WO2020129935A1 - 積層コアおよび回転電機 - Google Patents

積層コアおよび回転電機 Download PDF

Info

Publication number
WO2020129935A1
WO2020129935A1 PCT/JP2019/049282 JP2019049282W WO2020129935A1 WO 2020129935 A1 WO2020129935 A1 WO 2020129935A1 JP 2019049282 W JP2019049282 W JP 2019049282W WO 2020129935 A1 WO2020129935 A1 WO 2020129935A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
core
electromagnetic steel
back portion
core back
Prior art date
Application number
PCT/JP2019/049282
Other languages
English (en)
French (fr)
Inventor
保郎 大杉
平山 隆
竹田 和年
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020561434A priority Critical patent/JPWO2020129935A1/ja
Priority to KR1020217017802A priority patent/KR102607589B1/ko
Priority to US17/299,886 priority patent/US11979059B2/en
Priority to BR112021009648-5A priority patent/BR112021009648A2/pt
Priority to EP19899146.5A priority patent/EP3902109A4/en
Priority to CN201980082976.9A priority patent/CN113196618A/zh
Priority to CA3131664A priority patent/CA3131664A1/en
Priority to EA202192071A priority patent/EA202192071A1/ru
Priority to SG11202108948YA priority patent/SG11202108948YA/en
Publication of WO2020129935A1 publication Critical patent/WO2020129935A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/09Magnetic cores comprising laminations characterised by being fastened by caulking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a laminated core and a rotating electric machine.
  • the present application claims priority based on Japanese Patent Application No. 2018-235861 filed in Japan on December 17, 2018, the contents of which are incorporated herein by reference.
  • Patent Document 1 Conventionally, a laminated core as described in Patent Document 1 below has been known.
  • this laminated core electromagnetic steel sheets that are adjacent to each other in the laminating direction are adhered by an adhesive layer.
  • the conventional laminated core has room for improvement in improving magnetic properties.
  • the present invention has been made in view of the above-mentioned circumstances, and an object thereof is to improve magnetic characteristics.
  • a first aspect of the present invention is a laminated core including a plurality of electromagnetic steel sheets laminated in a thickness direction, the electromagnetic steel sheet including an annular core back portion, and an outer periphery of the core back portion.
  • An adhesive region is formed on the side, a non-adhesive region is formed on the inner peripheral side of the core back portion, and a plurality of caulking portions are circumferentially spaced in the non-adhesive region of the core back portion.
  • the adhesive shrinks when cured. Therefore, when the adhesive is provided on the electromagnetic steel sheet, a compressive stress is applied to the electromagnetic steel sheet as the adhesive hardens. When the compressive stress is applied, the electrical steel sheet is distorted. Moreover, when the caulking portion is provided on the electromagnetic steel sheet, the electromagnetic steel sheet is deformed, so that the electromagnetic steel sheet is distorted. The caulking portion and the bonding area form a fixing portion.
  • the fixing portion fixes the electromagnetic steel plates adjacent to each other in the stacking direction. As the area of the fixed part increases, the distortion of the electromagnetic steel plate increases. According to this configuration, the adhesive region in which the adhesive portion, which is an adhesive, is provided is formed only on the outer peripheral side of the core back portion.
  • the core back portions of the electromagnetic steel plates that are adjacent to each other in the stacking direction are partially bonded. Therefore, for example, the area of the adhesive region formed in the core back portion is reduced as compared with the case where the adhesive region extends radially inward to the crimped portion. For this reason, the area of the fixing portion in plan view when viewed in the stacking direction is reduced. Thereby, the strain generated in the entire laminated core can be reduced. As a result, iron loss generated in the laminated core can be reduced, and the magnetic characteristics of the laminated core can be improved.
  • the outer peripheral side of the core back portion is outside the outer peripheral edge of the caulking portion, and the inner peripheral side of the core back portion is the outer peripheral edge of the caulking portion. May be inside.
  • the innermost portion of the adhesive area does not overlap the caulking portion at all. For this reason, it is possible to prevent further strain from being applied by providing and fixing an adhesive portion in a region where the electromagnetic steel sheet is distorted by fixing the laminating direction at the crimping portion. Therefore, the area of the fixed portion becomes smaller. Thereby, the strain generated in the laminated core can be further reduced.
  • the outer circumference side of the core back portion is an outer side of an imaginary circle formed on the outer circumference side of the outer peripheral edge of the crimp portion, and the inner circumference of the core back portion.
  • the side may be inside the virtual circle.
  • the adhesive region may be formed at least in the vicinity of the crimped portion in the outer peripheral edge of the core back portion.
  • the adhesive portion is not provided continuously over the entire circumference of the outer edge of the core back portion, but is provided discontinuously (intermittently) at intervals. Therefore, the area of the adhesive region formed in the core back portion is reduced as compared with, for example, the case where the adhesive region is formed over the entire circumference. As a result, the area of the fixed portion becomes smaller. Therefore, the strain generated in the entire laminated core can be further reduced.
  • the laminated core is provided between the electromagnetic steel sheets adjacent to each other in the laminating direction and in the bonding area of the core back portion.
  • An adhesive portion for adhering the core back portions adjacent to each other may be provided. According to this configuration, it is possible to reliably bond the electromagnetic steel plates that are adjacent to each other in the stacking direction using the bonding section.
  • the average thickness of the adhesive portion may be 1.0 ⁇ m to 3.0 ⁇ m.
  • the average tensile elastic modulus E of the adhesive portion may be 1500 MPa to 4500 MPa.
  • the adhesive part may be a room temperature adhesive type acrylic adhesive containing SGA made of an elastomer-containing acrylic adhesive. ..
  • a second aspect of the present invention is a rotary electric machine including the laminated core according to any one of (1) to (8). With this configuration, the magnetic characteristics of the rotating electric machine can be improved.
  • magnetic characteristics can be improved.
  • FIG. 6 is a diagram showing relative values of iron loss of the laminated cores of Example 1 and Example 2 when the iron loss of the laminated core of Comparative Example is 1.
  • an electric motor specifically, an AC electric motor will be described as an example of the rotating electric machine.
  • the AC motor is more specifically a synchronous motor, and even more specifically a permanent magnet field type motor. This type of electric motor is preferably used in, for example, an electric vehicle.
  • the rotary electric machine 10 includes a stator 20, a rotor 30, a case 50, and a rotary shaft 60.
  • the stator 20 and the rotor 30 are housed in the case 50.
  • the stator 20 is fixed to the case 50.
  • an inner rotor type rotating electric machine in which the rotor 30 is located inside the stator 20 is used as the rotating electric machine 10.
  • an outer rotor type rotary electric machine in which the rotor 30 is located outside the stator 20 may be used.
  • the rotary electric machine 10 is a 12-pole 18-slot three-phase AC motor.
  • the number of poles, the number of slots, the number of phases, and the like can be appropriately changed.
  • the stator 20 includes a stator core 21 and a winding (not shown).
  • the stator core 21 includes an annular core back portion 22 and a plurality of teeth portions 23.
  • the core back portion 22 is a region surrounded by an outer peripheral edge 22a of the core back portion and an inner peripheral edge 22b of the core back portion (broken line shown in FIG. 2).
  • the axial direction of the stator core 21 (core back portion 22) (direction of the central axis O of the stator core 21) is referred to as the axial direction.
  • the radial direction of the stator core 21 (core back portion 22) (the direction orthogonal to the central axis O of the stator core 21) is referred to as the radial direction.
  • the circumferential direction of the stator core 21 (core back portion 22) (the direction of rotation around the central axis O of the stator core 21) is referred to as the circumferential direction.
  • the core back portion 22 is formed in an annular shape in a plan view when the stator 20 is viewed in the axial direction.
  • the plurality of teeth portions 23 project from the core back portion 22 in the radial direction (toward the central axis O of the core back portion 22 along the radial direction).
  • the plurality of tooth portions 23 are arranged at equal intervals in the circumferential direction.
  • 18 teeth portions 23 are provided at a central angle of 20 degrees about the central axis O.
  • the plurality of teeth portions 23 have the same shape and the same size.
  • the winding is wound around the tooth portion 23.
  • the winding may be concentrated winding or distributed winding.
  • the rotor 30 is arranged radially inward of the stator 20 (stator core 21).
  • the rotor 30 includes a rotor core 31 and a plurality of permanent magnets 32.
  • the rotor core 31 is formed in an annular shape (annular shape) arranged coaxially with the stator 20.
  • the rotating shaft 60 is arranged in the rotor core 31.
  • the rotating shaft 60 is fixed to the rotor core 31.
  • the plurality of permanent magnets 32 are fixed to the rotor core 31. In the present embodiment, two pairs of permanent magnets 32 form one magnetic pole.
  • the plurality of sets of permanent magnets 32 are arranged at equal intervals in the circumferential direction. In the present embodiment, 12 sets (24 in total) of permanent magnets 32 are provided at a central angle of 30 degrees about the central axis O.
  • an embedded magnet type motor is adopted as the permanent magnet field type electric motor.
  • the rotor core 31 is formed with a plurality of through holes 33 that penetrate the rotor core 31 in the axial direction.
  • the plurality of through holes 33 are provided corresponding to the plurality of permanent magnets 32.
  • Each permanent magnet 32 is fixed to the rotor core 31 while being arranged in the corresponding through hole 33.
  • each permanent magnet 32 is fixed to the rotor core 31 by bonding the outer surface of the permanent magnet 32 and the inner surface of the through hole 33 with an adhesive agent or the like.
  • a surface magnet type motor may be used instead of the embedded magnet type motor.
  • the stator core 21 and the rotor core 31 are both laminated cores.
  • the laminated core is formed by laminating a plurality of electromagnetic steel plates 40.
  • the laminated thickness of each of the stator core 21 and the rotor core 31 is, for example, 50.0 mm.
  • the outer diameter of the stator core 21 is, for example, 250.0 mm.
  • the inner diameter of the stator core 21 is, for example, 165.0 mm.
  • the outer diameter of the rotor core 31 is, for example, 163.0 mm.
  • the inner diameter of the rotor core 31 is, for example, 30.0 mm.
  • the product thickness, outer diameter, and inner diameter of the stator core 21, and the product thickness, outer diameter, and inner diameter of the rotor core 31 are not limited to these values.
  • the inner diameter of the stator core 21 is based on the tip of the tooth portion 23 of the stator core 21.
  • the inner diameter of the stator core 21 is the diameter of an imaginary circle inscribed in the tips of all the teeth 23.
  • Each electromagnetic steel plate 40 forming the stator core 21 and the rotor core 31 is formed, for example, by punching an electromagnetic steel plate serving as a base material.
  • a known electromagnetic steel plate can be used as the electromagnetic steel plate 40.
  • the chemical composition of the electromagnetic steel sheet 40 is not particularly limited.
  • a non-oriented electrical steel sheet is used as the electrical steel sheet 40.
  • a non-oriented electrical steel sheet for example, a non-oriented electrical steel strip of JIS (Japanese Industrial Standard) C 2552:2014 can be adopted.
  • JIS Japanese Industrial Standard
  • As the grain-oriented electrical steel sheet a grain-oriented electrical steel strip of JIS C 2553:2012 can be adopted.
  • Insulating coatings are provided on both surfaces of the electromagnetic steel plate 40 in order to improve workability of the electromagnetic steel plate and iron loss of the laminated core.
  • the substance forming the insulating coating for example, (1) an inorganic compound, (2) an organic resin, (3) a mixture of an inorganic compound and an organic resin, or the like can be applied.
  • the inorganic compound include (1) a composite of dichromate and boric acid, and (2) a composite of phosphate and silica.
  • the organic resin include epoxy resin, acrylic resin, acrylic styrene resin, polyester resin, silicon resin, and fluorine resin.
  • the thickness of the insulating coating is preferably 0.1 ⁇ m or more.
  • the insulating effect becomes saturated as the insulating coating becomes thicker.
  • the space factor decreases and the performance as a laminated core decreases. Therefore, the insulating coating is preferably thin as long as the insulating performance can be secured.
  • the thickness of the insulating coating is preferably 0.1 ⁇ m or more and 5 ⁇ m or less, more preferably 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the thickness of the magnetic steel sheet 40 is preferably 0.10 mm or more.
  • the thickness of the electromagnetic steel plate 40 is preferably 0.65 mm or less.
  • the thickness of the electromagnetic steel plate 40 is preferably 0.35 mm or less.
  • the thickness of the electromagnetic steel plate 40 is more preferably 0.20 mm or 0.25 mm. In consideration of the above points, the thickness of each electromagnetic steel plate 40 is, for example, 0.10 mm or more and 0.65 mm or less. The thickness of each electromagnetic steel plate 40 is preferably 0.10 mm or more and 0.35 mm or less, more preferably 0.20 mm or 0.25 mm. Note that the thickness of the electromagnetic steel plate 40 also includes the thickness of the insulating coating.
  • the plurality of electromagnetic steel plates 40 forming the stator core 21 are stacked in the thickness direction.
  • the thickness direction is the thickness direction of the electromagnetic steel plate 40.
  • the thickness direction corresponds to the laminating direction of the electromagnetic steel plates 40.
  • the plurality of electromagnetic steel plates 40 are arranged coaxially with respect to the central axis O.
  • the electromagnetic steel plate 40 includes a core back portion 22 and a plurality of teeth portions 23.
  • the plurality of electromagnetic steel plates 40 forming the stator core 21 are fixed to each other by an adhesive portion 41 and a caulking portion 25 provided on the surface (first surface) 40 a of the electromagnetic steel plate 40.
  • the crimp portion 25 is formed by a convex portion (dough) and a concave portion formed on the electromagnetic steel plate 40.
  • the convex portion projects from the electromagnetic steel plate 40 in the stacking direction.
  • the concave portion is arranged at a portion of the electromagnetic steel plate 40 located on the back side of the convex portion.
  • the recess is recessed in the stacking direction with respect to the surface of the electromagnetic steel plate 40.
  • the convex portion and the concave portion are formed, for example, by pressing the electromagnetic steel plate 40.
  • the convex portion of the caulking portion 25 of one electromagnetic steel plate 40 fits into the concave portion of the caulking portion 25 of the other electromagnetic steel plate 40.
  • the bonding portion 41 bonds the core back portions 22 (magnetic steel plates 40) adjacent to each other in the stacking direction.
  • the plurality of electromagnetic steel plates 40 forming the stator core 21 are bonded by the bonding portion 41.
  • the adhesive part 41 is an adhesive that is provided between the electromagnetic steel plates 40 adjacent to each other in the stacking direction and is hardened without being divided.
  • a thermosetting type adhesive by polymerization bonding is used as the adhesive.
  • the adhesive composition (1) acrylic resin, (2) epoxy resin, (3) composition containing acrylic resin and epoxy resin, and the like can be applied.
  • a room temperature curing type (room temperature adhesive type) adhesive is desirable.
  • the room temperature curable adhesive is an adhesive that cures at 20°C to 30°C.
  • the numerical range represented by “to” means a range including the numerical values before and after “to” as the lower limit value and the upper limit value.
  • an acrylic adhesive is preferable.
  • Typical acrylic adhesives include SGA (Second Generation Acrylic Adhesive, Second Generation Acrylic Adhesive). Any anaerobic adhesive, instant adhesive, or elastomer-containing acrylic adhesive can be used as long as the effects of the present invention are not impaired.
  • the adhesive here means a state before curing. When the adhesive cures, it becomes the adhesive portion 41.
  • the average tensile elastic modulus E of the adhesive portion 41 at room temperature (20° C. to 30° C.) is in the range of 1500 MPa to 4500 MPa. If the average tensile elastic modulus E of the adhesive portion 41 is less than 1500 MPa, the rigidity of the laminated core is reduced. Therefore, the lower limit of the average tensile elastic modulus E of the adhesive portion 41 is set to 1500 MPa, more preferably 1800 MPa. On the contrary, if the average tensile elastic modulus E of the adhesive portion 41 exceeds 4500 MPa, the insulating coating formed on the surface of the electromagnetic steel plate 40 may be peeled off. Therefore, the upper limit value of the average tensile elastic modulus E of the adhesive portion 41 is set to 4500 MPa, more preferably 3650 MPa.
  • the average tensile elastic modulus E is measured by the resonance method.
  • the tensile elastic modulus is measured according to JIS R 1602:1995. More specifically, first, a sample for measurement (not shown) is manufactured. This sample is obtained by bonding the two electromagnetic steel plates 40 together with an adhesive to be measured and curing it to form the bonding portion 41.
  • the adhesive is a thermosetting type
  • this curing is performed by heating and pressing under the heating and pressing conditions in actual operation.
  • the adhesive is a room temperature curing type, it is performed by applying pressure at room temperature. Then, the tensile elastic modulus of this sample is measured by the resonance method.
  • the method of measuring the tensile elastic modulus by the resonance method is performed in accordance with JIS R 1602:1995, as described above. Then, the tensile elastic modulus of the bonded portion 41 alone is obtained by calculating the influence of the electromagnetic steel plate 40 itself from the tensile elastic modulus (measured value) of the sample.
  • the tensile elastic modulus obtained from the sample in this way becomes equal to the average value of the entire stator core 21, which is a laminated core. Therefore, this numerical value is regarded as the average tensile elastic modulus E.
  • the composition of the average tensile elastic modulus E is set so that the average tensile elastic modulus E hardly changes at the stacking position along the stacking direction or the circumferential position around the central axis of the stator core 21. Therefore, the average tensile elastic modulus E can be set to a value obtained by measuring the cured adhesive portion 41 at the upper end position of the stator core 21.
  • thermosetting adhesive for example, a method of applying the adhesive to the electromagnetic steel plate 40 and then bonding by heating or pressure bonding or both can be adopted.
  • the heating means for example, a method of heating in a high temperature tank or an electric furnace, a method of directly energizing, or the like is used.
  • the heating means may be any means.
  • the thickness of the adhesive portion 41 is preferably 1 ⁇ m or more.
  • the thickness of the adhesive portion 41 exceeds 100 ⁇ m, the adhesive force is saturated. Further, as the adhesive portion 41 becomes thicker, the space factor decreases, and the magnetic characteristics such as iron loss of the laminated core deteriorate. Therefore, the thickness of the adhesive portion 41 is 1 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the adhesive portion 41 is more preferably 1 ⁇ m or more and 10 ⁇ m or less. In the above, the thickness of the adhesive portion 41 means the average thickness of the adhesive portion 41.
