARKER REGISTRATION AND DETECTION, INCLUDING MACHINE LEARNING AND USE OF ITS RESULTS
US11922633B2 (en) 2020-06-30 2024-03-05 Canon U.S.A., Inc. Real-time lumen distance calculation based on three-dimensional (3D) A-line signal data
US11944778B2 (en) 2020-08-06 2024-04-02 Canon U.S.A., Inc. Methods and systems for automatic pullback trigger
US11972561B2 (en) 2020-08-06 2024-04-30 Canon U.S.A., Inc. Auto-pullback triggering method for intracoronary imaging apparatuses or systems using blood clearing
US11925321B2 (en) 2020-08-06 2024-03-12 Canon U.S.A., Inc. Anti-twist tip for steerable catheter
WO2023028032A1 (en) * 2021-08-24 2023-03-02 The General Hospital Corporation Intravascular dual-modality oct and multichannel nirf inflammation imaging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030236453A1 (en) * 2002-06-19 2003-12-25 Simon Furnish Multi-channel catheter tip
JP2006081619A (ja) * 2004-09-14 2006-03-30 Yasuyoshi Uchida 蛍光像取得用血管内視鏡装置
US20090192358A1 (en) * 2008-01-28 2009-07-30 The General Hospital Corporation Systems, processes and computer-accessible medium for providing hybrid flourescence and optical coherence tomography imaging
WO2013152395A1 (en) * 2012-04-13 2013-10-17 Baker Idi Heart & Diabetes Institute Holdings Limited Atherosclerotic plaque detection

Family Cites Families (678)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2339754A (en) 1941-03-04 1944-01-25 Westinghouse Electric & Mfg Co Supervisory apparatus
US3090753A (en) 1960-08-02 1963-05-21 Exxon Research Engineering Co Ester oil compositions containing acid anhydride
GB1257778A (ko) 1967-12-07 1971-12-22
US3601480A (en) 1968-07-10 1971-08-24 Physics Int Co Optical tunnel high-speed camera system
JPS559417B2 (ko) 1971-10-09 1980-03-10
JPS4932484U (ko) 1972-06-19 1974-03-20
US3872407A (en) 1972-09-01 1975-03-18 Us Navy Rapidly tunable laser
JPS584481Y2 (ja) 1973-06-23 1983-01-26 オリンパス光学工業株式会社 ナイシキヨウシヤヘンカンコウガクケイ
FR2253410A5 (ko) 1973-12-03 1975-06-27 Inst Nat Sante Rech Med
US3941121A (en) 1974-12-20 1976-03-02 The University Of Cincinnati Focusing fiber-optic needle endoscope
US3983507A (en) 1975-01-06 1976-09-28 Research Corporation Tunable laser systems and method
US3973219A (en) 1975-04-24 1976-08-03 Cornell Research Foundation, Inc. Very rapidly tuned cw dye laser
US4030831A (en) 1976-03-22 1977-06-21 The United States Of America As Represented By The Secretary Of The Navy Phase detector for optical figure sensing
US4141362A (en) 1977-05-23 1979-02-27 Richard Wolf Gmbh Laser endoscope
US4224929A (en) 1977-11-08 1980-09-30 Olympus Optical Co., Ltd. Endoscope with expansible cuff member and operation section
GB2047894B (en) 1978-03-09 1982-11-03 Nat Res Dev Speckle interferometric measurement of small oscillatory movements
GB2030313A (en) 1978-06-29 1980-04-02 Wolf Gmbh Richard Endoscopes
FR2448728A1 (fr) 1979-02-07 1980-09-05 Thomson Csf Dispositif joint tournant pour liaison par conducteurs optiques et systeme comportant un tel dispositif
US4295738A (en) 1979-08-30 1981-10-20 United Technologies Corporation Fiber optic strain sensor
US4300816A (en) 1979-08-30 1981-11-17 United Technologies Corporation Wide band multicore optical fiber
US4428643A (en) 1981-04-08 1984-01-31 Xerox Corporation Optical scanning system with wavelength shift correction
US5065331A (en) 1981-05-18 1991-11-12 Vachon Reginald I Apparatus and method for determining the stress and strain in pipes, pressure vessels, structural members and other deformable bodies
GB2106736B (en) 1981-09-03 1985-06-12 Standard Telephones Cables Ltd Optical transmission system
US4479499A (en) 1982-01-29 1984-10-30 Alfano Robert R Method and apparatus for detecting the presence of caries in teeth using visible light
US5302025A (en) 1982-08-06 1994-04-12 Kleinerman Marcos Y Optical systems for sensing temperature and other physical parameters
US4601036A (en) 1982-09-30 1986-07-15 Honeywell Inc. Rapidly tunable laser
HU187188B (en) 1982-11-25 1985-11-28 Koezponti Elelmiszeripari Device for generating radiation of controllable spectral structure
CH663466A5 (fr) 1983-09-12 1987-12-15 Battelle Memorial Institute Procede et dispositif pour determiner la position d'un objet par rapport a une reference.
JPS6140633A (ja) 1984-08-02 1986-02-26 Nec Corp タブレツト装置
US4639999A (en) 1984-11-02 1987-02-03 Xerox Corporation High resolution, high efficiency I.R. LED printing array fabrication method
US4763977A (en) 1985-01-09 1988-08-16 Canadian Patents And Development Limited-Societe Optical fiber coupler with tunable coupling ratio and method of making
US5318024A (en) 1985-03-22 1994-06-07 Massachusetts Institute Of Technology Laser endoscope for spectroscopic imaging
EP0590268B1 (en) 1985-03-22 1998-07-01 Massachusetts Institute Of Technology Fiber Optic Probe System for Spectrally Diagnosing Tissue
DE3610165A1 (de) 1985-03-27 1986-10-02 Olympus Optical Co., Ltd., Tokio/Tokyo Optisches abtastmikroskop
US4607622A (en) 1985-04-11 1986-08-26 Charles D. Fritch Fiber optic ocular endoscope
US4631498A (en) 1985-04-26 1986-12-23 Hewlett-Packard Company CW Laser wavemeter/frequency locking technique
US4650327A (en) 1985-10-28 1987-03-17 Oximetrix, Inc. Optical catheter calibrating assembly
JPH0664683B2 (ja) 1986-02-13 1994-08-22 松下電器産業株式会社 回転磁気ヘツド記録装置
US5040889A (en) 1986-05-30 1991-08-20 Pacific Scientific Company Spectrometer with combined visible and ultraviolet sample illumination
CA1290019C (en) 1986-06-20 1991-10-01 Hideo Kuwahara Dual balanced optical signal receiver
US4770492A (en) 1986-10-28 1988-09-13 Spectran Corporation Pressure or strain sensitive optical fiber
JPH0824665B2 (ja) 1986-11-28 1996-03-13 オリンパス光学工業株式会社 内視鏡装置
US4744656A (en) 1986-12-08 1988-05-17 Spectramed, Inc. Disposable calibration boot for optical-type cardiovascular catheter
US4751706A (en) 1986-12-31 1988-06-14 The United States Of America As Represented By The Secretary Of The Army Laser for providing rapid sequence of different wavelengths
US4834111A (en) 1987-01-12 1989-05-30 The Trustees Of Columbia University In The City Of New York Heterodyne interferometer
CA1339426C (en) 1987-09-01 1997-09-02 Michael R. Layton Hydrophone demodulator circuit and method
US5202931A (en) 1987-10-06 1993-04-13 Cell Analysis Systems, Inc. Methods and apparatus for the quantitation of nuclear protein
US4909631A (en) 1987-12-18 1990-03-20 Tan Raul Y Method for film thickness and refractive index determination
US4890901A (en) 1987-12-22 1990-01-02 Hughes Aircraft Company Color corrector for embedded prisms
US4892406A (en) 1988-01-11 1990-01-09 United Technologies Corporation Method of and arrangement for measuring vibrations
FR2626367B1 (fr) 1988-01-25 1990-05-11 Thomson Csf Capteur de temperature multipoints a fibre optique
FR2626383B1 (fr) 1988-01-27 1991-10-25 Commissariat Energie Atomique Procede de microscopie optique confocale a balayage et en profondeur de champ etendue et dispositifs pour la mise en oeuvre du procede
US4925302A (en) 1988-04-13 1990-05-15 Hewlett-Packard Company Frequency locking device
US4998972A (en) 1988-04-28 1991-03-12 Thomas J. Fogarty Real time angioscopy imaging system
US5730731A (en) 1988-04-28 1998-03-24 Thomas J. Fogarty Pressure-based irrigation accumulator
US4905169A (en) 1988-06-02 1990-02-27 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation
US5242437A (en) 1988-06-10 1993-09-07 Trimedyne Laser Systems, Inc. Medical device applying localized high intensity light and heat, particularly for destruction of the endometrium
DE68929553T2 (de) 1988-07-13 2009-01-29 Optiscan Pty. Ltd., Toorak Konfokales Rastermikroskop
GB8817672D0 (en) 1988-07-25 1988-09-01 Sira Ltd Optical apparatus
US5214538A (en) 1988-07-25 1993-05-25 Keymed (Medical And Industrial Equipment) Limited Optical apparatus
US4868834A (en) 1988-09-14 1989-09-19 The United States Of America As Represented By The Secretary Of The Army System for rapidly tuning a low pressure pulsed laser
DE3833602A1 (de) 1988-10-03 1990-02-15 Krupp Gmbh Spektrometer zur gleichzeitigen intensitaetsmessung in verschiedenen spektralbereichen
US4940328A (en) 1988-11-04 1990-07-10 Georgia Tech Research Corporation Optical sensing apparatus and method
US4966589A (en) 1988-11-14 1990-10-30 Hemedix International, Inc. Intravenous catheter placement device
WO1990006718A1 (en) 1988-12-21 1990-06-28 Massachusetts Institute Of Technology A method for laser induced fluorescence of tissue
US5046501A (en) 1989-01-18 1991-09-10 Wayne State University Atherosclerotic identification
US5085496A (en) 1989-03-31 1992-02-04 Sharp Kabushiki Kaisha Optical element and optical pickup device comprising it
US5317389A (en) 1989-06-12 1994-05-31 California Institute Of Technology Method and apparatus for white-light dispersed-fringe interferometric measurement of corneal topography
US4965599A (en) 1989-11-13 1990-10-23 Eastman Kodak Company Scanning apparatus for halftone image screen writing
US5133035A (en) 1989-11-14 1992-07-21 Hicks John W Multifiber endoscope with multiple scanning modes to produce an image free of fixed pattern noise
US4984888A (en) 1989-12-13 1991-01-15 Imo Industries, Inc. Two-dimensional spectrometer
KR930003307B1 (ko) 1989-12-14 1993-04-24 주식회사 금성사 입체용 프로젝터
US5251009A (en) 1990-01-22 1993-10-05 Ciba-Geigy Corporation Interferometric measuring arrangement for refractive index measurements in capillary tubes
DD293205B5 (de) 1990-03-05 1995-06-29 Zeiss Carl Jena Gmbh Lichtleiterfuehrung fuer ein medizinisches Beobachtungsgeraet
US5039193A (en) 1990-04-03 1991-08-13 Focal Technologies Incorporated Fibre optic single mode rotary joint
JPH0456907A (ja) 1990-06-26 1992-02-24 Fujikura Ltd 光ファイバカプラ
US5262644A (en) 1990-06-29 1993-11-16 Southwest Research Institute Remote spectroscopy for raman and brillouin scattering
US5197470A (en) 1990-07-16 1993-03-30 Eastman Kodak Company Near infrared diagnostic method and instrument
GB9015793D0 (en) 1990-07-18 1990-09-05 Medical Res Council Confocal scanning optical microscope
US5127730A (en) 1990-08-10 1992-07-07 Regents Of The University Of Minnesota Multi-color laser scanning confocal imaging system
US5845639A (en) 1990-08-10 1998-12-08 Board Of Regents Of The University Of Washington Optical imaging methods
JP3104984B2 (ja) 1990-09-27 2000-10-30 オリンパス光学工業株式会社 断層像観察用光走査装置
JPH04135551A (ja) 1990-09-27 1992-05-11 Olympus Optical Co Ltd 光三次元像観察装置
US5305759A (en) 1990-09-26 1994-04-26 Olympus Optical Co., Ltd. Examined body interior information observing apparatus by using photo-pulses controlling gains for depths
US5241364A (en) 1990-10-19 1993-08-31 Fuji Photo Film Co., Ltd. Confocal scanning type of phase contrast microscope and scanning microscope
US5250186A (en) 1990-10-23 1993-10-05 Cetus Corporation HPLC light scattering detector for biopolymers
US5202745A (en) 1990-11-07 1993-04-13 Hewlett-Packard Company Polarization independent optical coherence-domain reflectometry
US5275594A (en) 1990-11-09 1994-01-04 C. R. Bard, Inc. Angioplasty system having means for identification of atherosclerotic plaque
JP3035336B2 (ja) 1990-11-27 2000-04-24 興和株式会社 血流測定装置
US5228001A (en) 1991-01-23 1993-07-13 Syracuse University Optical random access memory
US5784162A (en) 1993-08-18 1998-07-21 Applied Spectral Imaging Ltd. Spectral bio-imaging methods for biological research, medical diagnostics and therapy
