JP6870133B2 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- JP6870133B2 JP6870133B2 JP2020050341A JP2020050341A JP6870133B2 JP 6870133 B2 JP6870133 B2 JP 6870133B2 JP 2020050341 A JP2020050341 A JP 2020050341A JP 2020050341 A JP2020050341 A JP 2020050341A JP 6870133 B2 JP6870133 B2 JP 6870133B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- oxide semiconductor
- conductive film
- semiconductor film
- transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims description 1042
- 239000000463 material Substances 0.000 claims description 41
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 20
- 239000004020 conductor Substances 0.000 claims description 16
- 239000011347 resin Substances 0.000 claims description 15
- 229920005989 resin Polymers 0.000 claims description 15
- 239000012528 membrane Substances 0.000 claims description 10
- 229910052738 indium Inorganic materials 0.000 claims description 6
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims 3
- 239000010408 film Substances 0.000 description 2377
- 238000000034 method Methods 0.000 description 186
- 239000000758 substrate Substances 0.000 description 174
- 239000012535 impurity Substances 0.000 description 153
- 230000006870 function Effects 0.000 description 116
- 239000008188 pellet Substances 0.000 description 112
- 239000007789 gas Substances 0.000 description 111
- 239000011701 zinc Substances 0.000 description 100
- 229910052739 hydrogen Inorganic materials 0.000 description 88
- 239000013078 crystal Substances 0.000 description 87
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 84
- 239000001257 hydrogen Substances 0.000 description 82
- 206010021143 Hypoxia Diseases 0.000 description 69
- 239000010410 layer Substances 0.000 description 67
- 229910052751 metal Inorganic materials 0.000 description 65
- 229910052760 oxygen Inorganic materials 0.000 description 65
- 239000001301 oxygen Substances 0.000 description 65
- 238000004519 manufacturing process Methods 0.000 description 64
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 63
- 239000004973 liquid crystal related substance Substances 0.000 description 57
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 53
- 125000004429 atom Chemical group 0.000 description 53
- 239000002184 metal Substances 0.000 description 48
- 238000010438 heat treatment Methods 0.000 description 46
- 229910052757 nitrogen Inorganic materials 0.000 description 42
- 229910052782 aluminium Inorganic materials 0.000 description 41
- 230000007547 defect Effects 0.000 description 31
- 150000002431 hydrogen Chemical class 0.000 description 29
- -1 polyethylene terephthalate Polymers 0.000 description 29
- 238000004544 sputter deposition Methods 0.000 description 28
- 229910052710 silicon Inorganic materials 0.000 description 27
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 26
- 150000004767 nitrides Chemical class 0.000 description 26
- 239000010703 silicon Substances 0.000 description 26
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 25
- 230000015572 biosynthetic process Effects 0.000 description 24
- 238000005755 formation reaction Methods 0.000 description 24
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 22
- 229910052756 noble gas Inorganic materials 0.000 description 22
- 229910052581 Si3N4 Inorganic materials 0.000 description 20
- 239000000203 mixture Substances 0.000 description 20
- 239000012298 atmosphere Substances 0.000 description 19
- 238000005530 etching Methods 0.000 description 19
- 230000008569 process Effects 0.000 description 19
- 238000012545 processing Methods 0.000 description 19
- 239000002994 raw material Substances 0.000 description 19
- 239000000523 sample Substances 0.000 description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 18
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 18
- 229910052799 carbon Inorganic materials 0.000 description 18
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 18
- 229910052779 Neodymium Inorganic materials 0.000 description 17
- 239000010949 copper Substances 0.000 description 17
- 230000005669 field effect Effects 0.000 description 17
- 239000010936 titanium Substances 0.000 description 17
- 229910052726 zirconium Inorganic materials 0.000 description 17
- 229910052802 copper Inorganic materials 0.000 description 16
- 230000000694 effects Effects 0.000 description 16
- 150000002500 ions Chemical class 0.000 description 16
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 16
- 229910052719 titanium Inorganic materials 0.000 description 16
- 229910052721 tungsten Inorganic materials 0.000 description 16
- 239000010937 tungsten Substances 0.000 description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 15
- 229910052749 magnesium Inorganic materials 0.000 description 15
- 229910052684 Cerium Inorganic materials 0.000 description 14
- 229910052746 lanthanum Inorganic materials 0.000 description 14
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 14
- 230000003071 parasitic effect Effects 0.000 description 14
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 14
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 14
- 229910052727 yttrium Inorganic materials 0.000 description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 13
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 12
- 239000000969 carrier Substances 0.000 description 12
- 229910000077 silane Inorganic materials 0.000 description 12
- 239000002356 single layer Substances 0.000 description 12
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 11
- 229910021529 ammonia Inorganic materials 0.000 description 11
- 238000005229 chemical vapour deposition Methods 0.000 description 11
- 229910052801 chlorine Inorganic materials 0.000 description 11
- 239000000460 chlorine Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 229910052698 phosphorus Inorganic materials 0.000 description 11
- 239000011574 phosphorus Substances 0.000 description 11
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 10
- 229910016344 CuSi Inorganic materials 0.000 description 10
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 10
- 229910007541 Zn O Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 10
- 229910052796 boron Inorganic materials 0.000 description 10
- 230000005685 electric field effect Effects 0.000 description 10
- 229910052731 fluorine Inorganic materials 0.000 description 10
- 239000011737 fluorine Substances 0.000 description 10
- 239000002159 nanocrystal Substances 0.000 description 10
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 10
- 229910052786 argon Inorganic materials 0.000 description 9
- 238000000231 atomic layer deposition Methods 0.000 description 9
- 238000002003 electron diffraction Methods 0.000 description 9
- 125000004430 oxygen atom Chemical group O* 0.000 description 9
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 9
- 239000010409 thin film Substances 0.000 description 9
- 239000011787 zinc oxide Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 238000001312 dry etching Methods 0.000 description 8
- 230000009977 dual effect Effects 0.000 description 8
- 238000001459 lithography Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 229910052750 molybdenum Inorganic materials 0.000 description 8
- 238000007639 printing Methods 0.000 description 8
- 238000012916 structural analysis Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 229910052715 tantalum Inorganic materials 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229910001868 water Inorganic materials 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 239000000470 constituent Substances 0.000 description 7
- 238000000151 deposition Methods 0.000 description 7
- 229910000449 hafnium oxide Inorganic materials 0.000 description 7
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 7
- 239000011261 inert gas Substances 0.000 description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000003795 desorption Methods 0.000 description 6
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 6
- 229910001195 gallium oxide Inorganic materials 0.000 description 6
- 229910052735 hafnium Inorganic materials 0.000 description 6
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 239000011733 molybdenum Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000009832 plasma treatment Methods 0.000 description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical group [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 5
- 239000013081 microcrystal Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- 238000001039 wet etching Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 229910003437 indium oxide Inorganic materials 0.000 description 4
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 229910052743 krypton Inorganic materials 0.000 description 4
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 229910052754 neon Inorganic materials 0.000 description 4
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 4
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000003566 sealing material Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- 229910001930 tungsten oxide Inorganic materials 0.000 description 4
- 229910052724 xenon Inorganic materials 0.000 description 4
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 4
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 4
- UWCWUCKPEYNDNV-LBPRGKRZSA-N 2,6-dimethyl-n-[[(2s)-pyrrolidin-2-yl]methyl]aniline Chemical compound CC1=CC=CC(C)=C1NC[C@H]1NCCC1 UWCWUCKPEYNDNV-LBPRGKRZSA-N 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical group [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 150000001342 alkaline earth metals Chemical class 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000002524 electron diffraction data Methods 0.000 description 3
- 201000003373 familial cold autoinflammatory syndrome 3 Diseases 0.000 description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 150000002835 noble gases Chemical class 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 238000005477 sputtering target Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- WZJUBBHODHNQPW-UHFFFAOYSA-N 2,4,6,8-tetramethyl-1,3,5,7,2$l^{3},4$l^{3},6$l^{3},8$l^{3}-tetraoxatetrasilocane Chemical compound C[Si]1O[Si](C)O[Si](C)O[Si](C)O1 WZJUBBHODHNQPW-UHFFFAOYSA-N 0.000 description 2
- VUFNLQXQSDUXKB-DOFZRALJSA-N 2-[4-[4-[bis(2-chloroethyl)amino]phenyl]butanoyloxy]ethyl (5z,8z,11z,14z)-icosa-5,8,11,14-tetraenoate Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)OCCOC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 VUFNLQXQSDUXKB-DOFZRALJSA-N 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 240000002329 Inga feuillei Species 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- GPBUGPUPKAGMDK-UHFFFAOYSA-N azanylidynemolybdenum Chemical compound [Mo]#N GPBUGPUPKAGMDK-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000003098 cholesteric effect Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- ZYLGGWPMIDHSEZ-UHFFFAOYSA-N dimethylazanide;hafnium(4+) Chemical compound [Hf+4].C[N-]C.C[N-]C.C[N-]C.C[N-]C ZYLGGWPMIDHSEZ-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- 229960001730 nitrous oxide Drugs 0.000 description 2
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- FIPWRIJSWJWJAI-UHFFFAOYSA-N Butyl carbitol 6-propylpiperonyl ether Chemical compound C1=C(CCC)C(COCCOCCOCCCC)=CC2=C1OCO2 FIPWRIJSWJWJAI-UHFFFAOYSA-N 0.000 description 1
- 101100269850 Caenorhabditis elegans mask-1 gene Proteins 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229910004129 HfSiO Inorganic materials 0.000 description 1
- 239000005264 High molar mass liquid crystal Substances 0.000 description 1
- 101100400378 Mus musculus Marveld2 gene Proteins 0.000 description 1
- BKAYIFDRRZZKNF-VIFPVBQESA-N N-acetylcarnosine Chemical compound CC(=O)NCCC(=O)N[C@H](C(O)=O)CC1=CN=CN1 BKAYIFDRRZZKNF-VIFPVBQESA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 239000004990 Smectic liquid crystal Substances 0.000 description 1
- 239000004974 Thermotropic liquid crystal Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910009369 Zn Mg Inorganic materials 0.000 description 1
- 229910007573 Zn-Mg Inorganic materials 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000005407 aluminoborosilicate glass Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- XJVBHCCEUWWHMI-UHFFFAOYSA-N argon(.1+) Chemical compound [Ar+] XJVBHCCEUWWHMI-UHFFFAOYSA-N 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052800 carbon group element Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- KMHJKRGRIJONSV-UHFFFAOYSA-N dioxygen(.1+) Chemical compound [O+]=O KMHJKRGRIJONSV-UHFFFAOYSA-N 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- SDIXRDNYIMOKSG-UHFFFAOYSA-L disodium methyl arsenate Chemical compound [Na+].[Na+].C[As]([O-])([O-])=O SDIXRDNYIMOKSG-UHFFFAOYSA-L 0.000 description 1
- 239000004815 dispersion polymer Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000001362 electron spin resonance spectrum Methods 0.000 description 1
- 238000010893 electron trap Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- NPEOKFBCHNGLJD-UHFFFAOYSA-N ethyl(methyl)azanide;hafnium(4+) Chemical group [Hf+4].CC[N-]C.CC[N-]C.CC[N-]C.CC[N-]C NPEOKFBCHNGLJD-UHFFFAOYSA-N 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 238000005499 laser crystallization Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- CUZHTAHNDRTVEF-UHFFFAOYSA-N n-[bis(dimethylamino)alumanyl]-n-methylmethanamine Chemical compound [Al+3].C[N-]C.C[N-]C.C[N-]C CUZHTAHNDRTVEF-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 235000013842 nitrous oxide Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 208000019880 recessive mitochondrial ataxia syndrome Diseases 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000004098 selected area electron diffraction Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- LXEXBJXDGVGRAR-UHFFFAOYSA-N trichloro(trichlorosilyl)silane Chemical compound Cl[Si](Cl)(Cl)[Si](Cl)(Cl)Cl LXEXBJXDGVGRAR-UHFFFAOYSA-N 0.000 description 1
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 1
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 1
- VEDJZFSRVVQBIL-UHFFFAOYSA-N trisilane Chemical compound [SiH3][SiH2][SiH3] VEDJZFSRVVQBIL-UHFFFAOYSA-N 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78606—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1222—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
- H01L27/1225—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133345—Insulating layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133512—Light shielding layers, e.g. black matrix
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133514—Colour filters
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1339—Gaskets; Spacers; Sealing of cells
- G02F1/13394—Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/1368—Active matrix addressed cells in which the switching element is a three-electrode device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1222—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
- H01L27/1233—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with different thicknesses of the active layer in different devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/124—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1251—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs comprising TFTs having a different architecture, e.g. top- and bottom gate TFTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1255—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
- H01L29/1033—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/45—Ohmic electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78645—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
- H01L29/78648—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78696—Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/121—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
- H10K59/1213—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/121—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
- H10K59/1216—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Thin Film Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Electroluminescent Light Sources (AREA)
- Semiconductor Integrated Circuits (AREA)
- Liquid Crystal (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Bipolar Transistors (AREA)
- Noodles (AREA)
Description
装置に関する。
の一態様の技術分野は、物、方法、または、製造方法に関する。または、本発明は、プロ
セス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に
関する。特に、本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、記憶装
置、それらの駆動方法、またはそれらの製造方法に関する。
装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶
装置は、半導体装置の一態様である。撮像装置、表示装置、液晶表示装置、発光装置、電
気光学装置、発電装置(薄膜太陽電池、有機薄膜太陽電池等を含む)、及び電子機器は、
半導体装置を有している場合がある。
スタ(TFT)ともいう)を構成する技術が注目されている。該トランジスタは集積回路
(IC)や画像表示装置(表示装置)のような電子デバイスに広く応用されている。トラ
ンジスタに適用可能な半導体薄膜としてシリコンを代表とする半導体材料が広く知られて
いるが、その他の材料として酸化物半導体が注目されている。
てトランジスタを作製する技術が特許文献1で開示されている。
造ともいう)またはプレナー型(トップゲート構造ともいう)等が挙げられる。酸化物半
導体膜を用いたトランジスタを表示装置に適用する場合、プレナー型のトランジスタより
も逆スタガ型のトランジスタの方が、作製工程が比較的簡単であり製造コストを抑えられ
るため、利用される場合が多い。しかしながら、表示装置の画面の大型化、または表示装
置の画質の高精細化(例えば、4k×2k(水平方向画素数=3840画素、垂直方向画
素数=2048画素)または8k×4k(水平方向画素数=7680画素、垂直方向画素
数=4320画素)に代表される高精細な表示装置)が進むと、逆スタガ型のトランジス
タでは、ゲート電極とソース電極及びドレイン電極との間の寄生容量があるため、該寄生
容量によって信号遅延等が大きくなり、表示装置の画質が劣化するという問題があった。
また、逆スタガ型のトランジスタの場合、プレナー型のトランジスタと比較して、トラン
ジスタの占有面積が大きくなるといった問題がある。そこで、酸化物半導体膜を用いたプ
レナー型のトランジスタについて、安定した半導体特性及び高い信頼性を有する構造で、
且つ簡単な作製工程で形成されるトランジスタの開発が望まれている。
る。とくに、酸化物半導体を用いたプレナー型の半導体装置を提供する。または酸化物半
導体を用いたオン電流が大きい半導体装置を提供する、または酸化物半導体を用いたオフ
電流が小さい半導体装置を提供する、または酸化物半導体を用いた占有面積の小さい半導
体装置を提供する、または酸化物半導体を用いた安定な電気特性をもつ半導体装置を提供
する、または酸化物半導体を用いた信頼性の高い半導体装置を提供する、または新規な半
導体装置を提供する、または新規な表示装置を提供することを課題の1つとする。
態様は、必ずしも、これらの課題の全てを解決する必要はない。上記以外の課題は、明細
書等の記載から自ずと明らかになるものであり、明細書等の記載から上記以外の課題を抽
出することが可能である。
た第2のトランジスタとを有する半導体装置であって、第1のトランジスタと第2のトラ
ンジスタは構造が異なる。また、第1のトランジスタ及び第2のトランジスタは、トップ
ゲート構造のトランジスタであって、ゲート電極とソース電極及びドレイン電極として機
能する導電膜が重ならない。また、酸化物半導体膜において、ゲート電極と、ソース電極
及びドレイン電極と重ならない領域に不純物元素を有する。
ン、塩素、または希ガス元素がある。
ため、酸化物半導体膜において、該不純物元素を有する領域を、ゲート電極と、ソース電
極及びドレイン電極と重ならない領域に有することで、トランジスタの寄生抵抗を低減す
ることが可能であり、オン電流の高いトランジスタとなる。
2つのゲート電極を有してもよい。
れた酸化物半導体膜を有し、画素部に設けられた第2のトランジスタは、第1の膜と金属
元素の原子数比が異なる酸化物半導体膜を有してもよい。さらに、第2のトランジスタに
含まれる酸化物半導体膜は、第1のトランジスタの酸化物半導体膜に含まれる第2の膜と
金属元素の原子数比が同じであってもよい。
る。とくに、酸化物半導体を用いたプレナー型の半導体装置を提供することができる。ま
たは、酸化物半導体を用いたオン電流が大きい半導体装置を提供することができる。また
は、酸化物半導体を用いたオフ電流が小さい半導体装置を提供することができる。または
、酸化物半導体を用いた占有面積の小さい半導体装置を提供することができる。または、
酸化物半導体を用いた安定な電気特性をもつ半導体装置を提供することができる。または
、酸化物半導体を用いた信頼性の高い半導体装置を提供することができる。または、新規
な半導体装置を提供することができる。または、新規な表示装置を提供することができる
。
一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果
は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図
面、請求項などの記載から、これら以外の効果を抽出することが可能である。
。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱するこ
となく、その形態および詳細を様々に変更し得ることは当業者であれば容易に理解される
。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない
。
実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、
必ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。
混同を避けるために付すものであり、数的に限定するものではないことを付記する。
たは「直下」であることを限定するものではない。例えば、「ゲート絶縁膜上のゲート電
極」の表現であれば、ゲート絶縁膜とゲート電極との間に他の構成要素を含むものを除外
しない。
限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり
、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「
配線」が一体となって形成されている場合なども含む。
や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このた
め、本明細書等においては、「ソース」や「ドレイン」の用語は、入れ替えて用いること
ができるものとする。
の」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するも
の」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない
。例えば、「何らかの電気的作用を有するもの」には、電極や配線をはじめ、トランジス
タなどのスイッチング素子、抵抗素子、インダクタ、キャパシタ、その他の各種機能を有
する素子などが含まれる。
本実施の形態では、半導体装置及び半導体装置の作製方法の一形態を、図1乃至図11
を用いて説明する。
図1及び図6に、半導体装置に含まれるトランジスタの一例として、トップゲート構造
のトランジスタを示す。ここでは、半導体装置の一例として表示装置を用いて説明する。
また、表示装置の駆動回路及び画素部それぞれに設けられるトランジスタの構造を説明す
る。
タ150の上面図を示し、図1にトランジスタ154及びトランジスタ150の断面図を
示す。図6(A)はトランジスタ154の上面図であり、図6(B)はトランジスタ15
0の上面図である。図1(A)は、図6(A)の一点鎖線X1−X2間の断面図、及び図
6(B)の一点鎖線X3−X4間の断面図である。図1(B)は、図6(A)の一点鎖線
Y1−Y2間の断面図、及び図6(B)の一点鎖線Y3−Y4間の断面図である。なお、
図6では、明瞭化のため、基板102、絶縁膜104、絶縁膜108、絶縁膜116、絶
縁膜118などを省略している。また、図1(A)は、トランジスタ150及びトランジ
スタ154のチャネル長方向の断面図である。また、図1(B)は、トランジスタ150
及びトランジスタ154のチャネル幅方向の断面図である。
びトランジスタ154と同様に、構成要素の一部を省略して図示する場合がある。また、
一点鎖線X1−X2方向及び一点鎖線X3−X4方向をチャネル長方向、一点鎖線Y1−
Y2方向及び一点鎖線Y3−Y4方向をチャネル幅方向と呼称する場合がある。
半導体膜106と、酸化物半導体膜106に接する絶縁膜108と、絶縁膜108の開口
部140aの一部において酸化物半導体膜106と接する導電膜110と、絶縁膜108
の開口部140bの一部において酸化物半導体膜106と接する導電膜112と、絶縁膜
108を介して酸化物半導体膜106と重なる導電膜114とを有する。なお、トランジ
スタ150上に絶縁膜116及び絶縁膜118が設けられてもよい。
絶縁膜104と、絶縁膜104上の酸化物半導体膜206と、酸化物半導体膜206に接
する絶縁膜108と、絶縁膜108の開口部220aの一部において酸化物半導体膜20
6と接する導電膜210と、絶縁膜108の開口部220bの一部において酸化物半導体
膜206と接する導電膜212と、絶縁膜108を介して酸化物半導体膜206と重なる
導電膜214とを有する。
01を有することを特徴とする。すなわち、導電膜201は、ゲート電極として機能する
。また、トランジスタ154は、デュアルゲート構造のトランジスタである。
、トランジスタ154のしきい値電圧を制御することができる。又は、図1(B)に示す
ように、導電膜214及び導電膜201が接続され、同じ電位が印加されることで、初期
特性バラつきの低減、−GBT(−Gate Bias−Temperature)スト
レス試験の劣化の抑制、及び異なるドレイン電圧におけるオン電流の立ち上がり電圧の変
動の抑制が可能である。また、酸化物半導体膜206においてキャリアの流れる領域が膜
厚方向においてより大きくなるため、キャリアの移動量が増加する。この結果、トランジ
スタ154のオン電流が大きくなる共に、電界効果移動度が高くなる。トランジスタのチ
ャネル長を2.5μm未満、又は1.45μm以上2.2μm以下とすることで、オン電
流がさらに増大するとともに、電界効果移動度を高めることができる。
場合の例を、図54(A)に示す。または、導電膜201は、導電膜210や導電膜21
2と重なると共に、酸化物半導体膜106の全域と重なってもよい。その場合の例を図5
4(B)に示す。
構造が異なる。駆動回路部に含まれるトランジスタは、デュアルゲート構造である。即ち
、画素部と比較して、電界効果移動度の高いトランジスタを駆動回路部に有する。
異なってもよい。
、又は1.45μm以上2.2μm以下とすることができる。一方、画素部に含まれるト
ランジスタ150のチャネル長を2.5μm以上、又は2.5μm以上20μm以下とす
ることができる。
は1.45μm以上2.2μm以下とすることで、画素部に含まれるトランジスタ150
と比較して、電界効果移動度を高めることが可能であり、オン電流増大させることができ
る。この結果、高速動作が可能な駆動回路部を作製することができる。
に、デマルチプレクサ回路を形成することが可能である。デマルチプレクサ回路は、一つ
の入力信号を複数の出力のいずれかへ分配する回路であるため、入力信号用の入力端子数
を削減することが可能である。例えば、一画素が、赤色用サブ画素、緑色用サブ画素、及
び青色用サブ画素を有し、且つ各画素にデマルチプレクサ回路を設けることで、各サブ画
素に入力する入力信号をデマルチプレクサ回路で分配することが可能であるため、入力端
子を1/3に削減することが可能である。
極とが重ならないため、寄生容量が少ない。さらに、ゲート電極と、ソース電極及びドレ
イン電極と重ならない領域において、酸化物半導体膜は、不純物元素を有する領域を有す
るため、寄生抵抗が小さい。これらのため、オン電流の大きいトランジスタが画素部に設
けられる。この結果、大型の表示装置や、高精細な表示装置において、信号遅延を低減し
、表示むらを抑えることが可能である。
らない領域には、酸素欠損を形成する元素を有する。また、酸化物半導体膜206におい
て、導電膜210、導電膜212及び導電膜214と重ならない領域には、酸素欠損を形
成する元素を有する。以下、酸素欠損を形成する元素を、不純物元素として説明する。不
純物元素の代表例としては、水素、ホウ素、炭素、窒素、フッ素、アルミニウム、シリコ
ン、リン、塩素、希ガス元素等がある。希ガス元素の代表例としては、ヘリウム、ネオン
、アルゴン、クリプトン及びキセノンがある。
結合が切断され、酸素欠損が形成される。又は、不純物元素が酸化物半導体膜に添加され
ると、酸化物半導体膜中の金属元素と結合していた酸素が不純物元素と結合し、金属元素
から酸素が脱離され、酸素欠損が形成される。これらの結果、酸化物半導体膜においてキ
ャリア密度が増加し、導電性が高くなる。
ンジスタ150に含まれる酸化物半導体膜106近傍の拡大図を用いて説明する。図2に
示すように、酸化物半導体膜106は、導電膜110及び導電膜112と接する領域10
6aと、絶縁膜116と接する領域106bと、絶縁膜108と重なる領域106c及び
領域106dとを有する。
膜112がタングステン、チタン、アルミニウム、銅、モリブデン、クロム、又はタンタ
ル単体若しくは合金等の酸素と結合しやすい導電材料を用いて形成される場合、酸化物半
導体膜に含まれる酸素と導電膜110及び導電膜112に含まれる導電材料とが結合し、
酸化物半導体膜において、酸素欠損が形成される。また、酸化物半導体膜に導電膜110
及び導電膜112を形成する導電材料の構成元素の一部が混入する場合もある。これらの
結果、導電膜110及び導電膜112と接する領域106aは、導電性が高まり、ソース
領域及びドレイン領域として機能する。
106cには不純物元素が含まれる。なお、領域106bの方が領域106cより不純物
元素濃度が高い。また、導電膜114の側面がテーパ形状を有する場合、領域106cの
一部が、導電膜114と重なってもよい。
れる場合、領域106a乃至領域106dはそれぞれ希ガス元素を含み、且つ領域106
a及び領域106dと比較して、領域106b及び領域106cの方が希ガス元素の濃度
が高い。これは、酸化物半導体膜106がスパッタリング法で形成される場合、スパッタ
リングガスとして希ガスを用いるため、酸化物半導体膜106に希ガスが含まれること、
並びに領域106b及び領域106cにおいて、酸素欠損を形成するために、意図的に希
ガスが添加されることが原因である。なお、領域106b及び領域106cにおいて、領
域106a及び領域106dと異なる希ガス元素が添加されていてもよい。
塩素の場合、領域106b及び領域106cにのみ不純物元素を有する。このため、領域
106a及び領域106dと比較して、領域106b及び領域106cの方が不純物元素
の濃度が高い。なお、領域106b及び領域106cにおいて、二次イオン質量分析法(
SIMS:Secondary Ion Mass Spectrometry)により
得られる不純物元素の濃度は、1×1018atoms/cm3以上1×1022ato
ms/cm3以下、又は1×1019atoms/cm3以上1×1021atoms/
cm3以下、又は5×1019atoms/cm3以上5×1020atoms/cm3
以下とすることができる。
及び領域106cの方が不純物元素の濃度が高い。なお、領域106b及び領域106c
において、二次イオン質量分析法により得られる水素の濃度は、8×1019atoms
/cm3以上、又は1×1020atoms/cm3以上、又は5×1020atoms
/cm3以上とすることができる。
ア密度が増加する。この結果、領域106b及び領域106cは、導電性が高くなり、低
抵抗領域として機能する。
リン、又は塩素の一以上と、希ガスの一以上の場合であってもよい。この場合、領域10
6b及び領域106cにおいて、希ガスにより形成された酸素欠損と、且つ該領域に添加
された水素、ホウ素、炭素、窒素、フッ素、アルミニウム、シリコン、リン、又は塩素の
一以上との相互作用により、領域106b及び領域106cは、導電性がさらに高まる場
合がある。
酸化物半導体膜206及び導電膜214と重なる領域はゲート絶縁膜として機能する。ま
た、絶縁膜108において、酸化物半導体膜106と導電膜110及び導電膜112とが
重なる領域、並びに酸化物半導体膜206と導電膜210及び導電膜212とが重なる領
域は層間絶縁膜として機能する。
びドレイン電極として機能する。また、導電膜114及び導電膜214は、ゲート電極と
して機能する。
能する領域と、ソース領域及びドレイン領域として機能する領域との間に、低抵抗領域と
して機能する領域を有する。チャネルとソース領域及びドレイン領域との間の抵抗を低減
することが可能であり、トランジスタ150及びトランジスタ154は、オン電流が大き
く、電界効果移動度が高い。
して機能する導電膜114及び導電膜214と、ソース電極及びドレイン電極として機能
する導電膜110及び導電膜112並びに導電膜210及び導電膜212とが同時に形成
される。このため、トランジスタ150において、導電膜114と、導電膜110及び導
電膜112とが重ならず、導電膜114と、導電膜110及び導電膜112との間の寄生
容量を低減することが可能である。また、トランジスタ154において、導電膜214と
、導電膜210及び導電膜212とが重ならず、導電膜214と、導電膜210及び導電
膜212との間の寄生容量を低減することが可能である。この結果、基板102として大
面積基板を用いた場合、導電膜110、導電膜112及び導電膜114、並びに導電膜2
10、導電膜212及び導電膜214における信号遅延を低減することが可能である。
マスクとして、不純物元素が酸化物半導体膜106に添加される。また、トランジスタ1
54において、導電膜210、導電膜212及び導電膜214をマスクとして、不純物元
素が酸化物半導体膜206に添加される。すなわち、セルフアラインで低抵抗領域を形成
することができる。
ない。基板の一例としては、半導体基板(例えば単結晶基板又はシリコン基板)、SOI
基板、ガラス基板、石英基板、プラスチック基板、金属基板、ステンレス・スチル基板、
ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを
有する基板、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、又は基材フィル
ムなどがある。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケ
イ酸ガラス、又はソーダライムガラスなどがある。可撓性基板、貼り合わせフィルム、基
材フィルムなどの一例としては、以下のものがあげられる。例えば、ポリエチレンテレフ
タレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(
PES)に代表されるプラスチックがある。又は、一例としては、アクリル等の合成樹脂
などがある。又は、一例としては、ポリプロピレン、ポリエステル、ポリフッ化ビニル、
又はポリ塩化ビニルなどがある。又は、一例としては、ポリアミド、ポリイミド、アラミ
ド、エポキシ、無機蒸着フィルム、又は紙類などがある。特に、半導体基板、単結晶基板
、又はSOI基板などを用いてトランジスタを製造することによって、特性、サイズ、又
は形状などのばらつきが少なく、電流能力が高く、サイズの小さいトランジスタを製造す
ることができる。このようなトランジスタによって回路を構成すると、回路の低消費電力
化、又は回路の高集積化を図ることができる。
成してもよい。又は、基板102とトランジスタの間に剥離層を設けてもよい。剥離層は
、その上に半導体装置を一部あるいは全部完成させた後、基板102より分離し、他の基
板に転載するのに用いることができる。その際、トランジスタは耐熱性の劣る基板や可撓
性の基板にも転載できる。なお、上述の剥離層には、例えば、タングステン膜と酸化シリ
コン膜との無機膜の積層構造の構成や、基板上にポリイミド等の有機樹脂膜が形成された
構成等を用いることができる。
が可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィ
ルム基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン
、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、
再生ポリエステル)などを含む)、皮革基板、又はゴム基板などがある。これらの基板を
用いることにより、特性のよいトランジスタの形成、消費電力の小さいトランジスタの形
成、壊れにくい装置の製造、耐熱性の付与、軽量化、又は薄型化を図ることができる。
きる。なお、酸化物半導体膜106及び酸化物半導体膜206との界面特性を向上させる
ため、絶縁膜104において少なくとも酸化物半導体膜106及び酸化物半導体膜206
と接する領域は酸化物絶縁膜で形成することが好ましい。また、絶縁膜104として加熱
により酸素を放出する酸化物絶縁膜を用いることで、加熱処理により絶縁膜104に含ま
れる酸素を、酸化物半導体膜106及び酸化物半導体膜206に移動させることが可能で
ある。
00nm以上1000nm以下とすることができる。絶縁膜104を厚くすることで、絶
縁膜104の酸素放出量を増加させることができると共に、絶縁膜104と酸化物半導体
膜106及び酸化物半導体膜206との界面における界面準位、並びに酸化物半導体膜1
06及び酸化物半導体膜206に含まれる酸素欠損を低減することが可能である。
膜、窒化シリコン膜、酸化アルミニウム膜、酸化ハフニウム膜、酸化ガリウム膜又はGa
−Zn酸化物膜などを用いればよく、単層又は積層で設けることができる。
、In−Zn酸化物膜、In−M−Zn酸化物膜(Mは、Mg、Al、Ti、Ga、Y、
Zr、La、Ce、Nd、又はHf)等の金属酸化物膜で形成される。なお、酸化物半導
体膜106及び酸化物半導体膜206は、透光性を有する。
、InとMの原子数比率は、In及びMの和を100atomic%としたときInが2
5atomic%より多く、Mが75atomic%未満、又はInが34atomic
%より多く、Mが66atomic%未満とする。
、2.5eV以上、又は3eV以上である。
、又は3nm以上100nm以下、又は3nm以上50nm以下とすることができる。
g、Al、Ti、Ga、Y、Zr、La、Ce、Nd、又はHf)の場合、In−M−Z
n酸化物膜を成膜するために用いるスパッタリングターゲットの金属元素の原子数比は、
In≧M、Zn≧Mを満たすことが好ましい。このようなスパッタリングターゲットの金
属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:1:1.
