CN116504815B - 一种高功率a-IGZO薄膜晶体管及其制备方法 - Google Patents

一种高功率a-IGZO薄膜晶体管及其制备方法 Download PDF

Info

Publication number
CN116504815B
CN116504815B CN202310762255.0A CN202310762255A CN116504815B CN 116504815 B CN116504815 B CN 116504815B CN 202310762255 A CN202310762255 A CN 202310762255A CN 116504815 B CN116504815 B CN 116504815B
Authority
CN
China
Prior art keywords
layer
electrode layer
igzo
region
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310762255.0A
Other languages
English (en)
Other versions
CN116504815A (zh
Inventor
杨光安
黄辰阳
朱洪
徐勇
孙华斌
于志浩
陈子龙
吴洁
朱力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202310762255.0A priority Critical patent/CN116504815B/zh
Publication of CN116504815A publication Critical patent/CN116504815A/zh
Application granted granted Critical
Publication of CN116504815B publication Critical patent/CN116504815B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种高功率a‑IGZO薄膜晶体管及其制备方法,包括基底、支撑层、栅电极层、栅介质层、a‑IGZO有源层、变掺杂区、源电极层和漏电极层,支撑层设于基底上表面;栅电极层设于支撑层上表面中部;栅介质层覆盖于所述栅电极层和所述支撑层上;a‑IGZO有源层设于栅介质层上表面,变掺杂区为a‑IGZO有源层右端经处理后形成的变掺杂区;源电极层设于a‑IGZO有源层上表面的左侧,漏电极层设于变掺杂区上表面的右侧。本发明提供的漂移区变掺杂结构通过调制漂移区中的电场分布,能够有效提升器件击穿电压,降低漂移区电阻,优化器件导通电阻,显著提升薄膜晶体管的Baliga优值,可以用以提升晶体管的耐压性能和输出电流能力。

Description

一种高功率a-IGZO薄膜晶体管及其制备方法
技术领域
本发明涉及薄膜晶体管技术领域,具体涉及一种高功率a-IGZO薄膜晶体管及其制备方法。
背景技术
非晶金属氧化物-铟镓锌氧(a-IGZO)作为新一代薄膜晶体管(TFT)技术中的沟道层材料,具有比非晶硅,以及有机半导体更高的载流子迁移率,且可实现大面积高均匀性制备,在液晶显示、3D存储、数字电路和模拟电路等技术中获得了广泛研究与应用。a-IGZO的禁带宽度是3.0~3.4 eV,具备承担高反向偏置电压的能力,结合其高载流子迁移率的优势,高压a-IGZO薄膜晶体管技术被提出并研究。相关研究报道表明,传统结构的a-IGZO薄膜晶体管在栅电极与源/漏电极之间存在交叠区域,器件极限耐压由交叠区内栅极介质层厚度决定,导致击穿电压不理想。
为此,研究者们提出了漏极漂移区结构来提高a-IGZO器件击穿电压。漏极漂移区结构通过将漏电极沿栅电极方向水平偏移一定距离形成漂移区,消除了漏极金属与栅极金属之间的交叠区。漂移区结构通过对栅介质等效增厚,将器件的击穿位置从交叠区处转移到尺寸较大的漂移区处,改善了a-IGZO薄膜晶体管的击穿性能。然而,由于漂移区不受栅极电场控制,呈高阻态,极大地降低高压a-IGZO薄膜晶体管电流密度,无法实现优异的击穿电压和导通电阻折中关系。因此,有必要提出一种新型a-IGZO薄膜晶体管,在提升器件击穿电压的同时,降低漂移区导通电阻分布,从而实现高功率密度a-IGZO薄膜晶体管。
发明内容
