WO2017094644A1 - 半導体基板及び表示装置 - Google Patents

半導体基板及び表示装置 Download PDF

Info

Publication number
WO2017094644A1
WO2017094644A1 PCT/JP2016/085117 JP2016085117W WO2017094644A1 WO 2017094644 A1 WO2017094644 A1 WO 2017094644A1 JP 2016085117 W JP2016085117 W JP 2016085117W WO 2017094644 A1 WO2017094644 A1 WO 2017094644A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
semiconductor
insulating film
substrate
electrode
Prior art date
Application number
PCT/JP2016/085117
Other languages
English (en)
French (fr)
Inventor
今井 元
徹 大東
久雄 越智
藤田 哲生
北川 英樹
菊池 哲郎
鈴木 正彦
輝幸 上田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/779,655 priority Critical patent/US10243010B2/en
Publication of WO2017094644A1 publication Critical patent/WO2017094644A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78633Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a light shield
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134318Electrodes characterised by their geometrical arrangement having a patterned common electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/13606Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit having means for reducing parasitic capacitance
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • G02F1/13685Top gates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Definitions

  • the present invention relates to a semiconductor substrate and a display device, and more particularly to a semiconductor substrate used for a display device including a touch sensor.
  • a touch panel attached type that attaches the touch panel to the display device after the display device and the touch panel are separately manufactured, or a touch sensor on the surface of the upper glass substrate of the display device.
  • an upper plate integrated type on-cell type
  • the display device integrated with the upper plate is thinner than the display device with the upper plate, but a display device integrated with a touch sensor has been developed as a display device of a thinner type.
  • Patent Document 1 a plurality of gate lines and a plurality of data lines intersecting each other, a plurality of pixel electrodes formed in an area defined by the intersection of the plurality of gate lines and the plurality of data lines, and a plurality of There is disclosed a touch sensor integrated display device including a plurality of common electrodes formed so as to overlap with the pixel electrode.
  • the plurality of common electrodes also serve as the common electrode of the display, the touch drive electrode that constitutes the touch sensor, and the touch sensing electrode.
  • the TFT has a bottom gate structure as described above. Therefore, the gate electrode and the source electrode are necessarily arranged so as to overlap each other in the plan view. When the gate electrode and the source electrode overlap with each other in plan view, a parasitic capacitance is generated between the gate electrode and the source electrode, which may cause signal dullness during signal writing.
  • An object of the present invention is to provide a display device that suppresses the generation of parasitic capacitance and has a short writing time.
  • the semiconductor substrate of the present invention includes a substrate, a light shielding film provided on the substrate, a first insulating film provided on the substrate so as to cover the light shielding film, and a light shielding film and a planar surface on the first insulating film.
  • the source electrode, the drain electrode, and the gate electrode are provided so as not to overlap with each other in plan view. Therefore, by suppressing the generation of parasitic capacitance, a semiconductor substrate and a display device with a short writing time can be obtained. Obtainable.
  • FIG. 1 is an explanatory diagram schematically showing a cross-sectional configuration of a liquid crystal display device.
  • FIG. 2 is a plan view of the liquid crystal panel of the first embodiment.
  • FIG. 3 is a plan view of the liquid crystal panel showing in detail the layout of the TFT array substrate of the first embodiment.
  • 4 is a cross-sectional view taken along line AA of the liquid crystal display panel of FIG.
  • FIG. 5 is a cross-sectional view of the substrate showing the manufacturing process of the TFT array substrate.
  • FIG. 6 is a plan view of the substrate showing the manufacturing process of the TFT array substrate.
  • FIG. 7 is a sectional view taken along line BB in FIG.
  • FIG. 8 is a cross-sectional view of the substrate showing the manufacturing process of the TFT array substrate.
  • FIG. 1 is an explanatory diagram schematically showing a cross-sectional configuration of a liquid crystal display device.
  • FIG. 2 is a plan view of the liquid crystal panel of the first embodiment.
  • FIG. 3
  • FIG. 9 is a plan view of the substrate showing the manufacturing process of the TFT array substrate.
  • 10 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 11 is a plan view of the substrate showing the manufacturing process of the TFT array substrate.
  • 12 is a cross-sectional view taken along the line DD of FIG.
  • FIG. 13 is a cross-sectional view of the substrate illustrating the manufacturing process of the TFT array substrate.
  • FIG. 14 is a cross-sectional view of the substrate illustrating the manufacturing process of the TFT array substrate.
  • FIG. 15 is a cross-sectional view of the substrate illustrating the manufacturing process of the TFT array substrate.
  • FIG. 16 is a cross-sectional view of the substrate illustrating the manufacturing process of the TFT array substrate.
  • FIG. 17 is a plan view of the substrate showing the manufacturing process of the TFT array substrate.
  • 18 is a cross-sectional view taken along line EE in FIG.
  • FIG. 19 is a cross-sectional view
  • the semiconductor substrate of the present invention includes a substrate, a light shielding film provided on the substrate, a first insulating film provided on the substrate so as to cover the light shielding film, and a light shielding film and a planar surface on the first insulating film.
  • a gate electrode provided so as not to overlap with each other in plan view, a third insulating film covering the gate electrode and in contact with the source electrode and the drain electrode through the contact hole on the second insulating film; With ( 1 configuration).
  • the semiconductor substrate includes the semiconductor film, the source electrode, and the drain electrode on the first insulating film, the second insulating film on the first insulating film, and the second insulating film.
  • a gate electrode is provided on the insulating film. That is, the semiconductor substrate includes a top gate type semiconductor. Therefore, a structure in which the gate electrode does not overlap with either the source electrode or the drain electrode in plan view can be obtained. Therefore, generation of parasitic capacitance between the gate electrode and the source and drain electrodes can be suppressed, and as a result, a semiconductor substrate with a short writing time can be obtained. Note that since the semiconductor film is provided so as to overlap with the light-shielding film in plan view, the semiconductor film can be prevented from being exposed to light and being deteriorated.
  • the third insulating film is in contact with the semiconductor film in addition to the source electrode and the drain electrode through the contact hole, and the hydrogen of the third insulating film
  • the concentration is 1 ⁇ 10 22 cm ⁇ 3 or more (second configuration).
  • the third insulating film having a hydrogen concentration of 1 ⁇ 10 22 cm ⁇ 3 or more is in contact with the semiconductor film, hydrogen easily enters the semiconductor film from the third insulating film.
  • oxygen in the semiconductor film is extracted and the resistance of the oxide semiconductor becomes low.
  • the electron transfer efficiency of the semiconductor in the semiconductor substrate can be improved.
  • the semiconductor film in the first or second configuration, is formed of an oxide film semiconductor (third configuration).
  • the semiconductor film is an In—Ga—Zn—O-based oxide semiconductor (fourth configuration).
  • the semiconductor film is a crystalline oxide semiconductor (fifth configuration).
  • the display device of the present invention includes a semiconductor substrate having any one of the first to fifth configurations.
  • FIG. 1 is an explanatory diagram schematically illustrating a cross-sectional configuration of the liquid crystal display device 100 according to the first embodiment.
  • the liquid crystal display device 100 includes a liquid crystal display panel 200 that displays an image on a display surface 200a, a backlight device 300 that supplies light to the liquid crystal display panel 200, a casing 400 that houses the liquid crystal display panel 200, the backlight device 300, and the like. Is provided.
  • the liquid crystal display panel 200 includes a TFT array substrate 210, a counter substrate 220, a liquid crystal layer 230, and a sealing material 240.
  • the TFT array substrate 210 and the counter substrate 220 are arranged to face each other.
  • the TFT array substrate 210 and the counter substrate 220 are bonded together with a frame-shaped sealing material 240.
  • a liquid crystal layer 230 is sealed in a space surrounded by the sealing material 240 between the TFT array substrate 210 and the counter substrate 220.
  • the liquid crystal display panel 200 operates in an FFS (Fringe Field Switching) mode.
  • FFS Frringe Field Switching
  • the backlight device 300 is a device that irradiates light toward the liquid crystal display panel 200 while using an LED (Light Emitting Diode) as a light source. As shown in FIG. 1, the backlight device 300 is disposed on the TFT array substrate 210 side of the liquid crystal display panel 200 and irradiates light toward the TFT array substrate 210. The liquid crystal display panel 200 displays an image on the display surface 200 a using light supplied from the backlight device 300.