2、In:M:Zn=2:1:1.5、In:M:Zn=2:1:2.3、In:M:Z
n=2:1:3、In:M:Zn=3:1:2等が好ましい。なお、成膜される酸化物半
導体膜106及び酸化物半導体膜206の原子数比はそれぞれ、誤差として上記のスパッ
タリングターゲットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む
。
であるシリコンや炭素が含まれると、酸化物半導体膜106及び酸化物半導体膜206に
おいて、酸素欠損が増加し、n型化してしまう。このため、酸化物半導体膜106及び酸
化物半導体膜206であって、特に領域106dにおいて、シリコンや炭素の濃度(二次
イオン質量分析法により得られる濃度)を、2×1018atoms/cm3以下、又は
2×1017atoms/cm3以下とすることができる。この結果、トランジスタは、
しきい値電圧がプラスとなる電気特性(ノーマリーオフ特性ともいう。)を有する。
おいて、二次イオン質量分析法により得られるアルカリ金属又はアルカリ土類金属の濃度
を、1×1018atoms/cm3以下、又は2×1016atoms/cm3以下と
することができる。アルカリ金属及びアルカリ土類金属は、酸化物半導体と結合するとキ
ャリアを生成する場合があり、トランジスタのオフ電流が増大してしまうことがある。こ
のため、領域106dのアルカリ金属又はアルカリ土類金属の濃度を低減することが好ま
しい。この結果、トランジスタは、しきい値電圧がプラスとなる電気特性(ノーマリーオ
フ特性ともいう。)を有する。
窒素が含まれていると、キャリアである電子が生じ、キャリア密度が増加し、n型化とな
る場合がある。この結果、窒素が含まれている酸化物半導体膜を用いたトランジスタはノ
ーマリーオン特性となりやすい。従って、当該酸化物半導体膜であって、特に領域106
dにおいて、窒素はできる限り低減されていることが好ましい。例えば、二次イオン質量
分析法により得られる窒素濃度を、5×1018atoms/cm3以下にすることがで
きる。
、不純物元素を低減することで、酸化物半導体膜のキャリア密度を低減することができる
。このため、酸化物半導体膜106及び酸化物半導体膜206であって、特に領域106
dにおいては、キャリア密度を1×1017個/cm3以下、又は1×1015個/cm
3以下、又は1×1013個/cm3以下、又は1×1011個/cm3以下とすること
ができる。
密度の低い酸化物半導体膜を用いることで、さらに優れた電気特性を有するトランジスタ
を作製することができる。ここでは、不純物濃度が低く、欠陥準位密度の低い(酸素欠損
の少ない)ことを高純度真性又は実質的に高純度真性とよぶ。高純度真性又は実質的に高
純度真性である酸化物半導体を用いたトランジスタは、キャリア発生源が少ないため、キ
ャリア密度を低くすることができる場合がある。従って、当該酸化物半導体膜にチャネル
領域が形成されるトランジスタは、しきい値電圧がプラスとなる電気特性(ノーマリーオ
フ特性ともいう。)になりやすい。また、高純度真性又は実質的に高純度真性である酸化
物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。また
、高純度真性又は実質的に高純度真性である酸化物半導体膜を用いたトランジスタは、オ
フ電流が著しく小さく、ソース電極とドレイン電極間の電圧(ドレイン電圧)が1Vから
10Vの範囲において、オフ電流が、半導体パラメータアナライザの測定限界以下、すな
わち1×10−13A以下という特性を得ることができる。従って、当該酸化物半導体膜
にチャネル領域が形成されるトランジスタは、電気特性の変動が小さく、信頼性の高いト
ランジスタとなる場合がある。
い。非単結晶構造は、例えば、後述するCAAC−OS(C Axis Aligned
Crystalline Oxide Semiconductor)、多結晶構造、
後述する微結晶構造、又は非晶質構造を含む。非単結晶構造において、非晶質構造は最も
欠陥準位密度が高く、CAAC−OSは最も欠陥準位密度が低い。
構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域の二種以上を
有する混合膜であってもよい。混合膜は、例えば、非晶質構造の領域、微結晶構造の領域
、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域のいずれか二種以上の領
域を有する単層構造の場合がある。また、混合膜は、例えば、非晶質構造の領域、微結晶
構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域のいずれか二
種以上が積層された構造の場合がある。
域106dとの結晶性が異なる場合がある。また、酸化物半導体膜106及び酸化物半導
体膜206において、領域106cと、領域106dとの結晶性が異なる場合がある。こ
れは、領域106b又は領域106cに不純物元素が添加された際に、領域106b又は
領域106cにダメージが入ってしまい、結晶性が低下するためである。
きる。なお、酸化物半導体膜106及び酸化物半導体膜206との界面特性を向上させる
ため、絶縁膜108において少なくとも酸化物半導体膜106及び酸化物半導体膜206
と接する領域は酸化物絶縁膜を用いて形成することが好ましい。絶縁膜108として、例
えば酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化
アルミニウム膜、酸化ハフニウム膜、酸化ガリウム膜又はGa−Zn酸化物膜などを用い
ればよく、単層又は積層で設けることができる。
けることで、酸化物半導体膜106及び酸化物半導体膜206からの酸素の外部への拡散
と、外部から酸化物半導体膜106及び酸化物半導体膜206への水素、水等の侵入を防
ぐことができる。酸素、水素、水等のブロッキング効果を有する絶縁膜としては、酸化ア
ルミニウム膜、酸化窒化アルミニウム膜、酸化ガリウム膜、酸化窒化ガリウム膜、酸化イ
ットリウム膜、酸化窒化イットリウム膜、酸化ハフニウム膜、酸化窒化ハフニウム膜等が
ある。
たハフニウムシリケート(HfSixOyNz)、窒素が添加されたハフニウムアルミネ
ート(HfAlxOyNz)、酸化ハフニウム、酸化イットリウムなどのhigh−k材
料を用いることでトランジスタのゲートリークを低減できる。
加熱処理により絶縁膜108に含まれる酸素を、酸化物半導体膜106及び酸化物半導体
膜206に移動させることが可能である。
欠陥の少ない酸化窒化シリコン膜は、加熱処理後において、100K以下のESRで測定
して得られたスペクトルにおいてg値が2.037以上2.039以下の第1のシグナル
、g値が2.001以上2.003以下の第2のシグナル、及びg値が1.964以上1
.966以下の第3のシグナルが観測される。なお、第1のシグナル及び第2のシグナル
のスプリット幅、並びに第2のシグナル及び第3のシグナルのスプリット幅は、Xバンド
のESR測定において約5mTである。また、g値が2.037以上2.039以下の第
1のシグナル、g値が2.001以上2.003以下の第2のシグナル、及びg値が1.
964以上1.966以下である第3のシグナルのスピンの密度の合計が、1×1018
spins/cm3未満であり、代表的には1×1017spins/cm3以上1×1
018spins/cm3未満である。
の第1シグナル、g値が2.001以上2.003以下の第2のシグナル、及びg値が1
.964以上1.966以下の第3のシグナルは、窒素酸化物(NOx、xは0以上2以
下、又は1以上2以下)起因のシグナルに相当する。窒素酸化物の代表例としては、一酸
化窒素、二酸化窒素等がある。即ち、g値が2.037以上2.039以下の第1のシグ
ナル、g値が2.001以上2.003以下の第2のシグナル、及びg値が1.964以
上1.966以下である第3のシグナルのスピンの密度の合計が少ないほど、酸化窒化シ
リコン膜に含まれる窒素酸化物の含有量が少ないといえる。
度が、6×1020atoms/cm3以下である。絶縁膜108として欠陥の少ない酸
化窒化シリコン膜を用いることで、窒素酸化物が生成されにくくなり、酸化物半導体膜1
06及び酸化物半導体膜206及び絶縁膜108の界面におけるキャリアのトラップを低
減することが可能である。また、半導体装置に含まれるトランジスタのしきい値電圧の変
動を低減することが可能であり、トランジスタの電気特性の変動を低減することができる
。
又は10nm以上250nm以下とすることができる。
び導電膜214は同時に形成されるため、同じ材料(例えば金属元素)及び同じ積層構造
を有する。導電膜110、導電膜112及び導電膜114、並びに導電膜210、導電膜
212及び導電膜214は、アルミニウム、クロム、銅、タンタル、チタン、モリブデン
、ニッケル、鉄、コバルト、タングステンから選ばれた金属元素、又は上述した金属元素
を成分とする合金か、上述した金属元素を組み合わせた合金等を用いて形成することがで
きる。また、マンガン、ジルコニウムのいずれか一又は複数から選択された金属元素を用
いてもよい。また、導電膜110、導電膜112及び導電膜114、並びに導電膜210
、導電膜212及び導電膜214は、単層構造でも、二層以上の積層構造としてもよい。
例えば、シリコンを含むアルミニウム膜の単層構造、マンガンを含む銅膜の単層構造、ア
ルミニウム膜上にチタン膜を積層する二層構造、窒化チタン膜上にチタン膜を積層する二
層構造、窒化チタン膜上にタングステン膜を積層する二層構造、窒化タンタル膜又は窒化
タングステン膜上にタングステン膜を積層する二層構造、マンガンを含む銅膜上に銅膜を
積層する二層構造、チタン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその
上にチタン膜を形成する三層構造、マンガンを含む銅膜上に銅膜を積層し、さらにその上
にマンガンを含む銅膜を形成する三層構造等がある。また、アルミニウムに、チタン、タ
ンタル、タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた元素
の一又は複数組み合わせた合金膜、もしくは窒化膜を用いてもよい。
12及び導電膜214は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化
物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物
、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化シリコンを含むイ
ンジウム錫酸化物等の透光性を有する導電性材料を適用して形成することもできる。また
、上記透光性を有する導電性材料と、上記金属元素の積層構造とすることもできる。
び導電膜214の厚さは、30nm以上500nm以下、又は100nm以上400nm
以下とすることができる。
きる。なお、酸化物半導体膜106及び酸化物半導体膜206との界面特性を向上させる
ため、絶縁膜116において少なくとも酸化物半導体膜106及び酸化物半導体膜206
と接する領域は酸化物絶縁膜で形成することが好ましい。また、絶縁膜116として加熱
により酸素を放出する酸化物絶縁膜を用いることで、加熱処理により絶縁膜116に含ま
れる酸素を、酸化物半導体膜106及び酸化物半導体膜206に移動させることが可能で
ある。
膜、窒化シリコン膜、酸化アルミニウム膜、酸化ハフニウム膜、酸化ガリウム膜又はGa
−Zn酸化物膜などを用いればよく、単層又は積層で設けることができる。
しい。絶縁膜118として、例えば窒化シリコン膜、窒化酸化シリコン膜、酸化アルミニ
ウム膜などを用いればよく、単層又は積層で設けることができる。
100nm以上400nm以下とすることができる。
次に、半導体装置の別の構成について、図3を用いて説明する。ここでは、画素部に設
けられたトランジスタ150の変形例としてトランジスタ151を用いて説明するが、駆
動回路部のトランジスタ154にトランジスタ151の絶縁膜104の構成、又は導電膜
110、導電膜112及び導電膜114の構造を適宜適用することができる。
面図を示す。図3(A)はトランジスタ151の上面図であり、図3(B)は、図3(A
)の一点鎖線Y3−Y4間の断面図であり、図3(C)は、図3(A)の一点鎖線X3−
X4間の断面図である。
それぞれ3層構造であることを特徴とする。また、絶縁膜104が、窒化物絶縁膜104
a及び酸化物絶縁膜104bの積層構造であることを特徴とする。その他の構成は、トラ
ンジスタ150と同様であり、同様の効果を奏する。
しており、且つ導電膜110a及び導電膜110cは導電膜110bの表面を覆っている
。すなわち、導電膜110a及び導電膜110cは、導電膜110bの保護膜として機能
する。
膜112cとが順に積層しており、且つ導電膜112a及び導電膜112cは導電膜11
2bの表面を覆っている。
膜114cとが順に積層しており、且つ導電膜114a及び導電膜114cは導電膜11
4bの表面を覆っている。
2b、導電膜114bに含まれる金属元素が酸化物半導体膜106に拡散するのを防ぐ材
料を用いて形成する。導電膜110a、導電膜112a及び導電膜114aとして、チタ
ン、タンタル、モリブデン、タングステンの単体若しくは合金、又は窒化チタン、窒化タ
ンタル、窒化モリブデン、窒化タンタル等を用いて形成することができる。又は、導電膜
110a、導電膜112a及び導電膜114aは、Cu−X合金(Xは、Mn、Ni、C
r、Fe、Co、Mo、Ta、又はTi)等を用いて形成することができる。
は、加熱処理により酸化物半導体膜と接する領域、又は絶縁膜と接する領域に被覆膜が形
成される場合がある。被覆膜は、Xを含む化合物で形成される。Xを含む化合物の一例と
しては、Xの酸化物、In−X酸化物、Ga−X酸化物、In−Ga−X酸化物、In−
Ga−Zn−X酸化物等がある。導電膜110a、導電膜112a及び導電膜114aの
表面に被覆膜が形成されることで、被覆膜がブロッキング膜となり、Cu−X合金膜中の
Cuが、酸化物半導体膜に入り込むことを抑制することができる。
018atoms/cm3以下とすることで、ゲート絶縁膜として機能する絶縁膜108
と酸化物半導体膜106の界面における電子トラップ準位密度を低減することが可能であ
る。この結果、サブスレッショルドスイング値(S値)の優れたトランジスタを作製する
ことが可能である。
。導電膜110b、導電膜112b及び導電膜114bとして、銅、アルミニウム、金、
銀等の単体若しくは合金、又はこれを主成分とする化合物等を用いて形成することができ
る。
2b、導電膜114bに含まれる金属元素が不動態化された膜を用いて形成することで、
導電膜110b、導電膜112b、導電膜114bに含まれる金属元素が、絶縁膜116
の形成工程において酸化物半導体膜106に移動することを防ぐことができる。導電膜1
10c、導電膜112c及び導電膜114cとして、金属珪素化物、金属珪素化窒化物等
を用いて形成することが可能であり、代表的には、CuSix(x>0)、CuSixN
y(x>0、y>0)等がある。
する。なお、導電膜110b、導電膜112b及び導電膜114bは、銅を用いて形成さ
れる。また、導電膜110c、導電膜112c及び導電膜114cは、CuSixNy(
x>0、y>0)を用いて形成される。
素等の還元性雰囲気で発生させたプラズマに曝し、導電膜110b、導電膜112b及び
導電膜114bの表面の酸化物を還元する。
び導電膜114bをシランに曝す。この結果、導電膜110b、導電膜112b及び導電
膜114bに含まれる銅が触媒として作用し、シランがSiとH2に分解されるとともに
、導電膜110b、導電膜112b及び導電膜114bの表面にCuSix(x>0)が
形成される。
の窒素を含む雰囲気で発生させたプラズマに曝すことで、導電膜110b、導電膜112
b及び導電膜114bの表面に形成されたCuSix(x>0)がプラズマに含まれる窒
素と反応し、導電膜110c、導電膜112c及び導電膜114cとして、CuSixN
y(x>0、y>0)が形成される。
モニア又は窒素等の窒素を含む雰囲気で発生させたプラズマに曝した後、200℃以上4
00℃以下で加熱しながら、導電膜110b、導電膜112b及び導電膜114bをシラ
ンに曝すことで、導電膜110c、導電膜112c及び導電膜114cとして、CuSi
xNy(x>0、y>0)を形成してもよい。
いて説明する。
ミニウム膜、窒化酸化アルミニウム膜等を用いて形成することができる。また、酸化物絶
縁膜104bとして、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜等を用
いて形成することができる。基板102側に窒化物絶縁膜104aを設けることで、外部
からの水素、水等が酸化物半導体膜106に拡散することを防ぐことが可能である。
次に、半導体装置の別の構成について図4、図5及び図11を用いて説明する。ここで
は、画素部に設けられたトランジスタ150の変形例としてトランジスタ152及びトラ
ンジスタ153を用いて説明するが、駆動回路部のトランジスタ154に、トランジスタ
152に含まれる酸化物半導体膜106の構成、又はトランジスタ153に含まれる酸化
物半導体膜106の構成を適宜適用することができる。
面図を示す。図4(A)はトランジスタ152の上面図であり、図4(B)は、図4(A
)の一点鎖線Y3−Y4間の断面図であり、図4(C)は、図4(A)の一点鎖線X3−
X4間の断面図である。
とする。具体的には、酸化物半導体膜106は、絶縁膜104と接する酸化物半導体膜1
07aと、酸化物半導体膜107aに接する酸化物半導体膜107bと、酸化物半導体膜
107b、導電膜110、導電膜112、絶縁膜108及び絶縁膜116と接する酸化物
半導体膜107cとを有する。その他の構成は、トランジスタ150と同様であり、同様
の効果を奏する。
表的には、In−Ga酸化物膜、In−Zn酸化物膜、In−M−Zn酸化物膜(Mは、
Mg、Al、Ti、Ga、Y、Zr、La、Ce、Nd、又はHf)等の金属酸化物膜で
形成される。
a酸化物膜、In−Zn酸化物膜、In−Mg酸化物膜、Zn−Mg酸化物膜、In−M
−Zn酸化物膜(Mは、Mg、Al、Ti、Ga、Y、Zr、La、Ce、Nd、又はH
f)であり、且つ酸化物半導体膜107bよりも伝導帯下端のエネルギーが真空準位に近
く、代表的には、酸化物半導体膜107a及び酸化物半導体膜107cの伝導帯下端のエ
ネルギーと、酸化物半導体膜107bの伝導帯下端のエネルギーとの差が、0.05eV
以上、0.07eV以上、0.1eV以上、又は0.2eV以上、且つ2eV以下、1e
V以下、0.5eV以下、又は0.4eV以下である。なお、真空準位と伝導帯下端のエ
ネルギー差を電子親和力ともいう。
Y、Zr、La、Ce、Nd、又はHf)の場合、酸化物半導体膜107bを成膜するた
めに用いるターゲットにおいて、金属元素の原子数比をIn:M:Zn=x1:y1:z
1とすると、x1/y1は、1/3以上6以下、さらには1以上6以下であって、z1/
y1は、1/3以上6以下、さらには1以上6以下であることが好ましい。なお、z1/
y1を1以上6以下とすることで、酸化物半導体膜107bとしてCAAC−OS膜が形
成されやすくなる。ターゲットの金属元素の原子数比の代表例としては、In:M:Zn
=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=2:1:1.5、I
n:M:Zn=2:1:2.3、In:M:Zn=2:1:3、In:M:Zn=3:1
:2等がある。
、Mg、Al、Ti、Ga、Y、Zr、La、Ce、Nd、又はHf)の場合、酸化物半
導体膜107a及び酸化物半導体膜107cを成膜するために用いるターゲットにおいて
、金属元素の原子数比をIn:M:Zn=x2:y2:z2とすると、x2/y2<x1
/y1であって、z2/y2は、1/3以上6以下、さらには1以上6以下であることが
好ましい。なお、z2/y2を1以上6以下とすることで、酸化物半導体膜107a及び
酸化物半導体膜107cとしてCAAC−OS膜が形成されやすくなる。ターゲットの金
属元素の原子数比の代表例としては、In:M:Zn=1:3:2、In:M:Zn=1
:3:4、In:M:Zn=1:3:6、In:M:Zn=1:3:8、In:M:Zn
=1:4:3、In:M:Zn=1:4:4、In:M:Zn=1:4:5、In:M:
Zn=1:4:6、In:M:Zn=1:6:3、In:M:Zn=1:6:4、In:
M:Zn=1:6:5、In:M:Zn=1:6:6、In:M:Zn=1:6:7、I
n:M:Zn=1:6:8、In:M:Zn=1:6:9等がある。
合、例えば、In−Ga金属酸化物ターゲット(In:Ga=7:93)を用いて、スパ
ッタリング法により形成することができる。また、酸化物半導体膜107a及び酸化物半
導体膜107cとして、DC放電を用いたスパッタリング法でIn−Ga酸化物膜を成膜
するためには、In:Ga=x:y[原子数比]としたときに、y/(x+y)を0.9
6以下、好ましくは0.95以下、例えば0.93とするとよい。
の原子数比はそれぞれ、誤差として上記の原子数比のプラスマイナス40%の変動を含む
。
ものを用いればよい。
ば、酸化物半導体膜107a及び酸化物半導体膜107cとしてIn:Ga:Zn=1:
3:2、1:3:4、1:4:5、1:4:6、1:4:7、又は1:4:8の原子数比
のIn−Ga−Zn酸化物を用いてもよい。
例えば、酸化物半導体膜107aとしてIn:Ga:Zn=1:3:2の原子数比のIn
−Ga−Zn酸化物を用い、酸化物半導体膜107cとしてIn:Ga:Zn=1:3:
4又は1:4:5の原子数比のIn−Ga−Zn酸化物を用いてもよい。
以下、又は3nm以上50nm以下とする。酸化物半導体膜107bの厚さは、3nm以
上200nm以下、又は3nm以上100nm以下、又は3nm以上50nm以下とする
。なお、酸化物半導体膜107a及び酸化物半導体膜107cはそれぞれ酸化物半導体膜
107bより厚さを薄くすることで、トランジスタのしきい値電圧の変動量を低減するこ
とが可能である。
れの界面は、STEM(Scanning Transmission Electro
n Microscopy)を用いて観察することができる場合がある。
施の形態1に示す酸化物半導体膜106の結晶構造を適宜用いることができる。
酸化物半導体膜107cをそれぞれ酸化物半導体膜107bの上面及び下面に接して設け
ることで、酸化物半導体膜107bにおける酸素欠損を低減することができる。また、酸
化物半導体膜107bは、酸化物半導体膜107bを構成する金属元素の一以上を有する
酸化物半導体膜107a及び酸化物半導体膜107cと接するため、酸化物半導体膜10
7aと酸化物半導体膜107bとの界面、酸化物半導体膜107bと酸化物半導体膜10
7cとの界面における界面準位密度が極めて低い。このため、酸化物半導体膜107bに
含まれる酸素欠損を低減することが可能である。
を含む絶縁膜)と接する場合、界面準位が形成され、該界面準位はチャネルを形成するこ
とがある。このような場合、しきい値電圧の異なるトランジスタが出現し、トランジスタ
の見かけ上のしきい値電圧が変動することがある。しかしながら、酸化物半導体膜107
bを構成する金属元素を一種以上含む酸化物半導体膜107aが酸化物半導体膜107b
と接するため、酸化物半導体膜107aと酸化物半導体膜107bの界面に界面準位を形
成しにくくなる。よって酸化物半導体膜107aを設けることにより、トランジスタのし
きい値電圧などの電気特性のばらつきを低減することができる。
該界面で界面散乱が起こり、トランジスタの電界効果移動度が低くなる。しかしながら、
酸化物半導体膜107bを構成する金属元素を一種以上含む酸化物半導体膜107cが酸
化物半導体膜107bに接して設けられるため、酸化物半導体膜107bと酸化物半導体
膜107cとの界面ではキャリアの散乱が起こりにくく、トランジスタの電界効果移動度
を高くすることができる。
膜108の構成元素、又は導電膜110及び導電膜112の構成元素が、酸化物半導体膜
107bへ混入して、酸化物半導体膜107に不純物による準位が形成されることを抑制
するためのバリア膜としても機能する。
絶縁膜の場合、絶縁膜104及び絶縁膜108中のシリコン、又は絶縁膜104及び絶縁
膜108中に混入する炭素が、酸化物半導体膜107a及び酸化物半導体膜107cの中
へ界面から数nm程度まで混入することがある。シリコン、炭素等の不純物が酸化物半導
体膜107b中に入ると不純物準位を形成し、不純物準位がドナーとなり電子を生成する
ことでn型化することがある。
よりも厚ければ、混入したシリコン、炭素等の不純物が酸化物半導体膜107bにまで到
達しないため、不純物準位の影響は低減される。
ばらつきが低減されたトランジスタである。
面図を示す。図5(A)はトランジスタ153の上面図であり、図5(B)は、図5(A
)の一点鎖線Y3−Y4間の断面図であり、図5(C)は、図5(A)の一点鎖線X3−
X4間の断面図である。
する酸化物半導体膜107bと、酸化物半導体膜107b及び絶縁膜108と接する酸化
物半導体膜107cの積層構造であってもよい。その他の構成は、トランジスタ150と
同様であり、同様の効果を奏する。
ここで、図4及び図5に示すトランジスタのバンド構造について説明する。なお、図1
1(A)は、図4に示すトランジスタ153のバンド構造であり、理解を容易にするため
、絶縁膜104、酸化物半導体膜107a、酸化物半導体膜107b、酸化物半導体膜1
07c及び絶縁膜108の伝導帯下端のエネルギー(Ec)を示す。また、図11(B)
は、図5に示すトランジスタ154のバンド構造であり、理解を容易にするため、絶縁膜
104、酸化物半導体膜107b、酸化物半導体膜107c及び絶縁膜108の伝導帯下
端のエネルギー(Ec)を示す。
化物半導体膜107cにおいて、伝導帯下端のエネルギーが連続的に変化する。これは、
酸化物半導体膜107a、酸化物半導体膜107b及び酸化物半導体膜107cを構成す
る元素が共通することにより、酸素が相互に拡散しやすい点からも理解される。したがっ
て、酸化物半導体膜107a、酸化物半導体膜107b及び酸化物半導体膜107cは組
成が異なる膜の積層体ではあるが、物性的に連続であるということもできる。
接合(ここでは特に伝導帯下端のエネルギーが各層の間で連続的に変化するU字型の井戸
(U Shape Well)構造)が形成されるように作製する。すなわち、各層の界
面に酸化物半導体にとってトラップ中心や再結合中心のような欠陥準位、あるいはキャリ
アの流れを阻害する不純物が存在しないように積層構造を形成する。仮に、積層された酸
化物半導体膜の層間に不純物が混在していると、エネルギーバンドの連続性が失われ、界
面でキャリアがトラップあるいは再結合により消滅してしまう。
同様である場合について示したが、それぞれが異なっていてもよい。
52において、チャネルが酸化物半導体膜107bに形成されることがわかる。なお、酸
化物半導体膜107a、酸化物半導体膜107b及び酸化物半導体膜107cは伝導帯下
端のエネルギーが連続的に変化するため、U字型の井戸構造のチャネルを埋め込みチャネ
ルということもできる。
cにおいて、伝導帯下端のエネルギーが連続的に変化してもよい。
53において、チャネルが酸化物半導体膜107bに形成されることがわかる。
以上含んでいる酸化物半導体膜107a及び酸化物半導体膜107cを有しているため、
酸化物半導体膜107aと酸化物半導体膜107bとの界面、及び酸化物半導体膜107
cと酸化物半導体膜107bとの界面に界面準位を形成しにくくなる。よって、酸化物半
導体膜107a及び酸化物半導体膜107cを設けることにより、トランジスタのしきい
値電圧などの電気特性のばらつきや変動を低減することができる。
以上含んでいる酸化物半導体膜107cを有しているため、酸化物半導体膜107cと酸
化物半導体膜107bとの界面に界面準位を形成しにくくなる。よって、酸化物半導体膜
107cを設けることにより、トランジスタのしきい値電圧などの電気特性のばらつきや
変動を低減することができる。
次に、図1に示すトランジスタ150及びトランジスタ154の作製方法について、図
7乃至図9を用いて説明する。
導電膜等)は、スパッタリング法、化学気相堆積(CVD)法、真空蒸着法、パルスレー
ザー堆積(PLD)法を用いて形成することができる。あるいは、塗布法や印刷法で形成
することができる。成膜方法としては、スパッタリング法、プラズマ化学気相堆積(PE
CVD)法が代表的であるが、熱CVD法でもよい。熱CVD法の例として、MOCVD
(有機金属化学堆積)法やALD(原子層成膜)法を使ってもよい。
ンバー内に送り、基板近傍又は基板上で反応させて基板上に堆積させることで成膜を行う
。このように、熱CVD法は、プラズマを発生させない成膜方法であるため、プラズマダ
メージにより欠陥が生成されることが無いという利点を有する。
次にチャンバーに導入され、そのガス導入の順序を繰り返すことで成膜を行う。例えば、
それぞれのスイッチングバルブ(高速バルブともよぶ。)を切り替えて2種類以上の原料
ガスを順番にチャンバーに供給し、複数種の原料ガスが混ざらないように第1の原料ガス
と同時又はその後に不活性ガス(アルゴン、或いは窒素など)などを導入し、第2の原料
ガスを導入する。なお、同時に不活性ガスを導入する場合には、不活性ガスはキャリアガ
スとなり、また、第2の原料ガスの導入時にも同時に不活性ガスを導入してもよい。また
、不活性ガスを導入する代わりに真空排気によって第1の原料ガスを排出した後、第2の
原料ガスを導入してもよい。第1の原料ガスが基板の表面に吸着して第1の層を成膜し、
後から導入される第2の原料ガスと反応して、第2の層が第1の層上に積層されて薄膜が
形成される。
性に優れた薄膜を形成することができる。薄膜の厚さは、ガス導入順序を繰り返す回数に
よって調節することができるため、精密な膜厚調節が可能であり、微細なトランジスタを
作製する場合に適している。
に絶縁膜104を形成する。
熱CVD法等を用いて導電膜を形成し、該導電膜上にリソグラフィ工程によりマスクを形
成した後エッチング処理を行い、形成する。
ことができる。この場合には、WF6ガスとB2H6ガスを順次繰り返し導入して初期タ
ングステン膜を形成し、その後、WF6ガスとH2ガスを同時に導入してタングステン膜
を形成する。なお、B2H6ガスに代えてSiH4ガスを用いてもよい。
ット法等で形成してもよい。
)法、印刷法、塗布法等を適宜用いて形成することができる。また、基板102上に絶縁
膜を形成した後、該絶縁膜に酸素を添加して、絶縁膜104を形成することができる。絶
縁膜に添加する酸素としては、酸素ラジカル、酸素原子、酸素原子イオン、酸素分子イオ
ン等がある。また、添加方法としては、イオンドーピング法、イオン注入法、プラズマ処
理法等がある。また、絶縁膜上に酸素の脱離を抑制する膜を形成した後、該膜を介して絶
縁膜に酸素を添加してもよい。
280℃以下、又は200℃以上240℃以下に保持し、処理室に原料ガスを導入して処
理室内における圧力を100Pa以上250Pa以下、又は100Pa以上200Pa以
下とし、処理室内に設けられる電極に0.17W/cm2以上0.5W/cm2以下、又
は0.25W/cm2以上0.35W/cm2以下の高周波電力を供給する条件により、
加熱処理により酸素を放出することが可能な酸化シリコン膜又は酸化窒化シリコン膜を絶
縁膜104として形成することができる。
素を添加する方法を図7(A)及び図7(B)を用いて説明する。
形成する。次に、膜119を介して絶縁膜103に酸素121を添加する。
リブデン、ニッケル、鉄、コバルト、タングステンから選ばれた金属元素、上述した金属
元素を成分とする合金、上述した金属元素を組み合わせた合金、上述した金属元素を有す
る金属窒化物、上述した金属元素を有する金属酸化物、上述した金属元素を有する金属窒
化酸化物等の導電性を有する材料を用いて形成する。
0nm以下とすることができる。
グ法、イオン注入法、プラズマ処理法等がある。絶縁膜103上に膜119を設けて酸素
を添加することで、膜119が絶縁膜103から酸素が脱離することを抑制する保護膜と
して機能する。このため、絶縁膜103により多くの酸素を添加することができる。
素プラズマを発生させることで、絶縁膜103への酸素導入量を増加させることができる
。
が添加された絶縁膜104を形成することができる。なお、成膜後に十分に酸素が添加さ
れた絶縁膜104を形成できる場合においては、図7(A)、(B)に示す酸素を添加す
る処理を行わなくてもよい。
導体膜206を形成する。次に、絶縁膜104、酸化物半導体膜106及び酸化物半導体
膜206上に絶縁膜108を形成する。
絶縁膜104上にスパッタリング法、塗布法、パルスレーザー蒸着法、レーザーアブレー
ション法、熱CVD法等により酸化物半導体膜を形成する。次に、加熱処理を行い、絶縁
膜104に含まれる酸素を酸化物半導体膜に移動させる。次に、酸化物半導体膜上にリソ
グラフィ工程によりマスクを形成した後、該マスクを用いて酸化物半導体膜の一部をエッ
チングすることで、図7(D)に示すように、酸化物半導体膜106及び酸化物半導体膜
206を形成することができる。この後、マスクを除去する。なお、酸化物半導体膜の一
部をエッチングして酸化物半導体膜106を形成した後、加熱処理を行ってもよい。
素子分離された酸化物半導体膜106及び酸化物半導体膜206を直接形成することがで
きる。
装置は、RF電源装置、AC電源装置、DC電源装置等を適宜用いることができる。なお
、AC電源装置又はDC電源装置を用いることで、CAAC−OS膜を形成することが可
能である。また、RF電源装置を用いたスパッタリング法で酸化物半導体膜を形成するよ
りも、AC電源装置又はDC電源装置を用いたスパッタリング法で酸化物半導体膜を形成
した方が、膜厚の分布、膜組成の分布、又は結晶性の分布が均一となるため好ましい。
ガスを適宜用いる。なお、希ガス及び酸素の混合ガスの場合、希ガスに対して酸素のガス
比を高めることが好ましい。
。
温度を150℃以上750℃以下、又は150℃以上450℃以下、又は200℃以上3
50℃以下として、酸化物半導体膜を成膜することで、CAAC−OS膜を形成すること
ができる。また、基板温度を25℃以上150℃未満とすることで、微結晶酸化物半導体
膜を形成することができる。
しい。
きる。例えば、成膜室内に存在する不純物濃度(水素、水、二酸化炭素及び窒素など)を
低減すればよい。また、成膜ガス中の不純物濃度を低減すればよい。具体的には、露点が
−80℃以下、又は−100℃以下である成膜ガスを用いる。
ジを軽減すると好ましい。成膜ガス中の酸素割合は、30体積%以上、又は100体積%
とする。
脱水化をしてもよい。加熱処理の温度は、代表的には、150℃以上基板歪み点未満、又
は250℃以上450℃以下、又は300℃以上450℃以下とする。
素を含む不活性ガス雰囲気で行う。又は、不活性ガス雰囲気で加熱した後、酸素雰囲気で
加熱してもよい。なお、上記不活性雰囲気及び酸素雰囲気に水素、水などが含まれないこ
とが好ましい。処理時間は3分以上24時間以下とする。
で、短時間に限り、基板の歪み点以上の温度で熱処理を行うことができる。そのため加熱
処理時間を短縮することができる。
、加熱処理を行うことで、酸化物半導体膜において、二次イオン質量分析法により得られ
る水素濃度を5×1019atoms/cm3以下、又は1×1019atoms/cm
3以下、5×1018atoms/cm3以下、又は1×1018atoms/cm3以
下、又は5×1017atoms/cm3以下、又は1×1016atoms/cm3以
下とすることができる。
膜する場合には、In(CH3)3ガスとO3ガスを順次繰り返し導入してIn−O層を