  • the average thickness of the adhesive portion 41 is more preferably 1.0 ⁇ m or more and 3.0 ⁇ m or less. If the average thickness of the adhesive portion 41 is less than 1.0 ⁇ m, sufficient adhesive force cannot be secured as described above. Therefore, the lower limit of the average thickness of the adhesive portion 41 is 1.0 ⁇ m, and more preferably 1.2 ⁇ m. On the contrary, if the average thickness of the adhesive portion 41 exceeds 3.0 ⁇ m and becomes thicker, a problem such as a large increase in the amount of distortion of the electrical steel sheet 40 due to shrinkage during thermosetting occurs. Therefore, the upper limit of the average thickness of the adhesive portion 41 is 3.0 ⁇ m, and more preferably 2.6 ⁇ m.
  • the average thickness of the adhesive portion 41 is an average value of the entire stator core 21.
  • the average thickness of the adhesive portion 41 hardly changes at the stacking position along the stacking direction or the circumferential position around the central axis of the stator core 21. Therefore, the average thickness of the adhesive portion 41 can be set to the average value of the numerical values measured at 10 or more positions in the circumferential direction at the upper end position of the stator core 21.
  • the average thickness of the adhesive portion 41 can be adjusted, for example, by changing the amount of adhesive applied. Further, the average tensile elastic modulus E of the adhesive portion 41, for example, in the case of a thermosetting adhesive, can be adjusted by changing one or both of the heating and pressurizing conditions and the type of curing agent applied at the time of adhesion. You can
  • the plurality of electromagnetic steel plates 40 forming the rotor core 31 are fixed to each other by caulking 42 (dowels; see FIG. 1).
  • the plurality of electromagnetic steel plates 40 forming the rotor core 31 may be bonded to each other by the bonding portion 41.
  • the laminated cores such as the stator core 21 and the rotor core 31 may be formed by so-called rolling.
  • the core back part 22 of the electromagnetic steel plate 40 is provided with a plurality of caulking parts 25 at intervals in the circumferential direction.
  • each of the plurality of caulking portions 25 is provided on the non-bonding area 43.
  • the plurality of caulking portions 25 are arranged on the same circle centered on the central axis O.
  • the crimp portions 25 are displaced from the teeth portion 23 along the circumferential direction.
  • the adhesive area 42 of the electromagnetic steel sheet 40 provided with the adhesive portion 41 and the electromagnetic area not provided with the adhesive portion 41 are provided on the surface 40a of the electromagnetic steel sheet 40 facing the stacking direction (hereinafter referred to as the first surface of the electromagnetic steel sheet 40) 40a.
  • the non-bonded area 43 of the steel plate 40 is formed. More specifically, the adhesive area 42 of the electromagnetic steel plate 40 on which the adhesive portion 41 is provided is the adhesive (adhesive portion 41) that is hardened without being divided in the first surface 40a of the electromagnetic steel sheet 40. It means the area that is covered. In addition, the non-bonding region 43 of the electromagnetic steel plate 40 where the bonding portion 41 is not provided means a region of the first surface 40 a of the electromagnetic steel plate 40 where the adhesive that is hardened without being divided is not provided. ..
  • the adhesive area 42 and the non-adhesive area 43 are areas different from each other and do not overlap each other.
  • the bonding area 42 is formed on the outer peripheral side of the core back portion 22 of the first surface 40 a of the electromagnetic steel plate 40.
  • the adhesive portion 41 is provided on the outer peripheral side of the core back portion 22 on the first surface 40a of the electromagnetic steel plate 40.
  • the adhesive is applied to the outer peripheral side of the core back portion 22 of the first surface 40a of the electromagnetic steel plate 40.
  • the outer peripheral side of the core back portion 22 is preferably outside the outer peripheral edge 25a of the crimped portion 25 (the outer peripheral edge 25a of the crimped portion 25 is located on the outermost side of the crimped portion 25 in the radial direction). Means part). Further, it is more preferable that the outer peripheral side of the core back portion 22 is outside the virtual circle 27 formed on the outer peripheral side of the outer peripheral edge 25 a of the crimped portion 25.
  • the virtual circle 27 may have the same diameter as a virtual circumscribed circle circumscribing the plurality of caulking portions 25. In FIG.
  • the adhesive portion 41 is provided continuously over the entire circumference of the outer edge of the core back portion 22.
  • the bonding region 42 is formed continuously over the entire outer edge of the core back portion 22 outside the virtual circle 27 formed on the outer peripheral side of the outer peripheral edge 25 a of the crimp portion 25.
  • the adhesive portion 41 is not provided on the inner surface side of the core back portion 22 of the first surface 40 a of the electromagnetic steel plate 40.
  • the adhesive is not applied to the inner peripheral side of the core back portion 22 of the first surface 40a of the electromagnetic steel plate 40.
  • the non-bonding region 43 is formed on the inner surface of the core back portion 22 of the first surface 40a of the electromagnetic steel plate 40.
  • the non-adhesive region 43 is provided with a plurality of caulking portions 25 at intervals in the circumferential direction.
  • the inner peripheral side of the core back portion 22 is preferably inside the outer peripheral edge 25 a of the caulking portion 25.
  • the inner peripheral side of the core back portion 22 is inside the virtual circle 27 formed on the outer peripheral side of the outer peripheral edge 25 a of the crimped portion 25.
  • the portion of the core back portion 22 located inside the circumscribed circle in the radial direction is the non-adhesion region 43.
  • the non-adhesion region 43 is provided over the entire region inside the virtual circle 27 formed on the outer peripheral side of the outer peripheral edge 25 a of the caulking portion 25 in the core back portion 22.
  • the non-adhesion region 43 is also provided in a portion corresponding to the plurality of teeth portions 23 on the first surface 40 a of the electromagnetic steel plate 40.
  • the outside of the outer peripheral edge 25a of the crimp portion 25 refers to a region of the core back portion 22 outside the outer peripheral edge 25a of the crimp portion 25.
  • the inside of the outer peripheral edge 25a of the crimped portion 25 refers to an area inside the outer peripheral edge 25a of the crimped portion 25 in the core back portion 22 and an area along the outer peripheral edge 25a of the crimped portion 25.
  • the outside of the virtual circle 27 refers to a region of the core back portion 22 outside the virtual circle 27.
  • the inside of the virtual circle 27 refers to a region inside the virtual circle 27 in the core back portion 22 and a region along the virtual circle 27.
  • the adhesive portions 41 are provided as shown in FIG. 4 between all the sets of the electromagnetic steel plates 40 adjacent to each other in the stacking direction.
  • the ratio of the area of the adhesive region 42 to the area 100% of the core back portion 22 of the first surface 40a of the electromagnetic steel plate 40 is, for example, 20%.
  • the adhesive portion 41 is provided on the outer peripheral side of the core back portion 22 of the first surface 40 a of the electromagnetic steel plate 40 and at least in the vicinity of the crimp portion 25 on the outer edge of the core back portion 22. It may be.
  • the vicinity of the crimped portion 25 referred to herein means, for example, a range of three times the length of the crimped portion 25 in the circumferential direction around the crimped portion 25 in the circumferential direction.
  • the adhesive portion 41 is provided intermittently over the entire circumference. The adhesive portion 41 is provided only in the vicinity of the crimp portion 25 on the outer edge of the core back portion 22.
  • the adhesive portion 41 is also displaced from the tooth portion 23 along the circumferential direction, like the crimp portion 25.
  • the adhesive portion 41 is not provided on a portion of the outer edge of the core back portion 22 that is located outside the tooth portion 23 in the radial direction.
  • the non-adhesion region 43 is formed at the portion of the outer edge of the core back portion 22 that is located on the outer side in the radial direction of the tooth portion 23, instead of the adhesion region 42.
  • the circumferential size of the bonding area 42 is larger than the circumferential size of the caulking portion 25.
  • the crimp portion 25 is arranged in the central portion of the adhesive region 42 along the circumferential direction.
  • the size of the bonding area 42 in the circumferential direction is larger than the interval between the bonding areas 42 adjacent to each other in the circumferential direction.
  • the adhesive portion 41 is provided as shown in FIG. 5 between all pairs of electromagnetic steel plates 40 that are adjacent to each other in the stacking direction.
  • the ratio of the area of the adhesive region 42 to the area 100% of the core back portion 22 of the first surface 40a of the electromagnetic steel plate 40 is, for example, 12%.
  • the non-adhesion regions 43 are formed in the plurality of teeth portions 23 included in the electromagnetic steel plate 40.
  • the non-adhesive regions 43 of the core back portion 22 and the non-adhesive regions 43 of the plurality of teeth portions 23 may be provided with the plurality of caulking portions 25 at intervals in the circumferential direction.
  • the adhesive shrinks when cured. Therefore, when the adhesive is provided on the electromagnetic steel sheet, a compressive stress is applied to the electromagnetic steel sheet as the adhesive hardens. When the compressive stress is applied, the electrical steel sheet is distorted. Moreover, when the caulking portion is provided on the electromagnetic steel sheet, the electromagnetic steel sheet is deformed, so that the electromagnetic steel sheet is distorted. The caulking portion and the bonding area form a fixing portion. The fixing portion fixes the electromagnetic steel plates adjacent to each other in the stacking direction. As the area of the fixed part increases, the distortion of the electromagnetic steel plate increases. In the stator core 21 (laminated core) according to this embodiment described above, the core back portion 22 is provided with the plurality of crimp portions 25 at intervals in the circumferential direction.
  • An adhesive portion 41 is provided on the outer peripheral side of the core back portion 22 on the first surface 40 a of the electromagnetic steel plate 40.
  • the adhesive portion 41 is not provided on the inner peripheral side of the core back portion 22 on the first surface 40 a of the electromagnetic steel sheet 40.
  • the core back portion 22 is provided with the plurality of crimp portions 25 at intervals in the circumferential direction.
  • An adhesive area 42 is formed on the outer peripheral side of the core back portion 22 on the first surface 40 a of the electromagnetic steel sheet 40.
  • a non-bonding region 43 is formed on the inner surface of the core back portion 22 of the first surface 40 a of the electromagnetic steel plate 40.
  • the adhesive region 42 where the adhesive portion 41 is provided is formed only on the outer peripheral side of the core back portion 22.
  • the core back portions 22 of the electromagnetic steel plates 40 adjacent to each other in the stacking direction are partially bonded. Therefore, for example, the area of the adhesive region formed in the core back portion 22 is reduced as compared with the case where the adhesive region extends radially inward to the crimped portion. For this reason, the area of the fixing portion in plan view when viewed in the stacking direction is reduced. As a result, the strain generated in the entire stator core 21 can be reduced. As a result, the iron loss generated in the stator core 21 can be reduced, and the magnetic characteristics of the stator core 21 can be improved.
  • the crimp portion 25 is provided in the non-adhesion region 43 different from the adhesion region 42. If an attempt is made to manufacture a stator core having a caulked portion in the bonding area, the following problems will occur. For example, an adhesive is applied to the convex portion of the caulking portion of the electromagnetic steel plate in order to provide the caulking portion in the adhesion region. If you try to fit the convex part coated with adhesive to the concave part of the caulking part of another electromagnetic steel plate, the adhesive will not fit in the concave part because the adhesive enters between the convex part and the concave part There is a risk.
  • the adhesive area 42 is formed on the outer peripheral side of the core back portion 22. Therefore, in addition to applying the adhesive to the first surface 40a of the electromagnetic steel plate 40 to provide the adhesive portion 41, the adhesive portion can be provided by the following method. That is, the adhesive is arranged on the outer side in the radial direction of the plurality of laminated electromagnetic steel plates 40. When the pressure of the air inside the plurality of magnetic steel plates 40 in the radial direction is lowered, the adhesive is impregnated between the plurality of magnetic steel plates 40. The adhesive can be hardened to provide an adhesive portion.
  • the outer peripheral side of the caulking portion 25 in the core back portion 22 is outside the outer peripheral edge 25a of the caulking portion 25.
  • the inner peripheral side of the crimp portion 25 in the core back portion 22 is defined as the inner side of the outer peripheral edge 25a of the crimp portion 25.
  • the outer peripheral side of the core back portion 22 is the outer side of the virtual circle 27 formed on the outer peripheral side of the outer peripheral edge 25a of the crimp portion 25.
  • the inner peripheral side of the core back portion 22 is defined as the inner side of the virtual circle 27 formed on the outer peripheral side of the outer peripheral edge 25a of the crimped portion 25.
  • the adhesive region 42 is not provided on the tooth portion 23. Therefore, the area of the fixing portion, which includes the caulking portion 25 and the bonding portion 41 (bonding region 42), for fixing the electromagnetic steel plates 40 adjacent to each other in the stacking direction is smaller. As a result, the strain generated in the entire stator core 21 can be further reduced.
  • the adhesive portion 41 is provided at least in the vicinity of the crimp portion 25 on the outer edge of the core back portion 22.
  • the adhesive portions 41 are discontinuously (intermittently) provided at intervals without being provided continuously over the entire circumference of the outer edge of the core back portion 22. Therefore, the area of the adhesive region 42 formed in the core back portion 22 is reduced as compared with, for example, the case where the adhesive region is formed over the entire circumference of the core back portion. As a result, the area of the fixed portion becomes smaller. Therefore, the strain generated in the entire stator core 21 can be further reduced.
  • the stator core 21 (laminated core) according to the present embodiment includes the adhesive portion 41 provided in the adhesive region 42 of the core back portion 22. Therefore, it is possible to reliably bond the electromagnetic steel plates 40 adjacent to each other in the stacking direction by using the bonding portion 41.
  • the electromagnetic steel plate 40 includes the plurality of teeth portions 23 in which the non-bonded regions 43 are formed. As a result, the area of the non-bonded region 43 of the electromagnetic steel plate 40 increases. Therefore, it is possible to increase the area where no distortion occurs in the stator core 21.
  • the rotary electric machine 10 according to the present embodiment includes a stator core 21 (laminated core) according to the present embodiment. Therefore, the magnetic characteristics of the rotary electric machine 10 can be improved.
  • the shape of the stator core is not limited to the shape shown in the above embodiment. Specifically, the outer and inner diameters of the stator core, the product thickness, the number of slots, the circumferential and radial dimension ratios of the teeth, and the radial dimension ratio of the teeth and core back are desired. It can be arbitrarily designed according to the characteristics of the rotating electric machine.
  • the pair of permanent magnets 32 forms one magnetic pole, but the present invention is not limited to this.
  • one permanent magnet 32 may form one magnetic pole, and three or more permanent magnets 32 may form one magnetic pole.
  • a permanent magnet field type electric motor has been described as an example of the rotating electric machine, but the structure of the rotating electric machine is not limited to this as illustrated below.
  • the structure of the rotary electric machine various known structures not exemplified below can be adopted.
  • a permanent magnet field type electric motor has been described as an example of the synchronous electric motor.
  • the rotating electric machine may be a reluctance type electric motor or an electromagnet field type electric motor (winding field type electric motor).
  • the synchronous motor has been described as an example of the AC motor.
  • the present invention is not limited to this.
  • the rotating electric machine may be an induction motor.
  • the AC motor has been described as an example of the electric motor.
  • the present invention is not limited to this.
  • the rotating electric machine may be a DC electric motor.
  • the electric motor has been described as an example of the rotating electric machine.
  • the present invention is not limited to this.
  • the rotating electric machine may be a generator.
  • the laminated core according to the present invention is applied to the stator core.
  • the laminated core according to the present invention can also be applied to a rotor core.
  • Example 1 As shown in FIG. 4, the adhesive portion 41 was provided on the outer peripheral side of the core back portion 22 of the first surface 40 a of the electromagnetic steel sheet 40. A plurality of electromagnetic steel plates 40 configured in this manner were laminated to form a laminated core. The ratio of the area of the bonding region 42 to the area 100% of the core back portion 22 of the first surface 40a of the electromagnetic steel plate 40 was set to 20%. By using the electromagnetic steel plate 40 having a plate thickness of 0.20 mm and the electromagnetic steel plate 40 having a plate thickness of 0.25 mm, two types of laminated cores having different plate thicknesses of the electromagnetic steel plate 40 were configured.
  • Example 2 As shown in FIG. 5, the adhesive portion 41 was provided on the outer peripheral side of the core back portion 22 of the first surface 40 a of the electromagnetic steel plate 40 and at least near the crimp portion 25 on the outer edge of the core back portion 22. A plurality of electromagnetic steel plates 40 configured in this manner were laminated to form a laminated core. The ratio of the area of the adhesive region 42 to the area 100% of the core back portion 22 of the first surface 40a of the electromagnetic steel plate 40 was set to 12%. In other respects, two types of laminated cores having different thicknesses of the electromagnetic steel plate 40 were configured in the same manner as in Example 1.
  • Example 1 and Example 2 had lower iron loss than the laminated core of the comparative example regardless of the thickness of the electromagnetic steel plate 40. Therefore, it was found that the laminated cores of Example 1 and Example 2 can reduce the loss generated in the laminated core by reducing the strain generated in the entire laminated core. Furthermore, it was found that the laminated cores of Example 1 and Example 2 could sufficiently secure the magnetic characteristics of the laminated core.
  • the present invention it is possible to provide a laminated core having improved magnetic characteristics, and a rotating electric machine including the laminated core. Therefore, industrial availability is great.
  • stator 10 rotating electric machine 20 stator 21 stator core (laminated core) 22 core back part 23 teeth part 25 caulking part 27 virtual circle 30 rotor 31 rotor core (laminated core) 32 permanent magnet 33 through-hole 40 electromagnetic steel plate 41 adhesive portion 42 adhesive region 43 non-adhesive region 50 case 60 rotating shaft