解决的技术问题:针对现有技术中存在高压a-IGZO薄膜晶体管技术难以获得优异的击穿电压与导通电阻间折中关系的技术问题,本发明提供了一种高功率a-IGZO薄膜晶体管及其制备方法,通过调节漂移区掺杂浓度分布达到调控漂移区电场分布的目的,实现兼具高击穿电压与高输出电流密度的高功率a-IGZO薄膜晶体管。
技术方案:一种高功率a-IGZO薄膜晶体管,包括基底、支撑层、栅电极层、栅介质层、a-IGZO有源层-1、变掺杂区、源电极层和漏电极层,
所述支撑层设于基底上表面;
所述栅电极层设于支撑层上表面中部;
所述栅介质层覆盖于所述栅电极层和所述支撑层上;
所述a-IGZO有源层-1设于栅介质层上表面,所述变掺杂区为a-IGZO有源层-1右端经处理后形成的变掺杂区;
所述源电极层设于所述a-IGZO有源层-1上表面的左侧,所述漏电极层设于变掺杂区上表面的右侧。
作为优选,在水平方向上,所述变掺杂区与栅电极层之间的交叠长度为2 μm。变掺杂区与在水平方向上与所述栅电极层之间存在长度为2 μm的交叠区。
作为优选,在水平方向上,所述漏电极层与栅电极层之间的非交叠长度为4 μm。漏电极层在水平方向上与所述栅电极层之间存在长度为4 μm的非交叠区,在所述a-IGZO有源层-1中形成漂移区,所述漂移区包含在所述变掺杂区内,形成变掺杂漂移区。
作为优选,在水平方向上,所述变掺杂区左端掺杂浓度较低,为1×1017cm-3,右端掺杂浓度较高,为5×1017cm-3,掺杂浓度较低区域在沿水平方向与所述栅电极层存在长度为2 μm交叠区,掺杂浓度较高区域在水平方向与所述漏电极层存在长度为10 μm的交叠区。
作为优选,所述源电极层和漏电极层之间的水平距离为50 μm,即源电极层水平方向右端距离所述漏电极层左末端的距离为50 μm。
作为优选,所述栅电极层在水平方向上与源电极层之间的交叠长度为10 μm。
基于上述一种高功率a-IGZO薄膜晶体管的制备方法,步骤如下:
步骤一.获取基底;
步骤二.在所述基底上形成支撑层;
步骤三.在所述支撑层上形成栅电极层;
步骤四.在所述栅电极层及支撑层上形成栅介质层;
步骤五.在所述栅介质层上形成a-IGZO有源层-1;
步骤六.在所述a-IGZO有源层-1中的右侧形成变掺杂区;
步骤七.在所述a-IGZO有源层-1上方的左侧形成源电极层,在所述变掺杂层上方的右侧形成漏电极层。
作为优选,所述步骤五中栅介质层上形成a-IGZO有源层-1时采用等离子增强原子层沉积(PEALD)工艺形成a-IGZO本征半导体薄膜,作为高压薄膜晶体管的有源层。
作为优选,所述步骤二在基底上形成支撑层是采用等离子增强化学气象沉积(PECVD)工艺,在基底上制备氧化硅形成支撑层,工艺温度是300℃,制备的支撑层厚度是2μm。
作为优化,所述步骤六中将所述a-IGZO有源层-1中的右侧形成变掺杂区时采用等离子处理工艺,所述等离子处理工艺具体为采用氢或氟(H、F)等离子体处理工艺对a-IGZO有源层掺杂,形成变掺杂区。
作为优选,在采用等离子处理工艺前先采用标准光刻工艺,在所述a-IGZO有源层-1的右侧上表面用光刻胶形成掺杂阻挡层,对所述a-IGZO有源层-1的右侧进行有区域划分的精准掺杂工艺,并在所述a-IGZO有源层-1的上表面采用光刻工艺形成具有不同覆盖区域的掺杂阻挡层,以制备变掺杂区。
所述步骤四中形成栅介质层后,将所述栅介质层在氧气氛围下,500℃退火1小时。
作为优选,在所述栅介质层上形成a-IGZO有源层-1后,对a-IGZO有源层-1在真空环境下,350℃退火1小时。
作为优选,在采用等离子处理工艺后采用真空退火工艺,对所述变掺杂区在真空环境下,进行温度为300℃,时间为30分钟的退火工艺处理。
有益效果:本发明提出的变掺杂-漂移区电场调控技术是通过对漂移区处的a-IGZO半导体进行变掺杂,提高漂移区载流子浓度的同时优化漂移区处的电场分布,实现了620 V的击穿电压和25 μA的输出电流。 变掺杂-漂移区调制技术将器件的Baliga’s优值从(BFOM=BV 2/R on,sp)现有传统a-IGZO薄膜晶体管技术的0.064 KW/cm2和现有漂移区技术的4.75×10-11KW/cm2提升到26.5 KW/cm2。漂移区电场调控技术拓展了a-IGZO在功率器件领域的应用前景。
附图说明
图1是实施例1具有变掺杂漂移区的a-IGZO薄膜晶体管结构示意图,图中A点取于变掺杂区5b上表面且靠近栅电极层右侧、B点取于漏电极层左侧的变掺杂区上表面、C点取于栅介质层下表面贴近栅电极右侧;