形成し、その後、Ga(CH3)3ガスとO3ガスを同時に導入してGa−O層を形成し
、更にその後Zn(CH3)2とO3ガスを同時に導入してZn−O層を形成する。なお
、これらの層の順番はこの例に限らない。また、これらのガスを混ぜてIn−Ga−O層
やIn−Zn−O層、Ga−Zn−O層などの混合化合物層を形成してもよい。なお、O
3ガスに変えてAr等の不活性ガスでバブリングしたH2Oガスを用いてもよいが、Hを
含まないO3ガスを用いる方が好ましい。また、In(CH3)3ガスにかえて、In(
C2H5)3ガスを用いてもよい。また、Ga(CH3)3ガスにかえて、Ga(C2H
5)3ガスを用いてもよい。また、Zn(CH3)2ガスを用いてもよい。
熱処理を行い、絶縁膜104に含まれる酸素を酸化物半導体膜に移動させる。次に、当該
酸化物半導体膜上にマスクを形成し、酸化物半導体膜の一部を選択的にエッチングするこ
とで、酸化物半導体膜106及び酸化物半導体膜206を形成する。
行うことで、CAAC化率が、60%以上100%未満、又は80%以上100%未満、
又は90%以上100%未満、又は95%以上98%以下である酸化物半導体膜を得るこ
とができる。なお、CAAC化率とは、透過電子回折測定装置を用いた透過電子回折パタ
ーンの測定により、一定の範囲においてCAAC−OS膜の回折パターンが観測される領
域の割合をいう。また、水素、水等の含有量が低減された酸化物半導体膜を得ることが可
能である。すなわち、不純物濃度が低く、欠陥準位密度の低い酸化物半導体膜を形成する
ことができる。
入すると、トランジスタの電気特性の不良が生じてしまう。本実施の形態では、導電膜1
09を形成する前に絶縁膜108を形成することで、酸化物半導体膜106及び酸化物半
導体膜206のチャネルが導電膜109と接しないため、トランジスタの電気特性、代表
的にはしきい値電圧の変動量を抑えることができる。
ることができる。この場合、原料ガスとしては、シリコンを含む堆積性気体及び酸化性気
体を用いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシ
ラン、トリシラン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸化
二窒素、二酸化窒素等がある。
倍未満、又は40以上80以下とし、処理室内の圧力を100Pa未満、又は50Pa以
下とするCVD法を用いることで、欠陥量の少ない酸化窒化シリコン膜を形成することが
できる。
た基板を280℃以上400℃以下に保持し、処理室に原料ガスを導入して処理室内にお
ける圧力を20Pa以上250Pa以下、さらに好ましくは100Pa以上250Pa以
下とし、処理室内に設けられる電極に高周波電力を供給する条件により、絶縁膜108と
して、緻密である酸化シリコン膜又は酸化窒化シリコン膜を形成することができる。
できる。マイクロ波とは300MHzから300GHzの周波数域を指す。マイクロ波に
おいて、電子温度が低く、電子エネルギーが小さい。また、供給された電力において、電
子の加速に用いられる割合が少なく、より多くの分子の解離及び電離に用いられることが
可能であり、密度の高いプラズマ(高密度プラズマ)を励起することができる。このため
、被成膜面及び堆積物へのプラズマダメージが少なく、欠陥の少ない絶縁膜108を形成
することができる。
る。有機シランガスとしては、珪酸エチル(TEOS:化学式Si(OC2H5)4)、
テトラメチルシラン(TMS:化学式Si(CH3)4)、テトラメチルシクロテトラシ
ロキサン(TMCTS)、オクタメチルシクロテトラシロキサン(OMCTS)、ヘキサ
メチルジシラザン(HMDS)、トリエトキシシラン(SiH(OC2H5)3)、トリ
スジメチルアミノシラン(SiH(N(CH3)2)3)などのシリコン含有化合物を用
いることができる。有機シランガスを用いたCVD法を用いることで、被覆性の高い絶縁
膜108を形成することができる。
Organic Chemical Vapor Deposition)法を用いて形
成することができる。
ハフニウム膜を形成する場合には、溶媒とハフニウム前駆体化合物を含む液体(ハフニウ
ムアルコキシド溶液、代表的にはテトラキスジメチルアミドハフニウム(TDMAH))
を気化させた原料ガスと、酸化剤としてオゾン(O3)の2種類のガスを用いる。なお、
テトラキスジメチルアミドハフニウムの化学式はHf[N(CH3)2]4である。また
、他の材料液としては、テトラキス(エチルメチルアミド)ハフニウムなどがある。
アルミニウム膜を形成する場合には、溶媒とアルミニウム前駆体化合物を含む液体(トリ
メチルアルミニウムTMAなど)を気化させた原料ガスと、酸化剤としてH2Oの2種類
のガスを用いる。なお、トリメチルアルミニウムの化学式はAl(CH3)3である。ま
た、他の材料液としては、トリス(ジメチルアミド)アルミニウム、トリイソブチルアル
ミニウム、アルミニウムトリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオ
ナート)などがある。なお、ALD法で形成することで、被覆性が高く、膜厚の薄い絶縁
膜108を形成することが可能である。
シリコン膜を形成する場合には、ヘキサクロロジシランを被成膜面に吸着させ、吸着物に
含まれる塩素を除去し、酸化性ガス(O2、一酸化二窒素)のラジカルを供給して吸着物
と反応させる。
る。
成した後、絶縁膜108の一部をエッチングして、酸化物半導体膜106の一部を露出す
る開口部140a及び開口部140b、並びに酸化物半導体膜206の一部を露出する開
口部220a及び開口部220bを形成する。
ング法を適宜用いることができる。
縁膜108上に導電膜109を形成する。
11を形成した後、エッチング溶液又は/及びエッチングガス123に導電膜109を曝
して、導電膜110、導電膜112及び導電膜114、並びに導電膜210、導電膜21
2及び導電膜214を形成する。
ング法を適宜用いることができる。なお、導電膜109をエッチングした後、絶縁膜10
8の側面の残留物を除去するための洗浄工程を行ってもよい。この結果、ゲート電極とし
て機能する導電膜114と酸化物半導体膜106の間、及びゲート電極として機能する導
電膜214と酸化物半導体膜206の間のリーク電流を低減することが可能である。
12及び導電膜214は、上記形成方法の代わりに、電解メッキ法、印刷法、インクジェ
ット法等で形成してもよい。
び酸化物半導体膜206に不純物元素117を添加する。この結果、酸化物半導体膜にお
いてマスク111に覆われていない領域に不純物元素が添加される。なお、不純物元素1
17の添加により、酸化物半導体膜106及び酸化物半導体膜206には酸素欠損が形成
される。
処理法等がある。プラズマ処理法の場合、添加する不純物元素を含むガス雰囲気にてプラ
ズマを発生させて、プラズマ処理を行うことによって、不純物元素を添加することができ
る。上記プラズマを発生させる装置としては、ドライエッチング装置やプラズマCVD装
置、高密度プラズマCVD装置等を用いることができる。
、AlH3、AlCl3、SiH4、Si2H6、F2、HF、H2及び希ガスの一以上
を用いることができる。又は、希ガスで希釈されたB2H6、PH3、N2、NH3、A
lH3、AlCl3、F2、HF及びH2の一以上を用いることができる。希ガスで希釈
されたB2H6、PH3、N2、NH3、AlH3、AlCl3、F2、HF及びH2の
一以上を用いて不純物元素117を酸化物半導体膜106及び酸化物半導体膜206に添
加することで、希ガスと、水素、ホウ素、炭素、窒素、フッ素、アルミニウム、シリコン
、リン及び塩素の一以上とを同時に酸化物半導体膜106及び酸化物半導体膜206に添
加することができる。
6、PH3、CH4、N2、NH3、AlH3、AlCl3、SiH4、Si2H6、F
2、HF及びH2の一以上を酸化物半導体膜106及び酸化物半導体膜206に添加して
もよい。
Si2H6、F2、HF及びH2の一以上を酸化物半導体膜106及び酸化物半導体膜2
06に添加した後、希ガスを酸化物半導体膜106及び酸化物半導体膜206に添加して
もよい。
ればよい。例えば、イオン注入法でアルゴンの添加を行う場合、加速電圧10kV、ドー
ズ量は1×1013ions/cm2以上1×1016ions/cm2以下とすればよ
く、例えば、1×1014ions/cm2とすればよい。また、イオン注入法でリンイ
オンの添加を行う場合、加速電圧30kV、ドーズ量は1×1013ions/cm2以
上5×1016ions/cm2以下とすればよく、例えば、1×1015ions/c
m2とすればよい。
不純物元素が添加された領域の概念図を図10に示す。なお、ここでは、代表例として、
トランジスタ150に含まれる酸化物半導体膜106近傍の拡大図を用いて説明する。
導体膜106及び絶縁膜108に形成される場合がある。なお、酸化物半導体膜106が
露出する領域の深さ方向において、添加領域の端部135は、絶縁膜104中に位置する
。なお、深さ方向とは、酸化物半導体膜106の膜厚方向と平行であって、且つ絶縁膜1
08から絶縁膜104へ向かって進む方向である。
06及び絶縁膜108に形成される場合がある。なお、酸化物半導体膜106が露出する
領域の深さ方向において、添加領域の端部136は、絶縁膜104及び酸化物半導体膜1
06の界面に位置する。
06及び絶縁膜108に形成される場合がある。なお、酸化物半導体膜106が露出する
領域の深さ方向において、添加領域の端部137は、酸化物半導体膜106中に位置する
。
とができる。具体的には、図2に示す領域106b及び領域106cを形成することがで
きる。なお、領域106cは、絶縁膜108を介して酸化物半導体膜106及び酸化物半
導体膜206に不純物元素が添加されるため、領域106bと比較して不純物元素の濃度
が低い。こののち、図9(B)に示すように、マスク111を取り除く。
06に不純物元素117を添加したが、マスク111を除去した後、導電膜110、導電
膜112及び導電膜114、並びに導電膜210、導電膜212及び導電膜214をマス
クとして酸化物半導体膜106及び酸化物半導体膜206に不純物元素117を添加して
もよい。
てもよい。加熱処理の温度は、代表的には、150℃以上基板歪み点未満、又は250℃
以上450℃以下、又は300℃以上450℃以下とする。
、導電膜112、導電膜114、酸化物半導体膜206、導電膜210、導電膜212及
び導電膜214上に絶縁膜116を形成し、絶縁膜116上に絶縁膜118を形成しても
よい。
いて形成することができる。
280℃以下、又は200℃以上240℃以下に保持し、処理室に原料ガスを導入して処
理室内における圧力を100Pa以上250Pa以下、又は100Pa以上200Pa以
下とし、処理室内に設けられる電極に0.17W/cm2以上0.5W/cm2以下、又
は0.25W/cm2以上0.35W/cm2以下の高周波電力を供給する条件により、
加熱処理により酸素を放出することが可能な酸化シリコン膜又は酸化窒化シリコン膜を絶
縁膜116として形成することができる。
酸化物半導体膜206、導電膜210、導電膜212及び導電膜214上にアルミニウム
膜若しくは酸化アルミニウム膜を形成した後、加熱処理を行うことで、図2の領域106
bにおいて、酸化物半導体膜106及び酸化物半導体膜206に含まれる酸素がアルミニ
ウム膜若しくは酸化アルミニウム膜と反応し、絶縁膜116として酸化アルミニウム膜が
形成されるとともに、図2の領域106bにおいて、酸素欠損が形成される。この結果、
さらに領域106bの導電性を高めることが可能である。
てもよい。加熱処理の温度は、代表的には、150℃以上基板歪み点未満、又は250℃
以上450℃以下、又は300℃以上450℃以下とする。
る。
図3に示すトランジスタ151の作製方法を説明する。なお、ここでは、トランジスタ
151の導電膜110、導電膜112及び導電膜114に含まれる導電膜110c、導電
膜112c及び導電膜114cの形成工程と、酸化物半導体膜106に不純物元素117
を添加する工程について説明する。
物半導体膜106、絶縁膜108、導電膜110、導電膜112、導電膜114及びマス
ク111を形成する。
。
b、導電膜112b、導電膜114bを還元性雰囲気で発生させたプラズマに曝し、導電
膜110b、導電膜112b及び導電膜114bの表面の酸化物を還元する。次に、20
0℃以上400℃以下で加熱しながら、導電膜110b、導電膜112b及び導電膜11
4bをシランに曝す。次に、導電膜110b、導電膜112b及び導電膜114bを、ア
ンモニア又は窒素等の窒素を含む雰囲気で発生させたプラズマに曝すことで、導電膜11
0c、導電膜112c及び導電膜114cとして、CuSixNy(x>0、y>0)を
形成することができる。
て、酸化物半導体膜106がアンモニア又は窒素等の窒素を含む雰囲気で発生させたプラ
ズマに曝されるため、酸化物半導体膜106に窒素又は/及び水素を添加することが可能
である。
し、導電膜110、導電膜112及び導電膜114に含まれる導電膜110c、導電膜1
12c及び導電膜114cを形成してもよい。
膜と、ゲート電極として機能する導電膜とが重ならないため、寄生容量を低減することが
可能であり、オン電流が大きい。また、本実施の形態に示すトランジスタは、安定して低
抵抗領域を形成することが可能なため、従来と比べ、オン電流は向上し、トランジスタの
電気特性のバラツキが低減する。
と適宜組み合わせて用いることができる。
本実施の形態では、半導体装置及び半導体装置の作製方法の一形態を、図12乃至図2
2を用いて説明する。なお、本実施の形態は、実施の形態1と比較して、低抵抗領域の作
製方法が異なる。
図12及び図17に、半導体装置に含まれるトランジスタの一例として、トップゲート
構造のトランジスタを示す。
タ190の上面図を示し、図12にトランジスタ194及びトランジスタ190の断面図
を示す。図17(A)はトランジスタ194の上面図であり、図17(B)はトランジス
タ190の上面図である。図12(A)は、図17(A)の一点鎖線X1−X2間の断面
図、及び図17(B)の一点鎖線X3−X4間の断面図である。図12(B)は、図17
(A)の一点鎖線Y1−Y2間の断面図、及び図17(B)の一点鎖線Y3−Y4間の断
面図である。また、図12(A)は、トランジスタ190のチャネル長方向の断面図であ
る。また、図12(B)は、トランジスタ190のチャネル幅方向の断面図である。
物半導体膜166と、酸化物半導体膜166に接する絶縁膜168と、絶縁膜168の開
口部180aの一部において酸化物半導体膜166と接する導電膜170と、絶縁膜16
8の開口部180bの一部において酸化物半導体膜166と接する導電膜172と、絶縁
膜168を介して酸化物半導体膜166と重なる導電膜174とを有する。なお、トラン
ジスタ190上に絶縁膜176が設けられている。また、絶縁膜176上に絶縁膜178
が設けられてもよい。
膜221上の絶縁膜164と、絶縁膜164上の酸化物半導体膜226と、酸化物半導体
膜226に接する絶縁膜168と、絶縁膜168の開口部240aの一部において酸化物
半導体膜226と接する導電膜230と、絶縁膜168の開口部240bの一部において
酸化物半導体膜226と接する導電膜232と、絶縁膜168を介して酸化物半導体膜2
26と重なる導電膜234とを有する。
21を有することを特徴とする。すなわち、導電膜221は、ゲート電極として機能する
。また、トランジスタ194は、デュアルゲート構造のトランジスタである。
トランジスタ194のしきい値電圧を制御することができる。又は、図17(A)に示す
ように、開口部183を介して導電膜234及び導電膜221が接続され、同じ電位が印
加されることで、初期特性バラつきの低減、−GBTストレス試験の劣化の抑制、及び異
なるドレイン電圧におけるオン電流の立ち上がり電圧の変動の抑制が可能である。また、
酸化物半導体膜226においてキャリアの流れる領域が膜厚方向において大きくなるため
、キャリアの移動量が増加する。この結果、トランジスタ194のオン電流が大きくなる
共に、電界効果移動度が高くなる。トランジスタのチャネル長を2.5μm未満、又は1
.45μm以上2.2μm以下とすることで、オン電流がさらに増大するとともに、電界
効果移動度を高めることができる。
構造が異なる。駆動回路部に含まれるトランジスタは、デュアルゲート構造である。即ち
、画素部と比較して、電界効果移動度の高いトランジスタを駆動回路部に有する。
異なってもよい。
、又は1.45μm以上2.2μm以下とすることができる。一方、画素部に含まれるト
ランジスタ190のチャネル長を2.5μm以上、又は2.5μm以上20μm以下とす
ることができる。
は1.45μm以上2.2μm以下とすることで、画素部に含まれるトランジスタ190
と比較して、電界効果移動度を高めることが可能であり、オン電流を増大させることがで
きる。この結果、高速動作が可能な駆動回路部を作製することができる。
することができる。また、画素部に含まれるトランジスタのオン電流を高めることが可能
であるため、画素部の表示むらを抑えることができる。
らない領域には、酸素欠損を形成する元素を有する。また、酸化物半導体膜226におい
て、導電膜230、導電膜232及び導電膜234と重ならない領域には、酸素欠損を形
成する元素を有する。以下、酸素欠損を形成する元素を、不純物元素として説明する。不
純物元素の代表例としては、水素、希ガス元素等がある。希ガス元素の代表例としては、
ヘリウム、ネオン、アルゴン、クリプトン及びキセノンがある。さらに、不純物元素とし
てホウ素、炭素、窒素、フッ素、アルミニウム、シリコン、リン及び塩素等が酸化物半導
体膜166及び酸化物半導体膜226に含まれてもよい。
76が酸化物半導体膜166及び酸化物半導体膜226に接することで、絶縁膜176に
含まれる水素が酸化物半導体膜166及び酸化物半導体膜226に拡散する。この結果、
酸化物半導体膜166及び酸化物半導体膜226であって、絶縁膜176と接する領域に
おいては、水素が多く含まれる。
金属元素及び酸素の結合が切断され、酸素欠損が形成される。酸化物半導体膜に含まれる
酸素欠損と水素の相互作用により、酸化物半導体膜は導電率が高くなる。具体的には、酸
化物半導体膜に含まれる酸素欠損に水素が入ることで、キャリアである電子が生成される
。この結果、導電率が高くなる。
ランジスタ190に含まれる酸化物半導体膜166近傍の拡大図を用いて説明する。図1
3に示すように、酸化物半導体膜166は、導電膜170又は導電膜172と接する領域
166aと、絶縁膜176と接する領域166bと、絶縁膜168と重なる領域166c
及び領域166dとを有する。
膜172と接する領域166aは、実施の形態1に示す領域106aと同様に、導電性が
高まり、ソース領域及びドレイン領域として機能する。
166cには不純物元素として少なくとも希ガス及び水素が含まれる。なお、領域166
bの方が領域166cより不純物元素濃度が高い。また、導電膜174の側面がテーパ形
状を有する場合、領域166cの一部が、導電膜174と重なってもよい。
66dはそれぞれ希ガス元素を含み、且つ領域166a及び領域166dと比較して、領
域166b及び領域166cの方が希ガス元素の濃度が高い。これは、酸化物半導体膜1
66がスパッタリング法で形成される場合、スパッタリングガスとして希ガスを用いるた
め、酸化物半導体膜166に希ガスが含まれること、並びに領域166b及び領域166
cにおいて、酸素欠損を形成するために、意図的に希ガスが添加されることが原因である
。なお、領域166b及び領域166cにおいて、領域166a及び領域166dと異な
る希ガス元素が添加されていてもよい。
較して、領域166bの方が水素の濃度が高い。また、領域166bから領域166cに
水素が拡散する場合、領域166cは、領域166a及び領域166dと比較して水素濃
度が高い。但し、領域166cより領域166bの方が、水素濃度が高い。
濃度は、8×1019atoms/cm3以上、又は1×1020atoms/cm3以
上、又は5×1020atoms/cm3以上とすることができる。なお、領域166a
及び領域166dの二次イオン質量分析法により得られる水素濃度は、5×1019at
oms/cm3以下、又は1×1019atoms/cm3以下、又は5×1018at
oms/cm3以下、又は1×1018atoms/cm3以下、又は5×1017at
oms/cm3以下、又は1×1016atoms/cm3以下とすることができる。
ン、又は塩素が酸化物半導体膜166に添加される場合、領域166b及び領域166c
にのみ不純物元素を有する。このため、領域166a及び領域166dと比較して、領域
166b及び領域166cの方が不純物元素の濃度が高い。なお、領域166b及び領域
166cにおいて、二次イオン質量分析法により得られる不純物元素の濃度は、5×10
18atoms/cm3以上1×1022atoms/cm3以下、1×1019ato
ms/cm3以上1×1021atoms/cm3以下、又は5×1019atoms/
cm3以上5×1020atoms/cm3以下とすることができる。
ガス元素の添加による酸素欠損量が多い。このため、導電性が高くなり、低抵抗領域とし
て機能する。代表的には、領域166b及び領域166cの抵抗率として、1×10−3
Ωcm以上1×104Ωcm未満、又は1×10−3Ωcm以上1×10−1Ωcm未満
とすることができる。
ないと、水素が酸素欠損に捕獲されやすく、チャネルである領域166dに拡散しにくい
。この結果、ノーマリーオフ特性のトランジスタを作製することができる。
い場合、水素の量を制御することで、領域166b及び領域166cのキャリア密度を制
御することができる。又は、領域166b及び領域166cにおいて、酸素欠損の量と比
較して水素の量が多い場合、酸素欠損の量を制御することで、領域166b及び領域16
6cのキャリア密度を制御することができる。なお、領域166b及び領域166cのキ
ャリア密度を5×1018個/cm3以上、又は1×1019個/cm3以上、又は1×
1020個/cm3以上とすることで、チャネルとソース領域及びドレイン領域との間の
抵抗が小さく、オン電流の大きいトランジスタを作製することが可能である。
酸化物半導体膜226及び導電膜234と重なる領域はゲート絶縁膜として機能する。ま
た、絶縁膜168において、酸化物半導体膜166と、導電膜170及び導電膜172と
が重なる領域、並びに酸化物半導体膜226と導電膜230及び導電膜232とが重なる
領域は層間絶縁膜として機能する。
びドレイン電極として機能する。また、導電膜174及び導電膜234は、ゲート電極と
して機能する。
能する領域166dと、ソース領域及びドレイン領域として機能する領域166aとの間
に、低抵抗領域として機能する領域166b及び領域166cを有する。チャネルとソー
ス領域及びドレイン領域との間の抵抗を低減することが可能であり、トランジスタ190
及びトランジスタ194は、オン電流が大きく、電界効果移動度が高い。
して機能する導電膜174及び導電膜234と、ソース電極及びドレイン電極として機能
する導電膜170及び導電膜172とが同時に形成される。このため、トランジスタ19
0において、導電膜174と、導電膜170及び導電膜172とが重ならず、導電膜17
4と、導電膜170及び導電膜172との間の寄生容量を低減することが可能である。ま
た、トランジスタ194において導電膜234と、導電膜230及び導電膜232とが重
ならず、導電膜234と、導電膜230及び導電膜232との間の寄生容量を低減するこ
とが可能である。この結果、基板162として大面積基板を用いた場合、導電膜170、
導電膜172及び導電膜174、並びに導電膜230、導電膜232及び導電膜234に
おける信号遅延を低減することが可能である。
マスクとして、希ガス元素を酸化物半導体膜166に添加することで、酸素欠損を有する
領域が形成される。また、トランジスタ194において、導電膜230、導電膜232及
び導電膜234をマスクとして、不純物元素が酸化物半導体膜226に添加することで、
酸素欠損を有する領域が形成される。さらに、酸素欠損を有する領域が、水素を含む絶縁
膜176と接するため、絶縁膜176に含まれる水素が酸素欠損を有する領域に拡散する
ことで、低抵抗領域が形成される。すなわち、セルフアラインで低抵抗領域を形成するこ
とができる。
b及び領域166cに、希ガスを添加することで、酸素欠損を形成するとともに、水素を
添加している。このため、領域166b及び領域166cにおける導電率を高めることが
可能であるとともに、トランジスタごとの領域166b及び領域166cの導電率のばら
つきを低減することが可能である。すなわち、領域166b及び領域166cに希ガス及
び水素を添加することで、領域166b及び領域166cの導電率の制御が可能である。
ができる。
半導体膜106に示す材料及び構造を適宜用いることができる。
ができる。
び導電膜234としては、実施の形態1に示す導電膜110、導電膜112及び導電膜1
14に示す材料を適宜用いることができる。
、窒化シリコン、窒化アルミニウム等を用いて形成することができる。
ができる。
次に、半導体装置の別の構成について、図14を用いて説明する。ここでは、画素部に
設けられたトランジスタ190の変形例としてトランジスタ191を用いて説明するが、
駆動回路部のトランジスタ194に、トランジスタ191の絶縁膜164の構成、又は導
電膜170、導電膜172及び導電膜174の構造を適宜適用することができる。
び断面図を示す。図14(A)はトランジスタ191の上面図であり、図14(B)は、
図14(A)の一点鎖線Y3−Y4間の断面図であり、図14(C)は、図14(A)の
一点鎖線X3−X4間の断面図である。
、それぞれ3層構造であることを特徴とする。また、絶縁膜164が、窒化物絶縁膜16
4a及び酸化物絶縁膜164bの積層構造であることを特徴とする。その他の構成は、ト
ランジスタ190と同様であり、同様の効果を奏する。
しており、且つ導電膜170a及び導電膜170cは導電膜170bの表面を覆っている
。すなわち、導電膜170a及び導電膜170cは、導電膜170bの保護膜として機能
する。
膜172cとが順に積層しており、且つ導電膜172a及び導電膜172cは導電膜17
2bの表面を覆っている。
膜174cとが順に積層しており、且つ導電膜174a及び導電膜174cは導電膜17
4bの表面を覆っている。
電膜110a、導電膜112a及び導電膜114aと同様に、導電膜170b、導電膜1
72b、導電膜174bに含まれる金属元素が、酸化物半導体膜166に拡散するのを防
ぐ材料を適宜用いることができる。
電膜110b、導電膜112b及び導電膜114bと同様に、低抵抗材料を適宜用いるこ
とができる。
電膜110c、導電膜112c及び導電膜114cと同様に、導電膜170b、導電膜1
72b及び導電膜174bに含まれる金属元素が不動態化された膜を用いて形成すること
が可能である。この結果、導電膜170b、導電膜172b及び導電膜174bに含まれ
る金属元素が、絶縁膜176の形成工程において酸化物半導体膜166に移動することを
防ぐことができる。
いて説明する。
す窒化物絶縁膜104a及び酸化物絶縁膜104bに示す材料を適宜用いることができる
。
次に、半導体装置の別の構成について図15及び図16を用いて説明する。ここでは、
画素部に設けられたトランジスタ190の変形例としてトランジスタ192及びトランジ
スタ193を用いて説明するが、駆動回路部のトランジスタ194に、トランジスタ19
2に含まれる酸化物半導体膜166の構成、又はトランジスタ193に含まれる酸化物半
導体膜166の構成を適宜適用することができる。
び断面図を示す。図15(A)はトランジスタ192の上面図であり、図15(B)は、
図15(A)の一点鎖線Y3−Y4間の断面図であり、図15(C)は、図15(A)の
一点鎖線X3−X4間の断面図である。
徴とする。具体的には、酸化物半導体膜166は、絶縁膜164と接する酸化物半導体膜
167aと、酸化物半導体膜167aに接する酸化物半導体膜167bと、酸化物半導体
膜167b、導電膜170、導電膜172、絶縁膜168及び絶縁膜176と接する酸化
物半導体膜167cとを有する。その他の構成は、トランジスタ190と同様であり、同
様の効果を奏する。
ぞれ、実施の形態1に示す酸化物半導体膜107a、酸化物半導体膜107b及び酸化物
半導体膜107cに示す材料及び結晶構造を適宜用いることができる。
酸化物半導体膜167cをそれぞれ酸化物半導体膜167bの上面及び下面に接して設け
ることで、酸化物半導体膜167bにおける酸素欠損を低減することができる。また、酸
化物半導体膜167bは、酸化物半導体膜167bを構成する金属元素の一以上を有する
酸化物半導体膜167a及び酸化物半導体膜167cと接するため、酸化物半導体膜16
7aと酸化物半導体膜167bとの界面、酸化物半導体膜167bと酸化物半導体膜16
7cとの界面における界面準位密度が極めて低い。このため、酸化物半導体膜167bに
含まれる酸素欠損を低減することが可能である。
の電気特性のばらつきを低減することができる。
7cが酸化物半導体膜167bに接して設けられるため、酸化物半導体膜167bと酸化
物半導体膜167cとの界面ではキャリアの散乱が起こりにくく、トランジスタの電界効
果移動度を高くすることができる。
膜168の構成元素、又は導電膜170及び導電膜172の構成元素が酸化物半導体膜1
67bへ混入して、不純物による準位が形成されることを抑制するためのバリア膜として
も機能する。
ばらつきが低減されたトランジスタである。
び断面図を示す。図16(A)はトランジスタ193の上面図であり、図16(B)は、
図16(A)の一点鎖線Y3−Y4間の断面図であり、図16(C)は、図16(A)の
一点鎖線X3−X4間の断面図である。
接する酸化物半導体膜167bと、酸化物半導体膜167b及び絶縁膜168と接する酸
化物半導体膜167cとの積層構造であってもよい。その他の構成は、トランジスタ19
0と同様であり、同様の効果を奏する。
次に、図12に示すトランジスタ190及びトランジスタ194の作製方法について、
図18乃至図20を用いて説明する。
上に絶縁膜164を形成する。
とができる。
る。
半導体膜226を形成する。次に、絶縁膜164、酸化物半導体膜166及び酸化物半導
体膜226上に、絶縁膜168を形成する。酸化物半導体膜166及び酸化物半導体膜2
26並びに絶縁膜168はそれぞれ、実施の形態1に示す酸化物半導体膜106及び絶縁
膜108の形成方法を適宜用いて形成することができる。
形成した後、絶縁膜168の一部をエッチングして、酸化物半導体膜166の一部を露出
する開口部180a及び開口部180b、並びに酸化物半導体膜226の一部を露出する
開口部240a及び開口部240bを形成する。
絶縁膜168上に導電膜169を形成する。
とができる。
111を形成した後、エッチング溶液又は/及びエッチングガス167に導電膜169を
曝して、導電膜170、導電膜172及び導電膜174、並びに導電膜230、導電膜2
32及び導電膜234を形成する。
ング法を適宜用いることができる。
32及び導電膜234は、上記形成方法の代わりに、電解メッキ法、印刷法、インクジェ
ット法等で形成してもよい。
及び酸化物半導体膜226に不純物元素177として希ガスを添加する。この結果、酸化
物半導体膜においてマスク111に覆われていない領域に不純物元素が添加される。なお
、不純物元素177の添加により、酸化物半導体膜には酸素欠損が形成される。
法を適宜用いることができる。
不純物元素が添加された領域の概念図を図21に示す。なお、ここでは、代表例として、
トランジスタ190に含まれる酸化物半導体膜166近傍の拡大図を用いて説明する。
導体膜166及び絶縁膜168に形成される場合がある。なお、酸化物半導体膜166が
露出する領域の深さ方向において、添加領域の端部195は、絶縁膜164中に位置する
。
66及び絶縁膜168に形成される場合がある。なお、酸化物半導体膜166が露出する
領域の深さ方向において、添加領域の端部196は、絶縁膜164及び酸化物半導体膜1
66の界面に位置する。
66及び絶縁膜168に形成される場合がある。なお、酸化物半導体膜166が露出する
領域の深さ方向において、添加領域の端部197は、酸化物半導体膜166中に位置する
。
26に不純物元素177を添加したが、マスク111を除去した後、導電膜170、導電
膜172及び導電膜174、並びに導電膜230、導電膜232及び導電膜234をマス
クとして酸化物半導体膜166及び酸化物半導体膜226に不純物元素177を添加して
もよい。
76の形成工程において、酸化物半導体膜166及び酸化物半導体膜226にダメージが
入り、酸素欠損が形成される場合は、不純物元素177の添加を行わなくてもよい。
0、導電膜172、導電膜174、酸化物半導体膜226、導電膜230、導電膜232
及び導電膜234上に、絶縁膜176を形成し、絶縁膜176上に絶縁膜178を形成し
てもよい。
レーザー堆積(PLD)法等がある。なお、シラン及びアンモニア、又はシラン及び窒素
を原料ガスに用いたプラズマCVD法により、水素を含む窒化シリコン膜を形成すること
ができる。また、プラズマCVD法を用いることで、酸化物半導体膜166にダメージを
与えることが可能であり、酸化物半導体膜166に酸素欠損を形成することができる。
226において、不純物元素が添加された領域と絶縁膜176とが接することで、絶縁膜
176に含まれる水素が酸化物半導体膜であって、且つ不純物元素が添加された領域に移
動する。不純物元素が添加された領域には酸素欠損が含まれるため、酸化物半導体膜16
6及び酸化物半導体膜226に低抵抗領域を形成することができる。具体的には、図13
に示す領域166b及び領域166cを形成することができる。なお、領域166cは、
絶縁膜168を介して酸化物半導体膜166及び酸化物半導体膜226に添加されるため
、領域166bと比較して不純物元素の濃度が低い。
拡散する。しかしながら、酸素欠損に水素が移動すると、該水素はエネルギー的に安定と
なり、酸素欠損から水素は脱離しにくくなる。また、酸素欠損と水素の相互作用により、
キャリアである電子が生成される。これらのため、加熱しながら絶縁膜176を形成する
ことで、導電率の変動の少ない低抵抗領域を形成することができる。
てもよい。加熱処理の温度は、代表的には、150℃以上基板歪み点未満、又は250℃
以上450℃以下、又は300℃以上450℃以下とする。この結果、低抵抗領域の導電
性を高めることが可能であると共に、低抵抗領域の導電率の変動を低減することができる
。
ができる。
280℃以下、又は200℃以上240℃以下に保持し、処理室に原料ガスを導入して処
理室内における圧力を100Pa以上250Pa以下、又は100Pa以上200Pa以
下とし、処理室内に設けられる電極に0.17W/cm2以上0.5W/cm2以下、又
は0.25W/cm2以上0.35W/cm2以下の高周波電力を供給する条件により、
加熱処理により酸素を放出することが可能な酸化シリコン膜又は酸化窒化シリコン膜を絶
縁膜178として形成することができる。
図14に示すトランジスタ191の作製方法を説明する。なお、ここでは、トランジス
タ191の導電膜170、導電膜172及び導電膜174に含まれる導電膜170c、導
電膜172c及び導電膜174cの形成工程と、酸化物半導体膜166に不純物元素17
7を添加する工程について説明する。
、酸化物半導体膜166、絶縁膜168、導電膜170、導電膜172、導電膜174及
びマスク111を形成する。
る。
b、導電膜172b、導電膜174bを還元性雰囲気で発生させたプラズマに曝し、導電
膜170b、導電膜172b及び導電膜174bの表面の酸化物を還元する。次に、20
0℃以上400℃以下で加熱しながら、導電膜170b、導電膜172b及び導電膜17
4bをシランに曝す。次に、導電膜170b、導電膜172b及び導電膜174bを、ア
ンモニア又は窒素等の窒素を含む雰囲気で発生させたプラズマに曝すことで、導電膜17
0c、導電膜172c及び導電膜174cとして、CuSixNy(x>0、y>0)を
形成することができる。
て、酸化物半導体膜166がアンモニア又は窒素等の窒素を含む雰囲気で発生させたプラ
ズマに曝されるため、酸化物半導体膜166に窒素又は/及び水素を添加することが可能
である。
し、導電膜170、導電膜172及び導電膜174に含まれる導電膜170c、導電膜1
72c及び導電膜174cを形成してもよい。
図12に示すトランジスタ190の別の作製方法を説明する。なお、ここでは、不純物
元素の添加工程と、絶縁膜176の作製工程について図22を用いて説明する。
、酸化物半導体膜166、絶縁膜168、導電膜170、導電膜172、導電膜174及
びマスク111を形成する。こののち、図22(A)に示すように、マスク111を除去
する。
0、導電膜172及び導電膜174上に、絶縁膜176を形成した後、導電膜170、導
電膜172及び導電膜174をマスクとして、絶縁膜176を介して酸化物半導体膜16
6に不純物元素177を添加する。
、トランジスタ190を作製することができる。
膜と、ゲート電極として機能する導電膜とが重ならないため、寄生容量を低減することが
可能であり、オン電流が大きい。また、本実施の形態に示すトランジスタは、安定して低
抵抗領域を形成することが可能なため、従来と比べ、オン電流は増大し、トランジスタの
電気特性のバラツキが低減する。
と適宜組み合わせて用いることができる。
本実施の形態では、半導体装置及び半導体装置の作製方法の一形態を、図23乃至図3
5を用いて説明する。なお、本実施の形態は、実施の形態1と比較して、ゲート電極とし
て機能する導電膜と、ソース電極として機能する導電膜及びドレイン電極として機能する
導電膜との形成方法が異なる。また、トランジスタに含まれる低抵抗領域の作製方法とし
て、実施の形態2に示す方法を用いる。
図23に、半導体装置に含まれるトランジスタの一例として、トップゲート構造のトラ
ンジスタを示す。
タ390の上面図を示し、図23にトランジスタ394及びトランジスタ390の断面図
を示す。図28(A)はトランジスタ394の上面図であり、図28(B)はトランジス
タ390の上面図である。図23(A)は、図28(A)の一点鎖線X1−X2間の断面
図、及び図28(B)の一点鎖線X3−X4間の断面図である。図23(B)は、図28
(A)の一点鎖線Y1−Y2間の断面図、及び図28(B)の一点鎖線Y3−Y4間の断
面図である。また、図23(A)は、トランジスタ390のチャネル長方向の断面図であ
る。また、図23(B)は、トランジスタ390のチャネル幅方向の断面図である。
物半導体膜366と、酸化物半導体膜366に接する導電膜368、導電膜370及び絶
縁膜372と、絶縁膜372を介して酸化物半導体膜366と重なる導電膜374とを有
する。なお、トランジスタ390上に絶縁膜376が設けられている。
物半導体膜266と、酸化物半導体膜266に接する導電膜268、導電膜270及び絶
縁膜272と、絶縁膜272を介して酸化物半導体膜266と重なる導電膜274とを有
する。
61を有することを特徴とする。すなわち、導電膜261は、ゲート電極として機能する
。また、トランジスタ394は、デュアルゲート構造のトランジスタである。その他の構
成は、トランジスタ390と同様であり、同様の効果を奏する。
、トランジスタ394のしきい値電圧を制御することができる。又は、図23(B)に示
すように、導電膜274及び導電膜261が接続され、同じ電位が印加されることで、初
期特性バラつきの低減、−GBTストレス試験の劣化の抑制、及び異なるドレイン電圧に
おけるオン電流の立ち上がり電圧の変動の抑制が可能である。また、酸化物半導体膜26
6においてキャリアの流れる領域が膜厚方向においてより大きくなるため、キャリアの移
動量が増加する。この結果、トランジスタ394のオン電流が大きくなる共に、電界効果
移動度が高くなる。トランジスタのチャネル長を2.5μm未満、又は1.45μm以上
2.2μm以下とすることで、オン電流がさらに増大するとともに、電界効果移動度を高
めることができる。
構造が異なる。駆動回路部に含まれるトランジスタは、デュアルゲート構造である。即ち
、画素部と比較して、電界効果移動度の高いトランジスタを駆動回路部に有する。
異なってもよい。
、又は1.45μm以上2.2μm以下とすることができる。一方、画素部に含まれるト
ランジスタ390のチャネル長を2.5μm以上、又は2.5μm以上20μm以下とす
ることができる。
は1.45μm以上2.2μm以下とすることで、画素部に含まれるトランジスタ390
と比較して、電界効果移動度を高めることが可能であり、オン電流を増大させることがで
きる。この結果、高速動作が可能な駆動回路部を作製することができる。また、画素部に
含まれるトランジスタのオン電流を増大させることが可能であるため、画素部の表示むら
を抑えることができる。
することができる。
らない領域には、酸素欠損を形成する元素を有する。また、酸化物半導体膜266におい
て、導電膜268、導電膜270及び導電膜274と重ならない領域には、酸素欠損を形
成する元素を有する.以下、酸素欠損を形成する元素を、不純物元素として説明する。不
純物元素の代表例としては、水素、希ガス元素等がある。希ガス元素の代表例としては、
ヘリウム、ネオン、アルゴン、クリプトン及びキセノンがある。さらに、不純物元素とし
てホウ素、炭素、窒素、フッ素、アルミニウム、シリコン、リン、塩素等が酸化物半導体
膜366及び酸化物半導体膜266に含まれてもよい。
76が酸化物半導体膜366及び酸化物半導体膜266に接することで、絶縁膜376に
含まれる水素が酸化物半導体膜366及び酸化物半導体膜266に拡散する。この結果、
酸化物半導体膜366及び酸化物半導体膜266であって、絶縁膜376と接する領域に
おいては、水素が多く含まれる。
金属元素及び酸素の結合が切断され、酸素欠損が形成される。酸化物半導体膜に含まれる
酸素欠損と水素の相互作用により、酸化物半導体膜は導電率が高くなる。具体的には、酸
化物半導体膜に含まれる酸素欠損に水素が入ることで、キャリアである電子が生成される
。この結果、導電率が高くなる。
ランジスタ390に含まれる酸化物半導体膜366近傍の拡大図を用いて説明する。図2
4に示すように、酸化物半導体膜366は、導電膜368又は導電膜370と接する領域
366aと、絶縁膜376と接する領域366bと、絶縁膜372と接する領域366d
とを有する。なお、導電膜374の側面がテーパ形状を有する場合、導電膜374のテー
パ部と重なる領域366cを有してもよい。
膜370と接する領域366aは、実施の形態1に示す領域106aと同様に、導電性が
高まり、ソース領域及びドレイン領域として機能する。
くとも希ガス及び水素が含まれる。なお、導電膜374の側面がテーパ形状を有する場合
、不純物元素は導電膜374のテーパ部を通過して領域366cに添加されるため、領域
366cは、領域366bと比較して不純物元素の一例である希ガス元素の濃度が低いが
、不純物元素が含まれる。領域366cを有することで、トランジスタのソース−ドレイ
ン耐圧を高めることができる。
66dはそれぞれ希ガス元素を含み、且つ領域366a及び領域366dと比較して、領
域366b及び領域366cの方が希ガス元素の濃度が高い。これは、酸化物半導体膜3
66がスパッタリング法で形成される場合、スパッタリングガスとして希ガスを用いるた
め、酸化物半導体膜366に希ガスが含まれること、並びに領域366b及び領域366
cにおいて、酸素欠損を形成するために、意図的に希ガスが添加されることが原因である
。なお、領域366b及び領域366cにおいて、領域366a及び領域366dと異な
る希ガス元素が添加されていてもよい。
較して、領域366bの方が水素の濃度が高い。また、領域366bから領域366cに
水素が拡散する場合、領域366cは、領域366a及び領域366dと比較して水素濃
度が高い。但し、領域366cより領域366bの方が、水素濃度が高い。
濃度は、8×1019atoms/cm3以上、1×1020atoms/cm3以上、
又は5×1020atoms/cm3以上とすることができる。なお、領域366a及び
領域366dの二次イオン質量分析法により得られる水素濃度は、5×1019atom
s/cm3以下、1×1019atoms/cm3以下、5×1018atoms/cm
3以下、1×1018atoms/cm3以下、5×1017atoms/cm3以下、
又は1×1016atoms/cm3以下とすることができる。
ン、又は塩素が酸化物半導体膜366に添加される場合、領域366b及び領域366c
にのみ不純物元素を有する。このため、領域366a及び領域366dと比較して、領域
366b及び領域366cの方が不純物元素の濃度が高い。なお、領域366b及び領域
366cにおいて、二次イオン質量分析法により得られる不純物元素の濃度は、1×10
18atoms/cm3以上1×1022atoms/cm3以下、又は1×1019a
toms/cm3以上1×1021atoms/cm3以下、又は5×1019atom
s/cm3以上5×1020atoms/cm3以下とすることができる。
ガス元素の添加による酸素欠損量が多い。このため、導電性が高くなり、低抵抗領域とし
て機能する。代表的には、領域366b及び領域366cの抵抗率として、1×10−3
Ωcm以上1×104Ωcm未満、又は1×10−3Ωcm以上1×10−1Ωcm未満
とすることができる。
ないと、水素が酸素欠損に捕獲されやすく、チャネルである領域366dに拡散しにくい
。この結果、ノーマリーオフ特性のトランジスタを作製することができる。
66に不純物元素を添加した後、導電膜368、導電膜370及び導電膜374それぞれ
の上面形状における面積を縮小してもよい。これは、導電膜368、導電膜370及び導
電膜374の形成工程において、導電膜368、導電膜370及び導電膜374上のマス
クに対してスリミング処理を行い、より微細な構造のマスクとする。次に、該マスクを用
いて導電膜368、導電膜370及び導電膜374をエッチングすることで、図24(B
)に示す導電膜368d、導電膜370d、導電膜374dを形成することができる。ス
リミング処理としては、例えば、酸素ラジカルなどを用いるアッシング処理を適用するこ
とができる。
66dの間に、オフセット領域366eが形成される。なお、チャネル長方向におけるオ
フセット領域366eの長さは、0.1μm未満とすることで、トランジスタのオン電流
の低下を抑制することが可能である。
及びドレイン電極として機能する。
能する領域366dと、ソース領域及びドレイン領域として機能する領域366aとの間
に、低抵抗領域として機能する領域366b及び/又は領域366cを有する。チャネル
とソース領域及びドレイン領域との間の抵抗を低減することが可能であり、トランジスタ
390及びトランジスタ394は、オン電流が大きく、電界効果移動度が高い。
とが重ならず、導電膜374と、導電膜368及び導電膜370との間の寄生容量を低減
することが可能である。また、トランジスタ394において導電膜274と、導電膜26
8及び導電膜270とが重ならず、導電膜274と、導電膜268及び導電膜270との
間の寄生容量を低減することが可能である。この結果、基板362として大面積基板を用
いた場合、導電膜368、導電膜370及び導電膜374、並びに導電膜268及び導電
膜270及び導電膜274における信号遅延を低減することが可能である。
マスクとして、希ガス元素を酸化物半導体膜366に添加することで、酸素欠損を有する
領域が形成される。また、トランジスタ394において、導電膜268、導電膜270及
び導電膜274をマスクとして、不純物元素が酸化物半導体膜266に添加することで、
酸素欠損を有する領域が形成される。さらに、酸素欠損を有する領域が、水素を含む絶縁
膜376と接するため、絶縁膜376に含まれる水素が酸素欠損を有する領域に拡散する
ことで、低抵抗領域が形成される。すなわち、セルフアラインで低抵抗領域を形成するこ
とができる。
bに、希ガスを添加することで、酸素欠損を形成するとともに、水素を添加している。こ
のため、領域366bにおける導電率を高めることが可能であるとともに、トランジスタ
ごとの領域366bの導電率のばらつきを低減することが可能である。すなわち、領域3
66bに希ガス及び水素を添加することで、領域366bの導電率の制御が可能である。
ができる。
半導体膜106に示す材料及び構造を適宜用いることができる。
を適宜用いることができる。
導電膜270及び導電膜274としては、実施の形態1に示す導電膜110、導電膜11
2及び導電膜114に示す材料を適宜用いることができる。
絶縁膜としては、窒化シリコン、窒化アルミニウム等を用いて形成することができる。
次に、半導体装置の別の構成について、図25を用いて説明する。ここでは、画素部に
設けられたトランジスタ390の変形例としてトランジスタ391を用いて説明するが、
駆動回路部のトランジスタ394にトランジスタ391の絶縁膜364の構成、又は導電
膜368、導電膜370及び導電膜374の構造を適宜適用することができる。
び断面図を示す。図25(A)はトランジスタ391の上面図であり、図25(B)は、
図25(A)の一点鎖線Y3−Y4間の断面図であり、図25(C)は、図25(A)の
一点鎖線X3−X4間の断面図である。
、3層構造であることを特徴とする。また、絶縁膜364が、窒化物絶縁膜364a及び
酸化物絶縁膜364bの積層構造であることを特徴とする。その他の構成は、トランジス
タ390と同様であり、同様の効果を奏する。
しており、且つ導電膜368a及び導電膜368cは導電膜368bの表面を覆っている
。すなわち、導電膜368a及び導電膜368cは、導電膜368bの保護膜として機能
する。
膜370cとが順に積層しており、且つ導電膜370a及び導電膜370cは導電膜37
0bの表面を覆っている。
電膜110a、導電膜112a及び導電膜114aと同様に、導電膜368b、導電膜3
70b、導電膜374bに含まれる金属元素が、酸化物半導体膜366に拡散するのを防
ぐ材料を適宜用いることができる。
電膜110b、導電膜112b及び導電膜114bと同様に、低抵抗材料を適宜用いるこ
とができる。
電膜112c及び導電膜114cと同様に、導電膜368b及び導電膜370bに含まれ
る金属元素が不動態化された膜を用いて形成することが可能である。この結果、導電膜3
68b及び導電膜370bに含まれる金属元素が、絶縁膜376の形成工程において酸化
物半導体膜366に移動することを防ぐことができる。
いて説明する。
す窒化物絶縁膜104a及び酸化物絶縁膜104bに示す材料を適宜用いることができる
。
次に、半導体装置の別の構成について図26及び図27を用いて説明する。ここでは、
画素部に設けられたトランジスタ390の変形例としてトランジスタ392及びトランジ
スタ393を用いて説明するが、駆動回路部のトランジスタ394に、トランジスタ39
2に含まれる酸化物半導体膜366の構成、又はトランジスタ393に含まれる酸化物半
導体膜366の構成を適宜適用することができる。
び断面図を示す。図26(A)はトランジスタ392の上面図であり、図26(B)は、
図26(A)の一点鎖線Y3−Y4間の断面図であり、図26(C)は、図26(A)の
一点鎖線X3−X4間の断面図である。
徴とする。具体的には、酸化物半導体膜366は、絶縁膜364と接する酸化物半導体膜
367aと、酸化物半導体膜367aに接する酸化物半導体膜367bと、酸化物半導体
膜367b、導電膜368、導電膜370、絶縁膜372及び絶縁膜376と接する酸化
物半導体膜367cとを有する。その他の構成は、トランジスタ390と同様であり、同
様の効果を奏する。
ぞれ、実施の形態1に示す酸化物半導体膜107a、酸化物半導体膜107b及び酸化物
半導体膜107cに示す材料及び結晶構造を適宜用いることができる。
酸化物半導体膜367cをそれぞれ酸化物半導体膜367bの上面及び下面に接して設け
ることで、酸化物半導体膜367bにおける酸素欠損を低減することができる。また、酸
化物半導体膜367bは、酸化物半導体膜367bを構成する金属元素の一以上を有する
酸化物半導体膜367a及び酸化物半導体膜367cと接するため、酸化物半導体膜36
7aと酸化物半導体膜367bとの界面、酸化物半導体膜367bと酸化物半導体膜36
7cとの界面における界面準位密度が極めて低い。このため、酸化物半導体膜367bに
含まれる酸素欠損を低減することが可能である。
の電気特性のばらつきを低減することができる。
7cが酸化物半導体膜367bに接して設けられるため、酸化物半導体膜367bと酸化
物半導体膜367cとの界面ではキャリアの散乱が起こりにくく、トランジスタの電界効
果移動度を高くすることができる。
膜372の構成元素が酸化物半導体膜367bへ混入して、不純物による準位が形成され
ることを抑制するためのバリア膜としても機能する。
ばらつきが低減されたトランジスタである。
び断面図を示す。図27(A)はトランジスタ393の上面図であり、図27(B)は、
図27(A)の一点鎖線Y3−Y4間の断面図であり、図27(C)は、図27(A)の
一点鎖線X3−X4間の断面図である。なお、図27(A)では、明瞭化のため、基板3
62、絶縁膜364、絶縁膜372、絶縁膜376などを省略している。また、図27(
B)は、トランジスタ393のチャネル幅方向の断面図である。また、図27(C)は、
トランジスタ393のチャネル長方向の断面図である。
接する酸化物半導体膜367bと、酸化物半導体膜367b及び絶縁膜372と接する酸
化物半導体膜367cの積層構造であってもよい。
次に、半導体装置の別の構成について図36を用いて説明する。ここでは、実施の形態
1に示す方法を用いて低抵抗領域が形成されたトランジスタについて説明する。
物半導体膜306と、酸化物半導体膜306に接する導電膜368、導電膜370及び絶
縁膜312と、絶縁膜312を介して酸化物半導体膜306と重なる導電膜374とを有
する。なお、トランジスタ350上に絶縁膜376が設けられている。
膜261上の絶縁膜364と、絶縁膜364上の酸化物半導体膜206と、酸化物半導体
膜206に接する導電膜268、導電膜270及び絶縁膜312と、絶縁膜312を介し
て酸化物半導体膜206と重なる導電膜274とを有する。
61を有することを特徴とする。すなわち、導電膜261は、ゲート電極として機能する
。また、トランジスタ354は、デュアルゲート構造のトランジスタである。その他の構
成は、トランジスタ350と同様であり、同様の効果を奏する。
して機能する。また、酸化物半導体膜306及び酸化物半導体膜206並びにそれらに含
まれる低抵抗領域はそれぞれ、実施の形態1に示す酸化物半導体膜306及び酸化物半導
体膜206並びにそれらに含まれる低抵抗領域と同様に形成することができる。
次に、半導体装置の別の構成について、図53を用いて説明する。
53(B)に酸化物半導体膜366に不純物元素が添加された場合の、膜厚方向における
概念図を示す。なお、図53(A)に示すトランジスタ390aの上面図及びチャネル幅
方向の断面図については、それぞれ図28(B)に示す上面図、及び図23(A)に示す
断面図と同様であるため、ここでの説明は省略する。
の変形例であり、トランジスタ390が有する導電膜374の構造と相違する。また、図
53(A)に示すトランジスタ390aは、トランジスタ390が有する絶縁膜372及
び絶縁膜376の断面形状と相違する。図53(A)に示すトランジスタ390aにおい
ては、導電膜374が、2層の積層構造であり、絶縁膜372及び絶縁膜376の端部の
形状の一部が曲率を有している。その他の構成は、トランジスタ390と同様であり、同
様の効果を奏する。
としては、例えば窒化タンタル、窒化チタン、窒化モリブデン、窒化タングステン等の窒
化金属膜を用いることができる。
該低抵抗な金属材料としては、例えば、アルミニウム、銅、銀又はタングステンなどがあ
る。
突出した形状である。このように、導電膜374の形状を2層の積層構造とし、下層の導
電膜が突出した形状とすることで帽子の形状に類似した導電膜とすることができる。該帽
子の形状とすることで、不純物元素を添加する際に、下層の導電膜が不純物の通過を抑制
できる場合がある。
該ドライエッチング法を用いて、導電膜374を加工する際に、絶縁膜372の側端部の
一部が削られ、該側端部の形状が曲率を有する形状となる場合がある。また、絶縁膜37
2の側端部の形状が曲率を有する形状となる場合、絶縁膜372の上方に形成される絶縁
膜376の形状も絶縁膜372の影響により、側端部の一部に曲率を有する場合がある。
体膜366に不純物元素が添加された場合の、膜厚方向における概念図について、以下説
明する。
る。酸化物半導体膜366が例えば、結晶性の酸化物半導体膜の場合、領域366yは、
領域366xに比べ結晶性が高い。該結晶性の違いは、不純物元素を添加する際に、領域
366xにダメージが入ってしまい結晶性が低下するためである。
次に、図23に示すトランジスタ390及びトランジスタ394の作製方法について、
図29乃至図31を用いて説明する。
上に、絶縁膜364を形成する。
とができる。
とができる。
半導体膜266を形成する。酸化物半導体膜366及び酸化物半導体膜266は、実施の
形態1に示す酸化物半導体膜106の形成方法を適宜用いて形成することができる。
導体膜266上に、導電膜367を形成する。
とができる。
を形成した後、エッチング溶液又は/及びエッチングガスに導電膜367を曝して、導電
膜368及び導電膜370、並びに導電膜268及び導電膜270を形成する。
ング法を適宜用いることができる。
成方法の代わりに、電解メッキ法、印刷法、インクジェット法等で形成してもよい。
8、導電膜370、酸化物半導体膜266、導電膜268及び導電膜270上に絶縁膜3
72を形成する。絶縁膜372は、実施の形態1に示す絶縁膜108の形成方法を適宜用
いて形成することができる。
とができる。
を形成した後、エッチング溶液又は/及びエッチングガスに導電膜373を曝して、絶縁
膜372及び導電膜374、並びに絶縁膜272及び導電膜274を形成する。
ング法を適宜用いることができる。
刷法、インクジェット法等で形成してもよい。
化物半導体膜266に不純物元素377として希ガスを添加する。この結果、酸化物半導
体膜366において導電膜368、導電膜370及び導電膜374と重ならない領域に不
純物元素が添加される。また、酸化物半導体膜266において導電膜268、導電膜27
0及び導電膜274と重ならない領域に不純物元素が添加される。なお、不純物元素37
7の添加により、酸化物半導体膜366及び酸化物半導体膜266には酸素欠損が形成さ
れる。
法を適宜用いることができる。
不純物元素が添加された領域の概念図を図32に示す。なお、ここでは、代表例として、
トランジスタ390に含まれる酸化物半導体膜366近傍の拡大図を用いて説明する。
導体膜366及び絶縁膜372に形成される場合がある。なお、酸化物半導体膜366が
露出する領域の深さ方向において、添加領域の端部385は、絶縁膜364中に位置する
。
66及び絶縁膜372に形成される場合がある。なお、酸化物半導体膜366が露出する
領域の深さ方向において、添加領域の端部386は、絶縁膜364及び酸化物半導体膜3
66の界面に位置する。
66及び絶縁膜372に形成される場合がある。なお、酸化物半導体膜366が露出する
領域の深さ方向において、添加領域の端部387は、酸化物半導体膜366中に位置する
。
半導体膜366に不純物元素377を添加したが、導電膜368、導電膜370及び導電
膜374を形成するためのマスクを除去する前に、酸化物半導体膜366に不純物元素3
77を添加してもよい。
8、導電膜370及び導電膜374、並びに酸化物半導体膜266、絶縁膜272、導電
膜268、導電膜270及び導電膜274上に、絶縁膜376を形成する。
用いて形成することができる。
266において、不純物元素が添加された領域と絶縁膜376とが接することで、絶縁膜
376に含まれる水素が酸化物半導体膜であって、且つ不純物元素が添加された領域に移
動する。不純物元素が添加された領域には酸素欠損が含まれるため、酸化物半導体膜36
6及び酸化物半導体膜266に低抵抗領域を形成することができる。具体的には、図24
に示す領域366b及び領域366cを形成することができる。なお、導電膜374の側
面がテーパ形状を有する場合、不純物元素は導電膜374のテーパ部を通過して領域36
6cに添加されるため、領域366cは領域366bと比較して不純物元素の一例である
希ガス元素の濃度が低い。
てもよい。加熱処理の温度は、代表的には、150℃以上基板歪み点未満、又は250℃
以上450℃以下、又は300℃以上450℃以下とする。また、当該加熱処理により、
領域366bに含まれる水素が領域366cに拡散する。この結果、領域366cの導電
性が高まる。
図25に示すトランジスタ391の作製方法を説明する。なお、ここでは、トランジス
タ391の導電膜368及び導電膜370に含まれる導電膜368c及び導電膜370c
の形成工程と、酸化物半導体膜366に不純物元素377を添加する工程について説明す
る。
、酸化物半導体膜366、導電膜368及び導電膜370を形成する。
還元性雰囲気で発生させたプラズマに曝し、導電膜368b及び導電膜370bの表面の
酸化物を還元する。次に、200℃以上400℃以下で加熱しながら、導電膜368b及
び導電膜370bをシランに曝す。次に、導電膜368b及び導電膜370bを、アンモ
ニア又は窒素等の窒素を含む雰囲気で発生させたプラズマに曝すことで、導電膜368c
及び導電膜370cとして、CuSixNy(x>0、y>0)を形成することができる
。
作製することができる。
図23に示すトランジスタ390の別の作製方法を説明する。なお、ここでは、不純物
元素の添加工程と、絶縁膜376の作製工程について図33を用いて説明する。
半導体膜366、導電膜368、導電膜370、絶縁膜372及び導電膜374を形成す
る。
0、絶縁膜372及び導電膜374上に、絶縁膜376を形成した後、図33(B)に示
すように、導電膜368、導電膜370及び導電膜374をマスクとして、酸化物半導体
膜366に不純物元素377を添加する。
側壁絶縁膜を有するトランジスタの作製方法について、図34及び図35を用いて説明
する。
半導体膜366、導電膜368、導電膜370、絶縁膜372及び導電膜374を形成す
る。なお、ここでは絶縁膜372は、エッチングされず全面に形成されている。
スクとして、酸化物半導体膜366に不純物元素377を添加する。
形成する。
す絶縁膜104の材料及び形成方法を適宜用いることができる。
イオンエッチング)法などの異方性エッチングにより加工することで、図34(D)に示
すように、導電膜374の側面に接する側壁絶縁膜331a及び側壁絶縁膜331bを自
己整合的に形成することができる。
クとして絶縁膜372をエッチングして、酸化物半導体膜366の一部を露出させる。
0及び導電膜374上に絶縁膜376を形成する。絶縁膜376は、水素を含む膜である
ため、酸化物半導体膜366において、絶縁膜376と接する領域に水素が移動する。
化物半導体膜366は、導電膜368又は導電膜370と接する領域366aと、絶縁膜
376と接する領域366bと、絶縁膜372と接する領域366dとを有する。また、
絶縁膜372を介して側壁絶縁膜331a、331bと重なる領域366cを有する。な
お、導電膜374の側面がテーパ形状を有する場合、領域366cの一部が導電膜374
と重なってもよい。
物元素として少なくとも希ガス及び水素が含まれる。また、領域366cは、不純物元素
として少なくとも希ガス元素が含まれる。さらに、領域366bから水素が拡散される場
合、領域366cに水素が含まれるが、領域366bより領域366cの方が不純物元素
濃度が低い。このため、領域366cを有することでソース−ドレイン耐圧を高めること
ができる。
膜と、ゲート電極として機能する導電膜とが重ならないため、寄生容量を低減することが
可能であり、オン電流が大きい。また、本実施の形態に示すトランジスタは、安定して低
抵抗領域を形成することが可能なため、従来と比べ、オン電流は増大し、トランジスタの
電気特性のバラツキが低減する。
と適宜組み合わせて用いることができる。
本実施の形態では、半導体装置及び半導体装置の作製方法の一形態を、図50乃至図5
2を用いて説明する。なお、本実施の形態は、実施の形態1と比較して、駆動回路部のト
ランジスタに含まれる酸化物半導体膜の構成が異なる。また、トランジスタに含まれる低
抵抗領域の作製方法として、実施の形態3に示す方法を用いる。
図50に、半導体装置に含まれるトランジスタの一例として、トップゲート構造のトラ
ンジスタを示す。
図50(B)にトランジスタ390及びトランジスタ395bの断面図を示す。なお、図
50乃至図52において、X1−X2は駆動回路部に設けられるトランジスタの断面図で
あり、X3−X4は画素部に設けられるトランジスタの断面図である。
において、酸化物半導体膜の構造が異なることを特徴とする。
同様に、単層の酸化物半導体膜366を有する。
物半導体膜267bが積層された酸化物半導体膜266を有することを特徴とする。なお
、上面形状において、酸化物半導体膜267aの端部の外側に酸化物半導体膜267bの
端部が位置する。すなわち、酸化物半導体膜267bは、酸化物半導体膜267aの上面
及び側面を覆う。また、酸化物半導体膜267aは絶縁膜364と接し、酸化物半導体膜
267bは酸化物半導体膜267a及び絶縁膜272と接する。
半導体膜267b及び酸化物半導体膜267cが積層された酸化物半導体膜266を有す
ることを特徴とする。なお、上面形状において、酸化物半導体膜267a及び酸化物半導
体膜267cの端部の外側に酸化物半導体膜267bの端部が位置する。すなわち、酸化
物半導体膜267bは、酸化物半導体膜267aの上面及び側面並びに酸化物半導体膜2
67cの側面を覆う。また、酸化物半導体膜267cは絶縁膜364と接する。酸化物半
導体膜267bは絶縁膜272と接する。また、酸化物半導体膜267aは、酸化物半導
体膜267b及び酸化物半導体膜267cと接する。
化物半導体膜267aと酸化物半導体膜267bは、組成が異なる。一方、酸化物半導体
膜267bと、酸化物半導体膜366は組成が同じである。すなわち、酸化物半導体膜2
67aと、酸化物半導体膜267b及び酸化物半導体膜366とは、別の工程で形成され
、且つ酸化物半導体膜267b及び酸化物半導体膜366は同じ工程で形成される。
ルが形成される。このため、酸化物半導体膜267aは、酸化物半導体膜267bより膜
厚が大きいことが好ましい。
0nm以下、または20nm以上35nm以下である。酸化物半導体膜267b、及び酸
化物半導体膜366の膜厚は、3nm以上200nm以下、または3nm以上100nm
以下、または10nm以上100nm以下、または30nm以上50nm以下である。
なくともInを含む金属酸化物膜で形成され、代表的には、In−Ga酸化物膜、In−
M−Zn酸化物膜(Mは、Mg、Al、Ti、Ga、Y、Zr、La、Ce、Nd、又は
Hf)等で形成される。
e、Nd、又はHf)に対するInの原子数比が大きい。酸化物半導体膜367aがIn
−M−Zn酸化物(Mは、Mg、Al、Ti、Ga、Y、Zr、La、Ce、Nd、又は
Hf)の場合、酸化物半導体膜367aを成膜するために用いるターゲットにおいて、金
属元素の原子数比をIn:M:Zn=x3:y3:z3とすると、x3/y3は、1より
大きく6以下であることが好ましい。ターゲットの金属元素の原子数比の代表例としては
、In:M:Zn=2:1:1.5、In:M:Zn=2:1:2.3、In:M:Zn
=2:1:3、In:M:Zn=3:1:2、In:M:Zn=3:1:3、In:M:
Zn=3:1:4等がある。
Ga、Y、Zr、La、Ce、Nd、又はHf)に対するInの原子数比が同じ、又は小
さい。酸化物半導体膜267b及び酸化物半導体膜366がIn−M−Zn酸化物膜(M
は、Mg、Al、Ti、Ga、Y、Zr、La、Ce、Nd、又はHf)の場合、酸化物
半導体膜267b及び酸化物半導体膜366を成膜するために用いるターゲットにおいて
、金属元素の原子数比をIn:M:Zn=x4:y4:z4とすると、x4/y4は、1
/6以上1以下であることが好ましい。また、z4/y4は、1/3以上6以下、さらに
は1以上6以下であることが好ましい。なお、z4/y4を1以上6以下とすることで、
酸化物半導体膜267b及び酸化物半導体膜366としてCAAC−OS膜が形成されや
すくなる。ターゲットの金属元素の原子数比の代表例としては、In:M:Zn=1:1
:1、In:M:Zn=1:1:1.2、In:M:Zn=1:3:2、In:M:Zn
=1:3:4、In:M:Zn=1:3:6、In:M:Zn=1:3:8、In:M:
Zn=1:4:4、In:M:Zn=1:4:5、In:M:Zn=1:4:6、In:
M:Zn=1:4:7、In:M:Zn=1:4:8、In:M:Zn=1:5:5、I
n:M:Zn=1:5:6、In:M:Zn=1:5:7、In:M:Zn=1:5:8
、In:M:Zn=1:6:8等がある。
a、Y、Zr、La、Ce、Nd、又はHf)に対するInの原子数比が大きい酸化物半
導体膜267aにチャネルが形成されるため、電界効果移動度が高い。代表的には、電界
効果移動度が10cm2/Vsより大きく60cm2/Vs未満、好ましくは15cm2
/Vs以上50cm2/Vs未満のトランジスタである。しかしながら、光が照射される
とオフ状態における電流が増大してしまう。このため、駆動回路部に遮光膜を設けること
で、電界効果移動度が高く、且つオフ状態における電流の低いトランジスタとなる。この
結果、高速動作が可能な駆動回路部を作製することができる。
397bのように、遮光膜として機能する導電膜261を設けてもよい。さらに、導電膜
261及び導電膜274を接続することで、さらにトランジスタ397a及びトランジス
タ397bのオン電流を増大させるとともに、電界効果移動度を高めることができる。
Ce、Nd、又はHf)に対するInの原子数比が同じ、又は小さい酸化物半導体膜にチ
ャネルが形成されるため、酸化物半導体膜に光が照射されても、オフ電流の増大量が少な
い。このため、画素部に、M(Mは、Mg、Al、Ti、Ga、Y、Zr、La、Ce、
Nd、又はHf)に対するInの原子数比が同じ、又は小さい酸化物半導体膜を有するト
ランジスタを設けることで、光照射の劣化が少なく、表示品質に優れた画素部を作製する
ことができる。
e、Nd、又はHf)に対するInの原子数比が小さい。酸化物半導体膜267cがIn
−M−Zn酸化物膜(Mは、Mg、Al、Ti、Ga、Y、Zr、La、Ce、Nd、又
はHf)の場合、酸化物半導体膜267cを成膜するために用いるターゲットにおいて、
金属元素の原子数比をIn:M:Zn=x5:y5:z5とすると、x5/y5は、1/
6以上1未満であることが好ましい。また、z5/y5は、1/3以上6以下、さらには
1以上6以下であることが好ましい。なお、z5/y5を1以上6以下とすることで、酸
化物半導体膜267cとしてCAAC−OS膜が形成されやすくなる。ターゲットの金属
元素の原子数比の代表例としては、In:M:Zn=1:3:2、In:M:Zn=1:
3:4、In:M:Zn=1:3:6、In:M:Zn=1:3:8、In:M:Zn=
1:4:4、In:M:Zn=1:4:5、In:M:Zn=1:4:6、In:M:Z