  • LED Light Emitting Diode
  • the liquid crystal display device 100 of the present embodiment is used in various electronic devices such as a mobile phone, a smartphone, a laptop computer, a tablet terminal, a portable information terminal, a digital photo frame, a portable game machine, and electronic ink paper. .
  • FIG. 2 is a plan view of the liquid crystal display panel 200.
  • the liquid crystal display panel 200 includes the TFT array substrate 210, the counter substrate 220, and the liquid crystal layer 230 as described above.
  • the TFT array substrate 210 is slightly larger than the counter substrate 220.
  • a gate driver 211, a source driver / touch panel controller 212, and the like are formed in a region of the TFT array substrate 210 that is larger than the counter substrate 220.
  • a plurality of gate wirings 42 are provided from the gate driver 211 so as to extend in parallel with each other.
  • a plurality of source wirings 24 and touch panel wirings 12 are provided from the source driver / touch panel control unit 212 so as to extend in parallel with each other.
  • the touch panel wiring 12 is electrically connected to a common electrode 51 described later.
  • FIG. 3 is a plan view showing a layout of the TFT array substrate 210 in the liquid crystal display panel 200.
  • FIG. 4 is a cross-sectional view of the liquid crystal display panel 200 taken along line AA in FIG.
  • the TFT array substrate 210 is a semiconductor substrate. The configuration of the TFT array substrate 210 will be described later. A polarizing plate (not shown) is provided on the surface of the TFT array substrate 210 opposite to the liquid crystal layer 230.
  • the counter substrate 220 has a predetermined arrangement of colored portions such as a transparent glass substrate (transparent substrate) 221, a black matrix 222, R (red), G (green), and B (blue). And a color filter 223, an alignment film (not shown), and the like are arranged.
  • a polarizing plate (not shown) is provided on the surface of the counter substrate 220 opposite to the liquid crystal layer 230.
  • the TFT array substrate 210 includes a top gate type TFT 250.
  • the TFT array substrate 210 has a configuration in which a plurality of TFTs 250 as switching elements and pixel electrodes 43 connected thereto are arranged in a matrix on the transparent substrate 10.
  • a source wiring 24 and a gate wiring 42 are arranged on the TFT array substrate 210 so as to partition the TFT 250 and the like.
  • the TFT array substrate 210 includes a transparent substrate 10, a light shielding film 11, a first insulating film 20, a semiconductor film 21, a source electrode 22, a drain electrode 23, and a source wiring 24.
  • the transparent substrate 10 is made of a glass plate material.
  • the transparent substrate 10 is not limited to glass, and various substrates can be used.
  • a substrate such as a single crystal semiconductor substrate, an oxide single crystal substrate, a metal substrate, a glass substrate, a quartz substrate, or a resin substrate can be used.
  • a conductive substrate such as a single crystal semiconductor substrate or a metal substrate, it is preferably used by providing an insulating film or the like thereon.
  • the light shielding film 11 is formed on the transparent substrate 10.
  • the light shielding film 11 is formed in a floating island shape that is not electrically connected to other components.
  • the light shielding film 11 is provided below the semiconductor film 21 and shields the semiconductor film 21 from light.
  • the light shielding film 11 is formed of, for example, a metal film.
  • the first insulating film 20 is provided on the transparent substrate 10 so as to cover the light shielding film 11.
  • the first insulating film 20 is made of, for example, a SiN x film or a SiO 2 film.
  • the semiconductor film 21 is formed on the first insulating film 20.
  • the semiconductor film 21 is formed so as to overlap the region where the light shielding film 11 is formed in a plan view.
  • the region where the semiconductor film 21 is formed is preferably slightly smaller than the region where the light shielding film 11 is formed, as shown in FIG.
  • the semiconductor film 21 is formed of an oxide semiconductor.
  • the oxide semiconductor contained in the semiconductor film 21 may be an amorphous oxide semiconductor or a crystalline oxide semiconductor having a crystalline portion.
  • the crystalline oxide semiconductor include a polycrystalline oxide semiconductor, a microcrystalline oxide semiconductor, and a crystalline oxide semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface.
  • the semiconductor film 21 may have a laminated structure of two or more layers.
  • the semiconductor film 21 may include an amorphous oxide semiconductor layer and a crystalline oxide semiconductor layer.
  • a plurality of crystalline oxide semiconductor layers having different crystal structures may be included.
  • a plurality of amorphous oxide semiconductor layers may be included.
  • the energy gap of the oxide semiconductor included in the upper layer is preferably larger than the energy gap of the oxide semiconductor included in the lower layer.
  • the energy gap of the lower oxide semiconductor may be larger than the energy gap of the upper oxide semiconductor.
  • the semiconductor film 21 may contain at least one metal element of In, Ga, and Zn, for example.
  • the semiconductor film 21 includes, for example, an In—Ga—Zn—O-based semiconductor (for example, indium gallium zinc oxide).
  • Such a semiconductor film 21 can be formed of an oxide semiconductor film containing an In—Ga—Zn—O-based semiconductor.
  • the In—Ga—Zn—O-based oxide semiconductor may be amorphous or crystalline.
  • a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
  • a TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (more than 20 times that of an a-Si TFT) and low leakage current (less than one hundredth of that of an a-Si TFT).
  • the TFT is suitably used as a driving TFT (for example, a TFT included in a driving circuit provided on the same substrate as the display area around a display area including a plurality of pixels) and a pixel TFT (a TFT provided in the pixel).
  • a driving TFT for example, a TFT included in a driving circuit provided on the same substrate as the display area around a display area including a plurality of pixels
  • a pixel TFT a TFT provided in the pixel
  • the semiconductor film 21 may include another oxide semiconductor instead of the In—Ga—Zn—O-based semiconductor.
  • an In—Sn—Zn—O-based semiconductor eg, In 2 O 3 —SnO 2 —ZnO; InSnZnO
  • the In—Sn—Zn—O-based semiconductor is a ternary oxide of In (indium), Sn (tin), and Zn (zinc).
  • the semiconductor film 21 may be an In—Al—Zn—O based semiconductor, an In—Al—Sn—Zn—O based semiconductor, a Zn—O based semiconductor, an In—Zn—O based semiconductor, or a Zn—Ti—O based semiconductor.
  • An oxide semiconductor such as an —In—Zn—O-based semiconductor or an Hf—In—Zn—O-based semiconductor may be included.
  • the source electrode 22, the drain electrode 23, and the source wiring 24 are formed on the first insulating film 20. Part of the source electrode 22 and the drain electrode 23 is formed so as to cover the semiconductor film 21. In the semiconductor film 21, a region between the source electrode 22 and the drain electrode 23 forms a channel region 21c.
  • the gate insulating film 30 is formed on the first insulating film 20 so as to cover the semiconductor film 21, the source electrode 22, the drain electrode 23, the source wiring 24, and the like.
  • the gate insulating film 30 is formed of, for example, a SiN x film or a SiO 2 film.
  • the photosensitive resin film 40 is formed on the gate insulating film 30.
  • the photosensitive resin film 40 is made of, for example, an organic photosensitive resin such as acrylic.
  • Contact holes CH1 and CH2 are formed in the gate insulating film 30 and the photosensitive resin film 40.
  • the contact hole CH1 is formed in the region where the semiconductor film 21 is formed.
  • both the gate insulating film 30 and the photosensitive resin film 40 are removed, and the semiconductor film 21 is exposed on the surface of the contact hole CH1.
  • the region overlapping with the channel region 21c only the photosensitive resin film 40 is removed, and the gate insulating film 30 remains.
  • the contact hole CH2 is formed in a region where the drain electrode 23 is formed.
  • the drain electrode 23 is exposed on the surface of the contact hole CH2.
  • the gate electrode 41 is formed on the gate insulating film 30 as shown in FIG.
  • the gate electrode 41 is formed so as to overlap the channel region 21c of the semiconductor film 21 in plan view.
  • the gate wiring 42 is disposed so as to be orthogonal to the source wiring 24.
  • the gate electrode 41 and the gate wiring 42 are formed of a transparent conductive film 41a common to the pixel electrode 43 and a metal film 41b covering the transparent conductive film 41a.
  • the pixel electrode 43 is electrically connected to the drain electrode 23 through a contact hole CH2 formed in the gate insulating film 30 and the photosensitive resin film 40.
  • the pixel electrode 43 is formed of a transparent conductive film.
  • the passivation film 50 is formed on the photosensitive resin film 40 so as to cover the gate electrode 41, the pixel electrode 43, and the like.
  • the passivation film 50 is in contact with the semiconductor film 21 in the contact hole CH1.
  • the passivation film 50 is formed of, for example, a SiN x film.
  • the hydrogen concentration of the passivation film 50 is preferably 1 ⁇ 10 22 cm ⁇ 3 or more. Since the passivation film 50 having a hydrogen concentration of 1 ⁇ 10 22 cm ⁇ 3 or more is in contact with the semiconductor film 21, oxygen is extracted from a region adjacent to the channel region 21c in the semiconductor film 21, thereby reducing the resistance of the region. can do.
  • the common electrode 51 is formed so as to cover the passivation film 50.
  • the common electrode 51 is formed in the upper layer of the pixel electrode 43. As shown in FIG. 3, the common electrode 51 is a comb-like electrode.
  • the common electrode 51 is formed of a transparent conductive film such as ITO, for example.
  • the pattern shape of the TFT array substrate 210 can be confirmed after disassembling the TFT array substrate 210, and then using an optical microscope, STEM (Scanning Transmission Electron Microscope), SEM (Scanning Electron Microscope). ) Or the like.
  • TFT array substrate manufacturing method Next, a manufacturing method of the TFT array substrate 210 will be described with reference to FIGS.
  • the transparent substrate 10 is prepared. Then, for example, a light shielding film is formed by laminating a copper (Cu) film and a titanium (Ti) film. Specifically, for example, after forming a copper (Cu) film and a titanium (Ti) film by sputtering, photolithography by wet etching is performed, as shown in FIG. A film 11 is formed.
  • a light shielding film is formed by laminating a copper (Cu) film and a titanium (Ti) film. Specifically, for example, after forming a copper (Cu) film and a titanium (Ti) film by sputtering, photolithography by wet etching is performed, as shown in FIG. A film 11 is formed.
  • an SiO 2 film and an SiN film are formed by using, for example, a CVD method, and an insulating film covering the transparent substrate 10 and the light shielding film 11 is formed as shown in FIG.
  • the first insulating film 20 is formed by performing photolithography by dry etching on the insulating film.
  • the first insulating film 20 may be formed by forming a transparent SOG film by using, for example, a spin coating method.
  • an oxide semiconductor film is formed on the first insulating film 20 by using, for example, a sputtering method. Then, the oxide semiconductor film is patterned using photolithography by wet etching to form an island-shaped semiconductor film 21 as shown in FIG. At this time, the region where the semiconductor film 21 is formed is a region overlapping the light shielding film 11 in plan view.
  • a copper (Cu) film and a titanium (Ti) film are laminated to form a conductive film.
  • the metal film is patterned by photolithography using wet etching or dry etching, and the source electrode 22, A conductive film constituting the drain electrode 23, the source wiring 24, and the like is formed.
  • the conductive film constituting the source electrode 22 and the like may have the structure of the other metal film exemplified above or may have a single layer structure. However, this conductive film preferably has a two-layer structure.
  • a low resistance metal for example, aluminum (Al) or copper (Cu) is suitable as the material constituting the lower layer.
  • a metal for example, titanium (Ti), molybdenum (Mo) film, titanium nitride (TiN), which is difficult to be etched at the time of overetching due to in-plane distribution in the subsequent dry etching process, Molybdenum nitride (MoN) or the like is preferable.
  • a SiN x film and a SiO 2 film are sequentially formed on the first insulating film 20 by using, for example, PECVD so as to cover the conductive film such as the source electrode 22. Then, the insulating film 30p is formed.
  • the insulating film 30 p formed here is a film constituting the gate insulating film 30.
  • a photosensitive resin film 40 such as an acrylic resin is formed on the SiO 2 film.
  • the photosensitive resin film 40 is patterned by photolithography to form a contact hole CH1a that overlaps the semiconductor film 21 and a contact hole CH2a that overlaps the drain electrode 23, as shown in FIGS. Then, an annealing process is performed on the photosensitive resin film 40.
  • patterning is performed by photolithography of the insulating film 30p to form a contact hole CH2 reaching the drain electrode 23 from the surface of the photosensitive resin film 40.
  • a transparent conductive film is formed on the photosensitive resin film 40 by using, for example, a sputtering method, and the conductive film is further laminated. Then, patterning is performed by photolithography using wet etching, the gate electrode 41 made of the transparent conductive film 41a and the conductive film 41b, the gate wiring 42 made of the transparent conductive film and the conductive film (see FIG. 11), and transparent.
  • a pixel electrode 43 made of a conductive film is formed. The conductive film 43b having the same pattern as the pixel electrode 43 remains in the upper layer of the pixel electrode 43.
  • a resist R is formed in a region overlapping with the gate electrode 41 and the gate wiring 42. Then, as shown in FIG. 14, the conductive film 43b on the pixel electrode 43 is removed by wet etching.
  • the gate insulating film 30 in the region where the gate electrode 41 does not exist in the region overlapping the contact hole CH1a formed in the photosensitive resin film 40 is removed by dry etching. Thereby, the contact hole CH1 is formed. Then, as shown in FIG. 16, the resist R formed on the gate electrode 41 is removed.
  • a SiN film is formed so as to cover the photosensitive resin film 40, the pixel electrode 43, and the like, and the SiN film is etched by photolithography using dry etching.
  • a passivation film 50 is formed.
  • the passivation film 50 is formed at 250 ° C. using a mixed gas of SiH 4 , NH 3 and N 2 by a plasma CVD apparatus, the concentration of hydrogen contained in the passivation film 50 is set to 1 ⁇ 10 22 cm ⁇ 3. This can be done.
  • a transparent conductive film is formed on the passivation film 50 using a sputtering method or the like.
  • the common electrode 51 is formed by annealing the transparent conductive film.
  • an alignment film (not shown) is formed so as to cover the passivation film 50 and the common electrode 51.
  • the TFT array substrate 210 of this embodiment has a structure in which the gate electrode 41 does not overlap with either the source electrode 22 or the drain electrode 23 in plan view. Therefore, it is possible to suppress the generation of parasitic capacitance between the gate electrode 41 and the source electrode 22 and the drain electrode 23. As a result, the TFT array substrate 210 with a short writing time can be obtained.
  • the writing time of the TFT array substrate 210 is shortened, the time required for raising the voltage of each pixel to a desired magnitude can be shortened. Therefore, the occurrence of signal delay can be suppressed.
  • the writing time of the TFT array substrate 210 is shortened, the time for driving the touch panel during the display driving suspension period can be lengthened. Since the influence of the noise of the display signal on the signal of the touch panel is suppressed, as a result, the accuracy of the touch panel can be improved.
  • the TFT array substrate 210 of this embodiment is a top gate type semiconductor substrate. However, since the semiconductor film 21 is provided so as to overlap the light shielding film 11 in plan view, the semiconductor film 21 is exposed to light and the semiconductor film It can suppress that 21 deteriorates.
  • the passivation film 50 having a hydrogen concentration of 1 ⁇ 10 22 cm ⁇ 3 or more is in contact with the semiconductor film 21, hydrogen easily enters the semiconductor film 21 from the passivation film 50. .
  • oxygen in the semiconductor film 21 is extracted, and the resistance of the oxide semiconductor becomes low. As a result, the electron transfer efficiency of the semiconductor 21 of the TFT array substrate 210 can be improved. .
  • the configuration in which the semiconductor film 21 and the passivation film 50 are in direct contact with each other has been described.
  • the channel region 21c of the semiconductor film 21 is formed in the TFT array substrate 210A of the liquid crystal display panel 200A.
  • the other region may be covered with the source electrode 22A or the drain electrode 23A. Even in this case, since the source electrode 22A or the drain electrode 23A and the gate electrode 41 are arranged so as not to overlap in plan view, it is possible to suppress the occurrence of parasitic capacitance between them.
  • the semiconductor film is described as being formed of an oxide semiconductor film, but the material of the semiconductor film is not limited to this.
  • the semiconductor film may be formed of polysilicon.
  • Each TFT array substrate of the above embodiment may further include an auxiliary capacitance wiring that forms an auxiliary capacitance used to hold a voltage applied to the liquid crystal.
  • the operation mode of the liquid crystal display panel 200 is the FFS mode, but the display device of the present invention is not particularly limited to this.
  • the liquid crystal display panel of the present invention may be, for example, a TN mode.
  • the display device of the present invention may be a display device other than the liquid crystal display device.
  • the present invention may be applied to a display device such as an organic EL display device.
  • the present invention can be used for semiconductor substrates and display devices.
  • CH1 ... contact hole 100 ... liquid crystal display device (display device), 210 ... TFT array substrate (semiconductor substrate), 10 ... transparent substrate (substrate), 11 ... light shielding film, 20 ... first insulating film, 21 ... semiconductor film 22 ... Source electrode, 23 ... Drain electrode, 30 ... Gate insulating film (second insulating film), 40 ... Passivation film (third insulating film), 41 ... Gate electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)

Abstract

寄生容量の発生を抑制し、書き込み時間の短い半導体基板及び表示装置を提供する。半導体膜21は、遮光膜11と平面視で重なるように設けられている。第2の絶縁膜30は、ソース電極22及びドレイン電極23に達するコンタクトホールCH1を有する。ゲート電極41は、第2の絶縁膜30上に、半導体膜21と平面視で重なると共にソース電極22及びドレイン電極23のいずれとも平面視で重ならないように設けられている。第3の絶縁膜50は、ゲート電極41を覆うと共にコンタクトホールCH1を介してソース電極22及びドレイン電極23と接触するように第2の絶縁膜30上に設けられている。

Description

半導体基板及び表示装置
 本発明は、半導体基板及び表示装置に関し、特に、タッチセンサーを備えた表示装置に用いる半導体基板に関する。
 近年、タッチセンサーを備える表示装置として、表示装置とタッチパネルとを個別に作製した後に表示装置にタッチパネルを取り付ける上板付型(アドオンタイプ)のものや、表示装置の上部ガラス基板の表面にタッチセンサーを直接形成する上板一体型(オンセルタイプ)のものがある。上板一体型の表示装置は上板付型のものに比べて厚さが薄くなっているが、さらに薄型化したタイプの表示装置として、タッチセンサー一体型の表示装置が開発されている。
 例えば、特許文献1には、互いに交差する複数のゲートライン及び複数のデータラインと、複数のゲートライン及び複数のデータラインの交差によって定義される領域内に形成される複数の画素電極と、複数の画素電極と重なるように形成される複数の共通電極と、を含むタッチセンサー一体型の表示装置が開示されている。この表示装置では、複数の共通電極が、ディスプレイの共通電極、タッチセンサーを構成するタッチ駆動電極及びタッチセンシング電極の機能を兼ねている。
特開2015-106411号公報
 特許文献1に記載の表示装置は、上述のように、TFTがボトムゲート構造となっている。そのため、平面視において、ゲート電極とソース電極は、平面視において必ず重なるように配置されることとなる。ゲート電極とソース電極とが平面視で重なることにより、ゲート電極とソース電極との間に寄生容量が発生し、信号書き込み時に信号の鈍りが生じる原因となり得る。
 本発明の目的は、寄生容量の発生を抑制し、書き込み時間の短い表示装置を提供することである。
 本発明の半導体基板は、基板と、基板上に設けられた遮光膜と、基板上に遮光膜を覆って設けられた第1の絶縁膜と、第1の絶縁膜上に、遮光膜と平面視で重なるように設けられた半導体膜と、第1の絶縁膜上に、一部が半導体膜を覆うように設けられたソース電極及びドレイン電極と、第1の絶縁膜上に、半導体膜、ソース電極及びドレイン電極を覆って設けられ、ソース電極及びドレイン電極に達するコンタクトホールを有する第2の絶縁膜と、第2の絶縁膜上に、半導体膜と平面視で重なると共にソース電極及びドレイン電極のいずれとも平面視で重ならないように設けられたゲート電極と、第2の絶縁膜上に、ゲート電極を覆うと共にコンタクトホールを介してソース電極及びドレイン電極と接触するように設けられた第3の絶縁膜と、を備える。
 本発明によれば、ソース電極及びドレイン電極と、ゲート電極とが平面視で重ならないように設けられているので、寄生容量の発生を抑制することにより、書き込み時間の短い半導体基板及び表示装置を得ることができる。
図1は、液晶表示装置の断面構成を模式的に表した説明図である。 図2は、実施形態1の液晶パネルの平面図である。 図3は、実施形態1のTFTアレイ基板のレイアウトを詳しく示した液晶パネルの平面図である。 図4は、図3の液晶表示パネルのA-A線における断面図である。 図5は、TFTアレイ基板の製造工程を示す基板の断面図である。 図6は、TFTアレイ基板の製造工程を示す基板の平面図である。 図7は、図6のB-B線における断面図である。 図8は、TFTアレイ基板の製造工程を示す基板の断面図である。 図9は、TFTアレイ基板の製造工程を示す基板の平面図である。 図10は、図9のC-C線における断面図である。 図11は、TFTアレイ基板の製造工程を示す基板の平面図である。 図12は、図11のD-D線における断面図である。 図13は、TFTアレイ基板の製造工程を示す基板の断面図である。 図14は、TFTアレイ基板の製造工程を示す基板の断面図である。 図15は、TFTアレイ基板の製造工程を示す基板の断面図である。 図16は、TFTアレイ基板の製造工程を示す基板の断面図である。 図17は、TFTアレイ基板の製造工程を示す基板の平面図である。 図18は、図17のE-E線における断面図である。 図19は、変形例のTFTアレイ基板の断面図である。
 本発明の半導体基板は、基板と、基板上に設けられた遮光膜と、基板上に遮光膜を覆って設けられた第1の絶縁膜と、第1の絶縁膜上に、遮光膜と平面視で重なるように設けられた半導体膜と、第1の絶縁膜上に、一部が半導体膜を覆うように設けられたソース電極及びドレイン電極と、第1の絶縁膜上に、半導体膜、ソース電極及びドレイン電極を覆って設けられ、ソース電極及びドレイン電極に達するコンタクトホールを有する第2の絶縁膜と、第2の絶縁膜上に、半導体膜と平面視で重なると共にソース電極及びドレイン電極のいずれとも平面視で重ならないように設けられたゲート電極と、第2の絶縁膜上に、ゲート電極を覆うと共にコンタクトホールを介してソース電極及びドレイン電極と接触した第3の絶縁膜と、を備える(第1の構成)。
 第1の構成によれば、半導体基板は、第1の絶縁膜上に半導体膜並びにソース電極及びドレイン電極を備え、第1の絶縁膜上に第2の絶縁膜を備え、さらに、第2の絶縁膜上にゲート電極を備える。つまり、半導体基板は、トップゲート型の半導体を備える。そのため、ゲート電極がソース電極及びドレイン電極のいずれとも平面視で重ならない構造とすることができる。したがって、ゲート電極と、ソース電極及びドレイン電極との間に寄生容量が発生するのを抑制することができ、結果として、書き込み時間の短い半導体基板を得ることができる。なお、半導体膜は遮光膜と平面視で重なるように設けられているので、半導体膜に光があたって半導体膜が劣化するのを抑制することができる。
 本発明の半導体基板は、第1の構成において、第3絶縁膜は、コンタクトホールを介して、ソース電極及びドレイン電極に加え、さらに、半導体膜に接触しており、第3の絶縁膜の水素濃度は、1×1022cm-3以上である(第2の構成)。
 第2の構成によれば、水素濃度が1×1022cm-3以上の第3の絶縁膜が半導体膜に接触しているので、第3の絶縁膜から半導体膜に水素が進入しやすくなる。半導体膜に水素が進入すると、半導体膜中の酸素が抜き取られて、酸化物半導体が低抵抗になり、結果として、半導体基板の半導体の電子の移動効率を向上させることができる。
 本発明の半導体基板は、第1または第2の構成において、半導体膜が、酸化膜半導体で形成されている(第3の構成)。
 本発明の半導体基板は、第3の構成において、半導体膜が、In-Ga-Zn-O系の酸化物半導体である(第4の構成)。
 本発明の半導体基板は、第3または第4の構成において、半導体膜が、結晶質の酸化物半導体である(第5の構成)。
 本発明の表示装置は、第1~第5の構成のいずれかの半導体基板を備える。
 以下、図面を参照しつつ、本発明の好適な実施の形態について詳細に説明する。以下の説明において参照する各図は、説明の便宜上、本発明の実施形態の構成部材のうち、本発明を説明するために必要な主要部材のみを簡略化して示したものである。従って、本発明は以下の各図に示されていない任意の構成部材を備え得る。また、以下の各図中の部材の寸法は、実際の寸法および各部材の寸法比率等を忠実に表したものではない。
  <実施形態1>
 実施形態1では、表示装置の一例として、バックライト装置を備えた液晶表示装置について説明する。図1は、実施形態1の液晶表示装置100の断面構成を模式的に示した説明図である。
 液晶表示装置100は、表示面200aに画像を表示する液晶表示パネル200、液晶表示パネル200に光を供給するバックライト装置300、液晶表示パネル200やバックライト装置300等を収容する筐体400等を備える。
 液晶表示パネル200は、TFTアレイ基板210と、対向基板220と、液晶層230と、シール材240とを備える。TFTアレイ基板210及び対向基板220は、互いに対向して配置されている。TFTアレイ基板210及び対向基板220は、枠状のシール材240で貼り合わされている。TFTアレイ基板210及び対向基板220間のシール材240で囲まれた空間には、液晶層230が封入されている。液晶表示パネル200は、FFS(Fringe Field Switching)モードで動作する。
 バックライト装置300は、LED(Light Emitting Diode)を光源としつつ、液晶表示パネル200に向かって光を照射する装置である。バックライト装置300は、図1に示されるように、液晶表示パネル200のTFTアレイ基板210側に配され、TFTアレイ基板210に向かって光を照射する。液晶表示パネル200は、バックライト装置300から供給される光を利用して、表示面200aに画像が表示される。
 本実施形態の液晶表示装置100は、例えば、携帯電話、スマートフォン、ラップトップ型パソコン、タブレット端末、携帯型情報端末、デジタルフォトフレーム、携帯型ゲーム機、電子インクペーパ等の各種電子機器に用いられる。
  (液晶表示パネル)
 図2は、液晶表示パネル200の平面図である。液晶表示パネル200は、上述のように、TFTアレイ基板210,対向基板220及び液晶層230を含む。TFTアレイ基板210は、図2に示すように、対向基板220よりも一回り大きくなっている。TFTアレイ基板210のうち、対向基板220よりも大きくなった領域には、図2に示すように、ゲートドライバ211、ソースドライバ兼タッチパネル制御部212等が形成されている。ゲートドライバ211からは、図2に示すように、複数のゲート配線42が互いに並行して延びるように設けられている。ソースドライバ兼タッチパネル制御部212からは、複数のソース配線24及びタッチパネル配線12が、互いに並行して延びるように設けられている。タッチパネル配線12は、後述する共通電極51と電気的に接続されている。
 図3は、液晶表示パネル200のうちTFTアレイ基板210のレイアウトを示した平面図である。図4は、図3のA-A線における液晶表示パネル200の断面図である。
 TFTアレイ基板210は、半導体基板である。TFTアレイ基板210の構成については後述する。TFTアレイ基板210の液晶層230とは反対側の表面には、偏光板(不図示)が設けられている。
 対向基板220は、図4に示すように、透明なガラス製の基板(透明基板)221、ブラックマトリクス222,R(赤色),G(緑色),B(青色)等の各着色部が所定配列で配置されたカラーフィルタ223、配向膜(不図示)等が配設された構成を有する。対向基板220の液晶層230とは反対側の表面には、偏光板(不図示)が設けられている。
  (TFTアレイ基板)
 次に、TFTアレイ基板210について説明する。本実施形態のTFTアレイ基板210は、トップゲート型のTFT250を備えている。
 TFTアレイ基板210は、図3に示すように、透明基板10上に、スイッチング素子としてのTFT250やそれに接続する画素電極43がマトリクス状に複数個配設された構成を有する。TFTアレイ基板210には、TFT250等を区画するようにソース配線24やゲート配線42が配設されている。具体的には、TFTアレイ基板210は、図3及び図4に示すように、透明基板10、遮光膜11,第1絶縁膜20,半導体膜21,ソース電極22,ドレイン電極23,ソース配線24,ゲート絶縁膜30,感光性樹脂膜40,ゲート電極41,ゲート配線42、画素電極43,パッシベーション膜50,共通電極51、配向膜(不図示)等を備える。
 透明基板10は、上述したように、ガラス製の板材からなる。なお、透明基板10としては、ガラス製に限定されず、種々の基板を用いることができる。例えば、単結晶半導体基板、酸化物単結晶基板、金属基板、ガラス基板、石英基板、樹脂基板等の基板を用いることができる。例えば、単結晶半導体基板や金属基板等の導電性基板である場合には、その上に絶縁膜等を設けることによって用いることが好ましい。
 遮光膜11は、透明基板10上に形成されている。遮光膜11は、他の構成と電気的に接続されない浮島状に形成されている。遮光膜11は、半導体膜21の下層に設けられ、半導体膜21を遮光している。遮光膜11は、例えば、金属膜で形成されている。
 第1絶縁膜20は、透明基板10上に、遮光膜11を覆って設けられている。第1絶縁膜20は、例えば、SiN膜やSiO膜で形成されている。
 半導体膜21は、第1絶縁膜20上に形成されている。半導体膜21は、遮光膜11が形成された領域に平面視で重なるように形成されている。半導体膜21をより確実に遮光するためには、図2に示すように、半導体膜21が形成された領域は、遮光膜11が形成された領域よりも一回り小さくなっていることが好ましい。半導体膜21は、酸化物半導体で形成されている。
 半導体膜21に含まれる酸化物半導体は、アモルファス酸化物半導体であってもよいし、結晶質部分を有する結晶質酸化物半導体であってもよい。結晶質酸化物半導体としては、多結晶酸化物半導体、微結晶酸化物半導体、c軸が層面に概ね垂直に配向した結晶質酸化物半導体などが挙げられる。
 半導体膜21は、2層以上の積層構造を有していてもよい。半導体膜21が積層構造を有する場合には、半導体膜21は、非晶質酸化物半導体層と結晶質酸化物半導体層とを含んでいてもよい。あるいは、結晶構造の異なる複数の結晶質酸化物半導体層を含んでいてもよい。また、複数の非晶質酸化物半導体層を含んでいてもよい。半導体膜21が上層と下層とを含む2層構造を有する場合、上層に含まれる酸化物半導体のエネルギーギャップは、下層に含まれる酸化物半導体のエネルギーギャップよりも大きいことが好ましい。ただし、これらの層のエネルギーギャップの差が比較的小さい場合には、下層の酸化物半導体のエネルギーギャップが上層の酸化物半導体のエネルギーギャップよりも大きくてもよい。
 非晶質酸化物半導体および上記の各結晶質酸化物半導体の材料、構造、成膜方法、積層構造を有する酸化物半導体層の構成などは、例えば特開2014-007399号公報に記載されている。
 半導体膜21は、例えば、In、GaおよびZnのうち少なくとも1種の金属元素を含んでもよい。本実施形態では、半導体膜21は、例えば、In-Ga-Zn-O系の半導体(例えば酸化インジウムガリウム亜鉛)を含む。ここで、In-Ga-Zn-O系の半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、GaおよびZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。このような半導体膜21は、In-Ga-Zn-O系の半導体を含む酸化物半導体膜から形成され得る。
 In-Ga-Zn-O系の酸化物半導体は、アモルファスでもよいし、結晶質でもよい。結晶質In-Ga-Zn-O系の半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系の半導体が好ましい。
 なお、結晶質In-Ga-Zn-O系の酸化物半導体の結晶構造は、例えば、上述した特開2014-007399号公報、特開2012-134475号公報、特開2014-209727号公報などに開示されている。In-Ga-Zn-O系半導体層を有するTFTは、高い移動度(a-SiTFTに比べ20倍超)および低いリーク電流(a-SiTFTに比べ100分の1未満)を有しているので、駆動TFT(例えば、複数の画素を含む表示領域の周辺に、表示領域と同じ基板上に設けられる駆動回路に含まれるTFT)および画素TFT(画素に設けられるTFT)として好適に用いられる。
 半導体膜21は、In-Ga-Zn-O系半導体の代わりに、他の酸化物半導体を含んでいてもよい。例えばIn-Sn-Zn-O系半導体(例えばIn-SnO-ZnO;InSnZnO)を含んでもよい。In-Sn-Zn-O系半導体は、In(インジウム)、Sn(スズ)およびZn(亜鉛)の三元系酸化物である。あるいは、半導体膜21は、In-Al-Zn-O系半導体、In-Al-Sn-Zn-O系半導体、Zn-O系半導体、In-Zn-O系半導体、Zn-Ti-O系半導体、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドミウム)、Mg-Zn-O系半導体、In-Ga-Sn-O系半導体、In-Ga-O系半導体、Zr-In-Zn-O系半導体、Hf-In-Zn-O系半導体等の酸化物半導体を含んでいてもよい。
 ソース電極22,ドレイン電極23,及びソース配線24は、第1絶縁膜20上に形成されている。ソース電極22及びドレイン電極23の一部は、半導体膜21を覆って形成されている。なお、半導体膜21のうち、ソース電極22とドレイン電極23の間となる領域は、チャネル領域21cを構成している。
 ゲート絶縁膜30は、第1絶縁膜20上に、半導体膜21,ソース電極22,ドレイン電極23,ソース配線24等を覆って形成されている。ゲート絶縁膜30は、例えば、SiN膜やSiO膜で形成されている。
 感光性樹脂膜40は、ゲート絶縁膜30上に形成されている。感光性樹脂膜40は、例えば、アクリル等の有機感光性樹脂で形成されている。
 ゲート絶縁膜30及び感光性樹脂膜40には、コンタクトホールCH1,CH2が形成されている。コンタクトホールCH1は、半導体膜21が形成された領域に形成されている。なお、コンタクトホールCH1においては、チャネル領域21cと重ならない領域では、ゲート絶縁膜30と感光性樹脂膜40の両方が除去されて、コンタクトホールCH1の表面に半導体膜21が露出している。チャネル領域21cと重なる領域では、感光性樹脂膜40のみが除去され、ゲート絶縁膜30は残った状態となっている。
 コンタクトホールCH2は、ドレイン電極23が形成された領域に形成されている。コンタクトホールCH2の表面には、ドレイン電極23が露出している。
 ゲート電極41は、図4に示すように、ゲート絶縁膜30上に形成されている。ゲート電極41は、半導体膜21のチャネル領域21cと平面視で重なるように形成されている。ゲート配線42は、図3に示すように、ソース配線24と直交するように配置されている。ゲート電極41及びゲート配線42は、画素電極43と共通の透明導電膜41a、及びそれを覆う金属膜41bで形成されている。
 画素電極43は、ゲート絶縁膜30及び感光性樹脂膜40に形成されたコンタクトホールCH2を介して、ドレイン電極23と電気的に接続されている。画素電極43は、透明導電膜で形成されている。
 パッシベーション膜50は、感光性樹脂膜40上に、ゲート電極41,画素電極43等を覆って形成されている。パッシベーション膜50は、コンタクトホールCH1において、半導体膜21と接触している。パッシベーション膜50は、例えば、SiN膜で形成されている。パッシベーション膜50の水素濃度は、1×1022cm-3以上であることが好ましい。水素濃度が1×1022cm-3以上のパッシベーション膜50が半導体膜21と接触しているので、半導体膜21のうちチャネル領域21cに隣接する領域から酸素が引き抜かれ、当該領域を低抵抗化することができる。
 共通電極51は、パッシベーション膜50を覆って形成されている。共通電極51は、画素電極43の上層に形成されている。共通電極51は、図3に示すように、櫛状の電極となっている。共通電極51は、例えば、ITO等の透明導電膜で形成されている。
 なお、TFTアレイ基板210のパターン形状等の確認は、TFTアレイ基板210を分解した後、光学顕微鏡、STEM(Scanning Transmission Electron Microscope:走査型透過電子顕微鏡)、SEM(Scanning Electron Microscope:走査型電子顕微鏡)等の顕微鏡を用いて観察することにより行うことができる。
  (TFTアレイ基板の製造方法)
 次に、図5~図18を用いて、TFTアレイ基板210の製造方法について説明する。
 まず、透明基板10を準備する。そして、例えば、銅(Cu)膜及びチタン(Ti)膜を積層して、遮光膜を成膜する。具体的には、例えば、スパッタ法を用いて銅(Cu)膜及びチタン(Ti)膜を成膜した後、ウェットエッチングによるフォトリソグラフィを行うことにより、図5に示すように、島状の遮光膜11を形成する。
 次に、たとえばCVD法を用いてSiO膜及びSiN膜を成膜して、図5に示すように、透明基板10及び遮光膜11を覆う絶縁膜を成膜する。そして、この絶縁膜にドライエッチングによるフォトグラフィを行って、第1絶縁膜20を形成する。なお、SiO膜及びSiN膜によって第1絶縁膜20を形成する他、例えば、スピンコート法を用いて透明SOG膜を成膜することによって、第1絶縁膜20を形成してもよい。
 次に、例えばスパッタ法を用いて、第1絶縁膜20上に酸化物半導体の膜を成膜する。そして、ウェットエッチングによるフォトリソグラフィを用いて酸化物半導体の膜をパターンニングして、図5に示すように、島状の半導体膜21を形成する。このとき半導体膜21が形成される領域は、平面視で遮光膜11と重なる領域である。
 次に、図6及び図7に示すように、例えば、銅(Cu)膜及びチタン(Ti)膜を積層して、導電膜を成膜する。具体的には、例えば、スパッタ法を用いて銅(Cu)膜及びチタン(Ti)膜を成膜した後、ウェットエッチングまたはドライエッチングによるフォトリソグラフィにより金属膜をパターンニングして、ソース電極22、ドレイン電極23、ソース配線24等を構成する導電膜を形成する。
 なお、ソース電極22等を構成する導電膜は、上記で例示した他の金属膜の構成であってもよく、単層構造であってもよい。ただし、好ましくは、この導電膜は2層構造である。ソース電極22等を構成する導電膜が2層構造の場合、下層を構成する材料としては、低抵抗の金属(例えば、アルミニウム(Al)や銅(Cu)等)が好適である。上層を構成する材料としては、後工程のドライエッチングの工程において、面内分布のためのオーバーエッチ時にエッチングされにくい金属(例えば、チタン(Ti)、モリブデン(Mo)膜、窒化チタン(TiN)、窒化モリブデン(MoN)等)が好適である。
 次に、図7に示すように、ソース電極22等の導電膜を覆うように、第1絶縁膜20上に、例えばPECVD法を用いてSiN膜及びSiO膜を順に成膜することにより、絶縁膜30pを形成する。ここで形成する絶縁膜30pは、ゲート絶縁膜30を構成する膜である。
 次に、図8に示すように、SiO膜上に、アクリル樹脂等の感光性樹脂膜40を成膜する。この感光性樹脂膜40にフォトリソグラフィによってパターンニングを行って、図8及び図9に示すように、半導体膜21と重なるコンタクトホールCH1a、及びドレイン電極23と重なるコンタクトホールCH2aを形成する。そして、感光性樹脂膜40に対してアニール処理を行う。
 続いて、図9及び図10に示すように、絶縁膜30pのフォトリソグラフィによってパターンニングを行って、感光性樹脂膜40の表面からドレイン電極23に達するコンタクトホールCH2を形成する。
 次に、図11及び図12に示すように、感光性樹脂膜40上に、例えばスパッタ法を用いて透明導電膜を成膜し、さらに、導電膜を積層する。そして、ウェットエッチングを用いたフォトリソグラフィによってパターンニングを行い、透明導電膜41a及び導電膜41bからなるゲート電極41、透明導電膜及び導電膜からなるゲート配線42(図11を参照。)、並びに透明導電膜からなる画素電極43を形成する。画素電極43の上層には、画素電極43と同一のパターンの導電膜43bが残った状態となっている。
 続いて、図13に示すように、ゲート電極41及びゲート配線42と重なる領域に、レジストRを形成する。そして、図14に示すように、ウェットエッチングによって、画素電極43の上の導電膜43bを除去する。
 次いで、図15に示すように、感光性樹脂膜40に形成されたコンタクトホールCH1aと重なる領域のうち、ゲート電極41が存在しない領域のゲート絶縁膜30を、ドライエッチングにより除去する。これにより、コンタクトホールCH1が形成される。そして、図16に示すように、ゲート電極41の上に形成されたレジストRを除去する。
 次に、図17及び図18に示すように、感光性樹脂膜40、画素電極43等を覆うようにSiN膜を成膜し、ドライエッチングを用いたフォトリソグラフィによってSiN膜をエッチングすることによって、パッシベーション膜50を形成する。このとき、プラズマCVD装置により、SiH、NH及びNの混合ガスを用いて250℃でパッシベーション膜50を成膜するので、パッシベーション膜50に含まれる水素濃度を1×1022cm-3以上とすることができる。
 続いて、パッシベーション膜50上に、スパッタ法等を用いて透明導電膜を形成する。透明導電膜に対してウェットエッチングを用いたフォトリソグラフィによってパターンニングを行った後、透明導電膜にアニール処理をすることによって、共通電極51を形成する。
 最後に、パッシベーション膜50及び共通電極51を覆うように、図示しない配向膜を形成する。以上の工程を経ることにより、TFTアレイ基板210が作製される。
  (実施形態1の効果)
 本実施形態のTFTアレイ基板210は、ゲート電極41がソース電極22及びドレイン電極23のいずれとも平面視で重ならない構造を有する。そのため、ゲート電極41と、ソース電極22及びドレイン電極23との間に寄生容量が発生するのを抑制することができ、結果として、書き込み時間の短いTFTアレイ基板210とすることができる。
 TFTアレイ基板210の書き込み時間が短くなることにより、各画素の電圧を所望の大きさにまで上げるのに要する時間を短縮することができる。そのため、信号の遅延が発生するのを抑制することができる。
 また、TFTアレイ基板210の書き込み時間が短くなることにより、表示の駆動休止期間中のタッチパネル駆動のための時間を長くすることができる。タッチパネルの信号に表示信号のノイズが影響を及ぼすのが抑制されるので、結果として、タッチパネルの精度を向上させることができる。
 本実施形態のTFTアレイ基板210は、トップゲート型の半導体基板であるが、半導体膜21は遮光膜11と平面視で重なるように設けられているので、半導体膜21に光があたって半導体膜21が劣化するのを抑制することができる。
 本実施形態のTFTアレイ基板210では、水素濃度が1×1022cm-3以上のパッシベーション膜50が半導体膜21に接触しているので、パッシベーション膜50から半導体膜21に水素が進入しやすくなる。半導体膜21に水素が進入すると、半導体膜21中の酸素が抜き取られて、酸化物半導体が低抵抗になり、結果として、TFTアレイ基板210の半導体21の電子の移動効率を向上させることができる。
  <その他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 実施形態1では、半導体膜21とパッシベーション膜50とが直接接触している構成について説明したが、図19に示すように、液晶表示パネル200AのTFTアレイ基板210Aにおいて、半導体膜21のチャネル領域21c以外の領域が、ソース電極22Aまたはドレイン電極23Aで覆われていてもよい。この場合でも、ソース電極22Aまたはドレイン電極23Aと、ゲート電極41とが、平面視で重ならないように配置されているので、両者間の寄生容量が発生するのを抑制することができる。
 上記の実施形態では、半導体膜が酸化物半導体膜で形成されていると説明したが、半導体膜の材料はこれに限定されない。例えば、半導体膜がポリシリコンで形成されていてもよい。
 上記の実施形態の各TFTアレイ基板は、液晶に印加した電圧を保持するために用いられる補助容量を形成する補助容量配線を更に備えてもよい。
 上記の実施形態では、液晶表示パネル200の動作モードがFFSモードであると説明したが、本発明の表示装置は特にこれに限定されない。本発明の液晶表示パネルは、例えば、TNモード等であってもよい。
 上記の実施形態では、表示装置が液晶表示装置の場合について説明したが、本発明の表示装置は、液晶表示装置以外の表示装置であってもよい。例えば、本発明を、有機EL表示装置等の表示装置に適用してもよい。
 以上、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
 本発明は、半導体基板及び表示装置について利用可能である。
CH1…コンタクトホール、100…液晶表示装置(表示装置)、210…TFTアレイ基板(半導体基板)、10…透明基板(基板)、11…遮光膜、20…第1の絶縁膜、21…半導体膜、22…ソース電極、23…ドレイン電極、30…ゲート絶縁膜(第2の絶縁膜)、40…パッシベーション膜(第3の絶縁膜)、41…ゲート電極

Claims (6)

  1.  基板と、
     前記基板上に設けられた遮光膜と、
     前記基板上に前記遮光膜を覆って設けられた第1の絶縁膜と、
     前記第1の絶縁膜上に、前記遮光膜と平面視で重なるように設けられた半導体膜と、
     前記第1の絶縁膜上に、一部が前記半導体膜を覆うように設けられたソース電極及びドレイン電極と、
     前記第1の絶縁膜上に、前記半導体膜、前記ソース電極及び前記ドレイン電極を覆って設けられ、前記ソース電極及び前記ドレイン電極に達するコンタクトホールを有する第2の絶縁膜と、
     前記第2の絶縁膜上に、前記半導体膜と平面視で重なると共に前記ソース電極及び前記ドレイン電極のいずれとも平面視で重ならないように設けられたゲート電極と、
     前記第2の絶縁膜上に、前記ゲート電極を覆うと共に前記コンタクトホールを介して前記ソース電極及び前記ドレイン電極と接触するように設けられた第3の絶縁膜と、
    を備えた、半導体基板。
  2.  請求項1に記載の半導体基板において、
     前記第3絶縁膜は、前記コンタクトホールを介して、前記ソース電極及び前記ドレイン電極に加え、さらに、前記半導体膜に接触しており、
     前記第3の絶縁膜の水素濃度は、1×1022cm-3以上である、半導体基板。
  3.  請求項1または請求項2に記載の半導体基板において、
     前記半導体膜が、酸化膜半導体で形成されている、半導体基板。
  4.  請求項3に記載の半導体基板において、
     前記半導体膜は、In-Ga-Zn-O系の酸化物半導体である、半導体基板。
  5.  請求項3または請求項4に記載の半導体基板において、
     前記半導体膜は、結晶質の酸化物半導体である、半導体基板。
  6.  請求項1~請求項5のいずれか一項に記載の半導体基板を備えた表示装置。
PCT/JP2016/085117 2015-11-30 2016-11-28 半導体基板及び表示装置 WO2017094644A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/779,655 US10243010B2 (en) 2015-11-30 2016-11-28 Semiconductor substrate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-233606 2015-11-30
JP2015233606 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017094644A1 true WO2017094644A1 (ja) 2017-06-08

Family

ID=58796681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085117 WO2017094644A1 (ja) 2015-11-30 2016-11-28 半導体基板及び表示装置

Country Status (2)

Country Link
US (1) US10243010B2 (ja)
WO (1) WO2017094644A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109801952A (zh) * 2019-02-14 2019-05-24 惠科股份有限公司 显示面板及其制作方法
JP2023099444A (ja) * 2021-12-31 2023-07-13 エルジー ディスプレイ カンパニー リミテッド 表示パネル及び表示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106940500A (zh) * 2017-05-24 2017-07-11 厦门天马微电子有限公司 阵列基板、显示面板、显示装置以及阵列基板的驱动方法
CN110596974B (zh) * 2018-06-12 2022-04-15 夏普株式会社 显示面板和显示装置
US11009757B2 (en) * 2019-03-14 2021-05-18 Sharp Kabushiki Kaisha Liquid crystal display

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160720A (ja) * 2011-01-12 2012-08-23 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
JP2014030000A (ja) * 2012-06-29 2014-02-13 Semiconductor Energy Lab Co Ltd 半導体装置および半導体装置の作製方法
JP2015109315A (ja) * 2013-12-03 2015-06-11 出光興産株式会社 薄膜トランジスタ、その製造方法、酸化物半導体層、表示装置及び半導体装置
JP2015144250A (ja) * 2013-12-27 2015-08-06 株式会社半導体エネルギー研究所 半導体装置
JP2015181151A (ja) * 2014-02-05 2015-10-15 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
JP2015181194A (ja) * 2009-07-29 2015-10-15 Nltテクノロジー株式会社 トランジスタ回路

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053283A (ja) * 1999-08-12 2001-02-23 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
TW478014B (en) * 1999-08-31 2002-03-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing thereof
KR100638525B1 (ko) * 1999-11-15 2006-10-25 엘지.필립스 엘시디 주식회사 컬러 액정표시장치용 어레이기판 제조방법
JP3356429B2 (ja) * 2000-04-11 2002-12-16 日本電気株式会社 液晶表示装置および液晶プロジェクタ装置
JP4798907B2 (ja) * 2001-09-26 2011-10-19 株式会社半導体エネルギー研究所 半導体装置
JP2004151546A (ja) * 2002-10-31 2004-05-27 Sharp Corp アクティブマトリクス基板および表示装置
TWI230292B (en) * 2002-12-09 2005-04-01 Lg Philips Lcd Co Ltd Array substrate having color filter on thin film transistor structure for LCD device and method of fabricating the same
KR100905409B1 (ko) * 2002-12-26 2009-07-02 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
US7132801B2 (en) * 2003-12-15 2006-11-07 Lg.Philips Lcd Co., Ltd. Dual panel-type organic electroluminescent device and method for fabricating the same
KR100616708B1 (ko) * 2004-04-12 2006-08-28 엘지.필립스 엘시디 주식회사 액정표시장치 어레이 기판 및 그 제조방법
KR101641690B1 (ko) 2013-09-25 2016-07-21 엘지디스플레이 주식회사 터치스크린 일체형 표시장치
JP2015072663A (ja) 2013-10-04 2015-04-16 株式会社ジャパンディスプレイ 表示装置
JP6219659B2 (ja) 2013-10-04 2017-10-25 株式会社ジャパンディスプレイ 表示装置
KR102082265B1 (ko) 2013-11-28 2020-02-27 엘지디스플레이 주식회사 터치센서 일체형 표시장치
JP6238712B2 (ja) * 2013-12-05 2017-11-29 三菱電機株式会社 薄膜トランジスタ基板およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015181194A (ja) * 2009-07-29 2015-10-15 Nltテクノロジー株式会社 トランジスタ回路
JP2012160720A (ja) * 2011-01-12 2012-08-23 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
JP2014030000A (ja) * 2012-06-29 2014-02-13 Semiconductor Energy Lab Co Ltd 半導体装置および半導体装置の作製方法
JP2015109315A (ja) * 2013-12-03 2015-06-11 出光興産株式会社 薄膜トランジスタ、その製造方法、酸化物半導体層、表示装置及び半導体装置
JP2015144250A (ja) * 2013-12-27 2015-08-06 株式会社半導体エネルギー研究所 半導体装置
JP2015181151A (ja) * 2014-02-05 2015-10-15 株式会社半導体エネルギー研究所 半導体装置およびその作製方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109801952A (zh) * 2019-02-14 2019-05-24 惠科股份有限公司 显示面板及其制作方法
JP2023099444A (ja) * 2021-12-31 2023-07-13 エルジー ディスプレイ カンパニー リミテッド 表示パネル及び表示装置
JP7482967B2 (ja) 2021-12-31 2024-05-14 エルジー ディスプレイ カンパニー リミテッド 表示パネル及び表示装置

Also Published As

Publication number Publication date
US20180261628A1 (en) 2018-09-13
US10243010B2 (en) 2019-03-26

Similar Documents

Publication Publication Date Title
JP6215053B2 (ja) 表示装置及びその製造方法
JP5336102B2 (ja) Tft基板
US9711542B2 (en) Method for fabricating display panel
WO2015186619A1 (ja) 半導体装置、表示装置及び半導体装置の製造方法
WO2017166341A1 (zh) Tft基板的制作方法及制得的tft基板
JP6223987B2 (ja) 表示装置、薄膜トランジスター、アレイ基板及びその製造方法
US9324735B2 (en) Array substrate and manufacturing method thereof, display panel and display device
KR101936773B1 (ko) 액정 디스플레이 장치의 제조방법
US7413940B2 (en) Thin-film transistor and fabrication method thereof
KR102248645B1 (ko) 금속 산화물 반도체를 포함하는 박막 트랜지스터 기판 및 그 제조 방법
WO2017094644A1 (ja) 半導体基板及び表示装置
TWI490600B (zh) 具有最小化遮光板之液晶顯示裝置
US9190429B2 (en) Manufacturing method of array substrate
KR20180076661A (ko) 표시 장치용 기판과 그를 포함하는 표시 장치
WO2015098183A1 (ja) アクティブマトリクス基板の製造方法および表示装置の製造方法ならびに表示装置
KR20150078248A (ko) 표시소자
TWI519878B (zh) 顯示面板及其製作方法
KR102157689B1 (ko) 평판 표시장치용 박막 트랜지스터 어레이 기판
KR102221845B1 (ko) 표시 기판 및 그의 제조방법
JP2021097126A (ja) アクティブマトリクス基板およびその製造方法
WO2014002448A1 (ja) 表示装置用基板及びそれを備えた表示装置
KR101795766B1 (ko) 터치 패널 인 셀 방식의 액정표시장치용 어레이기판 및 그 제조방법
WO2011161875A1 (ja) 表示装置用基板及びその製造方法、表示装置
JP6584157B2 (ja) 薄膜トランジスタ、薄膜トランジスタ基板、液晶表示装置及び薄膜トランジスタの製造方法
US20130248857A1 (en) Semiconductor device and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870581

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15779655

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP