EP1775125A2 - Imprimé d'une presse - Google Patents
Imprimé d'une presse Download PDFInfo
- Publication number
- EP1775125A2 EP1775125A2 EP07101541A EP07101541A EP1775125A2 EP 1775125 A2 EP1775125 A2 EP 1775125A2 EP 07101541 A EP07101541 A EP 07101541A EP 07101541 A EP07101541 A EP 07101541A EP 1775125 A2 EP1775125 A2 EP 1775125A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- cylinder
- printing unit
- unit according
- side frame
- cylinders
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F13/00—Common details of rotary presses or machines
- B41F13/08—Cylinders
- B41F13/10—Forme cylinders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F13/00—Common details of rotary presses or machines
- B41F13/08—Cylinders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F13/00—Common details of rotary presses or machines
- B41F13/004—Electric or hydraulic features of drives
- B41F13/0045—Electric driving devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F13/00—Common details of rotary presses or machines
- B41F13/008—Mechanical features of drives, e.g. gears, clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F13/00—Common details of rotary presses or machines
- B41F13/08—Cylinders
- B41F13/24—Cylinder-tripping devices; Cylinder-impression adjustments
- B41F13/26—Arrangement of cylinder bearings
- B41F13/28—Bearings mounted eccentrically of the cylinder axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F13/00—Common details of rotary presses or machines
- B41F13/08—Cylinders
- B41F13/24—Cylinder-tripping devices; Cylinder-impression adjustments
- B41F13/26—Arrangement of cylinder bearings
- B41F13/30—Bearings mounted on sliding supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F13/00—Common details of rotary presses or machines
- B41F13/08—Cylinders
- B41F13/24—Cylinder-tripping devices; Cylinder-impression adjustments
- B41F13/26—Arrangement of cylinder bearings
- B41F13/32—Bearings mounted on swinging supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F13/00—Common details of rotary presses or machines
- B41F13/08—Cylinders
- B41F13/24—Cylinder-tripping devices; Cylinder-impression adjustments
- B41F13/34—Cylinder lifting or adjusting devices
- B41F13/36—Cams, eccentrics, wedges, or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F27/00—Devices for attaching printing elements or formes to supports
- B41F27/10—Devices for attaching printing elements or formes to supports for attaching non-deformable curved printing formes to forme cylinders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F27/00—Devices for attaching printing elements or formes to supports
- B41F27/12—Devices for attaching printing elements or formes to supports for attaching flexible printing formes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F7/00—Rotary lithographic machines
- B41F7/02—Rotary lithographic machines for offset printing
- B41F7/12—Rotary lithographic machines for offset printing using two cylinders one of which serves two functions, e.g. as a transfer and impression cylinder in perfecting machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41P—INDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
- B41P2213/00—Arrangements for actuating or driving printing presses; Auxiliary devices or processes
- B41P2213/10—Constitutive elements of driving devices
- B41P2213/20—Gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41P—INDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
- B41P2213/00—Arrangements for actuating or driving printing presses; Auxiliary devices or processes
- B41P2213/10—Constitutive elements of driving devices
- B41P2213/20—Gearings
- B41P2213/206—Planetary gears
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41P—INDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
- B41P2213/00—Arrangements for actuating or driving printing presses; Auxiliary devices or processes
- B41P2213/70—Driving devices associated with particular installations or situations
- B41P2213/73—Driving devices for multicolour presses
- B41P2213/734—Driving devices for multicolour presses each printing unit being driven by its own electric motor, i.e. electric shaft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41P—INDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
- B41P2227/00—Mounting or handling printing plates; Forming printing surfaces in situ
- B41P2227/10—Attaching several printing plates on one cylinder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41P—INDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
- B41P2227/00—Mounting or handling printing plates; Forming printing surfaces in situ
- B41P2227/10—Attaching several printing plates on one cylinder
- B41P2227/11—Attaching several printing plates on one cylinder in axial direction
Definitions
- the invention relates to a printing unit of a printing press according to the preamble of claim 1.
- DE 100 08 216 A1 discloses a linearly arranged printing unit, wherein a plane through the axes of rotation of the cylinder and the paper web include an obtuse angle.
- the cylinders are mounted linearly movable in guides in the side frame.
- a printing unit whose form cylinder has at its periphery in the circumferential direction one, and in the longitudinal direction a plurality of printing plates.
- a cooperating with the forme cylinder transfer cylinder has a double circumference and is performed in the circumferential direction with a blanket and in the longitudinal direction with two, but circumferentially offset from each other arranged blankets.
- the JP 100 71 694 discloses printing cylinder with four juxtaposed, and circumferentially offset channels.
- the printing group cylinders have a so-called double circumference.
- a double printing unit wherein the axes of rotation of the printing cylinder are arranged in a plane.
- the cylinders have one four times the width of a newspaper page (double-width) and a perimeter of one page height.
- the transfer cylinders have endless sleeves, which are laterally replaced by openings in the side wall.
- the forme cylinder has a double circumference and two printing plates arranged one behind the other.
- the longitudinally juxtaposed, the pressure plates receiving channels are circumferentially offset from each other in addition.
- a double printing unit wherein for the purpose of improving the print quality, a plane perpendicular to the paper web to the two axes of rotation of the transfer cylinder connecting plane is inclined by about 0 ° to 10 °.
- the JP 57-131 561 discloses a double printing unit having arranged in a plane axes of the printing cylinder.
- the printing cylinder are arranged in phase with each other so that channels for attaching the elevators to each other, and simultaneously roll in the two co-operating printing units.
- a double printing unit wherein the cylinder axes are arranged with slight deviations in a common plane, which is inclined relative to the plane of the web to be printed.
- the switching on and off of the transfer cylinder takes place along a nearly rectilinear direction of movement by means of double eccentrics.
- the EP 08 62 999 A2 discloses a double printing with two co-operating transfer cylinders, which are stored for the purpose of switching on and off in eccentric or double eccentric bushes. In another embodiment, they are stored in levers, which are mounted eccentrically to the forme cylinder axis pivotable.
- EP 10 75 945 A1 is a double printing with arranged in a plane axes of the printing cylinder known, wherein a plurality of printing cylinder mounted in slides, and for the purpose of turning on and off by means arranged on a supporting wall guide elements are designed to be mutually variable.
- the GB 1,096,950 discloses a printing unit for direct printing, wherein an impression cylinder between two guide rails is movable against a forme cylinder.
- the guides may in this case be attached to side walls of the machine frame.
- EP 0 764 523 A1 is a printing unit with several linearly movable cylinders disclosed.
- the movable cylinders are mounted in carrier plates which are displaceable in each case in a plurality of guides.
- the invention has for its object to provide a printing unit of a printing press.
- the achievable with the present invention consist in particular that a pressure machine is created by the measures, which is compact, low-vibration and robust built, has a high production diversity, and requires a relatively low manufacturing and maintenance costs.
- the elevators are held on the cylinders not in the over the length of the cylinder continuous, but in circumferentially offset channels, a channel impact during passage of the channel during the rolling of two co-acting cylinder is significantly reduced.
- the channels are arranged offset by 180 ° to each other in the case of two longitudinally juxtaposed channels.
- Angular speeds, destructive interference before, without an offset angle of the channels must be varied speed or frequency dependent.
- Particularly advantageous is the arrangement of printing cylinders simple scope for printed products smaller and / or variable page size and / or for printers with limited space. Compared to producing the same product on a double-circumference press (without collecting), no "double" plate change is required. In contrast to a double-circumference printing machine in collective operation, it becomes possible to create a side jump from two sides, thereby producing increased flexibility in the printed product.
- blankets and printing plates makes it possible to store the cylinders stable on both sides, with a simple, robust and inexpensive construction of the printing cylinder receiving side frame is possible.
- the transfer cylinders are mounted for example in carriages in linear guides in or on the side frame, which allows a movement substantially perpendicular to the plane of the cylinder axes. If the guides are arranged on specially designed inserts of the side frame, the pins shorten and allow the simple formation of an encapsulated lubricant space. A special arrangement of the direction of movement allows the quick and safe parking of form and impression cylinders and of the web.
- the transfer cylinders are arranged for this purpose in levers which are mounted eccentrically to the forme cylinder axis pivotally. Due to the specific position of the pivot points and the size of the eccentric (to the axis of rotation of the forme cylinder) in conjunction with the selected inclination to the plane of the pressure forming cylinder or between the web and plane of the cylinder is a quick shutdown of the associated cylinders or exemptions of the web possible.
- the operational switching on and off takes place only by means of the transfer cylinder, in a preferred embodiment by means of only one adjusting movement.
- the transfer cylinders are mounted in Doppelexzenterbuchsen, which allows at least in the area near the pressure point a nearly linear and largely perpendicular to the plane of the cylinder axes movement.
- the one embodiment of the printing unit with cylinders simple scope and the arrangement in a plane with staggered, but mutually rolling on each other channels, and designed as metal blankets elevators on the transfer cylinders.
- a relative tangential velocity in the contact area ie in the region of the nip of two cooperating cylinders or rollers, by conscious, correlated with the movement rotation or rotation of at least one of the involved Cylinders or rolls is reduced.
- an unnecessarily high load (friction, deformation) of the lifts and / or the lateral surfaces of the cylinders or rollers involved is avoided.
- a first printing unit 01 of a printing press in particular a rotary printing press, has a first cylinder 02, z. B. a forme cylinder 02, and an associated second cylinder 03, z. B. a transfer cylinder 03, on (Fig. 1).
- their axes of rotation define R02; R03 a plane E.
- the forme cylinder 02 and the transfer cylinder 03 have on its circumference in the circumferential direction on the lateral surface at least one fault, z. B. an interruption 04; 06 in the effective at unwinding lateral surface.
- This interruption 04; 06 may be a shock of a leading and a trailing end of one or more elevators, which are arranged for example by means of magnetic force or cohesively on the circumference.
- channels 04; 06 or slots 04; Act 06 which absorb the ends of elevators.
- channels 04; 06 designated interference are synonymous with other interruptions 04; 06 on the effective lateral surface, d. H. the outwardly facing surface of the lift cylinder 02; 03.
- the forme cylinder 02 and transfer cylinder 03 each have at least two channels 04; 06 (or interruptions 04, 06, etc.) on. These two channels 04; 06 are each in the longitudinal direction of the cylinder 02; 03 in succession, and arranged offset from each other in the circumferential direction.
- the channels 04; 06 are so on the two cylinders 02; 03 arranged to rotate upon rotation of the two cylinders 02; 03 each on one of the channels 06; 04 of the other cylinder 03; Roll out 02.
- the offset of the channels 04; 06 of each cylinder 02; 03 in the circumferential direction about 180 °.
- the transfer cylinder 03 of the first printing unit 01 forms with a third cylinder 07; over a train 08; z. B. a printing substrate 08, a pressure point 09.
- This third cylinder 07 can be used as a second transfer cylinder 07 (FIG. 1) or as an impression cylinder 07 (FIG. 2), z.
- the axes of rotation R03 and R07 of the pressure point 09 forming cylinder 03; 07 tension in a pressure-ON position on a plane D see, for example, Fig. 12 or 13).
- the two printing units 01; 12 form one on each Pages simultaneously on the web 08 printing unit 13, a so-called.
- Fig. 5 are all rotation axis R02; R03; R07; R11 of the four cylinders 02; 03; 07; 11 during printing, d. H. in the print-on position AN in the common plane E or D and run parallel to each other.
- Fig. 13 shows a corresponding printing unit 13, wherein in each case a pair of forming and transfer cylinders 02, 03; 11, 07 a plane E, and the transfer cylinder 03; 07 form the plane D different from the planes E.
- the cylinders 07; 11 of the second printing unit 12 channels 04; 06 with the properties described above for the first printing unit 01 with respect to the number and the offset to each other.
- the channels 04; 06 of the four cylinders 02; 03; 07; 11 are now preferably arranged so that in each case two channels 04; 06 two cooperating cylinder 02; 03; 07; 11 roll on each other.
- the forme cylinder 02 and the transfer cylinder 03 each have a length L02 in an advantageous embodiment; L03 on which four or more widths of a printed page, z. B. a newspaper page, z. B. 1100 to 1800 mm, in particular 1500 to 1700 mm and a diameter D02; D03, z. B. 130 to 200 mm, in particular 145 to 185 mm, whose circumference U corresponds substantially to a length of a newspaper page, hereinafter referred to as "single circumference" ( Figures 3 and 4).
- the device is advantageous in which the ratio between diameter D02; D03 and length L02; L03 of the cylinder 02; 03 is less than or equal to 0.16, in particular less than 0.12, or even less than or equal to 0.08.
- each of the two cylinders 02; 03 two channels 04; 06 which in each case continuously extend over at least a length which corresponds to two widths of a newspaper page (FIG. 3).
- four channels 04; 06 the two the end faces of the cylinder 02; 03 adjacent channels 04; 06 in a common flight, and the two "inside" channels 04; 06 in a common flight, but offset in the circumferential direction to the former be arranged (Fig. 4).
- channels 04; 06 on the respective cylinder 02; 03; 07; 11 are offset by 180 ° to each other.
- one side I Figures 1, 3 and 4 of the double printing unit 13 in one stage of the cycle, and in the other phase on one side II, or in more than two channels 04; 06 per cylinder 02; 03; 07; 11, for example in the region of the center of the cylinder 02; 03; 07; 11th
- each of the channels 06 of the transfer cylinder 03 may be a single, continuous clamping and / or clamping device or it may - in the case of over several newspaper page widths continuous channels - in the longitudinal direction one behind several clamping and / or clamping devices may be arranged.
- the channels 04 of the forme cylinder 02 for example, each also have a single, or more clamping devices.
- both in the channels 04 of the forme cylinder 02; 11 and in the channels 06 of the transfer cylinder 03; 07 a "minigap technology" used, wherein in a narrow channel 04; 06 inserted with an inclined leading edge a leading end, the elevator on the cylinder 02; 03; 07; 11 is wound, the trailing end also in the channel 04; 06 is inserted, and the Ends against slipping, z. B. by means of a rotatable spindle or a pneumatic device to be clamped.
- the transfer cylinder 03; 07 have z. B. in an advantageous embodiment (Fig. 3) only two, circumferentially offset by 180 ° to each other elevators, each having at least one width, which corresponds to two widths of a newspaper page.
- the elevators or channels 04 of the forme cylinder 02 run; 11 complementary to this and must either, as shown, two continuous, each having a length of two newspaper page widths having channels 04, or in pairs adjacent and aligned escape channels 04, each having a length of a newspaper page width.
- two clamping devices each have a length which substantially corresponds to a width of a newspaper page, on.
- the form cylinder 02; 11 are in an advantageous embodiment with four in the longitudinal direction of the forme cylinder 02; 11 juxtaposed bendable elevators occupied, which in the circumferential direction have a length of slightly more than the length of the print image of a newspaper page, and in the longitudinal direction has a width of about one newspaper page.
- the said arrangement of the interruptions 04; 06 on the respective cylinder 02; 03; 07; 11 and between the cylinders 02; 03; 07; 11 and possibly the linear arrangement of the cylinder 02; 03; 07; 11 are in development also particularly on cylinder 02; 03; 07; 11, which has a length L02; L03, which corresponds to substantially six times the width of a newspaper page.
- the transfer cylinder 03; 07 and / or the forme cylinder 02; 11 with a diameter D02; D03, which results in a scope that corresponds to substantially twice the length of a newspaper page.
- the forme cylinder 02; 11 in an advantageous embodiment with respect to their axes of rotation R02; R11 firmly arranged.
- the transfer cylinder 03; 07 with respect to their axes of rotation R03; R07 designed to be movable and at the same time from the associated forme cylinder 02; 11 and cooperating transfer cylinder 03; 07 ab sensible, or adjusable to this.
- the transfer cylinder 03; 07 moves while the forme cylinder 02; 11 in their fixed, possibly remain previously adjusted position.
- the forme cylinder 02; 11 but in corresponding devices, eg. B. in eccentric or Doppelexzenterbuchsen, in linear guides or levers to be stored.
- double eccentric bushings can be in the range of the pressure-on position AN a substantially linear travel 16, in the remainder of the pressure point 09 area, however, if necessary, generate a curved travel 17, which a faster or greater stopping of the transfer cylinder 03; 07 from the cooperating transfer cylinder 07; 03 as the associated forme cylinder 02; 11 or vice versa.
- eccentrics storage on page I and on page II of the double printing unit 13 is advantageous.
- Figures 5 and 7 to 11 are embodiments of the printing unit 01; 12 set forth, wherein at least one of the transfer cylinder 03; 07 along a linear travel path 16 is movable (Fig. 5).
- the linear travel 16 is effected by means not shown in Fig. 5 linear guides, which are arranged in or on in Fig. 5 also not shown side frame.
- the storage in a linear guide for the robust and low-vibration design preferably on page I and on page II of the double printing 13th
- the course of the web 08 is represented by the pressure point 09 located in the pressure on position AN.
- the plane E of the double printing unit 13 (FIG. 5) or the respective printing unit 01; 12 and the plane of the web 08 intersect in an advantageous embodiment at an angle ⁇ of 70 ° to 85 °.
- This choice of the angle ⁇ contributes to a safe and quick release of the web 08 and / or the parking of the transfer cylinder 03; 07 from each other with minimized travel 16 bill, and minimizes the other negative influences on the print result, which by the degree of a partial wrap of or the transfer cylinder 03; 07 (doubling, lubricating, etc.).
- the required linear travel 16 of each transfer cylinder 03; 07 less than or equal to 20 mm for the on / off of the transfer cylinder 03; 07 to each other / each other, for an exemption of the web 08 in an imprint operation, however, up to 35 mm.
- the direction of the linear travel 16 with the plane E forms an angle ⁇ which is substantially 90 °.
- the direction of the linear travel 16 forms with a plane of the incoming or outgoing web 08 in the region of an obtuse angle ⁇ between the web 08 and E plane an angle ⁇ .
- ⁇ 180 ° - ⁇ , where ⁇ z. B. at 5 to 20 °, in particular 7 to 13 °.
- the obtuse angle ⁇ is linear printing unit 01 and straight-ahead web 08 then preferably at 95 ° to 110 °.
- the angle ⁇ between the travel 16 and the plane of the web 08 is preferably greater than or equal to 5 °, z. B. between 5 ° and 30 °, in particular between 5 ° and 20 ° to choose.
- the particle ⁇ is in particular for forme cylinder 02; 11 simple circumference greater than or equal to 10 °.
- the angle ⁇ is limited upwards so that the angle ⁇ between the in the direction of the forme cylinder 02; 11 facing portion of the plane E and the direction of the Abstellweges 16 is at least 90 °. So is a quick and safe shutdown of the transfer cylinder 03; 07 simultaneously from the web 08 and the associated forme cylinder 02; 11 guaranteed.
- the direction of the travel 16 (in the direction of shutdown) is selected so that an angle ⁇ between the plane D and the travel 16 in the direction of shutdown at least 90 ° and at most 120 °, in particular from 90 ° to 115 ° is.
- the angle ⁇ is again limited upward such that the angle ⁇ is at least 90 °.
- the double printing unit 13 is multiply, as shown in Fig. 7, for example, twice, in a printing unit 19, z. B. a so-called. H-printing unit 19, in a common side frame 20 can be used.
- Fig. 7 has been dispensed with the separate name of the upper double printing unit 13 similar parts for the respective underlying double printing unit 13.
- In arrangement of all cylinders 02; 03; 07; 11 with a circumference which substantially corresponds to a length of a newspaper page can be saved in space, ie at a height h of the printing unit 19.
- this also applies to individual printing units 01; 12, for double-printing 13 and for differently configured printing units, which several printing units 01; 12 have.
- the priority instead of a saving in height h even with improved accessibility of the cylinder 02; 03; 07; 11, z. B. for the purpose of changing elevators, cleaning and washing, maintenance, etc., are.
- Fig. 7 indicates in dashed lines the transfer cylinder 03; 07 in a second possible position along the linear travel 16, wherein here, for example, the upper double printing unit 13, z. B. for the printing plate change, in the print-off position AB (solid), and the lower double printing unit 13, z. B. to the continued pressure, in the print-on position ON (solid) is operated.
- each of the printing units 01; 12 at least one own, but indicated in Fig. 7 only dashed lines drive motor 14 for the rotary drive of the cylinder 02; 03; 07; 11 on.
- z. B. spur gears, timing belt, etc. on the transfer cylinder 03; 07 is driven.
- the printing unit 01 has a high degree of flexibility in the various operating situations such as print run, registration, lift change, washing, web feed etc. 12 in one embodiment via its own, and mechanically independent of the other drives drive motor 14 per cylinder 02; 03; 07; 11 ( Figure 7, bottom).
- the drive by the drive motor 14 takes place in an advantageous embodiment in each case coaxially between the axis of rotation R02; R03; R07; R11 and motor shaft, possibly with an angle and / or offset compensating, explained in more detail below coupling. He may, if a "co-moving" of the drive motor 14 or a flexible coupling between the drive motor and the possibly to be moved cylinder 02; 03; 07; 11 is to be avoided, but also done via a pinion.
- FIGS. 8 and 9 A first exemplary embodiment for the realization of the linear travel 16 by means of a linear guide is shown in FIGS. 8 and 9.
- the pin 23 at least one of the transfer cylinder 03;
- bearing housings 24 designed as carriages 24 are rotatably mounted in radial bearings 27 (in FIGS. 8 and 9 only the arrangement in the region of an end face of cylinders 02, 03, 07, 11 is shown).
- the bearing housings 24 or slides 24 are movable in linear guides 26, which are connected to a side frame 20.
- two linear guides 26 are provided for guiding each bearing housing 24 or slide 24, which run parallel to each other.
- the linear guides 26 of two adjacent transfer cylinder 03; 07 are preferably parallel to each other.
- the linear guides 26 may be arranged in an embodiment, not shown, directly on walls of the side frame 20, in particular on walls of openings in the side frame 20, which almost perpendicular to the end face of the cylinder 02; 03; 07; 11 run.
- the side frame 20 in an opening an insert 28, z. B. a so-called. Bell 28, on.
- the linear guides 26 are arranged on or in this bell 28.
- the bell 28 has an area which in the direction of cylinder 02; 03; 07; 11 emerges from the alignment of the side frame 20.
- the linear guides 26 are arranged in or on this area of the bell 28.
- the distance of the two opposite side frames 20 (only one shown) is oriented i. d. R. on the widest aggregate, z. B. at the wider inking unit 21, and usually causes a correspondingly longer pin on the cylinders 02; 03; 07; 11.Previous of the o. G. Arrangement is that the pins of the cylinder 02; 03; 07; 11 can be kept as short as possible.
- the bell 28 has in a development on a cavity 29, which is at least partially disposed at the level of the alignment of the side frame 20.
- this cavity 29 as shown schematically in Figure 9, the rotary drives of the cylinder 02; 03; 07; 11 with the pins of the cylinder 02; 03; 07; 11 connected.
- Particularly advantageous pairwise drive the cylinder 02; 03; 07; 11 can also drive connections, such. B. co-acting drive wheels 30, are housed in this cavity 29.
- On the transfer cylinder 03; 07 can in an advantageous embodiment ( Figure 9) with frame-fixed drive motor 14 between transfer cylinder 03; 07 and drive motor 14 an angle and offset compensating coupling 61 may be arranged to the arrival and Abstellterrorism of the transfer cylinder 03; 07 balance.
- This can be designed as a double hinge 61 or in an advantageous embodiment as all-metal coupling 61 with two torsionally rigid but axially deformable plate packs.
- the all-metal coupling 61 can at the same time compensate for the offset and the resulting change in length. It is essential that the rotational movement is transmitted without play.
- the coupling 62 is designed as at least slight angle and offset compensating coupling 62. This is also carried out in an advantageous embodiment as all-metal coupling 62 with two torsionally rigid but axially deformable plate packs. The linear movement is absorbed by the disk packs connected in a form-fitting manner in the axial direction with the journal 51 or a shaft of the drive motor 14.
- the cavity 29 can be limited in a simple manner by means of a cover 31 (dashed), without this increasing the width of the machine or protruding from the side frame 20.
- the cavity 29 can then be carried out encapsulated.
- the arrangement of the bell 28 thus shortens the length of the pin, which results in a reduction of the vibration, and allows a simple and variable design, which is suitable for a variety of drive concepts, and largely identical in design, the change between the concepts - with or without drive connections, with or without lubricant, with or without additional couplings - allowed.
- the drive of the respective bearing housing 24 or slide 24 in the linear guides 26 takes place in the embodiment shown schematically in Fig. 8 z. B. by means of linear Drives 32, z. B. in each case a screw drive 32, z. B. a threaded spindle which is driven by an electric motor, not shown.
- the electric motor can be regulated in this case with respect to a rotational position.
- a frame-fixed, but adjustable stop for the bearing housing 24 may be provided.
- the drive of the bearing housing 24 can also be done by means of a lever mechanism. This can also be driven by means of an electric motor or by means of at least one pressurizable cylinder pressure cylinder. If the lever mechanism is driven by means of one or more cylinders which can be acted upon with pressure medium, the arrangement of a synchronizing spindle synchronizing the adjusting movement on the two sides I and II is advantageous.
- connection of the transfer cylinder 03 to be moved; 9 to the side frame 20 and the bell 28 is executed in the embodiment of FIG. 9 as follows:
- the bell 28 On both sides of leading to slide 24, the bell 28 has support walls 33 which receives one of the two corresponding parts of the linear guide 26. If necessary, this part can already be part of the supporting wall 33 or incorporated into it.
- the other corresponding part of the linear guide 26 is arranged on the carriage 24 or incorporated in this or having this.
- the carriage 24 is guided by two such, arranged on two opposite sides of the carriage 24 linear guides 26.
- the on the support walls 33 (or without bell 28 directly on the side frame 20) arranged parts of the guides 26 so include the arranged between them carriage 24.
- the active surfaces of the connected to the side frame 20 and the bell 28 parts of the linear guide 26 have in the Pin 23 facing half space.
- the two parts of the two guides 26 allow in the ideal state, a movement of the carriage 24 only with a degree of freedom as a linear movement.
- the entire arrangement is in a direction perpendicular to the axis of rotation R03; R07 and perpendicular to the direction of movement of the carriage 24 lying direction against each other clamped essentially free of play.
- the part of the guide which is close to the form cylinder (in FIG. 9 with a larger dimension) has a tensioning device (not shown).
- the mounted in the manner described slide 24 has, for. B. on a radially inwardly directed side of the transfer cylinder 03; 07 facing recess, the pin 23 receiving radial bearing 27.
- the active surfaces of the parts of the linear guide 26 connected to the side frame 20 or the bell 28 are in the half space facing away from the pin 23.
- these parts of the linear guide are arranged on a carrier 36 connected to the bell 28 (or the side frame 20).
- the carriage 24 has its associated parts of the linear guide 26 in a side frame 20 and the bell 28 facing recess. These parts may be arranged in the recess as components, or may already be incorporated in the carriage 24 in an inwardly directed surface of the recess.
- a running surface for rolling elements of the rolling bearing 27 designed as a radial bearing 27 is already incorporated in an inwardly directed surface of the recess.
- At least one of the two the transfer cylinder 03; 07 associated carrier 36 has in an advantageous embodiment, an oriented in the direction of movement of the carriage 24, not visible in the figures long hole for performing the pin 21 to be moved linearly.
- This slot is aligned at least in part with a likewise not visible, in the bell 28 (or in the associated side frame 20) arranged slot.
- These slots are penetrated by the pin 23 or connected to the pin 23 shaft, which for the rotary drive of the transfer cylinder 03; 07 is in drive connection with a drive wheel 30 (see FIG. 9) or the drive motor 14.
- Fig. 10 shows the embodiment of an executed as a lever mechanism actuating means.
- the carriage 24 is pivotally connected via a coupling 37 with a lever 38, which is about a substantially parallel to the axis of rotation R03; R07 of the transfer cylinder 03; 07 extending axis is pivotable.
- the synchronization of the adjusting movement of both transfer cylinders 03; 07, the coupling 37 of the two adjacent slide 24 for the co-operating transfer cylinder 03; 07 articulated with the here designed as a three-armed lever 38 lever 38.
- the drive of the lever 38 by means of at least one actuator 39, z. B.
- the arrangement of stops 41 is advantageous, against which the respective carriage 24 is placed in the print-on position ON.
- These stops are made adjustable to adjust the end position for the transfer cylinder 03; 07 to allow in which their axes of rotation R03; R07 come to lie in the plane E.
- the system becomes very stiff when the carriage 24 is pressed against the stop 41, or the stops 41 (in each case two in FIG. 10), with great force.
- Figures 8 to 11 may be provided an adjusting device, which, in particular during assembly and / or if Have changed configurations and / or conditions, a default setting for the distances of the axis of rotation R02; R03; R07; R11 allows.
- at least one of the transfer cylinder 03; 07 may be adjustable for adjustment in a radial direction.
- the parts of the linear guides 26 or the carrier 36 assigned to the side frame 20 or the bell 28 can be connected to the side frame 20 or the bell 28 in oblong holes which are sufficient for adjustment purposes.
- An eccentric and lockable mounting of the radial bearing 27 in the carriage 24 is possible.
- Figures 12 to 18 are examples of the printing unit 01; 12 set forth, wherein at least one of the transfer cylinder 03; 07 along a curved travel 17 is movable (Fig. 12).
- one of the transfer cylinder 03 is pivotally mounted about a pivot axis S.
- the pivot axis S is here z. B. in the plane E.
- the lever 18 in this case has a length between the mounting of the axis of rotation R03; R07 of the transfer cylinder 03; 07 and the pivot axis S on, which is greater than the distance of the rotation axis R03; R07 of the transfer cylinder 03; 07 from the axis of rotation R02; R11 of the associated forme cylinder 02; 11 in pressure ON position.
- This is a simultaneous shutdown of co-acting transfer cylinder 03; 07 and the associated forme cylinder 02; 11, and vice versa for hiring.
- pivot axis S can in particular also, as described in more detail below, in another way eccentric to the axis of rotation R02; R11 of the associated forme cylinder 02; 11, z. B. at a distance to the plane E, be arranged.
- the storage in a lever 18 is preferably carried out on page I and on page II of the double printing unit thirteenth
- the course of the web 08 is represented by the pressure point 09 located in the pressure on position AN.
- the plane E of the double printing unit 13 (FIG. 12) or of the respective printing unit 01; 12 (FIG. 13) and the plane of the web 08 also intersect here in an advantageous embodiment at an angle ⁇ of 70 ° to 85 °.
- the double printing unit 13 (here in a linear design) is multiply, as shown in Fig. 14, for example, twice, in a printing unit 19, z. B. the so-called. H-printing unit 19, in the common side frame 20 can be used.
- Fig. 14 has been dispensed with the separate name of the upper double printing unit 13 similar parts for the respective underlying double printing unit 13. For the advantages of this arrangement, reference is made to the comments on Fig. 7.
- Fig. 13 indicates by dashed lines (but oversubscribed for clarity) the transfer cylinder 03; 07 in a second possible position along the travel 17, wherein here, for example, the upper double printing unit 13, z. B. for printing form change, in the print-off position AB, and the lower double printing unit 13, z. B. for continued printing, is operated in the print-on position ON.
- each of the printing units 01; 12 at least one own drive motor 14 for the rotary drive of the cylinder 02; 03; 07; 11 on.
- the printing unit 01; 12 in a version with its own, mechanically independent of the other drives drive motor 14 per cylinder 02; 03; 07;
- FIG. 11 shows a high degree of flexibility (FIG. 14 shows a dashed line for upper double printing unit 13).
- FIG. 14 top or bottom
- the type of drive from FIG. 14 are shown by way of example and thus to the respective other printing units 01; 12 and the other double printing unit 13 to transfer.
- the drive by the drive motor 14 takes place in an advantageous embodiment in each case coaxially between the axis of rotation R02; R03; R07; R11 and motor shaft, possibly via the above already detailed, angle and / or offset compensating couplings 61; 62.
- the drive can, if a "co-moving" of the drive motor 14 or a flexible coupling between the drive motor and the possibly to be moved cylinder 02; 03; 07; 11 is to be avoided, but also done via a pinion.
- FIGS. 15 and 16 An example of the realization of the curved travel 17 by means of the lever 18 are shown in FIGS. 15 and 16.
- Fig. 15 shows a side view, wherein two of each frontally on the transfer cylinder 03; 07 (dashed) arranged pin 23 only one is visible.
- the lever 18 is pivotally mounted about the pivot axis S, which is preferably fixed relative to the side frame 20 (but possibly adjustable).
- the rotation axes R02; R03; R07; R11 of the cylinder 02 shown in broken lines; 03; 07; 11 lie in the illustrated embodiment in pressure-on position again in a plane E, which here with the plane D between the pressure point 09 forming cylinders 03; 07 coincides.
- the pivot axis S of the lever 18 is eccentric to the rotation axis R02; R11 of the forme cylinder 02; 11 and is located outside the plane E or D.
- a one- or multi-part coupling 46 for example via a lever or toggle mechanism 46 causes a Ab- or hiring the transfer cylinder 03; 07 at the same time from or to the associated forme cylinder 02; 11 and from or to the respective other transfer cylinder 07; 03.
- the toggle mechanism 46 is pivotally connected to the lever 18 and a frame-fixed pivot point. The advantageous manner double-acting pressure cylinder acts z.
- the drive and adjusting means 44; 46 are designed and arranged such that a shutdown of the transfer cylinder 03; 07 each in the direction of the obtuse angle ⁇ (for straight web run 180 ° - ⁇ ) takes place between web 08 and level D or E.
- the eccentricity e-S of the pivot axis S to the rotation axis R02; R11 of the forme cylinder 02; 11 is between 7 and 15 mm, in particular about 9 to 12 mm.
- the eccentricity e-S is in Anstelllage the transfer cylinder 03; 07, d. H. the rotation axes R03; R07 are in the o. G.
- the eccentric e-S z. B an angle of 12 to 52 °, advantageously 19 to 42 °, in particular 25 to 39 ° to the horizontal H.
- the rotation axis R02; R11 of the forme cylinder 02; 11 is adjustable, z. B. also eccentric to its attachment to the side frame 20, here to a bore 49, stored.
- a pin 51 of the forme cylinder 02; 11 in one Eccentric 52 and an eccentric bearing bush 52 is arranged, which is pivotally mounted in the bore 49.
- a pivot axis S51 of the forme cylinder 02; 11 is an eccentricity of 5 to 15 mm, in particular about 7 to 12 mm eccentric to the axis of rotation R02; R11 of the forme cylinder 02; 11 is located and lies outside the level E.
- the eccentricity e-S51 is in Anstelllage of form and associated transfer cylinder 02, 03; 11, 07, d. H.
- the axes of rotation R02, R03 and R11, R07 are in the plane E, oriented so that an angle ⁇ -S51 between the plane E of the pair of cylinders 02, 03 and 11, 07 and a connecting plane of the pivot axis S51 and the axis of rotation R02; R11 of the forme cylinder 02; 11 between 25 ° and 65 °, advantageously between 32 ° and 55 °, in particular between 38 ° and 52 °.
- the pivot axis S51 is preferably in a half-plane which is farther from the axis of rotation R03; R07 of the associated transfer cylinder 03; 07 as the rotation axis R02; R11 of the associated forme cylinder 02; 11 is located.
- the pivot axis S51 for the eccentric mounting of the forme cylinder 02; 11 coincides in the example with the pivot axis S of the lever 18.
- pivot axis S and S51 are not mandatory, but useful.
- the lever 18 could also be arranged on an eccentric flange of the journal 51 receiving bearing bushing 52, which, however, upon rotation, a simultaneous adjustment of the distances between Form 02; 11 and transfer cylinder 03; 07 and between the transfer cylinders 03; 07 would result.
- a second adjusting means 53 By means of a second adjusting means 53, the position of the forme cylinder 02; 11 corresponding to the desired position with respect to the plane E or in view of the required distance to the transfer cylinder 03; 07 for the pressure-on position by slight rotation of the eccentric 52 adjustable. This position is fixed, for example after adjustment by means not shown.
- At least the pins 23 are one of the two transfer cylinders 03; 07, here the transfer cylinder 07, adjustable. They are z. B. also eccentrically mounted in the associated lever 18.
- An eccentricity e-S23 of a pivot axis S-23 to the rotation axis R03; R07 of the transfer cylinder 03; 07 is between 1 and 4 mm, in particular about 2 mm.
- the eccentricity e-S23 is in Anstelllage the pressure point 09 forming cylinder 03; 07, d. H.
- the rotation axes R03; R07 lie in the plane D, oriented so that an angle ⁇ -S23 between the plane D and the connecting plane of the pivot axis S-23 and the axis of rotation R07 (R03) between 70 ° and 110 °, advantageously between 80 ° and 100 °, in particular between 85 ° and 95 °.
- the angle ⁇ -S23 should be about 90 °
- FIG. 16 shows an embodiment according to FIG. 15 in a representation of a section along the plane E.
- the pins 51 of the forme cylinder 02; 11 are each in bearings 54, z. B. bearings 54 rotatably mounted.
- the bearings 54 are arranged in the eccentric bearing 52 and eccentric bearing bush 52, which in turn is pivotally mounted in the bore 49 in the side frame 20. It In addition to the eccentric bushing 52 and the bearing 54 further bearing rings and sliding or rolling bearings between bore 49 and pin 51 may be arranged.
- the lever 18 is on a forme cylinder 02; 11 out of the side frame 20 projecting part of the bearing bush 52, and pivotally mounted relative to this.
- the lever 18 takes in its the pivot axis S far end of the pin 23 of the transfer cylinder 03; 07, which is arranged rotatably in a bearing 56, and this in the case of the transfer cylinder 07, about the pivot axis S-23 pivotable in an eccentric bearing 57 and in an eccentric bearing bush 57.
- Such a pivotable bushing 57 may, if necessary, for both transfer cylinder 03; 07 be arranged.
- the side frame 20 recesses 58, in which the pin 23 of the transfer cylinder 03; 07 are pivotable.
- the adjusting means 46; 53 and drive means 44 are not shown in Fig. 8.
- the rotary drive of the cylinder 02; 03; 07; 11 takes place by means of their own, mechanically from the drive of the other cylinder 02; 03; 07; 11 independent drive motors 14, which are preferably arranged fixed to the frame.
- the latter has the advantage that the drive motors 14 do not have to be moved.
- the angle and offset compensating coupling 61 is arranged between the transfer cylinder and the drive motor 14, which are designed as double joint 61 or in an advantageous embodiment as all-metal coupling 61.
- the all-metal coupling 61 simultaneously equalizes the offset and the change in length caused thereby, wherein the rotational movement is transmitted without play.
- the drive of the forme cylinder 02; 11 points between pin 51 and drive motor 14, the at least one axial relative movement between cylinder 02; 11 and drive motor 14 receiving coupling 62 which, in order to also manufacturing tolerances and possibly required adjustment movements of the forme cylinder 02; 11 to be able to accommodate adjustment purposes, at least slight angles and offset can be performed balancing.
- This is also carried out in an advantageous embodiment as all-metal coupling 62, which receives the axial movement through the form-fitting in the axial direction with the pin 51 and a shaft of the drive motor 14 plate packs.
- a pairwise drive may also be provided by the drive motor (possibly via further transmission parts not shown) by a pinion 59 on a drive wheel 60 of the transfer cylinder 03; 07, if, for example, a special moment flow is to be achieved.
- a rotation axis R59 of the pinion 59 is then preferably fixed to the frame such that a straight line G1 defined by the rotation axis R59 of the pinion 59 and the pivot axis S of the lever 18 coincides with one of the pivot axis S of the lever 18 and the rotation axis R03; R07 of the transfer cylinder 03; 07 defined plane E18 includes an opening angle ⁇ in the range of + 20 ° to -20 °.
- the aforementioned embodiments for driving and for moving the transfer cylinder 03; 07 and the execution of the lever 18 and the Linear guide 26 are equally applicable to printing units, in which the cylinder 02; 03; 07; 11 do not all have the same circumference or diameter (FIG. 19).
- the or the forme cylinder 02; 11 have a circumference U, which in the circumferential direction a pressure side, z. B. the long side of a newspaper page, has (hereinafter "single circumference").
- the cooperating transfer cylinder 03; 07 has z. B. a circumference or diameter, which an integer multiple (greater than 1) that of the forme cylinder 02; 11 corresponds, ie he has z. B. a scope of two or even three printed pages in the newspaper format (or adapted to other formats accordingly) on.
- an increased rigidity of the printing unit is also advantageously achieved. This is particularly advantageous in connection with cylinders 02; 03; 07; 11, which have a length corresponding to at least four or even six standing printed pages, especially newspaper pages.
- the cylinders 02; 03; 07; 11 can be driven for each embodiment as described either in pairs or individually by each having its own drive motor 14.
- a drive is possible, wherein one of the forme cylinder 02; 11 of a printing unit 01; 12 a separate drive motor 14, and the remaining cylinder 02; 03; 07; 11 of the printing unit 01; 12 have a common drive motor 14.
- a configuration of four or five cylinders 02; 03; 07; 11 with three drive motors 14 may be advantageous: In the case of a double printing unit 13 z. B.
- the four cylinders 02; 03; 07; 11 in pairs by a drive motor 14 depending on the requirements of the forme cylinder 02; 11 or from the transfer cylinder 03; 07 rotationally driven.
- Each forming a gear drive wheels 30 between the forme cylinder 02; 11 and the respective associated transfer cylinder 03; 07 each form a drive connection with the associated drive motor 14.
- the two pairs of drive wheels 30 are preferably arranged to one another so that they are disengaged, which takes place, for example, by axially staggered arrangement, ie in two drive levels.
- the latter also applies to a possibly arranged pinion between the drive motor 14 and the drive wheel of the forme cylinder 02; 11, when the pair on the forme cylinder 02; 11 is not driven coaxially.
- the drive situations respectively illustrated in FIGS. 9 and 11 are to be alternately transmitted to the two illustrated embodiments for the realization of the linear movement.
- the drive motors 14 are arranged fixed to the frame in an advantageous embodiment. If a cylinder 02; 03; 07; 11 driving drive motor 14 deviating from this, however, be arranged fixed to the cylinder, it can during the adjusting movement and / or adjustment of the cylinder 02; 03; 07; 11 in a variant also on a corresponding (or the same) guide or a corresponding lever, for. B. on an outer side of the side frame 20, be carried.
- the drive motor 14 is in each case advantageous as an electric motor, in particular as Asynchronous motor, synchronous motor or designed as a DC motor.
- a transmission 63 is arranged between each of the drive motors 14 and the driven cylinder 02; 03; 07; 11, a transmission 63 is arranged.
- This gear 63 may be connected to the drive motor 14 attachment gear 63, z. B. be a planetary gear 63. However, it may also be used as a gear reducer 63, e.g. B. pinion or belt and drive wheel, be executed.
- each transmission 63, z. B. as a single-capsulated attachment gear 63.
- the lubricant spaces thus generated are spatially limited and prevent the contamination of adjacent machine parts and contribute to the quality of the product.
- the respective forme cylinder 02; 11 associated inking unit 21 and, if available, the associated dampening unit 22 of a, independent from the drive of the printing cylinder actuator drive motor is driven in rotation.
- the inking unit 21 and the possibly existing dampening unit 22 each have their own Drive motor have.
- an anilox inking unit 21 it may be the anilox roller and, in the case of a roller inking unit 21, the one or more distribution cylinders may be driven individually or in groups in a rotary manner.
- the one or more distribution cylinders of a dampening unit 22 may or may be driven by rotation individually or in groups.
- a high variability has the double-width printing machine simple scope especially in the gradation of the possible page numbers in the product, in the so-called "fling". While the thickness per booklet (posture) for the double circumference and single width printing press in collective mode (ie, maximum product thickness) is merely can be varied in steps of four printed pages, the described double-width printing machine to a simple extent allows for a "side skip" of two pages (eg in newspaper printing). The product strength and in particular the "distribution" of the printed pages on different booklets of the overall product or products is considerably more flexible.
- the partial web is thus either guided onto a different former and / or folding apparatus corresponding to the corresponding partial web, or else it is turned on the flight of the latter.
- This is dependent on the mutually circumferentially offset channels 04; 06 of a cylinder 02; 03; 07; 11 in an advantageous embodiment by appropriate execution of the turning end (eg., Preset distances of the rods or the path sections) taken into account.
- the fine adjustment or regulation is made with the adjustment paths of the cut register control for the relevant sub-web and / or sub-web strand, in order to bring sub-webs of two different run levels to each other as required.
- the form cylinder 02; 11 can now be equipped in the circumferential direction with one and in the longitudinal direction with at least four stationary printed pages in the broadsheet format (FIG. 20).
- this form cylinder 02; 11 also optionally in the circumferential direction with two and in the longitudinal direction with at least four lying printing pages in tabloid format (FIG. 21) or in the circumferential direction with two and in the longitudinal direction with at least eight stationary printed pages in book format (FIG. 22) or in the circumferential direction with four and in the longitudinal direction with at least four horizontal printed pages in book format (FIG. 23) by means of one circumferential direction of the forme cylinder 02 and one longitudinal direction of which can be arranged on this flexible printing plate.
- the double printing unit is web width for a four-paged broadsheet width print page for making two one-ply broadsheet products with four printed pages in one product and four printed pages in the other or two printed pages in the one product and six Print pages in the other product is usable.
- a web width corresponding to three standing printed pages it is useful for making two single-ply broadsheet format products with four printed pages in one product and two printed pages in the other product.
- the double printing unit 13 at a four-standing printed pages in broadsheet format corresponding web width for the production of a two-layer product in broadsheet format with four printed pages in one layer and four printed pages in the other layer or two printed pages in one layer and six printed pages usable in the other situation.
- a three-sided printed pages corresponding web width it is for the production of a two-layer existing Product in broadsheet format with four printed pages in one layer and two printed pages in the other layer usable.
- the double printing unit 13 is at a four or three or two lying printing pages or a lying printing side corresponding web width for the production of one of a layer in the above order with sixteen or twelve or eight or four printed pages existing product in tabloid format usable.
- the double-printing unit is in a tabloid four-width printed pages corresponding web width for the production of two single-layer tabloid products with eight printed pages in one product and eight printed pages in the other product or four printed pages in the one product and twelve Print pages in the other product usable.
- a web width corresponding to three horizontal pages it can be used to make two single-ply tabloid products with four printed pages in one product and eight printed pages in the other.
- the double printing unit 13 it is possible to produce a book-sized product consisting of one layer in the preceding sequence with thirty-two or twenty-four or sixteen or eight printed pages in the case of eight or six or four or two stationary printed pages.
- the double-printing unit 13 is for the production of two single-sheet book-sized products having sixteen printed pages in one product and sixteen printed pages in the other product or twenty-four printed pages in the one product and eight Print pages in the other product usable.
- a six-page printed page in book-sized web width it is useful for making two single-book book sized products with sixteen printed pages in one product and eight printed pages in the other product.
- a four or three or two lying printing pages or a lying printed page in book format corresponding web width is the double printing unit 13 for the production of one of a layer in the above order with thirty-two or twenty four or sixteen or eight printed pages existing product in Book format usable.
- the double printing unit 13 is at a four-page printed pages in book format corresponding web width for the production of two single-layer products in book format with sixteen printed pages in one product and sixteen printed pages in the other product or twenty-four printed pages in the product and eight Print pages in the other product usable.
- a three-page printed page in book-sized web width it is for the production of two single-layer book-sized products with sixteen printed pages in one product and eight printed pages in the other
Landscapes
- Mechanical Engineering (AREA)
- Engineering & Computer Science (AREA)
- Rotary Presses (AREA)
- Feeding Of Articles By Means Other Than Belts Or Rollers (AREA)
- Supply, Installation And Extraction Of Printed Sheets Or Plates (AREA)
- Printing Methods (AREA)
- Handling Of Sheets (AREA)
- Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
- Character Spaces And Line Spaces In Printers (AREA)
- Inking, Control Or Cleaning Of Printing Machines (AREA)
- Sewing Machines And Sewing (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Bearings For Parts Moving Linearly (AREA)
- General Factory Administration (AREA)
- Screen Printers (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10117703 | 2001-04-09 | ||
DE10138221 | 2001-08-03 | ||
EP03103401A EP1375137B1 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie |
EP02740233A EP1377453B2 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03103401A Division EP1375137B1 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1775125A2 true EP1775125A2 (fr) | 2007-04-18 |
EP1775125A3 EP1775125A3 (fr) | 2007-12-19 |
EP1775125B1 EP1775125B1 (fr) | 2009-06-24 |
Family
ID=26009050
Family Applications (20)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02740232A Expired - Lifetime EP1377452B1 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie comportant un cylindre de transfert pouvant etre deplace lineairement |
EP02740233A Expired - Lifetime EP1377453B2 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie |
EP02742672A Expired - Lifetime EP1377455B1 (fr) | 2001-04-09 | 2002-04-06 | Element d'impression d'une machine a imprimer comportant un cylindre de transfert pivotant |
EP02742671A Expired - Lifetime EP1377454B1 (fr) | 2001-04-09 | 2002-04-06 | Element d'impression d'une machine a imprimer presentant un cylindre de transfert pivotant |
EP03103402A Withdrawn EP1375138A3 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie et procédé de réalisation d'un produit imprimé |
EP03103442A Withdrawn EP1378353A3 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie comportant un cylindre de transfert pivotant |
EP03103401A Expired - Lifetime EP1375137B1 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie |
EP03104076.9A Expired - Lifetime EP1393900B1 (fr) | 2001-04-09 | 2002-04-06 | Machine d'impression |
EP07101541A Expired - Lifetime EP1775125B1 (fr) | 2001-04-09 | 2002-04-06 | Imprimé d'une presse |
EP03103411A Withdrawn EP1371485A3 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie comportant un cylindre de transfert pouvant être déplacé linéairement |
EP03103443A Withdrawn EP1384579A3 (fr) | 2001-04-09 | 2002-04-06 | Elément d'impression d'une machine à imprimer comportant un cylindre de transfert pivotant |
EP05100307A Withdrawn EP1541347A3 (fr) | 2001-04-09 | 2002-04-06 | Unité d'impression d'une machine d'impression |
EP07101553A Expired - Lifetime EP1775123B1 (fr) | 2001-04-09 | 2002-04-06 | Imprimé d'une presse |
EP03103432A Withdrawn EP1378352A3 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie comportant un cylindre de transfert pivotant |
EP07101568A Withdrawn EP1782950A3 (fr) | 2001-04-09 | 2002-04-06 | Imprimé d'une presse comprenant des guidages linéaires |
EP02742673A Expired - Lifetime EP1377456B1 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie comportant un cylindre de transfert basculable |
EP03103416A Withdrawn EP1378350A3 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie comportant un cylindre de transfert pouvant être déplacé linéairement |
EP05101366A Expired - Lifetime EP1543964B1 (fr) | 2001-04-09 | 2002-04-06 | Unité d'impression pour une machine à imprimer |
EP03103407A Expired - Lifetime EP1375139B1 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie comportant un cylindre de transfert pouvant être déplacé linéairement |
EP03103427A Expired - Lifetime EP1378351B1 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie comportant un cylindre de transfert pivotant |
Family Applications Before (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02740232A Expired - Lifetime EP1377452B1 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie comportant un cylindre de transfert pouvant etre deplace lineairement |
EP02740233A Expired - Lifetime EP1377453B2 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie |
EP02742672A Expired - Lifetime EP1377455B1 (fr) | 2001-04-09 | 2002-04-06 | Element d'impression d'une machine a imprimer comportant un cylindre de transfert pivotant |
EP02742671A Expired - Lifetime EP1377454B1 (fr) | 2001-04-09 | 2002-04-06 | Element d'impression d'une machine a imprimer presentant un cylindre de transfert pivotant |
EP03103402A Withdrawn EP1375138A3 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie et procédé de réalisation d'un produit imprimé |
EP03103442A Withdrawn EP1378353A3 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie comportant un cylindre de transfert pivotant |
EP03103401A Expired - Lifetime EP1375137B1 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie |
EP03104076.9A Expired - Lifetime EP1393900B1 (fr) | 2001-04-09 | 2002-04-06 | Machine d'impression |
Family Applications After (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03103411A Withdrawn EP1371485A3 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie comportant un cylindre de transfert pouvant être déplacé linéairement |
EP03103443A Withdrawn EP1384579A3 (fr) | 2001-04-09 | 2002-04-06 | Elément d'impression d'une machine à imprimer comportant un cylindre de transfert pivotant |
EP05100307A Withdrawn EP1541347A3 (fr) | 2001-04-09 | 2002-04-06 | Unité d'impression d'une machine d'impression |
EP07101553A Expired - Lifetime EP1775123B1 (fr) | 2001-04-09 | 2002-04-06 | Imprimé d'une presse |
EP03103432A Withdrawn EP1378352A3 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie comportant un cylindre de transfert pivotant |
EP07101568A Withdrawn EP1782950A3 (fr) | 2001-04-09 | 2002-04-06 | Imprimé d'une presse comprenant des guidages linéaires |
EP02742673A Expired - Lifetime EP1377456B1 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie comportant un cylindre de transfert basculable |
EP03103416A Withdrawn EP1378350A3 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie comportant un cylindre de transfert pouvant être déplacé linéairement |
EP05101366A Expired - Lifetime EP1543964B1 (fr) | 2001-04-09 | 2002-04-06 | Unité d'impression pour une machine à imprimer |
EP03103407A Expired - Lifetime EP1375139B1 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie comportant un cylindre de transfert pouvant être déplacé linéairement |
EP03103427A Expired - Lifetime EP1378351B1 (fr) | 2001-04-09 | 2002-04-06 | Groupe d'impression d'une machine d'imprimerie comportant un cylindre de transfert pivotant |
Country Status (11)
Country | Link |
---|---|
US (7) | US7213513B2 (fr) |
EP (20) | EP1377452B1 (fr) |
JP (3) | JP2004527399A (fr) |
KR (1) | KR100564781B1 (fr) |
CN (2) | CN1297402C (fr) |
AT (11) | ATE340076T1 (fr) |
AU (3) | AU2002315636A1 (fr) |
DE (12) | DE50201368D1 (fr) |
ES (8) | ES2224071T3 (fr) |
RU (2) | RU2415016C2 (fr) |
WO (5) | WO2002081213A2 (fr) |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10117454A1 (de) * | 2001-04-06 | 2002-10-17 | Rexroth Indramat Gmbh | Verfahren zur Registerregelung |
ATE340076T1 (de) * | 2001-04-09 | 2006-10-15 | Koenig & Bauer Ag | Druckwerk einer druckmaschine mit einem linear bewegbaren übertragungszylinder |
DE10237205B4 (de) * | 2002-04-18 | 2009-02-12 | Koenig & Bauer Aktiengesellschaft | Aufzug auf einer Walze, Anordnungen der Walze zu einer zweiten Walze sowie Druckwerke einer Druckmaschine mit der Walze |
DE10249947A1 (de) * | 2002-10-26 | 2004-05-13 | Man Roland Druckmaschinen Ag | Druckwerk einer Rollenrotationsdruckmaschine für Zeitungsdruck |
US7521481B2 (en) * | 2003-02-27 | 2009-04-21 | Mclaurin Joanne | Methods of preventing, treating and diagnosing disorders of protein aggregation |
US7195073B2 (en) | 2003-05-01 | 2007-03-27 | Baker Hughes Incorporated | Expandable tieback |
DE10352614A1 (de) * | 2003-07-11 | 2005-02-10 | Koenig & Bauer Ag | Walze eines Farb- oder Feuchtwerkes |
GB2408719B (en) * | 2003-12-05 | 2006-08-09 | Roland Man Druckmasch | Web-fed rotary printing unit |
DE102004005890B4 (de) * | 2004-02-05 | 2007-04-05 | Man Roland Druckmaschinen Ag | Vorrichtung mit zwei übereinander angeordneten Trichtern zum Falzen einer Bahn |
JP4021856B2 (ja) * | 2004-02-06 | 2007-12-12 | 西研グラフィックス株式会社 | 輪転印刷機の印刷胴構造 |
US7096789B2 (en) * | 2004-05-04 | 2006-08-29 | Goss International Americas, Inc. | Web printing press and method for controlling print-to-cut and/or circumferential register |
US7104198B2 (en) * | 2004-03-08 | 2006-09-12 | Goss International Americas, Inc. | Printing blanket with convex outer print surface |
EP1900521A1 (fr) | 2004-04-05 | 2008-03-19 | Koenig & Bauer Aktiengesellschaft | Appareil de traitement des images et procédé de traitement des informations |
DE102004037888B4 (de) * | 2004-04-05 | 2008-09-04 | Koenig & Bauer Aktiengesellschaft | Druckeinheiten einer Rollenrotationsdruckmaschine |
WO2005097503A2 (fr) | 2004-04-05 | 2005-10-20 | Koenig & Bauer Aktiengesellschaft | Systemes d'entrainement d'une unite d'impression |
DE102004037889B4 (de) | 2004-04-05 | 2006-05-11 | Koenig & Bauer Ag | Vorrichtung zur Lagerung eines Zylinders und Druckeinheit mit wenigstens drei als Druckwerk zusammen wirkenden Zylindern |
ATE442958T1 (de) * | 2004-04-28 | 2009-10-15 | Koenig & Bauer Ag | Druckeinheit einer mehrfarbenrollenrotationsdruckmaschine sowie verfahren zu ihrer handhabung |
DE102004033920B4 (de) * | 2004-05-04 | 2006-11-02 | Koenig & Bauer Ag | Druckform einer Druckmaschine und Rollenrotationsdruckmaschine |
DE102004031029A1 (de) * | 2004-06-26 | 2006-01-19 | Man Roland Druckmaschinen Ag | Druckeinheit einer Rollenrotationsdruckmaschine |
DE102004034049A1 (de) * | 2004-07-13 | 2006-02-09 | Man Roland Druckmaschinen Ag | Formzylinder einer Rollenrotationsdruckmaschine |
DE102004038206A1 (de) * | 2004-08-05 | 2005-10-27 | Koenig & Bauer Ag | Lagereinheit eines Druckwerkzylinders sowie Druckeinheit |
DE102004040150A1 (de) * | 2004-08-19 | 2006-02-23 | Man Roland Druckmaschinen Ag | Druckeinheit sowie Farbwerk |
WO2006061432A1 (fr) * | 2004-12-10 | 2006-06-15 | Koenig & Bauer Aktiengesellschaft | Procede et dispositifs pour reduire les vibrations |
DE102005005302A1 (de) * | 2005-02-04 | 2006-08-10 | Koenig & Bauer Ag | Druckwerk einer Druckmaschine |
WO2006104828A2 (fr) * | 2005-03-30 | 2006-10-05 | Goss International Americas, Inc. | Mecanisme elevateur de cylindre porte-blanchet en porte-a-faux |
CN101163589B (zh) * | 2005-04-11 | 2010-05-19 | 高斯国际美洲公司 | 允许自动装版的具有单个电动机驱动的印刷单元 |
RU2371318C9 (ru) * | 2005-04-21 | 2011-01-10 | Кениг Унд Бауер Акциенгезельшафт | Печатные аппараты с по меньшей мере двумя взаимодействующими цилиндрами |
DE102005045985B4 (de) * | 2005-04-21 | 2012-11-29 | Koenig & Bauer Aktiengesellschaft | Druckeinheit und ein Verfahren zur Einstellung einer Druck-An-Stellung |
DE102006003005B3 (de) * | 2005-06-17 | 2006-11-23 | Koenig & Bauer Ag | Flexodruckmaschine |
DE102006003006B4 (de) | 2005-06-17 | 2014-01-23 | Koenig & Bauer Aktiengesellschaft | Verfahren zum Einstellen einer Druck-An-Stellung |
DE102005047661B4 (de) * | 2005-06-23 | 2008-07-10 | Koenig & Bauer Aktiengesellschaft | Antrieb eines rotierenden Bauteils einer Druckmaschine |
CN101378904B (zh) * | 2005-06-23 | 2011-04-27 | 柯尼格及包尔公开股份有限公司 | 印刷机具有端侧轴颈的旋转滚筒 |
FR2889822B1 (fr) * | 2005-08-19 | 2007-11-09 | Goss Int Montataire Sa | Unite d'impression a cylindre porte-blanchet mobile entre une position en-pression et une position hors-pression et presse d'impression correspondante. |
DE102005063395B4 (de) * | 2005-09-27 | 2014-03-27 | Koenig & Bauer Aktiengesellschaft | Vorrichtung zur Lagerung eines Zylinders |
DE102005045986B4 (de) * | 2005-09-27 | 2010-05-12 | Koenig & Bauer Aktiengesellschaft | Druckeinheit |
DE502005004466D1 (de) * | 2005-09-30 | 2008-07-31 | Gimaco Ing Ag | Rollenrotationsdruckmaschine |
DE102005050651A1 (de) | 2005-10-20 | 2007-04-26 | Schaeffler Kg | Direktantrieb einer Druckmaschine |
DE102005052497B4 (de) | 2005-10-31 | 2011-09-01 | Koenig & Bauer Aktiengesellschaft | Antrieb eines Zylinders einer Druckmaschine |
KR100658363B1 (ko) * | 2005-11-15 | 2006-12-15 | 평화산업주식회사 | Edpm류 호스의 부품번호 및 로트번호 인쇄장치 |
EP1806227A3 (fr) | 2006-01-09 | 2011-01-19 | Koenig & Bauer AG | Couple d'impression et unité d'impression d'une machine pouvant imprimer une largeur de six pages de journal |
DE102006030290B3 (de) * | 2006-03-03 | 2007-10-18 | Koenig & Bauer Aktiengesellschaft | Druckwerk |
DE102006011477B4 (de) * | 2006-03-13 | 2007-12-27 | Koenig & Bauer Aktiengesellschaft | Druckwerk mit einem geteilten Formzylinder |
DE102006020048A1 (de) | 2006-04-26 | 2007-10-31 | Man Roland Druckmaschinen Ag | Druckwerk einer Druckeinheit einer Druckmaschine |
DE102006020054A1 (de) * | 2006-04-29 | 2007-11-08 | Man Roland Druckmaschinen Ag | Rollenrotationsdruckmaschine |
EP2040926A4 (fr) * | 2006-07-19 | 2010-09-08 | Goss Int Americas Inc | Presse à imprimer à bobines dépourvue de lingot |
DE102006048286B4 (de) * | 2006-10-11 | 2011-07-07 | manroland AG, 63075 | Verfahren und Antrieb zum Antreiben eines Druckwerks mit einem Kurzfarbwerk in einer Verarbeitungsmaschine |
DE102006050552A1 (de) * | 2006-10-26 | 2008-04-30 | Man Roland Druckmaschinen Ag | Verfahren und Vorrichtung zur Kompensation lokaler, maschinenbedingter Einfärbungsfehler in einer Rotationsdruckmaschine |
DE102007006523B4 (de) * | 2006-12-21 | 2016-01-28 | Koenig & Bauer Ag | Betriebsweisen eines Druckwerkes einer Rotationsdruckmaschine |
JP4798799B2 (ja) * | 2007-08-20 | 2011-10-19 | Necエンジニアリング株式会社 | 版給排装置及びそれを用いた刷版作成装置 |
ATE459471T1 (de) * | 2007-09-27 | 2010-03-15 | Wifag Maschf Ag | Zylinder für ein druckwerk für variable papierbahnbreiten |
JP2009196269A (ja) * | 2008-02-22 | 2009-09-03 | Mitsubishi Heavy Ind Ltd | 輪転印刷機 |
DE102008013315A1 (de) | 2008-03-10 | 2009-09-17 | Gallus Druckmaschinen Gmbh | Druckwerk und Druckmaschine |
EP2367688B1 (fr) * | 2008-11-21 | 2019-07-03 | Goss International Americas, Inc. | Appareil d'alignement pour coupe variable et procédé d'alignement des cylindres d'impression pendant un changement de coupe |
DE102009002936A1 (de) * | 2009-05-08 | 2010-11-25 | Koenig & Bauer Aktiengesellschaft | Maschineneinheit einer Druckmaschine |
DE102009027142B4 (de) * | 2009-06-24 | 2013-02-07 | Koenig & Bauer Aktiengesellschaft | Rollenrotationsdruckmaschine und Verfahren zur Steuerung der Rollenrotationsdruckmaschine |
DE102009028214B4 (de) * | 2009-08-04 | 2016-06-02 | Kba-Meprint Ag | Positioniervorrichtung zweier Zylinder und ein Verfahren zur Positionierung von Zylindern |
DE102009029572B4 (de) * | 2009-09-18 | 2022-09-08 | Manroland Goss Web Systems Gmbh | Rollenrotationsdruckanlage für mehrfachbreite Bahnen mit einfachbreitem Falzapparat |
BR112012017082A8 (pt) * | 2010-01-14 | 2016-10-04 | Koenig & Bauer Ag | unidades de impressão para uma máquina de impressão com armações laterais no lado frontal |
DE102010000997B4 (de) | 2010-01-19 | 2014-02-27 | Koenig & Bauer Aktiengesellschaft | Druckeinheiten einer Druckmaschine |
DE102010002613A1 (de) * | 2010-03-05 | 2011-09-08 | Koenig & Bauer Aktiengesellschaft | Druckturm einer Druckmaschine und ein Verfahren zur Bereitstellung einer Standfläche eines Druckturms einer Druckmaschine |
CN101830100B (zh) * | 2010-05-22 | 2012-02-01 | 浙江宏华机械塑胶有限公司 | 印杯机自动对版部件 |
DE102011005546A1 (de) * | 2011-03-15 | 2012-09-20 | manroland sheetfed GmbH | Bogenverarbeitungsmaschine mit wenigstens einem Lackwerk und Verfahren zum Auftragwechsel |
DE102012206802B4 (de) * | 2012-04-25 | 2015-04-02 | Koenig & Bauer Aktiengesellschaft | Druckeinheit mit wenigstens zwei mechanisch unabhängig voneinander angetriebenen, ein Doppeldruckwerk ausbildenden Druckwerken |
EP2774759A1 (fr) * | 2013-03-07 | 2014-09-10 | KBA-NotaSys SA | Cylindre porte-forme d'une presse d'impression rotative à feuilles pour la production de billets de banque et de titres similaires |
DE102013212917B4 (de) | 2013-07-03 | 2017-03-16 | Koenig & Bauer Ag | Formzylinder einer Rotationsdruckmaschine sowie Druckwerk |
CN109572180A (zh) * | 2019-01-24 | 2019-04-05 | 万国纸业太阳白卡纸有限公司 | 设备拼接式印刷方法、印刷装置及图文防伪纸的生产装置 |
CN113427896B (zh) * | 2021-06-29 | 2022-04-19 | 东莞市普隆电子有限公司 | 一种电容器加工用印刷设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1096950A (en) | 1964-01-29 | 1967-12-29 | Alfred Windmoeller | Printing machine |
EP0764523A1 (fr) | 1995-09-19 | 1997-03-26 | MAN Roland Druckmaschinen AG | Dispositif d'impression pour l'impression indirecte |
US5868071A (en) | 1997-09-02 | 1999-02-09 | Goss Graphic Systems, Inc. | Variable cutoff printing press |
EP1075945A1 (fr) | 1999-08-10 | 2001-02-14 | MAN Roland Druckmaschinen AG | Machine d'impression |
DE19937796A1 (de) | 1999-08-10 | 2001-02-15 | Roland Man Druckmasch | Druckwerk |
Family Cites Families (122)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US425971A (en) * | 1890-04-15 | baird | ||
US581336A (en) * | 1897-04-27 | Pattern-matching m echanisiv | ||
DE674128C (de) | 1935-05-23 | 1939-04-05 | Dresden Leipziger Schnellpress | Lagerung eines Bildzylinders, insbesondere fuer Rotationstiefdruckmaschinen |
GB674128A (en) | 1949-08-12 | 1952-06-18 | Martin Littman | Improvements in wear resistant materials |
CH345906A (de) | 1956-10-24 | 1960-04-30 | Winkler Fallert & Co Maschf | Verfahren und Einrichtung für einen stossfreien Druckablauf an Rotationsmaschinen |
FR1257397A (fr) | 1960-05-17 | 1961-03-31 | Winkler Maschf | Dispositif de réglage de la pression d'impression pour machines à imprimer notamment pour machines rotatives d'impression en taille douce, et machine équipée de ce dispositif ou d'un dispositif similaire |
US3272122A (en) * | 1961-03-21 | 1966-09-13 | Publication Corp | Method of adjusting a foreshortened impression roller |
US3166013A (en) * | 1961-12-15 | 1965-01-19 | Graphic Controls Corp | Expansible cylinder for rotary printing press |
US3230879A (en) * | 1963-08-06 | 1966-01-25 | Wood Newspaper Mach Corp | Underside tension lockup apparatus |
US3335663A (en) * | 1964-08-12 | 1967-08-15 | Miehle Goss Dexter Inc | Plate lockup for reversible plate cylinder |
US3552313A (en) * | 1968-10-07 | 1971-01-05 | Heidelberger Druckmasch Ag | Cylinder controlling and interrupter structure for printing presses |
US3611924A (en) * | 1969-10-23 | 1971-10-12 | Nat Productive Machines Inc | Rotary offset printing press with cylinder interrupter |
US4056056A (en) * | 1973-03-21 | 1977-11-01 | De La Rue Giori S.A. | Rotary printing press |
US3986454A (en) * | 1973-07-09 | 1976-10-19 | Granger Wallace H | Multi-purpose side frames for rotary printing press |
US3942782A (en) | 1974-03-15 | 1976-03-09 | Rockwell International Corporation | Compensating former fold |
GB1476707A (en) | 1974-06-28 | 1977-06-16 | Rockwell International Corp | Printing plate arrangement |
JPS5931467B2 (ja) * | 1977-04-27 | 1984-08-02 | 株式会社東京機械製作所 | 輪転印刷機における版胴装置 |
US4125073A (en) | 1977-11-09 | 1978-11-14 | Rockwell International Corporation | Impact damping of printing cylinders |
CA1117673A (fr) * | 1977-12-29 | 1982-02-02 | Hajime Shichijo | Bloc d'accord |
US4411194A (en) * | 1978-01-03 | 1983-10-25 | North Shore Precision Research Corporation | Printing press |
US4309945A (en) * | 1978-04-03 | 1982-01-12 | Maryland Cup Corporation | Flexographic printing unit |
US4233898A (en) | 1978-06-23 | 1980-11-18 | Dahlgren Manufacturing Company | Reversible newspaper press |
JPS5539865A (en) | 1978-09-14 | 1980-03-21 | Aisan Ind Co Ltd | Deceleration display device of car |
JPS5713561A (en) | 1980-06-27 | 1982-01-23 | Hitachi Ltd | Memory device |
JPS5727631A (en) * | 1980-07-21 | 1982-02-15 | Hiihaisuto Seikou Kk | Ball slide way |
US4388953A (en) * | 1980-07-30 | 1983-06-21 | Osawa Press Mdg., Co., Ltd. | Method of and apparatus for twisting wire end |
JPS5798361A (en) | 1980-12-11 | 1982-06-18 | Idemitsu Petrochem Co Ltd | Printing machine |
JPS57107842A (en) | 1980-12-26 | 1982-07-05 | Dainippon Printing Co Ltd | Attaching method of sleeve plate to printing roll in gravure printing |
JPS57131561A (en) | 1981-02-09 | 1982-08-14 | Komori Printing Mach Co Ltd | Rotary printing press |
DE3119398C2 (de) * | 1981-05-15 | 1984-05-30 | M.A.N.- Roland Druckmaschinen AG, 6050 Offenbach | Vorrichtung zur Einstellung der Länge einer zu bedruckenden Bahn in einer Rollenrotationsdruckmaschine |
US4407198A (en) * | 1982-04-15 | 1983-10-04 | M.A.N.-Roland Druckmaschinen Aktiengesellschaft | Arrangement for securing pure skew adjustment of a plate cylinder in a sheet-fed rotary printing press |
US4505415A (en) | 1982-09-20 | 1985-03-19 | Interlake, Inc. | Wire loop stitching machine head |
GB2146291B (en) * | 1983-09-14 | 1987-10-14 | Grace W R & Co | Rotary printing press |
DE3412812C1 (de) * | 1984-04-05 | 1985-06-27 | M.A.N.- Roland Druckmaschinen AG, 6050 Offenbach | Schaltvorrichtung fuer die Gummituchzylinder eines Druckwerkes fuer eine Rollenrotations-Offsetdruckmaschine |
JPS60225799A (ja) | 1984-04-25 | 1985-11-11 | Toppan Printing Co Ltd | 印刷ブランケツト |
DD224662A1 (de) * | 1984-05-31 | 1985-07-10 | Orgreb Inst Kraftwerke | Verfahren zur diskontinuierlichen steuerung von probenahmen aus schuettguetern |
DE3441175C2 (de) * | 1984-11-10 | 1987-01-22 | Albert-Frankenthal Ag, 6710 Frankenthal | Gummituchzylinder für eine Offsetdruckmaschine |
US4643090A (en) * | 1985-02-26 | 1987-02-17 | Harris Graphics Corporation | Printing press and method |
JPS6278264A (ja) | 1985-09-28 | 1987-04-10 | 財団法人日本綿業技術・経済研究所 | 綿糸紡績用処理剤 |
JPS62144632A (ja) | 1985-12-20 | 1987-06-27 | キヤノン株式会社 | 自動視力計 |
JPS62159633A (ja) | 1985-12-25 | 1987-07-15 | ハワ−ド エム・ア−ネソン | 物品の磨き装置とその方法 |
DD260893A1 (de) * | 1987-06-22 | 1988-10-12 | Polygraph Leipzig | An- und abstellvorrichtung fuer die gummituchzylinder eines vier-zylinder-druckwerks fuer eine rollenrotations-offsetdruckmaschine |
US4974512A (en) * | 1988-05-26 | 1990-12-04 | Nu-Graphics Equipment, Inc. | Magnetic rotary locking and tensioning mechanism |
DE3825652A1 (de) | 1988-07-28 | 1990-02-01 | Bhs Bayerische Berg | Flexodruckmaschine |
DE3825600A1 (de) | 1988-07-28 | 1990-02-08 | Roland Man Druckmasch | Rollenrotations-druckmaschine fuer spannkanallosen endlosdruck |
JPH02196658A (ja) | 1989-01-25 | 1990-08-03 | Toshiba Mach Co Ltd | 印刷機の版胴とブランケット胴におけるギャップ形状およびブランケット金具 |
JP2651720B2 (ja) | 1989-03-18 | 1997-09-10 | 株式会社東京機械製作所 | 輪転印刷機におけるスポット印刷方法及びスポット印刷用ブランケット胴 |
DE8903980U1 (de) * | 1989-04-01 | 1989-05-18 | Ina Waelzlager Schaeffler Kg, 8522 Herzogenaurach | Wälzgelagerte Linearführungseinheit |
US5272975A (en) * | 1990-04-25 | 1993-12-28 | Man Roland Druckmaschinen Ag | Throw-on/throw-off device for a blanket cylinder with a printing speed dependent control system for a sheet-fed offset press |
CH684637A5 (de) | 1990-04-27 | 1994-11-15 | Ferag Ag | Einrichtung mit einer Rotationsdruckmaschine zur Herstellung von mehrblättrigen gefalteten Druckprodukten. |
DE4103160C2 (de) * | 1991-02-02 | 1994-09-08 | Roland Man Druckmasch | Falzapparat mit einem verstellbare Elemente, insbesondere Falzklappen oder bogenförmige Segmente, aufweisenden Falzwerkzylinder |
JPH0773908B2 (ja) * | 1991-06-21 | 1995-08-09 | 株式会社東京機械製作所 | 輪転印刷機 |
DE9109833U1 (de) | 1991-08-08 | 1991-09-19 | MAN Roland Druckmaschinen AG, 6050 Offenbach | Druckwerk für eine Offsetdruckmaschine |
DE4204254C2 (de) * | 1992-02-13 | 1995-03-16 | Koenig & Bauer Ag | Einrichtung zum Längsfalzen mehrerer gleichbreiter Papierbahnen in einer Rollenrotationsdruckmaschine |
US5418845A (en) * | 1992-05-28 | 1995-05-23 | At&T Corp. | Arrangement for obtaining information from a switching system database by an adjunct processor |
US5265529A (en) * | 1992-06-09 | 1993-11-30 | A. B. Dick Company | Single piston impression cylinder throw-off |
US5235910A (en) * | 1992-07-07 | 1993-08-17 | A. B. Dick Company | Blanket cylinder impression throw-off |
JP3028992B2 (ja) | 1992-07-23 | 2000-04-04 | 株式会社神戸製鋼所 | 冷間圧延機用の油切りロール |
DE4337554A1 (de) * | 1992-12-16 | 1994-06-23 | Heidelberger Druckmasch Ag | Lithographische Offsetdruckmaschine |
US5301609A (en) | 1993-03-04 | 1994-04-12 | Heidelberg Harris Inc. | Printing unit with skew and throw-off mechanisms |
US5329849A (en) * | 1993-06-11 | 1994-07-19 | Beloit Technologies, Inc. | Self-loading controlled crown roll |
US5370047A (en) | 1993-12-01 | 1994-12-06 | Paper Converting Machine Company | Flexographic press adapted for short runs and method |
US5419248A (en) * | 1994-03-09 | 1995-05-30 | Heidelberg Druckmaschinen Ag | Adjustable alignment device for printing plates |
DE4408025A1 (de) * | 1994-03-10 | 1995-09-14 | Koenig & Bauer Ag | Druckwerk für eine Mehrfarbenrollenrotationsdruckmaschine |
DE4415711A1 (de) * | 1994-05-04 | 1995-11-09 | Roland Man Druckmasch | Druckeinheit für Gummi-Gummi-Druck |
JP3501844B2 (ja) * | 1994-05-06 | 2004-03-02 | 株式会社小森コーポレーション | 胴着脱装置 |
DE4419217A1 (de) | 1994-06-01 | 1995-12-07 | Roland Man Druckmasch | Doppeltrichterfalzapparat |
DE9421284U1 (de) * | 1994-06-21 | 1995-08-10 | Koenig & Bauer AG, 97080 Würzburg | Rollenrotationsoffsetdruckmaschine mit Brückdruckeinheiten für Mehrfarbendruck |
DE4430693B4 (de) * | 1994-08-30 | 2005-12-22 | Man Roland Druckmaschinen Ag | Antriebe für eine Rollenrotations-Offsetdruckmaschine |
DE4435986C2 (de) * | 1994-10-08 | 1997-04-24 | Heidelberger Druckmasch Ag | Vorrichtung zum An- und Abstellen eines Gummituchzylinders einer Rotationsdruckmaschine |
DE19513378A1 (de) * | 1995-04-08 | 1996-10-10 | Roland Man Druckmasch | Vorrichtung zur Druckan- und -abstellung |
DE19515692A1 (de) * | 1995-04-28 | 1996-10-31 | Heidelberger Druckmasch Ag | Stellvorrichtung für einen Gummituchzylinder |
US5535675A (en) * | 1995-05-05 | 1996-07-16 | Heidelberger Druck Maschinen Ag | Apparatus for circumferential and lateral adjustment of plate cylinder |
IT1282385B1 (it) | 1995-05-05 | 1998-03-20 | Koenig & Bauer Albert Ag | Dispositivo per fissaggio di una unita' di tessuto gommato su un cilindro di una macchina da stampa rotativa |
DE29507523U1 (de) † | 1995-05-05 | 1995-07-06 | Albert-Frankenthal Ag, 67227 Frankenthal | Vorrichtung zum Befestigen einer Gummitucheinheit auf einem Gummizylinder |
DE19516653C1 (de) | 1995-05-05 | 1996-09-19 | Wifag Maschf | Rotationsdruckmaschine mit abschwenkbaren Gummizylindern |
US5813336A (en) * | 1995-12-22 | 1998-09-29 | Heidelberger Druckmaschinen Ag | Printing unit with axially removable printing sleeves |
DE19603663A1 (de) | 1996-02-02 | 1997-08-07 | Roland Man Druckmasch | Druckwerk für den fliegenden Druckplattenwechsel |
DE19614397C2 (de) * | 1996-04-12 | 2001-04-26 | Roland Man Druckmasch | Antrieb mit Registervorrichtung für eine Druckeinheit einer Rollenrotationsdruckmaschine |
US6293194B1 (en) * | 1996-05-07 | 2001-09-25 | Heidelberg Harris Inc. | Method and apparatus for adjusting the circumferential register in a web-fed rotary printing press having a plate cylinder with a sleeve-shaped printing plate |
DE19624393A1 (de) * | 1996-06-19 | 1998-01-02 | Roland Man Druckmasch | Fliegend gelagerte Druckwerkzylinder |
JPH1071694A (ja) | 1996-08-30 | 1998-03-17 | Mitsubishi Heavy Ind Ltd | 印刷胴 |
JP3276861B2 (ja) | 1996-09-03 | 2002-04-22 | 日立ビアメカニクス株式会社 | 輪転印刷機の圧胴移動装置 |
EP0862999B1 (fr) * | 1997-03-04 | 2002-02-06 | MAN Roland Druckmaschinen AG | Presse à bobines pour un changement de production rapide |
US6374731B1 (en) * | 1997-04-18 | 2002-04-23 | Heidelberger Druckmaschinen Ag | Lithographic newspaper printing press |
DE59801029D1 (de) | 1997-04-18 | 2001-08-23 | Heidelberger Druckmasch Ag | Rollenrotations-Zeitungsdruckmaschine |
DE19720952C2 (de) | 1997-05-17 | 2001-02-01 | Roland Man Druckmasch | Schwenkbarer, durch einen elektrischen Einzelantrieb angetriebener Zylinder |
DE19724765A1 (de) * | 1997-06-12 | 1998-12-17 | Roland Man Druckmasch | Antrieb für ein Druckwerk einer Rotationsdruckmaschine |
DE19732330C2 (de) * | 1997-07-28 | 2001-04-19 | Koenig & Bauer Ag | Antrieb für eine Druckeinheit |
DE19743111C2 (de) * | 1997-09-30 | 2001-11-29 | Roland Man Druckmasch | Vorrichtung und Verfahren zum Verschieben von zwei Türen einer Seitenwand eines Druckwerkes |
WO1999029518A1 (fr) * | 1997-12-05 | 1999-06-17 | Bruno Berger | Dispositif comportant un magasin de supports de signes et un magasin revolver pour imprimer par estampage des signes distinctifs sur des parties mobiles |
DE19755316C2 (de) | 1997-12-12 | 1999-10-07 | Koenig & Bauer Ag | Antrieb für Zylinder einer Druckeinheit |
US6435092B1 (en) * | 1997-12-16 | 2002-08-20 | Koenig & Bauer Aktiengesellschaft | Method of producing a newspaper |
DE19803809A1 (de) * | 1998-01-31 | 1999-08-05 | Roland Man Druckmasch | Offsetdruckwerk |
DE19805898C2 (de) * | 1998-02-13 | 2003-09-18 | Roland Man Druckmasch | Druckwerk für eine Rollenrotationsdruckmaschine |
US6297538B1 (en) * | 1998-03-23 | 2001-10-02 | The University Of Delaware | Metal-insulator-semiconductor field effect transistor having an oxidized aluminum nitride gate insulator formed on a gallium nitride or silicon substrate |
IT1299666B1 (it) * | 1998-05-05 | 2000-03-24 | Uteco Spa Roto Flexo & Convert | Macchina rotativa flessografica a tamburo centrale a piu' colori |
DE19833468C2 (de) | 1998-07-24 | 2000-05-18 | Koenig & Bauer Ag | Druckwerke |
US6125757A (en) * | 1998-10-19 | 2000-10-03 | Heidelberger Druckmaschinen Ag | Method and apparatus for performing a flying printing plate change |
US6205926B1 (en) * | 1998-10-23 | 2001-03-27 | Heidelberger Druckmaschinen Ag | Method for on the run plate changes in offset web-fed press |
EP1000737B1 (fr) * | 1998-11-06 | 2002-03-13 | Fischer & Krecke Gmbh & Co. | Machine d'impression |
DE19853114B4 (de) * | 1998-11-18 | 2010-01-28 | Manroland Ag | Doppeldruckwerk einer Rotationsdruckmaschine |
DE19856906A1 (de) * | 1998-12-10 | 2000-06-15 | Roland Man Druckmasch | Doppeldruckwerk einer Rotationsdruckmaschine |
DE19911180C2 (de) | 1999-03-12 | 2001-02-01 | Koenig & Bauer Ag | Druckwerk für eine Rotationsdruckmaschine |
DE19937804A1 (de) * | 1999-08-10 | 2001-02-15 | Roland Man Druckmasch | Druckwerk |
DE19937805A1 (de) * | 1999-08-10 | 2001-02-15 | Roland Man Druckmasch | Druckwerk |
DE19937803A1 (de) * | 1999-08-10 | 2001-02-15 | Roland Man Druckmasch | Druckwerk |
JP3182140B2 (ja) * | 1999-09-14 | 2001-07-03 | 株式会社東京機械製作所 | 多色刷平版輪転機における胴逃がし・胴入れ制御装置 |
EP1970197B1 (fr) * | 1999-12-02 | 2010-11-17 | Koenig & Bauer AG | Procédé de contrôle d'affichage, et appareil d'affichage et système d'affichage l'utilisant |
JP3365553B2 (ja) * | 1999-12-15 | 2003-01-14 | 株式会社東京機械製作所 | オフセット印刷用印刷胴 |
DE10057571B4 (de) * | 1999-12-16 | 2012-01-26 | Heidelberger Druckmaschinen Ag | Verfahren zur Zylinderverstellung und Druckmaschinen zur Durchführung des Verfahrens |
DE19961574A1 (de) | 1999-12-21 | 2001-07-19 | Koenig & Bauer Ag | Zylinder einer Rollenrotationsdruckmaschine |
DE10008215B4 (de) * | 2000-02-23 | 2013-03-28 | Manroland Web Systems Gmbh | Druckwerk für eine Rotationsdruckmaschine mit Kreuzschlitten |
DE10008216A1 (de) | 2000-02-23 | 2001-08-30 | Roland Man Druckmasch | Druckwerk mit Bebilderungsvorrichtung für eine Rotationsdruckmaschine |
DE10020910B4 (de) | 2000-04-28 | 2005-04-21 | Koenig & Bauer Ag | Vorrichtung für registerhaltiges Aufziehen eines Aufzuges auf einen Zylinder |
JP4056682B2 (ja) * | 2000-07-11 | 2008-03-05 | 富士フイルム株式会社 | 平版印刷版用支持体 |
DE10103631A1 (de) | 2001-01-27 | 2002-08-01 | Roland Man Druckmasch | Rollenrotationsdruckmaschine |
ATE340076T1 (de) * | 2001-04-09 | 2006-10-15 | Koenig & Bauer Ag | Druckwerk einer druckmaschine mit einem linear bewegbaren übertragungszylinder |
US6786144B2 (en) * | 2001-05-30 | 2004-09-07 | New Gencoat, Inc. | Wringer roller system |
CN1781703A (zh) * | 2001-08-03 | 2006-06-07 | 柯尼格及包尔公开股份有限公司 | 印刷机的印刷装置 |
DE10145322A1 (de) | 2001-09-14 | 2003-04-03 | Ina Schaeffler Kg | Lageranordnung für Zylinder, Walzen oder Trommeln |
JP2006124068A (ja) | 2004-10-27 | 2006-05-18 | Hitachi Building Systems Co Ltd | 自動運転式エスカレーター |
-
2002
- 2002-04-06 AT AT03103407T patent/ATE340076T1/de not_active IP Right Cessation
- 2002-04-06 EP EP02740232A patent/EP1377452B1/fr not_active Expired - Lifetime
- 2002-04-06 AT AT05101366T patent/ATE433862T1/de not_active IP Right Cessation
- 2002-04-06 AT AT03103401T patent/ATE358018T1/de not_active IP Right Cessation
- 2002-04-06 DE DE50201368T patent/DE50201368D1/de not_active Expired - Lifetime
- 2002-04-06 ES ES02742672T patent/ES2224071T3/es not_active Expired - Lifetime
- 2002-04-06 ES ES03103401T patent/ES2281603T3/es not_active Expired - Lifetime
- 2002-04-06 EP EP02740233A patent/EP1377453B2/fr not_active Expired - Lifetime
- 2002-04-06 AT AT02742671T patent/ATE271465T1/de not_active IP Right Cessation
- 2002-04-06 AT AT02742672T patent/ATE271973T1/de not_active IP Right Cessation
- 2002-04-06 EP EP02742672A patent/EP1377455B1/fr not_active Expired - Lifetime
- 2002-04-06 RU RU2005120377/21A patent/RU2415016C2/ru not_active IP Right Cessation
- 2002-04-06 ES ES07101541T patent/ES2325639T3/es not_active Expired - Lifetime
- 2002-04-06 ES ES02742671T patent/ES2224070T3/es not_active Expired - Lifetime
- 2002-04-06 AU AU2002315636A patent/AU2002315636A1/en not_active Abandoned
- 2002-04-06 CN CNB028115848A patent/CN1297402C/zh not_active Expired - Fee Related
- 2002-04-06 EP EP02742671A patent/EP1377454B1/fr not_active Expired - Lifetime
- 2002-04-06 AT AT03103427T patent/ATE433859T1/de not_active IP Right Cessation
- 2002-04-06 AT AT02740232T patent/ATE270613T1/de not_active IP Right Cessation
- 2002-04-06 DE DE50213659T patent/DE50213659D1/de not_active Expired - Lifetime
- 2002-04-06 DE DE50213618T patent/DE50213618D1/de not_active Expired - Fee Related
- 2002-04-06 EP EP03103402A patent/EP1375138A3/fr not_active Withdrawn
- 2002-04-06 AT AT02740233T patent/ATE280042T1/de active
- 2002-04-06 EP EP03103442A patent/EP1378353A3/fr not_active Withdrawn
- 2002-04-06 DE DE50200714T patent/DE50200714D1/de not_active Expired - Fee Related
- 2002-04-06 EP EP03103401A patent/EP1375137B1/fr not_active Expired - Lifetime
- 2002-04-06 EP EP03104076.9A patent/EP1393900B1/fr not_active Expired - Lifetime
- 2002-04-06 EP EP07101541A patent/EP1775125B1/fr not_active Expired - Lifetime
- 2002-04-06 WO PCT/DE2002/001267 patent/WO2002081213A2/fr active IP Right Grant
- 2002-04-06 AT AT07101541T patent/ATE434520T1/de not_active IP Right Cessation
- 2002-04-06 WO PCT/DE2002/001266 patent/WO2002081218A2/fr active IP Right Grant
- 2002-04-06 AT AT07101553T patent/ATE435120T1/de not_active IP Right Cessation
- 2002-04-06 WO PCT/DE2002/001264 patent/WO2002081216A2/fr not_active Application Discontinuation
- 2002-04-06 EP EP03103411A patent/EP1371485A3/fr not_active Withdrawn
- 2002-04-06 EP EP03103443A patent/EP1384579A3/fr not_active Withdrawn
- 2002-04-06 DE DE10215261A patent/DE10215261A1/de not_active Withdrawn
- 2002-04-06 ES ES02740232T patent/ES2220895T3/es not_active Expired - Lifetime
- 2002-04-06 EP EP05100307A patent/EP1541347A3/fr not_active Withdrawn
- 2002-04-06 DE DE50208204T patent/DE50208204D1/de not_active Expired - Lifetime
- 2002-04-06 AT AT02742673T patent/ATE270614T1/de not_active IP Right Cessation
- 2002-04-06 RU RU2003132536/12A patent/RU2263029C2/ru not_active IP Right Cessation
- 2002-04-06 AU AU2002338304A patent/AU2002338304A1/en not_active Abandoned
- 2002-04-06 ES ES02742673T patent/ES2220896T3/es not_active Expired - Lifetime
- 2002-04-06 US US10/473,147 patent/US7213513B2/en not_active Expired - Fee Related
- 2002-04-06 WO PCT/DE2002/001263 patent/WO2002081215A2/fr not_active Application Discontinuation
- 2002-04-06 DE DE50200604T patent/DE50200604D1/de not_active Expired - Fee Related
- 2002-04-06 EP EP07101553A patent/EP1775123B1/fr not_active Expired - Lifetime
- 2002-04-06 DE DE50209830T patent/DE50209830D1/de not_active Expired - Lifetime
- 2002-04-06 EP EP03103432A patent/EP1378352A3/fr not_active Withdrawn
- 2002-04-06 ES ES02740233T patent/ES2229152T5/es not_active Expired - Lifetime
- 2002-04-06 DE DE50213624T patent/DE50213624D1/de not_active Expired - Lifetime
- 2002-04-06 US US10/473,148 patent/US7156018B2/en not_active Expired - Fee Related
- 2002-04-06 EP EP07101568A patent/EP1782950A3/fr not_active Withdrawn
- 2002-04-06 EP EP02742673A patent/EP1377456B1/fr not_active Expired - Lifetime
- 2002-04-06 EP EP03103416A patent/EP1378350A3/fr not_active Withdrawn
- 2002-04-06 CN CNB02811583XA patent/CN1317125C/zh not_active Expired - Fee Related
- 2002-04-06 EP EP05101366A patent/EP1543964B1/fr not_active Expired - Lifetime
- 2002-04-06 JP JP2002579229A patent/JP2004527399A/ja active Pending
- 2002-04-06 US US10/473,141 patent/US7140295B2/en not_active Expired - Fee Related
- 2002-04-06 EP EP03103407A patent/EP1375139B1/fr not_active Expired - Lifetime
- 2002-04-06 DE DE50200602T patent/DE50200602D1/de not_active Expired - Fee Related
- 2002-04-06 EP EP03103427A patent/EP1378351B1/fr not_active Expired - Lifetime
- 2002-04-06 ES ES05101366T patent/ES2325623T3/es not_active Expired - Lifetime
- 2002-04-06 WO PCT/DE2002/001265 patent/WO2002081217A2/fr not_active Application Discontinuation
- 2002-04-06 JP JP2002579234A patent/JP4146240B2/ja not_active Expired - Fee Related
- 2002-04-06 DE DE50213640T patent/DE50213640D1/de not_active Expired - Lifetime
- 2002-04-06 KR KR1020037013215A patent/KR100564781B1/ko not_active IP Right Cessation
- 2002-04-06 DE DE50200670T patent/DE50200670D1/de not_active Expired - Fee Related
- 2002-04-06 AU AU2002338305A patent/AU2002338305A1/en not_active Abandoned
-
2006
- 2006-04-27 JP JP2006124068A patent/JP2006199046A/ja active Pending
- 2006-06-30 US US11/477,523 patent/US7469637B2/en not_active Expired - Fee Related
- 2006-08-29 US US11/511,403 patent/US20060288890A1/en not_active Abandoned
-
2007
- 2007-04-06 US US11/783,144 patent/US20070181021A1/en not_active Abandoned
-
2008
- 2008-07-15 US US12/219,036 patent/US7707935B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1096950A (en) | 1964-01-29 | 1967-12-29 | Alfred Windmoeller | Printing machine |
EP0764523A1 (fr) | 1995-09-19 | 1997-03-26 | MAN Roland Druckmaschinen AG | Dispositif d'impression pour l'impression indirecte |
US5868071A (en) | 1997-09-02 | 1999-02-09 | Goss Graphic Systems, Inc. | Variable cutoff printing press |
EP1075945A1 (fr) | 1999-08-10 | 2001-02-14 | MAN Roland Druckmaschinen AG | Machine d'impression |
DE19937796A1 (de) | 1999-08-10 | 2001-02-15 | Roland Man Druckmasch | Druckwerk |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1775125B1 (fr) | Imprimé d'une presse | |
EP1412188B1 (fr) | Logement de rouleaux de machine a imprimer | |
DE20220723U1 (de) | Druckwerk einer Druckmaschine | |
DE102006011477B4 (de) | Druckwerk mit einem geteilten Formzylinder | |
DE202006000229U1 (de) | Druckwerk mit einem Formzylinder, Übertragungszylinder und Farbauftragswalze | |
DE102005048620A1 (de) | Druckwerke mit einem Formzylinder, Übertragungszylinder und Farbauftragswalze und ein Verfahren zur Bestimmung einer Federkennlinie eines Farbauftragswalzenbelags oder Feuchtauftragswalzenbelags | |
DE202005016814U1 (de) | Druckwerke mit einem Formzylinder, Übertragungszylinder und Farbauftragswalze |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1377453 Country of ref document: EP Kind code of ref document: P Ref document number: 1375137 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
17P | Request for examination filed |
Effective date: 20071214 |
|
17Q | First examination report despatched |
Effective date: 20080128 |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
R17C | First examination report despatched (corrected) |
Effective date: 20080930 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1377453 Country of ref document: EP Kind code of ref document: P Ref document number: 1375137 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50213640 Country of ref document: DE Date of ref document: 20090806 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2325639 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090924 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20100325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090925 |
|
BERE | Be: lapsed |
Owner name: KOENIG & BAUER A.G. Effective date: 20100430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20150423 Year of fee payment: 14 Ref country code: ES Payment date: 20150415 Year of fee payment: 14 Ref country code: GB Payment date: 20150424 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50213640 Country of ref document: DE Owner name: KOENIG & BAUER AG, DE Free format text: FORMER OWNER: KOENIG & BAUER AKTIENGESELLSCHAFT, 97080 WUERZBURG, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20150423 Year of fee payment: 14 Ref country code: FR Payment date: 20150424 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160406 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20161230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160406 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160502 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160407 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181204 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200417 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50213640 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211103 |