n=1:4:7、In:M:Zn=1:4:8、In:M:Zn=1:5:5、In:M
:Zn=1:5:6、In:M:Zn=1:5:7、In:M:Zn=1:5:8、In
:M:Zn=1:6:8等がある。
酸化物ターゲット(In:Ga=7:93)を用いて、スパッタリング法により形成する
ことができる。また、酸化物半導体膜267cを、DC放電を用いたスパッタリング法で
In−Ga酸化物膜を成膜するためには、In:Ga=x:y[原子数比]としたときに
、y/(x+y)を0.96以下、好ましくは0.95以下、例えば0.93とするとよ
い。
られた酸化物半導体膜267cの膜厚は、酸化物半導体膜267aより膜厚が小さく、且
つ2nm以上100nm以下、好ましくは2nm以上50nm以下、さらに好ましくは3
nm以上15nm以下である。ゲート絶縁膜として機能する絶縁膜364及び酸化物半導
体膜267aの間に酸化物半導体膜267cを設けることで、トランジスタのしきい値電
圧の変動を低減することができる。
次に、図51(A)に示すトランジスタ390及びトランジスタ397aの作製方法に
ついて、図52を用いて説明する。
2及び導電膜261上に絶縁膜364を形成する。次に、絶縁膜364上に酸化物半導体
膜265aを形成する。
程によりマスクを形成した後、酸化物半導体膜265aをエッチングして、駆動回路部に
酸化物半導体膜267aを形成する。
物半導体膜265bを形成する。
程によりマスクを形成した後、酸化物半導体膜265bをエッチングして、駆動回路部に
酸化物半導体膜267aを覆う酸化物半導体膜267bを形成し、画素部に酸化物半導体
膜366を形成する。
半導体膜267bを形成することで、後のソース電極及びドレイン電極として機能する導
電膜の形成工程において、酸化物半導体膜267aをエッチングしない。この結果、トラ
ンジスタのチャネル幅方向における酸化物半導体膜267aの長さの変動を低減できるた
め好ましい。
7aを作製することができる。
と適宜組み合わせて用いることができる。
本実施の形態では、半導体装置の一形態を、図37乃至図39を用いて説明する。ここ
では、半導体装置の一例として表示装置を用いて説明する。また、表示装置の画素部は複
数の画素で構成される。ここでは、一画素に設けられるトランジスタと、該トランジスタ
に接続する容量素子の構造について説明する。
図37に、画素に含まれるトランジスタ150と、該トランジスタ150と接続する容
量素子159の構造を示す。
び断面図を示す。図37(A)はトランジスタ150及び容量素子159の上面図であり
、図37(B)は、図37(A)の一点鎖線X3−X4間の断面図、及び一点鎖線X5−
X6間の断面図である。
構造を有する。
156に接する絶縁膜118と、絶縁膜118上の導電膜124とを有する。
膜122の開口部142aにおいて、導電膜124は導電膜112と接する。絶縁膜10
8、絶縁膜116、及び絶縁膜122の開口部142bにおいて、導電膜124は絶縁膜
118と接する。
膜を用いることができる。絶縁膜122は、厚さが500nm以上10μm以下であるこ
とが好ましい。
化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化
チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化シリコンを含むインジウ
ム錫酸化物等の透光性を有する導電性材料を用いて形成することができる。
ン、タングステンなどの光を反射する金属元素を用いて形成することができる。さらには
、光を反射する金属元素を用いて形成された膜と、上記透光性を有する導電性材料を用い
て形成された膜を積層して形成してもよい。
る。また、酸化物半導体膜106に含まれる領域106bと同様に不純物元素が添加され
ている。このため、酸化物半導体膜156は、導電性を有する。
9は透光性を有する。このため、表示装置の画素に容量素子159を設けることで、画素
における開口率を高めることが可能である。
図38に、画素に含まれるトランジスタ190と、該トランジスタ190と接続する容
量素子199の構造を示す。
び断面図を示す。図38(A)はトランジスタ190及び容量素子199の上面図であり
、図38(B)は、図38(A)の一点鎖線X3−X4間の断面図、及び一点鎖線X5−
X6間の断面図である。
構造を有する。
198に接する絶縁膜176と、絶縁膜176上の導電膜184とを有する。
膜182の開口部182aにおいて、導電膜184は導電膜172と接する。絶縁膜16
8、絶縁膜178及び絶縁膜182の開口部182bにおいて、導電膜184は絶縁膜1
76と接する。
る。また、酸化物半導体膜166に含まれる領域166bと同様に不純物元素が添加され
ている。このため、酸化物半導体膜198は、導電性を有する。
9は透光性を有する。このため、表示装置の画素に容量素子199を設けることで、画素
における開口率を高めることが可能である。
、導電性を有する酸化物半導体膜を形成することができる。このため、マスク数の増加な
く、トランジスタ及び容量素子を同時に形成することができる。
図39に、画素に含まれるトランジスタ390と、該トランジスタ390と接続する容
量素子399の構造を示す。
び断面図を示す。図39(A)はトランジスタ390及び容量素子399の上面図であり
、図39(B)は、図39(A)の一点鎖線X3−X4間の断面図、及び一点鎖線X5−
X6間の断面図である。
構造を有する。
396に接する絶縁膜376と、絶縁膜376上の導電膜384とを有する。
部388aにおいて、導電膜384は導電膜370と接する。絶縁膜376の開口部38
8bにおいて、導電膜384は絶縁膜376と接する。
る。また、酸化物半導体膜366に含まれる領域366bと同様に不純物元素が添加され
ている。このため、酸化物半導体膜396は、導電性を有する。
9は透光性を有する。このため、表示装置の画素に容量素子399を設けることで、画素
における開口率を高めることが可能である。
、導電性を有する酸化物半導体膜を形成することができる。このため、マスク数の増加な
く、トランジスタ及び容量素子を同時に形成することができる。
と適宜組み合わせて用いることができる。
本実施の形態では、本発明の一態様の半導体装置に含まれる酸化物半導体膜の構成につ
いて以下詳細に説明を行う。
以下では、酸化物半導体の構造について説明する。
れる。非単結晶酸化物半導体としては、CAAC−OS(C Axis Aligned
Crystalline Oxide Semiconductor)、多結晶酸化物
半導体、微結晶酸化物半導体、非晶質酸化物半導体などがある。
半導体とに分けられる。結晶性酸化物半導体としては、単結晶酸化物半導体、CAAC−
OS、多結晶酸化物半導体、微結晶酸化物半導体などがある。
まずは、CAAC−OSについて説明する。なお、CAAC−OSを、CANC(C−
Axis Aligned nanocrystals)を有する酸化物半導体と呼ぶこ
ともできる。
半導体の一つである。
oscope)によって、CAAC−OSの明視野像と回折パターンとの複合解析像(高
分解能TEM像ともいう。)を観察すると、複数のペレットを確認することができる。一
方、高分解能TEM像ではペレット同士の境界、即ち結晶粒界(グレインバウンダリーと
もいう。)を明確に確認することができない。そのため、CAAC−OSは、結晶粒界に
起因する電子移動度の低下が起こりにくいといえる。
、試料面と略平行な方向から観察したCAAC−OSの断面の高分解能TEM像を示す。
高分解能TEM像の観察には、球面収差補正(Spherical Aberratio
n Corrector)機能を用いた。球面収差補正機能を用いた高分解能TEM像を
、特にCs補正高分解能TEM像と呼ぶ。Cs補正高分解能TEM像の取得は、例えば、
日本電子株式会社製原子分解能分析電子顕微鏡JEM−ARM200Fなどによって行う
ことができる。
。図47(B)より、ペレットにおいて、金属原子が層状に配列していることを確認でき
る。金属原子の各層の配列は、CAAC−OSの膜を形成する面(被形成面ともいう。)
または上面の凹凸を反映しており、CAAC−OSの被形成面または上面と平行となる。
)は、特徴的な原子配列を、補助線で示したものである。図47(B)および図47(C
)より、ペレット一つの大きさは1nm以上3nm以下程度であり、ペレットとペレット
との傾きにより生じる隙間の大きさは0.8nm程度であることがわかる。したがって、
ペレットを、ナノ結晶(nc:nanocrystal)と呼ぶこともできる。
ット5100の配置を模式的に示すと、レンガまたはブロックが積み重なったような構造
となる(図47(D)参照。)。図47(C)で観察されたペレットとペレットとの間で
傾きが生じている箇所は、図47(D)に示す領域5161に相当する。
s補正高分解能TEM像を示す。図48(A)の領域(1)、領域(2)および領域(3
)を拡大したCs補正高分解能TEM像を、それぞれ図48(B)、図48(C)および
図48(D)に示す。図48(B)、図48(C)および図48(D)より、ペレットは
、金属原子が三角形状、四角形状または六角形状に配列していることを確認できる。しか
しながら、異なるペレット間で、金属原子の配列に規則性は見られない。
AAC−OSについて説明する。例えば、InGaZnO4の結晶を有するCAAC−O
Sに対し、out−of−plane法による構造解析を行うと、図49(A)に示すよ
うに回折角(2θ)が31°近傍にピークが現れる場合がある。このピークは、InGa
ZnO4の結晶の(009)面に帰属されることから、CAAC−OSの結晶がc軸配向
性を有し、c軸が被形成面または上面に略垂直な方向を向いていることが確認できる。
°近傍のピークの他に、2θが36°近傍にもピークが現れる場合がある。2θが36°
近傍のピークは、CAAC−OS中の一部に、c軸配向性を有さない結晶が含まれること
を示している。より好ましいCAAC−OSは、out−of−plane法による構造
解析では、2θが31°近傍にピークを示し、2θが36°近傍にピークを示さない。
ne法による構造解析を行うと、2θが56°近傍にピークが現れる。このピークは、I
nGaZnO4の結晶の(110)面に帰属される。CAAC−OSの場合は、2θを5
6°近傍に固定し、試料面の法線ベクトルを軸(φ軸)として試料を回転させながら分析
(φスキャン)を行っても、図49(B)に示すように明瞭なピークは現れない。これに
対し、InGaZnO4の単結晶酸化物半導体であれば、2θを56°近傍に固定してφ
スキャンした場合、図49(C)に示すように(110)面と等価な結晶面に帰属される
ピークが6本観察される。したがって、XRDを用いた構造解析から、CAAC−OSは
、a軸およびb軸の配向が不規則であることが確認できる。
ZnO4の結晶を有するCAAC−OSに対し、試料面に平行にプローブ径が300nm
の電子線を入射させると、図55(A)に示すような回折パターン(制限視野透過電子回
折パターンともいう。)が現れる場合がある。この回折パターンには、InGaZnO4
の結晶の(009)面に起因するスポットが含まれる。したがって、電子回折によっても
、CAAC−OSに含まれるペレットがc軸配向性を有し、c軸が被形成面または上面に
略垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面に垂直にプロー
ブ径が300nmの電子線を入射させたときの回折パターンを図55(B)に示す。図5
5(B)より、リング状の回折パターンが確認される。したがって、電子回折によっても
、CAAC−OSに含まれるペレットのa軸およびb軸は配向性を有さないことがわかる
。なお、図55(B)における第1リングは、InGaZnO4の結晶の(010)面お
よび(100)面などに起因すると考えられる。また、図55(B)における第2リング
は(110)面などに起因すると考えられる。
陥としては、例えば、不純物に起因する欠陥や、酸素欠損などがある。したがって、CA
AC−OSは、不純物濃度の低い酸化物半導体ということもできる。また、CAAC−O
Sは、酸素欠損の少ない酸化物半導体ということもできる。
なる場合がある。また、酸化物半導体中の酸素欠損は、キャリアトラップとなる場合や、
水素を捕獲することによってキャリア発生源となる場合がある。
属元素などがある。例えば、シリコンなどの、酸化物半導体を構成する金属元素よりも酸
素との結合力の強い元素は、酸化物半導体から酸素を奪うことで酸化物半導体の原子配列
を乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、
二酸化炭素などは、原子半径(または分子半径)が大きいため、酸化物半導体の原子配列
を乱し、結晶性を低下させる要因となる。
することができる。そのような酸化物半導体を、高純度真性または実質的に高純度真性な
酸化物半導体と呼ぶ。CAAC−OSは、不純物濃度が低く、欠陥準位密度が低い。即ち
、高純度真性または実質的に高純度真性な酸化物半導体となりやすい。したがって、CA
AC−OSを用いたトランジスタは、しきい値電圧がマイナスとなる電気特性(ノーマリ
ーオンともいう。)になることが少ない。また、高純度真性または実質的に高純度真性な
酸化物半導体は、キャリアトラップが少ない。酸化物半導体のキャリアトラップに捕獲さ
れた電荷は、放出するまでに要する時間が長く、あたかも固定電荷のように振る舞うこと
がある。そのため、不純物濃度が高く、欠陥準位密度が高い酸化物半導体を用いたトラン
ジスタは、電気特性が不安定となる場合がある。一方、CAAC−OSを用いたトランジ
スタは、電気特性の変動が小さく、信頼性の高いトランジスタとなる。
ャリアが、欠陥準位に捕獲されることが少ない。したがって、CAAC−OSを用いたト
ランジスタは、可視光や紫外光の照射による電気特性の変動が小さい。
次に、微結晶酸化物半導体について説明する。
域と、明確な結晶部を確認することのできない領域と、を有する。微結晶酸化物半導体に
含まれる結晶部は、1nm以上100nm以下、または1nm以上10nm以下の大きさ
であることが多い。特に、1nm以上10nm以下、または1nm以上3nm以下の微結
晶であるナノ結晶を有する酸化物半導体を、nc−OS(nanocrystallin
e Oxide Semiconductor)と呼ぶ。nc−OSは、例えば、高分解
能TEM像では、結晶粒界を明確に確認できない場合がある。なお、ナノ結晶は、CAA
C−OSにおけるペレットと起源を同じくする可能性がある。そのため、以下ではnc−
OSの結晶部をペレットと呼ぶ場合がある。
3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるペ
レット間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。し
たがって、nc−OSは、分析方法によっては、非晶質酸化物半導体と区別が付かない場
合がある。例えば、nc−OSに対し、ペレットよりも大きい径のX線を用いるXRD装
置を用いて構造解析を行うと、out−of−plane法による解析では、結晶面を示
すピークが検出されない。また、nc−OSに対し、ペレットよりも大きいプローブ径(
例えば50nm以上)の電子線を用いる電子回折(制限視野電子回折ともいう。)を行う
と、ハローパターンのような回折パターンが観測される。一方、nc−OSに対し、ペレ
ットの大きさと近いかペレットより小さいプローブ径の電子線を用いるナノビーム電子回
折を行うと、スポットが観測される。また、nc−OSに対しナノビーム電子回折を行う
と、円を描くように(リング状に)輝度の高い領域が観測される場合がある。さらに、リ
ング状の領域内に複数のスポットが観測される場合がある。
−OSを、RANC(Random Aligned nanocrystals)を有
する酸化物半導体、またはNANC(Non−Aligned nanocrystal
s)を有する酸化物半導体と呼ぶこともできる。
、nc−OSは、非晶質酸化物半導体よりも欠陥準位密度が低くなる。ただし、nc−O
Sは、異なるペレット間で結晶方位に規則性が見られない。そのため、nc−OSは、C
AAC−OSと比べて欠陥準位密度が高くなる。
次に、非晶質酸化物半導体について説明する。
物半導体である。石英のような無定形状態を有する酸化物半導体が一例である。
lane法による解析では、結晶面を示すピークが検出されない。また、非晶質酸化物半
導体に対し、電子回折を行うと、ハローパターンが観測される。また、非晶質酸化物半導
体に対し、ナノビーム電子回折を行うと、スポットが観測されず、ハローパターンのみが
観測される。
有さない構造を完全な非晶質構造(completely amorphous str
ucture)と呼ぶ場合がある。また、最近接原子間距離または第2近接原子間距離ま
で秩序性を有し、かつ長距離秩序性を有さない構造を非晶質構造と呼ぶ場合もある。した
がって、最も厳格な定義によれば、僅かでも原子配列に秩序性を有する酸化物半導体を非
晶質酸化物半導体と呼ぶことはできない。また、少なくとも、長距離秩序性を有する酸化
物半導体を非晶質酸化物半導体と呼ぶことはできない。よって、結晶部を有することから
、例えば、CAAC−OSおよびnc−OSを、非晶質酸化物半導体または完全な非晶質
酸化物半導体と呼ぶことはできない。
なお、酸化物半導体は、nc−OSと非晶質酸化物半導体との間の構造を有する場合が
ある。そのような構造を有する酸化物半導体を、特に非晶質ライク酸化物半導体(a−l
ike OS:amorphous−like Oxide Semiconducto
r)と呼ぶ。
る場合がある。また、高分解能TEM像において、明確に結晶部を確認することのできる
領域と、結晶部を確認することのできない領域と、を有する。
e OSが、CAAC−OSおよびnc−OSと比べて不安定な構造であることを示すた
め、電子照射による構造の変化を示す。
(試料Bと表記する。)およびCAAC−OS(試料Cと表記する。)を準備する。いず
れの試料もIn−Ga−Zn酸化物である。
料は、いずれも結晶部を有することがわかる。
、InGaZnO4の結晶の単位格子は、In−O層を3層有し、またGa−Zn−O層
を6層有する、計9層がc軸方向に層状に重なった構造を有することが知られている。こ
れらの近接する層同士の間隔は、(009)面の格子面間隔(d値ともいう。)と同程度
であり、結晶構造解析からその値は0.29nmと求められている。したがって、格子縞
の間隔が0.28nm以上0.30nm以下である箇所を、InGaZnO4の結晶部と
見なすことができる。なお、格子縞は、InGaZnO4の結晶のa−b面に対応する。
る。ただし、上述した格子縞の長さを結晶部の大きさとしている。図56より、a−li
ke OSは、電子の累積照射量に応じて結晶部が大きくなっていくことがわかる。具体
的には、図56中に(1)で示すように、TEMによる観察初期においては1.2nm程
度の大きさだった結晶部(初期核ともいう。)が、累積照射量が4.2×108e−/n
m2においては2.6nm程度の大きさまで成長していることがわかる。一方、nc−O
SおよびCAAC−OSは、電子照射開始時から電子の累積照射量が4.2×108e−
/nm2までの範囲で、結晶部の大きさに変化が見られないことがわかる。具体的には、
図56中の(2)および(3)で示すように、電子の累積照射量によらず、nc−OSお
よびCAAC−OSの結晶部の大きさは、それぞれ1.4nm程度および2.1nm程度
であることがわかる。
ある。一方、nc−OSおよびCAAC−OSは、電子照射による結晶部の成長がほとん
ど見られないことがわかる。即ち、a−like OSは、nc−OSおよびCAAC−
OSと比べて、不安定な構造であることがわかる。
べて密度の低い構造である。具体的には、a−like OSの密度は、同じ組成の単結
晶の密度の78.6%以上92.3%未満となる。また、nc−OSの密度およびCAA
C−OSの密度は、同じ組成の単結晶の密度の92.3%以上100%未満となる。単結
晶の密度の78%未満となる酸化物半導体は、成膜すること自体が困難である。
菱面体晶構造を有する単結晶InGaZnO4の密度は6.357g/cm3となる。よ
って、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体におい
て、a−like OSの密度は5.0g/cm3以上5.9g/cm3未満となる。ま
た、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において
、nc−OSの密度およびCAAC−OSの密度は5.9g/cm3以上6.3g/cm
3未満となる。
る単結晶を組み合わせることにより、所望の組成における単結晶に相当する密度を見積も
ることができる。所望の組成の単結晶に相当する密度は、組成の異なる単結晶を組み合わ
せる割合に対して、加重平均を用いて見積もればよい。ただし、密度は、可能な限り少な
い種類の単結晶を組み合わせて見積もることが好ましい。
なお、酸化物半導体は、例えば、非晶質酸化物半導体、a−like OS、微結晶酸化
物半導体、CAAC−OSのうち、二種以上を有する積層膜であってもよい。
以下では、CAAC−OSおよびnc−OSの成膜モデルの一例について説明する。
膜室内の模式図である。
介してターゲット5130と向かい合う位置には、複数のマグネットが配置される。該複
数のマグネットによって磁場が生じている。マグネットの磁場を利用して成膜速度を高め
るスパッタリング法は、マグネトロンスパッタリング法と呼ばれる。
ターゲット−基板間距離(T−S間距離)ともいう。)は0.01m以上1m以下、好ま
しくは0.02m以上0.5m以下とする。成膜室内は、ほとんどが成膜ガス(例えば、
酸素、アルゴン、または酸素を5体積%以上の割合で含む混合ガス)で満たされ、0.0
1Pa以上100Pa以下、好ましくは0.1Pa以上10Pa以下に制御される。ここ
で、ターゲット5130に一定以上の電圧を印加することで、放電が始まり、プラズマが
確認される。なお、ターゲット5130の近傍には磁場によって、高密度プラズマ領域が
形成される。高密度プラズマ領域では、成膜ガスがイオン化することで、イオン5101
が生じる。イオン5101は、例えば、酸素の陽イオン(O+)やアルゴンの陽イオン(
Ar+)などである。
結晶粒には劈開面が含まれる。図58(A)に、一例として、ターゲット5130に含ま
れるInGaZnO4の結晶の構造を示す。なお、図58(A)は、b軸に平行な方向か
らInGaZnO4の結晶を観察した場合の構造である。図58(A)より、近接する二
つのGa−Zn−O層において、それぞれの層における酸素原子同士が近距離に配置され
ていることがわかる。そして、酸素原子が負の電荷を有することにより、近接する二つの
Ga−Zn−O層の間には斥力が生じる。その結果、InGaZnO4の結晶は、近接す
る二つのGa−Zn−O層の間に劈開面を有する。
加速され、やがてターゲット5130と衝突する。このとき、劈開面から平板状またはペ
レット状のスパッタ粒子であるペレット5100aおよびペレット5100bが剥離し、
叩き出される。なお、ペレット5100aおよびペレット5100bは、イオン5101
の衝突の衝撃によって、構造に歪みが生じる場合がある。
状のスパッタ粒子である。また、ペレット5100bは、六角形、例えば正六角形の平面
を有する平板状またはペレット状のスパッタ粒子である。なお、ペレット5100aおよ
びペレット5100bなどの平板状またはペレット状のスパッタ粒子を総称してペレット
5100と呼ぶ。ペレット5100の平面の形状は、三角形、六角形に限定されない、例
えば、三角形が複数個合わさった形状となる場合がある。例えば、三角形(例えば、正三
角形)が2個合わさった四角形(例えば、ひし形)となる場合もある。
、ペレット5100の厚さは、均一にすることが好ましい。また、スパッタ粒子は厚みの
ないペレット状である方が、厚みのあるサイコロ状であるよりも好ましい。例えば、ペレ
ット5100は、厚さを0.4nm以上1nm以下、好ましくは0.6nm以上0.8n
m以下とする。また、例えば、ペレット5100は、幅を1nm以上3nm以下、好まし
くは1.2nm以上2.5nm以下とする。ペレット5100は、上述の図56中の(1
)で説明した初期核に相当する。例えば、In−Ga−Zn酸化物を有するターゲット5
130にイオン5101を衝突させると、図58(B)に示すように、Ga−Zn−O層
、In−O層およびGa−Zn−O層の3層を有するペレット5100が剥離する。図5
8(C)に、剥離したペレット5100をc軸に平行な方向から観察した構造を示す。ペ
レット5100は、二つのGa−Zn−O層と、In−O層と、を有するナノサイズのサ
ンドイッチ構造と呼ぶこともできる。
る。ペレット5100は、例えば、側面に位置する酸素原子が負に帯電する可能性がある
。側面が同じ極性の電荷を有することにより、電荷同士の反発が起こり、平板状またはペ
レット状の形状を維持することが可能となる。なお、CAAC−OSが、In−Ga−Z
n酸化物である場合、インジウム原子と結合した酸素原子が負に帯電する可能性がある。
または、インジウム原子、ガリウム原子または亜鉛原子と結合した酸素原子が負に帯電す
る可能性がある。また、ペレット5100は、プラズマを通過する際に、プラズマ中のイ
ンジウム原子、ガリウム原子、亜鉛原子および酸素原子などと結合することで成長する場
合がある。上述の図56中の(2)と(1)の大きさの違いが、プラズマ中での成長分に
相当する。ここで、基板5120が室温程度である場合、基板5120上におけるペレッ
ト5100の成長が起こりにくいためnc−OSとなる(図57(B)参照。)。室温程
度で成膜できることから、基板5120が大面積である場合でもnc−OSの成膜が可能
である。なお、ペレット5100をプラズマ中で成長させるためには、スパッタリング法
における成膜電力を高くすることが有効である。成膜電力を高くすることで、ペレット5
100の構造を安定にすることができる。
マ中を凧のように飛翔し、ひらひらと基板5120上まで舞い上がっていく。ペレット5
100は電荷を帯びているため、ほかのペレット5100が既に堆積している領域が近づ
くと、斥力が生じる。ここで、基板5120の上面では、基板5120の上面に平行な向
きの磁場(水平磁場ともいう。)が生じている。また、基板5120およびターゲット5
130間には、電位差が与えられるため、基板5120からターゲット5130に向かう
方向に電流が流れる。したがって、ペレット5100は、基板5120の上面において、
磁場および電流の作用によって、力(ローレンツ力)を受ける。このことは、フレミング
の左手の法則によって理解できる。
面を移動するためには何らかの力を外部から印加することが重要となる。その力の一つが
磁場および電流の作用で生じる力である可能性がある。なお、ペレット5100に、基板
5120の上面を移動するために十分な力を与えるには、基板5120の上面において、
基板5120の上面に平行な向きの磁場が10G以上、好ましくは20G以上、さらに好
ましくは30G以上、より好ましくは50G以上となる領域を設けるとよい。または、基
板5120の上面において、基板5120の上面に平行な向きの磁場が、基板5120の
上面に垂直な向きの磁場の1.5倍以上、好ましくは2倍以上、さらに好ましくは3倍以
上、より好ましくは5倍以上となる領域を設けるとよい。
によって、基板5120の上面における水平磁場の向きは変化し続ける。したがって、基
板5120の上面において、ペレット5100は、様々な方向から力を受け、様々な方向
へ移動することができる。
0と基板5120との間で摩擦などによる抵抗が小さい状態となっている。その結果、ペ
レット5100は、基板5120の上面を滑空するように移動する。ペレット5100の
移動は、平板面を基板5120に向けた状態で起こる。その後、既に堆積しているほかの
ペレット5100の側面まで到達すると、側面同士が結合する。このとき、ペレット51
00の側面にある酸素原子が脱離する。脱離した酸素原子によって、CAAC−OS中の
酸素欠損が埋まる場合があるため、欠陥準位密度の低いCAAC−OSとなる。なお、基
板5120の上面の温度は、例えば、100℃以上500℃未満、150℃以上450℃
未満、または170℃以上400℃未満とすればよい。したがって、基板5120が大面
積である場合でもCAAC−OSの成膜は可能である。
、イオン5101の衝突で生じた構造の歪みが緩和される。歪みの緩和されたペレット5
100は、ほとんど単結晶となる。ペレット5100がほとんど単結晶となることにより
、ペレット5100同士が結合した後に加熱されたとしても、ペレット5100自体の伸
縮はほとんど起こり得ない。したがって、ペレット5100間の隙間が広がることで結晶
粒界などの欠陥を形成し、クレバス化することがない。
、ペレット5100(ナノ結晶)の集合体がレンガまたはブロックが積み重なったような
配列をしている。また、ペレット5100同士の間には結晶粒界を有さない。そのため、
成膜時の加熱、成膜後の加熱または曲げなどで、CAAC−OSに縮みなどの変形が生じ
た場合でも、局部応力を緩和する、または歪みを逃がすことが可能である。したがって、
可とう性を有する半導体装置に用いることに適した構造である。なお、nc−OSは、ペ
レット5100(ナノ結晶)が無秩序に積み重なったような配列となる。
く、酸化亜鉛などが剥離する場合がある。酸化亜鉛はペレット5100よりも軽量である
ため、先に基板5120の上面に到達する。そして、0.1nm以上10nm以下、0.
2nm以上5nm以下、または0.5nm以上2nm以下の酸化亜鉛層5102を形成す
る。図59に断面模式図を示す。
ト5105bと、が堆積する。ここで、ペレット5105aとペレット5105bとは、
互いに側面が接するように配置している。また、ペレット5105cは、ペレット510
5b上に堆積した後、ペレット5105b上を滑るように移動する。また、ペレット51
05aの別の側面において、酸化亜鉛とともにターゲットから剥離した複数の粒子510
3が、基板5120からの加熱により結晶化し、領域5105a1を形成する。なお、複
数の粒子5103は、酸素、亜鉛、インジウムおよびガリウムなどを含む可能性がある。
化し、ペレット5105a2となる。また、ペレット5105cは、その側面がペレット
5105bの別の側面と接するように配置する。
上およびペレット5105b上に堆積した後、ペレット5105a2上およびペレット5
105b上を滑るように移動する。また、ペレット5105cの別の側面に向けて、さら
にペレット5105eが酸化亜鉛層5102上を滑るように移動する。
05a2の側面と接するように配置する。また、ペレット5105eは、その側面がペレ
ット5105cの別の側面と接するように配置する。また、ペレット5105dの別の側
面において、酸化亜鉛とともにターゲット5130から剥離した複数の粒子5103が基
板5120からの加熱により結晶化し、領域5105d1を形成する。
成長が起こることで、基板5120上にCAAC−OSが形成される。したがって、CA
AC−OSは、nc−OSよりも一つ一つのペレットが大きくなる。上述の図56中の(
3)と(2)の大きさの違いが、堆積後の成長分に相当する。
れる場合がある。一つの大きなペレットは、単結晶構造を有する。例えば、ペレットの大
きさが、上面から見て10nm以上200nm以下、15nm以上100nm以下、また
は20nm以上50nm以下となる場合がある。このとき、微細なトランジスタに用いる
酸化物半導体において、チャネル形成領域が一つの大きなペレットに収まる場合がある。
即ち、単結晶構造を有する領域をチャネル形成領域として用いることができる。また、ペ
レットが大きくなることで、単結晶構造を有する領域をトランジスタのチャネル形成領域
、ソース領域およびドレイン領域として用いることができる場合がある。
されることによって、トランジスタの周波数特性を高くすることができる場合がある。
られる。被形成面が結晶構造を有さない場合においても、CAAC−OSの成膜が可能で
あることから、エピタキシャル成長とは異なる成長機構であることがわかる。また、CA
AC−OSは、レーザ結晶化が不要であり、大面積のガラス基板などであっても均一な成
膜が可能である。例えば、基板5120の上面(被形成面)の構造が非晶質構造(例えば
非晶質酸化シリコン)であっても、CAAC−OSを成膜することは可能である。
その形状に沿ってペレット5100が配列することがわかる。例えば、基板5120の上
面が原子レベルで平坦な場合、ペレット5100はa−b面と平行な平面である平板面を
下に向けて並置する。ペレット5100の厚さが均一である場合、厚さが均一で平坦、か
つ高い結晶性を有する層が形成される。そして、当該層がn段(nは自然数。)積み重な
ることで、CAAC−OSを得ることができる。
00が凹凸に沿って並置した層がn段(nは自然数。)積み重なった構造となる。基板5
120が凹凸を有するため、CAAC−OSは、ペレット5100間に隙間が生じやすい
場合がある。ただし、この場合でも、ペレット5100間で分子間力が働き、凹凸があっ
てもペレット間の隙間はなるべく小さくなるように配列する。したがって、凹凸があって
も高い結晶性を有するCAAC−OSとすることができる。
いペレット状である方が好ましい。なお、スパッタ粒子が厚みのあるサイコロ状である場
合、基板5120上に向ける面が一定とならず、厚さや結晶の配向を均一にできない場合
がある。
性を有するCAAC−OSを得ることができる。
合わせて用いることができる。
本実施の形態においては、先の例示したトランジスタを用いて表示機能を有する表示装
置の一例について、図40乃至図42を用いて以下説明を行う。
0は、第1の基板701上に設けられた画素部702と、第1の基板701に設けられた
駆動回路部であるソースドライバ回路部704及びゲートドライバ回路部706と、画素
部702、ソースドライバ回路部704、及びゲートドライバ回路部706を囲むように
配置されるシール材712と、第1の基板701に対向するように設けられる第2の基板
705と、を有する。なお、第1の基板701と第2の基板705は、シール材712に
よって封止されている。すなわち、画素部702、ソースドライバ回路部704、及びゲ
ートドライバ回路部706は、第1の基板701とシール材712と第2の基板705に
よって封止されている。なお、図40(A)には図示しないが、第1の基板701と第2
の基板705の間には表示素子が設けられる。
領域とは異なる領域に、画素部702、ソースドライバ回路部704、及びゲートドライ
バ回路部706と電気的に接続されるFPC端子部708(FPC:Flexible
printed circuit)が設けられる。また、FPC端子部708には、FP
C716が接続され、FPC716によって画素部702、ソースドライバ回路部704
、及びゲートドライバ回路部706に各種信号等が供給される。また、画素部702、ソ
ースドライバ回路部704、ゲートドライバ回路部706、及びFPC端子部708には
、信号線710aが各々接続されている。FPC716により供給される各種信号等は、
信号線710aを介して、画素部702、ソースドライバ回路部704、ゲートドライバ
回路部706、及びFPC端子部708に与えられる。
00としては、図40(A)に示す表示装置700の画素部702の代わりに画素部80
2を用い、信号線710aの代わりに信号線710bを用いる。
た、表示装置700、800としては、ソースドライバ回路部704、及びゲートドライ
バ回路部706を画素部702、802と同じ第1の基板701に形成している例を示し
ているが、この構成に限定されない。例えば、ゲートドライバ回路部706のみを第1の
基板701に形成しても良いし、ソースドライバ回路部704のみを第1の基板701に
形成しても良い。この場合、別途用意されたソースドライバ回路、またはゲートドライバ
回路等が形成された基板(例えば、単結晶半導体膜、多結晶半導体膜で形成された駆動回
路基板)を、第1の基板701に実装する構成としても良い。
(Chip On Glass)方法、ワイヤボンディング方法などを用いることができ
る。なお、本明細書中における表示装置とは、画像表示デバイス、もしくは光源(照明装
置なども含む)を指す。また、コネクター、例えばFPC、TCP(Tape Carr
ier Package)が取り付けられたモジュール、TCPの先にプリント配線板が
設けられたモジュール、または表示素子にCOG方式により駆動回路基板、またはIC(
集積回路)が直接実装されたモジュールも全て表示装置に含むものとする。
704及びゲートドライバ回路部706は、複数のトランジスタを有しており、本発明の
一態様の半導体装置であるトランジスタを適用することができる。
0は、表示素子として発光素子を用いる構成である。
する装置である発光装置は、様々な形態を用いること、又は様々な素子を有することが出
来る。表示素子、表示装置、発光素子又は発光装置の一例としては、EL(エレクトロル
ミネッセンス)素子(有機物及び無機物を含むEL素子、有機EL素子、無機EL素子)
、LED(白色LED、赤色LED、緑色LED、青色LEDなど)、トランジスタ(電
流に応じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク、電気泳動素
子、グレーティングライトバルブ(GLV)、プラズマディスプレイ(PDP)、MEM
S(マイクロ・エレクトロ・メカニカル・システム)を用いた表示素子、デジタルマイク
ロミラーデバイス(DMD)、DMS(デジタル・マイクロ・シャッター)、MIRAS
OL(登録商標)、IMOD(インターフェアレンス・モジュレーション)素子、シャッ
ター方式のMEMS表示素子、光干渉方式のMEMS表示素子、エレクトロウェッティン
グ素子、圧電セラミックディスプレイ、カーボンナノチューブ、など、電気磁気的作用に
より、コントラスト、輝度、反射率、透過率などが変化する表示媒体を有するものがある
。EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子放出素
子を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FED)又
はSED方式平面型ディスプレイ(SED:Surface−conduction E
lectron−emitter Display)などがある。液晶素子を用いた表示
装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディス
プレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)
などがある。電子インク又は電気泳動素子を用いた表示装置の一例としては、電子ペーパ
ーなどがある。なお、半透過型液晶ディスプレイや反射型液晶ディスプレイを実現する場
合には、画素電極の一部、または、全部が、反射電極としての機能を有するようにすれば
よい。例えば、画素電極の一部、または、全部が、アルミニウム、銀、などを有するよう
にすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路を設けるこ
とも可能である。これにより、さらに、消費電力を低減することができる。
部分について、図41乃至図43を用いて表示装置700と表示装置800の詳細につい
て説明する。
図41は、図40(A)に示す一点鎖線Q−Rにおける切断面に相当する断面図である
。図42は、図40(B)に示す一点鎖線V−Wにおける切断面に相当する断面図である
。
702、802と、ソースドライバ回路部704と、FPC端子部708と、を有する。
なお、引き回し配線部711は、信号線710aまたは信号線710bを有する。
のソース電極及びドレイン電極として機能する導電膜と同じ工程で形成される。また、引
き回し配線部711が有する信号線710bは、トランジスタ750、752のゲート電
極、ソース電極、及びドレイン電極と異なる工程で形成される。なお、信号線710a、
710bは、トランジスタ750、752のゲート電極として機能する導電膜と同じ工程
で形成される導電膜、またはゲート電極、ソース電極、またはドレイン電極と異なる工程
で形成された導電膜を用いてもよい。
6を有する。なお、接続電極760は、トランジスタ750のソース電極層及びドレイン
電極層として機能する導電膜と同じ工程で形成される。また、接続電極760は、FPC
716が有する端子と異方性導電膜780を介して、電気的に接続される。
02にトランジスタ750、ソースドライバ回路部704にトランジスタ752がそれぞ
れ設けられる構成について、例示している。トランジスタ750は、実施の形態3に示す
トランジスタ390と同じ構造であり、トランジスタ752は、実施の形態3に示すトラ
ンジスタ394と同じ構成である。なお、トランジスタ750及びトランジスタ752の
構成についてはそれぞれ、トランジスタ390及びトランジスタ394の構成に限定され
ず、適宜他のトランジスタの構成を用いてよい。
半導体膜を有し、オフ状態における電流値(オフ電流値)を小さくすることができる。よ
って、画像信号等の電気信号の保持時間を長くすることができ、電源オン状態では書き込
み間隔も長く設定できる。よって、リフレッシュ動作の頻度を少なくすることができるた
め、消費電力を抑制する効果を奏する。
酸化物半導体膜を有し、比較的高い電界効果移動度が得られるため、高速駆動が可能であ
る。例えば、このような高速駆動が可能なトランジスタを液晶表示装置に用いることで、
画素部のスイッチングトランジスタと、駆動回路部に使用するドライバトランジスタを同
一基板上に形成することができる。すなわち、別途駆動回路として、シリコンウェハ等に
より形成された半導体装置を用いる必要がないため、半導体装置の部品点数を削減するこ
とができる。また、画素部においても、高速駆動が可能なトランジスタを用いることで、
高画質な画像を提供することができる。
線として、銅元素を含む配線を用いることができる。そのため、本発明の一態様の表示装
置は、配線抵抗に起因する信号遅延等が少なく、大画面での表示が可能となる。
と、ソースドライバ回路部704に含まれるトランジスタ752は、同一のサイズの構成
としているが、これに限定されない。画素部702、及びソースドライバ回路部704に
用いるトランジスタは、適宜サイズ(L/W)、または用いるトランジスタ数などを変え
ることができる。また、図41及び図42においては、ゲートドライバ回路部706は、
図示していないが、接続先、または接続方法等を変更することで、ソースドライバ回路部
704と同様の構成とすることができる。
る絶縁膜764、766上に平坦化絶縁膜770が設けられている。
び作製方法により形成することができる。
ド樹脂、ベンゾシクロブテン樹脂、ポリアミド樹脂、エポキシ樹脂等の耐熱性を有する有
機材料を用いることができる。なお、これらの材料で形成される絶縁膜を複数積層させる
ことで、平坦化絶縁膜770を形成してもよい。また、平坦化絶縁膜770を設けない構
成としてもよい。
の一方には、導電膜772または導電膜844が接続される。導電膜772、844は、
平坦化絶縁膜770上に形成され画素電極、すなわち表示素子の一方の電極として機能す
る。導電膜772としては、可視光において透光性のある導電膜を用いると好ましい。該
導電膜としては、例えば、インジウム(In)、亜鉛(Zn)、錫(Sn)の中から選ば
れた一種を含む材料を用いるとよい。また、導電膜844としては、反射性のある導電膜
を用いると好ましい。
図41に示す表示装置700は、液晶素子775を有する。液晶素子775は、導電膜
772、導電膜774、及び液晶層776を有する。導電膜774は、第2の基板705
側に設けられ、対向電極としての機能を有する。図41に示す表示装置700は、導電膜
772と導電膜774に印加される電圧によって、液晶層776の配向状態が変わること
によって光の透過、非透過が制御され画像を表示することができる。
に、それぞれ配向膜を設ける構成としてもよい。
色膜736を有する。液晶素子775と重なる位置に、着色膜736が設けられ、引き回
し配線部711、及びソースドライバ回路部704に遮光膜738が設けられている。着
色膜736及び遮光膜738は、絶縁膜734で覆われている。駆動回路部のトランジス
タ752及び画素部のトランジスタ750は遮光膜738と重なるため、トランジスタの
外光の照射を防ぐことができる。なお、遮光膜738の代わりに着色膜を設けてもよい。
部材(光学基板)などは適宜設けてもよい。例えば、偏光基板及び位相差基板による円偏
光を用いてもよい。また、光源としてバックライト、サイドライトなどを用いてもよい。
きる。また、第1の基板701及び第2の基板705として、可撓性を有する基板を用い
てもよい。該可撓性を有する基板としては、例えばプラスチック基板等が挙げられる。
スペーサ778は、絶縁膜を選択的にエッチングすることで得られる柱状のスペーサであ
り、液晶層776の膜厚(セルギャップ)を制御するために設けられる。なお、スペーサ
778として、球状のスペーサを用いていても良い。
晶、高分子分散型液晶、強誘電性液晶、反強誘電性液晶等を用いることができる。これら
の液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイ
ラルネマチック相、等方相等を示す。
い。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリ
ック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発
現しないため、温度範囲を改善するために数重量%以上のカイラル剤を混合させた液晶組
成物を用いて液晶層に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、
応答速度が短く、光学的等方性である。また、ブルー相を示す液晶とカイラル剤とを含む
液晶組成物は、配向処理が不要であり、且つ視野角依存性が小さい。また配向膜を設けな
くてもよいのでラビング処理も不要となるため、ラビング処理によって引き起こされる静
電破壊を防止することができ、作製工程中の液晶表示装置の不良や破損を軽減することが
できる。
)モード、IPS(In−Plane−Switching)モード、FFS(Frin
ge Field Switching)モード、ASM(Axially Symme
tric aligned Micro−cell)モード、OCB(Optical
Compensated Birefringence)モード、FLC(Ferroe
lectric Liquid Crystal)モード、AFLC(AntiFerr
oelectric Liquid Crystal)モードなどを用いることができる
。
透過型の液晶表示装置としてもよい。垂直配向モードとしては、いくつか挙げられるが、
例えば、MVA(Multi−Domain Vertical Alignment)
モード、PVA(Patterned Vertical Alignment)モード
、ASVモードなどを用いることができる。
を用いることができる。また、カラー表示する際に画素で制御する色要素としては、RG
B(Rは赤、Gは緑、Bは青を表す)の三色に限定されない。例えば、Rの画素とGの画
素とBの画素とW(白)の画素の四画素から構成されてもよい。または、ペンタイル配列
のように、RGBのうちの2色分で一つの色要素を構成し、色要素よって、異なる2色を
選択して構成してもよい。またはRGBに、イエロー、シアン、マゼンタ等を一色以上追
加してもよい。なお、色要素のドット毎にその表示領域の大きさが異なっていてもよい。
ただし、開示する発明はカラー表示の表示装置に限定されるものではなく、モノクロ表示
の表示装置に適用することもできる。
図42に示す表示装置800は、発光素子880を有する。発光素子880は、導電膜
844、EL層846、及び導電膜848を有する。表示装置800は、発光素子880
が有するEL層846が発光することによって、画像を表示することができる。
絶縁膜830が設けられる。絶縁膜830は、導電膜844の一部を覆う。なお、発光素
子880はトップエミッション構造である。したがって、導電膜848は透光性を有し、
EL層846が発する光を透過する。なお、本実施の形態においては、トップエミッショ
ン構造について、例示するが、これに限定されない。例えば、導電膜844側に光を射出
するボトムエミッション構造や、導電膜844及び導電膜848の双方に光を射出するデ
ュアルエミッション構造にも適用することができる。
る位置、引き回し配線部711、及びソースドライバ回路部704に遮光膜838が設け
られている。着色膜836及び遮光膜838は、絶縁膜834で覆われている。発光素子
880と絶縁膜834の間は封止膜832で充填されている。なお、表示装置800にお
いては、着色膜836を設ける構成について例示したが、これに限定されない。例えば、
EL層846を塗り分けにより形成する場合においては、着色膜836を設けない構成と
してもよい。
を用いて説明する。
図43に示す表示装置700aは、液晶素子775を有する。液晶素子775は、導電
膜773、導電膜777、及び液晶層776を有する。導電膜773は、第1の基板70
1上の平坦化絶縁膜770上に設けられ、反射電極としての機能を有する。図43に示す
表示装置700aは、外光を利用し導電膜773で光を反射して着色膜836を介して表
示する、所謂反射型のカラー液晶表示装置である。
の一部に凹凸が設けられている。該凹凸は、例えば、平坦化絶縁膜770を有機樹脂膜等
で形成し、該有機樹脂膜の表面に凹凸を設けることで形成することができる。また、反射
電極として機能する導電膜773は、上記凹凸に沿って形成される。したがって、外光が
導電膜773に入射した場合において、導電膜773の表面で光を乱反射することが可能
となり、視認性を向上させることができる。
着色膜836を有する。また、表示装置700aが有する導電膜773は、トランジスタ
750のソース電極またはドレイン電極と機能する導電膜と電気的に接続される。導電膜
773としては、導電膜844に記載の材料及び方法を援用することで形成することがで
きる。
間に絶縁膜を有する。より具体的には、容量素子790は、トランジスタ750のソース
電極またはドレイン電極として機能する導電膜と同一工程で形成される導電膜を一方の電
極として用い、トランジスタ750のゲート電極として機能する導電膜と同一工程で形成
される導電膜792を他方の電極として用い、上記導電膜の間には、トランジスタ750
のゲート絶縁膜として機能する絶縁膜と同一工程で形成される絶縁膜を有する。
適用することが可能である。
ができる。
本実施の形態では、本発明の一態様の半導体装置を用いることができる表示装置につい
て、図44を用いて説明を行う。
いう)と、画素部502の外側に配置され、画素を駆動するための回路を有する回路部(
以下、駆動回路部504という)と、素子の保護機能を有する回路(以下、保護回路50
6という)と、端子部507と、を有する。なお、保護回路506は、設けない構成とし
てもよい。
ことが望ましい。これにより、部品数や端子数を減らすことが出来る。駆動回路部504
の一部、または全部が、画素部502と同一基板上に形成されていない場合には、駆動回
路部504の一部、または全部は、COGやTAB(Tape Automated B
onding)によって、実装することができる。
た複数の表示素子を駆動するための回路(以下、画素回路501という)を有し、駆動回
路部504は、画素を選択する信号(走査信号)を出力する回路(以下、ゲートドライバ
504aという)、画素の表示素子を駆動するための信号(データ信号)を供給するため
の回路(以下、ソースドライバ504b)などの駆動回路を有する。
端子部507を介して、シフトレジスタを駆動するための信号が入力され、信号を出力す
る。例えば、ゲートドライバ504aは、スタートパルス信号、クロック信号等が入力さ
れ、パルス信号を出力する。ゲートドライバ504aは、走査信号が与えられる配線(以
下、走査線GL_1乃至GL_Xという)の電位を制御する機能を有する。なお、ゲート
ドライバ504aを複数設け、複数のゲートドライバ504aにより、走査線GL_1乃
至GL_Xを分割して制御してもよい。または、ゲートドライバ504aは、初期化信号
を供給することができる機能を有する。ただし、これに限定されず、ゲートドライバ50
4aは、別の信号を供給することも可能である。
端子部507を介して、シフトレジスタを駆動するための信号の他、データ信号の元とな
る信号(画像信号)が入力される。ソースドライバ504bは、画像信号を元に画素回路
501に書き込むデータ信号を生成する機能を有する。また、ソースドライバ504bは
、スタートパルス、クロック信号等が入力されて得られるパルス信号に従って、データ信
号の出力を制御する機能を有する。また、ソースドライバ504bは、データ信号が与え
られる配線(以下、信号線DL_1乃至DL_Yという)の電位を制御する機能を有する
。または、ソースドライバ504bは、初期化信号を供給することができる機能を有する
。ただし、これに限定されず、ソースドライバ504bは、別の信号を供給することも可
能である。
ソースドライバ504bは、複数のアナログスイッチを順次オン状態にすることにより、
画像信号を時分割した信号をデータ信号として出力できる。また、シフトレジスタなどを
用いてソースドライバ504bを構成してもよい。
介してパルス信号が入力され、データ信号が与えられる複数の信号線DLの一つを介して
データ信号が入力される。また。複数の画素回路501のそれぞれは、ゲートドライバ5
04aによりデータ信号のデータの書き込み及び保持が制御される。例えば、m行n列目
の画素回路501は、走査線GL_m(mはX以下の自然数)を介してゲートドライバ5
04aからパルス信号が入力され、走査線GL_mの電位に応じて信号線DL_n(nは
Y以下の自然数)を介してソースドライバ504bからデータ信号が入力される。
01の間の配線である走査線GLに接続される。または、保護回路506は、ソースドラ
イバ504bと画素回路501の間の配線である信号線DLに接続される。または、保護
回路506は、ゲートドライバ504aと端子部507との間の配線に接続することがで
きる。または、保護回路506は、ソースドライバ504bと端子部507との間の配線
に接続することができる。なお、端子部507は、外部の回路から表示装置に電源及び制
御信号、及び画像信号を入力するための端子が設けられた部分をいう。
配線と別の配線とを導通状態にする回路である。
6を設けることにより、ESD(Electro Static Discharge:
静電気放電)などにより発生する過電流に対する表示装置の耐性を高めることができる。
ただし、保護回路506の構成はこれに限定されず、例えば、ゲートドライバ504aに
保護回路506を接続した構成、またはソースドライバ504bに保護回路506を接続
した構成とすることもできる。あるいは、端子部507に保護回路506を接続した構成
とすることもできる。
よって駆動回路部504を形成している例を示しているが、この構成に限定されない。例
えば、ゲートドライバ504aのみを形成し、別途用意されたソースドライバ回路が形成
された基板(例えば、単結晶半導体膜、多結晶半導体膜で形成された駆動回路基板)を実
装する構成としても良い。
とすることができる。
量素子560と、を有する。
できる。
される。液晶素子570は、書き込まれるデータにより配向状態が設定される。なお、複
数の画素回路501のそれぞれが有する液晶素子570の一対の電極の一方に共通の電位
(コモン電位)を与えてもよい。また、各行の画素回路501の液晶素子570の一対の
電極の一方に異なる電位を与えてもよい。
ード、VAモード、ASM(Axially Symmetric Aligned M
icro−cell)モード、OCB(Optically Compensated
Birefringence)モード、FLC(Ferroelectric Liqu
id Crystal)モード、AFLC(AntiFerroelectric Li
quid Crystal)モード、MVAモード、PVA(Patterned Ve
rtical Alignment)モード、IPSモード、FFSモード、又はTBA
(Transverse Bend Alignment)モードなどを用いてもよい。
また、表示装置の駆動方法としては、上述した駆動方法の他、ECB(Electric
ally Controlled Birefringence)モード、PDLC(P
olymer Dispersed Liquid Crystal)モード、PNLC
(Polymer Network Liquid Crystal)モード、ゲストホ
ストモードなどがある。ただし、これに限定されず、液晶素子及びその駆動方式として様
々なものを用いることができる。
ン電極の一方は、信号線DL_nに電気的に接続され、他方は液晶素子570の一対の電
極の他方に電気的に接続される。また、トランジスタ550のゲート電極は、走査線GL
_mに電気的に接続される。トランジスタ550は、オン状態またはオフ状態になること
により、データ信号のデータの書き込みを制御する機能を有する。
)に電気的に接続され、他方は、液晶素子570の一対の電極の他方に電気的に接続され
る。なお、電位供給線VLの電位の値は、画素回路501の仕様に応じて適宜設定される
。容量素子560は、書き込まれたデータを保持する保持容量としての機能を有する。
に示すゲートドライバ504aにより各行の画素回路501を順次選択し、トランジスタ
550をオン状態にしてデータ信号のデータを書き込む。
保持状態になる。これを行毎に順次行うことにより、画像を表示できる。
とすることができる。
子562と、発光素子572と、を有する。ここでは、トランジスタ552及びトランジ
スタ554いずれか一方または双方に先の実施の形態に示すトランジスタを適宜適用する
ことができる。
配線(信号線DL_n)に電気的に接続される。さらに、トランジスタ552のゲート電
極は、ゲート信号が与えられる配線(走査線GL_m)に電気的に接続される。
タの書き込みを制御する機能を有する。
_aという)に電気的に接続され、他方は、トランジスタ552のソース電極及びドレイ
ン電極の他方に電気的に接続される。
気的に接続される。さらに、トランジスタ554のゲート電極は、トランジスタ552の
ソース電極及びドレイン電極の他方に電気的に接続される。
され、他方は、トランジスタ554のソース電極及びドレイン電極の他方に電気的に接続
される。
いう)などを用いることができる。ただし、発光素子572としては、これに限定されず
、無機材料からなる無機EL素子を用いても良い。
えられ、他方には、低電源電位VSSが与えられる。
ートドライバ504aにより各行の画素回路501を順次選択し、トランジスタ552を
オン状態にしてデータ信号のデータを書き込む。
保持状態になる。さらに、書き込まれたデータ信号の電位に応じてトランジスタ554の
ソース電極とドレイン電極の間に流れる電流量が制御され、発光素子572は、流れる電
流量に応じた輝度で発光する。これを行毎に順次行うことにより、画像を表示できる。
ができる。
本実施の形態では、本発明の一態様の半導体装置を用いることができる表示モジュール
及び電子機器について、図45及び図46を用いて説明を行う。
の間に、FPC8003に接続されたタッチパネル8004、FPC8005に接続され
た表示パネル8006、バックライト8007、フレーム8009、プリント基板801
0、バッテリー8011を有する。
8006のサイズに合わせて、形状や寸法を適宜変更することができる。
8006に重畳して用いることができる。また、表示パネル8006の対向基板(封止基
板)に、タッチパネル機能を持たせるようにすることも可能である。また、表示パネル8
006の各画素内に光センサを設け、光学式のタッチパネルとすることも可能である。
ト8007上に光源8008を配置する構成について例示したが、これに限定さない。例
えば、バックライト8007の端部に光源8008を配置し、さらに光拡散板を用いる構
成としてもよい。なお、有機EL素子等の自発光型の発光素子を用いる場合、または反射
型パネル等の場合においては、バックライト8007を設けない構成としてもよい。
作により発生する電磁波を遮断するための電磁シールドとしての機能を有する。またフレ
ーム8009は、放熱板としての機能を有していてもよい。
号処理回路を有する。電源回路に電力を供給する電源としては、外部の商用電源であって
も良いし、別途設けたバッテリー8011による電源であってもよい。バッテリー801
1は、商用電源を用いる場合には、省略可能である。
加して設けてもよい。
体5000、表示部5001、スピーカ5003、LEDランプ5004、操作キー50
05(電源スイッチ、又は操作スイッチを含む)、接続端子5006、センサ5007(
力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質
、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、にお
い又は赤外線を測定する機能を含むもの)、マイクロフォン5008、等を有することが
できる。
、赤外線ポート5010、等を有することができる。図46(B)は記録媒体を備えた携
帯型の画像再生装置(たとえば、DVD再生装置)であり、上述したものの他に、第2表
示部5002、記録媒体読込部5011、等を有することができる。図46(C)はゴー
グル型ディスプレイであり、上述したものの他に、第2表示部5002、支持部5012
、イヤホン5013、等を有することができる。図46(D)は携帯型遊技機であり、上
述したものの他に、記録媒体読込部5011、等を有することができる。図46(E)は
テレビ受像機能付きデジタルカメラであり、上述したものの他に、アンテナ5014、シ
ャッターボタン5015、受像部5016、等を有することができる。図46(F)は携
帯型遊技機であり、上述したものの他に、第2表示部5002、記録媒体読込部5011
、等を有することができる。図46(G)はテレビ受像器であり、上述したものの他に、
チューナ、画像処理部、等を有することができる。図46(H)は持ち運び型テレビ受像
器であり、上述したものの他に、信号の送受信が可能な充電器5017、等を有すること
ができる。
例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッ
チパネル機能、カレンダー、日付又は時刻などを表示する機能、様々なソフトウェア(プ
ログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコ
ンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信又は
受信を行う機能、記録媒体に記録されているプログラム又はデータを読み出して表示部に
表示する機能、等を有することができる。さらに、複数の表示部を有する電子機器におい
ては、一つの表示部を主として画像情報を表示し、別の一つの表示部を主として文字情報
を表示する機能、または、複数の表示部に視差を考慮した画像を表示することで立体的な
画像を表示する機能、等を有することができる。さらに、受像部を有する電子機器におい
ては、静止画を撮影する機能、動画を撮影する機能、撮影した画像を自動または手動で補
正する機能、撮影した画像を記録媒体(外部又はカメラに内蔵)に保存する機能、撮影し
た画像を表示部に表示する機能、等を有することができる。なお、図46(A)乃至図4
6(H)に示す電子機器が有することのできる機能はこれらに限定されず、様々な機能を
有することができる。
ることを特徴とする。なお、本発明の一態様の半導体装置は、表示部を有さない電子機器
にも適用することができる。
ができる。
Claims (9)
- 画素部に、容量素子及び前記容量素子と電気的に接続されたトランジスタと、前記トランジスタが有するソース電極及びドレイン電極上の絶縁膜と、前記絶縁膜上の有機樹脂膜と、を有し、
前記容量素子は、第1の酸化物半導体膜と、透光性を有する導電性材料を有する導電膜と、を有し、
前記トランジスタは、第2の酸化物半導体膜と、前記第2の酸化物半導体膜上のゲート絶縁膜と、前記ゲート絶縁膜上のゲート電極と、前記第2の酸化物半導体膜と電気的に接続された前記ソース電極及び前記ドレイン電極と、を有し、
前記ゲート電極は、前記ソース電極及び前記ドレイン電極と同一層からなり、
前記有機樹脂膜は、開口部を有し、
前記導電膜は、前記有機樹脂膜上に位置する領域と、前記開口部において、前記ゲート絶縁膜と重ならず、且つ、前記絶縁膜及び前記第1の酸化物半導体膜と重なる領域と、を有し、
前記トランジスタのチャネル長方向に平行な断面視において、前記第1の酸化物半導体膜は、前記絶縁膜と接する領域と、前記ゲート絶縁膜と接する領域を有する半導体装置。 - 画素部に、容量素子及び前記容量素子と電気的に接続されたトランジスタと、前記トランジスタが有するソース電極及びドレイン電極上の絶縁膜と、前記絶縁膜上の有機樹脂膜と、を有し、
前記容量素子は、第1の酸化物半導体膜と、透光性を有する導電性材料を有する導電膜と、を有し、
前記トランジスタは、第2の酸化物半導体膜と、前記第2の酸化物半導体膜上のゲート絶縁膜と、前記ゲート絶縁膜上のゲート電極と、前記第2の酸化物半導体膜と電気的に接続された前記ソース電極及び前記ドレイン電極と、を有し、
前記ゲート電極は、前記ソース電極及び前記ドレイン電極と同じ積層構造からなり、
前記有機樹脂膜は、開口部を有し、
前記導電膜は、前記有機樹脂膜上に位置する領域と、前記開口部において、前記ゲート絶縁膜と重ならず、且つ、前記絶縁膜及び前記第1の酸化物半導体膜と重なる領域と、を有し、
前記トランジスタのチャネル長方向に平行な断面視において、前記第1の酸化物半導体膜は、前記絶縁膜と接する領域と、前記ゲート絶縁膜と接する領域を有する半導体装置。 - 請求項2において、
前記ゲート電極の積層構造と、前記ソース電極及び前記ドレイン電極の積層構造とは、同一材料からなる半導体装置。 - 請求項2または請求項3において、
前記ゲート電極の積層構造と、前記ソース電極及び前記ドレイン電極の積層構造とは、同じ厚みを有する半導体装置。 - 画素部に、容量素子及び前記容量素子と電気的に接続されたトランジスタと、前記トランジスタが有するソース電極及びドレイン電極上の絶縁膜と、前記絶縁膜上の有機樹脂膜と、を有し、
前記容量素子は、第1の酸化物半導体膜と、透光性を有する導電性材料を有する導電膜と、を有し、
前記トランジスタは、第2の酸化物半導体膜と、前記第2の酸化物半導体膜上のゲート絶縁膜と、前記ゲート絶縁膜上のゲート電極と、前記第2の酸化物半導体膜と電気的に接続された前記ソース電極及び前記ドレイン電極と、を有し、
一の導電膜がパターニングされ、前記ゲート電極、前記ソース電極、及び前記ドレイン電極となり、
前記有機樹脂膜は、開口部を有し、
前記導電膜は、前記有機樹脂膜上に位置する領域と、前記開口部において、前記ゲート絶縁膜と重ならず、且つ、前記絶縁膜及び前記第1の酸化物半導体膜と重なる領域と、を有し、
前記トランジスタのチャネル長方向に平行な断面視において、前記第1の酸化物半導体膜は、前記絶縁膜と接する領域と、前記ゲート絶縁膜と接する領域を有する半導体装置。 - 請求項1乃至請求項5のいずれか一において、
前記ゲート電極、前記ソース電極、及び前記ドレイン電極の各々の厚さは、30nm以上500nm以下である半導体装置。 - 請求項1乃至請求項6のいずれか一において、
前記第1の酸化物半導体膜、及び前記第2の酸化物半導体膜は、Inと、Gaと、Znと、を有する半導体装置。 - 請求項1乃至請求項7のいずれか一において、
前記ゲート絶縁膜は、酸化シリコンを有する半導体装置。 - 請求項1乃至請求項8のいずれか一において、
前記第2の酸化物半導体膜のチャネル幅方向に平行な断面視において、前記ソース電極及び前記ドレイン電極の各々の幅は、前記第2の酸化物半導体膜の幅よりも広い半導体装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013271783 | 2013-12-27 | ||
JP2013271783 | 2013-12-27 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019066590A Division JP2019114814A (ja) | 2013-12-27 | 2019-03-29 | 半導体装置の作製方法、及び半導体装置 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2020109866A JP2020109866A (ja) | 2020-07-16 |
JP2020109866A5 JP2020109866A5 (ja) | 2020-08-27 |
JP6870133B2 true JP6870133B2 (ja) | 2021-05-12 |
Family
ID=53477636
Family Applications (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014249834A Active JP6506545B2 (ja) | 2013-12-27 | 2014-12-10 | 半導体装置 |
JP2019066595A Active JP6592631B2 (ja) | 2013-12-27 | 2019-03-29 | 半導体装置 |
JP2019066590A Withdrawn JP2019114814A (ja) | 2013-12-27 | 2019-03-29 | 半導体装置の作製方法、及び半導体装置 |
JP2019118669A Withdrawn JP2019197901A (ja) | 2013-12-27 | 2019-06-26 | 半導体装置 |
JP2019171978A Withdrawn JP2020031217A (ja) | 2013-12-27 | 2019-09-20 | 半導体装置 |
JP2019171981A Withdrawn JP2020031218A (ja) | 2013-12-27 | 2019-09-20 | 半導体装置 |
JP2020050341A Active JP6870133B2 (ja) | 2013-12-27 | 2020-03-20 | 半導体装置 |
JP2020099396A Active JP7118111B2 (ja) | 2013-12-27 | 2020-06-08 | 表示装置 |
JP2022123330A Withdrawn JP2022169558A (ja) | 2013-12-27 | 2022-08-02 | 半導体装置 |
JP2024015437A Pending JP2024045414A (ja) | 2013-12-27 | 2024-02-05 | 半導体装置 |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014249834A Active JP6506545B2 (ja) | 2013-12-27 | 2014-12-10 | 半導体装置 |
JP2019066595A Active JP6592631B2 (ja) | 2013-12-27 | 2019-03-29 | 半導体装置 |
JP2019066590A Withdrawn JP2019114814A (ja) | 2013-12-27 | 2019-03-29 | 半導体装置の作製方法、及び半導体装置 |
JP2019118669A Withdrawn JP2019197901A (ja) | 2013-12-27 | 2019-06-26 | 半導体装置 |
JP2019171978A Withdrawn JP2020031217A (ja) | 2013-12-27 | 2019-09-20 | 半導体装置 |
JP2019171981A Withdrawn JP2020031218A (ja) | 2013-12-27 | 2019-09-20 | 半導体装置 |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020099396A Active JP7118111B2 (ja) | 2013-12-27 | 2020-06-08 | 表示装置 |
JP2022123330A Withdrawn JP2022169558A (ja) | 2013-12-27 | 2022-08-02 | 半導体装置 |
JP2024015437A Pending JP2024045414A (ja) | 2013-12-27 | 2024-02-05 | 半導体装置 |
Country Status (6)
Country | Link |
---|---|
US (7) | US9356098B2 (ja) |
JP (10) | JP6506545B2 (ja) |
KR (8) | KR102239942B1 (ja) |
CN (5) | CN110690230B (ja) |
TW (7) | TWI727453B (ja) |
WO (1) | WO2015097597A1 (ja) |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112014005486B4 (de) * | 2013-12-02 | 2024-08-22 | Semiconductor Energy Laboratory Co., Ltd. | Anzeigevorrichtung |
JP2015188062A (ja) | 2014-02-07 | 2015-10-29 | 株式会社半導体エネルギー研究所 | 半導体装置 |
CN111081734A (zh) * | 2014-03-17 | 2020-04-28 | 松下电器产业株式会社 | 薄膜晶体管元件基板及其制造方法、和有机el显示装置 |
JP2016111104A (ja) * | 2014-12-03 | 2016-06-20 | 株式会社Joled | 薄膜半導体基板の製造方法 |
JP6736321B2 (ja) | 2015-03-27 | 2020-08-05 | 株式会社半導体エネルギー研究所 | 半導体装置の製造方法 |
JP6736351B2 (ja) * | 2015-06-19 | 2020-08-05 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2017064590A1 (en) | 2015-10-12 | 2017-04-20 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
JP6821982B2 (ja) * | 2015-10-27 | 2021-01-27 | 天馬微電子有限公司 | 薄膜トランジスタ、表示装置及び薄膜トランジスタの製造方法 |
WO2017094644A1 (ja) * | 2015-11-30 | 2017-06-08 | シャープ株式会社 | 半導体基板及び表示装置 |
JP6560610B2 (ja) * | 2015-12-18 | 2019-08-14 | 株式会社ジャパンディスプレイ | 表示装置 |
KR20180099725A (ko) | 2015-12-29 | 2018-09-05 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 금속 산화물막 및 반도체 장치 |
US10734529B2 (en) | 2016-01-29 | 2020-08-04 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and display device including the semiconductor device |
KR102340066B1 (ko) * | 2016-04-07 | 2021-12-15 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 박리 방법 및 플렉시블 디바이스의 제작 방법 |
CN205621414U (zh) * | 2016-04-26 | 2016-10-05 | 京东方科技集团股份有限公司 | 静电放电电路、阵列基板和显示装置 |
KR102660292B1 (ko) * | 2016-06-23 | 2024-04-24 | 삼성디스플레이 주식회사 | 박막 트랜지스터 패널 및 그 제조 방법 |
US10916430B2 (en) * | 2016-07-25 | 2021-02-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
CN106125387B (zh) * | 2016-08-23 | 2019-07-30 | 中节能万润股份有限公司 | 一种pdlc显示器和pdlc电子阅读器 |
TWI840104B (zh) * | 2016-08-29 | 2024-04-21 | 日商半導體能源研究所股份有限公司 | 顯示裝置及控制程式 |
US20180061867A1 (en) * | 2016-08-31 | 2018-03-01 | Apple Inc. | Methods of protecting semiconductor oxide channel in hybrid tft process flow |
KR102586938B1 (ko) * | 2016-09-05 | 2023-10-10 | 삼성디스플레이 주식회사 | 박막 트랜지스터 표시판 및 그 제조 방법 |
CN115857237A (zh) * | 2016-09-12 | 2023-03-28 | 株式会社半导体能源研究所 | 显示装置及电子设备 |
JP2018049919A (ja) * | 2016-09-21 | 2018-03-29 | 株式会社ジャパンディスプレイ | 表示装置 |
KR102471021B1 (ko) * | 2016-09-29 | 2022-11-25 | 삼성디스플레이 주식회사 | 박막 트랜지스터 표시판 및 이의 제조 방법 |
WO2018096425A1 (ja) | 2016-11-23 | 2018-05-31 | 株式会社半導体エネルギー研究所 | 表示装置、表示モジュール、及び電子機器 |
KR20180076422A (ko) * | 2016-12-27 | 2018-07-06 | 삼성디스플레이 주식회사 | 색 변환 패널 및 이를 포함하는 표시 장치 |
JP6732713B2 (ja) * | 2017-10-04 | 2020-07-29 | 株式会社Joled | 半導体装置および表示装置 |
US10249695B2 (en) * | 2017-03-24 | 2019-04-02 | Apple Inc. | Displays with silicon and semiconducting-oxide top-gate thin-film transistors |
CN108039351B (zh) | 2017-12-04 | 2021-01-26 | 京东方科技集团股份有限公司 | 一种阵列基板及其制备方法、显示装置 |
WO2019175708A1 (ja) * | 2018-03-16 | 2019-09-19 | 株式会社半導体エネルギー研究所 | 半導体装置、および半導体装置の作製方法 |
JP6795543B2 (ja) * | 2018-04-27 | 2020-12-02 | 株式会社Joled | 半導体装置の製造方法 |
CN112292752A (zh) * | 2018-06-08 | 2021-01-29 | 株式会社半导体能源研究所 | 半导体装置及半导体装置的制造方法 |
KR102614573B1 (ko) * | 2018-10-22 | 2023-12-18 | 삼성디스플레이 주식회사 | 트랜지스터 기판 및 이를 포함하는 표시 장치 |
GB2587793B (en) * | 2019-08-21 | 2023-03-22 | Pragmatic Printing Ltd | Electronic circuit comprising transistor and resistor |
CN110690228B (zh) * | 2019-09-06 | 2022-03-08 | 深圳市华星光电半导体显示技术有限公司 | 阵列基板及显示面板 |
JP7434818B2 (ja) * | 2019-11-12 | 2024-02-21 | 株式会社レゾナック | 珪素含有酸化物被覆窒化アルミニウム粒子の製造方法および放熱性樹脂組成物の製造方法 |
KR20220056010A (ko) * | 2020-10-27 | 2022-05-04 | 엘지디스플레이 주식회사 | 박막 트랜지스터 어레이 기판 및 이를 포함하는 전자장치 |
TWI753712B (zh) * | 2020-12-21 | 2022-01-21 | 財團法人工業技術研究院 | 微機電紅外光感測裝置 |
CN112687706A (zh) * | 2020-12-29 | 2021-04-20 | 深圳市华星光电半导体显示技术有限公司 | 一种显示面板及显示面板的制备方法 |
WO2022176386A1 (ja) * | 2021-02-18 | 2022-08-25 | 株式会社ジャパンディスプレイ | 半導体装置および半導体装置の作製方法 |
KR102690226B1 (ko) * | 2022-06-16 | 2024-08-05 | 한국생산기술연구원 | 박막 트랜지스터 및 이의 제조 방법 |
TWI802478B (zh) * | 2022-07-27 | 2023-05-11 | 友達光電股份有限公司 | 主動元件基板 |
CN116504815B (zh) * | 2023-06-27 | 2024-02-06 | 南京邮电大学 | 一种高功率a-IGZO薄膜晶体管及其制备方法 |
Family Cites Families (224)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60198861A (ja) | 1984-03-23 | 1985-10-08 | Fujitsu Ltd | 薄膜トランジスタ |
JPH0244256B2 (ja) | 1987-01-28 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPS63210023A (ja) | 1987-02-24 | 1988-08-31 | Natl Inst For Res In Inorg Mater | InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法 |
JPH0244258B2 (ja) | 1987-02-24 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPH0244260B2 (ja) | 1987-02-24 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPH0244262B2 (ja) | 1987-02-27 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPH0244263B2 (ja) | 1987-04-22 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPH027563A (ja) | 1988-06-27 | 1990-01-11 | Hitachi Ltd | 半導体装置の製造方法 |
JPH05251705A (ja) | 1992-03-04 | 1993-09-28 | Fuji Xerox Co Ltd | 薄膜トランジスタ |
JPH08330599A (ja) | 1994-11-29 | 1996-12-13 | Sanyo Electric Co Ltd | 薄膜トランジスタ、その製造方法及び表示装置 |
JP3479375B2 (ja) | 1995-03-27 | 2003-12-15 | 科学技術振興事業団 | 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法 |
WO1997006554A2 (en) | 1995-08-03 | 1997-02-20 | Philips Electronics N.V. | Semiconductor device provided with transparent switching element |
JP3625598B2 (ja) | 1995-12-30 | 2005-03-02 | 三星電子株式会社 | 液晶表示装置の製造方法 |
JP4170454B2 (ja) | 1998-07-24 | 2008-10-22 | Hoya株式会社 | 透明導電性酸化物薄膜を有する物品及びその製造方法 |
JP2000150861A (ja) | 1998-11-16 | 2000-05-30 | Tdk Corp | 酸化物薄膜 |
JP3276930B2 (ja) | 1998-11-17 | 2002-04-22 | 科学技術振興事業団 | トランジスタ及び半導体装置 |
JP4558707B2 (ja) | 1999-01-11 | 2010-10-06 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
EP1020920B1 (en) | 1999-01-11 | 2010-06-02 | Sel Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having a driver TFT and a pixel TFT on a common substrate |
TW460731B (en) | 1999-09-03 | 2001-10-21 | Ind Tech Res Inst | Electrode structure and production method of wide viewing angle LCD |
JP4127466B2 (ja) | 2000-07-31 | 2008-07-30 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
US6613620B2 (en) | 2000-07-31 | 2003-09-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
JP4089858B2 (ja) | 2000-09-01 | 2008-05-28 | 国立大学法人東北大学 | 半導体デバイス |
KR20020038482A (ko) | 2000-11-15 | 2002-05-23 | 모리시타 요이찌 | 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널 |
JP3997731B2 (ja) | 2001-03-19 | 2007-10-24 | 富士ゼロックス株式会社 | 基材上に結晶性半導体薄膜を形成する方法 |
JP2002289859A (ja) | 2001-03-23 | 2002-10-04 | Minolta Co Ltd | 薄膜トランジスタ |
US6952023B2 (en) | 2001-07-17 | 2005-10-04 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
JP3925839B2 (ja) | 2001-09-10 | 2007-06-06 | シャープ株式会社 | 半導体記憶装置およびその試験方法 |
JP4090716B2 (ja) | 2001-09-10 | 2008-05-28 | 雅司 川崎 | 薄膜トランジスタおよびマトリクス表示装置 |
US6737302B2 (en) | 2001-10-31 | 2004-05-18 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method for field-effect transistor |
JP3600229B2 (ja) * | 2001-10-31 | 2004-12-15 | 株式会社半導体エネルギー研究所 | 電界効果型トランジスタの製造方法 |
US7061014B2 (en) | 2001-11-05 | 2006-06-13 | Japan Science And Technology Agency | Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film |
JP4164562B2 (ja) | 2002-09-11 | 2008-10-15 | 独立行政法人科学技術振興機構 | ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ |
JP4083486B2 (ja) | 2002-02-21 | 2008-04-30 | 独立行政法人科学技術振興機構 | LnCuO(S,Se,Te)単結晶薄膜の製造方法 |
CN1445821A (zh) | 2002-03-15 | 2003-10-01 | 三洋电机株式会社 | ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法 |
JP3933591B2 (ja) | 2002-03-26 | 2007-06-20 | 淳二 城戸 | 有機エレクトロルミネッセント素子 |
US6953949B2 (en) | 2002-05-21 | 2005-10-11 | Seiko Epson Corporation | Electro-optical device and electronic apparatus |
JP3873814B2 (ja) | 2002-05-21 | 2007-01-31 | セイコーエプソン株式会社 | 電気光学装置及び電子機器 |
US7339187B2 (en) | 2002-05-21 | 2008-03-04 | State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University | Transistor structures |
JP2004022625A (ja) | 2002-06-13 | 2004-01-22 | Murata Mfg Co Ltd | 半導体デバイス及び該半導体デバイスの製造方法 |
US7105868B2 (en) | 2002-06-24 | 2006-09-12 | Cermet, Inc. | High-electron mobility transistor with zinc oxide |
US7067843B2 (en) | 2002-10-11 | 2006-06-27 | E. I. Du Pont De Nemours And Company | Transparent oxide semiconductor thin film transistors |
JP4166105B2 (ja) | 2003-03-06 | 2008-10-15 | シャープ株式会社 | 半導体装置およびその製造方法 |
JP2004273732A (ja) | 2003-03-07 | 2004-09-30 | Sharp Corp | アクティブマトリクス基板およびその製造方法 |
JP4108633B2 (ja) | 2003-06-20 | 2008-06-25 | シャープ株式会社 | 薄膜トランジスタおよびその製造方法ならびに電子デバイス |
US7262463B2 (en) | 2003-07-25 | 2007-08-28 | Hewlett-Packard Development Company, L.P. | Transistor including a deposited channel region having a doped portion |
US7297977B2 (en) | 2004-03-12 | 2007-11-20 | Hewlett-Packard Development Company, L.P. | Semiconductor device |
US7282782B2 (en) | 2004-03-12 | 2007-10-16 | Hewlett-Packard Development Company, L.P. | Combined binary oxide semiconductor device |
US7145174B2 (en) | 2004-03-12 | 2006-12-05 | Hewlett-Packard Development Company, Lp. | Semiconductor device |
JP4620046B2 (ja) | 2004-03-12 | 2011-01-26 | 独立行政法人科学技術振興機構 | 薄膜トランジスタ及びその製造方法 |
US7211825B2 (en) | 2004-06-14 | 2007-05-01 | Yi-Chi Shih | Indium oxide-based thin film transistors and circuits |
JP2006100760A (ja) | 2004-09-02 | 2006-04-13 | Casio Comput Co Ltd | 薄膜トランジスタおよびその製造方法 |
US7285501B2 (en) | 2004-09-17 | 2007-10-23 | Hewlett-Packard Development Company, L.P. | Method of forming a solution processed device |
US7298084B2 (en) | 2004-11-02 | 2007-11-20 | 3M Innovative Properties Company | Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes |
CA2708335A1 (en) | 2004-11-10 | 2006-05-18 | Canon Kabushiki Kaisha | Amorphous oxide and field effect transistor |
US7453065B2 (en) | 2004-11-10 | 2008-11-18 | Canon Kabushiki Kaisha | Sensor and image pickup device |
JP5138163B2 (ja) | 2004-11-10 | 2013-02-06 | キヤノン株式会社 | 電界効果型トランジスタ |
AU2005302963B2 (en) | 2004-11-10 | 2009-07-02 | Cannon Kabushiki Kaisha | Light-emitting device |
US7791072B2 (en) | 2004-11-10 | 2010-09-07 | Canon Kabushiki Kaisha | Display |
US7829444B2 (en) | 2004-11-10 | 2010-11-09 | Canon Kabushiki Kaisha | Field effect transistor manufacturing method |
US7863611B2 (en) | 2004-11-10 | 2011-01-04 | Canon Kabushiki Kaisha | Integrated circuits utilizing amorphous oxides |
WO2006051995A1 (en) | 2004-11-10 | 2006-05-18 | Canon Kabushiki Kaisha | Field effect transistor employing an amorphous oxide |
US7579224B2 (en) | 2005-01-21 | 2009-08-25 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing a thin film semiconductor device |
TWI562380B (en) | 2005-01-28 | 2016-12-11 | Semiconductor Energy Lab Co Ltd | Semiconductor device, electronic device, and method of manufacturing semiconductor device |
US7608531B2 (en) | 2005-01-28 | 2009-10-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, electronic device, and method of manufacturing semiconductor device |
US7858451B2 (en) | 2005-02-03 | 2010-12-28 | Semiconductor Energy Laboratory Co., Ltd. | Electronic device, semiconductor device and manufacturing method thereof |
US7948171B2 (en) | 2005-02-18 | 2011-05-24 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US20060197092A1 (en) | 2005-03-03 | 2006-09-07 | Randy Hoffman | System and method for forming conductive material on a substrate |
US8681077B2 (en) | 2005-03-18 | 2014-03-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, and display device, driving method and electronic apparatus thereof |
WO2006105077A2 (en) | 2005-03-28 | 2006-10-05 | Massachusetts Institute Of Technology | Low voltage thin film transistor with high-k dielectric material |
US7645478B2 (en) | 2005-03-31 | 2010-01-12 | 3M Innovative Properties Company | Methods of making displays |
US8300031B2 (en) | 2005-04-20 | 2012-10-30 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element |
JP2006344849A (ja) | 2005-06-10 | 2006-12-21 | Casio Comput Co Ltd | 薄膜トランジスタ |
US7691666B2 (en) | 2005-06-16 | 2010-04-06 | Eastman Kodak Company | Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby |
US7402506B2 (en) | 2005-06-16 | 2008-07-22 | Eastman Kodak Company | Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby |
US7507618B2 (en) | 2005-06-27 | 2009-03-24 | 3M Innovative Properties Company | Method for making electronic devices using metal oxide nanoparticles |
KR100711890B1 (ko) | 2005-07-28 | 2007-04-25 | 삼성에스디아이 주식회사 | 유기 발광표시장치 및 그의 제조방법 |
JP2007059128A (ja) | 2005-08-23 | 2007-03-08 | Canon Inc | 有機el表示装置およびその製造方法 |
JP4280736B2 (ja) | 2005-09-06 | 2009-06-17 | キヤノン株式会社 | 半導体素子 |
JP2007073705A (ja) | 2005-09-06 | 2007-03-22 | Canon Inc | 酸化物半導体チャネル薄膜トランジスタおよびその製造方法 |
JP4850457B2 (ja) | 2005-09-06 | 2012-01-11 | キヤノン株式会社 | 薄膜トランジスタ及び薄膜ダイオード |
JP5116225B2 (ja) | 2005-09-06 | 2013-01-09 | キヤノン株式会社 | 酸化物半導体デバイスの製造方法 |
EP3614442A3 (en) | 2005-09-29 | 2020-03-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having oxide semiconductor layer and manufactoring method thereof |
JP5037808B2 (ja) | 2005-10-20 | 2012-10-03 | キヤノン株式会社 | アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置 |
KR101117948B1 (ko) | 2005-11-15 | 2012-02-15 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 액정 디스플레이 장치 제조 방법 |
TWI292281B (en) | 2005-12-29 | 2008-01-01 | Ind Tech Res Inst | Pixel structure of active organic light emitting diode and method of fabricating the same |
US7867636B2 (en) | 2006-01-11 | 2011-01-11 | Murata Manufacturing Co., Ltd. | Transparent conductive film and method for manufacturing the same |
JP4977478B2 (ja) | 2006-01-21 | 2012-07-18 | 三星電子株式会社 | ZnOフィルム及びこれを用いたTFTの製造方法 |
US7576394B2 (en) | 2006-02-02 | 2009-08-18 | Kochi Industrial Promotion Center | Thin film transistor including low resistance conductive thin films and manufacturing method thereof |
US7977169B2 (en) | 2006-02-15 | 2011-07-12 | Kochi Industrial Promotion Center | Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof |
JP5015470B2 (ja) * | 2006-02-15 | 2012-08-29 | 財団法人高知県産業振興センター | 薄膜トランジスタ及びその製法 |
KR20070101595A (ko) | 2006-04-11 | 2007-10-17 | 삼성전자주식회사 | ZnO TFT |
US20070252928A1 (en) | 2006-04-28 | 2007-11-01 | Toppan Printing Co., Ltd. | Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof |
US7557498B2 (en) * | 2006-05-17 | 2009-07-07 | Tpo Displays Corp. | System for displaying images including electroluminescent device and method for fabricating the same |
JP5028033B2 (ja) | 2006-06-13 | 2012-09-19 | キヤノン株式会社 | 酸化物半導体膜のドライエッチング方法 |
JP4999400B2 (ja) | 2006-08-09 | 2012-08-15 | キヤノン株式会社 | 酸化物半導体膜のドライエッチング方法 |
JP4609797B2 (ja) | 2006-08-09 | 2011-01-12 | Nec液晶テクノロジー株式会社 | 薄膜デバイス及びその製造方法 |
JP4332545B2 (ja) | 2006-09-15 | 2009-09-16 | キヤノン株式会社 | 電界効果型トランジスタ及びその製造方法 |
JP5164357B2 (ja) | 2006-09-27 | 2013-03-21 | キヤノン株式会社 | 半導体装置及び半導体装置の製造方法 |
JP4274219B2 (ja) | 2006-09-27 | 2009-06-03 | セイコーエプソン株式会社 | 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置 |
US7622371B2 (en) | 2006-10-10 | 2009-11-24 | Hewlett-Packard Development Company, L.P. | Fused nanocrystal thin film semiconductor and method |
JP5090708B2 (ja) | 2006-10-20 | 2012-12-05 | 株式会社ジャパンディスプレイイースト | 画像表示装置とその製造方法 |
JP2008129314A (ja) | 2006-11-21 | 2008-06-05 | Hitachi Displays Ltd | 画像表示装置およびその製造方法 |
US7772021B2 (en) | 2006-11-29 | 2010-08-10 | Samsung Electronics Co., Ltd. | Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays |
JP2008140684A (ja) | 2006-12-04 | 2008-06-19 | Toppan Printing Co Ltd | カラーelディスプレイおよびその製造方法 |
KR101303578B1 (ko) | 2007-01-05 | 2013-09-09 | 삼성전자주식회사 | 박막 식각 방법 |
US8207063B2 (en) | 2007-01-26 | 2012-06-26 | Eastman Kodak Company | Process for atomic layer deposition |
KR100851215B1 (ko) | 2007-03-14 | 2008-08-07 | 삼성에스디아이 주식회사 | 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치 |
JP5197058B2 (ja) * | 2007-04-09 | 2013-05-15 | キヤノン株式会社 | 発光装置とその作製方法 |
WO2008126879A1 (en) | 2007-04-09 | 2008-10-23 | Canon Kabushiki Kaisha | Light-emitting apparatus and production method thereof |
US7795613B2 (en) | 2007-04-17 | 2010-09-14 | Toppan Printing Co., Ltd. | Structure with transistor |
KR101325053B1 (ko) | 2007-04-18 | 2013-11-05 | 삼성디스플레이 주식회사 | 박막 트랜지스터 기판 및 이의 제조 방법 |
KR20080094300A (ko) | 2007-04-19 | 2008-10-23 | 삼성전자주식회사 | 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이 |
KR101334181B1 (ko) | 2007-04-20 | 2013-11-28 | 삼성전자주식회사 | 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법 |
WO2008133345A1 (en) | 2007-04-25 | 2008-11-06 | Canon Kabushiki Kaisha | Oxynitride semiconductor |
KR101345376B1 (ko) | 2007-05-29 | 2013-12-24 | 삼성전자주식회사 | ZnO 계 박막 트랜지스터 및 그 제조방법 |
TWI354377B (en) * | 2007-05-30 | 2011-12-11 | Au Optronics Corp | Pixel structure of lcd and fabrication method ther |
KR101375831B1 (ko) | 2007-12-03 | 2014-04-02 | 삼성전자주식회사 | 산화물 반도체 박막 트랜지스터를 이용한 디스플레이 장치 |
CN103258857B (zh) | 2007-12-13 | 2016-05-11 | 出光兴产株式会社 | 使用了氧化物半导体的场效应晶体管及其制造方法 |
JP5215158B2 (ja) | 2007-12-17 | 2013-06-19 | 富士フイルム株式会社 | 無機結晶性配向膜及びその製造方法、半導体デバイス |
JP5704790B2 (ja) | 2008-05-07 | 2015-04-22 | キヤノン株式会社 | 薄膜トランジスタ、および、表示装置 |
KR101496148B1 (ko) | 2008-05-15 | 2015-02-27 | 삼성전자주식회사 | 반도체소자 및 그 제조방법 |
TWI424506B (zh) | 2008-08-08 | 2014-01-21 | Semiconductor Energy Lab | 半導體裝置的製造方法 |
JP4623179B2 (ja) | 2008-09-18 | 2011-02-02 | ソニー株式会社 | 薄膜トランジスタおよびその製造方法 |
KR102094683B1 (ko) | 2008-09-19 | 2020-03-30 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시장치 |
KR101961632B1 (ko) * | 2008-10-03 | 2019-03-25 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시장치 |
JP5451280B2 (ja) | 2008-10-09 | 2014-03-26 | キヤノン株式会社 | ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置 |
CN102386236B (zh) | 2008-10-24 | 2016-02-10 | 株式会社半导体能源研究所 | 半导体器件和用于制造该半导体器件的方法 |
US8106400B2 (en) | 2008-10-24 | 2012-01-31 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
KR102437444B1 (ko) | 2008-11-21 | 2022-08-30 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시 장치 |
JP5491833B2 (ja) | 2008-12-05 | 2014-05-14 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US20100224880A1 (en) | 2009-03-05 | 2010-09-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
TWI529942B (zh) | 2009-03-27 | 2016-04-11 | 半導體能源研究所股份有限公司 | 半導體裝置 |
TWI535023B (zh) | 2009-04-16 | 2016-05-21 | 半導體能源研究所股份有限公司 | 半導體裝置和其製造方法 |
KR101782176B1 (ko) | 2009-07-18 | 2017-09-26 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 반도체 장치의 제조 방법 |
KR101799252B1 (ko) | 2009-07-31 | 2017-11-17 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 그 제작 방법 |
KR101073542B1 (ko) | 2009-09-03 | 2011-10-17 | 삼성모바일디스플레이주식회사 | 유기 발광 표시 장치 및 그 제조 방법 |
WO2011027656A1 (en) * | 2009-09-04 | 2011-03-10 | Semiconductor Energy Laboratory Co., Ltd. | Transistor and display device |
WO2011027702A1 (en) * | 2009-09-04 | 2011-03-10 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and method for manufacturing the same |
WO2011027664A1 (en) * | 2009-09-04 | 2011-03-10 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal display device and method for manufacturing the same |
KR102113148B1 (ko) | 2009-09-04 | 2020-05-20 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 장치 및 발광 장치를 제작하기 위한 방법 |
KR101746198B1 (ko) | 2009-09-04 | 2017-06-12 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시장치 및 전자기기 |
KR20110037220A (ko) | 2009-10-06 | 2011-04-13 | 삼성모바일디스플레이주식회사 | 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를 구비하는 유기전계발광 표시 장치 |
EP2486595B1 (en) | 2009-10-09 | 2019-10-23 | Semiconductor Energy Laboratory Co. Ltd. | Semiconductor device |
JP2011091110A (ja) | 2009-10-20 | 2011-05-06 | Canon Inc | 酸化物半導体素子を用いた回路及びその製造方法、並びに表示装置 |
KR101801959B1 (ko) | 2009-10-21 | 2017-11-27 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 액정 표시 장치 및 그 액정 표시 장치를 구비하는 전자기기 |
KR20120091243A (ko) * | 2009-10-30 | 2012-08-17 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
KR101857693B1 (ko) * | 2009-12-04 | 2018-05-14 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시 장치 |
KR101804589B1 (ko) * | 2009-12-11 | 2018-01-10 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 그 제조 방법 |
WO2011096153A1 (en) | 2010-02-05 | 2011-08-11 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
KR101403409B1 (ko) * | 2010-04-28 | 2014-06-03 | 한국전자통신연구원 | 반도체 장치 및 그 제조 방법 |
CN102906804B (zh) | 2010-05-24 | 2014-03-12 | 夏普株式会社 | 薄膜晶体管基板及其制造方法 |
JP2012015491A (ja) * | 2010-06-04 | 2012-01-19 | Semiconductor Energy Lab Co Ltd | 光電変換装置 |
JP5269253B2 (ja) | 2010-07-09 | 2013-08-21 | シャープ株式会社 | 薄膜トランジスタ基板の製造方法 |
US8537600B2 (en) * | 2010-08-04 | 2013-09-17 | Semiconductor Energy Laboratory Co., Ltd. | Low off-state leakage current semiconductor memory device |
JP5275523B2 (ja) | 2010-11-04 | 2013-08-28 | シャープ株式会社 | 表示装置、ならびに半導体装置および表示装置の製造方法 |
JP2012104566A (ja) | 2010-11-08 | 2012-05-31 | Toshiba Mobile Display Co Ltd | 薄膜トランジスタ回路基板及びその製造方法 |
US9443984B2 (en) | 2010-12-28 | 2016-09-13 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
TWI535032B (zh) | 2011-01-12 | 2016-05-21 | 半導體能源研究所股份有限公司 | 半導體裝置的製造方法 |
TWI570809B (zh) * | 2011-01-12 | 2017-02-11 | 半導體能源研究所股份有限公司 | 半導體裝置及其製造方法 |
TWI657580B (zh) | 2011-01-26 | 2019-04-21 | 日商半導體能源研究所股份有限公司 | 半導體裝置及其製造方法 |
JP2012160679A (ja) | 2011-02-03 | 2012-08-23 | Sony Corp | 薄膜トランジスタ、表示装置および電子機器 |
US9023684B2 (en) * | 2011-03-04 | 2015-05-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
JP2012191025A (ja) * | 2011-03-11 | 2012-10-04 | Dainippon Printing Co Ltd | 薄膜トランジスタアレー基板、薄膜集積回路装置及びそれらの製造方法 |
JP5717546B2 (ja) | 2011-06-01 | 2015-05-13 | 三菱電機株式会社 | 薄膜トランジスタ基板およびその製造方法 |
JP6005401B2 (ja) | 2011-06-10 | 2016-10-12 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
JP6009226B2 (ja) * | 2011-06-10 | 2016-10-19 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
KR101860859B1 (ko) * | 2011-06-13 | 2018-05-25 | 삼성디스플레이 주식회사 | 박막트랜지스터의 제조 방법, 상기 방법에 의해 제조된 박막트랜지스터, 유기발광표시장치의 제조방법, 및 상기 방법에 의해 제조된 유기발광표시장치 |
JP2013002295A (ja) | 2011-06-13 | 2013-01-07 | Daikin Industries Ltd | スクリュー圧縮機 |
KR20130007426A (ko) | 2011-06-17 | 2013-01-18 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 그 제작 방법 |
US9214474B2 (en) | 2011-07-08 | 2015-12-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing semiconductor device |
US8716073B2 (en) * | 2011-07-22 | 2014-05-06 | Semiconductor Energy Laboratory Co., Ltd. | Method for processing oxide semiconductor film and method for manufacturing semiconductor device |
US8643008B2 (en) | 2011-07-22 | 2014-02-04 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US8994019B2 (en) * | 2011-08-05 | 2015-03-31 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
JP6026839B2 (ja) | 2011-10-13 | 2016-11-16 | 株式会社半導体エネルギー研究所 | 半導体装置 |
KR20130040706A (ko) * | 2011-10-14 | 2013-04-24 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 반도체 장치의 제작 방법 |
TWI567985B (zh) | 2011-10-21 | 2017-01-21 | 半導體能源研究所股份有限公司 | 半導體裝置及其製造方法 |
JP6226518B2 (ja) | 2011-10-24 | 2017-11-08 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US10026847B2 (en) | 2011-11-18 | 2018-07-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor element, method for manufacturing semiconductor element, and semiconductor device including semiconductor element |
US8981367B2 (en) * | 2011-12-01 | 2015-03-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
WO2013089115A1 (en) | 2011-12-15 | 2013-06-20 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
JP6111398B2 (ja) | 2011-12-20 | 2017-04-12 | 株式会社Joled | 表示装置および電子機器 |
KR102100425B1 (ko) | 2011-12-27 | 2020-04-13 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 반도체 장치의 제작 방법 |
KR102101167B1 (ko) | 2012-02-03 | 2020-04-16 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
US8916424B2 (en) * | 2012-02-07 | 2014-12-23 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
JP6148024B2 (ja) | 2012-02-09 | 2017-06-14 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP6142136B2 (ja) | 2012-02-28 | 2017-06-07 | 株式会社Joled | トランジスタの製造方法、表示装置の製造方法および電子機器の製造方法 |
US20130221345A1 (en) | 2012-02-28 | 2013-08-29 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
TW201338173A (zh) | 2012-02-28 | 2013-09-16 | Sony Corp | 電晶體、製造電晶體之方法、顯示裝置及電子機器 |
JP6220526B2 (ja) | 2012-02-29 | 2017-10-25 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
JP6168795B2 (ja) | 2012-03-14 | 2017-07-26 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
JP6139187B2 (ja) | 2012-03-29 | 2017-05-31 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US8941113B2 (en) | 2012-03-30 | 2015-01-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor element, semiconductor device, and manufacturing method of semiconductor element |
US8999773B2 (en) | 2012-04-05 | 2015-04-07 | Semiconductor Energy Laboratory Co., Ltd. | Processing method of stacked-layer film and manufacturing method of semiconductor device |
US20130270616A1 (en) | 2012-04-13 | 2013-10-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US8860023B2 (en) | 2012-05-01 | 2014-10-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
JP2013235935A (ja) | 2012-05-08 | 2013-11-21 | Canon Inc | 検出装置の製造方法、その検出装置及び検出システム |
JP5942574B2 (ja) | 2012-05-10 | 2016-06-29 | セイコーエプソン株式会社 | 力検出素子、力検出モジュール、力検出ユニットおよびロボット |
TWI595502B (zh) | 2012-05-18 | 2017-08-11 | 半導體能源研究所股份有限公司 | 記憶體裝置和用於驅動記憶體裝置的方法 |
JP6016455B2 (ja) * | 2012-05-23 | 2016-10-26 | 株式会社半導体エネルギー研究所 | 半導体装置 |
KR20130136063A (ko) | 2012-06-04 | 2013-12-12 | 삼성디스플레이 주식회사 | 박막 트랜지스터, 이를 포함하는 박막 트랜지스터 표시판 및 그 제조 방법 |
JP6225902B2 (ja) | 2012-06-15 | 2017-11-08 | ソニー株式会社 | 表示装置および半導体装置 |
US20140014948A1 (en) | 2012-07-12 | 2014-01-16 | Semiconductor Energy Laboratory Co. Ltd. | Semiconductor device |
WO2014021356A1 (en) | 2012-08-03 | 2014-02-06 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
JP2014199899A (ja) | 2012-08-10 | 2014-10-23 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US8937307B2 (en) | 2012-08-10 | 2015-01-20 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
DE102013216824B4 (de) | 2012-08-28 | 2024-10-17 | Semiconductor Energy Laboratory Co., Ltd. | Halbleitervorrichtung |
TWI657539B (zh) | 2012-08-31 | 2019-04-21 | 日商半導體能源研究所股份有限公司 | 半導體裝置 |
US9018624B2 (en) | 2012-09-13 | 2015-04-28 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic appliance |
US8981372B2 (en) | 2012-09-13 | 2015-03-17 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic appliance |
US8927985B2 (en) | 2012-09-20 | 2015-01-06 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
KR102370069B1 (ko) | 2012-12-25 | 2022-03-04 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
TWI607510B (zh) | 2012-12-28 | 2017-12-01 | 半導體能源研究所股份有限公司 | 半導體裝置及半導體裝置的製造方法 |
CN110137181A (zh) | 2012-12-28 | 2019-08-16 | 株式会社半导体能源研究所 | 半导体装置及半导体装置的制造方法 |
US9915848B2 (en) | 2013-04-19 | 2018-03-13 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic device |
JP6456598B2 (ja) | 2013-04-19 | 2019-01-23 | 株式会社半導体エネルギー研究所 | 表示装置 |
US9231002B2 (en) | 2013-05-03 | 2016-01-05 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic device |
US9704894B2 (en) | 2013-05-10 | 2017-07-11 | Semiconductor Energy Laboratory Co., Ltd. | Display device including pixel electrode including oxide |
JP2015179247A (ja) | 2013-10-22 | 2015-10-08 | 株式会社半導体エネルギー研究所 | 表示装置 |
JP6625796B2 (ja) | 2013-10-25 | 2019-12-25 | 株式会社半導体エネルギー研究所 | 表示装置 |
JP2016001712A (ja) | 2013-11-29 | 2016-01-07 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
US9577110B2 (en) | 2013-12-27 | 2017-02-21 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including an oxide semiconductor and the display device including the semiconductor device |
CN105849796B (zh) | 2013-12-27 | 2020-02-07 | 株式会社半导体能源研究所 | 发光装置 |
TWI658597B (zh) | 2014-02-07 | 2019-05-01 | 日商半導體能源研究所股份有限公司 | 半導體裝置 |
JP2015188062A (ja) | 2014-02-07 | 2015-10-29 | 株式会社半導体エネルギー研究所 | 半導体装置 |
-
2014
- 2014-12-10 JP JP2014249834A patent/JP6506545B2/ja active Active
- 2014-12-17 KR KR1020167020353A patent/KR102239942B1/ko active IP Right Grant
- 2014-12-17 CN CN201910929577.3A patent/CN110690230B/zh active Active
- 2014-12-17 CN CN201910937461.4A patent/CN110676324B/zh active Active
- 2014-12-17 CN CN201480071297.9A patent/CN105849913B/zh active Active
- 2014-12-17 CN CN201911299399.7A patent/CN111446259B/zh active Active
- 2014-12-17 KR KR1020217022068A patent/KR102358423B1/ko active IP Right Grant
- 2014-12-17 KR KR1020197030271A patent/KR102279875B1/ko active Application Filing
- 2014-12-17 KR KR1020197030265A patent/KR102310399B1/ko active IP Right Grant
- 2014-12-17 WO PCT/IB2014/066995 patent/WO2015097597A1/en active Application Filing
- 2014-12-17 KR KR1020227003134A patent/KR102433044B1/ko active Application Filing
- 2014-12-17 KR KR1020237003341A patent/KR102674371B1/ko active IP Right Grant
- 2014-12-17 KR KR1020247018821A patent/KR20240096741A/ko not_active Application Discontinuation
- 2014-12-17 CN CN201910839846.7A patent/CN110600485B/zh active Active
- 2014-12-17 KR KR1020227027427A patent/KR102498957B1/ko active Application Filing
- 2014-12-18 US US14/574,424 patent/US9356098B2/en active Active
- 2014-12-22 TW TW108136275A patent/TWI727453B/zh active
- 2014-12-22 TW TW112128555A patent/TW202425343A/zh unknown
- 2014-12-22 TW TW111110633A patent/TWI814293B/zh active
- 2014-12-22 TW TW103144801A patent/TWI665502B/zh active
- 2014-12-22 TW TW109144755A patent/TWI764443B/zh active
- 2014-12-22 TW TW108113528A patent/TWI724411B/zh active
- 2014-12-22 TW TW108136274A patent/TWI727452B/zh active
-
2016
- 2016-05-23 US US15/161,329 patent/US9831347B2/en active Active
-
2017
- 2017-11-27 US US15/822,648 patent/US10128378B2/en active Active
-
2018
- 2018-11-06 US US16/182,075 patent/US10818795B2/en active Active
-
2019
- 2019-03-29 JP JP2019066595A patent/JP6592631B2/ja active Active
- 2019-03-29 JP JP2019066590A patent/JP2019114814A/ja not_active Withdrawn
- 2019-06-26 JP JP2019118669A patent/JP2019197901A/ja not_active Withdrawn
- 2019-09-20 JP JP2019171978A patent/JP2020031217A/ja not_active Withdrawn
- 2019-09-20 JP JP2019171981A patent/JP2020031218A/ja not_active Withdrawn
- 2019-09-25 US US16/582,225 patent/US11380795B2/en active Active
-
2020
- 2020-03-20 JP JP2020050341A patent/JP6870133B2/ja active Active
- 2020-06-08 JP JP2020099396A patent/JP7118111B2/ja active Active
-
2022
- 2022-06-02 US US17/830,376 patent/US11757041B2/en active Active
- 2022-08-02 JP JP2022123330A patent/JP2022169558A/ja not_active Withdrawn
-
2023
- 2023-08-31 US US18/240,775 patent/US20230411526A1/en active Pending
-
2024
- 2024-02-05 JP JP2024015437A patent/JP2024045414A/ja active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6870133B2 (ja) | 半導体装置 | |
JP7057458B2 (ja) | 表示装置 | |
JP2021158382A (ja) | 半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200416 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200519 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200611 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20200611 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20200715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200901 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20201030 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210316 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210414 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6870133 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |