JP6989656B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP6989656B2
JP6989656B2 JP2020108364A JP2020108364A JP6989656B2 JP 6989656 B2 JP6989656 B2 JP 6989656B2 JP 2020108364 A JP2020108364 A JP 2020108364A JP 2020108364 A JP2020108364 A JP 2020108364A JP 6989656 B2 JP6989656 B2 JP 6989656B2
Authority
JP
Japan
Prior art keywords
oxide semiconductor
semiconductor film
layer
conductive layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020108364A
Other languages
English (en)
Other versions
JP2020170856A (ja
Inventor
舜平 山崎
真之 坂倉
昭治 宮永
正弘 高橋
拓也 廣橋
貴志 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2020170856A publication Critical patent/JP2020170856A/ja
Priority to JP2021196039A priority Critical patent/JP7329581B2/ja
Application granted granted Critical
Publication of JP6989656B2 publication Critical patent/JP6989656B2/ja
Priority to JP2023128257A priority patent/JP2023138636A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Description

開示する発明の技術分野は、酸化物半導体を含む半導体膜に関するものである。または、
該半導体膜を用いた半導体装置に関するものである。
電界効果型トランジスタは、最も広く用いられている半導体素子の一つである。電界効果
型トランジスタに用いられる材料は、その用途に応じて様々であるが、特に、シリコンを
含む半導体材料が多く用いられている。
シリコンを用いた電界効果型トランジスタは、多くの用途に対して要求される特性を満た
す。例えば、高速動作が必要な集積回路などの用途には単結晶シリコンを用いることで、
その要求が満たされる。また、表示装置などの大面積用途に対しては、非晶質シリコンを
用いることで、その要求を満たすことができる。
このように、シリコンは汎用性が高く、様々な用途に用いることが可能であるが、近年で
は半導体材料に対して、汎用性と共に一層の性能を求める傾向にある。例えば、大面積表
示装置の高性能化という観点からは、スイッチング素子の高速動作を実現するために、大
面積化が容易で、且つ非晶質シリコンを超える性能を有する半導体材料が求められている
このような状況において、酸化物半導体を用いた電界効果型トランジスタ(FETとも呼
ぶ)に関する技術が注目されている。例えば、特許文献1には、ホモロガス化合物InM
(ZnO)(M=In、Fe、Ga、又はAl、m=1以上50未満の整数)を用
いた透明薄膜電界効果型トランジスタが開示されている。
また、特許文献2には、In、Ga、Znを含む非晶質酸化物半導体であって電子キャリ
ア濃度が1018/cm未満であるものを用いた電界効果型トランジスタが開示されて
いる。なお、当該文献において、非晶質酸化物半導体の原子数の比は、In:Ga:Zn
=1:1:m(m<6)である。
さらに、特許文献3には、微結晶を含む非晶質酸化物半導体を活性層とする電界効果型ト
ランジスタが開示されている。
特開2004−103957号公報 国際公開第05/088726号 特開2006−165529号公報
特許文献3においては、結晶状態における組成をInGaO(ZnO)(m=6未満
の整数)とする旨の開示がある。また、特許文献3の実施例1においては、InGaO
(ZnO)の場合について開示されている。しかしながら、このような酸化物半導体を
用いる場合であっても、十分な特性が得られていないというのが実情であった。
上記問題点に鑑み、半導体装置に用いるのに好適な新たな構造の酸化物半導体膜を提供す
ることを目的の一とする。または、新たな構造の酸化物半導体膜を用いた半導体装置を提
供することを目的の一とする。
開示する発明では、表面の近傍に所定の結晶構造を備えた酸化物半導体膜を提供する。ま
たは、当該酸化物半導体膜を備えた半導体装置を提供する。上記所定の結晶構造とは、例
えば、電気的異方性を有する結晶構造である。または、不純物の侵入を抑制する機能を有
する結晶構造である。
酸化物半導体膜の上記結晶構造を除いた領域は、非晶質を主たる構成とするものであると
好適である。なお、「表面の近傍(表面近傍)」とは、例えば、表面からの距離(深さ)
が20nm以下の領域を言う。また、「主たる」とは、例えば、50%以上を占める状態
をいう。課題を解決する手段の例としては、以下のものを挙げることができる。
開示する発明の一態様は、In、Ga、Znを含む非晶質酸化物半導体を主たる構成とす
る非晶質領域と、表面近傍の、InGaZnOの結晶粒を含む結晶領域と、を有し
、結晶粒は、そのc軸が、表面に対して略垂直な方向となるように配向している酸化物半
導体膜である。なお、略垂直とは、垂直方向から±10°以内の状態を言うものとする。
上記において、InGaZnOの結晶粒は、Inを含有する第1のレイヤーと、I
nを含有しない第2のレイヤーと、Inを含有しない第3のレイヤーと、Inを含有する
第4のレイヤーと、Inを含有しない第5のレイヤーと、の積層構造を含むのが好適であ
る。さらに、Inを含有する第1のレイヤー、またはInを含有する第4のレイヤーにお
いて、一のInの5s軌道は隣接するInの5s軌道と重なりを有することが好適である
また、上記の非晶質領域において、Znの含有量(原子%)は、InまたはGaの含有量
(原子%)未満であるのが好適である。また、結晶粒は、c軸方向の長さ(大きさ)が、
a軸方向またはb軸方向の長さ(大きさ)の5倍未満であるのが好適である。
また、開示する発明の別の一態様は、ゲート電極層と、ゲート電極層上のゲート絶縁層と
、ゲート絶縁層上の半導体層と、半導体層の一部と電気的に接続するソース電極層および
ドレイン電極層と、を有し、半導体層として、上記酸化物半導体膜を適用した半導体装置
である。
また、開示する発明の別の一態様は、半導体層と、半導体層上のゲート絶縁層と、ゲート
絶縁層上のゲート電極層と、半導体層の一部と電気的に接続するソース電極層およびドレ
イン電極層と、を有し、半導体層として、上記酸化物半導体膜を適用した半導体装置であ
る。
上記半導体装置において、半導体層を覆う絶縁層を有するのが好適である。また、ソース
電極層またはドレイン電極層と、半導体層とは、半導体層の上面または下面において電気
的に接続するのが好適である。
なお、本明細書等において「上」「下」の文言は、直上または直下であることを限定する
ものではない。例えば、「ゲート電極層上のゲート絶縁層」の表現であれば、ゲート電極
層とゲート絶縁層との間に他の構成要素を含む場合を除外しない。また、「上」「下」の
文言は説明の便宜のために用いる表現に過ぎず、特に言及する場合を除き、その上下を入
れ替えたものも含む。
表面近傍に電気的異方性を有する結晶構造を備えた酸化物半導体膜では、当該結晶構造を
備えない酸化物半導体膜と比較して、酸化物半導体膜の電気的特性が変化する。例えば、
酸化物半導体膜の表面に平行な方向の導電性が向上し、酸化物半導体膜の表面に垂直な方
向の絶縁性が向上する。
また、表面近傍に不純物の侵入を抑制する機能を有する結晶構造を備えた酸化物半導体膜
では、当該結晶構造を備えない酸化物半導体膜と比較して、酸化物半導体膜中への不純物
の侵入が抑制される。例えば、酸化物半導体に対して悪影響を与える水、水素などの侵入
が抑制される。
このため、開示する発明の一態様により、優れた電気特性を有する酸化物半導体膜が提供
される。また、信頼性の高い酸化物半導体膜が提供される。
また、開示する発明の別の一態様により、優れた特性の半導体装置が提供される。また、
信頼性の高い半導体装置が提供される。
酸化物半導体膜の構成を示す断面図である。 InGaZnOの結晶構造を示す図である。 酸化物半導体膜の作製方法について示す断面図である。 表面近傍のBright−field−TEM像である。 表面近傍の電子線回折パターン、および測定ポイントを表す断面TEM像である。 電子線回折パターンの実測データとシミュレーション結果を比較する図である。 InGaZnO結晶構造とInGaZnO結晶構造を比較する図である。 HAADF−STEM像のシミュレーション結果である。 InGaZnO結晶粒の断面に係るHAADF−STEM像である。 InGaZnO結晶粒の断面に係るHAADF−STEM像である。 表面エネルギー計算に用いた結晶構造および表面構造を示す図である。 計算条件の詳細を示す図である。 表面エネルギーの計算結果を示す図である。 InGaZnO結晶粒の形成メカニズムおよび成長メカニズムを示す図である。 半導体装置の作製工程を示す断面図である。 半導体装置の作製工程を示す断面図である。 半導体装置の作製工程を示す断面図である。 半導体装置の作製工程を示す断面図である。 半導体装置の作製工程を示す断面図である。 半導体装置の作製工程を示す断面図である。 半導体装置の作製工程を示す断面図である。 半導体装置の作製工程を示す断面図である。 表示装置の一例を示す図である。 表示装置の応用形態を示す図である。
以下、実施の形態について、図面を用いて詳細に説明する。ただし、発明は以下に示す実
施の形態の記載内容に限定されず、本明細書等において開示する発明の趣旨から逸脱する
ことなく形態および詳細を変更し得る。また、異なる実施の形態に係る構成は、適宜組み
合わせて実施することが可能である。なお、以下に説明する発明の構成において、同一部
分または同様な機能を有する部分には同一の符号を用い、その繰り返しの説明は省略する
(実施の形態1)
本実施の形態では、開示する発明の一態様に係る酸化物半導体膜やその作製方法の詳細な
どについて、図1乃至図14を用いて説明する。
<酸化物半導体膜の構成>
はじめに、酸化物半導体膜の構成について、図1および図2を用いて説明する。
図1には、酸化物半導体膜100が、基材110の被形成表面に設けられた構成の例を示
す。なお、基材110は、酸化物半導体膜100を支持することができるものであれば、
どのようなものを用いても良い。また、酸化物半導体膜100は、基材110の被形成表
面に設けることに限らず、自立膜としてもよい。
上記酸化物半導体膜100は、非晶質酸化物半導体を主たる構成とする非晶質領域120
と、表面近傍の、結晶粒130を含む結晶領域140と、を有する(図1(A)参照)。
また、結晶粒130は、そのc軸が、酸化物半導体膜100の表面に対して略垂直な方向
となるように配向している。ここで、略垂直とは、垂直方向から±10°以内の状態を言
うものとする。
酸化物半導体膜100を構成する酸化物半導体材料の例としては、例えば、In−Ga−
Zn−O系、In−Sn−Zn−O系、In−Al−Zn−O系、Sn−Ga−Zn−O
系、Al−Ga−Zn−O系、Sn−Al−Zn−O系、In−Zn−O系、Sn−Zn
−O系、Al−Zn−O系、In−O系、Sn−O系、Zn−O系の酸化物半導体材料な
どがある。
中でも、In−Ga−Zn−O系の酸化物半導体材料は、無電界時の抵抗が十分に高くオ
フ電流を十分に小さくすることが可能であり、また、電界効果移動度も高いため、半導体
装置に用いる半導体材料としては好適である。
In−Ga−Zn−O系の酸化物半導体材料の代表例としては、InGaO(ZnO)
(m>0)で表記されるものがある。なお、当該表記に係る組成は、結晶構造を基礎と
するものであり、酸化物半導体材料全体で見て当該組成となっていることに限る趣旨では
ない。また、上記において、Gaに代えてMを用い、InMO(ZnO)(m>0)
のように表記することもできる。ここで、Mは、ガリウム(Ga)、鉄(Fe)、ニッケ
ル(Ni)、マンガン(Mn)、コバルト(Co)などから選ばれた一の金属元素または
複数の金属元素を示す。In−Ga−Zn−O系の酸化物半導体材料では、MとしてGa
が選択されることになるが、Gaのみの場合の他にも、GaとNiや、GaとFeなど、
Ga以外の上記金属元素が選択される場合を含む。また、Mとして含まれる金属元素の他
に、遷移金属元素やその酸化物などを不純物として含むことがある。
非晶質領域120は、非晶質酸化物半導体を主たる構成としている。なお、「主たる」と
は、例えば、50%以上を占める状態をいい、この場合には、非晶質酸化物半導体が体積
%(または重量%)で50%以上を占める状態をいうものとする。つまり、非晶質酸化物
半導体以外にも、酸化物半導体の結晶などを含むことがあるが、その含有率は体積%(ま
たは重量%)で50%未満であることが望ましい。なお、開示する発明の本質は、結晶領
域140の構成にあるともいえるから、要求される特性を確保できるのであれば非晶質領
域120の構成を上記に限定する必要はない。
In−Ga−Zn−O系の酸化物半導体材料を用いる場合には、上記の非晶質領域120
の組成は、Znの含有量(原子%)が、InまたはGaの含有量(原子%)未満となるよ
うにするのが好適である。このような組成とすることにより、所定の組成の結晶粒130
を結晶領域140に形成することが容易になるためである。
表面近傍の結晶領域140は、酸化物半導体膜100の表面に対して略垂直な方向にc軸
(c−axis)が配向した結晶粒130を有する(図1(B)参照)。例えば、In−
Ga−Zn−O系の酸化物半導体材料を用いる場合には、結晶領域140は、InGa
ZnO結晶粒のc軸が酸化物半導体膜100の表面に対して略垂直な方向に配向した
ものとなる。なお、「表面の近傍(表面近傍)」とは、例えば、表面からの距離(深さ)
が20nm以下の領域をいう。ただし、酸化物半導体膜100の厚さが大きくなる場合に
はこの限りではない。例えば、酸化物半導体膜100の厚さが200nm以上となる場合
には、「表面の近傍(表面近傍)」とは、表面からの距離(深さ)が酸化物半導体膜の厚
さの10%以下である領域をいう。
上記InGaZnOの結晶は、In、Ga、Znのいずれかを含有し、a軸(a−
axis)およびb軸(b−axis)に平行なレイヤーの積層構造を有すると捉えるこ
とができる(図2参照)。すなわち、InGaZnOの結晶は、Inを含有する第
1のレイヤーと、Inを含有しない第2のレイヤー(GaまたはZnを含有)と、Inを
含有しない第3のレイヤー(GaまたはZnを含有)と、Inを含有する第4のレイヤー
と、Inを含有しない第5のレイヤー(GaまたはZnを含有)と、がc軸方向に積層さ
れた構造を備える。
InGaZnO結晶の電気伝導は、主としてInによって制御されるため、Inを
含有する第1のレイヤーやInを含有する第4のレイヤーの、a軸およびb軸に平行な方
向に関する電気特性は良好である。これは、Inを含有する第1のレイヤー、またはIn
を含有する第4のレイヤーでは、一のInの5s軌道が、隣接するInの5s軌道と重な
りを有することにより、キャリアパスが形成されるためである。一方、上記レイヤーに垂
直な方向(すなわちc軸方向)に関しては、絶縁性が向上するといえる。
このような電気的な異方性を有する結晶粒が配向することで、酸化物半導体膜100の電
気的特性にも影響が現れる。具体的には、例えば、酸化物半導体膜100の表面と平行な
方向の電気特性が向上する。これは、InGaZnO結晶粒のc軸が酸化物半導体
膜100の表面に対して略垂直な方向に配向しており、InGaZnO結晶におい
て、a軸およびb軸に平行な方向に電流が流れるためである。
なお、結晶領域140は、結晶粒130以外のものを含んでいても良い。また、結晶粒の
結晶構造も上記に限定されず、他の結晶構造の結晶粒を含んでいても良い。例えば、In
−Ga−Zn−O系の酸化物半導体材料を用いる場合には、InGaZnOの結晶
粒に加え、InGaZnOの結晶粒などを含んでいても良い。もちろん、結晶領域14
0全体に渡ってInGaZnOの結晶粒が存在する場合には、より効果的であり、
好適である。
また、結晶粒は、c軸方向の長さ(大きさ)が、a軸方向またはb軸方向の長さ(大きさ
)の5倍未満であるのが好適であり、3倍未満であるとなお良い。結晶領域140の厚さ
が大きくなり過ぎると(つまり、結晶粒130がc軸方向に長くなりすぎると)、酸化物
半導体膜100の特性が結晶領域140にのみ依存し、所望の特性が得られなくなる場合
もあり得るからである。
以上において説明したように、酸化物半導体膜100では、表面近傍に結晶領域140を
有することで、良好な電気特性を実現できる。特に、結晶領域140が、InGa
nO結晶粒のc軸が酸化物半導体膜100の表面に対して略垂直な方向に配向したもの
を含んで構成される場合には、InGaZnO結晶粒の電気特性の異方性によって
、優れた電気特性が実現される。
また、結晶領域140は、非晶質領域120と比較して安定であるため、これを酸化物半
導体膜100の表面近傍に有することで、非晶質領域120に不純物(例えば水分など)
が取り込まれることを抑制することが可能である。このため、酸化物半導体膜100の信
頼性を向上させることができる。
<酸化物半導体膜の作製方法>
次に、上記酸化物半導体膜100の作製方法について、図3を用いて説明する。
酸化物半導体膜100の前身である酸化物半導体膜200は、上記<酸化物半導体膜の構
成>の項で示した酸化物半導体材料を用いて形成される。また、酸化物半導体膜200は
、アルゴンをはじめとする希ガス雰囲気下、酸素雰囲気下、希ガスと酸素の混合雰囲気下
におけるスパッタリング法などにより形成される(図3(A)参照)。スパッタリング法
において、SiOを2重量%以上10重量%以下含むターゲットを用いることにより、
酸化物半導体膜200中にSiO(x>0)を含ませて酸化物半導体膜200の結晶化
を抑制することができる。当該方法は、非晶質の酸化物半導体膜200を得たい場合に特
に有効である。
例えば、In、Ga、およびZnを含む金属酸化物ターゲット(In:Ga:Zn=1:
1:0.5[atom%]、In:Ga:Zn=1:1:1[atom%]、In:Ga
:Zn=1:1:2[atom%]の組成比を有するターゲットなど)を用い、基板とタ
ーゲットとの間の距離を100mm、圧力を0.6Pa、直流電力を0.5kW、雰囲気
を酸素(酸素流量比率100%)雰囲気とすることで、酸化物半導体膜200として、I
n−Ga−Zn−O系の非晶質酸化物半導体膜を得ることができる。なお、電源としてパ
ルス直流電源を用いる場合には、膜形成時に発生する粉状物質(パーティクル、ゴミとも
いう)を低減することが可能であり、また、膜厚分布を均一化することができるため好適
である。
酸化物半導体膜200の厚さは、目的とする用途や特性に応じて適宜設定することができ
る。例えば、20nm乃至10μm程度とすればよい。
結晶領域140は、酸化物半導体膜200を形成した後の熱処理によって形成される(図
3(B)参照)。なお、当該熱処理によって、酸化物半導体膜200中のH、H、OH
などが脱離するため、当該熱処理を脱水化処理または脱水素化処理と呼ぶこともできる。
上記熱処理には、高温の不活性ガス(窒素や希ガスなど)を用いたRTA(Rapid
Thermal Anneal)処理を適用することができる。ここで、熱処理の温度は
500℃以上とすることが好適である。なお、熱処理温度の上限に関し、発明の本質的な
部分からの要求はないが、支持体として基材110を用いる場合には、熱処理温度の上限
はその耐熱温度の範囲内とする必要がある。熱処理の時間は、1分以上10分以下とする
ことが好適である。例えば、650℃で3分〜6分程度のRTA処理を行うと良い。上述
のようなRTA処理を適用することで、短時間に熱処理を行うことができるため、基材1
10に対する熱の影響を小さくすることができる。つまり、熱処理を長時間行う場合と比
較して、熱処理温度の上限を引き上げることが可能である。また、表面近傍に、所定の構
造の結晶粒を選択的に形成することが可能である。
なお、上記の熱処理は、酸化物半導体膜200を形成した後であればいずれのタイミング
で行ってもよいが、脱水化または脱水素化を促進させるためには、酸化物半導体膜200
の表面に他の構成要素を設ける前に行うのが好適である。また、上記の熱処理は、一回に
限らず、複数回行っても良い。
なお、上記の熱処理において、処理雰囲気中には、水素(水を含む)などが含まれないこ
とが望ましい。例えば、熱処理装置に導入する不活性ガスの純度を、6N(99.999
9%、即ち不純物濃度が1ppm以下)以上、好ましくは、7N(99.99999%、
即ち不純物濃度が0.1ppm以下)以上とする。
上記の熱処理によって、c軸が、酸化物半導体膜の表面に対して略垂直な方向となるよう
に配向した結晶粒130を有する結晶領域140と、非晶質を主たる構成とする非晶質領
域120と、を有する酸化物半導体膜100が形成される(図3(C)参照)。
なお、上記の結晶領域140は、膜中への不純物の侵入を抑制する機能を有しているが、
大量の不純物が存在する場合には、その侵入を完全に抑制できるとはいいがたい。このた
め、上記熱処理の後には、酸化物半導体膜100を、極力、水や水素などに接触させない
ことが重要となる。これは、熱処理およびその後の降温過程において、大気暴露しないこ
とにより実現することができる。例えば、熱処理およびその後の降温過程を同一雰囲気に
おいて行えばよい。もちろん、降温過程の雰囲気を熱処理雰囲気と異ならせてもよい。こ
の場合、降温過程の雰囲気を、例えば、酸素ガス、NOガス、超乾燥エア(露点が−4
0℃以下、好ましくは−60℃以下)などの雰囲気とすることができる。
<結晶粒の成長メカニズムについて>
以下では一例として、In−Ga−Zn−O系の非晶質酸化物半導体膜における結晶粒の
成長メカニズムについて、図4〜図14を用いて説明する。
はじめに、In−Ga−Zn−O系の非晶質酸化物半導体膜の表面近傍にInGa
nO結晶粒がc軸配向する様子を、実験観察の結果と共に示す。
In−Ga−Zn−O系の非晶質酸化物半導体膜としては、DCスパッタリング法によっ
てガラス基板上に50nmの厚さで形成されるものを用いた。また、スパッタターゲット
として、In:Ga:Zn=1:1:0.5[atom%]の組成比を有するターゲット
ものを用いた。他の成膜条件は、直流電力が0.5kW、成膜圧力が0.6Pa、成膜雰
囲気が酸素(酸素流量比率100%)雰囲気、基板の温度が室温、であった。
表面近傍にInGaZnO結晶粒をc軸配向させるため、上記In−Ga−Zn−
O系の非晶質酸化物半導体膜に対して、RTA処理を適用した。熱処理の条件は、雰囲気
が大気圧の窒素雰囲気、温度が650℃、時間が6分、であった。
このようにして作製された試料の断面を観察するため、機械研磨を行った後に、Arイオ
ンミリング法(加速電圧:5kV)による薄片化、または、FIBミリング法(照射イオ
ン:Ga、加速電圧:40kVの後に5kVで処理)による薄片化を行った。なお、Ar
イオンミリング法には、Gatan社製PIPSを、FIBミリング法には、日立社製N
B−5000およびFB−2100、をそれぞれ使用した。
図4には、上記試料表面近傍のBright−field−TEM像を示す。なお、当該
TEM像は、日立社製H−9000NARを用い、加速電圧が300kVの条件で観察さ
れたものである。図4より、厚さ50nmのIn−Ga−Zn−O系酸化物半導体膜の表
面近傍に、幅が1nm以上3nm以下、深さが2nm以上4nm以下の結晶粒を含む結晶
領域が形成されていることが確認できる。
図5(A−1)には、上記試料表面近傍の断面TEM像を示す。また、断面TEM像中に
付された1に対応する電子線回折パターンを図5(A−2)に示し、断面TEM像中に付
された2に対応する電子線回折パターンを図5(A−3)に示し、断面TEM像中に付さ
れた3に対応する電子線回折パターンを図5(A−4)に示し、断面TEM像中に付され
た4に対応する電子線回折パターンを図5(A−5)に示し、断面TEM像中に付された
5に対応する電子線回折パターンを図5(A−6)に示す。それぞれの電子線回折パター
ンには、d値が0.29nm以上0.30nm以下をとる明確なスポットが表れている。
当該スポットの方向は、結晶のc軸の方向に相当する。
図5(B)は、c軸方向と表面との関係を示す断面TEM像である。図中の矢印は、その
ポイントにおける結晶粒のc軸方向を示している。図5(B)より、c軸(<001>方
向)は、表面に対して略垂直となっていることが分かる。また、c軸の方向は、表面の平
坦性を反映していることが分かる。
次に、上記結晶粒の結晶構造を決定するため、電子線回折パターンの詳細な解析を行った
。図6(A−1)〜図6(A−3)には、電子線回折パターンの代表的な実測データを示
し、図6(B−1)〜図6(B−3)には、実測データと対応するシミュレーション結果
(InGaZnO結晶を想定)を示す。実測データとシミュレーション結果との比
較より、結晶粒の結晶構造はInGaZnOであることが確認できる。
図7に、ホモロガス構造InGaO(ZnO)(m:自然数)におけるm=1の結晶
構造(InGaZnO)(図7(A)参照)と、InGaZnO結晶構造(図7
(B)参照)を比較して示す。
InGaZnO構造では、c軸(<001>方向)に垂直なInとOとで構成される層
(InO層)の間に、GaOまたはZnOの層が2層存在するのに対して、InGa
ZnO構造では、InO層の間に、GaOまたはZnOの層を1層有する構造と、2層
有する構造とが、交互に繰り返し現れている点が特徴的である。また、c軸方向の格子定
数は、InGaZnOの2.61nmに対し、InGaZnOでは2.95nm
である。
次に、InGaZnO結晶構造とInGaZnO結晶構造におけるHAADF(
high−angle annular dark field)−STEM像の観察に
関して説明する。図8(A−1)はInGaZnO結晶構造のシミュレーション結果で
あり、図8(A−2)はInGaZnO結晶構造のHAADF−STEM像である。ま
た、図8(B−1)はInGaZnO結晶構造のシミュレーション結果であり、図
8(B−2)はInGaZnO結晶構造のHAADF−STEM像である。なお、
図8(A−1)、図8(B−1)は、(100)面から見た結晶構造を示す。
HAADF−STEM像では、原子番号の2乗に比例したコントラストが得られるため、
明るい点ほど重い原子を表すことになる。つまり、上記4元系においては、明るい点がI
n原子、暗い点がGa原子またはZn原子を表す。また、O原子は、上記原子と比較して
質量が小さいため、像としては現れない。このように、HAADF−STEM像は、原子
レベルの構造が直接的にイメージしやすいという点で、画期的な観察手段であるといえる
試料表面近傍におけるInGaZnO結晶粒の断面に係るHAADF−STEM像
を図9および図10に示す。観察には、球面収差補正機能付きショットキータイプフィー
ルドエミッションSTEM(日立社製HD−2700、球面収差Cs:5μm以下)を用
いた。また、加速電圧は200kV、検出角度は40mrad以上210mrad以下と
した。図9および図10では、図8のように、In原子と、Ga原子またはZn原子との
強度差が明確ではない。これは、結晶粒が微細であるため、十分な信号強度を得ることが
できないことに起因するものと思われる。
図9を詳細に観察すると、Inを含む層の間にGaまたはZnを含む層が2層存在する構
造(Inを含む層の間の距離:0.89nm)と、Inを含む層の間にGaまたはZnを
含む層が1層存在する構造(Inを含む層の間の距離:0.62nm)と、を確認するこ
とができる。また、図10では、さらに特徴的な構造を確認することができる。多くの領
域において、最表面の層は、Inを含む層ではないのである。このことから、最表面はG
aまたはZnを含む層であることが示唆される。これは、結晶粒の生成メカニズムを理解
する上で興味深い事実である。
次に、上記観察結果をもとに、計算機シミュレーションによって、酸化物半導体膜表面近
傍における結晶核の生成および結晶成長のメカニズムを確認した。
結晶成長に係る種結晶の面方位を調査すべく、第一原理計算によりInGaZnO
(結晶の対称性:P63/MMC)や、In(結晶の対称性:R−3C)、Ga
(結晶の対称性:R−3C)、ZnO(結晶の対称性:P63MC)の表面エネルギ
ーを求めた。ここで、表面エネルギーとは、バルク結晶から結晶面を切り出す際に必要な
単位面積あたりのエネルギーをいう。つまり、表面エネルギーが大きいほど、表面構造が
エネルギー的に不安定であり、種結晶になりにくいといえる。
上記計算には、密度汎関数理論に基づく第一原理計算ソフトであるCASTEPを用いた
。また、上記計算において、表面エネルギーは以下の(1)式から求めた。
Figure 0006989656
GaとZnは周期表において隣接しており、原子半径が同程度であるため、互いの配置は
ランダムである。つまり、Gaが配置されるサイトにはZnが配置されることがあり、Z
nが配置されるサイトにはGaが配置されることがある。このようなランダム配置を扱う
ために、計算においては仮想結晶近似を用いた。つまり、GaまたはZnが配置されるサ
イトには、GaとZnの組成比2:1に対応させて、Gaが66.7%、Znが33.3
%の仮想的な原子を配置した。より具体的には、上記の割合で各原子の擬ポテンシャルを
混合し、仮想的な原子に割り当てた。
InGaZnOの(001)面の表面エネルギー計算に用いた結晶構造を図11(
A)に、表面エネルギー計算に用いた表面構造を図11(B)〜図11(D)に、それぞ
れ示す。ここで、図11(B)は(001)面においてOが最表面にある構造(「(00
1):(Ga、Zn)O」と記す)を示し、図11(C)は(001)面においてInが
最表面にある構造(「(001):In」と記す)を示し、図11(D)は(001)面
においてGaまたはZnが最表面にある構造(「(001):Ga、Zn」と記す)を示
す。図11(B)〜図11(D)格子は、面内方向の周期構造の最小単位となるように取
った。このため、表面構造に依存して格子の(001)面内方向の大きさが異なる。なお
、図11(B)〜図11(D)には、第一原理計算による構造最適化後の構造を示してい
る。構造最適化前の(001):Ga、ZnはGaまたはZnが最表面にあったが、構造
最適化によってOが最表面にある構造に変化している。
計算は、格子も含めて結晶の最安定構造を求めた後、結晶面を切り出し、格子を固定した
まま、原子配置に関してのみ構造最適化する、という手順で行った。なお、原子が存在し
ない真空領域の厚さは1nmとした。計算条件の詳細を図12に示す。なお、表面に垂直
な方向には周期性がないことを考慮して、k点の数を1とした。また、InGaZn
の(100)面、In、Ga、ZnOについても同様の計算をおこなっ
た。
表面エネルギーの計算結果を図13に示す。図13よりInGaZnOの表面構造
では、(001):(Ga、Zn)Oの表面エネルギーが最も小さいことが分かる。In
やGa、Znは金属的であり、表面電荷の存在によってエネルギー的に不安定になるのに
対し、Oで結合を終端する場合には、表面エネルギーを小さくできるのである。
表面エネルギーの計算結果から、(001):Inが形成されにくいことは容易に理解さ
れる。これは、図10等の観察結果からも支持され得る。
また、(001):(Ga、Zn)Oの表面エネルギーと、ZnOの(001)面の表面
エネルギーとを比較することによって、InGaZnO結晶粒の形成メカニズムお
よび成長メカニズムが理解できる。以下、InGaZnO結晶粒の形成メカニズム
および成長メカニズムについて、図14を用いて簡単に説明する。
ZnOの蒸気圧は大きく、蒸発しやすい。このため、熱処理を行うと、In−Ga−Zn
−O系の非晶質酸化物半導体膜の表面近傍において、Znの組成比は小さくなり、Gaの
組成比が大きくなる(図14(A)参照)。(001):(Ga、Zn)Oの表面エネル
ギーと、ZnOの(001)面の表面エネルギーとを比較すると、(001):(Ga、
Zn)Oの表面エネルギーが小さく、表面ではZnOおよびGaOでなる層が形成される
ことになるが、表面においてZnOは少なく、このため、GaOでなる層が安定的に形成
される(図14(B)参照)。そして、上記GaOでなる層から、InGaZnO
結晶粒が成長する(図14(C)参照)。図10において、最表面がGaを含む層であり
、2層目がInを含む層とみれば、理解は容易であろう。
なお、InGaZnOの(001):(Ga、Zn)Oは、In、Ga
、ZnOの主要な面の表面エネルギーより小さい。このため、表面エネルギーから判断
する限りにおいて、酸化物半導体膜の表面で、In、Ga、ZnOが相分離
することは無いといえる。
結晶成長においては、表面エネルギーの小さい面は、表面エネルギーが大きい面と比較し
て結晶粒が形成されやすく、結晶成長しやすい傾向にある。このため、InGaZn
の(001):(Ga、Zn)Oは、In、Ga、ZnOなどと比較し
て結晶化しやすい。また、InGaZnOの(100)面や、(001):In、
(001):Ga、Znと比較しても、(001):(Ga、Zn)Oの表面エネルギー
は小さい。このため、最表面は(001):(Ga、Zn)Oとなりやすく、また、c軸
配向しやすくなるのである。
以上より、表面の加熱によって、酸化物半導体膜の表面近傍にはc軸配向したInGa
ZnO結晶粒が形成され、成長することが理解される。当該酸化物半導体膜は、優れ
た電気特性を有し、半導体装置には好適である。または、当該酸化物半導体膜は、信頼性
が高く、半導体装置には好適である。
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み
合わせて用いることができる。
(実施の形態2)
本実施の形態では、半導体装置としてのトランジスタおよびその作製方法の一例について
、図15および図16を用いて説明する。
はじめに、基板300上に導電層302を形成する(図15(A)参照)。
基板300は、絶縁表面を有する基板であればよく、例えば、ガラス基板とすることがで
きる。ガラス基板は無アルカリガラス基板であることが好ましい。無アルカリガラス基板
には、例えば、アルミノシリケートガラス、アルミノホウケイ酸ガラス、バリウムホウケ
イ酸ガラス等のガラス材料が用いられる。他にも、基板300として、セラミック基板、
石英基板やサファイア基板等の絶縁体でなる絶縁性基板、シリコン等の半導体材料でなる
半導体基板の表面を絶縁材料で被覆したもの、金属やステンレス等の導電体でなる導電性
基板の表面を絶縁材料で被覆したものを用いることができる。また、作製工程の熱処理に
耐えられることを条件に、プラスチック基板を用いることもできる。
導電層302は、アルミニウム(Al)、銅(Cu)、モリブデン(Mo)、タングステ
ン(W)、チタン(Ti)等の導電性材料で形成することが望ましい。形成方法としては
、スパッタリング法や真空蒸着法、CVD法などがある。なお、導電層302にアルミニ
ウム(または銅)を用いる場合、アルミニウム単体(または銅単体)では耐熱性が低く、
腐蝕しやすい等の問題点があるため、耐熱性導電性材料と組み合わせて形成することが好
ましい。
耐熱性導電性材料としては、チタン(Ti)、タンタル(Ta)、タングステン(W)、
モリブデン(Mo)、クロム(Cr)、ネオジム(Nd)、スカンジウム(Sc)から選
ばれた元素を含む金属、上述した元素を成分とする合金、上述した元素を組み合わせた合
金、または上述した元素を成分とする窒化物などを用いることができる。これらの耐熱性
導電性材料とアルミニウム(または銅)を積層させて、導電層302を形成すればよい。
図示しないが、基板300上には下地層を設けても良い。下地層は、基板300からのア
ルカリ金属(Li、Cs、Na等)やアルカリ土類金属(Ca、Mg等)、その他の不純
物の拡散を防止する機能を有する。つまり、下地層を設けることより、半導体装置の信頼
性向上という課題を解決することができる。下地層は、窒化シリコン、酸化シリコンなど
の各種絶縁材料を用いて、単層構造または積層構造で形成すればよい。具体的には、例え
ば、基板300側から窒化シリコンと酸化シリコンを順に積層した構成とすることが好適
である。窒化シリコンは、不純物に対するブロッキング効果が高いためである。一方で、
窒化シリコンが半導体と接する場合には、半導体素子に不具合が発生する可能性もあるた
め、半導体と接する材料としては、酸化シリコンを適用するのがよい。
次に、導電層302上に選択的にレジストマスク304を形成し、該レジストマスク30
4を用いて導電層302を選択的にエッチングすることで、ゲート電極として機能する導
電層306を形成する(図15(B)参照)。
レジストマスク304は、レジスト材料の塗布、フォトマスクを用いた露光、現像、等の
工程を経ることにより形成される。レジスト材料の塗布は、スピンコート法などの方法を
適用することができる。また、レジストマスク304は、液滴吐出法やスクリーン印刷法
などを用いて選択的に形成しても良い。この場合、フォトマスクを用いた露光、現像等の
工程が不要になるため、生産性向上という課題を解決することが可能である。なお、レジ
ストマスク304は、導電層302のエッチングにより導電層306が形成された後には
除去される。
レジストマスク304は、多階調マスクを用いて形成しても良い。ここで、多階調マスク
とは、多段階の光量で露光を行うことが可能なマスクをいう。これを用いることで、一度
の露光および現像工程によって、複数(代表的には2種類)の厚さを有するレジストマス
クを形成することができる。このため、多階調マスクを用いることで、工程数の増加を抑
制することができる。
上述のエッチングには、ドライエッチングを用いても良いし、ウエットエッチングを用い
ても良い。また、後に形成されるゲート絶縁層等の被覆性を向上し、段切れを防止するた
めに、導電層306の端部がテーパー形状となるようエッチングすると良い。例えば、テ
ーパー角が20°以上90°未満となるようなテーパー形状とすることが好ましい。ここ
で、「テーパー角」とは、テーパー形状を有する層を断面方向から観察した際に、当該層
の側面と底面とがなす角をいうものとする。
次に、導電層306を覆うように、ゲート絶縁層として機能する絶縁層308を形成する
(図15(C)参照)。絶縁層308は、酸化シリコン、酸化窒化シリコン、窒化シリコ
ン、窒化酸化シリコン、酸化アルミニウム、酸化タンタル等の材料を用いて形成すること
ができる。また、これらの材料からなる膜を積層させて形成しても良い。これらの膜は、
スパッタリング法等を用いて厚さが5nm以上250nm以下となるように形成すると好
ましい。例えば、絶縁層308として、スパッタリング法を用いて、酸化シリコン膜を1
00nmの厚さで形成することができる。
また、スパッタリング法とCVD法(プラズマCVD法など)とを組み合わせて、積層構
造の絶縁層308を形成しても良い。例えば、絶縁層308の下層(導電層306と接す
る領域)をプラズマCVD法により形成し、絶縁層308の上層をスパッタリング法によ
り形成することができる。プラズマCVD法は、段差被覆性の良い膜を形成することが容
易であるため、導電層306の直上に形成する膜を形成する方法として適している。また
、スパッタリング法では、プラズマCVD法と比較して、膜中の水素濃度を低減すること
が容易であるため、スパッタリング法による膜を半導体層と接する領域に設けることで、
絶縁層308中の水素が半導体層中へ拡散することを防止できる。特に、酸化物半導体膜
においては、水素が特性に与える影響は極めて大きく、このような構成を採用することは
効果的である。
なお、本明細書等において、酸化窒化物とは、その組成において、窒素よりも酸素の含有
量(原子数)が多いものを示し、例えば、酸化窒化シリコンとは、酸素が50原子%以上
70原子%以下、窒素が0.5原子%以上15原子%以下、シリコンが25原子%以上3
5原子%以下、水素が0.1原子%以上10原子%以下の範囲で含まれるものをいう。ま
た、窒化酸化物とは、その組成において、酸素よりも窒素の含有量(原子数)が多いもの
を示し、例えば、窒化酸化シリコンとは、酸素が5原子%以上30原子%以下、窒素が2
0原子%以上55原子%以下、シリコンが25原子%以上35原子%以下、水素が10原
子%以上25原子%以下の範囲で含まれるものをいう。但し、上記範囲は、ラザフォード
後方散乱法(RBS:Rutherford Backscattering Spec
trometry)や、水素前方散乱法(HFS:Hydrogen Forward
Scattering)を用いて測定した場合のものである。また、構成元素の含有比率
の合計は100原子%を超えない。
次に、絶縁層308を覆うように半導体層310を形成する(図15(D)参照)。本実
施の形態においては、半導体層310に、先の実施の形態で説明した酸化物半導体膜を適
用する。酸化物半導体膜の詳細については、先の実施の形態を参酌できる。
なお、本実施の形態では、半導体層310を単層で形成する場合について示しているが、
半導体層310は、積層構造としても良い。例えば、絶縁層308上に、組成の異なる2
以上の酸化物半導体膜を積層して、半導体層310としても良い。また、結晶性の異なる
2以上の酸化物半導体膜を積層して、半導体層310としても良い。
次に、半導体層310上に選択的にレジストマスク312を形成し、該レジストマスク3
12を用いて半導体層310を選択的にエッチングすることで、半導体層314を形成す
る(図16(A)参照)。ここで、レジストマスク312は、レジストマスク304と同
様の方法で形成することができる。また、レジストマスク312は、半導体層310のエ
ッチングにより半導体層314が形成された後には除去される。
半導体層310のエッチングの方法としては、ウエットエッチングまたはドライエッチン
グを用いることができる。例えば、酢酸と硝酸と燐酸との混合液を用いたウエットエッチ
ングにより、半導体層310の不要な部分を除去して、半導体層314を形成することが
できる。なお、上記のウエットエッチングに用いることができるエッチャント(エッチン
グ液)は半導体層310をエッチングできるものであればよく、上述したものに限られな
い。
ドライエッチングを行う場合は、例えば、塩素を含有するガス、または塩素を含有するガ
スに酸素が添加されたガスを用いると良い。塩素を含有するガスを用いることで、導電層
や下地層と、半導体層310とのエッチング選択比がとりやすくなるためである。
ドライエッチングには、反応性イオンエッチング法(RIE法)を用いたエッチング装置
や、ECR(Electron Cyclotron Resonance)やICP(
Inductively Coupled Plasma)などの高密度プラズマ源を用
いたドライエッチング装置を用いることができる。また、ICPエッチング装置と比べて
広い面積に渡って一様な放電が得られるECCP(Enhanced Capaciti
vely Coupled Plasma)モードのエッチング装置を用いても良い。E
CCPモードのエッチング装置であれば、基板として第10世代以降の基板を用いるよう
な場合においても対応が容易である。
次に、絶縁層308および半導体層314を覆うように、導電層316を形成する(図1
6(B)参照)。導電層316は、導電層302と同様の材料、方法によって形成するこ
とができる。例えば、導電層316を、モリブデン層やチタン層の単層構造で形成するこ
とができる。また、導電層316を積層構造で形成してもよく、例えば、アルミニウム層
とチタン層との積層構造とすることができる。また、チタン層と、アルミニウム層と、チ
タン層とを順に積層した3層構造としてもよい。また、モリブデン層とアルミニウム層と
モリブデン層とを順に積層した3層構造としてもよい。また、これらの積層構造に用いる
アルミニウム層として、ネオジムを含むアルミニウム(Al−Nd)層を用いてもよい。
さらに、導電層316を、シリコンを含むアルミニウム層の単層構造としてもよい。
次に、導電層316上に選択的にレジストマスク318およびレジストマスク320を形
成し、該レジストマスクを用いて導電層316を選択的にエッチングすることで、ソース
電極またはドレイン電極の一方として機能する導電層322およびソース電極またはドレ
イン電極の他方として機能する導電層324を形成する(図16(C)参照)。ここで、
レジストマスク318およびレジストマスク320は、レジストマスク304と同様の方
法で形成することができる。また、レジストマスク318およびレジストマスク320は
、導電層316のエッチングにより導電層322および導電層324が形成された後には
除去される。
なお、導電層316のエッチングの方法としては、ウエットエッチングまたはドライエッ
チングのいずれを用いることもできる。
次に、導電層322、導電層324、半導体層314などを覆うように絶縁層326を形
成する(図16(D)参照)。ここで、絶縁層326は、いわゆる層間絶縁層にあたる。
絶縁層326は、酸化シリコン、酸化アルミニウム、酸化タンタル等の材料を用いて形成
することができる。また、これらの材料からなる膜を積層させて形成しても良い。以上に
より、酸化物半導体膜を用いたトランジスタ350が完成する(図16(D)参照)。
本実施の形態において示すように、先の実施の形態において示した酸化物半導体膜を用い
て半導体装置を作製することにより、酸化物半導体膜中に不純物(例えば水分など)が取
り込まれることを抑制することが可能である。このため、半導体装置の信頼性を向上させ
ることができる。
また、先の実施の形態において示した酸化物半導体膜を用いて半導体装置を作製すること
により、良好な電気特性の半導体装置を提供することが可能である。
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み
合わせて用いることができる。
(実施の形態3)
本実施の形態では、半導体装置としてのトランジスタおよびその作製方法の別の一例につ
いて、図17および図18を用いて説明する。なお、本実施の形態における半導体装置の
作製工程は、多くの部分で先の実施の形態と共通しているから、以下においては、重複す
る部分の説明は省略し、異なる点について詳細に説明する。
はじめに、基板400上に導電層402を形成する(図17(A)参照)。基板400、
導電層402、その他の詳細については、先の実施の形態(図4(A)の説明部分など)
を参酌すればよい。また、基板400上には下地層を設けても良い。下地層の詳細につい
ても、先の実施の形態を参酌できる。
次に、導電層402上に選択的にレジストマスク404を形成し、該レジストマスク40
4を用いて導電層402を選択的にエッチングすることで、ゲート電極として機能する導
電層406を形成する(図17(B)参照)。レジストマスク404、導電層406、エ
ッチング、その他の詳細については、先の実施の形態(図15(B)の説明部分など)を
参酌できる。
次に、導電層406を覆うように、ゲート絶縁層として機能する絶縁層408を形成する
(図17(C)参照)。絶縁層408、その他の詳細については、先の実施の形態(図1
5(C)の説明部分など)を参酌すればよい。
次に、絶縁層408を覆うように導電層410を形成する(図17(D)参照)。導電層
410は、導電層402と同様の材料、方法によって形成することができる。つまり、詳
細については、先の実施の形態(図15(A)、図16(B)の説明部分など)を参照す
ればよい。
次に、導電層410上に選択的にレジストマスク412およびレジストマスク414を形
成し、該レジストマスクを用いて導電層410を選択的にエッチングすることで、ソース
電極またはドレイン電極の一方として機能する導電層416およびソース電極またはドレ
イン電極の他方として機能する導電層418を形成する(図18(A)参照)。レジスト
マスク412およびレジストマスク414は、レジストマスク404と同様にして形成す
ることができる。また、導電層410のエッチングの方法としては、ウエットエッチング
またはドライエッチングのいずれを用いることもできる。つまり、レジストマスクおよび
エッチングの詳細については、先の実施の形態(図15(B)、図16(C)の説明部分
など)を参照すればよい。
次に、絶縁層408、導電層416、導電層418等を覆うように半導体層420を形成
する(図18(B)参照)。本実施の形態においては、半導体層420に、先の実施の形
態で説明した酸化物半導体膜を適用する。酸化物半導体膜の詳細については、先の実施の
形態を参酌できる。
次に、半導体層420上に選択的にレジストマスク422を形成し、該レジストマスク4
22を用いて半導体層420を選択的にエッチングすることで、半導体層424を形成す
る(図18(C)参照)。レジストマスクおよびエッチングの詳細については、先の実施
の形態(図15(B)、図16(A)の説明部分など)を参酌すればよい。
次に、導電層416、導電層418、半導体層424などを覆うように絶縁層426を形
成する(図18(D)参照)。ここで、絶縁層426は、いわゆる層間絶縁層にあたる。
絶縁層426は、酸化シリコン、酸化アルミニウム、酸化タンタル等の材料を用いて形成
することができる。また、これらの材料からなる膜を積層させて形成しても良い。以上に
より、酸化物半導体膜を用いたトランジスタ450が完成する(図18(D)参照)。
本実施の形態において示すように、先の実施の形態において示した酸化物半導体膜を用い
て半導体装置を作製することにより、酸化物半導体膜中に不純物(例えば水分など)が取
り込まれることを抑制することが可能である。このため、半導体装置の信頼性を向上させ
ることができる。
また、先の実施の形態において示した酸化物半導体膜を用いて半導体装置を作製すること
により、良好な電気特性の半導体装置を提供することが可能である。
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み
合わせて用いることができる。
(実施の形態4)
本実施の形態では、半導体装置としてのトランジスタおよびその作製方法の別の一例につ
いて、図19および図20を用いて説明する。なお、本実施の形態における半導体装置の
作製工程は、多くの部分で先の実施の形態と共通しているから、以下においては、重複す
る部分の説明は省略し、異なる点について詳細に説明する。
はじめに、基板500上に半導体層502を形成し(図19(A)参照)、半導体層50
2上に選択的にレジストマスク504を形成した後、該レジストマスク504を用いて半
導体層502を選択的にエッチングすることで、半導体層506を形成する(図19(B
)参照)。本実施の形態においては、半導体層502に、先の実施の形態で説明した酸化
物半導体膜を適用する。酸化物半導体膜の詳細については、先の実施の形態を参酌できる
。また、その他の詳細についても先の実施の形態を参酌できる。
次に、半導体層506を覆うように導電層508を形成し(図19(C)参照)、導電層
508上に選択的にレジストマスク510およびレジストマスク512を形成した後、該
レジストマスクを用いて導電層508を選択的にエッチングして、ソース電極またはドレ
イン電極の一方として機能する導電層514およびソース電極またはドレイン電極の他方
として機能する導電層516を形成する(図19(D)参照)。詳細については、先の実
施の形態を参酌できる。
次に、半導体層506、導電層514、導電層516を覆うように、ゲート絶縁層として
機能する絶縁層518を形成する(図20(A)参照)。そして、絶縁層518上に導電
層520を形成し(図20(B)参照)、導電層520上に選択的にレジストマスク52
2を形成した後、該レジストマスク522を用いて導電層520を選択的にエッチングす
ることで、ゲート電極として機能する導電層524を形成する(図20(C)参照)。詳
細については、先の実施の形態を参酌できる。以上により、酸化物半導体膜を用いたトラ
ンジスタ550が完成する(図20(D)参照)。
本実施の形態において示すように、先の実施の形態において示した酸化物半導体膜を用い
て半導体装置を作製することにより、酸化物半導体膜中に不純物(例えば水分など)が取
り込まれることを抑制することが可能である。このため、半導体装置の信頼性を向上させ
ることができる。
また、先の実施の形態において示した酸化物半導体膜を用いて半導体装置を作製すること
により、良好な電気特性の半導体装置を提供することが可能である。
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み
合わせて用いることができる。
(実施の形態5)
本実施の形態では、半導体装置としてのトランジスタおよびその作製方法の別の一例につ
いて、図21および図22を用いて説明する。なお、本実施の形態における半導体装置の
作製工程は、多くの部分で先の実施の形態と共通しているから、以下においては、重複す
る部分の説明は省略し、異なる点について詳細に説明する。
はじめに、基板600上に導電層602を形成し(図21(A)参照)、導電層602上
に選択的にレジストマスク604およびレジストマスク606を形成した後、該レジスト
マスクを用いて導電層602を選択的にエッチングして、ソース電極またはドレイン電極
の一方として機能する導電層608およびソース電極またはドレイン電極の他方として機
能する導電層610を形成する(図21(B)参照)。詳細については、先の実施の形態
を参酌できる。
次に、導電層608および導電層610に接する半導体層612を形成し(図21(C)
参照)、半導体層612上に選択的にレジストマスク614を形成した後、該レジストマ
スク614を用いて半導体層612を選択的にエッチングすることで、半導体層616を
形成する(図21(D)参照)。本実施の形態においては、半導体層612に、先の実施
の形態で説明した酸化物半導体膜を適用する。酸化物半導体膜の詳細については、先の実
施の形態を参酌できる。また、その他の詳細についても先の実施の形態を参酌できる。
次に、半導体層616、導電層608、導電層610を覆うように、ゲート絶縁層として
機能する絶縁層618を形成する(図22(A)参照)。そして、絶縁層618上に導電
層620を形成し(図22(B)参照)、導電層620上に選択的にレジストマスク62
2を形成した後、該レジストマスク622を用いて導電層620を選択的にエッチングす
ることで、ゲート電極として機能する導電層624を形成する(図22(C)参照)。詳
細については、先の実施の形態を参酌できる。以上により、酸化物半導体膜を用いたトラ
ンジスタ650が完成する(図22(D)参照)。
本実施の形態において示すように、先の実施の形態において示した酸化物半導体膜を用い
て半導体装置を作製することにより、酸化物半導体膜中に不純物(例えば水分など)が取
り込まれることを抑制することが可能である。このため、半導体装置の信頼性を向上させ
ることができる。
また、先の実施の形態において示した酸化物半導体膜を用いて半導体装置を作製すること
により、良好な電気特性の半導体装置を提供することが可能である。
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み
合わせて用いることができる。
(実施の形態6)
本実施の形態では、先の実施の形態で説明した半導体装置を用いた例として、電気泳動素
子を用いた表示装置の構成について、図23を参照して説明する。なお、本実施の形態で
は、電気泳動素子を用いた表示装置の例を説明するが、開示する発明の一態様である半導
体装置を用いることができる表示装置はこれに限定されない。開示する発明の一態様であ
る半導体装置は、液晶表示素子やエレクトロルミネッセンス素子などの各種表示素子を用
いた表示装置に適用することが可能である。
図23(A)には、表示装置の画素の平面図を、図23(B)には、図23(A)のA−
Bに対応する断面図を示す。図23に示す表示装置は、基板700と、基板700上のト
ランジスタ702および容量素子704と、トランジスタ702および容量素子704上
の電気泳動素子706と、電気泳動素子706上の透光性を有する基板708とを有する
。なお、図23(A)では簡単のため、電気泳動素子706は省略している。
トランジスタ702は、導電層710と、導電層710を覆う絶縁層712と、絶縁層7
12上の半導体層714と、半導体層714と接する導電層716および導電層718と
によって構成される。ここで、導電層710はトランジスタのゲート電極として機能し、
絶縁層712はトランジスタのゲート絶縁層として機能し、導電層716はトランジスタ
の第1の端子(ソース端子またはドレイン端子の一方)として機能し、導電層718はト
ランジスタの第2の端子(ソース端子またはドレイン端子の他方)として機能する。詳細
は、先の実施の形態を参酌できる。
また、上記において、導電層710はゲート線720と電気的に接続されており、導電層
716はソース線722と電気的に接続されている。導電層710は、ゲート線720と
一体であってもよく、導電層716は、ソース線722と一体であってもよい。
容量素子704は、導電層718と、絶縁層712と、導電層724とによって構成され
る。容量素子704は、画素に入力された信号を保持する役割を有する。容量素子704
を構成する上記構成要素は、トランジスタの構成要素を形成する際に併せて形成すること
ができる。
上記において、導電層724は容量配線726と電気的に接続されている。導電層718
は容量素子の一方の端子として機能し、絶縁層712は誘電体として機能し、導電層72
4は他方の端子として機能する。導電層724は、容量配線726と一体であってもよい
電気泳動素子706は、画素電極728と、共通電極730(対向電極と呼んでもよい)
と、画素電極728と共通電極730との間に設けられた帯電粒子を含有する層732に
よって構成される。なお、帯電粒子を含有する層732に含まれる帯電粒子としては、正
に帯電した粒子として酸化チタンなどを適用することができ、負に帯電した粒子としてカ
ーボンブラックなどを適用することができる。また、導電体、絶縁体、半導体、磁性材料
、液晶材料、強誘電性材料、エレクトロルミネセント材料、エレクトロクロミック材料、
磁気泳動材料から選ばれた一の材料、またはこれらの複合材料を適用することもできる。
上記において、画素電極728は、トランジスタ702や容量素子704を覆う絶縁層7
34や絶縁層736に設けられた開口部を通じて、導電層718と電気的に接続されてお
り、共通電極730は、他の画素の共通電極と電気的に接続されている。
以上のような構成とすることで、帯電粒子を含有する層732にかかる電界を制御し、帯
電粒子を含有する層732中の帯電粒子の配置を制御することができる。そしてこれによ
り、表示を実現することができる。なお、上記構成は一例に過ぎず、開示する発明の一態
様である半導体装置を用いた表示装置を上記構成に限定する必要はない。
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み
合わせて用いることができる。
(実施の形態7)
本実施の形態では、先の実施の形態において示した表示装置の応用形態について、図24
(A)〜図24(D)に具体例を示し、説明する。
図24(A)は携帯情報端末であり、筐体801、表示部802、操作ボタン803など
を含む。先の実施の形態で述べた表示装置は、表示部802に適用できる。
図24(B)は、先の実施の形態で述べた表示装置を搭載した電子書籍の例である。第1
の筐体811は第1の表示部812を有し、第1の筐体811は操作ボタン813を有し
、第2の筐体814は第2の表示部815を有する。先の実施の形態で述べた表示装置は
、第1の表示部812や第2の表示部815に適用できる。また、第1の筐体811およ
び第2の筐体814は、支持部816によって開閉動作が可能となっている。該構成によ
り、紙の書籍のような動作を行うことができる。
図24(C)は、乗り物広告用の表示装置820を示している。広告媒体が紙の印刷物で
ある場合には、広告の交換は人手によって行われるが、表示装置を用いることで、人手を
かけることなく短時間で広告の表示を変更することができる。また、表示も崩れることな
く安定した画像を得ることができる。
図24(D)は、屋外広告用の表示装置830を示している。表示装置として可撓性基板
を用いて作製されたものを用い、これを揺動させることにより、広告効果を高めることが
できる。
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み
合わせて用いることができる。
100 酸化物半導体膜
110 基材
120 非晶質領域
130 結晶粒
140 結晶領域
200 酸化物半導体膜
300 基板
302 導電層
304 レジストマスク
306 導電層
308 絶縁層
310 半導体層
312 レジストマスク
314 半導体層
316 導電層
318 レジストマスク
320 レジストマスク
322 導電層
324 導電層
326 絶縁層
350 トランジスタ
400 基板
402 導電層
404 レジストマスク
406 導電層
408 絶縁層
410 導電層
412 レジストマスク
414 レジストマスク
416 導電層
418 導電層
420 半導体層
422 レジストマスク
424 半導体層
426 絶縁層
450 トランジスタ
500 基板
502 半導体層
504 レジストマスク
506 半導体層
508 導電層
510 レジストマスク
512 レジストマスク
514 導電層
516 導電層
518 絶縁層
520 導電層
522 レジストマスク
524 導電層
550 トランジスタ
600 基板
602 導電層
604 レジストマスク
606 レジストマスク
608 導電層
610 導電層
612 半導体層
614 レジストマスク
616 半導体層
618 絶縁層
620 導電層
622 レジストマスク
624 導電層
650 トランジスタ
700 基板
702 トランジスタ
704 容量素子
706 電気泳動素子
708 基板
710 導電層
712 絶縁層
714 半導体層
716 導電層
718 導電層
720 ゲート線
722 ソース線
724 導電層
726 容量配線
728 画素電極
730 共通電極
732 帯電粒子を含有する層
734 絶縁層
736 絶縁層
801 筐体
802 表示部
803 操作ボタン
811 筐体
812 表示部
813 操作ボタン
814 筐体
815 表示部
816 支持部
820 表示装置
830 表示装置

Claims (5)

  1. ゲート電極と、
    前記ゲート電極上の、ゲート絶縁層と、
    前記ゲート絶縁層上の、積層構造を有する酸化物半導体膜と、
    前記積層構造を有する酸化物半導体膜と電気的に接続された、ソース電極と、
    前記積層構造を有する酸化物半導体膜と電気的に接続された、ドレイン電極と、
    前記ソース電極及び前記ドレイン電極上の、絶縁層と、を有し、
    前記積層構造を有する酸化物半導体膜は、c軸配向性を有する結晶領域を有する第1の領域と、c軸配向性を有する結晶領域を有さない第2の領域とを有し
    前記第1の領域は、前記積層構造を有する酸化物半導体膜の表面から20nm以下の距離に位置し
    前記第2の領域は、前記第1の領域と前記ゲート絶縁層との間に位置し、
    前記積層構造を有する酸化物半導体膜は、Inと、Snと、Znとを有する半導体装置。
  2. ゲート電極と、
    前記ゲート電極上の、ゲート絶縁層と、
    前記ゲート絶縁層上の、積層構造を有する酸化物半導体膜と、
    前記積層構造を有する酸化物半導体膜と電気的に接続された、ソース電極と、
    前記積層構造を有する酸化物半導体膜と電気的に接続された、ドレイン電極と、
    前記ソース電極及び前記ドレイン電極上の、絶縁層と、を有し、
    前記積層構造を有する酸化物半導体膜は、c軸配向性を有する結晶領域を有する第1の領域と、c軸配向性を有する結晶領域を有さない第2の領域とを有し、
    前記第1の領域は、前記積層構造を有する酸化物半導体膜の表面からの距離が、前記積層構造を有する酸化物半導体膜の厚さの10%以下に位置し
    前記第2の領域は、前記第1の領域と前記ゲート絶縁層との間に位置し、
    前記積層構造を有する酸化物半導体膜は、Inと、Snと、Zn、とを有する半導体装置。
  3. ゲート電極と、
    前記ゲート電極上の、ゲート絶縁層と、
    前記ゲート絶縁層上の、積層構造を有する酸化物半導体膜と、
    前記積層構造を有する酸化物半導体膜と電気的に接続された、ソース電極と、
    前記積層構造を有する酸化物半導体膜と電気的に接続された、ドレイン電極と、
    前記ソース電極及び前記ドレイン電極上の、絶縁層と、を有し、
    前記積層構造を有する酸化物半導体膜は、前記積層構造を有する酸化物半導体膜の表面からの距離が、前記積層構造を有する酸化物半導体膜の厚さの10%以下であって、c軸配向性を有する結晶領域を有する第1の領域と、前記第1の領域と前記ゲート絶縁層との間に位置し、断面TEM像においてc軸配向性を有する結晶領域が観察されない第2の領域とを有し、
    前記積層構造を有する酸化物半導体膜は、Inと、Snと、Znとを有する半導体装置。
  4. 請求項1乃至3のいずれか一において、
    前記積層構造を有する酸化物半導体膜は、第1の酸化物半導体膜と、前記第1の酸化物半導体膜上の第2の酸化物半導体膜とを有し、
    前記第1の酸化物半導体膜は、前記第2の酸化物半導体膜と結晶性が異なることを特徴とする半導体装置。
  5. 請求項1乃至3のいずれか一において、
    前記積層構造を有する酸化物半導体膜は、第1の酸化物半導体膜と、前記第1の酸化物半導体膜上の第2の酸化物半導体膜とを有し、
    前記第1の酸化物半導体膜は、前記第2の酸化物半導体膜と組成が異なることを特徴とする半導体装置。
JP2020108364A 2009-10-08 2020-06-24 半導体装置 Active JP6989656B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021196039A JP7329581B2 (ja) 2009-10-08 2021-12-02 半導体装置
JP2023128257A JP2023138636A (ja) 2009-10-08 2023-08-07 酸化物半導体膜

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009234507 2009-10-08
JP2009234507 2009-10-08
JP2019054207A JP6724207B2 (ja) 2009-10-08 2019-03-22 半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019054207A Division JP6724207B2 (ja) 2009-10-08 2019-03-22 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021196039A Division JP7329581B2 (ja) 2009-10-08 2021-12-02 半導体装置

Publications (2)

Publication Number Publication Date
JP2020170856A JP2020170856A (ja) 2020-10-15
JP6989656B2 true JP6989656B2 (ja) 2022-01-05

Family

ID=43854112

Family Applications (9)

Application Number Title Priority Date Filing Date
JP2010221574A Withdrawn JP2011100979A (ja) 2009-10-08 2010-09-30 酸化物半導体膜、および半導体装置
JP2014167289A Active JP5916817B2 (ja) 2009-10-08 2014-08-20 酸化物半導体膜の作製方法
JP2016075790A Active JP6158980B2 (ja) 2009-10-08 2016-04-05 酸化物半導体膜の作製方法
JP2017034843A Active JP6268314B2 (ja) 2009-10-08 2017-02-27 半導体装置
JP2017225254A Active JP6503045B2 (ja) 2009-10-08 2017-11-23 半導体装置
JP2019054207A Active JP6724207B2 (ja) 2009-10-08 2019-03-22 半導体装置
JP2020108364A Active JP6989656B2 (ja) 2009-10-08 2020-06-24 半導体装置
JP2021196039A Active JP7329581B2 (ja) 2009-10-08 2021-12-02 半導体装置
JP2023128257A Pending JP2023138636A (ja) 2009-10-08 2023-08-07 酸化物半導体膜

Family Applications Before (6)

Application Number Title Priority Date Filing Date
JP2010221574A Withdrawn JP2011100979A (ja) 2009-10-08 2010-09-30 酸化物半導体膜、および半導体装置
JP2014167289A Active JP5916817B2 (ja) 2009-10-08 2014-08-20 酸化物半導体膜の作製方法
JP2016075790A Active JP6158980B2 (ja) 2009-10-08 2016-04-05 酸化物半導体膜の作製方法
JP2017034843A Active JP6268314B2 (ja) 2009-10-08 2017-02-27 半導体装置
JP2017225254A Active JP6503045B2 (ja) 2009-10-08 2017-11-23 半導体装置
JP2019054207A Active JP6724207B2 (ja) 2009-10-08 2019-03-22 半導体装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021196039A Active JP7329581B2 (ja) 2009-10-08 2021-12-02 半導体装置
JP2023128257A Pending JP2023138636A (ja) 2009-10-08 2023-08-07 酸化物半導体膜

Country Status (8)

Country Link
US (2) US8319218B2 (ja)
EP (2) EP3249698A1 (ja)
JP (9) JP2011100979A (ja)
KR (4) KR101877149B1 (ja)
CN (1) CN102484139B (ja)
SG (1) SG178056A1 (ja)
TW (3) TWI484640B (ja)
WO (1) WO2011043176A1 (ja)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1812969B1 (en) * 2004-11-10 2015-05-06 Canon Kabushiki Kaisha Field effect transistor comprising an amorphous oxide
JP2010153802A (ja) 2008-11-20 2010-07-08 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
KR102321565B1 (ko) * 2009-09-24 2021-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 반도체 장치
KR101877149B1 (ko) * 2009-10-08 2018-07-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체층, 반도체 장치 및 그 제조 방법
KR101820972B1 (ko) 2009-10-09 2018-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
CN102687400B (zh) 2009-10-30 2016-08-24 株式会社半导体能源研究所 逻辑电路和半导体装置
EP2494597A4 (en) * 2009-10-30 2015-03-18 Semiconductor Energy Lab SEMICONDUCTOR COMPONENT
EP2494599B1 (en) 2009-10-30 2020-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011058934A1 (en) * 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
KR101802406B1 (ko) 2009-11-27 2017-11-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작방법
KR101436120B1 (ko) 2009-12-28 2014-09-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
JP6030298B2 (ja) * 2010-12-28 2016-11-24 株式会社半導体エネルギー研究所 緩衝記憶装置及び信号処理回路
US8841664B2 (en) * 2011-03-04 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9331206B2 (en) * 2011-04-22 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
CN102760697B (zh) 2011-04-27 2016-08-03 株式会社半导体能源研究所 半导体装置的制造方法
US9111795B2 (en) 2011-04-29 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with capacitor connected to memory element through oxide semiconductor film
KR101952570B1 (ko) 2011-05-13 2019-02-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
JP6013682B2 (ja) * 2011-05-20 2016-10-25 株式会社半導体エネルギー研究所 半導体装置の駆動方法
US20120298998A1 (en) 2011-05-25 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Method for forming oxide semiconductor film, semiconductor device, and method for manufacturing semiconductor device
KR20140003315A (ko) 2011-06-08 2014-01-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 스퍼터링 타겟, 스퍼터링 타겟의 제조 방법 및 박막의 형성 방법
JP6104522B2 (ja) * 2011-06-10 2017-03-29 株式会社半導体エネルギー研究所 半導体装置
JP2013011474A (ja) * 2011-06-28 2013-01-17 Akita Univ Mg−Li系合金の微細組織・構造の評価方法
US8952377B2 (en) 2011-07-08 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP6013685B2 (ja) 2011-07-22 2016-10-25 株式会社半導体エネルギー研究所 半導体装置
WO2013047631A1 (en) * 2011-09-29 2013-04-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102304125B1 (ko) 2011-09-29 2021-09-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP5946624B2 (ja) * 2011-10-07 2016-07-06 株式会社半導体エネルギー研究所 酸化物半導体膜及び半導体装置
KR20140074384A (ko) 2011-10-14 2014-06-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR20130040706A (ko) * 2011-10-14 2013-04-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
US8878177B2 (en) * 2011-11-11 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
KR20130055521A (ko) * 2011-11-18 2013-05-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 소자, 및 반도체 소자의 제작 방법, 및 반도체 소자를 포함하는 반도체 장치
US9419146B2 (en) 2012-01-26 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TW201901972A (zh) 2012-01-26 2019-01-01 日商半導體能源研究所股份有限公司 半導體裝置及半導體裝置的製造方法
US20130235093A1 (en) * 2012-03-09 2013-09-12 Semiconductor Energy Laboratory Co., Ltd. Method for driving display device, display device, and electronic device
KR102108248B1 (ko) * 2012-03-14 2020-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막, 트랜지스터, 및 반도체 장치
KR102071545B1 (ko) * 2012-05-31 2020-01-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR20140011945A (ko) * 2012-07-19 2014-01-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 스퍼터링용 타깃, 스퍼터링용 타깃의 사용 방법 및 산화물막의 제작 방법
KR102343715B1 (ko) 2012-07-20 2021-12-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제조 방법
JP2014041344A (ja) * 2012-07-27 2014-03-06 Semiconductor Energy Lab Co Ltd 液晶表示装置の駆動方法
KR102243843B1 (ko) * 2012-08-03 2021-04-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체 적층막 및 반도체 장치
JP5654648B2 (ja) * 2012-08-10 2015-01-14 株式会社半導体エネルギー研究所 金属酸化物膜
TWI527230B (zh) * 2012-10-19 2016-03-21 元太科技工業股份有限公司 薄膜電晶體結構及其製作方法
KR102072340B1 (ko) * 2012-11-08 2020-01-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 금속 산화물 막 및 금속 산화물 막의 형성 방법
TWI600157B (zh) 2012-11-16 2017-09-21 半導體能源研究所股份有限公司 半導體裝置
JP6141777B2 (ja) 2013-02-28 2017-06-07 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP6199581B2 (ja) * 2013-03-08 2017-09-20 株式会社半導体エネルギー研究所 金属酸化物膜、及び半導体装置
US9577107B2 (en) * 2013-03-19 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and method for forming oxide semiconductor film
KR20160009626A (ko) * 2013-05-21 2016-01-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 그 형성 방법
JP6400336B2 (ja) * 2013-06-05 2018-10-03 株式会社半導体エネルギー研究所 半導体装置
US20150001533A1 (en) * 2013-06-28 2015-01-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6516978B2 (ja) 2013-07-17 2019-05-22 株式会社半導体エネルギー研究所 半導体装置
KR102317297B1 (ko) 2014-02-19 2021-10-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물, 반도체 장치, 모듈, 및 전자 장치
JP6486712B2 (ja) * 2014-04-30 2019-03-20 株式会社半導体エネルギー研究所 酸化物半導体膜
TWI652362B (zh) 2014-10-28 2019-03-01 日商半導體能源研究所股份有限公司 氧化物及其製造方法
JP6647841B2 (ja) 2014-12-01 2020-02-14 株式会社半導体エネルギー研究所 酸化物の作製方法
KR102334986B1 (ko) 2014-12-09 2021-12-06 엘지디스플레이 주식회사 산화물 반도체층의 결정화 방법, 이를 적용한 반도체 장치 및 이의 제조 방법
WO2016106025A1 (en) * 2014-12-23 2016-06-30 Frito-Lay North America, Inc. Method and apparatus for a product settler
US10766641B2 (en) 2014-12-23 2020-09-08 Frito-Lay North America, Inc. Method and apparatus for a product settler
JP6429816B2 (ja) * 2016-02-17 2018-11-28 三菱電機株式会社 薄膜トランジスタおよびその製造方法、薄膜トランジスタ基板、液晶表示装置
WO2017168283A1 (ja) 2016-04-01 2017-10-05 株式会社半導体エネルギー研究所 複合酸化物半導体、当該複合酸化物半導体を用いた半導体装置、当該半導体装置を有する表示装置
US10461197B2 (en) 2016-06-03 2019-10-29 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, oxide semiconductor, oxynitride semiconductor, and transistor
KR102589754B1 (ko) 2016-08-05 2023-10-18 삼성디스플레이 주식회사 트랜지스터 및 이를 포함하는 표시 장치
JP6872711B2 (ja) * 2016-09-27 2021-05-19 パナソニックIpマネジメント株式会社 半導体装置および製造方法
CN110024135B (zh) 2016-12-02 2023-10-17 株式会社半导体能源研究所 半导体装置
TWI651848B (zh) * 2016-12-13 2019-02-21 友達光電股份有限公司 金屬氧化物半導體層的結晶方法、半導體結構、主動陣列基板、及氧化銦鎵鋅晶體
KR102407203B1 (ko) 2017-01-09 2022-06-13 주식회사 윌러스표준기술연구소 Txop를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
JP6392955B2 (ja) * 2017-08-24 2018-09-19 株式会社半導体エネルギー研究所 金属酸化物膜
CN107946364A (zh) * 2017-10-24 2018-04-20 华南理工大学 具有复合晶型的无机金属氧化物薄膜晶体管及其制造方法
CN107946365A (zh) * 2017-10-24 2018-04-20 华南理工大学 一种具有复合晶型的无机金属氧化物薄膜及其制造方法
JP6733015B2 (ja) * 2019-07-03 2020-07-29 株式会社半導体エネルギー研究所 金属酸化物膜及び半導体装置
CN111081753A (zh) * 2019-12-03 2020-04-28 深圳市华星光电半导体显示技术有限公司 薄膜晶体管及薄膜晶体管的制备方法
US11908596B2 (en) * 2020-02-03 2024-02-20 Nitto Denko Corporation Transparent conductive layer, transparent conductive sheet, touch sensor, light control element, photoelectric conversion element, heat ray control member, antenna, electromagnetic wave shield member, and image display device
JP6999754B2 (ja) * 2020-07-08 2022-01-19 株式会社半導体エネルギー研究所 半導体装置
JP2022038209A (ja) * 2020-08-26 2022-03-10 キオクシア株式会社 半導体装置
KR20230123128A (ko) 2022-02-16 2023-08-23 광주과학기술원 비탄소 소재를 이용한 산화물 반도체층의 저온 결정화 방법, 이를 적용한 반도체 장치 및 이의 제조방법

Family Cites Families (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
DE69635107D1 (de) * 1995-08-03 2005-09-29 Koninkl Philips Electronics Nv Halbleiteranordnung mit einem transparenten schaltungselement
JP3625598B2 (ja) * 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP2000026119A (ja) 1998-07-09 2000-01-25 Hoya Corp 透明導電性酸化物薄膜を有する物品及びその製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) * 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) * 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) * 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) * 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) * 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
US7061014B2 (en) * 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4083486B2 (ja) * 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
JP2003273400A (ja) 2002-03-14 2003-09-26 Japan Science & Technology Corp 半導体発光素子
CN1445821A (zh) * 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) * 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) * 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) * 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) * 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) * 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) * 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) * 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7145174B2 (en) * 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7282782B2 (en) * 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7297977B2 (en) * 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
CN102856390B (zh) 2004-03-12 2015-11-25 独立行政法人科学技术振兴机构 包含薄膜晶体管的lcd或有机el显示器的转换组件
US7211825B2 (en) * 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) * 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) * 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) * 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
EP1812969B1 (en) * 2004-11-10 2015-05-06 Canon Kabushiki Kaisha Field effect transistor comprising an amorphous oxide
WO2006051994A2 (en) * 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Light-emitting device
US7791072B2 (en) * 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7863611B2 (en) * 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7453065B2 (en) * 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7829444B2 (en) * 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
BRPI0517560B8 (pt) * 2004-11-10 2018-12-11 Canon Kk transistor de efeito de campo
JP5138163B2 (ja) 2004-11-10 2013-02-06 キヤノン株式会社 電界効果型トランジスタ
US7579224B2 (en) * 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI569441B (zh) * 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI472037B (zh) * 2005-01-28 2015-02-01 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) * 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) * 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) * 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) * 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7544967B2 (en) * 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) * 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) * 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) * 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) * 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) * 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) * 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) * 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) * 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4850457B2 (ja) * 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP4280736B2 (ja) * 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP5116225B2 (ja) * 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP2007073705A (ja) * 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP5064747B2 (ja) * 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
EP1770788A3 (en) 2005-09-29 2011-09-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5037808B2 (ja) * 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
JP4560505B2 (ja) * 2005-11-08 2010-10-13 キヤノン株式会社 電界効果型トランジスタ
KR101112655B1 (ko) * 2005-11-15 2012-02-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액티브 매트릭스 디스플레이 장치 및 텔레비전 수신기
US7998372B2 (en) 2005-11-18 2011-08-16 Idemitsu Kosan Co., Ltd. Semiconductor thin film, method for manufacturing the same, thin film transistor, and active-matrix-driven display panel
JP5376750B2 (ja) 2005-11-18 2013-12-25 出光興産株式会社 半導体薄膜、及びその製造方法、並びに薄膜トランジスタ、アクティブマトリックス駆動表示パネル
TWI292281B (en) * 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) * 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) * 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) * 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
JP5015473B2 (ja) 2006-02-15 2012-08-29 財団法人高知県産業振興センター 薄膜トランジスタアレイ及びその製法
US7977169B2 (en) * 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) * 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) * 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP2007311404A (ja) 2006-05-16 2007-11-29 Fuji Electric Holdings Co Ltd 薄膜トランジスタの製造方法
US20070287221A1 (en) * 2006-06-12 2007-12-13 Xerox Corporation Fabrication process for crystalline zinc oxide semiconductor layer
JP5028033B2 (ja) * 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
US8013331B2 (en) 2006-06-19 2011-09-06 Panasonic Corporation Thin film transistor, method of manufacturing the same, and electronic device using the same
JP5328083B2 (ja) 2006-08-01 2013-10-30 キヤノン株式会社 酸化物のエッチング方法
JP4999400B2 (ja) * 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) * 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4332545B2 (ja) * 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP4274219B2 (ja) * 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5164357B2 (ja) * 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
US7622371B2 (en) * 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7511343B2 (en) 2006-10-12 2009-03-31 Xerox Corporation Thin film transistor
US7772021B2 (en) * 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) * 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) * 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) * 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
TWI478347B (zh) * 2007-02-09 2015-03-21 Idemitsu Kosan Co A thin film transistor, a thin film transistor substrate, and an image display device, and an image display device, and a semiconductor device
KR101312259B1 (ko) * 2007-02-09 2013-09-25 삼성전자주식회사 박막 트랜지스터 및 그 제조방법
KR100858088B1 (ko) 2007-02-28 2008-09-10 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법
KR100851215B1 (ko) * 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
CN101680081B (zh) * 2007-03-20 2012-10-31 出光兴产株式会社 溅射靶、氧化物半导体膜及半导体器件
JP4727684B2 (ja) * 2007-03-27 2011-07-20 富士フイルム株式会社 薄膜電界効果型トランジスタおよびそれを用いた表示装置
JP2008276212A (ja) 2007-04-05 2008-11-13 Fujifilm Corp 有機電界発光表示装置
WO2008126879A1 (en) * 2007-04-09 2008-10-23 Canon Kabushiki Kaisha Light-emitting apparatus and production method thereof
JP5197058B2 (ja) 2007-04-09 2013-05-15 キヤノン株式会社 発光装置とその作製方法
JP2009031742A (ja) 2007-04-10 2009-02-12 Fujifilm Corp 有機電界発光表示装置
US7795613B2 (en) * 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) * 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) * 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) * 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) * 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP5241143B2 (ja) * 2007-05-30 2013-07-17 キヤノン株式会社 電界効果型トランジスタ
US7935964B2 (en) 2007-06-19 2011-05-03 Samsung Electronics Co., Ltd. Oxide semiconductors and thin film transistors comprising the same
KR20090002841A (ko) 2007-07-04 2009-01-09 삼성전자주식회사 산화물 반도체, 이를 포함하는 박막 트랜지스터 및 그 제조방법
KR100889688B1 (ko) 2007-07-16 2009-03-19 삼성모바일디스플레이주식회사 반도체 활성층 제조 방법, 그를 이용한 박막 트랜지스터의제조 방법 및 반도체 활성층을 구비하는 박막 트랜지스터
JPWO2009034953A1 (ja) 2007-09-10 2010-12-24 出光興産株式会社 薄膜トランジスタ
JP4759598B2 (ja) 2007-09-28 2011-08-31 キヤノン株式会社 薄膜トランジスタ、その製造方法及びそれを用いた表示装置
KR101375831B1 (ko) * 2007-12-03 2014-04-02 삼성전자주식회사 산화물 반도체 박막 트랜지스터를 이용한 디스플레이 장치
JP5377940B2 (ja) * 2007-12-03 2013-12-25 株式会社半導体エネルギー研究所 半導体装置
JP5215158B2 (ja) * 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
WO2009093625A1 (ja) 2008-01-23 2009-07-30 Idemitsu Kosan Co., Ltd. 電界効果型トランジスタ及びその製造方法、それを用いた表示装置、並びに半導体装置
KR100941850B1 (ko) * 2008-04-03 2010-02-11 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
KR101461127B1 (ko) 2008-05-13 2014-11-14 삼성디스플레이 주식회사 반도체 장치 및 이의 제조 방법
US9082857B2 (en) 2008-09-01 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an oxide semiconductor layer
WO2010029865A1 (en) 2008-09-12 2010-03-18 Semiconductor Energy Laboratory Co., Ltd. Display device
KR101657957B1 (ko) 2008-09-12 2016-09-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
JP4623179B2 (ja) * 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
KR101889287B1 (ko) 2008-09-19 2018-08-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치
CN103545342B (zh) 2008-09-19 2018-01-26 株式会社半导体能源研究所 半导体装置
KR101961632B1 (ko) 2008-10-03 2019-03-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치
EP2172977A1 (en) 2008-10-03 2010-04-07 Semiconductor Energy Laboratory Co., Ltd. Display device
JP5451280B2 (ja) * 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
JP5361651B2 (ja) 2008-10-22 2013-12-04 株式会社半導体エネルギー研究所 半導体装置の作製方法
WO2010047288A1 (en) 2008-10-24 2010-04-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductordevice
US8741702B2 (en) 2008-10-24 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101667909B1 (ko) 2008-10-24 2016-10-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치의 제조방법
EP2180518B1 (en) 2008-10-24 2018-04-25 Semiconductor Energy Laboratory Co, Ltd. Method for manufacturing semiconductor device
JP5616012B2 (ja) 2008-10-24 2014-10-29 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR101659703B1 (ko) 2008-11-07 2016-09-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP2010153802A (ja) * 2008-11-20 2010-07-08 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
US8367486B2 (en) * 2009-02-05 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Transistor and method for manufacturing the transistor
JP5564331B2 (ja) 2009-05-29 2014-07-30 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR20210048590A (ko) 2009-09-16 2021-05-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
EP3540772A1 (en) 2009-09-16 2019-09-18 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
KR101877149B1 (ko) * 2009-10-08 2018-07-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체층, 반도체 장치 및 그 제조 방법
KR102246127B1 (ko) 2009-10-08 2021-04-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
CN102687400B (zh) 2009-10-30 2016-08-24 株式会社半导体能源研究所 逻辑电路和半导体装置

Also Published As

Publication number Publication date
JP2023138636A (ja) 2023-10-02
JP2020170856A (ja) 2020-10-15
CN102484139B (zh) 2016-07-06
JP2015005767A (ja) 2015-01-08
TW201131776A (en) 2011-09-16
CN102484139A (zh) 2012-05-30
JP5916817B2 (ja) 2016-05-11
TWI464874B (zh) 2014-12-11
JP6503045B2 (ja) 2019-04-17
TWI484640B (zh) 2015-05-11
JP6724207B2 (ja) 2020-07-15
TW201521207A (zh) 2015-06-01
JP2019096916A (ja) 2019-06-20
JP6268314B2 (ja) 2018-01-24
KR20120090982A (ko) 2012-08-17
TWI607571B (zh) 2017-12-01
KR101980505B1 (ko) 2019-05-20
US20110084264A1 (en) 2011-04-14
TW201244084A (en) 2012-11-01
US20130062601A1 (en) 2013-03-14
KR101623619B1 (ko) 2016-05-23
JP2017092504A (ja) 2017-05-25
JP2018037685A (ja) 2018-03-08
EP3249698A1 (en) 2017-11-29
EP2486594B1 (en) 2017-10-25
JP6158980B2 (ja) 2017-07-05
JP2011100979A (ja) 2011-05-19
US9306072B2 (en) 2016-04-05
KR20180063355A (ko) 2018-06-11
KR20160063404A (ko) 2016-06-03
JP2022019923A (ja) 2022-01-27
US8319218B2 (en) 2012-11-27
EP2486594A4 (en) 2013-07-10
KR101376461B1 (ko) 2014-03-19
SG178056A1 (en) 2012-03-29
KR20120093398A (ko) 2012-08-22
KR101877149B1 (ko) 2018-07-10
WO2011043176A1 (en) 2011-04-14
JP2016167608A (ja) 2016-09-15
JP7329581B2 (ja) 2023-08-18
EP2486594A1 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP6989656B2 (ja) 半導体装置
TWI545756B (zh) 半導體裝置及其製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211202

R150 Certificate of patent or registration of utility model

Ref document number: 6989656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150