图2是本发明实施例高功率a-IGZO薄膜晶体管的制备工艺流程图;
图3是本发明实施例中制备变掺杂区的掺杂工艺流程图;
图4是对比例1常规a-IGZO薄膜晶体管结构示意图;
图5是对比例2具有漂移区的a-IGZO薄膜晶体管结构示意图,图中A点取于a-IGZO有源层5上表面且靠近栅电极层右侧、B点取于漏电极层左侧的a-IGZO有源层5上表面、C点取于栅介质层下表面贴近栅电极层右侧;
图6是对比例3具有均匀掺杂漂移区的a-IGZO薄膜晶体管结构示意图,图中A点取于均匀掺杂区5b-3上表面且靠近栅电极层右侧、B点取于漏电极层左侧的均匀掺杂区5b-3上表面、C点取于栅介质层下表面贴近栅电极右侧;
图7是本发明实施例与对比例的a-IGZO薄膜晶体管在250 V漏极偏置电压条件下漂移区处的电场分布图,图中(a)为沿A-B切线,a-IGZO层中的电场分布图;(b)为沿C-B切线,栅介质层到a-IGZO层中的电场分布图;
图8是本发明实施例与对比例的a-IGZO薄膜晶体管的电流-电压曲线图,图中(a)为转移特性曲线,(b)为输出特性曲线;
图中各数字标号代表如下:1.基底;2.支撑层;3.栅电极层;4.栅介质层;5.a-IGZO有源层;5a. a-IGZO有源层-1;5a-3. a-IGZO有源层-2;5b.变掺杂区;5b-3.均匀掺杂区;6a.源电极层;6b.漏电极层;6b-1.与栅电极层在水平方向存在10 μm交叠区长度的漏电极层。
具体实施方式
为了对本发明有更清晰的表述,以及便于理解,以下结合本发明实施例中的附图对发明实施例中的具体技术方法进行详细的说明,需要注意的是本发明并不仅仅只局限于所具体提到的实施方式,本发明的实施方案不限于此,对本发明进行的修改或者等同替换,均应涵盖在本发明的权利要求范围内。
实施例1
一种高功率a-IGZO薄膜晶体管,参见图1和图2,包括基底1、支撑层2、栅电极层3、栅介质层4、a-IGZO有源层-1 5a、变掺杂区5b、源电极层6a和漏电极层6b。
所述支撑层2设于基底1上表面。
所述栅电极层3设于支撑层2上表面中部。
所述栅介质层4覆盖于所述栅电极层3和所述支撑层2上。
所述a-IGZO有源层-1 5a设于栅介质层4上表面,所述变掺杂区5b为a-IGZO有源层-1 5a右端经处理后形成的变掺杂区5b。
所述源电极层6a设于所述a-IGZO有源层-1 5a上表面的左侧,所述漏电极层6b设于变掺杂区5b上表面的右侧。
基于上述一种高功率a-IGZO薄膜晶体管的制备方法,步骤如下:
步骤一.获取基底1;
步骤二.在所述基底1上形成支撑层2;
步骤三.在所述支撑层2上形成栅电极层3;
步骤四.在所述栅电极层3及支撑层2上形成栅介质层4;
步骤五.在所述栅介质层4上形成a-IGZO有源层-1 5a;
步骤六.在所述a-IGZO有源层-1 5a中的右侧形成变掺杂区5b;
步骤七.在所述a-IGZO有源层-1 5a上方的左侧形成源电极层6a,在所述变掺杂层5b上方的右侧形成漏电极层6b。
实施例2
同实施例1,区别在于,在水平方向上,所述变掺杂区5b与栅电极层3之间的交叠长度为2 μm,与漏电极层6b之间的交叠长度为10 μm。
在水平方向上,所述漏电极层6b在水平方向上与所述栅电极层3之间存在长度为4μm的非交叠区,在所述a-IGZO有源层-1 5a中形成漂移区,所述漂移区包含在所述变掺杂区5b内,形成变掺杂漂移区。
在水平方向上,所述变掺杂区5b左端掺杂浓度较低,为1×1017cm-3,右端掺杂浓度较高,为5×1017cm-3,掺杂浓度较低区域在水平方向与所述栅电极层3存在长度为2 μm的交叠区,掺杂浓度较高区域在水平方向与所述漏电极层6b存在长度为10 μm的交叠区。
所述源电极层6a和漏电极层6b之间的水平距离为50 μm。
所述栅电极层3在水平方向上与源电极层6a之间存在10 μm的交叠长度。
所述步骤六中将所述a-IGZO有源层-1 5a中的右侧形成变掺杂区5b时采用等离子处理工艺。
在采用等离子处理工艺前先采用标准光刻工艺,在所述a-IGZO有源层-1 5a的右侧上表面用光刻胶形成掺杂阻挡层,对所述a-IGZO有源层-1 5a的右侧进行有区域划分的精准掺杂工艺,并在所述a-IGZO有源层-15a的上表面采用光刻工艺形成具有不同覆盖区域的掺杂阻挡层,以制备变掺杂区。
在采用等离子处理工艺后采用真空退火工艺,对所述变掺杂区5b进行温度为300℃,时间为30分钟的退火工艺处理。
所述a-IGZO有源层-1 5a的厚度为20 nm。
实施例3
同实施例2,参见图2和图3,区别在于,一种高功率a-IGZO薄膜晶体管的制备方法,步骤如下:
S100.获取基底1,基底材料可以是本领域习知的刚性基底或柔性基底,在本发明实施例中优先选用康宁Eagle XG玻璃作为基底1,并依次通过丙酮,乙醇以及去离子水在150W的超声功率下清洗5分钟。
S200.在所述基底1上形成支撑层2,支撑层材料可以是本领域习知的氧化物或者氮化物材料,在本发明实施例中优先选用氧化硅(SiO2)作为支撑层2,采用PECVD工艺在所述Eagle XG玻璃基底上沉积SiO2作为支撑层2,PECVD工艺参数设为射频功率100 W,反应压强为90 mtorr,以及由N2O和SiH4组成的源气体氛围,所述SiO2支撑层的厚度为2 μm。
S300.在所述支撑层2上形成栅电极层3,栅电极层金属材料可以是本领域习知的具有高导电性的金属(钛、铝、镊等)或者透明金属氧化物(氧化铟锡ITO、氧化铟锌IZO等),在本发明实施例中选择金属金(Au)作为栅电极层3,采用电子束蒸发工艺与lift-off工艺在所述支撑层2上形成金属Au栅电极层3,所述栅电极层3厚度是120 nm,长度是66 μm。
S400.在所述栅电极层3及支撑层2上形成栅介质层4,在本发明实施例中,选用SiO2作为栅介质层4,采用PECVD工艺在所述栅电极层3和支撑层2上沉积栅介质层4,PECVD工艺参数设为射频功率100 W,反应压强为90 mtorr,以及由N2O和SiH4组成的源气体氛围,所述栅介质SiO2的厚度为100 nm。
S500.在所述栅介质层4上形成a-IGZO有源层-15a,在本发明实施例中,采用PEALD工艺在常温条件下在所述栅介质层上形成a-IGZO薄膜,正性光刻胶S1813通过标准光刻工艺在所述a-IGZO薄膜上形成刻蚀阻挡层之后,采用湿法刻蚀工艺将a-IGZO薄膜图形化成a-IGZO有源层-1 5a,其中刻蚀溶液是稀盐酸,所述a-IGZO有源层-15a的厚度是20 nm。
S600.在a-IGZO有源层-1 5a中的右侧形成变掺杂区5b,在本发明实施例中,采用标准光刻工艺在所述a-IGZO有源层-1 5a上表面形成掺杂阻挡层,通过H等离子体处理形成低浓度均匀掺杂区,随后,采用标准光刻工艺在所述a-IGZO有源层-1 5a上表面再次形成掺杂阻挡层,通过H等离子体处理在低浓度均匀掺杂区内右端部分进行二次掺杂,形成高浓度掺杂区,所述低浓度掺杂区与高浓度掺杂区形成变掺杂区。在本实施例中,变掺杂区位于a-IGZO有源层-1 5a右端,在水平方向上与栅电极层存在2 μm的交叠区长度。
在所述a-IGZO有源层-1 5a中的右侧形成变掺杂区5b,参见图3,具体步骤如下:
S601.在所述a-IGZO有源层-1 5a上表面形成阻挡层A,在本发明实施例中,采用标准光刻工艺在所述a-IGZO有源层-1 5a上表面用正性光刻胶S1813形成掺杂阻挡层A。
S602.H等离子体对所述a-IGZO有源层-1 5a掺杂,在本发明实施例中,采用等离子体处理工艺对未被掺杂阻挡层A覆盖的a-IGZO有源层-1 5a进行H离子掺杂,形成均匀掺杂浓度分布的a-IGZO掺杂区。等离子处理工艺的参数设置为H2气流量100 sccm,射频功率20W,压强2 Torr,等离子处理时间为60s。
S603.在所述a-IGZO有源层-1 5a中的均匀掺杂区上表面形成掺杂阻挡层B,在本发明实施例中,采用标准光刻工艺在所述a-IGZO有源层-1 5a内包括部分均匀掺杂区采用正性光刻胶S1813形成掺杂阻挡层B。
S604.H等离子体对所述a-IGZO有源层-1 5a二次掺杂,在本发明实施例中,采用等离子处理工艺对未被掺杂阻挡层B覆盖的a-IGZO有源层-1 5a进行H离子掺杂,在均匀掺杂区右端部分实现二次掺杂,形成变掺杂区。等离子处理工艺的参数设置为H2气流量100sccm,射频功率20 W,压强2 Torr,等离子处理时间为120s。
S605.对所述具有变掺杂区的a-IGZO有源层-1 5a退火,在本发明实施例中,在真空氛围中对所述具有变掺杂区的a-IGZO有源层-1 5a在300℃温度下进行30分钟的退火处理。
S700.在所述a-IGZO有源层-1 5a上方的左侧形成源电极层6a,在所述变掺杂层5b上方的右侧形成漏电极层6b。
在本发明实施例中,源电极层金属和漏电极层金属可以是本领域习知的具有高导电性的金属(钛、镊、铝)或者透明金属氧化物(氧化铟锡ITO、氧化铟锌IZO等),在本发明实施例采用金属金(Au)作为源/漏区金属电极,采用lift-off工艺和电子束蒸发工艺在a-IGZO有源层-1 5a和变掺杂层5b上表面分别形成金属Au源电极层和漏电极层。本实施例中,源电极层在水平方向上与栅电极层之间存在10 μm的交叠区长度,漏电极层在水平方向上与栅电极层之间存在4 μm的非交叠区长度。
对比例1
同实施例3,区别在于,参见图4,在水平方向上,栅电极层3与漏电极层6b-1之间存在长度为10μm的交叠区域。
所述a-IGZO有源层5未采用掺杂工艺。
对比例2
同实施例3,区别在于,参见图5,所述a-IGZO有源层5未采用掺杂工艺。
对比例3
同实施例3,区别在于,参见图6,所述a-IGZO有源层-2 5a-3中右端形成的是均匀掺杂区5b-3。
图7是本发明实施例与对比例的a-IGZO薄膜晶体管在漏极偏置电压为250 V时的电场分布图,其中7(a)是漂移区处a-IGZO层中沿A-B水平截面的电场分布,图7(b)是漂移区处栅电极末端栅介质沿C-B斜截线至漏电极末端a-IGZO层的电场分布。在对比例2漏极漂移区功率a-IGZO薄膜晶体管中,电场峰值位于漏电极末端,且已达到a-IGZO薄膜的临界击穿电场。在对比例3和实施例中,通过对漂移区的掺杂,有效调控了漂移区电场分布,降低了漏电极端的电场峰值,抬高了栅电极末端的电场。值得注意的是,相较于采用均匀掺杂漂移区的对比例3,采用变掺杂漂移区技术的实施例进一步降低了漏电极端的电场峰值,且不增加栅电极端的电场峰值。
图8是本发明实施例与对比例的高压a-IGZO薄膜晶体管的电压-电流曲线,其中图8(a)是转移特性曲线,图8(b)是输出特性曲线。从转移曲线比较得出,对于实施例,具有变掺杂漂移区的a-IGZO薄膜晶体电流不仅远高于具有漂移区的对比例2还略高于具有均匀掺杂漂移区的对比例3。从输出曲线比较得出,实施例和对比例3的输出电流几乎一致,实施例比常规器件、对比例1电流高25%。
本发明实施例与对比例的a-IGZO薄膜晶体管的电学性能汇总表,包括,击穿电压BV,输出电流Id,output,导通电阻Ron,sp以及Baliga’s优值BFOM,具体如下:
从上表中可以看出,实施例相较于对比例实现了高击穿电压,高输出电流(即,取得了高功率密度),以及低导通电阻。解决了由漂移区引入的高阻问题的同时通过优化漂移区电场分布提高器件的击穿电压,取得了最高Baliga优值。

Claims (9)

1.一种高功率a-IGZO薄膜晶体管,所述薄膜晶体管为漏极漂移区结构,即栅电极和漏电极之间不重叠,其特征在于,包括基底(1)、支撑层(2)、栅电极层(3)、栅介质层(4)、a-IGZO有源层-1(5a)、变掺杂区(5b)、源电极层(6a)和漏电极层(6b), 所述支撑层(2)设于基底(1)上表面; 所述栅电极层(3)设于支撑层(2)上表面中部; 所述栅介质层(4)覆盖于所述栅电极层(3)和所述支撑层(2)上; 所述a-IGZO有源层-1(5a)设于栅介质层(4)上表面,所述变掺杂区(5b)为a-IGZO有源层-1(5a)右端经处理后形成的变掺杂区,在水平方向上,所述变掺杂区(5b)与栅电极层(3)之间存在交叠区; 所述源电极层(6a)设于所述a-IGZO有源层-1(5a)上表面的左侧,所述漏电极层(6b)设于变掺杂区(5b)上表面的右侧,在水平方向上,源电极层(6a)与栅电极层(3)之间的存在交叠区; 在水平方向上,所述变掺杂区(5b)左端掺杂浓度较低,为1×1017cm-3,右端掺杂浓度较高,为5×1017 cm-3,掺杂浓度较低区域沿水平方向与所述栅电极层(3)存在交叠,掺杂浓度较高区域沿水平方向与所述漏电极层(6b)存在交叠。
2. 根据权利要求1所述的一种高功率a-IGZO薄膜晶体管,其特征在于,在水平方向上,所述变掺杂区(5b)与栅电极层(3)之间的交叠长度为2 μm。
3. 根据权利要求1所述的一种高功率a-IGZO薄膜晶体管,其特征在于,在水平方向上,所述漏电极层(6b)与栅电极层(3)之间的非交叠长度为4 μm。
4. 根据权利要求1所述的一种高功率a-IGZO薄膜晶体管,其特征在于,源电极层(6a)和漏电极层(6b)之间的水平距离为50 μm。
5. 根据权利要求1所述的一种高功率a-IGZO薄膜晶体管,其特征在于,在水平方向上,栅电极层(3)与源电极层(6a)之间的交叠长度为10 μm。
6. 基于权利要求1所述的一种高功率a-IGZO薄膜晶体管的制备方法,其特征在于,步骤如下: 步骤一.获取基底(1); 步骤二.在所述基底(1)上形成支撑层(2); 步骤三.在所述支撑层(2)上形成栅电极层(3); 步骤四.在所述栅电极层(3)及支撑层(2)上形成栅介质层(4); 步骤五.在所述栅介质层(4)上形成a-IGZO有源层-1(5a); 步骤六.在所述a-IGZO有源层-1(5a)中的右侧形成变掺杂区(5b); 步骤七.在所述a-IGZO有源层-1(5a)上方的左侧形成源电极层(6a),在所述变掺杂区(5b)上方右侧形成漏电极层(6b)。
7.根据权利要求6所述的一种高功率a-IGZO薄膜晶体管的制备方法,其特征在于,所述步骤六中在所述a-IGZO有源层-1(5a)中的右侧形成变掺杂区(5b)时采用等离子处理工艺。
8.根据权利要求7所述的一种高功率a-IGZO薄膜晶体管的制备方法,其特征在于,在采用等离子处理工艺前先采用标准光刻工艺,在所述a-IGZO有源层-1(5a)的右侧上表面用光刻胶形成掺杂阻挡层,对所述a-IGZO有源层-1(5a)的右侧进行有区域划分的精准掺杂工艺,并在所述a-IGZO有源层-1(5a)的上表面采用光刻工艺形成具有不同覆盖区域的掺杂阻挡层,以制备变掺杂区。
9.根据权利要求7所述的一种高功率a-IGZO薄膜晶体管的制备方法,其特征在于,在采用等离子处理工艺后采用真空退火工艺,对所述变掺杂区(5b)进行温度为300℃,时间为30分钟的退火工艺处理。
CN202310762255.0A 2023-06-27 2023-06-27 一种高功率a-IGZO薄膜晶体管及其制备方法 Active CN116504815B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310762255.0A CN116504815B (zh) 2023-06-27 2023-06-27 一种高功率a-IGZO薄膜晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310762255.0A CN116504815B (zh) 2023-06-27 2023-06-27 一种高功率a-IGZO薄膜晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN116504815A CN116504815A (zh) 2023-07-28
CN116504815B true CN116504815B (zh) 2024-02-06

Family

ID=87327006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310762255.0A Active CN116504815B (zh) 2023-06-27 2023-06-27 一种高功率a-IGZO薄膜晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN116504815B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393992A (en) * 1991-12-28 1995-02-28 Nec Corporation Semiconductor thin film transistor with gate controlled offset portion
TW201005950A (en) * 2008-05-07 2010-02-01 Canon Kk Thin film transistor and method of manufacturing the same
CN102969338A (zh) * 2011-08-31 2013-03-13 株式会社日本显示器东 显示装置及显示装置的制造方法
CN105849913A (zh) * 2013-12-27 2016-08-10 株式会社半导体能源研究所 半导体装置
CN115458609A (zh) * 2022-10-11 2022-12-09 东南大学 一种高耐压、低导通电阻igzo薄膜晶体管及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8643007B2 (en) * 2011-02-23 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393992A (en) * 1991-12-28 1995-02-28 Nec Corporation Semiconductor thin film transistor with gate controlled offset portion
TW201005950A (en) * 2008-05-07 2010-02-01 Canon Kk Thin film transistor and method of manufacturing the same
CN102969338A (zh) * 2011-08-31 2013-03-13 株式会社日本显示器东 显示装置及显示装置的制造方法
CN105849913A (zh) * 2013-12-27 2016-08-10 株式会社半导体能源研究所 半导体装置
CN115458609A (zh) * 2022-10-11 2022-12-09 东南大学 一种高耐压、低导通电阻igzo薄膜晶体管及其制备方法

Also Published As

Publication number Publication date
CN116504815A (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
US7883934B2 (en) Method of fabricating oxide semiconductor device
TW201138106A (en) Transistor
TW465113B (en) Thin film transistor, liquid crystal display device and method of fabricating the thin film transistor
KR20110028385A (ko) 고 성능 금속 산화물 및 금속 산질화물 박막 트랜지스터들을 제조하기 위한 게이트 유전체의 처리
CN109873038B (zh) 一种场效应晶体管及其制备方法
CN113571584A (zh) 一种SiC MOSFET器件及其制备方法
CN113421914A (zh) p型金属氧化物电流阻挡层Ga2O3垂直金属氧化物半导体场效应晶体管
CN111430240A (zh) 基于场板复合结构的GaN器件及其制备方法
WO2021134423A1 (zh) 一种薄膜晶体管的制备方法
CN111509042A (zh) 一种MIS结构GaN高电子迁移率晶体管及其制备方法
TWI612669B (zh) 薄膜半導體裝置
CN115132848B (zh) 一种高功率密度igzo薄膜晶体管及其制造方法
CN116504815B (zh) 一种高功率a-IGZO薄膜晶体管及其制备方法
CN102290434B (zh) 带栅下缓冲层结构的金属半导体场效应晶体管及制作方法
KR101539294B1 (ko) ZnO/MgZnO 활성층 구조의 박막트랜지스터
CN113257896B (zh) 多场板射频hemt器件及其制备方法
WO2021134422A1 (zh) 一种薄膜晶体管的制作方法
CN115084276B (zh) 一种非晶氧化物半导体薄膜晶体管及其制备方法
CN112133741A (zh) 一种增强型氢终端金刚石场效应晶体管及制备方法
WO2017086253A1 (ja) ダイヤモンド電子素子
Yu et al. High-Voltage Amorphous IGZO TFTs with a Drift Region Implemented by an Ultrathin ITO Capping Layer
CN107170795B (zh) 源-漏复合场板垂直型电力电子器件
Li MgZnO-Based High Voltage Thin-Film Transistors
CN111599680A (zh) 垂直结构金刚石肖特基结型场效应晶体管及制备方法
CN115117145A (zh) 一种低导通电阻的SiC基MOSFET器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant