JP6018118B2 - マイクロスレッドメモリ - Google Patents

マイクロスレッドメモリ Download PDF

Info

Publication number
JP6018118B2
JP6018118B2 JP2014095678A JP2014095678A JP6018118B2 JP 6018118 B2 JP6018118 B2 JP 6018118B2 JP 2014095678 A JP2014095678 A JP 2014095678A JP 2014095678 A JP2014095678 A JP 2014095678A JP 6018118 B2 JP6018118 B2 JP 6018118B2
Authority
JP
Japan
Prior art keywords
data
column
bank
storage array
request
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014095678A
Other languages
English (en)
Other versions
JP2014160538A (ja
Inventor
ウェア,フレデリック,エー.
ハムペル,クレイグ,イー.
リチャードソン,ウェイン,エス.
ベローズ,チャド,エー.
ライ,ローレンス
Original Assignee
ラムバス・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36177725&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6018118(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ラムバス・インコーポレーテッド filed Critical ラムバス・インコーポレーテッド
Publication of JP2014160538A publication Critical patent/JP2014160538A/ja
Application granted granted Critical
Publication of JP6018118B2 publication Critical patent/JP6018118B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • G06F3/0659Command handling arrangements, e.g. command buffers, queues, command scheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/061Improving I/O performance
    • G06F3/0613Improving I/O performance in relation to throughput
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4076Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4097Bit-line organisation, e.g. bit-line layout, folded bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1006Data managing, e.g. manipulating data before writing or reading out, data bus switches or control circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1015Read-write modes for single port memories, i.e. having either a random port or a serial port
    • G11C7/1042Read-write modes for single port memories, i.e. having either a random port or a serial port using interleaving techniques, i.e. read-write of one part of the memory while preparing another part
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/06Address interface arrangements, e.g. address buffers

Description

発明者
フレデリックA.ウェア
クレイグE.ハンペル
ウェイン・リチャードソン
チャドA.ベローズ
ローレンス・ライ
発明の分野
本発明は、一般にメモリシステムおよびその構成要素に関する。
背景
ダイナミック・ランダム・アクセス・メモリ(DRAM)は、広範な部類の計算および家電製品用途における好まれるメモリであり続けているが、DRAMコアのアクセス時間は、メモリ帯域幅の要求に対応してこなかった。例えば、同じ記憶バンクにおける異なる記憶行のアクティブ間の最小時間tRCは、主流のコア技術では40ナノ秒付近のままである。これは、ギガヘルツの周波数で動作するプロセッサにとって、実質的なアクセス時間のペナルティである。マルチバンクアレイの異なるバンクにおける行のアクティブ間の最小時間tRR、および同じ行における列アクセス動作(すなわち、指定された列アドレスにおける読み出しまたは書き込み動作)間の最小時間tCCなどの他のコアアクセス時間もまた、改善が遅れている。
設計者は、行アクティブごとの列アクセス動作(例えばページング、マルチバンクアレイ、プリフェッチ動作)の数の増加および各列アクセスにおいて転送されるデータ量の最大化に向けられた多くのアーキテクチャおよびシステムレベル開発を通して、コアタイミングの限界に対処してきた。特に、信号速度の向上によって、次第により大きなデータ量を列アクセスごとに転送することが可能になり、それによって、ピークメモリ帯域幅が増加された。しかしながら、信号速度がギガヘルツ範囲のより深くまで進むのに、対応するコアアクセス時間が比較的一定のままであるために、列アクセスごとに転送されるデータ量である列トランザクション粒度は、拡大することを強いられ、DRAM自体内の信号経路によって課された限界に近づきつつある。さらに、例えばグラフィックス用途など、データ処理用途のいくつかの部類における傾向は、分散したメモリ位置に格納されることが多いより小さなデータオブジェクト(例えば3Dシーンの三角形断片)へ向かっている。かかる用途では、列トランザクション粒度を増加させるために費やされる追加電力および資源は、単に、有効メモリ帯域幅の限られた増加をもたらすことができるだけである。なぜなら、取り出されたデータの多くは、用いられない可能性があるからである。
本発明は、添付の図面において、限定としてではなく例として図解され、またこれらの図面において、同様の参照数字は、同様の要素を指す。
詳細な説明
下記の説明および添付の図面において、特定の専門用語および図面の符号は、本発明の完全な理解を与えるために用いられている。場合によっては、専門用語および符号は、本発明を実施するために必要とされない特定の詳細を意味することがある。例えば、回路素子間または回路ブロック間の相互接続部は、多重導体または単一導体信号線として図示または説明される場合がある。多重導体信号線のそれぞれは、代替として単一導体信号線であってもよく、単一導体信号線のそれぞれは、代替として多重導体信号線であってもよい。シングルエンドとして図示または説明される信号および信号経路はまた、差動であってもよく、逆の場合も同じである。同様に、アクティブハイまたはアクティブロー論理レベルを有すると説明または図示される信号は、代替実施形態では反対の論理レベル有してもよい。別の例として、金属酸化膜半導体(MOS)トランジスタを含むように説明または図示される回路は、代替として、バイポーラ技術または信号で制御された電流フローが達成される任意の他の技術を用いて実現してもよい。専門用語に関連して、信号がローもしくはハイ論理状態に駆動されて(またはハイ論理状態に充電されるかまたはロー論理状態に放電されて)特定の状態を示す場合には、信号は、「アサート」されると言われる。反対に、信号がアサート状態(ハイもしくはロー論理状態、または信号駆動回路が、オープンドレインもしくはオープンコレクタ状態などの高インピーダンス状態に遷移された場合に生じる可能性がある浮遊状態を含む)以外の状態に駆動(または充電もしくは放電)されることを示すために、信号は、「デアサート」されると言われる。各送信シンボルが、1ビットを超える情報を伝達する(すなわち、ビットレートがボーレートより大きい)多重レベルシグナリングをまた用いてもよい。信号駆動回路が、信号駆動回路および信号受信回路間に結合された信号線に信号をアサート(または文脈によって明示的に述べられるかもしくは示されたならばデアサート)する場合に、信号駆動回路は、信号受信回路に信号を「出力」すると言われる。信号が信号線にアサートされた場合に、信号線は「アクティブ」にされると言われ、信号がデアサートされた場合に、「非アクティブ」にされると言われる。さらに、信号名に付けられたプレフィックスシンボル「/」は、信号がアクティブロー信号(すなわち、アサート状態は論理ロー状態)であることを示す。また、信号名の上の線
Figure 0006018118

を用いて、アクティブロー信号を示す。用語「端子」は、電気接続部の箇所を意味するために用いられる。用語「例示的な」は、優先でも必要条件でもなく、例を示すために用いられる。
本明細書で説明する実施形態において、所与のtCC間隔にわたるダイナミック・ランダム・アクセス・メモリ(DRAM)装置のデータ転送能力は、本明細書ではtCCエンベロープと呼ばれるメトリックであるが、細分されて多数の列アクセストランザクションに割り当てられ、それによって、任意の一トランザクションで転送されるデータ量を低減し、しかもなお、DRAM装置のピークメモリ帯域幅を維持する。例えば、図1を参照すると、90で示すような単一列アクセストランザクションに各tCCエンベロープを供する従来の単一スレッドアプローチに従う代わりに、tCCエンベロープを分割し、92で示すような多数のマイクロスレッド列要求に応じて、多数のより小さなデータセットを転送できるようにする。このようにして、列トランザクション粒度を低減することによって、DRAMの有効帯域幅を単一スレッドアプローチよりも実質的に増加させることが可能である。なぜなら、単に単一データオブジェクトおよびその潜在的に余分な隣接データだけではなく、興味のある多数のデータオブジェクトが、異なるマイクロスレッド列アクセストランザクションで明確にアドレスされ、所与のtCC間隔内に返され得るからである。
一実施形態において、tCCエンベロープは、それぞれのマイクロスレッド列トランザクションに割り当てられる部分tCC間隔(tCCp)のセットに時間的に分割される。別の実施形態において、tCCエンベロープは空間的に分割され、メモリ装置コアおよびホスト装置(例えばメモリコントローラ)間のデータ経路資源が、細分されて、異なるマイクロスレッド列トランザクションに割り当てられる。例えば、再び図1を参照すると、メモリ装置およびメモリコントローラ間の外部データ経路を形成するデータリンクDQは、異なるマイクロスレッド列アクセストランザクションに割り当てられる2以上のデータリンクサブセットDQに分割してもよい。他の実施形態において、時間的および空間的両方の分割が適用されて、列トランザクション粒度をさらに低減する。例えば、図1において、tCCエンベロープを2つの部分tCC間隔(tCCp)に時間的に分割し、かつ2つのデータリンクサブセットDQに空間的に分割し、それによって、マイクロスレッド列トランザクション粒度を、単一スレッド列トランザクション粒度の4分の1に低減する。他の実施形態において、tCCエンベロープは、より多数または少数の空間的または時間的パーティションに細分してもよい。また、分割されたtCC間隔にサービスされる多数のマイクロスレッド列アクセス要求は、同じ記憶バンクのオープンページ、異なる記憶バンクのオープンページ、またはそれらの任意の組み合わせに向けられてもよい。また、一実施形態において、より密にパイプライン化された行動作を用いて、分割されたバンクアーキテクチャ内のサブバンクを別々にアドレスできるようにして、実際上、メモリ装置内のバンク数を増加させ、また同じtCC間隔内でサービスされる多数のマイクロスレッド列アクセスのそれぞれを、独立に選択されたバンク、行および列へ向けることができるようにする。
例示的なマイクロスレッドメモリアーキテクチャの概要
図2は、様々なタイプのマイクロスレッド列動作を実行可能なメモリ装置100の実施形態を示す。メモリ装置100は、説明のために、DRAM装置であると仮定されているが、しかし代替として、異なる記憶アレイに向けられた順次アクセスにタイミング制約を課するやり方で、アドレス指定および/またはデータ経路資源を共有する多重記憶アレイを有する任意のタイプのメモリ装置であってもよい。したがって、代替として、本明細書におけるtCC制約およびtRR制約は、信号経路帯域幅と共に、対応するデータ転送エンベロープを定義する他のタイプのメモリアクセス制約であってもよい。例えば、本明細書で説明するtCCエンベロープ分割は、資源により課される時間制約および信号経路帯域幅によって定義される任意のデータ転送エンベロープのより一般的な分割の例として意図されている。また、タイミング制約自体に関して、かかる制約は、(例えば適切な動作を保証するために)メモリ装置内の資源競合を回避するのに必要な最小時間に、回路および/または信号経路が所望の状態に達するのに必要な時間における統計的変動に対処する任意の許容時間をプラスするように定義してもよい。タイミング制約はまた、クロック信号またはストローブ信号などのタイミング信号によって実施されるかさもなければ定義されてもよく、したがって、メモリ装置内の資源競合を回避するために、連続動作間に発生することになる、かかるタイミング信号の遷移の最小数として表現してもよい。
図示の特定の例において、メモリ装置100には、要求インタフェース101、列デコーダ103〜103、行デコーダ113〜113、データ経路インタフェース105Aおよび105B、ならびに8つの記憶バンクB0〜B7が含まれる。各記憶バンクB0〜B7は、AおよびBサブバンクのペアによって形成され(例えば、サブバンクB0−AおよびB0−BがバンクB0を構成し、サブバンクB1−AおよびB1−BがバンクB1を構成する等である)、サブバンク自体は、本明細書では象限と呼ばれるそれぞれ4つのサブバンクの4つのグループに組織される。4象限は、図2ではQ0〜Q3で示されている。図2の実施形態において、同じ象限のサブバンクは、行デコーダおよび列デコーダを共有し、また偶数のバンクセットまたは奇数のバンクセットのいずれであるかにより、全てAまたはBサブバンクのどちらかである。例えば、象限Q0には、偶数のグループAサブバンク(すなわち、B0−A、B2−A、B4−A、およびB6−A)が含まれ、これらのサブバンクは、それぞれの列経路(一括して117と示す)を介して列デコーダ103に、かつワード線のそれぞれのセット(一括して115と示す)を介して行デコーダ113に、結合されている。残りの象限では、Q1には、奇数のグループAサブバンクが含まれ、これらのサブバンクは、列経路117を介して列デコーダ103に、かつワード線115を介して行デコーダ113に、結合されている。Q2には、偶数のグループBサブバンクが含まれ、これらのサブバンクは、列経路117を介して列デコーダ103に、かつワード線115を介して行デコーダ113に、結合されている。また、Q3には、奇数のグループBサブバンクが含まれ、これらのサブバンクは、列経路117を介して列デコーダ103に、かつワード線115を介して行デコーダ113に、結合されている。メモリ装置100のアーキテクチャは、本明細書で説明する様々なメモリ装置実施形態の説明において繰り越されているけれども、全ての場合に、かかるメモリ装置は、任意のバンク数、バンク当たり任意のサブバンク数、およびデコーダ共有グループ当たり任意のサブバンク数を有してもよい。
メモリ装置100の要求インタフェース101は、メモリシステムの一部として動作するときに、要求経路(図示せず)を介してメモリコントローラまたは他のホスト装置から要求(またはコマンドもしくは命令)のストリームを受信して、要求された動作を実行する行デコーダ113および列デコーダ103へ、対応する制御およびアドレス信号を発行する。専門用語の問題として、本明細書において、用語「要求」は、要求または要求が受信された文脈によって指定されたアクションをメモリ装置に取らせるために、メモリ装置100に発行される要求、コマンドまたは命令を意味するために用いられる。所与の要求に応じてメモリ装置によって取られるアクションは、動作と呼ばれるが、その例には、行アクティブ動作、列アクセス動作(読み出しまたは書き込みアクセスであってもよい)およびプリチャージ動作が含まれる。要求およびその対応する動作は、本明細書では一括してトランザクションと呼ばれる。また、いくつかのトランザクションには、多数のコンポーネントとしての要求および動作を含んでもよい。例えば、DRAM装置の場合には、完全なデータアクセストランザクションは、行アクティブ要求、1つまたは複数の列アクセス要求、およびプリチャージ要求によって指定してもよい。行アクティブ要求は、メモリ装置100のバンクおよび行へ向けられ(例えば、要求に含まれるバンクおよび行アドレスによって指定される)、そして行アクティブ要求がサービスされるのは、行の内容をバンクのビット線に出力し、それによってページバッファ(例えば、ビット線にそれぞれ結合されたセンス増幅器をラッチすることにより形成される記憶構造)へ転送できるようにすることによってである。列アクセス要求は、メモリ装置100のバンクおよび列へ向けられ(例えば、要求に含まれるバンクおよび列アドレスによって指定される)、そして列アクセス要求がサービスされるのは、指定されたバンクのためのページバッファ内の、列アドレスが指定するサブフィールド(列)におけるデータを読み出すかまたは上書きすることによってである。オープンページ(すなわちページバッファ内容)に向けられた列アクセスが完成した後、プリチャージ動作を実行して、続く行アクティブに備えて対象バンクのビット線をプリチャージしてもよい。
要求インタフェース101は、行アクティブ要求を受信すると、要求からバンクおよび行アドレス値を回復し、それらのアドレス値を、信号経路111〜111を介して、バンクアドレスが指定する象限の行デコーダ113〜113へ転送する。一実施形態において、行デコーダ113のそれぞれには、バンクアドレスが指定するサブバンクに結合されたワード線セットを選択する第一段階デコーダと、選択されたワード線セット内の、行アドレスが指定するワード線をアクティブする第二段階デコーダとが含まれ、それによって、アクティブされたワード線に結合されたセルの内容を、選択されたサブバンクのビット線にイネーブルする。他の実施形態において、バンクおよび行デコード動作は、より多数または少数のデコーダ段階で実行してもよい。また、1つまたは複数の行アドレスストローブ信号を、要求インタフェース101、またはワード線アクティブのタイミングを制御する他の制御論理によって発行してもよい。
列アクセス要求がメモリ装置100で受信されると、要求インタフェース101は、要求からバンクおよび列アドレス値を回復し、そのアドレス値を、バンクアドレスによって指定された象限の列デコーダ103へ転送する。一実施形態において、列デコーダ103のそれぞれには、バンクアドレスが指定するサブバンクのためのページバッファへのアクセス(すなわち、列アクセス経路117の選択された1つを介した)を可能にするバンクマルチプレクサと、読み出しまたは書き込みアクセスのためのページバッファ記憶要素の列を選択する列マルチプレクサとが含まれる。代替実施形態では、他の回路構成を用いて列アクセス位置を決定してもよい。また、メモリ装置100の要求インタフェース101または他の制御論理によって1つまたは複数の列アドレスストローブ信号を発行して、列アクセスのタイミングを制御してもよい。
オープンページにおける列動作(例えば、対応する列アクセス要求に応じて実行された読み出しまたは書き込み動作)が完了した後で、プリチャージ要求および関連するバンクアドレスが、要求インタフェース101で受信され、そして前にアクティブされたワード線を非アクティブにしかつ指定されたバンクのビット線をプリチャージすることによって、サービスされ得る。プリチャージ動作が完了した後で、指定されたバンクは、別の行アクティブ動作のための状態にある。
やはり図2を参照すると、データ経路インタフェース105A、105Bのそれぞれは、列データ経路119を介して列デコーダ103のそれぞれのペアに結合され、列デコーダおよび外部データ経路(図示せず)間で読み出しおよび書き込みデータの転送を可能にする。より具体的には、データ経路インタフェース105Aは、列データ経路119および119を介して、外部データ経路の第1の部分とページバッファ内の選択されたセンス増幅器(すなわち、列デコーダ103および103によって選択された)との間のデータ転送を可能にし、またデータ経路インタフェース105Bは、列データ経路119および119を介して、外部データ経路の第2の部分とページバッファ内の選択されたセンス増幅器(すなわち、列デコーダ103および103によって選択された)との間のデータ転送を可能にする。
図3は、図2のメモリ装置100内で用いることができる、Q0およびQ1サブバンク(すなわちサブバンクB0−A〜B7−A)、列デコーダ103/103、ならびにデータインタフェース105Aのより詳細な実施形態を示す。Q2およびQ3サブバンク、列デコーダ103/103、ならびにデータインタフェース105Bは、図3に示すそれと同様かまたは同一の実施形態で実現可能であり、したがって別には説明しない。
図3の実施形態において、サブバンクB0−A〜B7−Aのそれぞれには、ビット線169を介して互いに結合された記憶アレイ145およびページバッファ147が含まれる。詳細図165を参照すると、記憶アレイ145は、行および列に配置されたメモリセル170によって形成されている。メモリセル170の各列は、ビット線169を介して、ページバッファ147内のそれぞれのセンス増幅器168に結合され、メモリセルの各行は、ワード線166を介して、行デコーダ113(またはその構成要素)に結合される。図示の特定の実施形態において、各メモリセル170は、トランジスタスイッチ(例えば、ドレインをビット線169に結合させ、ゲートをワード線166に結合させている)と、トランジスタスイッチのソースおよびセルプレート基準ノードまたは他の基準ノード間に結合された容量性記憶素子と、によって形成されたDRAMメモリセルである。代替の実施形態では、他のタイプおよび構成のメモリセルを用いてもよい。上述のように、行アクティブ動作中にワード線がアクティブされ、ワード線に結合された記憶セル170(すなわちワード線に選択された行)の内容が、ビット線169でイネーブルにされ、それによって、ページバッファ147に転送される。プリチャージ動作中に、オープンページ(すなわちページバッファの内容)は閉じられ、ビット線169は、別の行のアクティブに備えてプリチャージされる。リフレッシュ動作は、アクティブおよびプリチャージ動作の組み合わせを通して、所与のサブバンクまたはサブバンクセットの行で実行してもよい。
上述のように、列デコーダ103および103によって、象限Q0およびQ1のサブバンク内におけるオープンページに向けられた列動作(すなわち、読み出しまたは書き込み動作)がそれぞれ可能になる。図3の実施形態において、列デコーダ103および103のそれぞれには、4つの列マルチプレクサ(それぞれが、対応する象限の各サブバンク用である)のセット149、およびバンクマルチプレクサ151が含まれる。バンクマルチプレクサ151により、バンクアドレスまたはバンクアドレス内の少なくとも最上位ビット(MSB)もしくはビットの他のサブセットに応じて、列マルチプレクサ149のうちの1つへのアクセス(すなわち選択)が可能になる。詳細図165を参照すると、選択された列マルチプレクサ149には、ページバッファ147(略して列)内の記憶素子のそれぞれの、列アドレスによって選択された列への読み出しまたは書き込みアクセス(本明細書では列アクセスと呼ぶ動作)をそれぞれ可能にするマルチプレクサ/デマルチプレクサ回路164のセットが含まれる。書き込み動作の場合には、バンクマルチプレクサ151および列マルチプレクサ149は、逆多重化機能を実行し、データを、データ経路インタフェース105Aから選択された列へルーティングする。読み出し動作において、バンクマルチプレクサ151および列マルチプレクサ149は、データを、選択された列からデータインタフェース105Aへルーティングすることによって、多重化機能を実行する。代替実施形態では、バンクマルチプレクサ151および列マルチプレクサ149は交換してもよく、その結果、バンクマルチプレクサ151が、サブバンクビット線169に結合され、単一列マルチプレクサが、バンクマルチプレクサ151の出力部とデータ経路インタフェース105Aとの間に結合されることに、留意されたい。
図3の実施形態において、データ経路インタフェース105Aには、外部データ経路インタフェース171と列デコーダ103および103のそれぞれの1つとの間にそれぞれが結合された直並列変換トランシーバ173のペア(すなわち発信データの並列/直列変換および着信データの直列/並列変換を実行する直列化/並列化トランシーバ)が含まれる。各直並列変換トランシーバ173には、データシリアライザ177、送信機175、データデシリアライザ181および受信機179が含まれる。読み出し動作では、データシリアライザ177は、列データ経路119を介して列デコーダ103から128ビット読み出しデータ値(すなわち列データ)を受信しかつ読み出しデータを16バイトストリームの形態で送信機175に送付することによって、多重化機能を実行する。今度は、送信機175は、連続データ送信間隔に、外部データ経路インタフェース171を介して各バイトを送信する。受信機179およびデータデシリアライザ181は、データシリアライザ177および送信機175の逆の機能を実行する。すなわち、受信機179は、連続データ受信間隔中に、外部データ経路インタフェース171を介して到着する信号をサンプリングして、16バイトのストリームをデータデシリアライザ181に送付する。データデシリアライザ181は、着信バイトストリームを、列データ経路119を介して対応する列デコーダ103に送付される128ビットのデータ書き込みデータ値にまとめることによって、逆多重化機能を実行する。8ビットの外部データ経路インタフェース171および128ビットの列データ経路119が示されているが、代替実施形態では異なる経路幅を用いてもよい。データ多重化/逆多重化が不必要な代替実施形態(例えば、外部データ経路幅がメモリ装置の列データサイズと一致する)において、データシリアライザ177および/またはデータデシリアライザ181は、省略してもよい。
やはり図3を参照すると、送信機175は、例えば、事実上任意の振幅を有する出力波形および任意の変調形式を生成する電流モードまたは電圧モード出力ドライバであってもよい。また、送信機175は、マルチビットシンボル(すなわち、ビットレートがボーレートより大きい)を生成し、様々な符号化動作(例えば8b/10b)を実行し、かつ/または発信ビットストリームにエラー検査情報(例えばパリティビット、エラーコード訂正(ECC)ビット、チェックサム、巡回冗長検査値等)を加えてもよい。同様に、受信機179は、任意の方法で変調された電流モードまたは電圧モード送信信号をサンプリングするように設計され、各サンプルが、各送信シンボルで伝達されるビット数に従って1つまたは複数のビットに分解されるようにしてもよい。受信機は、さらに、デコード動作およびエラー検査動作を実行してもよい。さらに、送信機および受信機の両方は、異なる動作モード間および/または周波数間で切り替えられ、例えば、あるモードではマルチビットシンボルで動作し、別のモードでは単一ビットシンボルで動作してもよい。
外部データ経路を構成する信号リンクは、ポイントツーポイントまたはマルチドロップ、差動またはシングルエンドであってもよく、また同期または非同期送信信号を搬送するために用いてもよい。それに対応して、データ経路インタフェース105Aは、同期または非同期信号インタフェースであってもよい。同期送信の場合には、送信データ信号は、自己タイミングを取る(例えば、データ波形内にクロック情報を搬送する)か、または1つまたは複数のクロック信号、ストローブ信号などのタイミング信号を伴ってもよい。自己タイミング送信信号の場合には、符号化回路を送信機175に設けて、各発信ビットストリーム(すなわち、1つまたは複数の送信クロック信号と同期して、外部データ経路インタフェースの任意の単一リンクで送信されるストリーム)を符号化し、クロック回復のための十分な遷移密度を保証してもよく(例えば8b/10b符号化)、また対応するクロックデータ回復回路およびデコード回路を受信機179に設けて、クロック情報および非符号化送信データを回復してもよい。かかるクロック情報は、外部タイミング信号(例えばクロックまたはストローブ信号)の形態で受信されたにせよ受信ビットストリームから回復されたにせよ、受信機179に供給された1つまたは複数のサンプリングクロック信号の位相を制御するために用いて、着信データ信号のサンプリングを誘発してもよい。
単一スレッドモード
図4は、図2のメモリ装置100内における単一スレッド動作モードを示し、また一部は、下記で説明する後のマイクロスレッド動作モードとの対比のために提示されている。要求経路201(RQ)を参照すると、要求のパイプラインストリームが一連の要求間隔200にわたって受信されるが、灰色影付きブロックは、選択されたバンクに向けられたマルチアクセス読み出しトランザクションの一部を形成する要求を示す。ストライプブロックは、他のバンクに向けられた要求を表わす。図示の例示的な実施形態において、要求経路は、リンク当たり0.8ギガビット秒(Gb/s)の従来の信号速度(すなわち、サポートされた最大信号速度より低い)で動作される。各コマンドは、送信間隔のペアにわたって転送され、それによって、2.5ナノ秒の要求間隔が確保される。代替実施形態では、より高いかまたは低い信号速度を用いてもよく、また各要求は、より多数または少数の送信間隔で伝達してもよい。
要求経路201は、マルチアクセス読み出しトランザクション205に含まれる異なるタイプの要求の相対的なタイミングの視覚化を支援するために、論理パイプライン203A、203Bおよび203Cのセットとして示されている。パイプライン203Aは、本明細書ではアクティブパイプライン(RQ−ACT)と呼ばれ、行アクティブ要求(例えば207)を搬送するが、これらの要求のそれぞれには、アクティブされる特定の行を識別するバンクおよび行アドレス値と共に、行アクティブコマンド指示子が含まれる。パイプライン203Bは、本明細書では列アクセスパイプライン(RQ−CA)と呼ばれ、列アクセス要求(例えば209)を搬送するが、これらの要求のそれぞれには、アクセスされるバンクおよび列を識別するバンクおよび列アドレス値と共に、読み出しまたは書き込みアクセスを指定する列アクセスコマンド指示子が含まれる。パイプライン203Cは、本明細書ではプリチャージパイプラインと呼ばれ、プリチャージ要求(例えば213)を搬送するが、これらの要求のそれぞれには、プリチャージコマンド指示子、およびプリチャージされるバンクを示すバンクアドレスが含まれる。
マルチアクセス読み出しトランザクションは、バンクB0の行「z」(B0−Rz)に向けられた行アクティブ要求207が受信されたときに、開始される。メモリ装置は、バンクB0のための行デコーダ(すなわち、行デコーダ113および113)へバンクアドレスおよび行アドレスを発行することによって、行アクティブ要求に応答する。図示の特定の実施形態において、同じバンクにおける行アクティブ間の最小時間tRCは、バンクB0に向けられた別の行アクティブ要求が、215で示すように16要求間隔後まで受信されないように、40ナノ秒と仮定される。また、任意の異なるバンクにおける行アクティブ間の最小時間tRRは、別の行アクティブ要求217が、4要求間隔後まで受信されないように、10ナノ秒と仮定される。
マルチアクセス読み出しトランザクション205の一部を形成する2つの列アクセス要求の第1の列アクセス要求209は、アクティブ要求207の後(この例では5要求間隔後)の所定時間に受信されて、B0オープンページ(B0−Ca)の列「a」における読み出しを指定する。同じオープンページへのアクセス間の最小時間tCCが、この例では5ナノ秒と仮定され、かつメモリ装置が単一スレッドモードで動作しているので、2つの列アクセス要求の第2の要求211は、第1の列アクセス要求の受信後に2要求間隔(すなわち、tCC間隔後)で受信され、B0オープンページ(B0−Cb)の異なる列、すなわち列「b」における読み出しを指定する。簡単に図2を参照すると、要求インタフェース201は、影付き列アドレス経路109および109を介して偶数バンク列デコーダ103および103に、バンクおよび列アドレス値を送付することによって、第1の列アクセス要求209に応答し、今度は、偶数バンク列デコーダ103および103が、図示のように、B0−AおよびB0−Bサブバンクの列「a」からデータを検索する。次に、検索された列「a」データは、影付き列データ経路119および119を介して、データインタフェースに送付される。同様に、要求インタフェース201は、バンクおよび列アドレス値を偶数バンク列デコーダ203および203に送付することによって、第2の列アクセス要求211に応答し、次に、偶数バンク列デコーダ203および203が、B0−AおよびB0−Bサブバンクの列「b」からデータを検索し、そのデータを、データ経路インタフェース105Aおよび105Bに出力する。
図4に戻ると、第1の列アクセス要求209に応じて検索された列データは、列アクセス要求209の受信後の所定時間に始まるデータ転送動作において、外部DQAおよびDQB信号経路225に出力される。列アクセス要求209と発信(または着信)列データとの間の対応が、列アクセス要求(すなわち、パイプライン203Bにおける)から信号経路225上の同様の影付きデータ転送部まで延びるリード線227によって示されている。これは、図4および下記の他の図で用いられる表記法である。この単一スレッドの例において、列データは、第1の列アクセス要求に応じて、215で開始するtCC間隔にわたって転送される。より具体的には、列「a」データは、DQAリンク(この例では8つのリンクだが、代替実施形態では、より多数または少数のリンクを設けてもよい)を通じてサブバンクB0−Aから出力され、また列「a」データは、DQBリンクを通じてサブバンクデータB0−Bから出力され、したがって、2つのB0サブバンクからの列「a」データの転送は、図示のように全tCCエンベロープ消費する。上述のように、tCCエンベロープは、シグナリング帯域幅とtCC間隔との積なので、5ナノ秒のtCC間隔(下記の説明全体にわたって仮定される値だが、同じかまたは異なるtCC制約を有する事実上任意のメモリコア技術を用いてもよい)を与えられたものとし、かつ16のDQリンクのそれぞれにおいて3.2Gb/sの信号速度を仮定すると、tCCエンベロープは、32バイト(すなわち、[16リンク3.2Gb/s/リンク]5ナノ秒=256ビット=32バイト)である。図示の単一スレッドの例において、各列アクセス要求は、列トランザクション粒度CTGがまた32バイトであるように、tCC間隔ごとにサービスされる。したがって、列トランザクション粒度は、tCCエンベロープと同一の広がりを持つ。
第2の列アクセス要求211に応じて検索された列「b」データは、列「a」データ転送動作の終結時に開始するtCC間隔にわたって、DQAおよびDQB信号経路に出力される。したがって、それに先行する列「a」トランザクションと同様に、列「b」トランザクションは、全tCCエンベロープを消費し、かくして、32バイトの列トランザクション粒度を有する。
やはり図4を参照すると、プリチャージ要求213が、第2の列アクセス要求211後の所定時間(この例では3要求間隔)に受信されるが、プリチャージ要求213には、プリチャージコマンド指示子(Pre Cmd)、およびプリチャージされるバンク(この場合にはB0)を示すバンクアドレスが含まれる。要求インタフェースは、バンクB0のための行デコーダへディスエーブル信号を発行すること、ならびにサブバンクB0−AおよびB0−Bのページバッファへプリチャージイネーブル信号を発行して、サブバンクビット線をプリチャージすることによって、所定時間後に(例えば、列「b」データが、B0−A/B0−Bページバッファから検索された後で)、要求されたプリチャージ動作を実行する。かくして、プリチャージ動作は、行アクティブ要求207に応じて開かれたページを閉じ、したがって、マルチアクセス読み出しトランザクション205を終結する。2つの列アクセス動作のそれぞれが、32バイト転送をもたらすので、行トランザクション粒度(すなわち、所与の行アクティブのために転送されたデータ量RTG)は、64バイトである。代替実施形態では、より多いかまたは少数の列アクセストランザクションを所与の行アクティブのために実行し、それに対応して、行トランザクション粒度の増加または減少をもたらしてもよい。
行アクティブ要求および対応する列アクセス要求ペアの安定したストリームならびにプリチャージ要求が、要求経路201を介して受信されると仮定すると、要求経路201は、完全にロードされたままである(すなわち不使用の要求間隔がない)可能性があり、また同様に、データ経路225は、32バイトの列トランザクション粒度および64バイトの行トランザクション粒度をそれぞれ有する要求されたデータ転送で完全に消費される可能性がある。しかしながら、データ経路225の信号速度が、メモリ装置のフルレートに増加された場合には、行および列トランザクション粒度もまた増加する。例えば、一実施形態において、図2のメモリ装置のデータ経路インタフェース105にサポートされた最高信号速度は、6.4Gb/s(代替実施形態では、他の信号速度をサポートしてもよい)である。メモリ装置のtCC間隔が変化しないままなので、tCCエンベロープは64バイトへと2倍にされ、また単一スレッドアプローチが採用された場合には、列トランザクション粒度および行トランザクション粒度もまた、それぞれ、64バイトおよび128バイトへと2倍にされることになる。増加した列トランザクション粒度をサポートするために、列デコーダおよびデータ経路インタフェース内の多くの信号経路は、増強する必要があり得る。例えば、図2および3を参照すると、64バイトの列トランザクション粒度は、サブバンクのそれぞれにおいて、256ビット(32バイト)の列アクセスに対応するので、列デコーダ103内の128ビットの信号経路(すなわち、列マルチプレクサ149およびバンクマルチプレクサ151間)のそれぞれ、およびデータ経路インタフェース105A、105Bは、増加したデータ転送速度をサポートするために256ビットの信号経路へ拡大することになる。かかる経路幅の増加は、潜在的には実現可能であるが、製造コストおよび電力消費の増加に帰着し(すなわち、経路幅は、メモリ装置の各サブバンクおよびデータインタフェースで増加される)、かかる増加のために利用可能なヘッドルームは、縮小する。また、上述のように、小さく分散したデータオブジェクトにアクセスする傾向がある用途においては、所与の列アクセスで返されるデータの小部分だけが有用である場合がある。例えば、現代のグラフィックス用途における普通の三角形サイズは6バイトであり、またレンダリング順序ゆえに、連続的にレンダリングされる三角形は、多くの場合に同じ列アクセスで得られることはありそうにもない。かかる用途において、列トランザクション粒度を32バイトから64バイトへ2倍にすることは、有効帯域幅における改善をほとんどもたらさない可能性がある。
図5は、メモリ装置内の単一スレッド動作モードだけでなく、下記のマイクロスレッド動作モードもサポートするために利用できる要求インタフェースを示す。要求インタフェース300には、要求デコーダ301、偶数バンク行制御レジスタ305A、305B(EBRC)、奇数バンク行制御レジスタ307A、307B(OBRC)、偶数バンク列制御レジスタ309A、309B(EBCC)および奇数バンク列制御レジスタ311A、311B(OBCC)が含まれる。偶数バンクおよび奇数バンク行制御レジスタ305、307は、行バス315を介して要求デコーダ301に結合され、偶数バンクおよび奇数バンク列制御レジスタ309、311は、列バス317を介して要求デコーダ301に結合されている。
一実施形態において、要求パッド303を介して(すなわち外部要求経路から)受信された着信シンボルストリームは、対応するn−ビット幅ストリームの要求を要求デコーダ301に送付するオプションの要求デシリアライザ304で非直列化される。(本明細書の多くの実施形態においてパッドに言及しているが、かかる全ての場合に、外部信号経路への容量結合ノードまたは他のインタフェースを用いてもよいことに留意されたい)。着信要求には、事実上任意のタイプの要求を含んでもよいが、これらの要求には、限定するわけではないが、上述の行アクティブ要求、列アクセス要求、およびプリチャージ要求だけでなく、例えば、1つまたは複数の記憶バンク内でリフレッシュ動作を開始するために、メモリ装置内で動作モードをプログラムするために(例えば、単一スレッドモードと多くの異なるマイクロスレッドモードのうちの1つまたは複数との間で選択すること、および多くの異なるリフレッシュモード、パワーモード、プリチャージモードの間で選択すること)、シグナリング校正および/またはトレーニング動作を開始するために、自己テストを開始するため等に用いられる他の要求が含まれる。
要求デコーダ301は、1つまたは複数の状態機械、マイクロシーケンサおよび/または他の制御回路によって実現可能だが、各着信要求をデコードし(例えば、コマンド指示子フィールドまたは動作コードフィールドを解析して要求を識別することにより)、要求された動作を実行するために必要な様々な信号を発行する。例えば、図4の要求207に示す、バンクアドレスおよび行アドレスフィールドを有する行アクティブ要求をデコードすると、要求デコーダ301は、アクティブ動作を示す制御値と共に行アドレスおよびバンクアドレスを行バス315に出力し、次に、アクティブ要求が偶数または奇数バンクに向けられているかどうかに依存して(例えば、バンクアドレスの最下位ビット(LSB)または他のビットもしくはビットによって決定される)、偶数行ストローブ信号321A(ERS)または奇数行ストローブ信号321B(ORS)をアサートし、行バス315からのアドレスおよび制御値を、偶数バンク行制御レジスタ305A、305Bまたは奇数バンク行制御レジスタ307A、307Bにロードしてもよい。偶数バンク行制御レジスタ305にロードされたアドレスおよび制御値は、信号経路111および111を介して、グループAおよびグループBサブバンクのための偶数バンク行デコーダ(すなわち、図2の行デコーダ113および113)にそれぞれ供給され、また奇数バンク行制御レジスタ307にロードされたアドレスおよび制御値は、信号経路111および111を介して、グループAおよびグループBサブバンクのための奇数バンク行デコーダに供給される。一実施形態において、経路111を介してアドレスおよび制御値を送付することにより、指示された行動作(例えばアクティブまたはプリチャージ)を対応する行デコーダ内で開始して、行動作が、偶数行ストローブ信号321Aおよび奇数行ストローブ信号321Bのアサートに応じて(すなわち、対応するレジスタ305および307が更新されたときに)、効果的に開始されるようにする。代替実施形態では、偶数行ストローブ信号321Aおよび奇数行ストローブ信号321B(またはそこから導き出されたか独立に生成された他の制御信号)を行デコーダに出力して、そこにおいて行動作を開始してもよい。
一実施形態において、要求デコーダ301は、行アクティブ要求の場合とほぼ同じ方法で着信列アクセス要求に応答するけれども、ただし、要求に含まれるバンクアドレスおよび列アドレス値が、例えば読み出しまたは書き込み動作を実行すべきかどうかを示す制御値と共に列アドレスバス317に出力されることを除いてほぼ同じ方法で応答する。その後、要求デコーダ301は、偶数列ストローブ信号323A(ECS)または奇数列ストローブ信号323B(OCS)をアサートして、列アドレスバス317からのアドレスおよび制御値を、偶数バンク列制御レジスタ309A、309Bまたは奇数バンク列制御レジスタ311A、311Bにロードし、それによって、対応する列デコーダにおいて、指定された列アクセス動作を開始する(すなわち、列制御レジスタ309および311の内容が、経路109を介して、対応する列デコーダに出力され、そこにおいて列アクセス動作を開始する)。行要求の場合と同様に、要求デコーダ301は、バンクアドレスの1つまたは複数のビットを検査して、所与の列アクセス要求が奇数またはバンク偶数に向けられているかどうかを判断し、それに対応して、偶数列ストローブ信号323Aまたは奇数列ストローブ信号323Bをアサートしてもよい。代替として、要求デコーダ301は、所定のプロトコルに従って、着信列アクセス要求を前に受信された行アクティブ要求と関連付けて、行アクティブ要求で受信されたバンクアドレスを、その後に受信される列アクセス要求が向けられる偶数または奇数バンクセットを決定するために、用いるようにしてもよい。かかる実施形態において、バンクアドレスのLSB(またはバンクの対象セットを指定するために用いられる他のビット(単複))を列アクセス要求から省略して、その中で伝達される他の要求または情報(例えばプリチャージ情報)をイネーブルにしてもよい。いずれの場合にも、偶数バンク列制御レジスタ309にロードされたバンクおよび列アドレス値(これらの値は、バンクの対象セットを指定するために用いられる、バンクアドレスのLSBビットまたは他のビット(単複)を省略してもよい)は、グループAおよびグループBサブバンクのための偶数バンク列デコーダ(すなわち、図7の列デコーダ103および103)にそれぞれ出力され、また奇数バンク列制御レジスタ311にロードされたバンクおよび列アドレス値は、奇数バンク列デコーダに出力される。
図6は、図2のメモリ装置100が単一スレッドモードで動作している場合における、図5の要求デコーダ301による行および列ストローブ信号アサートの例示的なタイミングを示す。図示のように、行アクティブ要求207をデコードすると、要求デコーダ301は、偶数行ストローブ信号321A(ERS)または奇数行ストローブ信号321B(ORS)をアサートして、それぞれ偶数行制御レジスタ305A、305Bまたは奇数行制御レジスタ307A、307Bに、要求207で提供されたバンクアドレス、行アドレス、および制御情報をロードし、それによって、偶数または奇数バンクセットにおいて行アクティブ動作を開始する。偶数行ストローブ信号321Aのアサートを図6に示すが、奇数行ストローブ信号321Bは、奇数バンクセットにおいて行アクティブを開始するためにアサートされることになる。バンクアドレスの最下位ビットは、2つのストローブ信号321Aおよび321Bのどちらがアサートされるかを制御するために用いてもよく、したがって、選択された制御レジスタにロードする必要はない。tRR間隔が経過した後で、異なるバンクに向けられた別の行アクティブ要求が受信され、別のストローブ信号321Aまたは321Bがアサートされて、対応する行アクティブ動作を開始する。
行アクティブコマンド207に応じて(すなわち、行アクティブコマンド207と同じバンクアドレスを指定する)アクティブされた行に向けられた列アクセス要求209をデコードすると、要求デコーダは、偶数列ストローブ信号323A(ECS)または奇数列ストローブ信号323B(OCS)をアサートして、それぞれ偶数列制御レジスタ309A、309Bまたは奇数列制御レジスタ311A、311Bに、要求209で提供されたバンクアドレス、列アドレス、および制御情報をロードし、それによって、指定されたバンクのためのオープンページ内で列アクセス動作(例えば読み出しまたは書き込み動作)を開始する。偶数列ストローブ信号323Aのアサートを図6に示すが、奇数列ストローブ信号323Bは、奇数バンクセットのバンクに向けられたトランザクションにおいて列アクセス動作を開始するためにアサートされることになる。繰り返すと、バンクアドレスの最下位ビットは、2つのストローブ信号323A、323Bのどちらがアサートされて列アクセス動作を開始するかを制御するために用いてもよい。tCC間隔が経過した後で、要求209と同じバンクだが異なる列アドレスに向けられた別の列アクセス要求211が、要求デコーダ301内で受信される。列アクセス要求211をデコードすると、要求デコーダは、偶数列ストローブ信号323Aまたは奇数列ストローブ信号323Bをアサートして、レジスタ309A/309Bまたは311A/311Bの対応するペア(すなわち、デコード要求209に応じてロードされたレジスタの同じペアである。なぜなら、両方の要求が同じオープンページに向けられているからである)にロードし、それによって、要求207に応じてアクティブされた行に向けられた第2の列アクセス動作を開始する。したがって、列ストローブ信号(323Aまたは323B)は、tCC間隔ごとに一度アサートされて、DQ経路の全てのリンクを用いながら完全なtCC間隔にわたって、指定されたデータ転送を実行できるようにする。すなわち、図2のメモリ装置が、単一スレッドモードで動作される場合に、列アクセス要求に応じたデータ転送は、全tCCエンベロープを消費する。
図5の要求インタフェース300の動作を考えてみると、偶数行制御レジスタ305A、305Bの両方が、決まった方式で動作される(すなわち、305Aおよび305Bは同じストローブ信号321Aに応じてロードされる)ので、レジスタ305Aおよび305Bを、ロードされたときに、偶数バンクセット(すなわちQ0、Q2)を形成するサブバンク象限において、指定された行動作(例えばアクティブまたはプリチャージ)を開始する単一行制御レジスタと取り替えてもよいことに、留意されたい。同様に、奇数行制御レジスタペア307A/307B、偶数列制御レジスタペア309A/309B、および奇数列制御レジスタペア311A/311Bは、各々、それぞれの単一レジスタと取り替えてもよい。さらに、要求インタフェース300がマイクロスレッド列動作のサポートを含まない場合には、全レジスタセットは、単一行制御レジスタおよび単一列制御レジスタに変えることが可能であり、各レジスタにロードされる制御およびアドレス情報は、メモリ装置100の全ての4象限における行および列デコーダに提供される。かかる実施形態において、各象限内の行および列デコーダは、例えば、バンクアドレスの最下位ビットに基づいて、行または列動作を開始するかどうかを決定してもよい(すなわち、BA[0]が「0」である場合には、行/列動作は、偶数象限Q0/Q2のデコーダで開始され、BA[0]が「1」である場合には、行/列動作は、奇数象限Q1/Q3のデコーダで開始される)。しかしながら、メモリ装置100がマイクロスレッドモードで動作される場合には、追加行制御レジスタによって、メモリ装置100の異なる領域において、行動作を時間的に重ね合わせることが可能になり、追加列制御レジスタによって、メモリ装置100の異なる領域において、列動作を時間的に重ね合わせることが可能になる。一実施形態において、重なり合う動作が実行される異なる領域は、メモリ装置100の偶数および奇数バンクセットである。別の実施形態において、これらの異なる領域は、メモリ装置100の4象限である。これらおよび他の実施形態は、下記でさらに詳細に述べる。
マイクロスレッドメモリトランザクション
図7および8は、最高信号速度(例えば、6.4Gb/sおよび1.6Gb/sにそれぞれ増加されたデータ経路および要求経路信号速度。すなわち、上記の3.2Gb/sおよび0.8Gb/sの従来の信号速度の2倍である)でマイクロスレッドモードにおいて動作された場合の、図2のメモリ装置100で実行可能なマイクロスレッドメモリトランザクションの例示的なシーケンスを示す。全tCCエンベロープを単一列アクセスに割り当て(すなわち、図2〜6に関連して説明した単一スレッドモードにおけるように)、かつダブル幅の内部データ経路幅を含むようにメモリ装置100を再設計するのではなく、tCCエンベロープは、奇数または偶数バンクセットにおける交互トランザクションに割り当てられるサブエンベロープに細分される。すなわち、tRR制約が、任意のバンク選択に適用され、かつ同じバンクセットのバンクによって共有される資源(例えば、偶数バンクによって共有される行デコーダ、および奇数バンクによって共有される行デコーダ)の競合使用を回避するために主として課されることを認識すると、奇数および偶数バンクセットに交互に向けられる行アクティブ動作は、本明細書で部分tRR間隔(tRRp)と呼ばれる、全tRR間隔内のサブ間隔において実行してもよいということになる。さらに、列デコーダの別個のセットおよび別個のデータ経路資源が、偶数および奇数バンクセットのために提供されるので、交互のバンクセットのアクティブされた行に向けられたマイクロスレッド列動作は、本明細書において部分tCC間隔(tCCp)と呼ばれる単一tCC間隔内で次々に実行してもよい。このアプローチを通して、単一スレッドモード(すなわち、所与の行または列動作のために偶数バンク資源または奇数バンク資源を用いる)において約50%のデューティで用いられる、メモリ装置100内のデコーダおよびデータ経路資源は、マイクロスレッド列アクセス動作をサポートするマイクロスレッドモードでは同時に用いられる。各マイクロスレッド列アクセス動作で転送されるデータが、tCCエンベロープにの一部だけを消費するので、同じ信号速度の単一スレッド動作のための粒度に比べて、低減された列トランザクション粒度が達成される。したがって、データスループットは、メモリ装置の内部データ経路幅を2倍にする必要なしに、効果的に2倍にされ、一方で同時に、列トランザクション粒度は低減される。
図7におけるメモリ装置100および図8に示す行アクティブパイプライン251Aの図を参照すると、第1の列アクティブ要求253が、バンクB0行「z」(すなわち、図7の「Rz」、図8の「Act B0−Rz」)のアクティブを開始する。一tCC間隔後(すなわち、図示の例示的な1.6Gb/s要求経路信号速度において4つの1.25ナノ秒要求間隔後)に、第2のアクティブ要求255が、バンクB1行「y」(Act B1−Ry)のアクティブを開始する。2つの行アクティブ要求253および255は、単一tRR間隔内に受信されるけれども、2つの要求は、偶数および奇数バンク(この例ではB0およびB1)に交互に向けられ、したがって競合しないことに留意されたい。B0−Rzアクティブ要求253の受信後の所定時間に、列アクセスパイプライン251Bに示すように、バンクB0の列「a」における読み出しを指定する第1のマイクロスレッド列アクセス要求257(すなわちRd B0−Ca)が受信される。同様に、B1−Ryアクティブ要求255の受信後の所定時間で、かつ第1のマイクロスレッド列アクセス要求257用のtCC間隔が経過してしまう前に、バンクB1の列「e」における読み出しを指定する第2のマイクロスレッド列アクセス要求259(Rd B1−Ce)が受信される。したがって、2つのマイクロスレッド列アクセス要求257、259は、単一tCC間隔内で受信されるが、要求が奇数および偶数バンクセットに交互に向けられるので、競合なしにサービスされる。より具体的には、275で示すように、サブバンクB0−AおよびB0−Bの列「a」から検索された読み出しデータは、271で始まるtCC間隔の前半中に、DQAおよびDQBリンクにおける送信のためにデータインタフェース105Aおよび105Bにそれぞれに送付され、またサブバンクB1−AおよびB1−Bの列「e」から検索された読み出しデータは、同じtCC間隔の後半中に、DQAおよびDQBリンクにおける送信のためにデータインタフェース105Aおよび105Bにそれぞれに送付される。この構成によって、64バイトのtCCエンベロープは、32バイトの列トランザクション粒度をそれぞれ有する2つのマイクロスレッド列アクセス動作間で効果的に分割され、各マイクロスレッド列アクセス動作のためのデータは、拡張図272に示すように、それぞれのtCCp間隔中にDQAおよびDQBリンクに出力される。さらに、tCCエンベロープが、奇数および偶数バンクセットに向けられた列アクセス間で分割されるので、部分tCC間隔中に送信されるデータは、既存のデータ経路インタフェース105A/105Bによって搬送可能である。したがって、メモリ装置100の内部データ経路幅は、増加したデータ経路帯域幅を収容するために増加する必要はなく、上述の追加製造/運転コストおよびヘッドルーム問題は回避される。
やはり図7および8を参照すると、第1のB0向けマイクロスレッド列アクセス要求257の受信後のtCC間隔に、B0に向けられ、かつ列「b」における読み出しを指定する第2のマイクロスレッド列アクセス要求261(すなわちRd B0−Cb)が、受信される。同様に、第1のB1向けマイクロスレッド列アクセス要求259の受信後のtCC間隔に、列「f」における読み出しを指定する第2のB1向けマイクロスレッド列アクセス要求263(すなわちRd B1−Cf)が、受信される。第2のB0向けおよびB1向けマイクロスレッド列アクセス要求261、263は、第1のB0向けおよびB1向けマイクロスレッド列アクセス要求257、259と同じ方法でサービスされ、結果として、B1の列「e」データの送信にすぐ続く、tCC間隔の前半(すなわち、第1のtCCp間隔)にわたるB0の列「b」データの送信、およびtCC間隔の後半にわたるB1の列「f」データの送信がもたらされる。したがって、4つのマイクロスレッド列動作が実行され、結果として、271で開始する単一tRR間隔にわたって、4つの32バイトデータ転送がもたらされる。各行アクティブが、それぞれ、274で示すそれぞれのtRRp間隔内で、2つの32バイト列データ転送をもたらすので、行トランザクション粒度は、tRR間隔にわたるデータ経路の128バイトデータ転送能力の半分である64バイトである(すなわち、128バイトtRRエンベロープの半分)。
バンクB0およびB1に向けられたプリチャージ要求265および267は、同じバンクに向けられたマイクロスレッド列アクセス要求261および263の受信後の所定時間に(すなわち、プリチャージパイプライン251Cに示すように)、要求インタフェース101で受信される。プリチャージ265、267は、上述の方法でサービスされて、指定されたバンクのオープンページを閉じる。
図9は、マイクロスレッドモードである場合における、図5の要求デコーダ301による行および列ストローブ信号アサートの例示的なタイミングを示す。図示のように、偶数バンクに向けられた行アクティブ要求253をデコードすると、要求デコーダ301は、偶数行ストローブ信号321Aをアサートして、偶数行制御レジスタ305A、305Bにロードし、それによって、バンクおよびアドレス値を、偶数バンクのための行デコーダに送付する。部分tRR間隔(tRRp)が経過した後で、奇数バンクに向けられた行アクティブ要求255が受信される。奇数バンク行アクティブ要求255をデコードすると、要求デコーダ301は、奇数行ストローブ信号321Bをアサートして、奇数行制御レジスタ307A、307Bにロードし、それによって、バンクおよび行アドレス値を、奇数バンクのための行デコーダに送付する。したがって、完全にロードされた行アクティブパイプラインを仮定すると、要求デコーダは、各tRRp間隔後に、偶数行および奇数行ストローブ信号321A、321Bを交互にアサートして、バンクおよび行アドレス値を、奇数および偶数バンクセットのための行デコーダに交互に送付する。
やはり図9を参照するが、要求デコーダ301は、偶数バンクに向けられた列アクセス要求257(すなわちマイクロスレッド列アクセス要求)をデコードすると、偶数列ストローブ信号323Aをアサートして、偶数バンク列制御レジスタ309A、309Bにロードし、それによって、バンクおよび列アドレス値を、偶数バンクのための列デコーダに送付する。部分tCC間隔(tCCp)が経過した後で、奇数バンクに向けられた列アクセス要求259が受信される。偶数バンク列アクセス要求259をデコードすると、要求デコーダ301は、偶数列ストローブ信号323Bをアサートして、偶数バンク列制御レジスタ311A、311Bにロードし、それによって、バンクおよび列アドレス値を、偶数バンクのための列デコーダに送付する。したがって、完全にロードされた列アクティブパイプラインを仮定すると、要求デコーダ301は、各tCCp間隔後に、ECSおよびOCS信号を交互にアサートして、バンクおよび列アドレス値を、奇数および偶数バンクセットのための列デコーダに交互に送付する。図8に示すように、ECSおよびOCS信号の交替アサートによって、単一tCC間隔内で多数のマイクロスレッド列アクセス動作のために列データの時間差(time−staggered)転送が可能になる。ECSおよびOCS信号は、列アクセス要求261および263に応じて、第2のtCC間隔中に要求デコーダ301によってそれぞれアサートされ、それによって、図8に示すように、続くtCC間隔中に時間差データ転送を繰り返すことができるようにする。
図10は、図2のメモリ装置100の代替実施形態で実行できる例示的なリンク分散(link−staggered)マイクロスレッドメモリトランザクションを示す。行アクティブ要求253および255、マイクロスレッド列アクセス要求257、259、261および263、ならびにプリチャージ要求265および267が、要求インタフェース101で受信され、図7〜9に関連して上述したのと概ね同じ方法で処理される。しかしながら、tCCエンベロープを時間的に細分する(すなわち、同じtCC間隔に受信されたマイクロスレッド列アクセス要求に応じて出力される列データに時間差をつける)代わりに、tCCエンベロープは、375で示すようなDQAおよびDQBデータ経路の異なる部分における、同じtCC間隔マイクロスレッド列アクセス要求のための列データの同時データ転送を通して、空間的に細分される。これは、本明細書においてリンク分散と呼ばれる動作である。すなわち、マイクロスレッド列アクセス要求257に応じて転送される列データは、DQAラインの第1のサブセットおよびDQBリンクの第1のサブセット(例えば、DQA[3:0]およびDQB[3:0])を介して送信され、一方で、マイクロスレッド列アクセス要求259に応じて転送される列データは、DQAリンクの第2のサブセットおよびDQBリンクの第2のサブセット(例えば、DQA[7:4]およびDQB[7:4])を介して同時に(部分的または完全に、時間的に重なり合う)送信される。同様に、マイクロスレッド列アクセス要求261および263に応じて転送される列データは、DQリンクの第1および第2のサブセットを通じて、続くtCC間隔中にそれぞれ送信される。図8の時間差実施形態におけるように、tCCエンベロープは64バイトのままであり、列トランザクション粒度および行トランザクション粒度は、それぞれ32バイトおよび64バイトである。したがって、リンク分散アプローチによって、行および列トランザクション粒度の低減の点で、時間差アプローチと同じ利点が効果的に提供されるが、しかしtCC間隔のそれぞれの部分の代わりに、マイクロスレッド列アクセス要求にサービスするようにDQ経路のそれぞれの部分を割り当てることによって、そのようになされる。
図12Aおよび12Bは、図8および10に示す時間差およびリンク分散データ転送をサポートするために利用可能な例示的データ経路インタフェース401および411をそれぞれ示す。図12Aのデータ経路インタフェース401は、図3に関連して説明したデータ経路インタフェース105Aに概ね対応し、またDQAパッド171、ならびにパッド171とそれぞれの列データ経路119および119との間に結合されたトランシーバ403および405のペアを含む。各トランシーバ403および405には、出力データストリームを生成するデータシリアライザ177および送信機175、ならびに着信データストリームを受信する受信機179およびデータデシリアライザ181が含まれる。より具体的には、図示の例示的な実施形態において、データシリアライザ177は、列データ経路119を介して受信された128ビットの列データ値を、16の8ビット値のシーケンス(例えば、128ビット列データ内の16の異なるオフセットのそれぞれから、ラウンドロビン方式で一度に1バイトを取る)へ変換し、これらの8ビット値が、DQAパッド171を介した、それぞれの送信間隔における送信のために、送信機175に送付される。反対に、受信機179によって回復された16の8ビット値のシーケンスは、データデシリアライザ181に送付され、このデータデシリアライザ181が、これらの値を、列データ経路119を介して列デコーダに供給される128ビット列データ値にまとめる。図8の列アクセストランザクションに対応するように影を付けられた矢印408Aおよび408Bが示すように、図8に示す時間差データ転送動作において、トランシーバ403を通るデータ転送経路は、第1の部分tCC間隔中に用いられ、トランシーバ405を通るデータ転送経路は、第2の部分tCC間隔中に用いられる。
図12Bのデータ経路インタフェース411では、DQA経路の8つのリンクは、4つのリンクの2つのグループDQA[3:0]およびDQA[7:4]に細分されて、それぞれのマイクロスレッド列トランザクションのためのデータを転送するために用いられる。したがって、トランシーバの第1のペア413A/415Aが、4つのDQAパッド171Aの第1のセットに結合され、トランシーバの第2のペア413B/415Bが、4つのDQAパッド171Bの第2のセットに結合され、各個別トランシーバには、データシリアライザ427および送信機425によって形成された出力データ経路と、受信機429およびデータデシリアライザ431によって形成された入力データ経路と、が含まれる。各128ビット列データ値が、信号リンク数の半分(例えば8の代わりに4)を通じて転送されるので、データシリアライザは、図12Aの1:16データシリアライザの代わりに、1:32データシリアライザ(すなわち、128ビット列データ値を、32の4ビットデータ値のシーケンスに変換する)であり、データデシリアライザは、図12Aの16:1データデシリアライザ181の代わりに、32:1データデシリアライザ(32の4ビット値のシーケンスを、128ビット列データ値にまとめる)である。したがって、各トランシーバ413A、415A、413B、415Bは、列データ経路119とより少数のDQリンクとの間で、しかし2倍の間隔にわたって(すなわちtCC間隔の半分ではなく全tCC間隔にわたって)128ビット列データを転送する。
図12Aの実施形態におけるように、同じtCC間隔にサービスされるマイクロスレッド列トランザクションは、奇数および偶数バンクに交互に向けられて、4つのデータ経路リンクの一セットが、所与のtCC間隔にわたって列データ経路119および119の1つからデータを供給され(またはその1つにデータを供給し)、かつ4つのデータ経路リンクのもう一方のセットが、tCC間隔中に、列データ経路119および119のもう一方からデータを同時に供給される(またはそのもう一方にデータを供給する)ようにする。このデータフロー構成は、例えば、図10の列アクセストランザクションに対応するように影を付けられた矢印418Aおよび418Bによって示されている。
図12Aおよび12Bを比較すると、データ経路インタフェース401および411は、主として、データシリアライザおよびデータデシリアライザ回路の動作において異なることが分かる。すなわち、トランシーバ413Aおよび413Bにおける2つの4リンク送信機425は、トランシーバ403における単一8リンク送信機175と等価になるように実現しかつ8つのDQAパッド(すなわち、171Aおよび171B)に接続してもよく、またトランシーバ413Aおよび413Bにおける2つの4リンク受信機429は、同様に、トランシーバ403における8リンク受信機179と等価であってもよい。トランシーバ403および405における1:16データシリアライザ177が、トランシーバ413A、413B、415Aおよび415Bにおける1:32データシリアライザ427と異なっているのは、主として、着信128ビット列データが、DQAデータパッドに分配される方法、すなわち、データデシリアライザ177が、16の送信間隔にわたって、128ビット列データの8ビットチャンクを8つのDQAパッドに送付し、データデシリアライザ427が、32の送信間隔にわたって、128ビット列データの4ビットチャンクを4つのDQAパッドに送付するという方法によってである。16:1データデシリアライザおよび32:1データデシリアライザは、同様に、DQAパッドから列データ値へのデータ分配の方法で異なる。したがって、一実施形態において、データ経路インタフェース401および411は、単一データ経路インタフェース回路によって実現されるが、この単一データ経路インタフェース回路は、マイクロスレッド列アクセス要求に応じてリンク分散または時間差データ転送をサポートするように構成された(例えば、モードレジスタプログラミングを通して)データシリアライザおよびデータデシリアライザ回路を有する。
図10および12Bを参照すると、マイクロスレッド列アクセス要求257に応じて検索された列データが、マイクロスレッド列アクセス要求259に応じて検索された列データの前に転送に利用可能になるので、第1に検索された列データは、第2に検索される列データが利用可能になるまでバッファ(例えばデータ経路インタフェース411内に)してもよく、それによって、2つのアクセス要求のための列データの同時(すなわち完全に同時)転送が可能になる。代替として、図11に示すように、第1に検索された列データ(すなわち、要求257に応じて検索された)は、利用可能になるとすぐに出力してもよく、結果として、385で示すように、データ経路の上側および下側部分において同じ行の送信の時間差がもたらされ、第2に検索された列データの転送は、第1に検索された列データの転送に対して、部分tCC間隔(すなわちtCCp)だけ遅延される。かくして、信号経路パーティションを通じた送信は、部分的に重なり合う(しかしやはり、部分tCC間隔にわたっては同時である)。かかるアプローチは、用途によっては望ましい場合がある。なぜなら、列データのバッファリングが必要でなく、単一の決定論的なメモリアクセス待ち時間が、各マイクロスレッド列アクセスに適用されるからである。対照的に、第1のマイクロスレッド列アクセス要求に応じて検索された列データが、第2のマイクロスレッド列アクセス要求に応じて検索された列データとの同時のリンク分散転送を可能にするために、バッファされる場合には、2つのマイクロスレッド列アクセス要求は、やはり決定論的であるが、異なるメモリアクセス待ち時間を有する可能性がある。
図13および14は、最高信号速度(例えば、上記した従来の3.2Gb/sおよび0.8Gb/sの信号速度の2倍のデータおよび要求帯域幅)で代替マイクロスレッドモードにおいて動作された場合の、図2のメモリ装置100で実行可能なマイクロスレッドメモリトランザクションの例示的なシーケンスを示す。本明細書ではサブバンクマイクロスレッドモードと呼ばれる代替マイクロスレッドモードにおいて、tCCエンベロープ当たりのマイクロスレッド列トランザクション数は、図7および8のマイクロスレッドモードに対して2倍にされるが、その数は、各列アクセス要求で提供される列アドレスの数を増加させ、かつ各列アクセス要求において送付される列アドレスのペアを、同じバンクの異なるサブバンクに適用することによって、2倍にされる。例えば、図14に示す行アクティブパイプライン461A、列アクセスパイプライン461Bおよびプリチャージパイプライン461Cを参照すると、行アクティブ要求253、255のシーケンスは、図8におけるように受信され(すなわち、各tRR間隔内に受信された要求ペアが、偶数および奇数バンクに交互に向けられる)、マイクロスレッド列アクセス要求467、469、471、473のシーケンスがまた、図8におけるように受信されるが、しかし各アクセス要求には、480で示すようなバンクアドレスおよび2つの列アドレスが含まれる。指定された偶数または奇数バンクの交互するサブバンクに対して2つの列アドレス適用すること(すなわちサブバンクマイクロスレディング)によって、マイクロスレッド列アクセス当たり、2つの別個の16バイト列データ値を検索することが可能であり、かくして、16バイトの列トランザクション粒度が達成される。例えば、図13および14の特定の例では、第1のマイクロスレッド列アクセス要求467が、サブバンクB0−Aの列「a」における読み出し、およびサブバンクB0−Bの列「c」における読み出し(すなわち、Rd B0−Ca/Cc)を指定し、一方で、同じtCC間隔内に受信された第2のマイクロスレッド列アクセス469が、サブバンクB1−Aの列「e」における読み出し、およびサブバンクB1−Bの列「g」における読み出し(Rd B1−Ce/Cg)を指定する。続くtCC間隔において、2つの追加マイクロスレッド列アクセス要求471および473が受信されるが、その第1の要求は、B0−AおよびB0−Bサブバンクの列「b」および「d」における読み出し(Rd B0−Cb/Cd)を指定し、第2の要求は、B1−AおよびB1−Bサブバンクの列「f」および「h」における読み出し(Rd B1−Cf/Ch)を指定する。275で示すように、tCCエンベロープは、連続的tCCp間隔間で時間的に細分され、かつDQAおよびDQBデータ経路リンク間で空間的に細分されて、マイクロスレッド列アクセス要求の各ペアで受信される4つの列アドレスに対応する4つの列データ転送を収容する。したがって、サブバンクマイクロスレディングを通して、列トランザクション粒度が、転送データ総量の低減なしに、16バイトに縮小される(すなわち、メモリ装置のピーク帯域幅は維持される)。行トランザクション粒度は、4つの16バイト列データ転送がアクティブされた行ごとに実行されるので、64バイトのままである。
図15は、図13および14に関連して説明したマイクロスレッドメモリトランザクションを可能にするための、図2の(すなわち要求インタフェース101を実現する)メモリ装置100内で利用可能な要求インタフェース500の実施形態を示す。図5の実施形態におけるように、要求インタフェース500には、着信要求ストリーム(すなわち、パッド303を介して受信され、かつ、必要ならば、オプションのデータデシリアライザ304によって非直列化される)を処理する要求デコーダ501と、偶数バンク行制御レジスタ305A、305Bと、奇数バンク行制御レジスタ307A、307Bと、偶数バンク列制御レジスタ309A、309Bと、奇数バンク列制御レジスタ311A、311Bと、が含まれる。要求インタフェース500にはまた、要求デコーダ501と偶数および奇数バンク行制御レジスタ305、307との間に結合された行バス315と、要求デコーダ501と偶数バンク列制御レジスタ309との間に結合された第1の列バス503Aと、要求デコーダ501と奇数バンク列制御レジスタ311との間に結合された第2の列バス503Bと、が含まれる。
要求デコーダ501は、行アクティブ要求をデコードすると、行アドレスおよびバンクアドレスを行バス315に出力し、また図5に関連して述べたように、偶数行ストローブ信号321Aまたは奇数行ストローブ信号321B(すなわち、要求が奇数バンクかまたは偶数バンクへ向けられているかどうかに依存して)をアサートして、バンクおよび行アドレス値を、偶数バンク行制御レジスタ305または奇数バンク行制御レジスタ307にロードする。バンクアドレスおよび2つの列アドレスを有するマイクロスレッド列アクセス要求(すなわちサブバンクマイクロスレッド列アクセス)をデコードすると、要求デコーダ501は、第1および第2の列アドレスを、第1および第2の列バス503Aおよび503Bにそれぞれ出力し、次に、偶数列ストローブ信号323Aまたは奇数列ストローブ信号323B(すなわち、要求が奇数バンクかまたは偶数バンクへ向けられているかどうかに依存して)をアサートして、グループAサブバンク(すなわち、図13を参照すると、象限Q0およびQ1のサブバンク)のための偶数バンクまたは奇数バンク列制御レジスタ(305Aまたは307A)に第1の列アドレスをロードし、かつグループBサブバンク(すなわち、象限Q2およびQ3のサブバンク)のための対応する偶数バンクまたは奇数バンク列制御レジスタ(305Bまたは307B)に第2の列アドレスをロードする。一実施形態において、サブバンクマイクロスレッド列アクセス要求で受信されたバンクアドレス値は、第1および第2の列バス503Aおよび503Bの両方に出力され、また偶数列ロードまたは奇数列ストローブ信号323A、323Bのアサートに応じて、第1および第2の列アドレスと共に、偶数バンクまたは奇数バンク列制御レジスタ309または311にロードされる。代替実施形態では、別個のバンクアドレスバスを設けて、共通して偶数および奇数バンク列制御レジスタ309および311(ならびに要求デコーダ501)に結合し、それらに提供されたバンクアドレスを、これらのレジスタ内のバンクアドレスフィールドに(または別個のバンクアドレスレジスタに)ロードできるようにしてもよい。また、別の実施形態では、全ての列制御レジスタ309、311に単一列バスが結合されて時間多重化され、第1の列アドレスを列制御レジスタ309Aおよび311Aの1つに、かつ第2の列アドレスを列制御レジスタ309Bおよび309Bの1つに、それぞれのアドレス転送動作においてロードする。かかる実施形態において、別個のストローブ信号を、4つの列制御レジスタ309A、309B、311A、311Bのそれぞれに供給して、一度に1つの列制御レジスタにロードできるようにしてもよい。また、かかる全ての実施形態において、2つの列アドレスは、着信マイクロスレッド列アクセス要求によって独立して指定してもよく、または互いに関連して指定してもよい。例えば、2つのアドレスのうちの1つは、もう一方からの算術的または論理的オフセットとして指定してもよい。オフセット値は、列アクセス要求で指定してもよく、または列アクセス要求には、例えば、オフセット値のルックアップテーブルに索引を付けることによってオフセット値を間接的に決定するために用いられる値を含んでもよい。
図15の実施形態において、要求デコーダ501は、図9に示す時間にレジスタストローブ信号321A、321B、323Aおよび323Bをアサートし、それによって、各サブバンクマイクロスレッド列アクセス要求で受信された2つの列アドレスを、各tCCp間隔内に同時に(すなわち、同時にかまたは時間において少なくとも部分的に重なり合って)適用できるようにして、同じバンクの異なる列からそれぞれのデータセットを検索してもよい。共有された時間多重化列バスを有する実施形態において、4つの列ストローブ信号(例えば、ECS1、ECS2、OCS1、OCS2)を連続的にアサートし、tCCp間隔ごとに2つの列制御レジスタロード動作を可能にしてもよい。例えば、信号ECS1およびECS2を、第1のtCCp間隔中に相次いでアサートし、OCS1およびOCS2を、第2のtCCp間隔中に相次いでアサートしてもよい。
図16および17は、例示的なマイクロスレッドメモリ動作を示すが、この場合には、別個の行および列アドレスを用いて、単一tCC間隔内にメモリ装置530の4象限Q0〜Q3のそれぞれにおいてサブバンクにアクセスする。より具体的には、メモリ装置530の要求インタフェース531が、一意のバンク、行および列アドレスを、各象限のアドレスデコーダ(すなわち、列デコーダ103および行デコーダ113)へ送付するので、各象限における記憶アレイは、サブバンクからバンクへ効果的に転換され、それによって、図16に示すようなバンクB0〜B15を有する16のバンクアーキテクチャがもたらされる。上述の他のメモリ装置実施形態におけるように、メモリ装置530は、代替実施形態では、より多数または少数の記憶アレイを有し、それに対応して、より多数または少数のバンクをもたらしてもよい。また、16のバンクのいずれにも、2以上の構成サブバンクを含んでもよい。
図16および17を参照すると、行アクティブパイプライン551Aは、前述の実施形態におけるよりも密にロードされて、単一tRR間隔においてメモリ装置530の4象限のそれぞれの内のバンクに向けられた行アクティブ要求553、555、557および559を送付する。すなわち、tRR間隔は4つのtRRp間隔に細分され、それぞれにおいて行アクティブ要求が受信される。図16および17に示す特定の例において、行「w」、「x」、「y」および「z」が、バンクB0、B8、B9およびB1において、それぞれ次々にアクティブされる(すなわち、Act B0−Rw、Act B8−Rx、Act B9−RyおよびAct B1−Rz)が、行は、続くトランザクションまたは代替実施形態では、4象限のそれぞれにおいて異なる順序でアクティブしてもよい。
列アクセスパイプライン551Bを参照すると、第1の列アクティブ要求553が受信された後の所定時間に、二重アドレスマイクロスレッド列アクセス要求561、563のペアが、第1のtCC間隔550にわたって受信され、それによって、アクティブ要求553、555、557および559に応じて4象限で開かれたページに対して適用可能な4つのバンクアドレスおよび4つの列アドレスが送付される。図示の特定の例において、第1の二重アドレスマイクロスレッド列アクセス要求561には、バンクB0の列「a」における(つまりB0のオープンページにおける)アクセスを指定する、577で示すような第1のアドレスペア、すなわちBank Addr1およびCol Addr1と、バンクB8の列「b」におけるアクセスを指定する第2のアドレスペア、すなわちBank Addr2およびCol Addr2と、が含まれる(つまりRd B0−Ca/B8−Cb)。第2の二重アドレスマイクロスレッド列アクセス要求563は、バンクB1の列「c」およびバンクB9の列「d」におけるアクセスを指定する(Rd B1−Cc/B9−Cd)。アクセス要求561および563のペアで提供される4つのバンクアドレスのそれぞれが、メモリ装置530の異なる象限におけるバンクを指定するので、列デコーダまたはデータ経路の競合は、要求をサービスする際に現れない。したがって、アクセス要求561および563のペアで4つのアドレス値を受信した後の所定時間に、列データの4つの対応するセットが、577で始まるtCC間隔にわたって、データ経路を介して送信される。575で示すように、列データの4つのセットは、64バイトtCCエンベロープ内で、リンク分散法(すなわち、DQAリンクで転送されるデータの2つのセットおよびDQBリンクで転送される2つのセット)および時間差法(第1およびアクセス要求561および563に対応する列データが、第1および第2のtCCp間隔にそれぞれ転送される)の両方で送信され、列データの各セットは、16バイトの列トランザクション粒度を有する。
やはり図16および17を参照すると、二重アドレスマイクロスレッド列アクセス要求565および567の第2のペアが、間隔550にすぐ続くtCC間隔に受信される。アクセス要求561および563の第1のペアにおけるように、アクセス要求の第2のペア内で搬送される4つのバンクアドレスが、メモリ装置530の4象限のそれぞれにおいて、前にアクティブされたバンクの行の選択された列におけるアクセスを指定する(例えば、Rd B0−Ce/B8−CfおよびRd B1−Cg/B9−Ch)。それに対応して、マイクロスレッド列アクセス要求565および567の第2のペアにおける4つのアドレス値の受信後の所定時間に、列データの4つの対応するセットが、データ経路を介して送信される。列データの4つのセットは、64バイトのtCCエンベロープ内でリンク分散および時間差で送信され、列データの各セットは、16バイトの列トランザクション粒度を有する。tRRエンベロープは、128バイト(すなわち、この例ではtRR=2tCCのようにtCCエンベロープの2倍)のままであるが、しかしtRR間隔の4方向分割のために、行トランザクション粒度は32バイトに低減される。
やはり図17を参照すると、行アクティブパイプライン551Aにおける要求密度の増加によって、別の状況ではプリチャージ要求を発行するために用いられる要求間隔が削除される可能性がある。一実施形態において、別の状況ではプリチャージ要求パイプライン551Cの581および583に示す間隔中に送信されることになるプリチャージ要求が、その代りに、列アクセス要求内のサブフィールドによって取り扱われる。例えば、577および579で示すように、プリチャージビット(単数または複数)を各列アクセス要求に含めて、要求されたアクセスの終結時に自動的にプリチャージ動作を実行すべきかどうかを示してもよい。したがって、アクセス要求561において、プリチャージビットをリセットして(例えば、577で示すように「Prechg=0」)プリチャージ動作を遅らせ、1つまたは複数の続く列アクセスのために、指定されたバンク(B0とB8)のページを開いたままにする。アクセス要求567において、プリチャージビットがセットされ(例えば、579で示すように「Prechg=1」)、それによって、指定された列アクセスの終結時に、指定されたバンク(B1およびB9)においてプリチャージ動作を実行するように、メモリ装置530に命令する。
図18は、要求インタフェース600の実施形態を示すが、この要求インタフェース600を用いて、図16のメモリ装置530内に要求インタフェース531を実現し、かつ図17に関連して説明した4方向マイクロスレッドトランザクションをサポートしてもよい。図5および15の実施形態におけるように、要求インタフェース600には、着信要求ストリーム(すなわち、パッド303を介して受信され、かつ、必要ならば、オプションのデータデシリアライザ304によって非直列化される)を処理する要求デコーダ601と、偶数バンク行制御レジスタ305A、305Bと、奇数バンク行制御レジスタ307A、307Bと、偶数バンク列制御レジスタ309A、309Bと、奇数バンク列制御レジスタ311A、311Bと、が含まれる。要求インタフェース600にはまた、要求デコーダ601と偶数バンクおよび奇数バンク行制御レジスタ305、307との間に結合された行バス315と、図15の実施形態におけるように、偶数バンク列制御レジスタ109および奇数バンク列制御レジスタ11にそれぞれ結合された第1および第2の列バス503Aおよび503Bと、が含まれる。
要求デコーダ601は、行アクティブ要求をデコードすると、行アドレスおよびバンクアドレスを行バス315に出力し、次に、バンクアドレスにおける最下位2ビット(または他のビット)(本明細書において象限アドレスと呼ばれるアドレスフィールド)に指定された象限に従って、4つの行レジスタストローブ信号605A、605B、607Aまたは607B(ERSA、ERSB、ORSA、ORSB)のうちの1つをアサートする。例えば、着信アクティブ要求ストリームが、図16のメモリ装置530の象限Q0、Q2、Q1およびQ4へラウンドロビン方式で向けられていると仮定すると、行レジスタストローブ信号605A、605B、607Aおよび607Bは、それぞれのtRRp間隔に次々にアサートされる。他の象限アドレスシーケンスは、代替実施形態で用いられてもよく、結果として、行レジスタストローブ信号アサートの異なるシーケンスをもたらす。
二重アドレスマイクロスレッド列アクセス(例えば、図17の要求561)をデコードすると、要求デコーダ601は、第1のバンクアドレスおよびそこにおける列アドレス値を第1の列バス503Aに出力し、第2のバンクアドレスおよびそこにおける列アドレス値(BA2、CA2)を第2の列バス503Bに出力し、次に、アドレスされたバンクのペアが奇数かまたは偶数かどうかに従って、偶数列ストローブ信号323A(ECS)または奇数列ストローブ信号323B(OCS)をアサートする。代替実施形態では、所与のマルチスレッド列アクセス要求でアドレスされるバンクのペアに対する制限を回避するために(例えば、偶数バンクに向けられた列アクセスを、奇数バンクに向けられた列アクセスとペアにできるようにする)、別個の列ストローブ信号および列アドレスバスを、列制御レジスタ309A、309B、311Aおよび311Bのそれぞれに提供してもよく、列ストローブ信号の任意のペアがアサートされて、対応する列制御レジスタを同時にロードできるようにする。また、図15に関連して上述したように、単一の時間多重列バスを全ての列制御レジスタ309、311に結合して、選択された列制御レジスタの連続的ローディングを任意の順序で可能にしてもよい。
図19は、図18の要求デコーダ601による制御信号アサートの例示的なタイミングを示す。図示の特定の例において、行アクティブ要求553、555、557および559は、それぞれのtRRp間隔に受信され、各要求は、図16および17のシーケンスに関連して説明した例示的な順序(他の行アクティブ順序を用いてもよい)で、異なる象限に向けられる。したがって、要求デコーダ601は、図示のように、4つの行レジスタストローブ信号ERSA、ERSB、ORSA、ORSBを、それぞれのtRRp間隔にアサートして、4つのアクティブ要求で受信されたバンクおよび行アドレス値をアドレス指定された行レジスタ305、307に転送する。行アクティブ要求の同じパターンが、続くtRR間隔に受信される(すなわち、同じ象限順序だが、しかし任意の象限内バンクアドレスおよび行アドレス)と仮定すると、4つの行レジスタストローブ信号ERSA、ERSB、ORSA、ORSBは、ラウンドロビン方式でtRR間隔当たり一度アサートされ得る。
やはり図19を参照すると、列ストローブ信号ECSおよびOCSは、図9の実施形態におけるように、部分tCC間隔(すなわちtCCp)にアサートされる。上述のように、要求デコーダが、任意の列制御レジスタローディングシーケンスをサポートする場合には、4つの別個の列ストローブ信号を、要求デコーダによって生成し、かつ任意の順序でそれぞれのtCCp間隔にアサートしてもよい。着信列アクセス要求が、各tRRサイクル(またはtRRサイクルの任意のグループ)において同じ象限アクセス順序を指定する場合には、列ストローブ信号のそれぞれは、tRR間隔ごとに一度、ラウンドロビン方式でアサートするか、または図18および19に示すような共有列ストローブ信号(ECSおよびOCS)の場合には、tCC間隔ごとに一度アサートしてもよい。
図20Aおよび20Bは、行動作(例えば、行アクティブ動作およびプリチャージ動作)を開始するために、上記のメモリ装置100および530に発行できる例示的な行要求を示す。より具体的には、図20Aは、メモリ装置100、530が単一スレッドモードで動作する場合に発行される例示的なSTモード(単一スレッドモード)行要求を示し、図20Bは、メモリ装置がマイクロスレッドモードで動作する場合に発行される例示的なMTモード(マイクロスレッドモード)行要求を示す。図示の特定の実施形態において、各行要求は、12ビット要求経路(RQ0〜RQ11)を通じて2つの連続的転送(例えば、クロック信号または他のタイミング信号の奇数および偶数位相中に)で発行され、したがって、24ビットを含む。図示のように、STモード要求には、ビット「OP」によって形成された3ビットのオペコード、3ビットのバンクアドレスBA0〜BA2、および11ビットの行アドレスR0〜R10が含まれる。オペコードは、実行すべき行動作のタイプ(例えば、行アクティブまたはプリチャージ)を示し、バンクアドレスは、行動作が、8つのバンクのどれに向けられるかを示し、行アドレスは、少なくとも行アクティブ動作の場合には、動作が実行されるべき、選択されたバンクの行を示す。STモード行要求の残りの7ビットは、取って置く(すなわち、指示「rsrv」によって示されるように)か、またはメモリ装置内で他の機能を制御するための情報を搬送するために用いてもよい。図20BのMTモード行要求は、STモード行要求とほぼ同じであるが、ただし、STモード要求で取って置かれたビットの1つ(例えば、要求リンクRQ3で転送される偶数位相ビット)が、追加バンクアドレスビットBA3を搬送するために任意で用いられ、それによって、図16の16バンクメモリ装置530内の16のバンクの1つの選択を可能にすることを除いて、ほぼ同じである。代替実施形態では、図20Aおよび20Bの行要求は、異なるフォーマット、異なるビット数を有してもよく、またより広いかまたは狭い要求経路を通じて、より多数または少数の転送で送信してもよい。
図21Aおよび21Bは、列アクセス動作(例えば読み出し動作および書き込み動作)を開始するために、上記のメモリ装置100および530へ発行できる例示的な列要求を示す。より具体的には、図21Aは、メモリ装置100、530が単一スレッドモードで動作する場合に発行される例示的なSTモード(単一スレッドモード)列要求を示し、図21Bは、メモリ装置がマイクロスレッドモードで動作する場合に発行される例示的なMTモード(マイクロスレッドモード)列要求を示す。図示の実施形態において、STモードおよびMTモード列要求は、対応するSTモードおよびMTモード行要求と同じサイズ(すなわち、12ビット要求経路RQ0〜RQ11を通じた奇数および偶数位相転送によって形成される24ビット要求)であるが、しかし代替実施形態では、行要求より大きいかまたは小さくてもよい。STモード列要求には、実行すべき列アクセスのタイプ(例えば、読み出し、書き込み、マスク書き込み等)を指定する5ビットのオペコード、アクセスされる8つのオープンページの1つ(すなわち8つのバンクの1つのためのオープンページ)を指定する3ビットのバンクアドレスBC0〜BC2、および指定された列アクセス動作を実行すべきオープンページ内の64の列位置(また列オフセットとも呼ばれる)の1つを指定する6ビットの列アドレスC4〜C9が含まれる。STモード列アクセス要求の10ビットは、取って置かれるかまたは他の機能に割り当てられる。
MTモード列要求は、STモード列アクセス要求では取って置かれたビットが、第2のバンクアドレスBCy0〜BCy2および第2の列アドレスCy4〜Cy9を搬送するために用いられることを除いて、STモード列アクセス要求と同様であり、また第1のバンクアドレスおよび第1の列アドレスは、STモード列要求のバンクアドレスおよび列アドレスと同じビットで搬送されるが、しかしBC×0〜BC×2およびC×4〜C×9と呼ばれる。この構成によって、各列要求は、図16〜19に関連して説明した16バンクのメモリ装置で用いられる2つの別個のバンクおよび列アドレスを搬送することができる。代替実施形態では、第2のバンクアドレスではなく第2の列アドレスを、MTモード列要求で提供してもよく(例えば、図13〜15に関連して説明した実施形態におけるように)、また他の代替実施形態では、単一列アドレスおよび単一のバンクアドレスが、列アクセス要求ごとに提供される(例えば、図7〜9に関連して説明した実施形態におけるように)。また、図17に関連して説明した実施形態において、行アクティブパイプラインにおける行アクティブコマンドのより高い密度は、別の状況ではプリチャージコマンドを転送するために用いられ得る要求経路帯域幅を消費する。したがって、図21Aの例示的なMTモード列要求では、1ビット(すなわち、RQ11リンクを通じて転送される奇数位相ビット)を用いて、指示された列アクセス動作の終結時に自動プリチャージ動作(AP)を実行すべきかどうかを示す。代替実施形態では、STモードおよび/またはMTモード列要求は、異なるフォーマット、異なるビット数を有してもよく、またより広いかまたは狭い要求経路を通じて、より多数または少数の転送で送信してもよい。
図22および23は、メモリ装置700における例示的なマイクロスレッドメモリ動作を示すが、このメモリ装置700は、従来の要求およびデータ経路とインタフェースする要求インタフェース701およびデータ経路インタフェース705A、705Bを有する。図23を参照すると、要求インタフェースは、19ビットの要求経路730を介して行および列要求(それらのアドレス構成要素を含む)を受信するが、この要求経路730は、リセット線(RESET)、チップ選択線(CS)、行アドレスストローブ線(RAS)、列アドレスストローブ線(CAS)、書き込みイネーブル線(WE)、3つのバンクアドレス線(BA[2:0])、および11のアドレス線(A[10:0])によって形成されている。データ経路インタフェースは、外部データ経路732に結合されるが、この外部データ経路732は、32のデータ線(DQ)、4つのデータマスク線(DM)、4つの読み出しデータストローブ線(RDQS)および4つの書き込みデータストローブ線(WDQS)によって形成されている。データマスク線を用いて、マスク書き込み動作中にそれぞれのマスクビットを搬送するが、各マスクビットは、DQ線で搬送された対応するバイトを書き込むべきかどうかを示す。読み出しデータストローブ線は、メモリ装置から出力された読み出しデータストローブ信号を搬送して、メモリコントローラまたは他の制御装置において対応する読み出しデータを受信するタイミングを取る。書き込みデータストローブ線は、メモリコントローラ(または他の制御装置)から出力された書き込みデータストローブ信号を搬送し、メモリ装置700内で書き込みデータを受信するタイミングを取る。要求経路730および/またはデータ経路732における信号線のそれぞれは、シングルエンドまたは差動であってもよい。また、代替実施形態では、異なる数およびタイプの信号を、要求経路730および/またはデータ経路732を介して伝達してもよい。
図22の実施形態において、メモリ装置700は、図1のメモリ装置100とほぼ同じアーキテクチャを有する。すなわち、メモリ装置700は、4象限Q0〜Q3、8つのバンクB0〜B7(それぞれは、AおよびBサブバンクのペアによって形成される)と共に、図1の列デコーダ103〜103および行デコーダ113〜113に対応する列デコーダ703〜703および行デコーダ713〜713を有するが、バンクは、異なる幅および/または深さ寸法を有してもよく、また列および行デコーダは、異なる寸法のバンクを収容するのに対応して修正してもよい。また、信号経路709〜709、711〜711、715〜715、717〜717および719〜719は、図1の信号経路109〜109、111〜111、115〜115、117〜117および119〜119に対応するが、かかる信号経路は、異なるバンク寸法を収容するために、必要に応じて、異なる数の信号線を含んでもよい。さらに、メモリ装置100と同様に、メモリ装置700は、説明のために、DRAM装置であると仮定されるが、しかし異なる記憶アレイに向けられた順次アクセスにタイミング制約を課する方法でアドレス指定および/またはデータ経路資源を共有する多数の記憶アレイを有する任意のタイプのメモリ装置であってもよい。また、メモリ装置700は、代替実施形態では、異なる数のバンク、バンク当たり異なる数のサブバンク、および/またはデコーダ共有グループ当たり異なる数のサブバンクを有してもよい。
図23を見てみると、行アクティブパイプライン731A、列アクセスパイプライン731Bおよびプリチャージパイプライン731Cが、要求経路730を介して要求インタフェース701で受信された行アクティブ要求、列アクセス要求およびプリチャージ要求の例示的なシーケンスを示す。最初に行アクティブパイプライン731Aを参照すると、メモリ装置700の偶数および奇数バンクに交互に向けられた行アクティブ要求のペアが、行アクティブ要求733および735で始まって、各tRR間隔に受信される。要求インタフェース701は、メモリ装置700の対応するバンクにおいて行アクティブ動作を開始することによって、行アクティブ要求の各ペアに応答する。
行アクティブ要求733および735の受信後の所定時間に、4つのマルチアドレスマイクロスレッド列アクセス要求737、739、741および743のシーケンスが受信されるが、列アクセス要求の各ペアは、それぞれのtCC間隔に受信され、また所与のtCC間隔内に受信された各個別列アクセス要求は、行アクティブ要求733および755のそれぞれの1つで指定されたバンクのためのオープンページに向けられる。例えば、図22および23を参照すると、列アクセス要求737は、バンクB0のオープンページ(行アクティブ要求733に応じて開かれた)に向けられ、列アドレス「a」また「c」においてオープンページのアクセスを指定する。列アクセス要求737と同じtCC間隔に受信された列アクセス要求739は、バンクB1のオープンページ(行アクティブ要求735に応じて開かれた)に向けられ、列アドレス「e」および「g」においてオープンページのアクセスを指定する。列アクセス要求741および743は、第2のtCC間隔に受信されるが、列アクセス要求741は、バンクB0のオープンページの列「b」および「d」に向けられ、列アクセス要求743は、バンクB1のオープンページの列「f」および「h」に向けられる。オープンページは、プリチャージ要求745および747で要求されるプリチャージ動作で閉じられる。図示の特定の実施形態において、各要求間隔は1ナノ秒(すなわち、要求は、1Gb/sで経路730の個別信号線を通じて転送される)であり、その結果、8ナノ秒のtRR制約およびまた4ナノ秒のtCC制約が仮定される。また、tRC制約は40ナノ秒と仮定されるので、要求733および735で指定された行に向けられたアクティブ要求は、40ナノ秒の間隔が経過するまでは再び発行されない。他の要求転送速度を用いてもよく、また代替実施形態では、異なるtRR、tCCおよび/またはtRC制約を適用してもよい。
要求デコーダは、しかるべき列デコーダへ信号を発行することによって、着信列アクセス要求737、739、741および743に応答して、アクセス動作(例えば、読み出しまたは書き込み動作)を実行し、各列アクセスに対応するデータが、それぞれの部分tCC間隔(tCCp)にわたって、DQリンクDQ[31:0]を介して転送される。より具体的には、詳細図738に示すように、各tCCエンベロープは、空間的および時間的に細分されて、列アクセス要求737の列「a」に対応するデータ(すなわち、データが、列「a」に書き込まれるかまたは列「a」から読み出される)が、736で始まるtCCp間隔にわたって、DQリンクの第1の部分DQ[31:16]を介して転送され、また列アクセス要求737の列「c」に対応するデータが、DQリンクの第2の部分DQ[15:0]を介して転送されるようにする。同様に、次のtCCp間隔中に、列アクセス要求739の列「e」および「g」に対応するデータが、DQリンクDQ[31:16]およびDQ[15:0]を介してそれぞれ転送される。したがって、736で始まるtCCの間隔にわたって、4つの異なるマイクロスレッド列アクセストランザクションに対応するデータ転送が実行される。図示の例示的な実施形態において、データは、2Gb/sでDQリンクのそれぞれを通じて転送され、その結果、リンク当たり4ビットが、各2ナノ秒のtCCp間隔にわたって転送される。結果として、8バイトの列トランザクション粒度が、別の状況では32バイトのtCCエンベロープを有する装置において達成される。Ce/Cgデータ転送に続くtCC間隔中に、4つの追加データ転送が、要求741および743で指定されたマイクロスレッド列アクセス要求に応じて、実行される。すなわち、第1のtCCp間隔中に、列アクセス要求741の列「b」および「d」に対応するデータが、DQリンクDQ[31:16]およびDQ[15:0]を介してそれぞれ転送され、次のtCCp間隔中に、列アクセス要求743の列「f」および「h」に対応するデータが、DQリンクDQ[31:16]およびDQ[15:0]を介してそれぞれ転送される。したがって、736で始まるtRR間隔にわたって転送されるデータの総量は64バイトであり、全tRRエンベロープの一半は、行アクティブ要求733および735に応じてアクティブされる行のそれぞれのためのデータ転送に割り当てられる。すなわち、64バイトのtRRエンベロープは、要求733および735に応じてアクティブされた行の間で時間的に細分され、32バイトの行処理粒度を達成する。
図23のメモリ装置内の列アドレスを指定するために必要なビット数次第で、19ビット要求サイズ(すなわち、要求経路730の幅によって確立された)は、2つの完全な列アドレスを搬送するのに不十分な可能性がある。一実施形態において、この状況は、メモリ装置700内にオフセット値のセットを格納すること、および予め格納されたオフセット値の1つを選択するために、着信マルチアドレス列アクセス要求内にオフセット選択値を含むことによって、克服される。次に、選択されたオフセット値は、第2の列アドレスとして直接用いてもよいし、または完全に指定された列アドレスと組み合わせて、相対的な列アドレスを形成してもよい。例えば、740に示す例示的なフォーマットにおいて、列アクセス要求737には、列アクセスのタイプ(例えば、読み出し、書き込み、マスク書き込み等)を指定する動作指示子「Col Cmd」と、列アクセスが向けられるバンクを指定するバンクアドレス「Bank Addr」と、第1の列アドレス(例えば、要求737における列「a」)を指定する完全に指定された列アドレス「Col Addr1」と、完全に指定された列アドレスと合計されて(さもなければ算術的または論理的に組み合わされて)第2の列アドレスを生成する予め格納されたオフセット値を指定するオフセット選択値「OSEL」と、が含まれる。すなわち、742で示すように、オフセット選択値をマルチプレクサ744の制御入力部に適用して、加算器746において列アドレスCaと合計されるnオフセット値Coff0〜Coff(n−1)の1つを選択し、それによって、第2の列アドレスCcを生成してもよい。
図24は、列アクセス要求の一部として、要求経路730の線BA[2:0]およびA[10:0]を介して提供されるアドレス情報のより詳細な例を示す。BA[2:0]線は、8つのバンクの1つを指定する3ビットのバンクアドレスを搬送し、一方で、アドレス線A9およびA7〜A2は、完全に指定された7ビットの列アドレス「Col Addr1」を搬送する。アドレス線A1およびA0は、完全に指定された列アドレスに加えられる4つの列アドレスCoff0〜Coff3の1つを選択するために適用される2ビットのオフセット選択値を搬送する。結果として得られる相対的な列アドレスが、列アクセス要求で指定される第2の列アドレス「Col Addr2」を構成する。アドレス線A8で搬送される信号は、通常のプリチャージかまたは自動プリチャージを実行すべきかどうか(例えば、自動プリチャージは、指定された列アクセス動作の終結時に行なわれる)を示し、またアドレス線A10で搬送される信号は、取って置かれる。代替実施形態では、要求経路のバンクアドレス線およびアドレス線または他の線において異なる信号符号化を用いてもよい。また、より多数または少数の列オフセットを格納して、列オフセット値のより広範な選択を可能にしてもよい。例えば、ビットA10を用いてオフセット選択値の最上位ビットを搬送し、それによって、8つの列オフセット値の1つの選択を可能にしてもよい。
図25は、図22のメモリ装置700へ発行されるロードモードレジスタコマンドと共に提供可能な例示的な構成情報を示す。ロードモードレジスタコマンドは、要求間隔中に、例えば、要求経路のCS、RAS、CASおよびWE線を駆動することによって指定してもよい。図示のように、線BA[2:0]で搬送される信号は、実行される動作の性質を示すが、「000」および「001」符号は、ビットA[10:0](すなわち、線A[10:0]で搬送される信号)が、(例えば、装置出力待ち時間、バースト長および/または他の装置動作特性をプログラムするために)装置モードレジスタまたは拡張モードレジスタにそれぞれロードされるべきことを示し、符号「010〜110」は、取って置かれるかまたは他の機能のために用いられ、符号「111」は、ビットA[10:0]が、マイクロスレッドモードレジスタ(すなわちuModeレジスタ)にロードされるべきことを示す。マイクロスレッドモードレジスタへのロードにおいて、ビットA9およびA7〜A2は、マイクロスレッドモードレジスタの4つの列オフセットフィールドの1つにロードされる列オフセット値を形成し、ビットA1およびA0は、4つの列オフセットフィールドCoff0〜Coff3のどれがロードされるべきかを示す。ビットA8およびA10は、次のモードのいずれかを指定するために、4つの値(00、01、10、11)の1つに符号化される。すなわち、それらのモードは、メモリ装置内の単一スレッドモード(ST)と、各マイクロスレッド列アクセス要求において単一列アドレスが提供されて、tCCエンベロープの2方向分割を可能にし、かつ各tRR間隔のマイクロスレッド列アクセスが、2つの異なるバンクに向けられた(例えば、図7〜9に関連して説明したようなマイクロスレディングを可能にするために)2×2マイクロスレッドモード(MT2×2)と、各マイクロスレッド列アクセス要求において2つの列アドレスが提供されて、tCCエンベロープの4方向分割を可能にし、かつ各tRR間隔のマイクロスレッド列アクセスが、2つの異なるバンク(例えば、図23に関連して説明したような)に向けられた4×2マイクロスレッドモード(MT4×2)と、4つの行アクティブ要求が、tRR間隔ごとに受信されて、4つの二重アドレス列アクセス要求のそれぞれを異なるバンクへ向けることができるようにし、それによって、各tCC間隔の4方向分割を達成し、かつ各tRR間隔に4つの異なるバンクにアクセスできるようにする(例えば、図17に関連して説明したように)4×4マイクロスレッドモード(MT4×4)とである。
図26および27は、メモリ装置750における4×4マイクロスレッドメモリ動作を示すが、このメモリ装置750は、図22および23に関連して説明した、従来のデータ経路とインタフェースするデータ経路インタフェース705Aおよび705Bを有し、かつ第4のバンクアドレスビットを受信するために追加バンクアドレス入力が行なわれることを除いて要求インタフェース701とほぼ同様の要求インタフェース751を有する。この構成によって、メモリ装置の4象限(Q0〜Q3)のそれぞれにおけるバンクを指定する行アクティブ要求のシーケンスが、単一tRR間隔内に受信され、それによって、4つの二重アドレス列アクセス要求のそれぞれを、4象限のそれぞれの1つに向けることができるようにしてもよい。一意のバンク、行および列アドレスを、各象限のためのアドレスデコーダ(すなわち、列デコーダ703および行デコーダ713)に送付可能なので、各象限における記憶アレイは、サブバンクからバンクに効果的に転換され、それによって、図26に示すようなバンクB0〜B15を有する16のバンクアーキテクチャがもたらされる。上述の他のメモリ装置実施形態におけるように、メモリ装置750は、より多数または少数の記憶アレイを、それに対応してより多数または少数のバンクをもたらす代替実施形態では、有してもよい。また、16のバンクのいずれにも、任意の数の構成サブバンクを含んでもよい。
図27を参照すると、行アクティブパイプライン755Aは、図23に関連して説明した実施形態におけるよりも密にロードされて、メモリ装置750の4象限のそれぞれに関係するバンクに向けられた行アクティブ要求763、765、767および769を、単一tRR間隔に送付する。すなわち、tRR間隔は、4つのtRRp間隔に細分され、そのそれぞれにおいて、行アクティブ要求が受信される。図26および27に示す特定の例において、行「w」、「y」、「x」および「z」は、バンクB0、B1、B8およびB9において次々にアクティブされるが、行は、続くトランザクションまたは代替実施形態では、4象限それぞれにおいて異なる順序でアクティブしてもよい。
列アクセスパイプライン755Bを参照すると、第1の行アクティブ要求763が受信された後の所定時間に、二重アドレスマイクロスレッド列アクセス要求771、773のペアが、第1のtCC間隔に相次いで受信される。第1の列アクセス要求771は、第1の行アクティブ要求763と同じバンク(B0)へ向けられ、連続的tCC間隔に相次いでアクセスされる列位置「a」および「e」のペア(例えば、図23〜25に関連して述べたように、完全に指定された列アドレスおよびオフセット選択値)を指定する。第2の列アクセス要求773は、同様に、第2の行アクティブ要求765と同じバンク(B1)へ向けられ、連続的tCC間隔に相次いでアクセスされる列位置「c」および「g」のペアを指定する。列アクセス要求771の第1の列アドレス「a」に対応する列データが、所定時間後に、770で始まるtCCp間隔にわたって、バンクB0〜B7のためのデータ経路インタフェース705Aに結合されたDQリンクのサブセットDQ[31:16]を介して、転送される。列アクセス要求773の第1の列アドレス「e」に対応する列データが、同じDQリンクサブセットDQ[31:16]を介して、772で始まるtCCp間隔にわたって(すなわち、770で始まるtCC間隔の後半にわたって)、転送される。続くtCC間隔中に、オープンページからの転送が、それぞれのtCCp間隔に繰り返されて、B0の列「e」データおよびB1の列「g」データを転送する。したがって、下位バンクB0〜B7に向けられた2つの列アクセス要求のためのデータは、それぞれのtCCp間隔に、DQリンクのサブセットを通じて、交互(すなわち、B0−Ca、B1−Cc、B0−Ce、B1−Cg)に転送される。上位バンクB8〜B15に向けられた2つの列アクセス要求775、777のためのデータは、同様に、それぞれのtCCp間隔に、DQリンクサブセットDQ[15:0]を通じて、交互(すなわち、B8−Cb、B9−Cd、B8−Cf、B9−Ch)に転送される。全体として、列アクセス要求775および777に応じた全データ転送シーケンスは、772で始まるtRR間隔にわたって生じる。図27の実施形態において、列アクセス要求777および775に応じて転送されるデータは、列アクセス要求771、773に応じて転送されるデータに対してtCC間隔だけ遅延されるが、それは、要求771および773後の一tCC間隔に、列アクセス要求777および775が受信されるからである。代替実施形態では、前に受信された列アクセス要求ペアに応じて転送されるデータは、バッファされ、その後、後で受信された列アクセス要求ペアに応じて転送されるデータと同じtRR間隔に出力してもよい。いずれの場合にも、各32バイトのtCCエンベロープが、空間的および時間的に半分にされて、4つのマイクロスレッド列アクセストランザクションを収容するので、8バイトの列トランザクション粒度が達成される。また、各64バイトのtRRエンベロープが、4つの異なるバンクへのまたはそこからのデータ転送を可能にするように細分されるので、16バイトの行トランザクション粒度が達成される。
やはり図26および27を参照すると、図23〜25に関連して述べた相対アドレス指定方式を用いて、列アクセス要求771、773、775、777のそれぞれにおいて第2の列アドレスを伝達してもよい。また、追加バンクアドレスビットが、信号経路756の線BA[3]を介して提供されるので、図25のバンクアドレスフィールドに示す動作符号化は、異なってもよく、かつ/または追加もしくは異なる動作を含んでもよい。さらに、プリチャージ動作を指定するための帯域幅が、より密にロードされた行要求パイプライン755Aによって消費されるので、プリチャージ動作は、図24に示す自動プリチャージオプションによって指定してもよい(すなわちA8=1)。かかるプリチャージ動作は、755Cのプリチャージパイプラインにおいて網掛けされた要求間隔に示されて、かかる動作がいつ実行されるかの例を提供するが、しかしかかるプリチャージ動作は、明示的なプリチャージ要求においてではなく、対応する列アクセス要求771、773、775および777において指定される。
図28は、例示的なタイミング信号構成を示すが、この構成を用いて、図26および27の実施形態において用いられる第4のバンクアドレスビットを伝達し、それによって、追加BA信号リンクを不要にし、かつ図23の従来の信号経路730を用いた4×4マイクロスレッド動作を可能にしてもよい。図示の特定の例において、要求経路を通じた要求転送のタイミングを取るためにフル周波数のタイミング信号790(すなわちクロック信号またはストローブ信号)を用いる代わりに、1つおきの要求間隔の最初に交互に立ち上がりおよび立ち下がりエッジを示す換算周波数タイミング信号792を用いて、最下位バンクアドレスビットBA[0]を伝達し、一方で、BA[2:0]信号線を用いて、最上位バンクアドレスビットBA[3:1]を伝達する。所与のtRR間隔にアクセスされる第1の象限が偶数象限(Q0またはQ2)である場合には、対応する行アクティブ要求(または列アクセス要求)と同期してメモリ装置に到着するタイミング信号792は、立ち上がりエッジを伴って出力されて、BA[0]=「0」を伝達する。アクセスされる第1の象限が奇数象限(Q1またはQ3)である場合には、対応する行アクティブ要求と同期してメモリ装置に到着するタイミング信号は、立ち下がりエッジを伴って出力されて、BA[0]=「1」を伝達する。図26および27の実施形態において、バンクアドレスの最下位ビットは、各連続的行アクティブ要求(または列アクセス要求)でトグルし、その結果、所与のtRR間隔内で第2の行アクティブ要求(または列アクセス要求)に対応するタイミング信号のエッジは、しかるべき奇数または偶数バンクセットを選択する。すなわち、反対のバンクセットが、第1の行アクティブ要求に対応するタイミング信号のエッジによって選択される。図28に示す特定の例において、行アクティブ要求763、765、767および769を含む行要求パイプライン755Aの一部が、タイミング信号792とエッジが整列して示されている。タイミング信号792の最初の立ち上がりエッジ遷移は、BA[0]が0であることを示して、行アクティブ要求763で(すなわち、要求経路の線BA[2:0]を介して)アドレス値BA[3:1]=000を送付することにより、バンクB0が、行アクティブ要求763によって指定されるようにする。タイミング信号の続く立ち下がりエッジ遷移は、行アクティブ要求765の到着と一致し、BA[0]=1であることを示す。したがって、行アクティブ要求765でアドレス値BA[3:1]=000を送付することによって、バンクB1が指定される。バンクB8およびB9は、タイミング信号792の立ち上がりエッジ遷移および立ち下がりエッジ遷移にそれぞれ関連してBA[3:1]=100を指定することによって、行アクティブ要求767および769において同様に指定される。位相固定ループ794などのクロック回復回路を用いて、タイミング信号792の遷移と位相整列されているが、しかし例えば信号790の周波数に対応する周波数を有する内部タイミング信号795を生成してもよい。次に、内部タイミング信号795(それ自体クロック信号またはストローブ信号であってもよい)を用いて、要求経路で伝達される信号のサンプリングを制御し、各要求間隔に新しい要求を捕捉するようにしてもよい。
図29は、メモリコントローラ801および少なくとも1つのマイクロスレッドメモリ装置803を含むメモリシステム800の実施形態を示す。マイクロスレッドメモリ装置803は、上記実施形態のいずれかによって実現してもよいが、当面の目的のために、8つの記憶バンクのそれぞれのセットにアクセスするための少なくとも2つのデータ経路インタフェースDQAおよびDQB(すなわち、DQAは、バンクB0〜B7へおよびそこからデータを転送するために用いられ、DQBは、バンクB8〜B15へまたはそこからデータを転送するために用いられる)と、行および列要求を受信するための、および要求された行および列動作の実行を制御するための要求インタフェースRQと、を有すると仮定される。記憶バンク自体は、メモリ装置100、530、700および750に関連して上記したように、象限Q0〜Q3に追加的に組織されるが、他の記憶バンク組織を用いてもよい。DQAおよびDQBデータ経路インタフェースは、データ経路802内のDQリンクのそれぞれのサブセット802aおよび802bを介してメモリコントローラに結合され、また要求インタフェースは、要求経路804を介してメモリコントローラに結合される。図示の実施形態において、要求経路804は、ポイントツーポイントリンクセットによって形成され、一方で、データ経路802は、マルチドロップリンクによって形成される(すなわち、1つまたは複数の他のメモリ装置のデータ経路インタフェースを、データ経路またはそのDQリンクサブセットに結合してもよい)。代替実施形態では、要求経路804は、1つまたは複数の追加メモリ装置(図示せず)の要求インタフェースに結合されたマルチドロップ経路であってもよく、かつ/またはデータ経路802は、メモリコントローラ801およびメモリ装置803間のポイントツーポイントリンクによって形成してもよい。また、メモリ装置803は、メモリモジュールに配置された、かつポイントツーポイントリンクセット(またはマルチドロップ経路)を介してバッファリング回路に結合された多重メモリ装置の1つであってもよい。バッファリング回路は、メモリモジュールにおけるメモリ装置のいずれかに向けられた要求および/またはデータを受信し、それらの要求および/またはデータを、ポイントツーポイントリンクの対応するセットを介して、対象メモリ装置へ再送信する。
メモリコントローラ801には、読み出しトランザクションキュー811(RTQ)、書き込みトランザクションキュー815(WTQ)、読み出しデータバッファ819、キュー制御論理部817およびホストインタフェース810が含まれる。初期化または再構成動作中に、システム構成要求がメモリコントローラ801に送付され、今度はメモリコントローラ801が、要求経路804、データ経路802、および/またはメモリコントローラ801とメモリ装置803との間の1つもしくは複数の他の経路(例えば、サイドバンド経路(図示せず))を介して、例えばプログラミング情報を発行することにより、指定されたモードで動作するようにメモリ装置803(存在するならば、他のメモリ装置を含む)をプログラムする。例えば、一実施形態において、メモリコントローラ801または他の装置は、メモリ装置803に関連する構成メモリを読み出して(例えば、シリアルプレゼンスディテクト(SPD)等)、メモリ装置803の動作特性、制約およびモードを決定し(例えば、メモリ装置803およびそこに取り付けられた1つまたは複数の他の同様の装置を有するデュアルインラインメモリモジュール(DIMM)等の場合には、メモリ装置803のためのtCC、tRRおよび/またはtRC制約は、構成メモリ内に記録してもよい)、次に、かかる情報をプロセッサまたは他のホストに送り返してもよい。プロセッサは、かかる情報を処理し(例えば基本入出力サービス(BIOS)コード実行の一部として)、次に、メモリコントローラ801にメモリ装置803をプログラムするように命じることを始めとして、所望のメモリ構成を確立するようにメモリコントローラ801をプログラムしてもよい。例えば、メモリコントローラ801に命令して、図25に関連して説明したようなマイクロスレッドモードレジスタ設定コマンドを発行させ、単一スレッド動作モードまたは上記のマイクロスレッド動作モード(例えば、上記のMT2×2、MT4×2およびMT4×4動作モード)のいずれかのためにメモリ装置803をプログラムしてもよい。また、メモリコントローラ801には、ホストインタフェース810を介して受信される命令に応じてプログラムされる1つまたは複数の内部構成レジスタを含み、単一スレッド制御モードまたはマイクロスレッド制御モードを確立してもよい。
メモリ装置803およびメモリコントローラ801が構成(または動作モードが、ランタイム動作中に切り替え可能な場合には再構成)された後で、汎用プロセッサ、グラフィックスプロセッサ、ネットワークプロセッサおよび/または直接メモリアクセス(DMA)コントローラなどの1つまたは複数のホスト装置は、メモリ読み出し要求、メモリ書き込み要求、マスク書き込み要求、読み出し/修正/書き込み要求等を始めとするメモリアクセス要求を、メモリコントローラ801に発行してもよい。着信メモリアクセス要求は、キュー制御論理部817で受信され、今度はキュー制御論理部817が、要求が読み出しまたは書き込みアクセスを指定しているかどうかに従って、読み出しトランザクションキュー811または書き込みトランザクションキュー815に要求を入れる。
読み出しトランザクションキュー(RTQ)811には、メモリ装置803内の記憶バンクの4象限に対応する読み出しキューの4つのセット、Qr0/2/4/6、Qr1/3/5/7、Qr8/10/12/14およびQr9/11/13/15が含まれる。読み出し要求がキュー制御論理部817内で受信されると、キュー制御論理部817は、要求に含まれるアドレス情報に基づいて、要求が向けられたメモリ装置および記憶バンクを決定して、対応する読み出しキューに要求を格納する。例えば、メモリ装置803のバンク0に向けられた要求は、読み出しキューQr0に格納され、バンク8に向けられた要求は、読み出しキューQr8に格納される等である。このようにして、読み出し要求を読み出しキュー内に組織することによって、メモリコントローラ801は、メモリ装置803内でマイクロスレッドメモリアクセストランザクションをサポートする順序で、行アクティブおよび列アクセス要求を発行することができる。例えば、読み出しキューの4つのセットのそれぞれが、少なくとも1つのメモリ読み出し要求を含むと仮定すると、キュー制御論理部817は、それぞれのイネーブル信号(すなわち、EN1、EN2、EN3、EN4であるが、その1つだけを図29に示す)を第一段階マルチプレクサ823に発行して、所与のtRR間隔中に、各セットからの、4つの読み出しキューの1つの選択を制御してもよい。キュー制御論理部817は、選択イネーブル信号(ENp)を第二段階マルチプレクサ825にさらに発行して、4つの第一段階マルチプレクサ823の一つを選択し、各tRRp間隔中かまたは列アクセス要求の場合には各tCCp間隔中に、選択された読み出しキューから読み出し要求を出力する。すなわち、キュー制御論理部817は、各tRRpまたはtCCp間隔の終わりに、ある状態から別の状態へENp信号を遷移させて、第一段階マルチプレクサ823の別のマルチプレクサを選択し、それによって、ラウンドロビン方式で、メモリ装置の4象限のそれぞれに要求を向けることができる。第一段階マルチプレクサ825は、読み出し/書き込みマルチプレクサ827に要求を出力し、このマルチプレクサ827は、キュー制御論理部817からの制御信号(R/W)に応じて、読み出しトランザクションキュー811または書き込みトランザクションキュー815から要求経路804へ、要求を送る。マイクロスレッド読み出し要求に応じてメモリ装置803から出力された読み出しデータは、データ経路802を介してメモリコントローラ801に送付され、読み出しデータバッファ819にバッファされる。キュー制御論理部817は、読み出しデータを対応するホスト読み出し要求と関連付けて、読み出しデータを、ホストインタフェースを介して、要求しているホスト装置に出力する。
書き込みトランザクションキュー815には、書き込みキューの4つのセット(すなわち、Qw0/2/4/6、Qw1/3/5/7、Qw8/10/12/14およびQw9/11/13/15)、第一段階マルチプレクサ833および第二段階マルチプレクサ835が含まれるが、これらのうちのそれぞれは、書き込みキューが書き込み要求に加えて書き込みデータを格納および出力する以外は、読み出しトランザクションキュー811におけるそれらの対応物と概ね同じ方法で動作する。したがって、偶数tRRpまたはtCCp間隔に、書き込み要求をメモリ装置803の4象限のそれぞれに発行し、そこにおいて、マイクロスレッド書き込みトランザクションを開始してもよい。
コンピュータ可読媒体における実施形態
本明細書で開示する様々な回路(例えばメモリ装置またはその構成回路)は、コンピュータ支援設計ツールを用いて描くことが可能であり、またそれらの動作、レジスタ転送、論理構成要素、トランジスタ、レイアウトジオメトリおよび/または他の特性の点において、様々なコンピュータ可読媒体に具体化されるデータおよび/または命令として表現し(またはそれらで代表させ)てもよいことに、留意されたい。かかる回路表現を実現可能なファイルおよび他のオブジェクトのフォーマットには、限定するわけではないが、C、VerilogおよびHLDLなどの動作記述言語をサポートするフォーマット、RTLのようなレジスタレベル記述言語をサポートするフォーマット、およびGDSII、GDSIII、GDSIV、CIF、MEBESなどの幾何記述言語をサポートするフォーマット、ならびに任意の他の適切なフォーマットおよび言語が含まれる。かかるフォーマットされたデータおよび/または命令を具体化できるコンピュータ可読媒体には、限定するわけではないが、様々な形態(例えば光、磁気または半導体記憶媒体)における不揮発性記憶媒体、ならびに無線、光もしくは有線信号媒体またはそれらの任意の組み合わせを通して、かかるフォーマットされたデータおよび/または命令を転送するために利用可能な搬送波が含まれる。搬送波による、かかるフォーマットされたデータおよび/または命令の転送の例には、限定するわけではないが、1つまたは複数のデータ転送プロトコル(例えばHTTP、FTP、SMTP等)を介し、インターネットおよび/または他のコンピュータネットワークを通じた転送(アップロード、ダウンロード、電子メール等)が含まれる。
上記の回路のかかるデータおよび/または命令ベースの表現は、1つまたは複数のコンピュータ可読媒体を介してコンピュータシステム内に受信されたときに、限定するわけではないが、ネットリスト生成プログラム、プレースアンドルート(place and route)プログラム等を始めとする1つまたは複数の他のコンピュータプログラムの実行と関連して、コンピュータシステム内の処理エンティティ(例えば1つまたは複数のプロセッサ)によって処理され、かかる回路の物理的表示の表現またはイメージを生成してもよい。その後、かかる表現またはイメージは、例えば、装置製造プロセスで回路の様々な構成要素を形成するために用いられる1つまたは複数のマスクの生成を可能にすることによって、装置製造で用いてもよい。
この詳細な説明で提供されるセクション見出しは、単に参照の利便性のためであって、決して、かかるセクションの範囲または限界を定義、限定、解釈または説明するものではない。また本発明を、その特定の実施形態に関連して説明したが、本発明のより広い趣旨および範囲から逸脱せずに、様々な修正および変更を本発明になすことが可能であることは、明らかであろう。したがって、明細書および図面は、限定的な意味ではなく例証的な意味で考慮されるべきである。
図面の簡単な説明
列トランザクション粒度の低減を可能にするための、データ転送間隔およびデータ転送経路の分割を示す。 マイクロスレッド列動作を実行可能なメモリ装置の実施形態を示す。 図2のメモリ装置内で使用可能なサブバンク、列デコーダおよびデータインタフェースのより詳細な実施形態を示す。 図2のメモリ装置100内における単一スレッド動作モードを示す。 単一スレッドおよびマイクロスレッドメモリトランザクションを可能にするための、図2のメモリ装置内で使用可能な要求インタフェースの実施形態を示す。 図2のメモリ装置が単一スレッドモードで動作している場合の、図5の要求デコーダによる行および列ストローブ信号アサートの例示的なタイミングを示す。 メモリ装置と、マイクロスレッドモードで動作する場合にメモリ装置で実行可能なマイクロスレッドメモリトランザクションの例示的なシーケンスとを示す。 メモリ装置と、マイクロスレッドモードで動作する場合にメモリ装置で実行可能なマイクロスレッドメモリトランザクションの例示的なシーケンスとを示す。 図5の要求デコーダによるレジスタストローブ信号アサートの例示的なタイミングを示す。 図2のメモリ装置の代替実施形態において実行可能である例示的なリンク分散マイクロスレッドメモリトランザクションを示す。 他のメモリ装置実施形態において利用可能な代替リンク分散データ転送モードを示す。 図8および10に示す時間差またはリンク分散データ転送をサポートするために使用可能な例示的データ経路インタフェースを示す。 図8および10に示す時間差またはリンク分散データ転送をサポートするために使用可能な例示的データ経路インタフェースを示す。 メモリ装置と、代替マイクロスレッドモードで動作する場合にメモリ装置で実行可能なマイクロスレッドメモリトランザクションの例示的なシーケンスとを示す。 メモリ装置と、代替マイクロスレッドモードで動作する場合にメモリ装置で実行可能なマイクロスレッドメモリトランザクションの例示的なシーケンスとを示す。 図13および14に関連して説明したマイクロスレッドメモリトランザクションを可能にするために、図2のメモリ装置100内で使用可能な要求インタフェースの実施形態を示す。 メモリ装置と、単一tCC間隔内にメモリ装置の4つの記憶バンク象限のそれぞれにおけるサブバンクにアクセスするために別個の行および列アドレスが用いられるマイクロスレッドメモリ動作の例示的なシーケンスとを示す。 メモリ装置と、単一tCC間隔内にメモリ装置の4つの記憶バンク象限のそれぞれにおけるサブバンクにアクセスするために別個の行および列アドレスが用いられるマイクロスレッドメモリ動作の例示的なシーケンスとを示す。 図16のメモリ装置内に含むことができる要求インタフェースの実施形態を示す。 図18の要求デコーダによる制御信号アサートの例示的なタイミングを示す。 例示的な行要求フォーマットを示す。 例示的な行要求フォーマットを示す。 例示的な列要求フォーマットを示す。 例示的な列要求フォーマットを示す。 従来の要求およびデータ経路とインタフェースする要求インタフェースおよびデータ経路インタフェースを有するメモリ装置と、メモリ装置におけるマイクロスレッドメモリ動作の例示的なシーケンスとを示す。 従来の要求およびデータ経路とインタフェースする要求インタフェースおよびデータ経路インタフェースを有するメモリ装置と、メモリ装置におけるマイクロスレッドメモリ動作の例示的なシーケンスとを示す。 図23に示す要求経路を介して提供されるアドレス情報のより詳細な例を示す。 図22のメモリ装置に発行されるロードモードレジスタコマンドと共に提供可能な例示的な構成情報を示す。 図22および23に関連して説明したデータ経路インタフェースを有するメモリ装置と、メモリ装置における4×4マイクロスレッドメモリ動作の例示的なシーケンスとを示す。 図22および23に関連して説明したデータ経路インタフェースを有するメモリ装置と、メモリ装置における4×4マイクロスレッドメモリ動作の例示的なシーケンスとを示す。 第4のバンクアドレスビットを図26のメモリ装置に伝達するために利用可能である例示的なタイミング信号構成を示す。 メモリコントローラおよび少なくとも1つのマイクロスレッドメモリ装置を含むメモリシステムの実施形態を示す。

Claims (20)

  1. 少なくとも1つの行デコーダと、
    複数の列デコーダと、
    一意の行デコーダと列デコーダの組合せによってそれぞれがサービスされる複数の記憶アレイグループ(Q0−Q3)であって、それぞれの記憶アレイグループが複数の記憶アレイを含む、複数の記憶アレイグループ(Q0−Q3)と、
    異なるアレイグループに設けられた前記記憶アレイの第1および第2の記憶アレイにそれぞれ向けられた第1および第2のメモリアクセスコマンドを受信する要求インタフェースと、
    前記複数の記憶アレイから外部信号経路にデータを出力するデータ経路回路と
    を含み、
    最小数のクロックサイクルを備える最小時間間隔が、前記記憶アレイのうち選択された1つの記憶アレイにおける記憶セルの開いている行への連続的アクセス間で経過しなければならず、
    前記データ経路回路は、前記記憶アレイの前記第1の記憶アレイにおける開いている第1の行、および、前記記憶アレイの前記第2の記憶アレイにおける同時に開いている第2の行のために、第1の時間間隔の個別のサブセット中に、前記第1のメモリアクセスコマンドに応答して前記記憶アレイの前記第1の記憶アレイからの第1のデータを出力し、かつ、前記第2のメモリアクセスコマンドに応答して前記記憶アレイの前記第2の記憶アレイからの第2のデータを出力し、
    前記第1の時間間隔は、前記最小時間間隔の2倍より小さく、
    バンクが、異なる記憶アレイグループに設けられたメモリセルの少なくとも2つのサブバンクを含み、前記要求インタフェースが、選択されたバンクへの単一のアクセスコマンドと関連して2つの列アドレスを受信し、前記2つの列アドレスのそれぞれを、前記選択されたバンクに関連する各サブバンクに導き、前記各サブバンクから応答して検索されるデータは、前記外部信号経路の相互排他的な信号線に出力される、メモリ装置。
  2. 1つまたは複数のビット線が、前記記憶アレイの前記第1の記憶アレイを前記外部信号経路に結合し、
    1つまたは複数のビット線が、前記記憶アレイの前記第2の記憶アレイを前記外部信号経路に結合し、
    前記メモリ装置がさらに、前記記憶アレイの前記第2の記憶アレイを前記外部信号経路に動作可能に結合するバッファであって、前記第2のデータの出力を遅らせるバッファを含む、請求項1に記載のメモリ装置。
  3. 前記第1のデータおよび前記第2のデータが、前記記憶アレイの前記第1および第2の記憶アレイのそれぞれから検索され、前記記憶アレイの前記第1の記憶アレイからの前記第1のデータの検索および前記記憶アレイの前記第2の記憶アレイからの前記第2のデータの検索が、少なくとも部分的に時間的に重なり合い、前記バッファは、前記外部信号経路への前記第2のデータの出力を、前記外部信号経路への前記第1のデータの出力から相互排他的な時間まで遅らせる、請求項2に記載のメモリ装置。
  4. 前記外部信号経路は、複数の構成線を備え、前記第1のデータおよび前記第2のデータはそれぞれ、前記構成線の各サブセットの出力である、請求項3に記載のメモリ装置。
  5. 前記データ経路回路がさらに、前記第1のデータおよび前記第2のデータを前記外部信号経路へ出力するバンクマルチプレクサを含み、前記バンクマルチプレクサは、前記1つまたは複数のビット線の各セットのそれぞれを介して、前記記憶アレイの前記第1および第2の記憶アレイのそれぞれに結合され、前記バンクマルチプレクサは、相互排他的な時間において、前記記憶アレイの前記第1の記憶アレイのための前記各セットを前記外部信号経路に、かつ、前記記憶アレイの前記第2の記憶アレイための前記各セットを前記外部信号経路に結合する、請求項2に記載のメモリ装置。
  6. 各記憶アレイは、記憶セルのバンクを含み、前記第1のデータおよび前記第2のデータは、前記記憶アレイの前記第1および第2の記憶アレイのそれぞれにおける独立した行アドレスおよび独立した列アドレスと関連付けられる、請求項1に記載のメモリ装置。
  7. 前記第1のデータおよび前記第2のデータは、前記バンクの前記第1および第2のバンクのそれぞれにおける独立した行アクティブコマンドと関連付けられる、請求項6に記載のメモリ装置。
  8. 記憶アレイのそれぞれが、ダイナミック・ランダム・アクセス・メモリ・セルのアレイを含む、請求項1に記載のメモリ装置。
  9. 前記データ経路回路がさらに、前記記憶アレイの前記第1の記憶アレイおよび前記第2の記憶アレイのそれぞれのための1つまたは複数のビット線のセットを前記外部信号経路に結合する少なくとも1つのデータシリアライザを含み、前記外部信号経路は、前記各ビット線よりも高いデータレートを有する1つまたは複数の構成信号線を含む、請求項1に記載のメモリ装置。
  10. 少なくとも1つの行デコーダと、
    複数の列デコーダと、
    一意の行デコーダと列デコーダの組合せによってそれぞれがサービスされる複数の記憶アレイグループ(Q0−Q3)であって、それぞれの記憶アレイグループが複数の記憶アレイを含む、複数の記憶アレイグループ(Q0−Q3)と、
    異なるアレイグループに設けられた前記記憶アレイの第1および第2の記憶アレイにそれぞれ向けられた第1および第2のメモリアクセスコマンドを受信する要求インタフェースと、
    前記複数の記憶アレイから外部信号経路にデータを出力するデータ経路回路とを含み、
    最小数のクロックサイクルを備える最小時間間隔が、前記記憶アレイのうち選択された1つの記憶アレイにおける記憶セルの開いている行への連続的アクセス間で経過しなければならず、
    前記データ経路回路は、前記記憶アレイの前記第1の記憶アレイにおける開いている第1の行、および、前記記憶アレイの前記第2の記憶アレイにおける同時に開いている第2の行のために、第1の時間間隔の個別のサブセット中に、前記第1のメモリアクセスコマンドに応答して前記記憶アレイの前記第1の記憶アレイからの第1のデータを出力し、かつ、前記第2のメモリアクセスコマンドに応答して前記記憶アレイの前記第2の記憶アレイからの第2のデータを出力し、
    前記第1の時間間隔は、前記最小時間間隔の2倍より小さく、
    モリ装置が、前記第1の時間間隔中に、各記憶アレイから前記第1のデータと、前記第2のデータと、第3のデータと、第4のデータとを出力し、前記第1のデータおよび前記第2のデータは、時間的に多重化された態様で前記外部信号経路の構成線の第1のセットに出力され、前記第3のデータおよび前記第4のデータは、時間的に多重化された態様で前記外部信号経路の構成線の第2のセットに出力され、前記第1および第2のセットは、相互排他的であり、前記第1および第3のデータは、各記憶アレイグループにおいて第1の共通行アドレスであるが、異なる列アドレスのためにサービスされたメモリトランザクションに対応し、前記第2のデータおよび前記第4のデータは、各記憶アレイグループにおいて第2の共通行アドレスであるが、異なる列アドレスのためにサービスされたメモリトランザクションに対応し、前記第1および第2の共通行アドレスは、互いに独立している、メモリ装置。
  11. 複数の記憶アレイグループ(Q0−Q3)のそれぞれが含む複数の記憶アレイのそれぞれにおけるアドレス選択された列位置においてデータアクセスを可能にするために、前記複数の記憶アレイグループと、対応する列デコーダとを有し、最小数のクロックサイクルを備える最小時間間隔が、前記複数の記憶アレイのうちの1つにおける開いている行における列アクセス動作の開始と、前記開いている行における別の列アクセス動作の開始との間で経過しなくてはならない、メモリ装置において、
    異なるアレイグループに設けられた前記記憶アレイの第1および第2の記憶アレイにそれぞれ向けられた第1および第2のメモリアクセスコマンドであって、自由に互いに異なることができる第1および第2の列アドレスを含む第1および第2のメモリアクセスコマンドを要求インタフェースにおいて受信すること、
    前記第1の列アドレスに応答する第1の列アクセス動作において、前記列デコーダの対応する第1の列デコーダを使用して、前記記憶アレイの前記第1の記憶アレイから第1のデータを検索すること、
    前記第2の列アドレスに応答する第2の列アクセス動作において、前記列デコーダの対応する第2の列デコーダを使用して、前記記憶アレイの前記第2の記憶アレイから第2のデータを検索すること、および、
    第1の時間間隔の個別のサブセット中に、前記第1のデータおよび前記第2のデータを前記メモリ装置から外部信号経路へ出力すること、
    を含み、前記第1の時間間隔は、前記最小時間間隔の2倍より小さく、
    バンクが、異なる記憶アレイグループに設けられたメモリセルの少なくとも2つのサブバンクを含み、前記方法がさらに、選択されたバンクへの単一の列アクセスコマンドにおいて2つの列アドレスを受信することと、前記2つの列アドレスのそれぞれを、前記選択されたバンクに関連する各サブバンクに導くことと、前記外部信号経路の1つまたは複数の信号線の相互排他的なセットにおける前記各サブバンクから応答して検索されたデータを出力することとを含む、方法。
  12. 前記第1のデータおよび前記第2のデータを前記メモリ装置から出力することは、前記第1および第2のデータを、相互排他的な時間において前記外部信号経路の少なくとも1つの共通信号線に多重化することを含む、請求項11に記載の方法。
  13. 前記第1のデータおよび前記第2のデータを前記メモリ装置から出力することは、前記第1のデータおよび前記第2のデータを前記外部信号経路の相互排他的な信号線へ出力することを含む、請求項11に記載の方法。
  14. 前記第1のデータおよび前記第2のデータを前記メモリ装置から出力することは、前記第1および第2のデータを、相互排他的な時間において前記外部信号経路の少なくとも1つの共通信号線に多重化することを含む、請求項13に記載の方法。
  15. 前記第1のデータおよび前記第2のデータを前記外部信号経路へ出力するために少なくとも1つのバンクマルチプレクサを使用することをさらに含む、請求項11に記載の方法。
  16. 前記少なくとも1つのバンクマルチプレクサのそれぞれのバンクマルチプレクサが双方向性であり、前記方法が、メモリ書き込み要求の間に前記複数の記憶アレイの1つにデータをルートするために少なくとも1つのバンクマルチプレクサを使用することをさらに含む、請求項15に記載の方法。
  17. 前記複数の記憶アレイのそれぞれが、対応する行デコーダをそれぞれが有する、メモリセルのバンクを含み、前記第1および第2の列アドレスを受信することが、前記第1および第2の列アドレスのそれぞれと関連して独立した行アドレスを受信することを含む、請求項11に記載の方法。
  18. 前記各記憶アレイのための各ビット線を前記外部信号経路に結合するために、少なくとも1つのデータシリアライザを使用することをさらに含み、前記外部信号経路の構成線はそれぞれ、前記各ビット線よりも高いデータレートを有する、請求項11に記載の方法。
  19. 前記第1の時間間隔が、前記最小時間間隔と等しい、請求項1に記載のメモリ装置。
  20. 前記第1の時間間隔が、前記最小時間間隔と等しい、請求項11に記載の方法。

JP2014095678A 2004-11-29 2014-05-07 マイクロスレッドメモリ Active JP6018118B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/998,402 2004-11-29
US10/998,402 US8595459B2 (en) 2004-11-29 2004-11-29 Micro-threaded memory

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007543517A Division JP2008522340A (ja) 2004-11-29 2005-11-23 マイクロスレッドメモリ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015152586A Division JP6143814B2 (ja) 2004-11-29 2015-07-31 マイクロスレッドメモリ

Publications (2)

Publication Number Publication Date
JP2014160538A JP2014160538A (ja) 2014-09-04
JP6018118B2 true JP6018118B2 (ja) 2016-11-02

Family

ID=36177725

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2007543517A Pending JP2008522340A (ja) 2004-11-29 2005-11-23 マイクロスレッドメモリ
JP2014095678A Active JP6018118B2 (ja) 2004-11-29 2014-05-07 マイクロスレッドメモリ
JP2015152586A Active JP6143814B2 (ja) 2004-11-29 2015-07-31 マイクロスレッドメモリ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007543517A Pending JP2008522340A (ja) 2004-11-29 2005-11-23 マイクロスレッドメモリ

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015152586A Active JP6143814B2 (ja) 2004-11-29 2015-07-31 マイクロスレッドメモリ

Country Status (6)

Country Link
US (7) US8595459B2 (ja)
EP (4) EP2363859A3 (ja)
JP (3) JP2008522340A (ja)
KR (1) KR101327594B1 (ja)
CN (2) CN101095196A (ja)
WO (1) WO2006058200A2 (ja)

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060206764A1 (en) * 2005-03-11 2006-09-14 Inventec Corporation Memory reliability detection system and method
EP2036252B1 (fr) * 2006-07-03 2011-08-10 France Telecom Procede de configuration d'un terminal multi reseaux et terminal multi-reseaux associe
US7769942B2 (en) 2006-07-27 2010-08-03 Rambus, Inc. Cross-threaded memory system
KR100855586B1 (ko) * 2006-11-10 2008-09-01 삼성전자주식회사 반도체 메모리 장치 및 그의 레이아웃 방법
WO2008070814A2 (en) 2006-12-06 2008-06-12 Fusion Multisystems, Inc. (Dba Fusion-Io) Apparatus, system, and method for a scalable, composite, reconfigurable backplane
EP2509075B1 (en) 2006-12-14 2019-05-15 Rambus Inc. Multi-die memory device
GB2452733A (en) * 2007-09-12 2009-03-18 Symbian Software Ltd Managing power under operating constraints set by system components
JP5706060B2 (ja) * 2007-10-19 2015-04-22 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体記憶装置と品種展開方法
CN101868788B (zh) * 2007-11-19 2012-12-26 拉姆伯斯公司 基于周转事件的调度
US7836226B2 (en) 2007-12-06 2010-11-16 Fusion-Io, Inc. Apparatus, system, and method for coordinating storage requests in a multi-processor/multi-thread environment
US20110016278A1 (en) * 2008-03-31 2011-01-20 Frederick Ware Independent Threading of Memory Devices Disposed on Memory Modules
US20090313399A1 (en) * 2008-06-13 2009-12-17 Texas Instruments Incorporated Direct memory access channel
KR100945817B1 (ko) * 2008-09-17 2010-03-17 주식회사 하이닉스반도체 반도체 집적 회로
EP2387754A4 (en) * 2009-01-13 2013-05-01 Rambus Inc PROTOCOL WITH TIME CALIBRATION BETWEEN A MEMORY REQUEST AND A DATA TRANSMISSION
WO2010085405A1 (en) * 2009-01-22 2010-07-29 Rambus Inc. Maintenance operations in a dram
WO2010093538A1 (en) 2009-02-11 2010-08-19 Rambus Inc. Shared access memory scheme
JP5321189B2 (ja) * 2009-03-27 2013-10-23 ソニー株式会社 メモリ制御装置
US20120246380A1 (en) * 2009-10-21 2012-09-27 Avidan Akerib Neighborhood operations for parallel processing
US8649238B2 (en) 2010-04-02 2014-02-11 Samsung Electronics Co., Ltd. Semiconductor memory device and method of controlling the same
KR101673233B1 (ko) * 2010-05-11 2016-11-17 삼성전자주식회사 트랜잭션 분할 장치 및 방법
KR101719299B1 (ko) * 2010-12-17 2017-03-23 에스케이하이닉스 주식회사 비휘발성 메모리
WO2012123061A1 (en) 2011-02-17 2012-09-20 Hyperion Core Inc. Parallel memory systems
US9432298B1 (en) 2011-12-09 2016-08-30 P4tents1, LLC System, method, and computer program product for improving memory systems
JP6054017B2 (ja) * 2011-07-13 2016-12-27 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体記憶装置
WO2013015893A1 (en) 2011-07-27 2013-01-31 Rambus Inc. Memory with deferred fractional row activation
US8990490B2 (en) 2011-11-29 2015-03-24 Rambus Inc. Memory controller with reconfigurable hardware
US9251086B2 (en) 2012-01-24 2016-02-02 SanDisk Technologies, Inc. Apparatus, system, and method for managing a cache
KR101961324B1 (ko) * 2012-05-09 2019-03-22 삼성전자주식회사 메모리 장치 및 메모리 장치의 파워 관리 방법
US8762607B2 (en) * 2012-06-29 2014-06-24 Intel Corporation Mechanism for facilitating dynamic multi-mode memory packages in memory systems
US9275699B2 (en) 2012-08-17 2016-03-01 Rambus Inc. Memory with alternative command interfaces
US9117499B2 (en) 2012-10-25 2015-08-25 Elwha Llc Bipolar logic gates on MOS-based memory chips
JP6062714B2 (ja) * 2012-10-31 2017-01-18 キヤノン株式会社 メモリ制御装置、メモリ制御方法およびプログラム
US9420511B2 (en) 2012-11-01 2016-08-16 Intel Corporation Signaling QoS requirements and UE power preference in LTE-A networks
US9477619B2 (en) 2013-06-10 2016-10-25 Cypress Semiconductor Corporation Programmable latency count to achieve higher memory bandwidth
US9536577B2 (en) * 2013-09-26 2017-01-03 Intel Corporation Data movement in memory devices
US9842630B2 (en) 2013-10-16 2017-12-12 Rambus Inc. Memory component with adjustable core-to-interface data rate ratio
KR20150051021A (ko) * 2013-11-01 2015-05-11 에스케이하이닉스 주식회사 반도체 집적회로
KR102163544B1 (ko) * 2013-12-04 2020-10-08 에스케이하이닉스 주식회사 뱅크 구조를 갖는 반도체 메모리 장치
US9135982B2 (en) * 2013-12-18 2015-09-15 Intel Corporation Techniques for accessing a dynamic random access memory array
US9373418B2 (en) * 2014-01-02 2016-06-21 Advanced Micro Devices, Inc. Circuit and data processor with headroom monitoring and method therefor
KR20150093004A (ko) * 2014-02-06 2015-08-17 삼성전자주식회사 불휘발성 저장 장치의 동작 방법 및 불휘발성 저장 장치를 액세스하는 컴퓨팅 장치의 동작 방법
US9690510B2 (en) * 2014-04-23 2017-06-27 Taiwan Semiconductor Manufacturing Co., Ltd. Two-stage read/write 3D architecture for memory devices
KR102200489B1 (ko) 2014-05-30 2021-01-11 삼성전자주식회사 비휘발성 메모리 장치 및 그것을 포함하는 저장 장치
CN112687304A (zh) * 2014-12-19 2021-04-20 拉姆伯斯公司 用于存储器模块的动态随机存取存储器(dram)部件
JP6186381B2 (ja) * 2015-01-16 2017-08-23 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体記憶装置と品種展開方法
CN107615249B (zh) 2015-05-14 2020-11-27 爱德斯托科技有限公司 存储器装置和控制存储器装置的方法
US11611359B2 (en) 2015-05-29 2023-03-21 SK Hynix Inc. Data storage device
KR102285940B1 (ko) 2015-05-29 2021-08-05 에스케이하이닉스 주식회사 데이터 처리 회로, 데이터 처리 회로를 포함하는 데이터 저장 장치 및 그것의 동작 방법
US11177835B2 (en) * 2015-09-25 2021-11-16 SK Hynix Inc. Data storage device
US11515897B2 (en) 2015-05-29 2022-11-29 SK Hynix Inc. Data storage device
US10396827B2 (en) 2015-09-25 2019-08-27 SK Hynix Inc. Data storage device
KR20160144698A (ko) * 2015-06-09 2016-12-19 에스케이하이닉스 주식회사 메모리 장치
US9921777B2 (en) * 2015-06-22 2018-03-20 Micron Technology, Inc. Apparatuses and methods for data transfer from sensing circuitry to a controller
US20160378366A1 (en) * 2015-06-24 2016-12-29 Intel Corporation Internal consecutive row access for long burst length
US9766946B2 (en) 2015-11-11 2017-09-19 International Business Machines Corporation Selecting processor micro-threading mode
US11403030B2 (en) 2016-09-02 2022-08-02 Rambus Inc. Memory component with input/output data rate alignment
KR101935649B1 (ko) 2017-02-08 2019-01-04 연세대학교 산학협력단 메모리 대역폭을 가변적으로 결정하는 메모리 장치 및 그 동작 방법
US10318168B2 (en) * 2017-06-19 2019-06-11 Micron Technology, Inc. Apparatuses and methods for simultaneous in data path compute operations
CN110720126B (zh) * 2017-06-30 2021-08-13 华为技术有限公司 传输数据掩码的方法、内存控制器、内存芯片和计算机系统
US10534553B2 (en) * 2017-08-30 2020-01-14 Micron Technology, Inc. Memory array accessibility
US10410698B2 (en) * 2017-12-07 2019-09-10 Micron Technology, Inc. Skew reduction of a wave pipeline in a memory device
WO2020026030A2 (en) * 2018-08-03 2020-02-06 Mobileye Vision Technologies Ltd. Accessing a dynamic memory module
US11226909B2 (en) 2018-08-24 2022-01-18 Rambus Inc. DRAM interface mode with interruptible internal transfer operation
US11144240B2 (en) 2018-08-24 2021-10-12 Micron Technology, Inc. Memory sub-system for increasing bandwidth for command scheduling
US10530325B1 (en) * 2018-08-30 2020-01-07 Advanced Micro Devices, Inc. Low loss T-coil configuration with frequency boost for an analog receiver front end
KR102634962B1 (ko) * 2018-09-06 2024-02-08 에스케이하이닉스 주식회사 반도체장치
US10749552B2 (en) 2018-09-24 2020-08-18 Advanced Micro Devices, Inc. Pseudo differential receiving mechanism for single-ended signaling
US10692545B2 (en) 2018-09-24 2020-06-23 Advanced Micro Devices, Inc. Low power VTT generation mechanism for receiver termination
KR102586179B1 (ko) * 2018-10-04 2023-10-10 에스케이하이닉스 주식회사 반도체 장치
CN113439307A (zh) 2019-02-12 2021-09-24 拉姆伯斯公司 具有可变存取粒度的存储器
EP3931703A4 (en) 2019-02-28 2022-05-11 Rambus Inc. QUAD CHANNEL DRAM
US10944368B2 (en) 2019-02-28 2021-03-09 Advanced Micro Devices, Inc. Offset correction for pseudo differential signaling
KR102653852B1 (ko) * 2019-05-07 2024-04-02 에스케이하이닉스 주식회사 컨트롤러, 메모리 시스템 및 그것의 동작 방법
US11061836B2 (en) * 2019-06-21 2021-07-13 Micron Technology, Inc. Wave pipeline including synchronous stage
US20220283743A1 (en) * 2019-08-27 2022-09-08 Rambus Inc. Joint command dynamic random access memory (dram) apparatus and methods
US11145351B2 (en) * 2019-11-07 2021-10-12 SK Hynix Inc. Semiconductor devices
KR20210055865A (ko) 2019-11-07 2021-05-18 에스케이하이닉스 주식회사 반도체장치 및 반도체시스템
US11354189B2 (en) 2019-11-07 2022-06-07 SK Hynix Inc. Semiconductor devices and semiconductor systems including the same
US11249843B2 (en) 2019-11-07 2022-02-15 SK Hynix Inc. Semiconductor devices and semiconductor systems including the same
US10861508B1 (en) * 2019-11-11 2020-12-08 Sandisk Technologies Llc Transmitting DBI over strobe in nonvolatile memory
KR20210081093A (ko) * 2019-12-23 2021-07-01 주식회사 실리콘웍스 메모리 컨트롤러, 및 이의 동작 방법
EP4165637A2 (en) * 2020-06-16 2023-04-19 Groq, Inc. Deterministic near-compute memory for deterministic processor and enhanced data movement between memory units and processing units
US11393845B2 (en) * 2020-08-28 2022-07-19 Micron Technology, Inc. Microelectronic devices, and related memory devices and electronic systems
US20220113903A1 (en) * 2020-10-13 2022-04-14 Micron Technology, Inc. Single memory bank storage for servicing memory access commands
US20230025601A1 (en) * 2021-07-23 2023-01-26 Micron Technology, Inc. Initializing memory systems
US11914532B2 (en) 2021-08-31 2024-02-27 Apple Inc. Memory device bandwidth optimization
KR20230105095A (ko) * 2022-01-03 2023-07-11 에스케이하이닉스 주식회사 테스트 기능을 갖는 반도체 장치
CN117476053B (zh) * 2023-12-25 2024-03-26 长鑫闵科存储技术(上海)有限公司 存储器的布线结构及存储器

Family Cites Families (214)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US174573A (en) * 1876-03-07 Improvement in puddling-furnaces
US4377855A (en) 1980-11-06 1983-03-22 National Semiconductor Corporation Content-addressable memory
US4654781A (en) * 1981-10-02 1987-03-31 Raytheon Company Byte addressable memory for variable length instructions and data
JPS58147884A (ja) 1982-02-26 1983-09-02 Toshiba Corp ダイナミック型半導体記憶装置
JPS6083291A (ja) 1983-10-13 1985-05-11 Nec Corp 半導体メモリ
US4670745A (en) 1983-11-15 1987-06-02 Motorola Inc. Video display address generator
US4542483A (en) 1983-12-02 1985-09-17 At&T Bell Laboratories Dual stage sense amplifier for dynamic random access memory
US4633434A (en) 1984-04-02 1986-12-30 Sperry Corporation High performance storage unit
JPS60234295A (ja) 1984-05-04 1985-11-20 Fujitsu Ltd 半導体記憶装置
JPS618785A (ja) * 1984-06-21 1986-01-16 Fujitsu Ltd 記憶装置アクセス制御方式
FR2566950B1 (fr) 1984-06-29 1986-12-26 Texas Instruments France Processeur de points d'images video, systeme de visualisation en comportant application et procede pour sa mise en oeuvre
US4800525A (en) 1984-10-31 1989-01-24 Texas Instruments Incorporated Dual ended folded bit line arrangement and addressing scheme
US4758993A (en) 1984-11-19 1988-07-19 Fujitsu Limited Random access memory device formed on a semiconductor substrate having an array of memory cells divided into sub-arrays
JPS61139866A (ja) 1984-12-11 1986-06-27 Toshiba Corp マイクロプロセツサ
US4837465A (en) 1985-01-16 1989-06-06 Digital Equipment Corp Single rail CMOS register array and sense amplifier circuit therefor
US4698788A (en) 1985-07-01 1987-10-06 Motorola, Inc. Memory architecture with sub-arrays
US4700328A (en) 1985-07-11 1987-10-13 Intel Corporation High speed and high efficiency layout for dram circuits
US4740921A (en) 1985-10-04 1988-04-26 Motorola, Inc. Precharge of a dram data line to an intermediate voltage
JPS6280897A (ja) 1985-10-04 1987-04-14 Mitsubishi Electric Corp 半導体記憶装置
US4710902A (en) 1985-10-04 1987-12-01 Motorola, Inc. Technique restore for a dynamic random access memory
JPH0612610B2 (ja) 1986-06-24 1994-02-16 日本電気株式会社 ダイナミツク型半導体メモリ
US7187572B2 (en) 2002-06-28 2007-03-06 Rambus Inc. Early read after write operation memory device, system and method
US4888732A (en) 1987-02-23 1989-12-19 Matsushita Electric Industrial Co., Ltd. Dynamic random access memory having open bit line architecture
US4961168A (en) 1987-02-24 1990-10-02 Texas Instruments Incorporated Bipolar-CMOS static random access memory device with bit line bias control
US4825413A (en) 1987-02-24 1989-04-25 Texas Instruments Incorporated Bipolar-CMOS static ram memory device
US4787858A (en) 1987-03-23 1988-11-29 Digital Equipment Corporation Latching system for computer plug
US5222047A (en) 1987-05-15 1993-06-22 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for driving word line in block access memory
US4796230A (en) 1987-06-24 1989-01-03 Intel Corporation Folded-cascode configured differential current steering column decoder circuit
JPS6413290A (en) 1987-07-07 1989-01-18 Oki Electric Ind Co Ltd Semiconductor memory
US4837743A (en) 1987-08-17 1989-06-06 Texas Instruments Incorporated Architecture for memory multiplexing
US5146592A (en) 1987-09-14 1992-09-08 Visual Information Technologies, Inc. High speed image processing computer with overlapping windows-div
US5274596A (en) 1987-09-16 1993-12-28 Kabushiki Kaisha Toshiba Dynamic semiconductor memory device having simultaneous operation of adjacent blocks
US4843264A (en) 1987-11-25 1989-06-27 Visic, Inc. Dynamic sense amplifier for CMOS static RAM
US5093806A (en) 1988-02-16 1992-03-03 Tran Hiep V Sensing and decoding scheme for a bicmos read/write memory
US4862421A (en) 1988-02-16 1989-08-29 Texas Instruments Incorporated Sensing and decoding scheme for a BiCMOS read/write memory
JPH0212541A (ja) 1988-04-29 1990-01-17 Internatl Business Mach Corp <Ibm> コンピユーテイング・システム及びその動作方法
US4984196A (en) 1988-05-25 1991-01-08 Texas Instruments, Incorporated High performance bipolar differential sense amplifier in a BiCMOS SRAM
JPH02168496A (ja) 1988-09-14 1990-06-28 Kawasaki Steel Corp 半導体メモリ回路
KR910009444B1 (ko) 1988-12-20 1991-11-16 삼성전자 주식회사 반도체 메모리 장치
US5124610A (en) 1989-03-03 1992-06-23 E. F. Johnson Company Tritiated light emitting polymer electrical energy source
US5214610A (en) 1989-09-22 1993-05-25 Texas Instruments Incorporated Memory with selective address transition detection for cache operation
JPH0778994B2 (ja) 1989-10-11 1995-08-23 三菱電機株式会社 半導体記憶装置
JP3039557B2 (ja) 1989-11-01 2000-05-08 日本電気株式会社 記憶装置
US5150330A (en) 1990-01-24 1992-09-22 Vlsi Technology, Inc. Interblock dispersed-word memory architecture
US4991141A (en) 1990-02-08 1991-02-05 Texas Instruments Incorporated Sense amplifier and method for sensing the outputs of static random access memory cells
JPH03235290A (ja) 1990-02-09 1991-10-21 Mitsubishi Electric Corp 階層的な行選択線を有する半導体記憶装置
GB9007789D0 (en) 1990-04-06 1990-06-06 Foss Richard C Method for dram sensing current control
US5181205A (en) 1990-04-10 1993-01-19 National Semiconductor Corporation Short circuit detector circuit for memory arrays
US5046050A (en) 1990-04-10 1991-09-03 National Semiconductor Corporation Shared BiCMOS sense amplifier
IL96808A (en) 1990-04-18 1996-03-31 Rambus Inc Introductory / Origin Circuit Agreed Using High-Performance Brokerage
JP3058431B2 (ja) 1990-06-12 2000-07-04 株式会社東芝 半導体記憶装置
US5428389A (en) 1990-06-14 1995-06-27 Fuji Photo Film Co., Ltd. Image data storage/processing apparatus
US5132931A (en) 1990-08-28 1992-07-21 Analog Devices, Inc. Sense enable timing circuit for a random access memory
JPH0696582A (ja) 1990-09-17 1994-04-08 Texas Instr Inc <Ti> メモリアレイアーキテクチャ
US5124951A (en) 1990-09-26 1992-06-23 Sgs-Thomson Microelectronics, Inc. Semiconductor memory with sequenced latched row line repeaters
US5119340A (en) 1990-09-26 1992-06-02 Sgs-Thomson Microelectronics, Inc. Semiconductor memory having latched repeaters for memory row line selection
US5121358A (en) 1990-09-26 1992-06-09 Sgs-Thomson Microelectronics, Inc. Semiconductor memory with power-on reset controlled latched row line repeaters
US5128897A (en) 1990-09-26 1992-07-07 Sgs-Thomson Microelectronics, Inc. Semiconductor memory having improved latched repeaters for memory row line selection
JP2630059B2 (ja) 1990-11-09 1997-07-16 日本電気株式会社 半導体メモリ装置
US5193072A (en) 1990-12-21 1993-03-09 Vlsi Technology, Inc. Hidden refresh of a dynamic random access memory
US5241503A (en) 1991-02-25 1993-08-31 Motorola, Inc. Dynamic random access memory with improved page-mode performance and method therefor having isolator between memory cells and sense amplifiers
US5251178A (en) 1991-03-06 1993-10-05 Childers Jimmie D Low-power integrated circuit memory
JP2664810B2 (ja) 1991-03-07 1997-10-22 株式会社東芝 メモリセルアレイ分割型半導体記憶装置
JPH04307495A (ja) 1991-04-04 1992-10-29 Mitsubishi Electric Corp 半導体記憶装置
JPH0562461A (ja) 1991-04-09 1993-03-12 Mitsubishi Electric Corp 半導体記憶装置
US5530814A (en) 1991-10-30 1996-06-25 I-Cube, Inc. Bi-directional crossbar switch with control memory for selectively routing signals between pairs of signal ports
JP2836321B2 (ja) 1991-11-05 1998-12-14 三菱電機株式会社 データ処理装置
US5291444A (en) 1991-12-23 1994-03-01 Texas Instruments Incorporated Combination DRAM and SRAM memory array
JP2973668B2 (ja) 1991-12-27 1999-11-08 日本電気株式会社 高速ダイナミックランダムアクセスメモリ装置
KR950000504B1 (ko) 1992-01-31 1995-01-24 삼성전자 주식회사 복수개의 로우 어드레스 스트로브 신호를 가지는 반도체 메모리 장치
JPH05274879A (ja) 1992-03-26 1993-10-22 Nec Corp 半導体装置
JPH05290573A (ja) * 1992-04-13 1993-11-05 Hitachi Ltd 半導体記憶装置
US5390308A (en) 1992-04-15 1995-02-14 Rambus, Inc. Method and apparatus for address mapping of dynamic random access memory
US5432743A (en) 1992-06-30 1995-07-11 Nec Corporation Semiconductor dynamic RAM for image processing
JP2945216B2 (ja) 1992-09-17 1999-09-06 シャープ株式会社 半導体メモリ装置
US5406526A (en) 1992-10-01 1995-04-11 Nec Corporation Dynamic random access memory device having sense amplifier arrays selectively activated when associated memory cell sub-arrays are accessed
US5455802A (en) 1992-12-22 1995-10-03 Sgs-Thomson Microelectronics, Inc. Dual dynamic sense amplifiers for a memory array
US5485430A (en) 1992-12-22 1996-01-16 Sgs-Thomson Microelectronics, Inc. Multiple clocked dynamic sense amplifier
JPH06267275A (ja) 1993-03-10 1994-09-22 Fujitsu Ltd センスアンプ制御回路及びセンスアンプ制御方法
JPH06314264A (ja) 1993-05-06 1994-11-08 Nec Corp セルフ・ルーティング・クロスバー・スイッチ
JP2725570B2 (ja) 1993-11-02 1998-03-11 日本電気株式会社 半導体メモリ装置
JP2875476B2 (ja) 1993-12-06 1999-03-31 松下電器産業株式会社 半導体メモリ装置
WO1995022206A1 (en) 1994-02-15 1995-08-17 Rambus, Inc. Delay-locked loop
JPH07262767A (ja) * 1994-03-17 1995-10-13 Fujitsu Ltd シンクロナスdram
US5701270A (en) * 1994-05-09 1997-12-23 Cirrus Logic, Inc. Single chip controller-memory device with interbank cell replacement capability and a memory architecture and methods suitble for implementing the same
US5689195A (en) 1995-05-17 1997-11-18 Altera Corporation Programmable logic array integrated circuit devices
US5675180A (en) 1994-06-23 1997-10-07 Cubic Memory, Inc. Vertical interconnect process for silicon segments
US5655113A (en) 1994-07-05 1997-08-05 Monolithic System Technology, Inc. Resynchronization circuit for a memory system and method of operating same
JP3176228B2 (ja) 1994-08-23 2001-06-11 シャープ株式会社 半導体記憶装置
GB9423038D0 (en) 1994-11-15 1995-01-04 Sgs Thomson Microelectronics An integrated circuit memory device with voltage boost
JPH08278916A (ja) * 1994-11-30 1996-10-22 Hitachi Ltd マルチチャネルメモリシステム、転送情報同期化方法及び信号転送回路
US5652870A (en) 1995-04-11 1997-07-29 Mitsubishi Denki Kabushiki Kaisha Microcomputer having multiplexable input-output port
US6128700A (en) 1995-05-17 2000-10-03 Monolithic System Technology, Inc. System utilizing a DRAM array as a next level cache memory and method for operating same
US5787267A (en) 1995-06-07 1998-07-28 Monolithic System Technology, Inc. Caching method and circuit for a memory system with circuit module architecture
US5801985A (en) 1995-07-28 1998-09-01 Micron Technology, Inc. Memory system having programmable control parameters
US5717871A (en) 1995-08-17 1998-02-10 I-Cube, Inc. Crossbar switch with input/output buffers having multiplexed control inputs
US5666322A (en) 1995-09-21 1997-09-09 Nec Electronics, Inc. Phase-locked loop timing controller in an integrated circuit memory
JPH09231760A (ja) * 1995-12-20 1997-09-05 Toshiba Corp 半導体記憶装置
US5748551A (en) 1995-12-29 1998-05-05 Micron Technology, Inc. Memory device with multiple internal banks and staggered command execution
JP3531891B2 (ja) 1996-01-26 2004-05-31 シャープ株式会社 半導体記憶装置
US5822772A (en) 1996-03-22 1998-10-13 Industrial Technology Research Institute Memory controller and method of memory access sequence recordering that eliminates page miss and row miss penalties
US5793998A (en) 1996-04-17 1998-08-11 Digital Equipment Corporation Method and apparatus for interconnection of multiple modules
US6073204A (en) 1997-04-23 2000-06-06 Micron Technology, Inc. Memory system having flexible architecture and method
US5852725A (en) 1996-05-10 1998-12-22 Yen; Juei-Hsiang PCI/ISA bus single board computer card/CPU card and backplane using eisa bus connectors and eisa bus slots
KR100203145B1 (ko) * 1996-06-29 1999-06-15 김영환 반도체 메모리 소자의 뱅크 분산 방법
JPH1031886A (ja) 1996-07-17 1998-02-03 Nec Corp ランダムアクセスメモリ
US5933023A (en) 1996-09-03 1999-08-03 Xilinx, Inc. FPGA architecture having RAM blocks with programmable word length and width and dedicated address and data lines
US5893927A (en) 1996-09-13 1999-04-13 International Business Machines Corporation Memory device having programmable device width, method of programming, and method of setting device width for memory device
US5892981A (en) 1996-10-10 1999-04-06 Hewlett-Packard Company Memory system and device
US5689472A (en) 1996-10-31 1997-11-18 Silicon Magic Corporation System and method for providing efficient access to a memory bank
JPH10172283A (ja) 1996-12-10 1998-06-26 Hitachi Ltd 半導体記憶装置及びシステム
JP3455040B2 (ja) 1996-12-16 2003-10-06 株式会社日立製作所 ソースクロック同期式メモリシステムおよびメモリユニット
US5748554A (en) 1996-12-20 1998-05-05 Rambus, Inc. Memory and method for sensing sub-groups of memory elements
JPH1139871A (ja) 1997-01-10 1999-02-12 Mitsubishi Electric Corp 同期型半導体記憶装置
US6047347A (en) 1997-02-04 2000-04-04 Advanced Micro Devices, Inc. Computer system with programmable bus size
US6125157A (en) 1997-02-06 2000-09-26 Rambus, Inc. Delay-locked loop circuitry for clock delay adjustment
US5825710A (en) * 1997-02-26 1998-10-20 Powerchip Semiconductor Corp. Synchronous semiconductor memory device
JPH10302471A (ja) * 1997-02-28 1998-11-13 Mitsubishi Electric Corp 半導体記憶装置
JP3476646B2 (ja) 1997-03-07 2003-12-10 シャープ株式会社 半導体記憶装置
US5870347A (en) * 1997-03-11 1999-02-09 Micron Technology, Inc. Multi-bank memory input/output line selection
US5996051A (en) 1997-04-14 1999-11-30 Advanced Micro Devices, Inc. Communication system which in a first mode supports concurrent memory acceses of a partitioned memory array and in a second mode supports non-concurrent memory accesses to the entire memory array
EP0887737B1 (en) 1997-06-26 2003-01-22 Hewlett-Packard Company, A Delaware Corporation Reversible connectors
US6049855A (en) 1997-07-02 2000-04-11 Micron Electronics, Inc. Segmented memory system employing different interleaving scheme for each different memory segment
US5958033A (en) 1997-08-13 1999-09-28 Hewlett Packard Company On- the-fly partitionable computer bus for enhanced operation with varying bus clock frequencies
US6247084B1 (en) 1997-10-08 2001-06-12 Lsi Logic Corporation Integrated circuit with unified memory system and dual bus architecture
AU9693398A (en) 1997-10-10 1999-05-03 Rambus Incorporated Apparatus and method for pipelined memory operations
US6052327A (en) 1997-10-14 2000-04-18 Altera Corporation Dual-port programmable logic device variable depth and width memory array
US6742098B1 (en) 2000-10-03 2004-05-25 Intel Corporation Dual-port buffer-to-memory interface
US5936885A (en) 1998-02-23 1999-08-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory capable of preventing erroneous inversion of data read from memory transistors
US5933387A (en) 1998-03-30 1999-08-03 Richard Mann Divided word line architecture for embedded memories using multiple metal layers
JP4198271B2 (ja) 1998-06-30 2008-12-17 富士通マイクロエレクトロニクス株式会社 半導体記憶装置
US6185149B1 (en) 1998-06-30 2001-02-06 Fujitsu Limited Semiconductor integrated circuit memory
JP4540137B2 (ja) 1998-07-24 2010-09-08 ルネサスエレクトロニクス株式会社 同期型半導体記憶装置
CA2341014A1 (en) 1998-08-19 2000-03-02 Alexander Roger Deas A system and method for defining transforms of memory device addresses
JP2000066950A (ja) * 1998-08-25 2000-03-03 Toshiba Corp 半導体記憶装置
KR100297716B1 (ko) 1998-09-03 2001-08-07 윤종용 높은멀티비트자유도의반도체메모리장치
US6050983A (en) * 1998-10-27 2000-04-18 Moore; Diane Sound-insulated gas-diverting colostomy container
US6138185A (en) 1998-10-29 2000-10-24 Mcdata Corporation High performance crossbar switch
CA2346831A1 (en) 1998-11-12 2000-05-25 Alexander Roger Deas A system and a method for transformation of memory device addresses
US6311313B1 (en) 1998-12-29 2001-10-30 International Business Machines Corporation X-Y grid tree clock distribution network with tunable tree and grid networks
KR100564421B1 (ko) 1998-12-31 2006-06-23 주식회사 하이닉스반도체 메모리 소자의 데이터폭 설정회로
US6446158B1 (en) 1999-05-17 2002-09-03 Chris Karabatsos Memory system using FET switches to select memory banks
EP1059588A1 (en) 1999-06-09 2000-12-13 Texas Instruments Incorporated Multi-channel dma with request scheduling
KR100316713B1 (ko) 1999-06-26 2001-12-12 윤종용 반도체 메모리 장치 및 이에 적합한 구동신호 발생기
US6708248B1 (en) * 1999-07-23 2004-03-16 Rambus Inc. Memory system with channel multiplexing of multiple memory devices
US7356639B2 (en) 2000-01-05 2008-04-08 Rambus Inc. Configurable width buffered module having a bypass circuit
US7363422B2 (en) 2000-01-05 2008-04-22 Rambus Inc. Configurable width buffered module
US6160750A (en) 2000-02-04 2000-12-12 Advanced Micro Devices, Inc. Noise reduction during simultaneous operation of a flash memory device
AU2001243463A1 (en) 2000-03-10 2001-09-24 Arc International Plc Memory interface and method of interfacing between functional entities
US6240040B1 (en) 2000-03-15 2001-05-29 Advanced Micro Devices, Inc. Multiple bank simultaneous operation for a flash memory
US6434081B1 (en) 2000-05-12 2002-08-13 Micron Technology, Inc. Calibration technique for memory devices
KR100335504B1 (ko) 2000-06-30 2002-05-09 윤종용 제어 및 어드레스 버스를 공유하는 2채널 메모리 시스템및 이에 채용되는 메모리 모듈
US6748556B1 (en) 2000-08-15 2004-06-08 International Business Machines Corporation Changing the thread capacity of a multithreaded computer processor
US6725316B1 (en) 2000-08-18 2004-04-20 Micron Technology, Inc. Method and apparatus for combining architectures with logic option
US6591349B1 (en) 2000-08-31 2003-07-08 Hewlett-Packard Development Company, L.P. Mechanism to reorder memory read and write transactions for reduced latency and increased bandwidth
US6625687B1 (en) 2000-09-18 2003-09-23 Intel Corporation Memory module employing a junction circuit for point-to-point connection isolation, voltage translation, data synchronization, and multiplexing/demultiplexing
US6396764B1 (en) 2000-11-16 2002-05-28 Silicon Aquarius, Inc. Segmented memory architecture and systems and methods using the same
US6813688B2 (en) 2000-12-04 2004-11-02 Sun Microsystems, Inc. System and method for efficient data mirroring in a pair of storage devices
US6725347B2 (en) * 2001-01-16 2004-04-20 Sun Microsystems, Inc. Spin-wheel SDRAM access scheduler for high performance microprocessors
JP5226161B2 (ja) * 2001-02-23 2013-07-03 富士通セミコンダクター株式会社 半導体記憶装置および情報処理システム
US6889304B2 (en) 2001-02-28 2005-05-03 Rambus Inc. Memory device supporting a dynamically configurable core organization
US6877079B2 (en) 2001-03-06 2005-04-05 Samsung Electronics Co., Ltd. Memory system having point-to-point bus configuration
TW561485B (en) 2001-03-22 2003-11-11 Fujitsu Ltd Semiconductor memory device and information processing system
US7500075B1 (en) 2001-04-17 2009-03-03 Rambus Inc. Mechanism for enabling full data bus utilization without increasing data granularity
US6587917B2 (en) * 2001-05-29 2003-07-01 Agilent Technologies, Inc. Memory architecture for supporting concurrent access of different types
JP2003007052A (ja) * 2001-06-20 2003-01-10 Mitsubishi Electric Corp 半導体記憶装置およびそれを用いたメモリシステム
US6825841B2 (en) 2001-09-07 2004-11-30 Rambus Inc. Granularity memory column access
KR100429878B1 (ko) 2001-09-10 2004-05-03 삼성전자주식회사 메모리 모듈과 그에 사용되는 인쇄회로기판
WO2003036850A1 (en) * 2001-10-22 2003-05-01 Rambus Inc. Phase adjustment apparatus and method for a memory device signaling system
US6950910B2 (en) 2001-11-08 2005-09-27 Freescale Semiconductor, Inc. Mobile wireless communication device architectures and methods therefor
JP2004072060A (ja) * 2001-11-22 2004-03-04 Innotech Corp トランジスタとそれを用いた半導体メモリ、およびトランジスタの駆動方法
US6650141B2 (en) * 2001-12-14 2003-11-18 Lattice Semiconductor Corporation High speed interface for a programmable interconnect circuit
US6678204B2 (en) 2001-12-27 2004-01-13 Elpida Memory Inc. Semiconductor memory device with high-speed operation and methods of using and designing thereof
US7290109B2 (en) 2002-01-09 2007-10-30 Renesas Technology Corp. Memory system and memory card
CN1509475B (zh) 2002-01-11 2010-05-26 索尼公司 存储设备、运动矢量检测器、和运动补偿预测编码器
JP2003272377A (ja) 2002-03-13 2003-09-26 Fujitsu Ltd 半導体記憶装置
JP4136429B2 (ja) 2002-04-10 2008-08-20 富士通株式会社 半導体装置
US6643212B1 (en) * 2002-04-18 2003-11-04 United Memories, Inc. Simultaneous function dynamic random access memory device technique
US6895474B2 (en) 2002-04-29 2005-05-17 Micron Technology, Inc. Synchronous DRAM with selectable internal prefetch size
JP4025584B2 (ja) 2002-05-31 2007-12-19 エルピーダメモリ株式会社 半導体記憶装置
US7043599B1 (en) * 2002-06-20 2006-05-09 Rambus Inc. Dynamic memory supporting simultaneous refresh and data-access transactions
KR100454702B1 (ko) 2002-06-26 2004-11-03 주식회사 덕성 지엠냉각기를 구비한 극저온용기 및 극저온용기의 제어방법
US6854042B1 (en) 2002-07-22 2005-02-08 Chris Karabatsos High-speed data-rate converting and switching circuit
JP4159415B2 (ja) 2002-08-23 2008-10-01 エルピーダメモリ株式会社 メモリモジュール及びメモリシステム
KR100468761B1 (ko) 2002-08-23 2005-01-29 삼성전자주식회사 분할된 시스템 데이터 버스에 연결되는 메모리 모듈을구비하는 반도체 메모리 시스템
US6925643B2 (en) 2002-10-11 2005-08-02 Sandbridge Technologies, Inc. Method and apparatus for thread-based memory access in a multithreaded processor
KR100560646B1 (ko) 2002-12-20 2006-03-16 삼성전자주식회사 지연된 오토프리챠지 기능을 갖는 반도체 메모리 장치
US6754120B1 (en) 2003-02-11 2004-06-22 Rambus Inc. DRAM output circuitry supporting sequential data capture to reduce core access times
US6931479B2 (en) 2003-03-04 2005-08-16 Micron Technology, Inc. Method and apparatus for multi-functional inputs of a memory device
KR100532432B1 (ko) 2003-05-02 2005-11-30 삼성전자주식회사 커맨드 신호와 어드레스 신호의 고속 전송이 가능한메모리 시스템
US6982892B2 (en) 2003-05-08 2006-01-03 Micron Technology, Inc. Apparatus and methods for a physical layout of simultaneously sub-accessible memory modules
DE10330812B4 (de) 2003-07-08 2006-07-06 Infineon Technologies Ag Halbleiterspeichermodul
US7133324B2 (en) 2003-12-24 2006-11-07 Samsung Electronics Co., Ltd. Synchronous dynamic random access memory devices having dual data rate 1 (DDR1) and DDR2 modes of operation and methods of operating same
US7281079B2 (en) 2003-12-31 2007-10-09 Intel Corporation Method and apparatus to counter mismatched burst lengths
JP4489454B2 (ja) 2004-02-16 2010-06-23 富士通マイクロエレクトロニクス株式会社 半導体集積回路
JP2005322251A (ja) 2004-05-08 2005-11-17 Samsung Electronics Co Ltd 選択的なモードレジスタセットの命令と関連したメモリモジュールを支援する集積回路メモリ装置、メモリコントローラ及び方法
US8190808B2 (en) 2004-08-17 2012-05-29 Rambus Inc. Memory device having staggered memory operations
JP2006065697A (ja) 2004-08-27 2006-03-09 Hitachi Ltd 記憶デバイス制御装置
US7280428B2 (en) * 2004-09-30 2007-10-09 Rambus Inc. Multi-column addressing mode memory system including an integrated circuit memory device
US7254075B2 (en) 2004-09-30 2007-08-07 Rambus Inc. Integrated circuit memory system having dynamic memory bank count and page size
US7266667B2 (en) 2004-11-12 2007-09-04 Infineon Technologies Ag Memory access using multiple sets of address/data lines
US7464225B2 (en) 2005-09-26 2008-12-09 Rambus Inc. Memory module including a plurality of integrated circuit memory devices and a plurality of buffer devices in a matrix topology
JP4485577B2 (ja) * 2006-02-01 2010-06-23 富士通株式会社 パリティ生成回路,パリティ生成回路用構成回路,情報処理装置,及びエンコーダ
US20070260841A1 (en) 2006-05-02 2007-11-08 Hampel Craig E Memory module with reduced access granularity
US20080028135A1 (en) 2006-07-31 2008-01-31 Metaram, Inc. Multiple-component memory interface system and method
JP4470183B2 (ja) * 2006-08-28 2010-06-02 エルピーダメモリ株式会社 半導体記憶装置
CN101495975B (zh) * 2006-12-25 2011-10-05 松下电器产业株式会社 存储控制装置、存储装置及存储控制方法
EP4198751A1 (en) 2007-04-12 2023-06-21 Rambus Inc. Memory system with point-to point request interconnect
US8380943B2 (en) 2008-01-07 2013-02-19 Rambus Inc. Variable-width memory module and buffer
JP5351145B2 (ja) * 2008-04-22 2013-11-27 パナソニック株式会社 メモリ制御装置、メモリシステム、半導体集積回路およびメモリ制御方法
EP2414944A4 (en) * 2009-03-30 2012-10-17 Rambus Inc MEMORY SYSTEM, CONTROL UNIT AND DEVICE SUPPORTING A FUSED MEMORY CONTROL PROTOCOL
EP2478521A2 (en) * 2009-09-16 2012-07-25 Rambus Inc. Configurable memory banks of a memory device
JP2012113597A (ja) * 2010-11-26 2012-06-14 Panasonic Corp メモリ装置、メモリ制御回路及びメモリ制御システム
KR20120098105A (ko) * 2011-02-28 2012-09-05 에스케이하이닉스 주식회사 데이터 전송 회로 및 이를 포함하는 메모리 장치

Also Published As

Publication number Publication date
US20230376249A1 (en) 2023-11-23
CN102543162A (zh) 2012-07-04
JP2008522340A (ja) 2008-06-26
US20190339908A1 (en) 2019-11-07
EP1820195B1 (en) 2016-08-17
CN102543162B (zh) 2015-08-19
US9292223B2 (en) 2016-03-22
WO2006058200A3 (en) 2006-07-06
EP2363860B1 (en) 2016-08-03
EP2363858A2 (en) 2011-09-07
EP2363860A2 (en) 2011-09-07
JP2014160538A (ja) 2014-09-04
US20070250677A1 (en) 2007-10-25
EP2363860A3 (en) 2012-04-25
CN101095196A (zh) 2007-12-26
EP2363859A3 (en) 2012-04-25
KR101327594B1 (ko) 2013-11-12
US20170286017A1 (en) 2017-10-05
EP2363859A2 (en) 2011-09-07
EP1820195A2 (en) 2007-08-22
JP2015195080A (ja) 2015-11-05
US11797227B2 (en) 2023-10-24
US20130265842A1 (en) 2013-10-10
US20140344546A1 (en) 2014-11-20
KR20070086686A (ko) 2007-08-27
JP6143814B2 (ja) 2017-06-07
US9652176B2 (en) 2017-05-16
US8595459B2 (en) 2013-11-26
EP2363858A3 (en) 2012-04-25
US10331379B2 (en) 2019-06-25
US20060117155A1 (en) 2006-06-01
WO2006058200A2 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
JP6143814B2 (ja) マイクロスレッドメモリ
US11270741B2 (en) Deferred fractional memory row activation
US9268719B2 (en) Memory signal buffers and modules supporting variable access granularity
CN113553277A (zh) 一种ddr5 sdram的高吞吐率、低延迟phy接口电路装置
US8225063B2 (en) Synchronous dynamic random access memory interface and method
US7840744B2 (en) Rank select operation between an XIO interface and a double data rate interface
CN110633229A (zh) 用于高带宽存储器通道的dimm
JP5204777B2 (ja) メモリ装置及びその制御方法
KR20190035392A (ko) 데이터 다중 기록을 수행하는 메모리 장치, 메모리 장치의 동작방법 및 메모리 컨트롤러의 동작방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150529

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160929

R150 Certificate of patent or registration of utility model

Ref document number: 6018118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250