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

この積層コアは、厚さ方向に積層された複数の電磁鋼板を備え、電磁鋼板は、環状のコアバック部を備え、コアバック部に、周方向に間隔をあけて複数のカシメ部が設けられ、コアバック部におけるカシメ部よりも外周側に接着領域が形成され、コアバック部におけるカシメ部よりも内周側に非接着領域が形成される。

Description

積層コアおよび回転電機
本発明は、積層コアおよび回転電機に関する。
本願は、2018年12月17日に、日本に出願された特願2018-235861号に基づき優先権を主張し、その内容をここに援用する。
従来から、下記特許文献1に記載されているような積層コアが知られている。この積層コアでは、積層方向に隣り合う電磁鋼板が、接着層により接着されている。
日本国特開2015-142453号公報
前記従来の積層コアには、磁気特性を向上させることについて改善の余地がある。
本発明は、前述した事情に鑑みてなされたものであって、磁気特性を向上させることを目的とする。
前記課題を解決するために、本発明は以下の手段を提案している。
(1)本発明の第一の態様は、厚さ方向に積層された複数の電磁鋼板を備える積層コアであって、前記電磁鋼板は、環状のコアバック部を備え、前記コアバック部の外周側には接着領域が形成され、前記コアバック部の内周側には非接着領域が形成され、前記コアバック部の前記非接着領域には、周方向に間隔をあけて複数のカシメ部が設けられている積層コアである。
一般的に、接着剤は硬化時に収縮する。そのため、電磁鋼板に接着剤が設けられると、接着剤の硬化に伴い、電磁鋼板に圧縮応力が付与される。圧縮応力が付与されると、電磁鋼板に歪が生じる。また、電磁鋼板にカシメ部を設けると、電磁鋼板が変形するため、電磁鋼板に歪が生じる。カシメ部および接着領域は、固定部を形成する。固定部は、積層方向に隣り合う電磁鋼板同士を固定する。固定部の面積が増えると、電磁鋼板の歪が大きくなる。
この構成によれば、コアバック部の外周側のみに、例えば接着剤である接着部が設けられる接着領域が形成されている。このため、積層方向に隣り合う電磁鋼板のコアバック部同士は部分的に接着される。従って、例えば接着領域がカシメ部まで径方向内側に向けて延びている場合に比べて、コアバック部に形成される接着領域の面積が減少する。このため、積層方向に見た平面視における固定部の面積が少なくなる。これにより、積層コア全体に生じる歪を小さくすることができる。結果的に、積層コア内に発生する鉄損を低減でき、積層コアの磁気特性を向上させることができる。
(2)前記(1)に記載の積層コアでは、前記コアバック部の外周側は、前記カシメ部の外周縁の外側であり、前記コアバック部の内周側は、前記カシメ部の外周縁の内側であってもよい。
この構成によれば、接着領域のうち最も内周側の部分が、カシメ部と全く重ならない。このため、カシメ部で積層方向を固定することで電磁鋼板に歪が生じている領域に、接着部を設けて固定することで歪がさらに加わることを回避することができる。従って、固定部の面積がより少なくなる。これにより、積層コアに生じる歪をより小さくすることができる。
(3)前記(2)に記載の積層コアでは、前記コアバック部の外周側は、前記カシメ部の外周縁の外周側に形成される仮想円の外側であり、前記コアバック部の内周側は、前記仮想円の内側であってもよい。
この構成によれば、例えば電磁鋼板がティース部を備える場合であっても、ティース部に接着領域が設けられない。従って、固定部の面積がより少なくなる。これにより、積層コアに生じる歪をより小さくすることができる。
(4)前記(1)~(3)にいずれかに記載の積層コアでは、前記接着領域は、前記コアバック部の外周縁のうち、少なくとも前記カシメ部近傍に形成されていてもよい。
この構成によれば、接着部が、コアバック部の外縁の全周にわたって連続に設けられることなく、間隔をあけて不連続に(間欠的に)設けられる。従って、例えば接着領域が全周にわたって形成されている場合に比べて、コアバック部に形成される接着領域の面積が減少する。これにより、固定部の面積がより少なくなる。従って、積層コア全体に生じる歪をより小さくすることができる。
(5)前記(1)~(4)にいずれかに記載の積層コアでは、積層方向に隣り合う前記電磁鋼板同士の間であって、前記コアバック部の前記接着領域に設けられ、積層方向に隣り合う前記コアバック部同士を接着する接着部を備えてもよい。
この構成によれば、接着部を用いて積層方向に隣り合う電磁鋼板同士を確実に接着することができる。
(6)前記(5)に記載の積層コアでは、前記接着部の平均厚みが1.0μm~3.0μmであってもよい。
(7)前記(5)または(6)に記載の積層コアでは、前記接着部の平均引張弾性率Eが1500MPa~4500MPaであってもよい。
(8)前記(5)~(7)にいずれかに記載の積層コアでは、前記接着部が、エラストマー含有アクリル系接着剤からなるSGAを含む常温接着タイプのアクリル系接着剤であってもよい。
(9)本発明の第二の態様は、前記(1)~(8)のにいずれか1項に記載の積層コアを備える回転電機である。
この構成によれば、回転電機の磁気特性を向上させることができる。
本発明によれば、磁気特性を向上させることができる。
本発明の一実施形態に係る回転電機の断面図である。 図1に示す回転電機が備えるステータの平面図である。 本発明の一実施形態に係る積層コアの側面図である。 本発明の一実施形態に係る積層コアにおいて、電磁鋼板の第1面の平面図である。 本発明の一実施形態に係る積層コアにおいて、電磁鋼板の第1面の平面図である。 比較例の積層コアにおいて、電磁鋼板の第1面の平面図である。 比較例の積層コアの鉄損を1とした場合、実施例1および実施例2の積層コアの鉄損の相対値を示す図である。
以下、図面を参照し、本発明の一実施形態に係る積層コアおよび回転電機を説明する。
なお、本実施形態では、回転電機として電動機、具体的には交流電動機を一例に挙げて説明する。交流電動機は、より具体的には同期電動機、より一層具体的には永久磁石界磁型電動機である。この種の電動機は、例えば、電気自動車などに好適に採用される。
図1および図2に示すように、回転電機10は、ステータ20と、ロータ30と、ケース50と、回転軸60と、を備える。ステータ20およびロータ30は、ケース50に収容される。ステータ20は、ケース50に固定される。
本実施形態では、回転電機10として、ロータ30がステータ20の内側に位置するインナーロータ型の回転電機が用いられている。しかしながら、回転電機10として、ロータ30がステータ20の外側に位置するアウターロータ型の回転電機が用いられてもよい。また、本実施形態では、回転電機10が、12極18スロットの三相交流モータである。しかしながら、例えば、極数やスロット数、相数などは適宜変更することができる。
ステータ20は、ステータコア21と、図示しない巻線と、を備える。
ステータコア21は、環状のコアバック部22と、複数のティース部23と、を備える。コアバック部22は、コアバック部の外周縁22aと、コアバック部の内周縁22b(図2に示す破線)とで囲まれた領域のことである。以下では、ステータコア21(コアバック部22)の軸方向(ステータコア21の中心軸線O方向)を、軸方向という。ステータコア21(コアバック部22)の径方向(ステータコア21の中心軸線Oに直交する方向)を、径方向という。ステータコア21(コアバック部22)の周方向(ステータコア21の中心軸線O周りに周回する方向)を、周方向という。
コアバック部22は、ステータ20を軸方向から見た平面視において円環状に形成されている。
複数のティース部23は、コアバック部22から径方向に向けて(径方向に沿ってコアバック部22の中心軸線Oに向けて)突出する。複数のティース部23は、周方向に同等の間隔をあけて配置されている。本実施形態では、中心軸線Oを中心とする中心角20度おきに18個のティース部23が設けられている。複数のティース部23は、互いに同等の形状で、かつ同等の大きさに形成されている。
前記巻線は、ティース部23に巻き回されている。前記巻線は、集中巻きされていてもよく、分布巻きされていてもよい。
ロータ30は、ステータ20(ステータコア21)に対して径方向の内側に配置されている。ロータ30は、ロータコア31と、複数の永久磁石32と、を備える。
ロータコア31は、ステータ20と同軸に配置される環状(円環状)に形成されている。ロータコア31内には、前記回転軸60が配置されている。回転軸60は、ロータコア31に固定されている。
複数の永久磁石32は、ロータコア31に固定されている。本実施形態では、2つ1組の永久磁石32が1つの磁極を形成している。複数組の永久磁石32は、周方向に同等の間隔をあけて配置されている。本実施形態では、中心軸線Oを中心とする中心角30度おきに、12組(全体では24個)の永久磁石32が設けられている。
本実施形態では、永久磁石界磁型電動機として、埋込磁石型モータが採用されている。
ロータコア31には、ロータコア31を軸方向に貫通する複数の貫通孔33が形成されている。複数の貫通孔33は、複数の永久磁石32に対応して設けられている。各永久磁石32は、対応する貫通孔33内に配置された状態でロータコア31に固定されている。例えば、永久磁石32の外面と貫通孔33の内面とを接着剤により接着すること等により、各永久磁石32がロータコア31に固定されている。なお、永久磁石界磁型電動機として、埋込磁石型モータに代えて表面磁石型モータが用いられてもよい。
ステータコア21およびロータコア31は、いずれも積層コアである。積層コアは、複数の電磁鋼板40が積層されることで形成されている。
なお、ステータコア21およびロータコア31それぞれの積厚は、例えば、50.0mmとされる。ステータコア21の外径は、例えば、250.0mmとされる。ステータコア21の内径は、例えば、165.0mmとされる。ロータコア31の外径は、例えば、163.0mmとされる。ロータコア31の内径は、例えば、30.0mmとされる。ただし、これらの値は一例であり、ステータコア21の積厚、外径や内径、およびロータコア31の積厚、外径や内径は、これらの値に限られない。ここで、ステータコア21の内径は、ステータコア21におけるティース部23の先端部を基準としている。ステータコア21の内径は、全てのティース部23の先端部に内接する仮想円の直径である。
ステータコア21およびロータコア31を形成する各電磁鋼板40は、例えば、母材となる電磁鋼板を打ち抜き加工すること等により形成される。電磁鋼板40には、公知の電磁鋼板を用いることができる。電磁鋼板40の化学組成は、特に限定されない。本実施形態では、電磁鋼板40として、無方向性電磁鋼板を採用している。無方向性電磁鋼板としては、例えば、JIS(日本工業規格) C 2552:2014の無方向性電鋼帯を採用することができる。
しかしながら、電磁鋼板40として、無方向性電磁鋼板に代えて方向性電磁鋼板を採用することも可能である。方向性電磁鋼板には、JIS C 2553:2012の方向性電鋼帯を採用することができる。
電磁鋼板の加工性や、積層コアの鉄損を改善するため、電磁鋼板40の両面には、絶縁被膜が設けられている。絶縁被膜を構成する物質としては、例えば、(1)無機化合物、(2)有機樹脂、(3)無機化合物と有機樹脂との混合物、などが適用できる。無機化合物としては、例えば、(1)重クロム酸塩とホウ酸の複合物、(2)リン酸塩とシリカの複合物、などが挙げられる。有機樹脂としては、エポキシ系樹脂、アクリル系樹脂、アクリルスチレン系樹脂、ポリエステル系樹脂、シリコン系樹脂、フッ素系樹脂などが挙げられる。
互いに積層される電磁鋼板40間での絶縁性能を確保するために、絶縁被膜の厚さ(電磁鋼板40片面あたりの厚さ)は0.1μm以上とすることが好ましい。
一方で絶縁被膜が厚くなるに連れて絶縁効果が飽和する。また、絶縁被膜が厚くなるに連れて占積率が低下し、積層コアとしての性能が低下する。したがって、絶縁被膜は、絶縁性能が確保できる範囲で薄い方がよい。絶縁被膜の厚さ(電磁鋼板40片面あたりの厚さ)は、好ましくは0.1μm以上5μm以下、より好ましくは0.1μm以上2μm以下である。
電磁鋼板40が薄くなるに連れて、次第に鉄損の改善効果が飽和する。また、電磁鋼板40が薄くなるに連れて、電磁鋼板40の製造コストは増す。そのため、鉄損の改善効果および製造コストを考慮すると、電磁鋼板40の厚さは0.10mm以上とすることが好ましい。
一方で電磁鋼板40が厚すぎると、電磁鋼板40のプレス打ち抜き作業が困難になる。
そのため、電磁鋼板40のプレス打ち抜き作業を考慮すると、電磁鋼板40の厚さは0.65mm以下とすることが好ましい。
また、電磁鋼板40が厚くなると鉄損が増大する。そのため、電磁鋼板40の鉄損特性を考慮すると、電磁鋼板40の厚さは0.35mm以下とすることが好ましい。電磁鋼板40の厚さは、より好ましくは、0.20mmまたは0.25mmである。
上記の点を考慮し、各電磁鋼板40の厚さは、例えば、0.10mm以上0.65mm以下である。各電磁鋼板40の厚さは、好ましくは、0.10mm以上0.35mm以下、より好ましくは0.20mmや0.25mmである。なお、電磁鋼板40の厚さには、絶縁被膜の厚さも含まれる。
図3に示すように、ステータコア21を形成する複数の電磁鋼板40は、厚さ方向に積層されている。厚さ方向は、電磁鋼板40の厚さ方向である。厚さ方向は、電磁鋼板40の積層方向に相当する。複数の電磁鋼板40は、中心軸線Oに対して同軸に配置されている。電磁鋼板40は、コアバック部22と、複数のティース部23と、を備える。
図4に示すように、ステータコア21を形成する複数の電磁鋼板40同士は、電磁鋼板40の表面(第1面)40aに設けられた接着部41およびカシメ部25によって固定されている。
例えば、カシメ部25は、図示はしないが、電磁鋼板40に形成された凸部(ダボ)および凹部により構成される。凸部は、電磁鋼板40から積層方向に突出している。凹部は、電磁鋼板40において凸部の裏側に位置する部分に配置されている。凹部は、電磁鋼板40の表面に対して積層方向に窪んでいる。凸部および凹部は、例えば電磁鋼板40をプレス加工することにより形成される。
積層方向に重なる一対の電磁鋼板40のうち、一方の電磁鋼板40のカシメ部25の凸部が、他方の電磁鋼板40のカシメ部25の凹部に嵌め合う。
接着部41は、積層方向に隣り合うコアバック部22(電磁鋼板40)同士を接着する。ステータコア21を形成する複数の電磁鋼板40は、接着部41によって接着されている。
接着部41は、積層方向に隣り合う電磁鋼板40同士の間に設けられ、分断されることなく硬化した接着剤である。接着剤には、例えば、重合結合による熱硬化型の接着剤などが用いられる。
接着剤の組成物としては、(1)アクリル系樹脂、(2)エポキシ系樹脂、(3)アクリル系樹脂およびエポキシ系樹脂を含んだ組成物などが適用可能である。
接着剤としては、熱硬化型の接着剤の他、ラジカル重合型の接着剤なども使用可能である。生産性の観点からは、常温硬化型(常温接着タイプ)の接着剤が望ましい。常温硬化型の接着剤は、20℃~30℃で硬化する接着剤である。なお、本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
常温硬化型の接着剤としては、アクリル系接着剤が好ましい。代表的なアクリル系接着剤には、SGA(第二世代アクリル系接着剤。Second Generation Acrylic Adhesive)などがある。本発明の効果を損なわない範囲で、嫌気性接着剤、瞬間接着剤、エラストマー含有アクリル系接着剤がいずれも使用可能である。
なお、ここで言う接着剤は硬化前の状態を言う。接着剤は硬化すると、接着部41となる。
接着部41の常温(20℃~30℃)における平均引張弾性率Eは、1500MPa~4500MPaの範囲内とされる。接着部41の平均引張弾性率Eは、1500MPa未満であると、積層コアの剛性が低下する不具合が生じる。そのため、接着部41の平均引張弾性率Eの下限値は、1500MPa、より好ましくは1800MPaとされる。逆に、接着部41の平均引張弾性率Eが4500MPaを超えると、電磁鋼板40の表面に形成された絶縁被膜が剥がれる不具合が生じる。そのため、接着部41の平均引張弾性率Eの上限値は、4500MPa、より好ましくは3650MPaとされる。
なお、平均引張弾性率Eは、共振法により測定される。具体的には、JIS R 1602:1995に準拠して引張弾性率を測定する。
より具体的には、まず、測定用のサンプル(不図示)を製作する。このサンプルは、2枚の電磁鋼板40間を、測定対象の接着剤により接着し、硬化させて接着部41を形成することにより、得られる。この硬化は、接着剤が熱硬化型の場合には、実操業上の加熱加圧条件で加熱加圧することで行う。一方、接着剤が常温硬化型の場合には常温下で加圧することで行う。
そして、このサンプルについての引張弾性率を、共振法で測定する。共振法による引張弾性率の測定方法は、上述した通り、JIS R 1602:1995に準拠して行う。その後、サンプルの引張弾性率(測定値)から、電磁鋼板40自体の影響分を計算により除くことで、接着部41単体の引張弾性率が求められる。
このようにしてサンプルから求められた引張弾性率は、積層コアであるステータコア21全体としての平均値に等しくなる。このため、この数値をもって平均引張弾性率Eとみなす。平均引張弾性率Eは、その積層方向に沿った積層位置やステータコア21の中心軸線回りの周方向位置で殆ど変わらないよう、組成が設定されている。そのため、平均引張弾性率Eは、ステータコア21の上端位置にある、硬化後の接着部41を測定した数値をもってその値とすることもできる。
熱硬化型の接着剤を用いた接着方法としては、例えば、電磁鋼板40に接着剤を塗布した後、加熱および圧着のいずれかまたは両方により接着する方法が採用できる。
なお、加熱手段には、例えば、高温槽や電気炉内での加熱、または直接通電する方法等が用いられる。加熱手段は、どのような手段でも良い。
安定して十分な接着強度を得るために、接着部41の厚さは1μm以上とすることが好ましい。一方で接着部41の厚さが100μmを超えると接着力が飽和する。また、接着部41が厚くなるに連れて占積率が低下し、積層コアの鉄損などの磁気特性が低下する。
したがって、接着部41の厚さは1μm以上100μm以下である。接着部41の厚さは、さらに好ましくは1μm以上10μm以下である。
なお、上記において接着部41の厚さは、接着部41の平均厚みを意味する。
接着部41の平均厚みは、1.0μm以上3.0μm以下とすることがより好ましい。接着部41の平均厚みが1.0μm未満であると、前述したように十分な接着力を確保できない。そのため、接着部41の平均厚みの下限値は、1.0μm、より好ましくは1.2μmとされる。逆に、接着部41の平均厚みが3.0μmを超えて厚くなると、熱硬化時の収縮による電磁鋼板40の歪み量が大幅に増えるなどの不具合を生じる。そのため、接着部41の平均厚みの上限値は、3.0μm、より好ましくは2.6μmとされる。
接着部41の平均厚みは、ステータコア21全体としての平均値である。接着部41の平均厚みは、その積層方向に沿った積層位置やステータコア21の中心軸線回りの周方向位置で殆ど変わらない。そのため、接着部41の平均厚みは、ステータコア21の上端位置において、円周方向10箇所以上で測定した数値の平均値をもってその値とすることができる。
なお、接着部41の平均厚みは、例えば、接着剤の塗布量を変えて調整することができる。また、接着部41の平均引張弾性率Eは、例えば、熱硬化型の接着剤の場合には、接着時に加える加熱加圧条件および硬化剤種類の一方もしくは両方を変更すること等により調整することができる。
なお、本実施形態では、ロータコア31を形成する複数の電磁鋼板40は、かしめ42(ダボ。図1参照)によって互いに固定されている。
しかしながら、ロータコア31を形成する複数の電磁鋼板40が、接着部41によって互いに接着されていてもよい。
なお、ステータコア21やロータコア31などの積層コアは、いわゆる回し積みにより形成されていてもよい。
図4に示すように、電磁鋼板40のコアバック部22に、周方向に間隔をあけて複数のカシメ部25が設けられている。なお、後述するように複数のカシメ部25はそれぞれ非接着領域43上に設けられている。複数のカシメ部25は、中心軸線Oを中心とする同一円上に配置されている。各カシメ部25は、周方向に沿って、ティース部23に対して位置をずらされている。
電磁鋼板40において積層方向を向く面(以下、電磁鋼板40の第1面という)40aには、接着部41が設けられた電磁鋼板40の接着領域42と、接着部41が設けられていない電磁鋼板40の非接着領域43とが形成されている。より具体的には、接着部41が設けられた電磁鋼板40の接着領域42とは、電磁鋼板40の第1面40aのうち、分断されることなく硬化した接着剤(接着部41)が設けられている領域を意味する。また、接着部41が設けられていない電磁鋼板40の非接着領域43とは、電磁鋼板40の第1面40aのうち、分断されることなく硬化した接着剤が設けられていない領域を意味する。
接着領域42と非接着領域43とは、互いに異なる領域であり、互いに重ならない。
本実施形態において、接着領域42は、電磁鋼板40の第1面40aのコアバック部22の外周側に形成されている。言い換えると、接着部41は電磁鋼板40の第1面40aのコアバック部22の外周側に設けられている。さらに言い換えると、接着剤は電磁鋼板40の第1面40aのコアバック部22の外周側に塗布されている。
コアバック部22の外周側は、カシメ部25の外周縁25aの外側であることが好ましい(カシメ部25の外周縁25aとは、カシメ部25のうち、径方向に沿って最も外側に位置する部分を意味する)。
また、コアバック部22の外周側は、カシメ部25の外周縁25aの外周側に形成される仮想円27の外側であることがより好ましい。前記仮想円27は、複数のカシメ部25に外接する仮想の外接円と同径とすることができる。
図4では、カシメ部25の外周縁25aの外周側に形成される仮想円27の外側において、コアバック部22の外縁の全周にわたって連続して、接着部41が設けられている。
言い換えると、図4では、カシメ部25の外周縁25aの外周側に形成される仮想円27の外側において、コアバック部22の外縁の全周にわたって連続して、接着領域42が形成される。
図4に示すように、電磁鋼板40の第1面40aのコアバック部22の内周側には接着部41が設けられていない。言い換えると、電磁鋼板40の第1面40aのコアバック部22の内周側には接着剤が塗布されていない。さらに言い換えると、電磁鋼板40の第1面40aのコアバック部22の内周側には非接着領域43が形成されている。なお、非接着領域43には、周方向に間隔をあけて複数のカシメ部25が設けられている。
コアバック部22の内周側は、カシメ部25の外周縁25aの内側であることが好ましい。また、コアバック部22の内周側は、カシメ部25の外周縁25aの外周側に形成される仮想円27の内側であることがより好ましい。言い換えると、コアバック部22において前記外接円の径方向の内側に位置する部分は、非接着領域43であることが好ましい。図4では、コアバック部22における、カシメ部25の外周縁25aの外周側に形成される仮想円27の内側の領域の全域にわたって、非接着領域43が設けられている。
なお、電磁鋼板40の第1面40aにおける複数のティース部23に対応する部分にも、非接着領域43が設けられている。
なお、カシメ部25の外周縁25aの外側とは、コアバック部22のうちカシメ部25の外周縁25aよりも外側の領域を言う。カシメ部25の外周縁25aの内側とは、コアバック部22のうちカシメ部25の外周縁25aよりも内側の領域および、カシメ部25の外周縁25aに沿う領域を言う。同様に、仮想円27の外側とは、コアバック部22のうち仮想円27よりも外側の領域を言う。仮想円27の内側とは、コアバック部22のうち仮想円27よりも内側の領域および、仮想円27に沿う領域を言う。
積層方向に隣り合う電磁鋼板40同士の全ての組の間において、接着部41が図4に示すように設けられているとする。この場合、電磁鋼板40の第1面40aのコアバック部22の面積100%に対する接着領域42の面積の割合は、例えば、20%である。
また、図5に示すように、接着部41は、電磁鋼板40の第1面40aのコアバック部22の外周側、かつ、コアバック部22の外縁のうち、少なくともカシメ部25の近傍に設けられていてもよい。ここで言うカシメ部25の近傍とは、例えば、周方向において、カシメ部25を中心として、周方向におけるカシメ部25の長さの3倍の範囲のことを意味する。
図5に示す例では、接着部41が、全周にわたって間欠的に設けられている。接着部41は、コアバック部22の外縁におけるカシメ部25の近傍に限定して設けられている。言い換えると、接着部41も、カシメ部25と同様に、周方向に沿ってティース部23とは位置がずらされている。コアバック部22の外縁のうち、ティース部23の径方向の外側に位置する部分には、接着部41が設けられていない。言い換えると、コアバック部22の外縁のうち、ティース部23の径方向の外側に位置する部分には接着領域42ではなく、非接着領域43が形成されている。
接着領域42の周方向の大きさは、カシメ部25の周方向の大きさよりも大きい。カシメ部25は、周方向に沿って、接着領域42の中央部に配置されている。接着領域42の周方向の大きさは、周方向に隣り合う接着領域42同士の間隔よりも大きい。
積層方向に隣り合う電磁鋼板40同士の全ての組の間において、接着部41が図5に示すように設けられている場合について説明する。この場合、電磁鋼板40の第1面40aのコアバック部22の面積100%に対する接着領域42の面積の割合は、例えば、12%である。
なお、本実施形態では、電磁鋼板40が備える複数のティース部23に非接着領域43が形成されているとした。この場合、コアバック部22の非接着領域43および複数のティース部23の非接着領域43に、周方向に間隔をあけて複数のカシメ部25が設けられるとしてもよい。
一般的に、接着剤は硬化時に収縮する。そのため、電磁鋼板に接着剤が設けられると、接着剤の硬化に伴い、電磁鋼板に圧縮応力が付与される。圧縮応力が付与されると、電磁鋼板に歪が生じる。また、電磁鋼板にカシメ部を設けると、電磁鋼板が変形するため、電磁鋼板に歪が生じる。カシメ部および接着領域は、固定部を形成する。固定部は、積層方向に隣り合う電磁鋼板同士を固定する。固定部の面積が増えると、電磁鋼板の歪が大きくなる。
以上説明した本実施形態に係るステータコア21(積層コア)では、コアバック部22に、周方向に間隔をあけて複数のカシメ部25が設けられている。電磁鋼板40の第1面40aのコアバック部22の外周側に、接着部41が設けられている。電磁鋼板40の第1面40aのコアバック部22の内周側に、接着部41が設けられていない。
言い換えると、本実施形態に係るステータコア21(積層コア)では、コアバック部22に、周方向に間隔をあけて複数のカシメ部25が設けられている。電磁鋼板40の第1面40aのコアバック部22の外周側には、接着領域42が形成されている。電磁鋼板40の第1面40aのコアバック部22の内周側には、非接着領域43が形成されている。
この構成により、コアバック部22の外周側のみに、接着部41が設けられる接着領域42が形成される。積層方向に隣り合う電磁鋼板40のコアバック部22同士は、部分的に接着される。従って、例えば接着領域がカシメ部まで径方向内側に向けて延びている場合に比べて、コアバック部22に形成される接着領域の面積が減少する。このため、積層方向に見た平面視における固定部の面積が少なくなる。これにより、ステータコア21全体に生じる歪を小さくすることができる。結果的に、ステータコア21内に発生する鉄損を低減でき、ステータコア21の磁気特性を向上させることができる。
接着領域42とは異なる非接着領域43に、カシメ部25が設けられている。
仮に、接着領域にカシメ部が設けられたステータコアを製造しようとすると、以下の問題が生じる。例えば、接着領域にカシメ部を設けるために、電磁鋼板のカシメ部の凸部に接着剤を塗布する。接着剤を塗布した凸部を、他の電磁鋼板のカシメ部の凹部に嵌め合わせようとすると、凸部と凹部との間に接着剤が入り込むことで、凹部の奥まで凸部が嵌め合わない虞がある。この場合、凸部と凹部とが精度良く嵌合せず、一対の電磁鋼板が互いに平行に積層されないという問題がある。
電磁鋼板のカシメ部の凹部に接着剤を塗布する場合にも、同様の問題が生じる。
これに対して、本実施形態のステータコア21では、非接着領域43にカシメ部25が設けられている。このため、凸部と凹部との間に接着剤が入り込むことがなく、電磁鋼板40にカシメ部25を設けても、積層方向に隣り合う電磁鋼板40を平行に積層することができる。
なお、本実施形態のステータコア21では、コアバック部22の外周側に接着領域42が形成されている。このため、電磁鋼板40の第1面40aに接着剤を塗布して接着部41を設けるだけでなく、以下の方法で接着部を設けることができる。
すなわち、複数積層した電磁鋼板40の径方向外側に、接着剤を配置する。複数の電磁鋼板40の径方向内側の空気の圧力を下げると、複数の電磁鋼板40の間に接着剤が含浸する。この接着剤を硬化させて、接着部を設けることができる。
本実施形態に係るステータコア21(積層コア)において、コアバック部22におけるカシメ部25の外周側を、カシメ部25の外周縁25aの外側とする。そして、コアバック部22におけるカシメ部25の内周側を、カシメ部25の外周縁25aの内側とする。
このように構成することにより、接着領域42のうち、最も内周側の部分が、カシメ部25と全く重ならない。このため、カシメ部25で積層方向を固定することで電磁鋼板40に歪が生じている領域に、接着部41を設けて固定することで歪がさらに加わることを回避することができる。従って、固定部の面積がより少なくなる。これにより、ステータコア21全体に生じる歪をより小さくすることができる。
本実施形態に係るステータコア21(積層コア)において、コアバック部22の外周側を、カシメ部25の外周縁25aの外周側に形成される仮想円27の外側とする。そして、コアバック部22の内周側を、カシメ部25の外周縁25aの外周側に形成される仮想円27の内側とする。
このように構成することにより、ティース部23に接着領域42が設けられない。従って、積層方向に隣り合う電磁鋼板40同士を固定する、カシメ部25と接着部41(接着領域42)からなる固定部の面積がより少なくなる。これにより、ステータコア21全体に生じる歪をより小さくすることができる。
本実施形態に係るステータコア21(積層コア)において、接着部41を、コアバック部22の外縁のうち、少なくともカシメ部25近傍に設ける。
これにより、接着部41が、コアバック部22の外縁の全周にわたって連続に設けられることなく、間隔をあけて不連続(間欠的に)に設けられる。従って、例えば接着領域がコアバック部の全周にわたって形成されている場合に比べて、コアバック部22に形成される接着領域42の面積が減少する。これにより、固定部の面積がより少なくなる。従って、ステータコア21全体に生じる歪をより小さくすることができる。
本実施形態に係るステータコア21(積層コア)において、コアバック部22の接着領域42に設けられた接着部41を備える。このため、接着部41を用いて積層方向に隣り合う電磁鋼板40同士を確実に接着することができる。
本実施形態に係るステータコア21(積層コア)において、電磁鋼板40が、非接着領域43が形成されている複数のティース部23を備える。これにより、電磁鋼板40における非接着領域43の面積が増加する。従って、ステータコア21における歪が生じない領域を増加させることができる。
本実施形態に係る回転電機10は、本実施形態に係るステータコア21(積層コア)を備える。このため、回転電機10の磁気特性を向上させることができる。
なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
ステータコアの形状は、前記実施形態で示した形態に限定されるものではない。具体的には、ステータコアの外径および内径の寸法、積厚、スロット数、ティース部の周方向と径方向の寸法比率、ティース部とコアバック部との径方向の寸法比率、などは所望の回転電機の特性に応じて任意に設計可能である。
前記実施形態におけるロータでは、2つ1組の永久磁石32が1つの磁極を形成しているが、本発明はこれに限られない。例えば、1つの永久磁石32が1つの磁極を形成していてもよく、3つ以上の永久磁石32が1つの磁極を形成していてもよい。
前記実施形態では、回転電機として、永久磁石界磁型電動機を一例に挙げて説明したが、回転電機の構造は、以下に例示するようにこれに限られない。回転電機の構造は、更には以下に例示しない種々の公知の構造も採用可能である。
前記実施形態では、同期電動機として、永久磁石界磁型電動機を一例に挙げて説明した。しかし、本発明はこれに限られない。例えば、回転電機がリラクタンス型電動機や電磁石界磁型電動機(巻線界磁型電動機)であってもよい。
前記実施形態では、交流電動機として、同期電動機を一例に挙げて説明した。しかし、本発明はこれに限られない。例えば、回転電機が誘導電動機であってもよい。
前記実施形態では、電動機として、交流電動機を一例に挙げて説明した。しかし、本発明はこれに限られない。例えば、回転電機が直流電動機であってもよい。
前記実施形態では、回転電機として、電動機を一例に挙げて説明した。しかし、本発明はこれに限られない。例えば、回転電機が発電機であってもよい。
前記実施形態では、本発明に係る積層コアをステータコアに適用した場合を例示した。本発明に係る積層コアは、ロータコアに適用することも可能である。
その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能である。また、前記した変形例を適宜組み合わせてもよい。
以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
図4に示すように、電磁鋼板40の第1面40aのコアバック部22の外周側に接着部41を設けた。このように構成した複数の電磁鋼板40を積層し、積層コアを構成した。
電磁鋼板40の第1面40aのコアバック部22の面積100%に対する接着領域42の面積の割合を、20%とした。
板厚0.20mmの電磁鋼板40と板厚0.25mmの電磁鋼板40を用いて、電磁鋼板40の板厚が異なる2種類の積層コアを構成した。
[実施例2]
図5に示すように、電磁鋼板40の第1面40aのコアバック部22の外周側、かつ、コアバック部22の外縁のうち、少なくともカシメ部25の近傍に、接着部41を設けた。このように構成した複数の電磁鋼板40を積層し、積層コアを構成した。
電磁鋼板40の第1面40aのコアバック部22の面積100%に対する接着領域42の面積の割合を、12%とした。
その他の点は、実施例1と同様にして、電磁鋼板40の板厚が異なる2種類の積層コアを構成した。
[比較例]
図6に示すように、電磁鋼板40の第1面40aのコアバック部22と外周縁22aとの境界22cから、電磁鋼板40の第1面40aのコアバック部22の内周側にわたって、接着部41を設けた。このように構成した複数の電磁鋼板40を積層し、積層コアを構成した。
電磁鋼板40の第1面40aのコアバック部22の面積100%に対する接着領域42の面積の割合を、80%とした。
その他の点は、実施例1と同様にして、電磁鋼板40の板厚が異なる2種類の積層コアを作製した。
[鉄損の評価]
実施例1、実施例2および比較例で作製した積層コアについて、巻線の各相に実効値10A、周波数100Hzの励磁電流を印加した。そして、ロータの回転数を1000rpmに設定した条件で、鉄損を評価した。
鉄損の評価は、ソフトウェアを用いたシミュレーションにより実施した。ソフトウェアとしては、JSOL株式会社製の有限要素法電磁場解析ソフトJMAGを利用した。
比較例の積層コアの鉄損を1として、実施例1および実施例2の積層コアの鉄損の相対値を図7に示す。
図7の結果から、電磁鋼板40の板厚によらず、実施例1および実施例2の積層コアは、比較例の積層コアよりも鉄損が低いことが分かった。
従って、実施例1および実施例2の積層コアは、積層コア全体に生じる歪を小さくすることで、積層コア内に発生する損失を低減できることが分かった。さらに、実施例1および実施例2の積層コアは、積層コアの磁気特性を十分に確保できることが分かった。
本発明によれば、磁気特性を向上させた積層コア、およびこの積層コアを備えた回転電機を提供できる。よって、産業上の利用可能性は大である。
10 回転電機
20 ステータ
21 ステータコア(積層コア)
22 コアバック部
23 ティース部
25 カシメ部
27 仮想円
30 ロータ
31 ロータコア(積層コア)
32 永久磁石
33 貫通孔
40 電磁鋼板
41 接着部
42 接着領域
43 非接着領域
50 ケース
60 回転軸

Claims (9)

  1. 厚さ方向に積層された複数の電磁鋼板を備える積層コアであって、
    前記電磁鋼板は、環状のコアバック部を備え、
    前記コアバック部の外周側には接着領域が形成され、
    前記コアバック部の内周側には非接着領域が形成され、
    前記コアバック部の前記非接着領域には、周方向に間隔をあけて複数のカシメ部が設けられている、積層コア。
  2. 前記コアバック部の外周側は、前記カシメ部の外周縁の外側であり、
    前記コアバック部の内周側は、前記カシメ部の外周縁の内側である、請求項1に記載の積層コア。
  3. 前記コアバック部の外周側は、前記カシメ部の外周縁の外周側に形成される仮想円の外側であり、
    前記コアバック部の内周側は、前記仮想円の内側である、請求項2に記載の積層コア。
  4. 前記接着領域は、前記コアバック部の外周縁のうち、少なくとも前記カシメ部近傍に形成される、請求項1~3のいずれか1項に記載の積層コア。
  5. 積層方向に隣り合う前記電磁鋼板同士の間であって、前記コアバック部の前記接着領域に設けられ、積層方向に隣り合う前記コアバック部同士を接着する接着部を備える、請求項1~4のいずれか1項に記載の積層コア。
  6. 前記接着部の平均厚みが1.0μm~3.0μmである請求項5に記載の積層コア。
  7. 前記接着部の平均引張弾性率Eが1500MPa~4500MPaである請求項5または6に記載の積層コア。
  8. 前記接着部が、エラストマー含有アクリル系接着剤からなるSGAを含む常温接着タイプのアクリル系接着剤である請求項5~7のいずれか1項に記載の積層コア。
  9. 請求項1~8のいずれか1項に記載の積層コアを備える、回転電機。
PCT/JP2019/049282 2018-12-17 2019-12-17 積層コアおよび回転電機 WO2020129935A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2020561434A JPWO2020129935A1 (ja) 2018-12-17 2019-12-17 積層コアおよび回転電機
KR1020217017802A KR102607589B1 (ko) 2018-12-17 2019-12-17 적층 코어 및 회전 전기 기기
US17/299,886 US11979059B2 (en) 2018-12-17 2019-12-17 Laminated core and electric motor
BR112021009648-5A BR112021009648A2 (pt) 2018-12-17 2019-12-17 núcleo laminado e motor elétrico
EP19899146.5A EP3902109A4 (en) 2018-12-17 2019-12-17 LAMINATED CORE AND ROTARY MACHINE
CN201980082976.9A CN113196618A (zh) 2018-12-17 2019-12-17 层叠铁芯及旋转电机
CA3131664A CA3131664A1 (en) 2018-12-17 2019-12-17 Laminated core and electric motor
EA202192071A EA202192071A1 (ru) 2018-12-17 2019-12-17 Шихтованный сердечник и электродвигатель
SG11202108948YA SG11202108948YA (en) 2018-12-17 2019-12-17 Laminated core and electric motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-235861 2018-12-17
JP2018235861 2018-12-17

Publications (1)

Publication Number Publication Date
WO2020129935A1 true WO2020129935A1 (ja) 2020-06-25

Family

ID=71100299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049282 WO2020129935A1 (ja) 2018-12-17 2019-12-17 積層コアおよび回転電機

Country Status (11)

Country Link
US (1) US11979059B2 (ja)
EP (1) EP3902109A4 (ja)
JP (1) JPWO2020129935A1 (ja)
KR (1) KR102607589B1 (ja)
CN (1) CN113196618A (ja)
BR (1) BR112021009648A2 (ja)
CA (1) CA3131664A1 (ja)
EA (1) EA202192071A1 (ja)
SG (1) SG11202108948YA (ja)
TW (1) TWI724690B (ja)
WO (1) WO2020129935A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11710990B2 (en) 2018-12-17 2023-07-25 Nippon Steel Corporation Laminated core with circumferentially spaced adhesion parts on teeth
US11742129B2 (en) 2018-12-17 2023-08-29 Nippon Steel Corporation Adhesively-laminated core, manufacturing method thereof, and electric motor
US11855485B2 (en) 2018-12-17 2023-12-26 Nippon Steel Corporation Laminated core, method of manufacturing same, and electric motor
US11863017B2 (en) 2018-12-17 2024-01-02 Nippon Steel Corporation Laminated core and electric motor
US11915860B2 (en) 2018-12-17 2024-02-27 Nippon Steel Corporation Laminated core and electric motor
US11923130B2 (en) 2018-12-17 2024-03-05 Nippon Steel Corporation Laminated core and electric motor
US11973369B2 (en) 2018-12-17 2024-04-30 Nippon Steel Corporation Laminated core with center electrical steel sheets adhered with adhesive and some electrical steel sheets fixed to each other on both ends of the center sheets
US11990795B2 (en) 2018-12-17 2024-05-21 Nippon Steel Corporation Adhesively-laminated core for stator, method of manufacturing same, and electric motor
US11996231B2 (en) 2018-12-17 2024-05-28 Nippon Steel Corporation Laminated core and electric motor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202022103747U1 (de) 2021-07-12 2022-10-17 Hyundai Mobis Co., Ltd. Led Module
CN115632528B (zh) 2022-12-21 2023-03-28 苏州范斯特机械科技有限公司 电机层叠铁芯的生产设备及其生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088107A (ja) * 2000-09-18 2002-03-27 Denki Kagaku Kogyo Kk 硬化性樹脂組成物、硬化体、接着剤組成物及び接合体
JP2003324869A (ja) * 2002-05-08 2003-11-14 Daikin Ind Ltd 電動機及び圧縮機
JP2015142453A (ja) 2014-01-29 2015-08-03 Jfeスチール株式会社 積層鉄心の製造方法および積層鉄心

Family Cites Families (184)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3386058A (en) 1966-11-21 1968-05-28 Westinghouse Electric Corp Inductive assembly with supporting means
US4025379A (en) 1973-05-03 1977-05-24 Whetstone Clayton N Method of making laminated magnetic material
US4103195A (en) 1976-08-11 1978-07-25 General Electric Company Bonded laminations forming a stator core
JPS5665326A (en) 1979-10-29 1981-06-03 Tdk Corp Magnetic core for magnetic head
JPS576427A (en) 1980-06-11 1982-01-13 Canon Inc Manufacture of magnetic core
US4413406A (en) 1981-03-19 1983-11-08 General Electric Company Processing amorphous metal into packets by bonding with low melting point material
JPS60170681A (ja) 1984-02-16 1985-09-04 Nippon Synthetic Chem Ind Co Ltd:The 接着剤組成物
JPS60186834A (ja) 1984-03-07 1985-09-24 Toray Ind Inc 水現像可能な感光性樹脂版材
JPS63207639A (ja) 1987-02-25 1988-08-29 日新製鋼株式会社 制振鋼板及びその製造方法
JPH03124247A (ja) * 1989-10-05 1991-05-27 Aichi Emerson Electric Co Ltd 回転電機の固定子
JPH03247683A (ja) 1990-02-23 1991-11-05 Sumitomo Chem Co Ltd アクリル系接着剤組成物
JP2897344B2 (ja) 1990-05-23 1999-05-31 住友化学工業株式会社 熱可塑性樹脂組成物
JPH08996B2 (ja) 1991-01-24 1996-01-10 新日本製鐵株式会社 溶接性、塗料密着性に優れた表面処理鋼板の製造方法
US5448119A (en) 1991-03-29 1995-09-05 Nagano Nidec Corporation Spindle motor
US5142178A (en) 1991-04-12 1992-08-25 Emerson Electric Co. Apparatus for aligning stacked laminations of a dynamoelectric machine
JPH0614481A (ja) 1992-06-25 1994-01-21 Mitsubishi Electric Corp 電機子鉄心
JPH07118620A (ja) 1993-10-22 1995-05-09 Nippon Zeon Co Ltd エポキシ系接着剤組成物
JPH07298567A (ja) 1994-04-26 1995-11-10 Honda Motor Co Ltd 積層鋼板の接着用加熱装置
JPH08259899A (ja) 1995-03-23 1996-10-08 Three Bond Co Ltd シアノアクリレート系接着剤組成物
JP3369941B2 (ja) 1997-11-27 2003-01-20 日本鋼管株式会社 接着強度、耐食性及び耐ブロッキング性に優れた接着鉄芯用電磁鋼板の製造方法
JP2000050539A (ja) 1998-07-28 2000-02-18 Toshiba Corp 回転電機の固定子鉄心、固定子鉄心用鋼板部品、固定子鉄心の製造方法および固定子鉄心用鋼板部品の製造方法
JP2000152570A (ja) 1998-11-06 2000-05-30 Toshiba Corp 磁石鉄心の製造方法
JP2001115125A (ja) 1999-10-01 2001-04-24 Three M Innovative Properties Co ネオジム磁石用接着剤及びモータ
FR2803126B1 (fr) 1999-12-23 2006-04-14 Valeo Equip Electr Moteur Alternateur pour vehicule a stator generant peu de bruit magnetique
JP2001251828A (ja) 2000-03-02 2001-09-14 Moric Co Ltd 内燃機関用多極磁石式発電機
JP2002078257A (ja) 2000-08-24 2002-03-15 Mitsubishi Electric Corp モーター及びそのローター
WO2002019498A1 (fr) 2000-08-29 2002-03-07 Mitsubishi Denki Kabushiki Kaisha Noyau de stator a empilement, moteur rotatif et procedes de production correspondants
JP2002164224A (ja) 2000-08-30 2002-06-07 Mitsui Chemicals Inc 磁性基材およびその製造方法
JP2002105283A (ja) 2000-09-28 2002-04-10 Nhk Spring Co Ltd エポキシ樹脂分散体およびそれを用いた銅張り積層板及び銅張り金属基板
JP2002125341A (ja) 2000-10-16 2002-04-26 Denki Kagaku Kogyo Kk ステーター及びそれを用いたモーター
JP2002151335A (ja) 2000-11-10 2002-05-24 Nippon Steel Corp 鉄損特性の優れた積層鉄芯およびその製造方法
JP3725776B2 (ja) * 2000-11-10 2005-12-14 新日本製鐵株式会社 積層鉄芯の製造方法およびその製造装置
EP1241773B1 (en) 2001-03-14 2012-09-12 Nissan Motor Co., Ltd. Rotating electrical machine with air-gap sleeve
JP4076323B2 (ja) 2001-05-08 2008-04-16 電気化学工業株式会社 硬化性樹脂組成物、硬化体、接着剤組成物及び接合体
JP4018885B2 (ja) 2001-05-25 2007-12-05 株式会社三井ハイテック 積層鉄心
JP3594003B2 (ja) 2001-08-28 2004-11-24 日産自動車株式会社 回転電機及びその製造方法
JP3899885B2 (ja) * 2001-10-05 2007-03-28 株式会社日立製作所 永久磁石式回転電機
JP2003199303A (ja) 2001-12-27 2003-07-11 Matsushita Electric Ind Co Ltd モータの製造方法
JP4165072B2 (ja) 2002-01-15 2008-10-15 日立化成工業株式会社 接着剤組成物、接着フィルム、半導体搭載用配線基板及び半導体装置とその製造方法
JP2003219585A (ja) 2002-01-22 2003-07-31 Mitsubishi Electric Corp 積層鉄心およびその製造方法
JP2003259574A (ja) * 2002-03-05 2003-09-12 Asmo Co Ltd コア、電機子及びモータ
JP3771933B2 (ja) 2002-03-08 2006-05-10 Jfeスチール株式会社 積層コア用材料及びその製造方法
JP2003284274A (ja) 2002-03-22 2003-10-03 Nippon Steel Corp 永久磁石同期モータのロータ
JP2004088970A (ja) 2002-08-29 2004-03-18 Hitachi Ltd 積層鉄心とそれを用いた回転電機およびトランス
JP2004111509A (ja) 2002-09-17 2004-04-08 Nippon Steel Corp 鉄損特性の優れた積層鉄芯及びその製造方法
JP4222000B2 (ja) 2002-10-29 2009-02-12 Nok株式会社 磁気エンコーダ
JP3791492B2 (ja) 2002-12-25 2006-06-28 株式会社日立製作所 回転電機及び電動車両並びに樹脂のインサート成形方法
WO2004070080A1 (ja) 2003-02-03 2004-08-19 Nippon Steel Corporation 接着用表面被覆電磁鋼板
JP4987216B2 (ja) 2003-06-25 2012-07-25 Jfeスチール株式会社 寸法精度に優れた積層コア及びその製造方法
WO2005025032A1 (ja) 2003-09-03 2005-03-17 Mitsuba Corporation 電動モータ
JP2005269732A (ja) 2004-03-17 2005-09-29 Nippon Steel Corp 鉄芯の製造方法とその方法に適した装置
JP2005268589A (ja) 2004-03-19 2005-09-29 Nippon Steel Corp エネルギー変換機器用磁性部材の簡易製造方法
JP4548049B2 (ja) 2004-09-01 2010-09-22 株式会社日立製作所 回転電機
JP4498154B2 (ja) 2005-01-27 2010-07-07 ファナック株式会社 モータの製造方法、及びモータ製造装置
JP2006254530A (ja) 2005-03-08 2006-09-21 Mitsubishi Electric Corp 電動機
JP2006288114A (ja) 2005-04-01 2006-10-19 Mitsui High Tec Inc 積層鉄心、及び積層鉄心の製造方法
JP2006353001A (ja) 2005-06-15 2006-12-28 Japan Servo Co Ltd 積層鉄心とその製造方法及び製造装置
JP4687289B2 (ja) 2005-07-08 2011-05-25 東洋紡績株式会社 ポリアミド系混合樹脂積層フィルムロール、およびその製造方法
JP4586669B2 (ja) 2005-08-01 2010-11-24 住友金属工業株式会社 回転子用無方向性電磁鋼板の製造方法
JP2007053896A (ja) 2005-08-17 2007-03-01 Minebea Co Ltd ステータユニット及びその製造方法
JP4236056B2 (ja) 2006-02-08 2009-03-11 三菱電機株式会社 磁石発電機
KR100808194B1 (ko) 2006-05-19 2008-02-29 엘지전자 주식회사 아우터 로터 타입 모터의 스테이터
JP4938389B2 (ja) 2006-09-06 2012-05-23 三菱電機株式会社 積層コアおよびステータ
WO2008044740A1 (fr) 2006-10-13 2008-04-17 Mitsui High-Tec, Inc. Noyau en fer stratifié et son procédé de fabrication
ITMI20070508A1 (it) 2007-03-14 2008-09-15 Corrada Spa Articolo laminare per uso elettrico procedimento e macchine per realizzare detto articolo laminare
WO2008139843A1 (ja) 2007-05-09 2008-11-20 Mitsui High-Tec, Inc. 積層鉄心及びその製造方法
US7838577B2 (en) 2007-07-19 2010-11-23 Sekisui Chemical Co., Ltd. Adhesive for electronic component
JP2009072035A (ja) 2007-09-18 2009-04-02 Meidensha Corp 回転電機の回転子コア
JP5211651B2 (ja) 2007-11-15 2013-06-12 パナソニック株式会社 モータおよびそれを用いた電子機器
JP5172367B2 (ja) 2008-01-23 2013-03-27 三菱電機株式会社 積層コア、積層コアの製造方法、積層コアの製造装置およびステータ
KR101538193B1 (ko) 2008-02-15 2015-07-20 가부시키가이샤 구라레 경화성 수지 조성물 및 수지 경화물
JP5428218B2 (ja) 2008-06-23 2014-02-26 富士電機株式会社 永久磁石形回転電機の回転子構造
JP2010081659A (ja) 2008-09-24 2010-04-08 Hitachi Ltd 電動機及びそれを用いた電動圧縮機
CN102132366B (zh) * 2009-01-14 2013-03-06 三菱电机株式会社 层叠铁芯的制造方法及其制造夹具
CN102325801B (zh) 2009-01-15 2015-02-25 株式会社钟化 固化性组合物、其固化物、及其制备方法
JP5084770B2 (ja) 2009-03-13 2012-11-28 三菱電機株式会社 電動機及び圧縮機及び空気調和機
DE112009004598B4 (de) 2009-03-26 2023-02-23 Vacuumschmelze Gmbh & Co. Kg Verfahren zum stoffschlüssigen fügen von paketlamellen zu einem weichmagnetischen blechpaket
JP2010239691A (ja) 2009-03-30 2010-10-21 Denso Corp 回転電機の固定子及び回転電機
JP5444812B2 (ja) 2009-04-22 2014-03-19 Jfeスチール株式会社 高速モータ用コア材料
BRPI1010688B1 (pt) 2009-06-17 2019-11-19 Nippon Steel & Sumitomo Metal Corp chapa de aço eletromagnético tendo revestimento isolante e método de produção da mesma
JP2011023523A (ja) 2009-07-15 2011-02-03 Nippon Steel Corp 良好な熱伝導性を有する電磁鋼板積層コアおよびその製造方法
US9833972B2 (en) 2009-07-31 2017-12-05 Nippon Steel & Sumitomo Metal Corporation Laminated steel plate
BE1019128A3 (nl) 2009-11-06 2012-03-06 Atlas Copco Airpower Nv Gelamelleerde kern van een magneetlager en werkwijze voor het vervaardigen van zulke gelamelleerde kern.
US8683675B2 (en) * 2009-11-19 2014-04-01 Mitsubishi Electric Corporation Method for fabricating molded stator of rotary electric machine
JP5716339B2 (ja) 2010-01-08 2015-05-13 大日本印刷株式会社 粘接着シートおよびそれを用いた接着方法
JP5844963B2 (ja) 2010-03-19 2016-01-20 積水化学工業株式会社 電子部品用接着剤
JP5459110B2 (ja) 2010-06-30 2014-04-02 株式会社デンソー 回転電機の固定子
JP2012029494A (ja) 2010-07-26 2012-02-09 Nissan Motor Co Ltd 電動機およびその製造方法
JP5350342B2 (ja) 2010-09-08 2013-11-27 三菱電機株式会社 同期電動機の回転子
JP2012061820A (ja) 2010-09-17 2012-03-29 Dainippon Printing Co Ltd 繊維強化複合材料の賦型方法
JP2012120299A (ja) 2010-11-30 2012-06-21 Mitsubishi Electric Corp ステータコア、回転電機およびステータコアの製造方法
JP5809819B2 (ja) 2011-03-18 2015-11-11 富士重工業株式会社 回転電機
JP5915075B2 (ja) 2011-10-21 2016-05-11 Jfeスチール株式会社 積層コアの製造方法
JP5858232B2 (ja) * 2012-02-17 2016-02-10 日本電産株式会社 ロータコア、モータ、およびモータの製造方法
EP2821251B1 (en) 2012-02-29 2017-05-03 Bridgestone Corporation Tire
EP2821437B1 (en) 2012-03-01 2022-08-17 Sumitomo Bakelite Company Limited Resin composition for rotor fixing, rotor, and automotive vehicle
JP5966445B2 (ja) 2012-03-01 2016-08-10 住友ベークライト株式会社 固定用樹脂組成物、ロータ、および自動車
DE102012005795A1 (de) 2012-03-14 2013-09-19 Kienle + Spiess Gmbh Lamellenpaket und Verfahren zu seiner Herstellung
JP2013194130A (ja) 2012-03-19 2013-09-30 Nitto Denko Corp 塗膜保護シート
JP2013253153A (ja) 2012-06-06 2013-12-19 Mitsubishi Chemicals Corp エポキシ樹脂、エポキシ樹脂組成物、硬化物及び光学部材
JP2014014231A (ja) 2012-07-04 2014-01-23 Mitsubishi Heavy Ind Ltd 電動モータ
JP2014019777A (ja) 2012-07-18 2014-02-03 Nitto Denko Corp 表面保護シート
JP6134497B2 (ja) 2012-11-08 2017-05-24 京セラ株式会社 積層コアの製造方法
WO2014102915A1 (ja) 2012-12-26 2014-07-03 株式会社 日立製作所 低融点ガラス樹脂複合材料と、それを用いた電子・電気機器
JP5896937B2 (ja) 2013-02-08 2016-03-30 三菱電機株式会社 分割鉄心、及びこの分割鉄心を用いた固定子、並びにこの固定子を備えた回転電機
JP2015012756A (ja) 2013-07-01 2015-01-19 日本精工株式会社 ダイレクトドライブモータ
US9490667B2 (en) 2013-07-23 2016-11-08 General Electric Company Apparatus and system for attaching integral spacers to laminations
KR101539849B1 (ko) 2013-09-23 2015-07-28 뉴모텍(주) 절연 코팅에 적합한 구조를 갖는 모터의 적층 코어
JP6164039B2 (ja) 2013-10-21 2017-07-19 アイシン・エィ・ダブリュ株式会社 積層鉄心の製造方法
JP6066936B2 (ja) 2014-01-17 2017-01-25 三菱電機株式会社 積層鉄心の製造方法、固定子の製造方法
JP6065032B2 (ja) * 2014-01-29 2017-01-25 Jfeスチール株式会社 積層鉄心製造方法および積層鉄心
JP6248711B2 (ja) 2014-03-06 2017-12-20 株式会社デンソー 回転電機の固定子
JP6383202B2 (ja) 2014-07-24 2018-08-29 株式会社三井ハイテック 積層鉄心の製造方法及び積層鉄心
EP3176285B1 (en) 2014-07-29 2018-09-05 JFE Steel Corporation Electrical steel sheet for stacking, stacked electrical steel sheet, method of manufacturing stacked electrical steel sheet, and iron core for automotive motor
JP6431316B2 (ja) 2014-08-26 2018-11-28 日東シンコー株式会社 モーター用絶縁シート
JP6479392B2 (ja) 2014-09-30 2019-03-06 株式会社三井ハイテック 積層鉄心及びその製造方法
JP6303978B2 (ja) 2014-10-27 2018-04-04 トヨタ自動車株式会社 回転電機のステータ
US10630153B2 (en) * 2014-11-14 2020-04-21 Mitsui High-Tec, Inc. Laminated core and method for manufacturing same
WO2016088200A1 (ja) * 2014-12-02 2016-06-09 三菱電機株式会社 回転電機用固定子コア、回転電機及び回転電機の製造方法
JP6247630B2 (ja) 2014-12-11 2017-12-13 Ckd株式会社 コイルの冷却構造
JP6210058B2 (ja) * 2014-12-26 2017-10-11 Jfeスチール株式会社 積層鉄心用の打抜き加工方法及び積層鉄心の製造方法
JP6587800B2 (ja) 2014-12-26 2019-10-09 Jfeスチール株式会社 積層鉄心の製造方法
WO2016113876A1 (ja) 2015-01-15 2016-07-21 三菱電機株式会社 回転電機
JP2016140134A (ja) 2015-01-26 2016-08-04 アイシン・エィ・ダブリュ株式会社 モータコアおよびモータコアの製造方法
JP6506570B2 (ja) * 2015-03-02 2019-04-24 株式会社日立産機システム 永久磁石回転電機
JP6249417B2 (ja) 2015-03-09 2017-12-20 三菱電機株式会社 回転電機および電動パワーステアリング装置
JP6432397B2 (ja) * 2015-03-12 2018-12-05 アイシン・エィ・ダブリュ株式会社 モータの製造方法およびモータコア
JP6495092B2 (ja) 2015-05-07 2019-04-03 株式会社三井ハイテック 分割型積層鉄心及びその製造方法
US10476321B2 (en) 2015-05-27 2019-11-12 Johnson Electric International AG Magnetic core with multiple teeth having four different teeth tips axially overlapping
JP2016226170A (ja) 2015-05-29 2016-12-28 トヨタ自動車株式会社 電動機用積層コア
JP6627270B2 (ja) 2015-06-12 2020-01-08 住友ベークライト株式会社 整流子
JP2017011863A (ja) 2015-06-22 2017-01-12 新日鐵住金株式会社 モータ鉄心用積層電磁鋼板およびその製造方法
JP2017028911A (ja) 2015-07-24 2017-02-02 日東シンコー株式会社 回転電機用絶縁紙
GB2555354B (en) 2015-08-21 2021-08-11 Mitsubishi Electric Corp Permanent Magnet Embedded Motor, Compressor, and Refrigerating and Air Conditioning Apparatus
JP6429129B2 (ja) 2015-08-26 2018-11-28 日産自動車株式会社 ロータの製造方法
JP6191801B1 (ja) 2015-10-07 2017-09-06 大日本印刷株式会社 接着シートセットおよび物品の製造方法
JP6560588B2 (ja) 2015-10-08 2019-08-14 住友電気工業株式会社 誘導加熱装置、及び発電システム
JP2017075279A (ja) 2015-10-16 2017-04-20 株式会社菱晃 接着剤及び接合体
US10340754B2 (en) 2015-11-25 2019-07-02 Mitsubishi Electric Corporation Rotating electrical machine and method of manufacturing rotating electrical machine
CN108292866B (zh) 2015-11-27 2021-03-12 日本电产株式会社 马达和马达的制造方法
CN108353497A (zh) 2015-12-18 2018-07-31 Dic株式会社 热固性粘接片、带有增强部的柔性印刷配线板、其制造方法以及电子设备
CN108699217B (zh) 2016-02-25 2020-10-30 日立化成株式会社 环氧树脂组合物、半固化环氧树脂组合物、固化环氧树脂组合物、成型物及成型固化物
JP6694057B2 (ja) 2016-03-31 2020-05-13 デンカ株式会社 組成物
JP6908035B2 (ja) 2016-05-20 2021-07-21 日本電産株式会社 ステータコアの製造方法
CN107674499B (zh) 2016-08-01 2021-07-13 株式会社理光 墨水,墨水容器,液体排出装置,图像形成方法及其装置
JP6874550B2 (ja) 2016-08-01 2021-05-19 株式会社リコー インク、インク容器、画像形成方法、画像形成装置、画像形成物、及び液体吐出装置
JP6376706B2 (ja) 2016-08-29 2018-08-22 本田技研工業株式会社 積層鋼板の製造方法および製造装置
CN109643940B (zh) 2016-09-01 2020-11-17 三菱电机株式会社 层叠铁芯、层叠铁芯的制造方法及使用层叠铁芯的电枢
JP6848314B2 (ja) 2016-10-03 2021-03-24 日本製鉄株式会社 ステータコアおよび回転電機
JP6724735B2 (ja) 2016-11-08 2020-07-15 トヨタ自動車株式会社 回転電機のステータ
KR101874918B1 (ko) 2016-11-15 2018-07-06 지에스칼텍스 주식회사 저비중 폴리프로필렌 수지 조성물 및 이를 이용한 자동차 내장재용 성형품
CN108155730B (zh) 2016-12-06 2022-02-25 松下电器产业株式会社 铁芯和电机
JP6905905B2 (ja) 2016-12-06 2021-07-21 パナソニック株式会社 鉄心およびモータ
CN109643603B (zh) 2016-12-07 2021-04-13 松下电器产业株式会社 铁芯和电动机
JP6543608B2 (ja) * 2016-12-22 2019-07-10 株式会社三井ハイテック 積層鉄心の製造方法及び積層鉄心の製造装置
JP6656428B2 (ja) 2017-01-27 2020-03-04 三菱電機株式会社 固定子、電動機、圧縮機、および冷凍空調装置
FR3062970B1 (fr) 2017-02-13 2021-07-23 Valeo Equip Electr Moteur Stator de machine electrique tournante
JP2018138634A (ja) 2017-02-24 2018-09-06 三菱ケミカル株式会社 樹脂組成物および該樹脂組成物を用いた半導体装置
JP6866696B2 (ja) 2017-03-07 2021-04-28 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法、並びにモータコアおよびその製造方法
CN110546224B (zh) 2017-04-26 2022-04-19 东亚合成株式会社 粘接剂组合物
WO2018207277A1 (ja) 2017-05-10 2018-11-15 三菱電機株式会社 ステータ、電動機、圧縮機、及び冷凍空調装置、並びにステータの製造方法
US11784544B2 (en) 2017-05-23 2023-10-10 Threebond Co., Ltd. Method of manufacturing laminated steel plate
JP2018201303A (ja) 2017-05-29 2018-12-20 日本電産株式会社 モータ
CN107154692A (zh) * 2017-06-16 2017-09-12 浙江迪贝电气股份有限公司 一种永磁铁氧体转子
US11616407B2 (en) 2017-08-25 2023-03-28 Mitsubishi Electric Corporation Segment-core coupled body and method of manufacturing armature
DE102017010685A1 (de) 2017-11-16 2019-05-16 Wieland-Werke Ag Kurzschlussläufer und Verfahren zur Herstellung eines Kurzschlussläufers
JP6826566B2 (ja) 2018-08-06 2021-02-03 本田技研工業株式会社 回転電機用ステータコアおよび回転電機
EA202192074A1 (ru) 2018-12-17 2021-11-10 Ниппон Стил Корпорейшн Клеено-шихтованный сердечник для статора и электродвигатель
US11863017B2 (en) 2018-12-17 2024-01-02 Nippon Steel Corporation Laminated core and electric motor
JP7412351B2 (ja) 2018-12-17 2024-01-12 日本製鉄株式会社 積層コアおよび回転電機
WO2020129946A1 (ja) 2018-12-17 2020-06-25 日本製鉄株式会社 ステータ用接着積層コア、その製造方法および回転電機
KR102614581B1 (ko) 2018-12-17 2023-12-19 닛폰세이테츠 가부시키가이샤 적층 코어 및 회전 전기 기기
WO2020129941A1 (ja) 2018-12-17 2020-06-25 日本製鉄株式会社 積層コア、積層コアの製造方法、および回転電機
TWI709982B (zh) 2018-12-17 2020-11-11 日商日本製鐵股份有限公司 接著積層鐵芯、其製造方法及旋轉電機
CN113196616B (zh) 2018-12-17 2024-03-29 日本制铁株式会社 层叠铁芯及旋转电机
KR102531969B1 (ko) 2018-12-17 2023-05-12 닛폰세이테츠 가부시키가이샤 적층 코어, 그 제조 방법 및 회전 전기 기기
TWI733277B (zh) 2018-12-17 2021-07-11 日商日本製鐵股份有限公司 定子用接著積層鐵芯及旋轉電機
CA3131500A1 (en) 2018-12-17 2020-06-25 Nippon Steel Corporation Laminated core and electric motor
KR102607691B1 (ko) 2018-12-17 2023-11-30 닛폰세이테츠 가부시키가이샤 스테이터용 접착 적층 코어 및 회전 전기 기계
CN113016119A (zh) 2018-12-17 2021-06-22 日本制铁株式会社 层叠铁芯及旋转电机
EP3902105A4 (en) 2018-12-17 2022-10-05 Nippon Steel Corporation LAMINATED CORE AND ELECTRIC ROTATING MACHINE
TWI720745B (zh) 2018-12-17 2021-03-01 日商日本製鐵股份有限公司 定子用接著積層鐵芯、其製造方法、及旋轉電機
US20210343466A1 (en) 2018-12-17 2021-11-04 Nippon Steel Corporation Laminated core, core block, electric motor and method of producing core block
JP7055209B2 (ja) 2018-12-17 2022-04-15 日本製鉄株式会社 積層コアおよび回転電機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088107A (ja) * 2000-09-18 2002-03-27 Denki Kagaku Kogyo Kk 硬化性樹脂組成物、硬化体、接着剤組成物及び接合体
JP2003324869A (ja) * 2002-05-08 2003-11-14 Daikin Ind Ltd 電動機及び圧縮機
JP2015142453A (ja) 2014-01-29 2015-08-03 Jfeスチール株式会社 積層鉄心の製造方法および積層鉄心

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3902109A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11710990B2 (en) 2018-12-17 2023-07-25 Nippon Steel Corporation Laminated core with circumferentially spaced adhesion parts on teeth
US11742129B2 (en) 2018-12-17 2023-08-29 Nippon Steel Corporation Adhesively-laminated core, manufacturing method thereof, and electric motor
US11855485B2 (en) 2018-12-17 2023-12-26 Nippon Steel Corporation Laminated core, method of manufacturing same, and electric motor
US11863017B2 (en) 2018-12-17 2024-01-02 Nippon Steel Corporation Laminated core and electric motor
US11915860B2 (en) 2018-12-17 2024-02-27 Nippon Steel Corporation Laminated core and electric motor
US11923130B2 (en) 2018-12-17 2024-03-05 Nippon Steel Corporation Laminated core and electric motor
US11973369B2 (en) 2018-12-17 2024-04-30 Nippon Steel Corporation Laminated core with center electrical steel sheets adhered with adhesive and some electrical steel sheets fixed to each other on both ends of the center sheets
US11990795B2 (en) 2018-12-17 2024-05-21 Nippon Steel Corporation Adhesively-laminated core for stator, method of manufacturing same, and electric motor
US11996231B2 (en) 2018-12-17 2024-05-28 Nippon Steel Corporation Laminated core and electric motor

Also Published As

Publication number Publication date
US20220094218A1 (en) 2022-03-24
CN113196618A (zh) 2021-07-30
US11979059B2 (en) 2024-05-07
KR102607589B1 (ko) 2023-11-30
EA202192071A1 (ru) 2021-11-08
JPWO2020129935A1 (ja) 2021-11-18
CA3131664A1 (en) 2020-06-25
KR20210091240A (ko) 2021-07-21
SG11202108948YA (en) 2021-09-29
TWI724690B (zh) 2021-04-11
TW202030958A (zh) 2020-08-16
BR112021009648A2 (pt) 2021-08-10
EP3902109A1 (en) 2021-10-27
EP3902109A4 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
WO2020129935A1 (ja) 積層コアおよび回転電機
JP7412351B2 (ja) 積層コアおよび回転電機
JP7422679B2 (ja) ステータ用接着積層コアおよび回転電機
JP7486434B2 (ja) ステータ用接着積層コアおよび回転電機
WO2020129940A1 (ja) 積層コアおよび回転電機
JP7418350B2 (ja) ステータ用接着積層コアおよび回転電機
WO2020129937A1 (ja) 積層コアおよび回転電機
WO2020129924A1 (ja) 積層コアおよび回転電機
WO2020129938A1 (ja) 積層コア、コアブロック、回転電機およびコアブロックの製造方法
JP7055209B2 (ja) 積層コアおよび回転電機
WO2020129927A1 (ja) ステータ用接着積層コア、その製造方法、および回転電機
JP7299527B2 (ja) コアブロック、積層コアおよび回転電機、並びにコアブロックの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899146

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020561434

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021009648

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217017802

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019899146

Country of ref document: EP

Effective date: 20210719

ENP Entry into the national phase

Ref document number: 112021009648

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210518

ENP Entry into the national phase

Ref document number: 3131664

Country of ref document: CA