US6198532B1 (en) 1991-02-22 2001-03-06 Applied Spectral Imaging Ltd. Spectral bio-imaging of the eye
US5293872A (en) 1991-04-03 1994-03-15 Alfano Robert R Method for distinguishing between calcified atherosclerotic tissue and fibrous atherosclerotic tissue or normal cardiovascular tissue using Raman spectroscopy
US6111645A (en) 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
US6134003A (en) 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
US5748598A (en) 1995-12-22 1998-05-05 Massachusetts Institute Of Technology Apparatus and methods for reading multilayer storage media using short coherence length sources
EP0581871B2 (en) 1991-04-29 2009-08-12 Massachusetts Institute Of Technology Apparatus for optical imaging and measurement
US5956355A (en) 1991-04-29 1999-09-21 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
US6485413B1 (en) 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
US5465147A (en) 1991-04-29 1995-11-07 Massachusetts Institute Of Technology Method and apparatus for acquiring images using a ccd detector array and no transverse scanner
US6501551B1 (en) 1991-04-29 2002-12-31 Massachusetts Institute Of Technology Fiber optic imaging endoscope interferometer with at least one faraday rotator
US6564087B1 (en) 1991-04-29 2003-05-13 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
US5441053A (en) 1991-05-03 1995-08-15 University Of Kentucky Research Foundation Apparatus and method for multiple wavelength of tissue
US5281811A (en) 1991-06-17 1994-01-25 Litton Systems, Inc. Digital wavelength division multiplex optical transducer having an improved decoder
US5208651A (en) 1991-07-16 1993-05-04 The Regents Of The University Of California Apparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes
AU2519892A (en) 1991-08-20 1993-03-16 Douglas C.B. Redd Optical histochemical analysis, in vivo detection and real-time guidance for ablation of abnormal tissues using a raman spectroscopic detection system
DE4128744C1 (ko) 1991-08-29 1993-04-22 Siemens Ag, 8000 Muenchen, De
US5177488A (en) 1991-10-08 1993-01-05 Hughes Aircraft Company Programmable fiber optic delay line, and radar target simulation system incorporating the same
EP0550929B1 (en) 1991-12-30 1997-03-19 Koninklijke Philips Electronics N.V. Optical device and apparatus for scanning an information plane, comprising such an optical device
US5353790A (en) 1992-01-17 1994-10-11 Board Of Regents, The University Of Texas System Method and apparatus for optical measurement of bilirubin in tissue
US5212667A (en) 1992-02-03 1993-05-18 General Electric Company Light imaging in a scattering medium, using ultrasonic probing and speckle image differencing
US5217456A (en) 1992-02-24 1993-06-08 Pdt Cardiovascular, Inc. Device and method for intra-vascular optical radial imaging
US5248876A (en) 1992-04-21 1993-09-28 International Business Machines Corporation Tandem linear scanning confocal imaging system with focal volumes at different heights
US5283795A (en) 1992-04-21 1994-02-01 Hughes Aircraft Company Diffraction grating driven linear frequency chirped laser
US5486701A (en) 1992-06-16 1996-01-23 Prometrix Corporation Method and apparatus for measuring reflectance in two wavelength bands to enable determination of thin film thickness
US5411025A (en) 1992-06-30 1995-05-02 Cordis Webster, Inc. Cardiovascular catheter with laterally stable basket-shaped electrode array
US5716324A (en) 1992-08-25 1998-02-10 Fuji Photo Film Co., Ltd. Endoscope with surface and deep portion imaging systems
US5348003A (en) 1992-09-03 1994-09-20 Sirraya, Inc. Method and apparatus for chemical analysis
EP0587514A1 (en) 1992-09-11 1994-03-16 Welch Allyn, Inc. Processor module for video inspection probe
US5772597A (en) 1992-09-14 1998-06-30 Sextant Medical Corporation Surgical tool end effector
US5698397A (en) 1995-06-07 1997-12-16 Sri International Up-converting reporters for biological and other assays using laser excitation techniques
EP0595666B1 (fr) 1992-09-21 1999-12-01 Institut National De La Sante Et De La Recherche Medicale (Inserm) Sonde et procédé pour déterminer avec précision la vitesse ou le débit d'un milieu liquide
DE69309953T2 (de) 1992-11-18 1997-09-25 Spectrascience Inc Diagnosebildgerät
US5383467A (en) 1992-11-18 1995-01-24 Spectrascience, Inc. Guidewire catheter and apparatus for diagnostic imaging
US5785663A (en) 1992-12-21 1998-07-28 Artann Corporation Method and device for mechanical imaging of prostate
US5400771A (en) 1993-01-21 1995-03-28 Pirak; Leon Endotracheal intubation assembly and related method
JPH06222242A (ja) 1993-01-27 1994-08-12 Shin Etsu Chem Co Ltd 光ファイバカプラおよびその製造方法
US5987346A (en) 1993-02-26 1999-11-16 Benaron; David A. Device and method for classification of tissue
US5414509A (en) 1993-03-08 1995-05-09 Associated Universities, Inc. Optical pressure/density measuring means
JP3112595B2 (ja) 1993-03-17 2000-11-27 安藤電気株式会社 光周波数シフタを用いる光ファイバ歪位置測定装置
FI93781C (fi) 1993-03-18 1995-05-26 Wallac Oy Biospesifinen multiparametrinen määritysmenetelmä
DE4309056B4 (de) 1993-03-20 2006-05-24 Häusler, Gerd, Prof. Dr. Verfahren und Vorrichtung zur Ermittlung der Entfernung und Streuintensität von streuenden Punkten
DE4310209C2 (de) 1993-03-29 1996-05-30 Bruker Medizintech Optische stationäre Bildgebung in stark streuenden Medien
US5485079A (en) 1993-03-29 1996-01-16 Matsushita Electric Industrial Co., Ltd. Magneto-optical element and optical magnetic field sensor
SE501932C2 (sv) 1993-04-30 1995-06-26 Ericsson Telefon Ab L M Anordning och förfarande för dispersionskompensering i ett fiberoptiskt transmissionssystem
DE4314189C1 (de) 1993-04-30 1994-11-03 Bodenseewerk Geraetetech Vorrichtung zur Untersuchung von Lichtleitfasern aus Glas mittels Heterodyn-Brillouin-Spektroskopie
US5424827A (en) 1993-04-30 1995-06-13 Litton Systems, Inc. Optical system and method for eliminating overlap of diffraction spectra
US5454807A (en) 1993-05-14 1995-10-03 Boston Scientific Corporation Medical treatment of deeply seated tissue using optical radiation
EP0627643B1 (en) 1993-06-03 1999-05-06 Hamamatsu Photonics K.K. Laser scanning optical system using axicon
JP3234353B2 (ja) 1993-06-15 2001-12-04 富士写真フイルム株式会社 断層情報読取装置
US5840031A (en) 1993-07-01 1998-11-24 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials and ablating tissue
US5995645A (en) 1993-08-18 1999-11-30 Applied Spectral Imaging Ltd. Method of cancer cell detection
US5803082A (en) 1993-11-09 1998-09-08 Staplevision Inc. Omnispectramammography
US5983125A (en) 1993-12-13 1999-11-09 The Research Foundation Of City College Of New York Method and apparatus for in vivo examination of subcutaneous tissues inside an organ of a body using optical spectroscopy
US5450203A (en) 1993-12-22 1995-09-12 Electroglas, Inc. Method and apparatus for determining an objects position, topography and for imaging
US5411016A (en) 1994-02-22 1995-05-02 Scimed Life Systems, Inc. Intravascular balloon catheter for use in combination with an angioscope
US5590660A (en) 1994-03-28 1997-01-07 Xillix Technologies Corp. Apparatus and method for imaging diseased tissue using integrated autofluorescence
DE4411017C2 (de) 1994-03-30 1995-06-08 Alexander Dr Knuettel Optische stationäre spektroskopische Bildgebung in stark streuenden Objekten durch spezielle Lichtfokussierung und Signal-Detektion von Licht unterschiedlicher Wellenlängen
TW275570B (ko) 1994-05-05 1996-05-11 Boehringer Mannheim Gmbh
JPH10506545A (ja) 1994-07-14 1998-06-30 ワシントン リサーチ ファンデイション 食道のバレット化生を検出するための方法および装置
US5459325A (en) 1994-07-19 1995-10-17 Molecular Dynamics, Inc. High-speed fluorescence scanner
US6159445A (en) 1994-07-20 2000-12-12 Nycomed Imaging As Light imaging contrast agents
WO1996004839A1 (en) 1994-08-08 1996-02-22 Computed Anatomy, Incorporated Processing of keratoscopic images using local spatial phase
EP0697611B9 (en) 1994-08-18 2003-01-22 Carl Zeiss Optical coherence tomography assisted surgical apparatus
US5491524A (en) 1994-10-05 1996-02-13 Carl Zeiss, Inc. Optical coherence tomography corneal mapping apparatus
US5740808A (en) 1996-10-28 1998-04-21 Ep Technologies, Inc Systems and methods for guilding diagnostic or therapeutic devices in interior tissue regions
US5817144A (en) 1994-10-25 1998-10-06 Latis, Inc. Method for contemporaneous application OF laser energy and localized pharmacologic therapy
US6033721A (en) 1994-10-26 2000-03-07 Revise, Inc. Image-based three-axis positioner for laser direct write microchemical reaction
JPH08136345A (ja) 1994-11-10 1996-05-31 Anritsu Corp 複単色計
JPH08160129A (ja) 1994-12-05 1996-06-21 Uniden Corp 速度検出装置
US5566267A (en) 1994-12-15 1996-10-15 Ceram Optec Industries Inc. Flat surfaced optical fibers and diode laser medical delivery devices
US5600486A (en) 1995-01-30 1997-02-04 Lockheed Missiles And Space Company, Inc. Color separation microlens
US5648848A (en) 1995-02-01 1997-07-15 Nikon Precision, Inc. Beam delivery apparatus and method for interferometry using rotatable polarization chucks
DE19506484C2 (de) 1995-02-24 1999-09-16 Stiftung Fuer Lasertechnologie Verfahren und Vorrichtung zur selektiven nichtinvasiven Lasermyographie (LMG)
RU2100787C1 (ru) 1995-03-01 1997-12-27 Геликонов Валентин Михайлович Оптоволоконный интерферометр и оптоволоконный пьезоэлектрический преобразователь
WO1996028212A1 (en) 1995-03-09 1996-09-19 Innotech Usa, Inc. Laser surgical device and method of its use
US5868731A (en) 1996-03-04 1999-02-09 Innotech Usa, Inc. Laser surgical device and method of its use
US5526338A (en) 1995-03-10 1996-06-11 Yeda Research & Development Co. Ltd. Method and apparatus for storage and retrieval with multilayer optical disks
US5697373A (en) * 1995-03-14 1997-12-16 Board Of Regents, The University Of Texas System Optical method and apparatus for the diagnosis of cervical precancers using raman and fluorescence spectroscopies
US5735276A (en) 1995-03-21 1998-04-07 Lemelson; Jerome Method and apparatus for scanning and evaluating matter
US5926592A (en) 1995-03-24 1999-07-20 Optiscan Pty Ltd Optical fibre confocal imager with variable near-confocal control
US5565983A (en) 1995-05-26 1996-10-15 The Perkin-Elmer Corporation Optical spectrometer for detecting spectra in separate ranges
US5621830A (en) 1995-06-07 1997-04-15 Smith & Nephew Dyonics Inc. Rotatable fiber optic joint
US5785651A (en) 1995-06-07 1998-07-28 Keravision, Inc. Distance measuring confocal microscope
WO1997001167A1 (en) 1995-06-21 1997-01-09 Massachusetts Institute Of Technology Apparatus and method for accessing data on multilayered optical media
ATA107495A (de) 1995-06-23 1996-06-15 Fercher Adolf Friedrich Dr Kohärenz-biometrie und -tomographie mit dynamischem kohärentem fokus
US5829439A (en) 1995-06-28 1998-11-03 Hitachi Medical Corporation Needle-like ultrasonic probe for ultrasonic diagnosis apparatus, method of producing same, and ultrasonic diagnosis apparatus using same
JP3654309B2 (ja) 1995-06-28 2005-06-02 株式会社日立メディコ 針状超音波探触子
US6104945A (en) 1995-08-01 2000-08-15 Medispectra, Inc. Spectral volume microprobe arrays
MX9801351A (es) 1995-08-24 1998-07-31 Purdue Research Foundation Formacion de imagenes y espectroscopia en base a la duracion de vida de la fluorescencia en tejidos y otros medios aleatorios.
US6016197A (en) 1995-08-25 2000-01-18 Ceramoptec Industries Inc. Compact, all-optical spectrum analyzer for chemical and biological fiber optic sensors
FR2738343B1 (fr) 1995-08-30 1997-10-24 Cohen Sabban Joseph Dispositif de microstratigraphie optique
US6615071B1 (en) * 1995-09-20 2003-09-02 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
US5935075A (en) * 1995-09-20 1999-08-10 Texas Heart Institute Detecting thermal discrepancies in vessel walls
US6763261B2 (en) 1995-09-20 2004-07-13 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
US5742419A (en) 1995-11-07 1998-04-21 The Board Of Trustees Of The Leland Stanford Junior Universtiy Miniature scanning confocal microscope
DE19542955C2 (de) 1995-11-17 1999-02-18 Schwind Gmbh & Co Kg Herbert Endoskop
US5719399A (en) 1995-12-18 1998-02-17 The Research Foundation Of City College Of New York Imaging and characterization of tissue based upon the preservation of polarized light transmitted therethrough
JP3699761B2 (ja) 1995-12-26 2005-09-28 オリンパス株式会社 落射蛍光顕微鏡
US5748318A (en) 1996-01-23 1998-05-05 Brown University Research Foundation Optical stress generator and detector
US5840023A (en) 1996-01-31 1998-11-24 Oraevsky; Alexander A. Optoacoustic imaging for medical diagnosis
US5642194A (en) 1996-02-05 1997-06-24 The Regents Of The University Of California White light velocity interferometer
US5862273A (en) 1996-02-23 1999-01-19 Kaiser Optical Systems, Inc. Fiber optic probe with integral optical filtering
US5843000A (en) 1996-05-07 1998-12-01 The General Hospital Corporation Optical biopsy forceps and method of diagnosing tissue
ATA84696A (de) 1996-05-14 1998-03-15 Adolf Friedrich Dr Fercher Verfahren und anordnungen zur kontrastanhebung in der optischen kohärenztomographie
US6020963A (en) 1996-06-04 2000-02-01 Northeastern University Optical quadrature Interferometer
US5795295A (en) 1996-06-25 1998-08-18 Carl Zeiss, Inc. OCT-assisted surgical microscope with multi-coordinate manipulator
US5842995A (en) 1996-06-28 1998-12-01 Board Of Regents, The Univerisity Of Texas System Spectroscopic probe for in vivo measurement of raman signals
US6296608B1 (en) 1996-07-08 2001-10-02 Boston Scientific Corporation Diagnosing and performing interventional procedures on tissue in vivo
US6245026B1 (en) 1996-07-29 2001-06-12 Farallon Medsystems, Inc. Thermography catheter
US6396941B1 (en) 1996-08-23 2002-05-28 Bacus Research Laboratories, Inc. Method and apparatus for internet, intranet, and local viewing of virtual microscope slides
US5840075A (en) 1996-08-23 1998-11-24 Eclipse Surgical Technologies, Inc. Dual laser device for transmyocardial revascularization procedures
US6544193B2 (en) 1996-09-04 2003-04-08 Marcio Marc Abreu Noninvasive measurement of chemical substances
JPH1090603A (ja) 1996-09-18 1998-04-10 Olympus Optical Co Ltd 内視鏡光学系
US5801831A (en) 1996-09-20 1998-09-01 Institute For Space And Terrestrial Science Fabry-Perot spectrometer for detecting a spatially varying spectral signature of an extended source
RU2108122C1 (ru) 1996-09-24 1998-04-10 Владимир Павлович Жаров Способ и устройство для физиотерапевтического облучения светом
WO1998013715A1 (fr) 1996-09-27 1998-04-02 Vincent Lauer Microscope generant une representation tridimensionnelle d'un objet
DE19640495C2 (de) 1996-10-01 1999-12-16 Leica Microsystems Vorrichtung zur konfokalen Oberflächenvermessung
US5843052A (en) 1996-10-04 1998-12-01 Benja-Athon; Anuthep Irrigation kit for application of fluids and chemicals for cleansing and sterilizing wounds
US5904651A (en) 1996-10-28 1999-05-18 Ep Technologies, Inc. Systems and methods for visualizing tissue during diagnostic or therapeutic procedures
US5752518A (en) 1996-10-28 1998-05-19 Ep Technologies, Inc. Systems and methods for visualizing interior regions of the body
US6044288A (en) 1996-11-08 2000-03-28 Imaging Diagnostics Systems, Inc. Apparatus and method for determining the perimeter of the surface of an object being scanned
US5872879A (en) 1996-11-25 1999-02-16 Boston Scientific Corporation Rotatable connecting optical fibers
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US6437867B2 (en) 1996-12-04 2002-08-20 The Research Foundation Of The City University Of New York Performing selected optical measurements with optical coherence domain reflectometry
US6249630B1 (en) 1996-12-13 2001-06-19 Imra America, Inc. Apparatus and method for delivery of dispersion-compensated ultrashort optical pulses with high peak power
US5906759A (en) 1996-12-26 1999-05-25 Medinol Ltd. Stent forming apparatus with stent deforming blades
US5871449A (en) 1996-12-27 1999-02-16 Brown; David Lloyd Device and method for locating inflamed plaque in an artery
WO1998029768A1 (en) 1996-12-31 1998-07-09 Corning Incorporated Optical couplers with multilayer fibers
US5991697A (en) 1996-12-31 1999-11-23 The Regents Of The University Of California Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media
US5760901A (en) 1997-01-28 1998-06-02 Zetetic Institute Method and apparatus for confocal interference microscopy with background amplitude reduction and compensation
JP3213250B2 (ja) 1997-01-29 2001-10-02 株式会社生体光情報研究所 光計測装置
US5801826A (en) 1997-02-18 1998-09-01 Williams Family Trust B Spectrometric device and method for recognizing atomic and molecular signatures
US5836877A (en) 1997-02-24 1998-11-17 Lucid Inc System for facilitating pathological examination of a lesion in tissue
US6010449A (en) 1997-02-28 2000-01-04 Lumend, Inc. Intravascular catheter system for treating a vascular occlusion
US6120516A (en) 1997-02-28 2000-09-19 Lumend, Inc. Method for treating vascular occlusion
US5968064A (en) 1997-02-28 1999-10-19 Lumend, Inc. Catheter system for treating a vascular occlusion
JP2001515382A (ja) 1997-03-06 2001-09-18 マサチューセッツ インスティチュート オブ テクノロジー 生体組織の光学走査用機器
WO1998040007A1 (en) 1997-03-13 1998-09-17 Biomax Technologies, Inc. Methods and apparatus for detecting the rejection of transplanted tissue
US6078047A (en) 1997-03-14 2000-06-20 Lucent Technologies Inc. Method and apparatus for terahertz tomographic imaging
US5994690A (en) 1997-03-17 1999-11-30 Kulkarni; Manish D. Image enhancement in optical coherence tomography using deconvolution
JPH10267631A (ja) 1997-03-26 1998-10-09 Kowa Co 光学測定装置
JPH10267830A (ja) 1997-03-26 1998-10-09 Kowa Co 光学測定装置
GB9707414D0 (en) 1997-04-11 1997-05-28 Imperial College Anatomical probe
AU7221398A (en) 1997-04-29 1998-11-24 Nycomed Imaging As Method of demarcating tissue
EP0979107A1 (en) 1997-04-29 2000-02-16 Nycomed Imaging As Light imaging contrast agents
US6117128A (en) 1997-04-30 2000-09-12 Kenton W. Gregory Energy delivery catheter and method for the use thereof
US5887009A (en) 1997-05-22 1999-03-23 Optical Biopsy Technologies, Inc. Confocal optical scanning system employing a fiber laser
US6002480A (en) 1997-06-02 1999-12-14 Izatt; Joseph A. Depth-resolved spectroscopic optical coherence tomography
WO1998055830A1 (en) 1997-06-02 1998-12-10 Izatt Joseph A Doppler flow imaging using optical coherence tomography
US6208415B1 (en) 1997-06-12 2001-03-27 The Regents Of The University Of California Birefringence imaging in biological tissue using polarization sensitive optical coherent tomography
EP0989822A4 (en) 1997-06-23 2004-07-28 Focus Surgery Inc ACOUSTIC HEMOSTASIS METHODS AND DEVICES
US5920390A (en) 1997-06-26 1999-07-06 University Of North Carolina Fiberoptic interferometer and associated method for analyzing tissue
US6048349A (en) 1997-07-09 2000-04-11 Intraluminal Therapeutics, Inc. Systems and methods for guiding a medical instrument through a body
US6058352A (en) 1997-07-25 2000-05-02 Physical Optics Corporation Accurate tissue injury assessment using hybrid neural network analysis
US5921926A (en) 1997-07-28 1999-07-13 University Of Central Florida Three dimensional optical imaging colposcopy
US6014214A (en) 1997-08-21 2000-01-11 Li; Ming-Chiang High speed inspection of a sample using coherence processing of scattered superbroad radiation
US5892583A (en) 1997-08-21 1999-04-06 Li; Ming-Chiang High speed inspection of a sample using superbroad radiation coherent interferometer
US6069698A (en) 1997-08-28 2000-05-30 Olympus Optical Co., Ltd. Optical imaging apparatus which radiates a low coherence light beam onto a test object, receives optical information from light scattered by the object, and constructs therefrom a cross-sectional image of the object
US6297018B1 (en) 1998-04-17 2001-10-02 Ljl Biosystems, Inc. Methods and apparatus for detecting nucleic acid polymorphisms
US5920373A (en) 1997-09-24 1999-07-06 Heidelberg Engineering Optische Messysteme Gmbh Method and apparatus for determining optical characteristics of a cornea
US5951482A (en) 1997-10-03 1999-09-14 Intraluminal Therapeutics, Inc. Assemblies and methods for advancing a guide wire through body tissue
US6193676B1 (en) 1997-10-03 2001-02-27 Intraluminal Therapeutics, Inc. Guide wire assembly
US6091984A (en) 1997-10-10 2000-07-18 Massachusetts Institute Of Technology Measuring tissue morphology
US5955737A (en) 1997-10-27 1999-09-21 Systems & Processes Engineering Corporation Chemometric analysis for extraction of individual fluorescence spectrum and lifetimes from a target mixture
US6052186A (en) 1997-11-05 2000-04-18 Excel Precision, Inc. Dual laser system for extended heterodyne interferometry
US6134010A (en) 1997-11-07 2000-10-17 Lucid, Inc. Imaging system using polarization effects to enhance image quality
US6037579A (en) 1997-11-13 2000-03-14 Biophotonics Information Laboratories, Ltd. Optical interferometer employing multiple detectors to detect spatially distorted wavefront in imaging of scattering media
US6107048A (en) 1997-11-20 2000-08-22 Medical College Of Georgia Research Institute, Inc. Method of detecting and grading dysplasia in epithelial tissue
JP4662622B2 (ja) 1998-01-28 2011-03-30 イマージョン メディカル,インコーポレイティド 医療処置シミュレーションシステムに器械をインタフェース接続するためのインタフェース装置及び方法
US6165170A (en) 1998-01-29 2000-12-26 International Business Machines Corporation Laser dermablator and dermablation
US6831781B2 (en) 1998-02-26 2004-12-14 The General Hospital Corporation Confocal microscopy with multi-spectral encoding and system and apparatus for spectroscopically encoded confocal microscopy
US6048742A (en) 1998-02-26 2000-04-11 The United States Of America As Represented By The Secretary Of The Air Force Process for measuring the thickness and composition of thin semiconductor films deposited on semiconductor wafers
EP2267506A3 (en) 1998-02-26 2011-03-02 The General Hospital Corporation Confocal microscopy with multi-spectral encoding
US6134033A (en) 1998-02-26 2000-10-17 Tyco Submarine Systems Ltd. Method and apparatus for improving spectral efficiency in wavelength division multiplexed transmission systems
RU2148378C1 (ru) 1998-03-06 2000-05-10 Геликонов Валентин Михайлович Устройство для оптической когерентной томографии, оптоволоконное сканирующее устройство и способ диагностики биоткани in vivo
US6066102A (en) 1998-03-09 2000-05-23 Spectrascience, Inc. Optical biopsy forceps system and method of diagnosing tissue
US6174291B1 (en) 1998-03-09 2001-01-16 Spectrascience, Inc. Optical biopsy system and methods for tissue diagnosis
US6151522A (en) 1998-03-16 2000-11-21 The Research Foundation Of Cuny Method and system for examining biological materials using low power CW excitation raman spectroscopy
DE19814057B4 (de) 1998-03-30 2009-01-02 Carl Zeiss Meditec Ag Anordnung zur optischen Kohärenztomographie und Kohärenztopographie
US6384915B1 (en) 1998-03-30 2002-05-07 The Regents Of The University Of California Catheter guided by optical coherence domain reflectometry
US6175669B1 (en) 1998-03-30 2001-01-16 The Regents Of The Universtiy Of California Optical coherence domain reflectometry guidewire
WO1999057507A1 (en) 1998-05-01 1999-11-11 Board Of Regents, The University Of Texas System Method and apparatus for subsurface imaging
US6996549B2 (en) 1998-05-01 2006-02-07 Health Discovery Corporation Computer-aided image analysis
JPH11326826A (ja) 1998-05-13 1999-11-26 Sony Corp 照明方法及び照明装置
US6053613A (en) 1998-05-15 2000-04-25 Carl Zeiss, Inc. Optical coherence tomography with new interferometer
FR2778838A1 (fr) 1998-05-19 1999-11-26 Koninkl Philips Electronics Nv Procede de detection de variations d'elasticite et appareil echographique pour mettre en oeuvre ce procede
US5995223A (en) 1998-06-01 1999-11-30 Power; Joan Fleurette Apparatus for rapid phase imaging interferometry and method therefor
JPH11352409A (ja) 1998-06-05 1999-12-24 Olympus Optical Co Ltd 蛍光検出装置
US6549801B1 (en) 1998-06-11 2003-04-15 The Regents Of The University Of California Phase-resolved optical coherence tomography and optical doppler tomography for imaging fluid flow in tissue with fast scanning speed and high velocity sensitivity
EP1100392B1 (en) 1998-07-15 2009-02-25 Corazon Technologies, Inc. devices for reducing the mineral content of vascular calcified lesions
US6166373A (en) 1998-07-21 2000-12-26 The Institute For Technology Development Focal plane scanner with reciprocating spatial window
JP2000046729A (ja) 1998-07-31 2000-02-18 Takahisa Mitsui 波長分散を用いた高速光断層像計測装置および計測方法
US20040140130A1 (en) 1998-08-31 2004-07-22 Halliburton Energy Services, Inc., A Delaware Corporation Roller-cone bits, systems, drilling methods, and design methods with optimization of tooth orientation
US6741884B1 (en) 1998-09-03 2004-05-25 Hypermed, Inc. Infrared endoscopic balloon probes
US8024027B2 (en) 1998-09-03 2011-09-20 Hyperspectral Imaging, Inc. Infrared endoscopic balloon probes
CA2343401C (en) 1998-09-11 2009-01-27 Spectrx, Inc. Multi-modal optical tissue diagnostic system
JP2000131222A (ja) 1998-10-22 2000-05-12 Olympus Optical Co Ltd 光断層画像装置
AU6417599A (en) 1998-10-08 2000-04-26 University Of Kentucky Research Foundation, The Methods and apparatus for (in vivo) identification and characterization of vulnerable atherosclerotic plaques
JP2000121961A (ja) 1998-10-13 2000-04-28 Olympus Optical Co Ltd 共焦点光走査プローブシステム
US6274871B1 (en) 1998-10-22 2001-08-14 Vysis, Inc. Method and system for performing infrared study on a biological sample
US6324419B1 (en) 1998-10-27 2001-11-27 Nejat Guzelsu Apparatus and method for non-invasive measurement of stretch
JP2000126116A (ja) 1998-10-28 2000-05-09 Olympus Optical Co Ltd 光診断システム
US6524249B2 (en) 1998-11-11 2003-02-25 Spentech, Inc. Doppler ultrasound method and apparatus for monitoring blood flow and detecting emboli
AU1524700A (en) 1998-11-13 2000-06-05 Research And Development Institute, Inc. Programmable frequency reference for laser frequency stabilization, and arbitrary optical clock generator, using persistent spectral hole burning
EP1002497B1 (en) 1998-11-20 2006-07-26 Fuji Photo Film Co., Ltd. Blood vessel imaging system
US5975697A (en) 1998-11-25 1999-11-02 Oti Ophthalmic Technologies, Inc. Optical mapping apparatus with adjustable depth resolution
US6352502B1 (en) 1998-12-03 2002-03-05 Lightouch Medical, Inc. Methods for obtaining enhanced spectroscopic information from living tissue, noninvasive assessment of skin condition and detection of skin abnormalities
RU2149464C1 (ru) 1999-01-19 2000-05-20 Таганрогский государственный радиотехнический университет Динамическое запоминающее устройство радиосигналов
US6191862B1 (en) 1999-01-20 2001-02-20 Lightlab Imaging, Llc Methods and apparatus for high speed longitudinal scanning in imaging systems
US6272376B1 (en) 1999-01-22 2001-08-07 Cedars-Sinai Medical Center Time-resolved, laser-induced fluorescence for the characterization of organic material
US6445944B1 (en) 1999-02-01 2002-09-03 Scimed Life Systems Medical scanning system and related method of scanning
US6615072B1 (en) 1999-02-04 2003-09-02 Olympus Optical Co., Ltd. Optical imaging device
US6185271B1 (en) 1999-02-16 2001-02-06 Richard Estyn Kinsinger Helical computed tomography with feedback scan control
DE19908883A1 (de) 1999-03-02 2000-09-07 Rainer Heintzmann Verfahren zur Erhöhung der Auflösung optischer Abbildung
US20070048818A1 (en) 1999-03-12 2007-03-01 Human Genome Sciences, Inc. Human secreted proteins
WO2000058766A1 (en) 1999-03-29 2000-10-05 Scimed Life Systems, Inc. Single mode optical fiber coupling systems
US6859275B2 (en) 1999-04-09 2005-02-22 Plain Sight Systems, Inc. System and method for encoded spatio-spectral information processing
US6264610B1 (en) 1999-05-05 2001-07-24 The University Of Connecticut Combined ultrasound and near infrared diffused light imaging system
JP2000325295A (ja) * 1999-05-21 2000-11-28 Fuji Photo Film Co Ltd 蛍光診断情報出力方法および装置
US6353693B1 (en) 1999-05-31 2002-03-05 Sanyo Electric Co., Ltd. Optical communication device and slip ring unit for an electronic component-mounting apparatus
JP2001004447A (ja) 1999-06-23 2001-01-12 Yokogawa Electric Corp 分光器
US6993170B2 (en) 1999-06-23 2006-01-31 Icoria, Inc. Method for quantitative analysis of blood vessel structure
US6611833B1 (en) 1999-06-23 2003-08-26 Tissueinformatics, Inc. Methods for profiling and classifying tissue using a database that includes indices representative of a tissue population
US6208887B1 (en) 1999-06-24 2001-03-27 Richard H. Clarke Catheter-delivered low resolution Raman scattering analyzing system for detecting lesions
US7426409B2 (en) 1999-06-25 2008-09-16 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
GB9915082D0 (en) 1999-06-28 1999-08-25 Univ London Optical fibre probe
US6359692B1 (en) 1999-07-09 2002-03-19 Zygo Corporation Method and system for profiling objects having multiple reflective surfaces using wavelength-tuning phase-shifting interferometry
JP2003504627A (ja) 1999-07-13 2003-02-04 クロマビジョン メディカル システムズ インコーポレイテッド 生物試料中の物体の自動検出
WO2001008579A1 (en) 1999-07-30 2001-02-08 Ceramoptec Industries, Inc. Dual wavelength medical diode laser system
EP1199986B1 (en) 1999-07-30 2005-06-01 Boston Scientific Limited Rotational and translational drive coupling for catheter assembly
US6445939B1 (en) 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
JP2001046321A (ja) 1999-08-09 2001-02-20 Asahi Optical Co Ltd 内視鏡装置
US6725073B1 (en) 1999-08-17 2004-04-20 Board Of Regents, The University Of Texas System Methods for noninvasive analyte sensing
JP3869589B2 (ja) 1999-09-02 2007-01-17 ペンタックス株式会社 ファイババンドル及び内視鏡装置
US6687010B1 (en) 1999-09-09 2004-02-03 Olympus Corporation Rapid depth scanning optical imaging device
JP4464519B2 (ja) 2000-03-21 2010-05-19 オリンパス株式会社 光イメージング装置
JP4245787B2 (ja) 1999-09-29 2009-04-02 富士フイルム株式会社 蛍光画像取得方法および装置
US6198956B1 (en) 1999-09-30 2001-03-06 Oti Ophthalmic Technologies Inc. High speed sector scanning apparatus having digital electronic control
JP2001104237A (ja) 1999-10-05 2001-04-17 Fuji Photo Film Co Ltd 蛍光判定方法および装置
JP2001174744A (ja) 1999-10-06 2001-06-29 Olympus Optical Co Ltd 光走査プローブ装置
JP4363719B2 (ja) 1999-10-08 2009-11-11 オリンパス株式会社 超音波ガイド下穿刺システム装置
US6393312B1 (en) 1999-10-13 2002-05-21 C. R. Bard, Inc. Connector for coupling an optical fiber tissue localization device to a light source
US6308092B1 (en) 1999-10-13 2001-10-23 C. R. Bard Inc. Optical fiber tissue localization device
AU1182401A (en) 1999-10-15 2001-04-23 Cellavision Ab Microscope and method for manufacturing a composite image with a high resolution
US6538817B1 (en) 1999-10-25 2003-03-25 Aculight Corporation Method and apparatus for optical coherence tomography with a multispectral laser source
JP2001125009A (ja) 1999-10-28 2001-05-11 Asahi Optical Co Ltd 内視鏡装置
IL132687A0 (en) 1999-11-01 2001-03-19 Keren Mechkarim Ichilov Pnimit System and method for evaluating body fluid samples
CN1409818A (zh) 1999-11-19 2003-04-09 乔宾伊冯公司 小型光谱荧光计
US7236637B2 (en) 1999-11-24 2007-06-26 Ge Medical Systems Information Technologies, Inc. Method and apparatus for transmission and display of a compressed digitized image
EP1232377B1 (de) 1999-11-24 2004-03-31 Haag-Streit Ag Verfahren und vorrichtung zur messung optischer eigenschaften wenigstens zweier voneinander distanzierter bereiche in einem transparenten und/oder diffusiven gegenstand
EP1240476A1 (en) 1999-12-09 2002-09-18 Oti Ophthalmic Technologies Inc. Optical mapping apparatus with adjustable depth resolution
JP2001174404A (ja) 1999-12-15 2001-06-29 Takahisa Mitsui 光断層像計測装置および計測方法
US6738144B1 (en) 1999-12-17 2004-05-18 University Of Central Florida Non-invasive method and low-coherence apparatus system analysis and process control
US6680780B1 (en) 1999-12-23 2004-01-20 Agere Systems, Inc. Interferometric probe stabilization relative to subject movement
US6445485B1 (en) 2000-01-21 2002-09-03 At&T Corp. Micro-machine polarization-state controller
CA2398278C (en) 2000-01-27 2012-05-15 National Research Council Of Canada Visible-near infrared spectroscopy in burn injury assessment
JP3660185B2 (ja) 2000-02-07 2005-06-15 独立行政法人科学技術振興機構 断層像形成方法及びそのための装置
US6475210B1 (en) 2000-02-11 2002-11-05 Medventure Technology Corp Light treatment of vulnerable atherosclerosis plaque
US6556305B1 (en) 2000-02-17 2003-04-29 Veeco Instruments, Inc. Pulsed source scanning interferometer
US6618143B2 (en) 2000-02-18 2003-09-09 Idexx Laboratories, Inc. High numerical aperture flow cytometer and method of using same
US6751490B2 (en) 2000-03-01 2004-06-15 The Board Of Regents Of The University Of Texas System Continuous optoacoustic monitoring of hemoglobin concentration and hematocrit
US6687013B2 (en) 2000-03-28 2004-02-03 Hitachi, Ltd. Laser interferometer displacement measuring system, exposure apparatus, and electron beam lithography apparatus
AU2001251114A1 (en) 2000-03-28 2001-10-08 Board Of Regents, The University Of Texas System Enhancing contrast in biological imaging
US6567585B2 (en) 2000-04-04 2003-05-20 Optiscan Pty Ltd Z sharpening for fibre confocal microscopes
US6692430B2 (en) 2000-04-10 2004-02-17 C2Cure Inc. Intra vascular imaging apparatus
EP1299057A2 (en) 2000-04-27 2003-04-09 Iridex Corporation Method and apparatus for real-time detection, control and recording of sub-clinical therapeutic laser lesions during ocular laser photocoagulation
US6711283B1 (en) 2000-05-03 2004-03-23 Aperio Technologies, Inc. Fully automatic rapid microscope slide scanner
AU2001259435A1 (en) 2000-05-03 2001-11-12 Stephen T Flock Optical imaging of subsurface anatomical structures and biomolecules
US6301048B1 (en) 2000-05-19 2001-10-09 Avanex Corporation Tunable chromatic dispersion and dispersion slope compensator utilizing a virtually imaged phased array
US6441959B1 (en) 2000-05-19 2002-08-27 Avanex Corporation Method and system for testing a tunable chromatic dispersion, dispersion slope, and polarization mode dispersion compensator utilizing a virtually imaged phased array
US6560259B1 (en) 2000-05-31 2003-05-06 Applied Optoelectronics, Inc. Spatially coherent surface-emitting, grating coupled quantum cascade laser with unstable resonance cavity
US6975898B2 (en) 2000-06-19 2005-12-13 University Of Washington Medical imaging, diagnosis, and therapy using a scanning single optical fiber system
JP4460117B2 (ja) 2000-06-29 2010-05-12 独立行政法人理化学研究所 グリズム
JP2002035005A (ja) 2000-07-21 2002-02-05 Olympus Optical Co Ltd 治療装置
US6757467B1 (en) 2000-07-25 2004-06-29 Optical Air Data Systems, Lp Optical fiber system
US6441356B1 (en) 2000-07-28 2002-08-27 Optical Biopsy Technologies Fiber-coupled, high-speed, angled-dual-axis optical coherence scanning microscopes
US6882432B2 (en) 2000-08-08 2005-04-19 Zygo Corporation Frequency transform phase shifting interferometry
US6972894B2 (en) 2000-08-11 2005-12-06 Crystal Fibre A/S Optical wavelength converter
US7625335B2 (en) 2000-08-25 2009-12-01 3Shape Aps Method and apparatus for three-dimensional optical scanning of interior surfaces
DE10042840A1 (de) 2000-08-30 2002-03-14 Leica Microsystems Vorrichtung und Verfahren zur Anregung von Fluoreszenzmikroskopmarkern bei der Mehrphotonen-Rastermikroskopie
US6459487B1 (en) 2000-09-05 2002-10-01 Gang Paul Chen System and method for fabricating components of precise optical path length
JP2002095663A (ja) 2000-09-26 2002-04-02 Fuji Photo Film Co Ltd センチネルリンパ節光断層画像取得方法および装置
JP2002113017A (ja) 2000-10-05 2002-04-16 Fuji Photo Film Co Ltd レーザ治療装置
JP4241038B2 (ja) 2000-10-30 2009-03-18 ザ ジェネラル ホスピタル コーポレーション 組織分析のための光学的な方法及びシステム
CA2426714C (en) 2000-10-31 2010-02-09 Forskningscenter Riso Optical amplification in coherent optical frequency modulated continuous wave reflectometry
JP3842101B2 (ja) 2000-10-31 2006-11-08 富士写真フイルム株式会社 内視鏡装置
US6687036B2 (en) 2000-11-03 2004-02-03 Nuonics, Inc. Multiplexed optical scanner technology
JP2002148185A (ja) 2000-11-08 2002-05-22 Fuji Photo Film Co Ltd Oct装置
US9295391B1 (en) 2000-11-10 2016-03-29 The General Hospital Corporation Spectrally encoded miniature endoscopic imaging probe
EP1409721A2 (de) 2000-11-13 2004-04-21 Gnothis Holding SA Nachweis von nukleinsäure-polymorphismen
US6665075B2 (en) 2000-11-14 2003-12-16 Wm. Marshurice University Interferometric imaging system and method
DE10057539B4 (de) 2000-11-20 2008-06-12 Robert Bosch Gmbh Interferometrische Messvorrichtung
US6558324B1 (en) 2000-11-22 2003-05-06 Siemens Medical Solutions, Inc., Usa System and method for strain image display
US6856712B2 (en) 2000-11-27 2005-02-15 University Of Washington Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition
US7027633B2 (en) 2000-11-30 2006-04-11 Foran David J Collaborative diagnostic systems
JP4786027B2 (ja) 2000-12-08 2011-10-05 オリンパス株式会社 光学系及び光学装置
US6687007B1 (en) 2000-12-14 2004-02-03 Kestrel Corporation Common path interferometer for spectral image generation
US6501878B2 (en) 2000-12-14 2002-12-31 Nortel Networks Limited Optical fiber termination
US6515752B2 (en) 2000-12-28 2003-02-04 Coretek, Inc. Wavelength monitoring system
CN103251453A (zh) 2000-12-28 2013-08-21 帕洛玛医疗技术有限公司 用于皮肤的emr治疗处理的方法和装置
WO2002054046A1 (fr) 2000-12-28 2002-07-11 Dmitri Olegovich Lapotko Procede et dispositif d'examen phototermique d'irregularites microscopique
EP1221581A1 (en) 2001-01-04 2002-07-10 Universität Stuttgart Interferometer
JP2002205434A (ja) 2001-01-10 2002-07-23 Seiko Epson Corp 画像出力装置及びプリンティングシステム
DE60213362T2 (de) 2001-01-11 2007-08-23 The Johns Hopkins University Erfassung der zahnstruktur mittels durch laser angeregtem ultraschall
US7177491B2 (en) 2001-01-12 2007-02-13 Board Of Regents The University Of Texas System Fiber-based optical low coherence tomography
JP3628615B2 (ja) 2001-01-16 2005-03-16 独立行政法人科学技術振興機構 ヘテロダインビート画像同期測定装置
US6697652B2 (en) 2001-01-19 2004-02-24 Massachusetts Institute Of Technology Fluorescence, reflectance and light scattering spectroscopy for measuring tissue
EP1358443A2 (en) 2001-01-22 2003-11-05 Jonathan E. Roth Method and apparatus for polarization-sensitive optical coherence tomography
US7973936B2 (en) 2001-01-30 2011-07-05 Board Of Trustees Of Michigan State University Control system and apparatus for use with ultra-fast laser
US20020140942A1 (en) 2001-02-17 2002-10-03 Fee Michale Sean Acousto-optic monitoring and imaging in a depth sensitive manner
GB0104378D0 (en) 2001-02-22 2001-04-11 Expro North Sea Ltd Improved tubing coupling
US6654127B2 (en) 2001-03-01 2003-11-25 Carl Zeiss Ophthalmic Systems, Inc. Optical delay line
US6721094B1 (en) 2001-03-05 2004-04-13 Sandia Corporation Long working distance interference microscope
US7244232B2 (en) 2001-03-07 2007-07-17 Biomed Solutions, Llc Process for identifying cancerous and/or metastatic cells of a living organism
IL142773A (en) 2001-03-08 2007-10-31 Xtellus Inc Fiber optic damper
JP2002263055A (ja) 2001-03-12 2002-09-17 Olympus Optical Co Ltd 内視鏡先端フード
US6563995B2 (en) 2001-04-02 2003-05-13 Lightwave Electronics Optical wavelength filtering apparatus with depressed-index claddings
US6552796B2 (en) 2001-04-06 2003-04-22 Lightlab Imaging, Llc Apparatus and method for selective data collection and signal to noise ratio enhancement using optical coherence tomography
WO2002083003A1 (en) 2001-04-11 2002-10-24 Clarke Dana S Tissue structure identification in advance of instrument
US7139598B2 (en) 2002-04-04 2006-11-21 Veralight, Inc. Determination of a measure of a glycation end-product or disease state using tissue fluorescence
US20020158211A1 (en) 2001-04-16 2002-10-31 Dakota Technologies, Inc. Multi-dimensional fluorescence apparatus and method for rapid and highly sensitive quantitative analysis of mixtures
DE10118760A1 (de) 2001-04-17 2002-10-31 Med Laserzentrum Luebeck Gmbh Verfahren zur Ermittlung der Laufzeitverteilung und Anordnung
EP2333523B1 (en) 2001-04-30 2020-04-08 The General Hospital Corporation Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
US7616986B2 (en) 2001-05-07 2009-11-10 University Of Washington Optical fiber scanner for performing multimodal optical imaging
US6701181B2 (en) 2001-05-31 2004-03-02 Infraredx, Inc. Multi-path optical catheter
US6615062B2 (en) 2001-05-31 2003-09-02 Infraredx, Inc. Referencing optical catheters
CA2449828A1 (en) 2001-06-04 2003-01-16 The General Hospital Corporation Detection and therapy of vulnerable plaque with photodynamic compounds
US7141812B2 (en) * 2002-06-05 2006-11-28 Mikro Systems, Inc. Devices, methods, and systems involving castings
US7785098B1 (en) * 2001-06-05 2010-08-31 Mikro Systems, Inc. Systems for large area micro mechanical systems
US6879851B2 (en) 2001-06-07 2005-04-12 Lightlab Imaging, Llc Fiber optic endoscopic gastrointestinal probe
EP1191321B1 (en) 2001-06-07 2002-12-11 Agilent Technologies, Inc. (a Delaware corporation) Determination of properties of an optical device
DE10129651B4 (de) 2001-06-15 2010-07-08 Carl Zeiss Jena Gmbh Verfahren zur Kompensation der Dispersion in Signalen von Kurzkohärenz- und/oder OCT-Interferometern
US6702744B2 (en) 2001-06-20 2004-03-09 Advanced Cardiovascular Systems, Inc. Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
US20040166593A1 (en) 2001-06-22 2004-08-26 Nolte David D. Adaptive interferometric multi-analyte high-speed biosensor
US6685885B2 (en) 2001-06-22 2004-02-03 Purdue Research Foundation Bio-optical compact dist system
US6723090B2 (en) 2001-07-02 2004-04-20 Palomar Medical Technologies, Inc. Fiber laser device for medical/cosmetic procedures
US6795199B2 (en) 2001-07-18 2004-09-21 Avraham Suhami Method and apparatus for dispersion compensated reflected time-of-flight tomography
DE10137530A1 (de) 2001-08-01 2003-02-13 Presens Prec Sensing Gmbh Anordnung und Verfahren zur Mehrfach-Fluoreszenzmessung
AU2002324605A1 (en) 2001-08-03 2003-02-17 Joseph A Izatt Real-time imaging system and method
AU2002337666A1 (en) 2001-08-03 2003-02-17 Joseph A. Izatt Aspects of basic oct engine technologies for high speed optical coherence tomography and light source and other improvements in oct
US20030030816A1 (en) 2001-08-11 2003-02-13 Eom Tae Bong Nonlinearity error correcting method and phase angle measuring method for displacement measurement in two-freqency laser interferometer and displacement measurement system using the same
US6900899B2 (en) 2001-08-20 2005-05-31 Agilent Technologies, Inc. Interferometers with coated polarizing beam splitters that are rotated to optimize extinction ratios
US20030045798A1 (en) 2001-09-04 2003-03-06 Richard Hular Multisensor probe for tissue identification
EP1293925A1 (en) 2001-09-18 2003-03-19 Agfa-Gevaert Radiographic scoring method
US6961123B1 (en) 2001-09-28 2005-11-01 The Texas A&M University System Method and apparatus for obtaining information from polarization-sensitive optical coherence tomography
JP2003102672A (ja) 2001-10-01 2003-04-08 Japan Science & Technology Corp 病変等の対象部位を自動的に検知かつ治療または採取する方法およびその装置
DE10150934A1 (de) 2001-10-09 2003-04-10 Zeiss Carl Jena Gmbh Verfahren und Anordnung zur tiefenaufgelösten Erfassung von Proben
US7822470B2 (en) 2001-10-11 2010-10-26 Osypka Medical Gmbh Method for determining the left-ventricular ejection time TLVE of a heart of a subject
US6980299B1 (en) 2001-10-16 2005-12-27 General Hospital Corporation Systems and methods for imaging a sample
US6658278B2 (en) 2001-10-17 2003-12-02 Terumo Cardiovascular Systems Corporation Steerable infrared imaging catheter having steering fins
US7006231B2 (en) 2001-10-18 2006-02-28 Scimed Life Systems, Inc. Diffraction grating based interferometric systems and methods
US6749344B2 (en) 2001-10-24 2004-06-15 Scimed Life Systems, Inc. Connection apparatus for optical coherence tomography catheters
US6661513B1 (en) 2001-11-21 2003-12-09 Roygbiv, Llc Refractive-diffractive spectrometer
CA2469773A1 (en) 2001-12-11 2003-07-03 C2Cure Inc. Apparatus, method and system for intravascular photographic imaging
US20030216719A1 (en) 2001-12-12 2003-11-20 Len Debenedictis Method and apparatus for treating skin using patterns of optical energy
DE60220541T2 (de) 2001-12-14 2007-10-04 Agilent Technologies, Inc. (n.d.Ges.d. Staates Delaware), Santa Clara Externer resonator mit retro-reflektierender vorrichtung insbesondere für abstimmbare laser
US7365858B2 (en) 2001-12-18 2008-04-29 Massachusetts Institute Of Technology Systems and methods for phase measurements
US7736301B1 (en) 2001-12-18 2010-06-15 Advanced Cardiovascular Systems, Inc. Rotatable ferrules and interfaces for use with an optical guidewire
US6975891B2 (en) 2001-12-21 2005-12-13 Nir Diagnostics Inc. Raman spectroscopic system with integrating cavity
US6947787B2 (en) 2001-12-21 2005-09-20 Advanced Cardiovascular Systems, Inc. System and methods for imaging within a body lumen
EP1324051A1 (en) 2001-12-26 2003-07-02 Kevin R. Forrester Motion measuring device
US20080154090A1 (en) 2005-01-04 2008-06-26 Dune Medical Devices Ltd. Endoscopic System for In-Vivo Procedures
DE60336534D1 (de) 2002-01-11 2011-05-12 Gen Hospital Corp Vorrichtung zur OCT Bildaufnahme mit axialem Linienfokus für verbesserte Auflösung und Tiefenschärfe
US7072045B2 (en) 2002-01-16 2006-07-04 The Regents Of The University Of California High resolution optical coherence tomography with an improved depth range using an axicon lens
US7355716B2 (en) 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
CN1623085A (zh) 2002-01-24 2005-06-01 通用医疗公司 使用光谱带并行检测的低相干干涉测量法(lci)和光学相干层析成像(oct)信号的测距和降噪的装置和方法
JP4472991B2 (ja) 2002-02-14 2010-06-02 イマラックス・コーポレーション 対象の研究方法およびその光学干渉計(変型)
US20030165263A1 (en) 2002-02-19 2003-09-04 Hamer Michael J. Histological assessment
US7116887B2 (en) 2002-03-19 2006-10-03 Nufern Optical fiber
US6704590B2 (en) 2002-04-05 2004-03-09 Cardiac Pacemakers, Inc. Doppler guiding catheter using sensed blood turbulence levels
US7006232B2 (en) 2002-04-05 2006-02-28 Case Western Reserve University Phase-referenced doppler optical coherence tomography
US7113818B2 (en) 2002-04-08 2006-09-26 Oti Ophthalmic Technologies Inc. Apparatus for high resolution imaging of moving organs
US7016048B2 (en) 2002-04-09 2006-03-21 The Regents Of The University Of California Phase-resolved functional optical coherence tomography: simultaneous imaging of the stokes vectors, structure, blood flow velocity, standard deviation and birefringence in biological samples
US20030236443A1 (en) 2002-04-19 2003-12-25 Cespedes Eduardo Ignacio Methods and apparatus for the identification and stabilization of vulnerable plaque
US7503904B2 (en) 2002-04-25 2009-03-17 Cardiac Pacemakers, Inc. Dual balloon telescoping guiding catheter
JP4135551B2 (ja) 2002-05-07 2008-08-20 松下電工株式会社 ポジションセンサ
JP3834789B2 (ja) 2002-05-17 2006-10-18 独立行政法人科学技術振興機構 自律型超短光パルス圧縮・位相補償・波形整形装置
RU2242710C2 (ru) 2002-06-07 2004-12-20 Геликонов Григорий Валентинович Способ получения изображения объекта, устройство для его осуществления и устройство доставки низкокогерентного оптического излучения
US7272252B2 (en) 2002-06-12 2007-09-18 Clarient, Inc. Automated system for combining bright field and fluorescent microscopy
WO2003105678A2 (en) 2002-06-12 2003-12-24 Advanced Research And Technology Institute, Inc. Method and apparatus for improving both lateral and axial resolution in ophthalmoscopy
RU2213421C1 (ru) 2002-06-21 2003-09-27 Южно-Российский государственный университет экономики и сервиса Динамическое запоминающее устройство радиосигналов
JP4045140B2 (ja) 2002-06-21 2008-02-13 国立大学法人 筑波大学 偏光感受型光スペクトル干渉コヒーレンストモグラフィー装置及び該装置による試料内部の偏光情報の測定方法
US20040039252A1 (en) 2002-06-27 2004-02-26 Koch Kenneth Elmon Self-navigating endotracheal tube
JP3621693B2 (ja) 2002-07-01 2005-02-16 フジノン株式会社 干渉計装置
WO2004006751A2 (en) 2002-07-12 2004-01-22 Volker Westphal Method and device for quantitative image correction for optical coherence tomography
JP3950378B2 (ja) 2002-07-19 2007-08-01 新日本製鐵株式会社 同期機
JP4258015B2 (ja) 2002-07-31 2009-04-30 毅 椎名 超音波診断システム、歪み分布表示方法及び弾性係数分布表示方法
JP4373651B2 (ja) 2002-09-03 2009-11-25 Hoya株式会社 診断光照射装置
JP2004113780A (ja) 2002-09-06 2004-04-15 Pentax Corp 内視鏡、および光断層内視鏡装置
US7283247B2 (en) 2002-09-25 2007-10-16 Olympus Corporation Optical probe system
AU2003272667A1 (en) 2002-09-26 2004-04-19 Bio Techplex Corporation Method and apparatus for screening using a waveform modulated led
US20040064053A1 (en) 2002-09-30 2004-04-01 Chang Sung K. Diagnostic fluorescence and reflectance
US6842254B2 (en) 2002-10-16 2005-01-11 Fiso Technologies Inc. System and method for measuring an optical path difference in a sensing interferometer
EP1551273A4 (en) 2002-10-18 2011-04-06 Arieh Sher ATHEREOMETRY SYSTEM WITH IMAGING GUIDE WIRE
US20040092829A1 (en) 2002-11-07 2004-05-13 Simon Furnish Spectroscope with modified field-of-view
JP4246986B2 (ja) 2002-11-18 2009-04-02 株式会社町田製作所 振動物体観察システム及び声帯観察用処理装置
US6847449B2 (en) 2002-11-27 2005-01-25 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for reducing speckle in optical coherence tomography images
EP1426799A3 (en) 2002-11-29 2005-05-18 Matsushita Electric Industrial Co., Ltd. Optical demultiplexer, optical multi-/demultiplexer, and optical device
DE10260256B9 (de) 2002-12-20 2007-03-01 Carl Zeiss Interferometersystem und Meß-/Bearbeitungswerkzeug
GB0229734D0 (en) 2002-12-23 2003-01-29 Qinetiq Ltd Grading oestrogen and progesterone receptors expression
JP4148771B2 (ja) 2002-12-27 2008-09-10 株式会社トプコン 医療機械のレーザ装置
US7123363B2 (en) 2003-01-03 2006-10-17 Rose-Hulman Institute Of Technology Speckle pattern analysis method and system
US8054468B2 (en) 2003-01-24 2011-11-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US7075658B2 (en) 2003-01-24 2006-07-11 Duke University Method for optical coherence tomography imaging with molecular contrast
WO2004066824A2 (en) 2003-01-24 2004-08-12 The General Hospital Corporation System and method for identifying tissue using low-coherence interferometry
US6943892B2 (en) 2003-01-29 2005-09-13 Sarnoff Corporation Instrument having a multi-mode optical element and method
US7474407B2 (en) 2003-02-20 2009-01-06 Applied Science Innovations Optical coherence tomography with 3d coherence scanning
US7297154B2 (en) * 2003-02-24 2007-11-20 Maxwell Sensors Inc. Optical apparatus for detecting and treating vulnerable plaque
JP4338412B2 (ja) 2003-02-24 2009-10-07 Hoya株式会社 共焦点プローブおよび共焦点顕微鏡
US7271918B2 (en) 2003-03-06 2007-09-18 Zygo Corporation Profiling complex surface structures using scanning interferometry
JP2004290548A (ja) 2003-03-28 2004-10-21 Toshiba Corp 画像診断装置、診断・治療装置及び診断・治療方法
CA2519937C (en) 2003-03-31 2012-11-20 Guillermo J. Tearney Speckle reduction in optical coherence tomography by path length encoded angular compounding
JP4135550B2 (ja) 2003-04-18 2008-08-20 日立電線株式会社 半導体発光デバイス
US7110109B2 (en) 2003-04-18 2006-09-19 Ahura Corporation Raman spectroscopy system and method and specimen holder therefor
JP2004317437A (ja) 2003-04-18 2004-11-11 Olympus Corp 光イメージング装置
US7347548B2 (en) 2003-05-01 2008-03-25 The Cleveland Clinic Foundation Method and apparatus for measuring a retinal sublayer characteristic
CA2536969C (en) 2003-05-05 2009-09-29 D4D Technologies, L.P. Optical coherence tomography imaging
CN101785656B (zh) 2003-05-12 2012-08-15 富士胶片株式会社 气囊式内窥镜的气囊控制装置
SE527164C2 (sv) 2003-05-14 2006-01-10 Spectracure Ab Anordning och metod för terapi och diagnostik innefattande optiska komponenter för distribution av strålning
US7376455B2 (en) 2003-05-22 2008-05-20 Scimed Life Systems, Inc. Systems and methods for dynamic optical imaging
US7697145B2 (en) 2003-05-28 2010-04-13 Duke University System for fourier domain optical coherence tomography
EP1627248A4 (en) 2003-05-29 2008-06-04 Univ Michigan ELECTRONIC SCANNING MICROSCOPE WITH DOUBLE SHEATH FIBERS
EP1644697A4 (en) 2003-05-30 2006-11-29 Univ Duke SYSTEM AND METHOD FOR BROADBAND QUADRATURE INTERFEROMETRY WITH LOW COHERENCE
US7697975B2 (en) * 2003-06-03 2010-04-13 British Colombia Cancer Agency Methods and apparatus for fluorescence imaging using multiple excitation-emission pairs and simultaneous multi-channel image detection
US7263394B2 (en) 2003-06-04 2007-08-28 Tomophase Corporation Coherence-gated optical glucose monitor
US6943881B2 (en) 2003-06-04 2005-09-13 Tomophase Corporation Measurements of optical inhomogeneity and other properties in substances using propagation modes of light
CA2527930C (en) 2003-06-06 2014-08-19 The General Hospital Corporation Process and apparatus for a wavelength tuning source
US7458683B2 (en) 2003-06-16 2008-12-02 Amo Manufacturing Usa, Llc Methods and devices for registering optical measurement datasets of an optical system
US7170913B2 (en) 2003-06-19 2007-01-30 Multiwave Photonics, Sa Laser source with configurable output beam characteristics
US20040260182A1 (en) 2003-06-23 2004-12-23 Zuluaga Andres F. Intraluminal spectroscope with wall contacting probe
US20040268421A1 (en) * 2003-06-30 2004-12-30 Infraredx, Inc. Animal model for medical device testing and training using xenografted organ structures such as blood vessels
JP4677208B2 (ja) 2003-07-29 2011-04-27 オリンパス株式会社 共焦点顕微鏡
US20050038322A1 (en) 2003-08-11 2005-02-17 Scimed Life Systems Imaging endoscope
WO2005017495A2 (en) 2003-08-14 2005-02-24 University Of Central Florida Interferometric sensor for characterizing materials
US7539530B2 (en) 2003-08-22 2009-05-26 Infraredx, Inc. Method and system for spectral examination of vascular walls through blood during cardiac motion
US20050083534A1 (en) 2003-08-28 2005-04-21 Riza Nabeel A. Agile high sensitivity optical sensor
JP4590171B2 (ja) 2003-08-29 2010-12-01 オリンパス株式会社 カプセル型医療装置および当該カプセル型医療装置備えた医療装置
JP2005077964A (ja) 2003-09-03 2005-03-24 Fujitsu Ltd 分光装置
US20050057680A1 (en) 2003-09-16 2005-03-17 Agan Martin J. Method and apparatus for controlling integration time in imagers
US20050059894A1 (en) 2003-09-16 2005-03-17 Haishan Zeng Automated endoscopy device, diagnostic method, and uses
US7935055B2 (en) 2003-09-19 2011-05-03 Siemens Medical Solutions Usa, Inc. System and method of measuring disease severity of a patient before, during and after treatment
US6949072B2 (en) 2003-09-22 2005-09-27 Infraredx, Inc. Devices for vulnerable plaque detection
US8172747B2 (en) 2003-09-25 2012-05-08 Hansen Medical, Inc. Balloon visualization for traversing a tissue wall
JP3796550B2 (ja) 2003-09-26 2006-07-12 日本電信電話株式会社 光干渉トモグラフィ装置
US20080252901A1 (en) 2003-09-26 2008-10-16 School Jiridical Person Kitasato Gakuen Wavelength-Tunable Light Source And Optical Coherence Tomography
US7142835B2 (en) 2003-09-29 2006-11-28 Silicon Laboratories, Inc. Apparatus and method for digital image correction in a receiver
US7292792B2 (en) 2003-09-30 2007-11-06 Lucent Technologies Inc. High speed modulation of optical subcarriers
DE10349230A1 (de) 2003-10-23 2005-07-07 Carl Zeiss Meditec Ag Gerät zur interferometrischen Augenlängenmessung mit erhöhter Empfindlichkeit
EP3009815B1 (en) 2003-10-27 2022-09-07 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
DE10351319B4 (de) 2003-10-31 2005-10-20 Med Laserzentrum Luebeck Gmbh Interferometer für die optische Kohärenztomographie
US7130320B2 (en) 2003-11-13 2006-10-31 Mitutoyo Corporation External cavity laser with rotary tuning element
WO2005054780A1 (en) 2003-11-28 2005-06-16 The General Hospital Corporation Method and apparatus for three-dimensional spectrally encoded imaging
US8364231B2 (en) * 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US7359062B2 (en) 2003-12-09 2008-04-15 The Regents Of The University Of California High speed spectral domain functional optical coherence tomography and optical doppler tomography for in vivo blood flow dynamics and tissue structure
US8571640B2 (en) * 2003-12-11 2013-10-29 The Regents Of The University Of California Catheter based mid-infrared reflectance and reflectance generated absorption spectroscopy
DE10358735B4 (de) 2003-12-15 2011-04-21 Siemens Ag Kathetereinrichtung umfassend einen Katheter, insbesondere einen intravaskulären Katheter
US7145661B2 (en) 2003-12-31 2006-12-05 Carl Zeiss Meditec, Inc. Efficient optical coherence tomography (OCT) system and method for rapid imaging in three dimensions
JP4414771B2 (ja) 2004-01-08 2010-02-10 オリンパス株式会社 共焦点顕微分光装置
RU2255426C1 (ru) 2004-02-19 2005-06-27 Южно-Российский государственный университет экономики и сервиса Динамическое запоминающее устройство радиосигналов с последовательной бинарной волоконно-оптической структурой
JP4462959B2 (ja) 2004-02-25 2010-05-12 富士通株式会社 顕微鏡画像撮影システム及び方法
EP1722669A4 (en) 2004-02-27 2009-05-27 Optiscan Pty Ltd OPTICAL ELEMENT
US7242480B2 (en) 2004-05-14 2007-07-10 Medeikon Corporation Low coherence interferometry for detecting and characterizing plaques
US7190464B2 (en) 2004-05-14 2007-03-13 Medeikon Corporation Low coherence interferometry for detecting and characterizing plaques
US20050254059A1 (en) 2004-05-14 2005-11-17 Alphonse Gerard A Low coherence interferometric system for optical metrology
EP1754016B1 (en) 2004-05-29 2016-05-18 The General Hospital Corporation Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (oct) imaging
EP1771755B1 (en) 2004-07-02 2016-09-21 The General Hospital Corporation Endoscopic imaging probe comprising dual clad fibre
DE102004035269A1 (de) 2004-07-21 2006-02-16 Rowiak Gmbh Laryngoskop mit OCT
EP1782020B1 (en) 2004-08-06 2012-10-03 The General Hospital Corporation Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
US20090227994A1 (en) 2004-08-10 2009-09-10 The Regents Of The University Of California Device and method for the delivery and/or elimination of compounds in tissue
JP2006076957A (ja) 2004-09-10 2006-03-23 Yasuyoshi Uchida 生体内脂質検出用薬剤
EP2302364A3 (en) 2004-09-10 2011-04-06 The General Hospital Corporation System and method for optical coherence imaging
EP2329759B1 (en) 2004-09-29 2014-03-12 The General Hospital Corporation System and method for optical coherence imaging
US7113625B2 (en) 2004-10-01 2006-09-26 U.S. Pathology Labs, Inc. System and method for image analysis of slides
SE0402435L (sv) 2004-10-08 2006-04-09 Trajan Badju Förfarande och system för alstring av tredimensionella bilder
WO2006042369A1 (en) 2004-10-22 2006-04-27 Fermiscan Australia Pty Limited Analytical method and apparatus
EP1819270B1 (en) 2004-10-29 2012-12-19 The General Hospital Corporation Polarization-sensitive optical coherence tomography
EP1807722B1 (en) 2004-11-02 2022-08-10 The General Hospital Corporation Fiber-optic rotational device, optical system for imaging a sample
US7417740B2 (en) 2004-11-12 2008-08-26 Medeikon Corporation Single trace multi-channel low coherence interferometric sensor
DE102005045071A1 (de) 2005-09-21 2007-04-12 Siemens Ag Kathetervorrichtung mit einem Positionssensorsystem zur Behandlung eines teilweisen und/oder vollständigen Gefäßverschlusses unter Bildüberwachung
US8617152B2 (en) 2004-11-15 2013-12-31 Medtronic Ablation Frontiers Llc Ablation system with feedback
GB0425419D0 (en) 2004-11-18 2004-12-22 Sira Ltd Interference apparatus and method and probe
WO2006058187A2 (en) 2004-11-23 2006-06-01 Robert Eric Betzig Optical lattice microscopy
GB0426609D0 (en) 2004-12-03 2005-01-05 Ic Innovations Ltd Analysis
JP2006162366A (ja) 2004-12-06 2006-06-22 Fujinon Corp 光断層映像装置
US7450242B2 (en) 2004-12-10 2008-11-11 Fujifilm Corporation Optical tomography apparatus
US8315282B2 (en) 2005-01-20 2012-11-20 Massachusetts Institute Of Technology Fourier domain mode locking: method and apparatus for control and improved performance
US7336366B2 (en) 2005-01-20 2008-02-26 Duke University Methods and systems for reducing complex conjugate ambiguity in interferometric data
US7330270B2 (en) 2005-01-21 2008-02-12 Carl Zeiss Meditec, Inc. Method to suppress artifacts in frequency-domain optical coherence tomography
US7342659B2 (en) 2005-01-21 2008-03-11 Carl Zeiss Meditec, Inc. Cross-dispersed spectrometer in a spectral domain optical coherence tomography system
HU227859B1 (en) 2005-01-27 2012-05-02 E Szilveszter Vizi Real-time 3d nonlinear microscope measuring system and its application
US7267494B2 (en) 2005-02-01 2007-09-11 Finisar Corporation Fiber stub for cladding mode coupling reduction
US7860555B2 (en) 2005-02-02 2010-12-28 Voyage Medical, Inc. Tissue visualization and manipulation system
US7664300B2 (en) 2005-02-03 2010-02-16 Sti Medical Systems, Llc Uterine cervical cancer computer-aided-diagnosis (CAD)
DE102005007574B3 (de) 2005-02-18 2006-08-31 Siemens Ag Kathetereinrichtung
EP1910996A1 (en) 2005-02-23 2008-04-16 Lyncee Tec S.A. Wave front sensing method and apparatus
JP4628820B2 (ja) 2005-02-25 2011-02-09 サンテック株式会社 波長走査型ファイバレーザ光源
US7530948B2 (en) 2005-02-28 2009-05-12 University Of Washington Tethered capsule endoscope for Barrett's Esophagus screening
DE102005010790A1 (de) 2005-03-09 2006-09-14 Basf Ag Photovoltaische Zelle mit einem darin enthaltenen photovoltaisch aktiven Halbleitermaterial
US20060224053A1 (en) 2005-03-30 2006-10-05 Skyline Biomedical, Inc. Apparatus and method for non-invasive and minimally-invasive sensing of venous oxygen saturation and pH levels
JP2008538612A (ja) 2005-04-22 2008-10-30 ザ ジェネラル ホスピタル コーポレイション スペクトルドメイン偏光感受型光コヒーレンストモグラフィを提供することの可能な構成、システム、及び方法
WO2006116362A2 (en) 2005-04-25 2006-11-02 The Trustees Of Boston University Structured substrates for optical surface profiling
US20070009935A1 (en) 2005-05-13 2007-01-11 The General Hospital Corporation Arrangements, systems and methods capable of providing spectral-domain optical coherence reflectometry for a sensitive detection of chemical and biological sample
EP1894010B2 (en) 2005-05-23 2016-06-15 Harald F. Hess Optical microscopy with phototransformable optical labels
US7859679B2 (en) 2005-05-31 2010-12-28 The General Hospital Corporation System, method and arrangement which can use spectral encoding heterodyne interferometry techniques for imaging
WO2006130802A2 (en) 2005-06-01 2006-12-07 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
EP1903933A2 (en) 2005-06-07 2008-04-02 Philips Intellectual Property & Standards GmbH Laser optical feedback tomography sensor and method
US20080218696A1 (en) 2005-07-01 2008-09-11 Jose Mir Non-Invasive Monitoring System
US7391520B2 (en) 2005-07-01 2008-06-24 Carl Zeiss Meditec, Inc. Fourier domain optical coherence tomography employing a swept multi-wavelength laser and a multi-channel receiver
DE102005034443A1 (de) 2005-07-22 2007-02-22 Carl Zeiss Jena Gmbh Auflösungsgesteigerte Lumineszenz-Mikroskopie
US7292347B2 (en) 2005-08-01 2007-11-06 Mitutoyo Corporation Dual laser high precision interferometer
JP4376837B2 (ja) 2005-08-05 2009-12-02 サンテック株式会社 波長走査型レーザ光源
EP1913332B1 (en) 2005-08-09 2010-10-13 The General Hospital Corporation Apparatus and method for performing polarization-based quadrature demodulation in optical coherence tomography
US7668342B2 (en) 2005-09-09 2010-02-23 Carl Zeiss Meditec, Inc. Method of bioimage data processing for revealing more meaningful anatomic features of diseased tissues
US8357917B2 (en) 2005-09-10 2013-01-22 Baer Stephen C High resolution microscopy using an optically switchable fluorophore
JP4708937B2 (ja) 2005-09-15 2011-06-22 Hoya株式会社 Oct観察器具、固定器具、及び、octシステム
US8114581B2 (en) 2005-09-15 2012-02-14 The Regents Of The University Of California Methods and compositions for detecting neoplastic cells
KR100743591B1 (ko) 2005-09-23 2007-07-27 한국과학기술원 사이드 로브가 제거된 공초점 자가 간섭 현미경
KR20080066705A (ko) 2005-09-29 2008-07-16 더 제너럴 하스피탈 코포레이션 점진적으로 증가하는 분해능을 이용하여 하나 이상의 생물학적 샘플을 관찰 및 분석하기 위한 방법 및 장치
US7450241B2 (en) 2005-09-30 2008-11-11 Infraredx, Inc. Detecting vulnerable plaque
US7400410B2 (en) 2005-10-05 2008-07-15 Carl Zeiss Meditec, Inc. Optical coherence tomography for eye-length measurement
WO2007044612A2 (en) 2005-10-07 2007-04-19 Bioptigen, Inc. Imaging systems using unpolarized light and related methods and controllers
US7595889B2 (en) 2005-10-11 2009-09-29 Duke University Systems and methods for endoscopic angle-resolved low coherence interferometry
US7636168B2 (en) 2005-10-11 2009-12-22 Zygo Corporation Interferometry method and system including spectral decomposition
US7408649B2 (en) 2005-10-26 2008-08-05 Kla-Tencor Technologies Corporation Method and apparatus for optically analyzing a surface
US8145018B2 (en) 2006-01-19 2012-03-27 The General Hospital Corporation Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements
JP5384944B2 (ja) 2006-01-19 2014-01-08 ザ ジェネラル ホスピタル コーポレイション ビームスキャニングによる上皮性管腔器官の光学的撮像システム
US20070223006A1 (en) 2006-01-19 2007-09-27 The General Hospital Corporation Systems and methods for performing rapid fluorescence lifetime, excitation and emission spectral measurements
GB0601183D0 (en) 2006-01-20 2006-03-01 Perkinelmer Ltd Improvements in and relating to imaging
WO2007090147A2 (en) 2006-01-31 2007-08-09 The Board Of Trustees Of The University Of Illinois Method and apparatus for measurement of optical properties in tissue
WO2007092911A2 (en) 2006-02-08 2007-08-16 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
US8184367B2 (en) 2006-02-15 2012-05-22 University Of Central Florida Research Foundation Dynamically focused optical instrument
DE102006008990B4 (de) 2006-02-23 2008-05-21 Atmos Medizintechnik Gmbh & Co. Kg Verfahren und Anordnung zur Erzeugung eines dem Öffnungszustand der Stimmlippen des Kehlkopfes entsprechenden Signals
TWI414543B (zh) 2006-02-24 2013-11-11 Toray Industries 纖維強化熱可塑性樹脂成形體、成形材料及其製法
JP2007271761A (ja) 2006-03-30 2007-10-18 Fujitsu Ltd 分光装置および波長分散制御装置
US7742173B2 (en) 2006-04-05 2010-06-22 The General Hospital Corporation Methods, arrangements and systems for polarization-sensitive optical frequency domain imaging of a sample
US20070253901A1 (en) 2006-04-27 2007-11-01 David Deng Atherosclerosis genes and related reagents and methods of use thereof
WO2007127395A2 (en) 2006-04-28 2007-11-08 Bioptigen, Inc. Methods, systems and computer program products for optical coherence tomography (oct) using automatic dispersion compensation
US7782464B2 (en) 2006-05-12 2010-08-24 The General Hospital Corporation Processes, arrangements and systems for providing a fiber layer thickness map based on optical coherence tomography images
US7460248B2 (en) 2006-05-15 2008-12-02 Carestream Health, Inc. Tissue imaging system
EP1859727A1 (en) 2006-05-26 2007-11-28 Stichting voor de Technische Wetenschappen optical triggering system for stroboscopy and a stroboscopic system
US7599074B2 (en) 2006-06-19 2009-10-06 The Board Of Trustees Of The Leland Stanford Junior University Grating angle magnification enhanced angular sensor and scanner
US20070291277A1 (en) 2006-06-20 2007-12-20 Everett Matthew J Spectral domain optical coherence tomography system
WO2008027927A2 (en) 2006-08-28 2008-03-06 Thermo Electron Scientific Instruments Llc Spectroscopic microscopy with image -driven analysis
US8562528B2 (en) * 2006-10-04 2013-10-22 Dexcom, Inc. Analyte sensor
WO2008049118A2 (en) 2006-10-19 2008-04-24 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample and effecting such portion(s)
WO2008052155A2 (en) 2006-10-26 2008-05-02 Cornell Research Foundation, Inc. System for producing optical pulses of a desired wavelength using cherenkov radiation
WO2008053474A2 (en) 2006-10-30 2008-05-08 Elfi-Tech Ltd. System and method for in vivo measurement of biological parameters
DE102006054556A1 (de) 2006-11-20 2008-05-21 Zimmer Medizinsysteme Gmbh Vorrichtung und Verfahren zum nicht-invasiven, optischen Erfassen von chemischen und physikalischen Blutwerten und Körperinhaltsstoffen
US20080204762A1 (en) 2007-01-17 2008-08-28 Duke University Methods, systems, and computer program products for removing undesired artifacts in fourier domain optical coherence tomography (FDOCT) systems using integrating buckets
WO2008089406A2 (en) 2007-01-19 2008-07-24 The General Hospital Corporation Apparatus and method for simultaneous inspection at different depths based on the principle of frequency domain optical coherence tomography
US20080226029A1 (en) 2007-03-12 2008-09-18 Weir Michael P Medical device including scanned beam unit for imaging and therapy
JP5227525B2 (ja) 2007-03-23 2013-07-03 株式会社日立製作所 生体光計測装置
KR20100014457A (ko) 2007-03-26 2010-02-10 고쿠리츠 다이가쿠 호우징 도쿄 가이요우 다이가쿠 어류의 Vasa 유전자를 사용한 생식세포 마커
JP5683946B2 (ja) 2007-04-10 2015-03-11 ユニヴァーシティー オブ サザン カリフォルニア ドップラー光コヒーレンス・トモグラフィを用いた血流測定のための方法とシステム
WO2008137637A2 (en) 2007-05-04 2008-11-13 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with a sample using brillouin microscopy
US7799558B1 (en) 2007-05-22 2010-09-21 Dultz Shane C Ligand binding assays on microarrays in closed multiwell plates
US8166967B2 (en) 2007-08-15 2012-05-01 Chunyuan Qiu Systems and methods for intubation
US20090219544A1 (en) 2007-09-05 2009-09-03 The General Hospital Corporation Systems, methods and computer-accessible medium for providing spectral-domain optical coherence phase microscopy for cell and deep tissue imaging
WO2009049296A2 (en) 2007-10-12 2009-04-16 The General Hospital Corporation Systems and processes for optical imaging of luminal anatomic structures
JP2009095489A (ja) 2007-10-17 2009-05-07 Olympus Corp 血管内観察装置
JP5192247B2 (ja) 2008-01-29 2013-05-08 並木精密宝石株式会社 Octプローブ
US9713448B2 (en) * 2008-04-03 2017-07-25 Infraredx, Inc. System and method for intravascular structural analysis compensation of chemical analysis modality
US7898656B2 (en) 2008-04-30 2011-03-01 The General Hospital Corporation Apparatus and method for cross axis parallel spectroscopy
US8184298B2 (en) 2008-05-21 2012-05-22 The Board Of Trustees Of The University Of Illinois Spatial light interference microscopy and fourier transform light scattering for cell and tissue characterization
US20090306520A1 (en) 2008-06-02 2009-12-10 Lightlab Imaging, Inc. Quantitative methods for obtaining tissue characteristics from optical coherence tomography images
JP5324839B2 (ja) 2008-06-19 2013-10-23 株式会社トプコン 光画像計測装置
JP5546112B2 (ja) 2008-07-07 2014-07-09 キヤノン株式会社 眼科撮像装置および眼科撮像方法
US8133127B1 (en) 2008-07-21 2012-03-13 Synder Terrance W Sports training device and methods of use
JP5371315B2 (ja) 2008-07-30 2013-12-18 キヤノン株式会社 光干渉断層撮像方法および光干渉断層撮像装置
EP2362822A2 (en) * 2008-09-26 2011-09-07 Mikro Systems Inc. Systems, devices, and/or methods for manufacturing castings
US8916137B2 (en) * 2008-11-07 2014-12-23 The General Hospital Corporation Monofunctional carbocyanine dyes for in vivo and in vitro imaging
US20110160681A1 (en) 2008-12-04 2011-06-30 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems, devices, and methods including catheters having light removable coatings based on a sensed condition
CN101744601B (zh) 2008-12-05 2013-04-24 德昌电机(深圳)有限公司 胶囊式成像装置和体内图像获取系统
US8864669B2 (en) 2008-12-29 2014-10-21 Perseus-Biomed Inc. Method and system for tissue imaging and analysis
US8457715B2 (en) 2009-04-08 2013-06-04 Covidien Lp System and method for determining placement of a tracheal tube
US7911261B1 (en) 2009-04-13 2011-03-22 Netlogic Microsystems, Inc. Substrate bias circuit and method for integrated circuit device
US9089331B2 (en) 2009-07-31 2015-07-28 Case Western Reserve University Characterizing ablation lesions using optical coherence tomography (OCT)
US20120228523A1 (en) 2009-11-09 2012-09-13 Tata Institute Of Fundamental Research Biological laser plasma x-ray point source
KR101522850B1 (ko) 2010-01-14 2015-05-26 삼성전자주식회사 움직임 벡터를 부호화, 복호화하는 방법 및 장치
PT2542154T (pt) * 2010-03-05 2020-11-25 Massachusetts Gen Hospital Aparelho para proporcionar radiação eletromagnética a uma amostra
JP2012115535A (ja) * 2010-12-02 2012-06-21 Kochi Univ 近赤外蛍光を発する医療具及び医療具位置確認システム
RU2013151050A (ru) * 2011-04-18 2015-05-27 Конинклейке Филипс Н.В. Классификация опухолевой ткани с использованием персонифицированного порогового значения
US8958867B2 (en) * 2011-08-29 2015-02-17 Infraredx, Inc. Detection of lipid core plaque cap thickness
EP2744398B1 (en) 2011-11-07 2017-01-18 Koninklijke Philips N.V. Detection apparatus for determining a state of tissue
EP2856965B1 (en) * 2012-06-01 2020-04-01 National University Corporation Kochi University Medical product that emits near-infrared fluorescence and medical-product usage-status ascertainment device
ES2907287T3 (es) * 2014-07-25 2022-04-22 Massachusetts Gen Hospital Aparato para imagenología y diagnóstico in vivo
US20170173262A1 (en) * 2017-03-01 2017-06-22 François Paul VELTZ Medical systems, devices and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030236453A1 (en) * 2002-06-19 2003-12-25 Simon Furnish Multi-channel catheter tip
US7672713B2 (en) * 2002-06-19 2010-03-02 Infraredx, Inc. Multi-channel catheter tip
JP2006081619A (ja) * 2004-09-14 2006-03-30 Yasuyoshi Uchida 蛍光像取得用血管内視鏡装置
US20090192358A1 (en) * 2008-01-28 2009-07-30 The General Hospital Corporation Systems, processes and computer-accessible medium for providing hybrid flourescence and optical coherence tomography imaging
WO2013152395A1 (en) * 2012-04-13 2013-10-17 Baker Idi Heart & Diabetes Institute Holdings Limited Atherosclerotic plaque detection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11172826B2 (en) 2016-03-08 2021-11-16 Enspectra Health, Inc. Non-invasive detection of skin disease
US11877826B2 (en) 2016-03-08 2024-01-23 Enspectra Health, Inc. Non-invasive detection of skin disease
US11633149B2 (en) 2017-04-28 2023-04-25 Enspectra Health, Inc. Systems and methods for imaging and measurement of sarcomeres
WO2019112162A1 (ko) * 2017-12-06 2019-06-13 한국광기술원 광단층영상 시스템을 이용한 혈관 이미징 장치 및 방법
WO2022131612A1 (ko) * 2020-12-15 2022-06-23 이민희 비침습 3d 혈액 영상 및 성분 분석 장치

Also Published As

Publication number Publication date
EP3171766B1 (en) 2021-12-29
US11890077B2 (en) 2024-02-06
US20210161387A1 (en) 2021-06-03
JP2020127735A (ja) 2020-08-27
EP3171766A1 (en) 2017-05-31
US20170209049A1 (en) 2017-07-27
KR102513779B1 (ko) 2023-03-24
JP2017525435A (ja) 2017-09-07
WO2016015052A1 (en) 2016-01-28
EP3171766A4 (en) 2018-01-10
JP2022133448A (ja) 2022-09-13
ES2907287T3 (es) 2022-04-22
US10912462B2 (en) 2021-02-09

Similar Documents

Publication Publication Date Title
US11890077B2 (en) Apparatus, devices and methods for in vivo imaging and diagnosis
US11553841B2 (en) Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US10314490B2 (en) Method and device for multi-spectral photonic imaging
US9332942B2 (en) Systems, processes and computer-accessible medium for providing hybrid flourescence and optical coherence tomography imaging
JP4870356B2 (ja) 組織を測定するための高波数ラマン分光法の使用
US9345389B2 (en) Additional systems and methods for providing real-time anatomical guidance in a diagnostic or therapeutic procedure
US20200405153A1 (en) Atherosclerotic plaque detection
Park et al. A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization
US20090073439A1 (en) Apparatus, computer-accessible medium and method for measuring chemical and/or molecular compositions of coronary atherosclerotic plaques in anatomical structures
Ntziachristos Clinical translation of optical and optoacoustic imaging
US11707186B2 (en) Fluorescence or auto-fluorescence trigger or triggers
JP7470761B2 (ja) 手動管腔検出に基づく蛍光較正
Yuan et al. Combining optical coherence tomography with fluorescence imaging
Nishimiya et al. Multimodality 13 Imaging
Wang Near infrared autofluorescence augmentation of optical coherence tomography for diagnosis of coronary atherosclerosis
Dorez et al. Autofluorescence spectroscopy for multimodal tissues characterization in colitis-associated cancer murine model
Chau Development of an intracoronary Raman spectroscopy

Legal Events

Date Code Title Description
AMND Amendment
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant