WO2011078462A2 - 그래핀 분산액 및 그래핀-이온성 액체 고분자 복합물 - Google Patents

그래핀 분산액 및 그래핀-이온성 액체 고분자 복합물 Download PDF

Info

Publication number
WO2011078462A2
WO2011078462A2 PCT/KR2010/005401 KR2010005401W WO2011078462A2 WO 2011078462 A2 WO2011078462 A2 WO 2011078462A2 KR 2010005401 W KR2010005401 W KR 2010005401W WO 2011078462 A2 WO2011078462 A2 WO 2011078462A2
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
ionic liquid
dispersion
graphite
liquid polymer
Prior art date
Application number
PCT/KR2010/005401
Other languages
English (en)
French (fr)
Other versions
WO2011078462A3 (ko
Inventor
서광석
김종은
김태영
Original Assignee
Suh Kwang Suck
Kim Jong Eun
Kim Tae Young
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suh Kwang Suck, Kim Jong Eun, Kim Tae Young filed Critical Suh Kwang Suck
Priority to JP2012545833A priority Critical patent/JP2013514963A/ja
Priority to CN2010800592413A priority patent/CN102712779A/zh
Priority to EP10839659.9A priority patent/EP2518103A4/en
Priority to US13/518,421 priority patent/US20120261612A1/en
Publication of WO2011078462A2 publication Critical patent/WO2011078462A2/ko
Publication of WO2011078462A3 publication Critical patent/WO2011078462A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/045Fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a graphene dispersion and a graphene-ionic liquid polymer composite and a method for manufacturing the same, and more particularly, to a graphene dispersion prepared by dispersing graphite in an ionic liquid and to graphene and an ionic liquid polymer. Bound graphene-ionic liquid polymer composites, and methods of making these.
  • graphene refers to each layer of graphite known to have a layered structure, having a high charge mobility of about 20,000 to 50,000 cm / Vs and a specific surface area of 2,630 m. It is very high as 2 / g, and research is being recently conducted to apply it to an electrochemical device such as an ultra high capacity supercapacitor or an electric double layer capacitor.
  • Graphene sometimes forms graphene directly on the surface of the substrate by chemical vapor deposition (CVD) (Ref. Science 3012, 1191, 2006 and Nature Materials 7, 406, 2008). In order to produce each layer is mainly separated from graphite.
  • CVD chemical vapor deposition
  • the method of heating to a high temperature is a method of heating the graphite to a high temperature to expand the interlayer length, and then injecting gas therein to reduce the interlayer bonding force to separate, and the method of using a strong acid solution is to treat the graphite with a strong acid
  • Each layer surface is modified with an oxygen-containing material, which changes the charge state of each layer so that each layer is easily separated.
  • a method of preparing graphene or a graphene dispersion in a known solution phase is a redox method in which a graphite is first oxidized and then reduced again.
  • Various methods have been devised, such as a method of preparing graphene by heating and stirring using a compound such as a surfactant and a method of preparing graphene by applying voltage to graphite in a solution.
  • the general method of graphene production by redox method is a method known as Hummer method.
  • a mixed solution such as KMnO 4 , H 2 SO 4 , HNO 3
  • the surface of each layer in graphite is oxidized. Part of the carbon bonds with oxygen to form a carbonyl group.
  • This is very well dispersed in an aqueous solvent such as water to make a graphene oxide dispersion dispersed in an aqueous solvent.
  • a reducing compound such as hydrazine is added to the dispersion, followed by stirring while at room temperature or heating, thereby producing graphene.
  • the above method may cause a problem that the available specific surface area of graphene for the electrochemical reaction is reduced because the graphene is agglomerated again in the dispersion in the process of reducing the graphene oxide, the graphene dispersion
  • the disadvantage is that the process is cumbersome because the binder material must be mixed again.
  • the present invention has been made to solve the above-mentioned problems of the prior art, to prepare a graphene dispersion by dispersing graphite in an ionic liquid, and polymerized or polymerized if the ionic liquid is a monomer when preparing the graphene dispersion It is an object of the present invention to provide a graphene dispersion preparation method capable of producing a graphene-ionic liquid polymer composite using a phosphorus ionic liquid, and a graphene-ionic liquid polymer composite prepared therefrom and a method for producing the same.
  • the present invention can prepare a dispersed graphene dispersion by putting graphite in an ionic liquid.
  • the present invention also provides a graphene-ionic liquid polymer composite in which an ionic liquid polymer is bonded to graphene made of graphite.
  • the graphite may be ordinary graphite, graphite which has been subjected to oxidation and reduction treatment, graphite which has been heat treated at high temperature, or graphite which has been treated in parallel.
  • the dispersion is agitated, and the ionic liquid is a compound composed of a combination of cations and anions, which are in the form of monomers or polymers, using any one of these components or a mixture of two or more thereof. Can be.
  • the ionic liquid includes any one of the following formula (1) as a cation,
  • R 1 to R 10 independently represent each other selected from the following groups: i) hydrogen, ii) halogen, iii) alkyl, alkenyl, alkynyl, benzyl consisting of C 1 to C 25 hydrocarbons And, as phenyl, may include O, N, Si, and S as heteroatoms, and may optionally include a group of Cl, Br, F, I, OH, NH 2 , SH.)
  • the ionic liquid polymer may have a molecular weight of 1,000-2,000,000 grams / mol.
  • a high molecular weight of the ionic liquid can be obtained by adding a polymerization initiator to the dispersion.
  • the solvent system can be converted by ion exchange of the anion component of the ionic liquid of the dispersion.
  • propylene carbonate, 1-methylpyrrolidone, dimethylformamide, acetonitrile, nitromethane, acetone, tetrahydro Further furan solvent can be added to change the state of low viscosity.
  • the ionic liquid may be added 1 part by weight or more when the graphene oxide is 1 part by weight.
  • the ionic liquid to be added when the ionic liquid to be added is a monomer, it can be polymerized or a graphene-ionic liquid polymer composite using the ionic liquid as a polymer.
  • At least one of 2,2-azobisisobutyronitrile (AIBN), 1,1-azobiscyclohexanecarbonitrile (ABCN) and benzoyl peroxide (BP) as a polymerization initiator for polymerizing the ionic liquid Can be used.
  • the polymerization initiator may be used 0.1 to 3 parts by weight per 100 parts by weight of the ionic liquid.
  • the composite may further include one or more binders, carbon materials, metal particles, and electrically conductive polymers.
  • the binder is any one of polyperfluorosulfonic acid, polytetrafluoroethylene, polyvinylidene fluoride copolymer
  • the carbon material is at least one of activated carbon, graphite, carbon black, carbon nanotube, fullerene
  • the electrically conductive polymer may be any one or more of polyaniline, polypyrrole, polythiophene, and derivatives thereof.
  • graphene-ionic liquid polymer composite may be prepared by polymerizing the ionic liquid to be added when the monomer is used or by using the ionic liquid as a polymer.
  • a graphene dispersion is prepared by dispersing graphite in an ionic liquid, and if the ionic liquid used for preparing the graphene dispersion is a monomer, polymerize it or use a polymer ionic liquid to form graphene- There is an effect to prepare an ionic liquid polymer composite.
  • the time for reducing the oxidized graphene is shortened, and there is no particulate foreign matter after the reduction. Therefore, using the reduction technology of the present invention, not only can be prepared pure graphene dispersion and graphene-ionic liquid polymer composite, but also reduction time, that is, manufacturing time is shortened, graphene dispersion and graphene-ionic liquid polymer Mass production of composites is possible.
  • the ionic liquid polymer is used for graphene oxide or if the ionic liquid polymerizes and is heated after adding a polymerization initiator for preparing the ionic liquid polymer at a suitable time after a reduction process using an ionic liquid monomer, There is an advantage that can be produced simply graphene-polymer composite without the treatment of.
  • the graphene dispersion and the graphene-ionic liquid polymer composite according to the present invention can easily change the surface state of the graphene through the ionic liquid, that is, hydrophilicity and hydrophobicity.
  • the graphene-ionic liquid polymer composite according to the present invention can be used in the field where graphene is required, and in particular, an electrochemical device such as a battery, a fuel cell, a capacitor or a composite device thereof, a supercapacitor, an ultracapacitor, or an electric double layer capacitor. It can be used as an electrode material in.
  • an electrochemical device such as a battery, a fuel cell, a capacitor or a composite device thereof, a supercapacitor, an ultracapacitor, or an electric double layer capacitor. It can be used as an electrode material in.
  • FIG. 1 is a transmission electron microscope (TEM) image of graphene prepared using the ionic liquid of Example 1.
  • FIG. 1 is a transmission electron microscope (TEM) image of graphene prepared using the ionic liquid of Example 1.
  • FIG. 2 and 3 are transmission electron microscope (TEM) images of the graphene-ionic liquid polymer composite prepared using the ionic liquid of Example 3.
  • FIG. 2 and 3 are transmission electron microscope (TEM) images of the graphene-ionic liquid polymer composite prepared using the ionic liquid of Example 3.
  • Figure 4 is a photograph and graph of the atomic force microscope (AFM) observation results of the graphene-ionic liquid polymer composite prepared using the ionic liquid of Example 3.
  • AFM atomic force microscope
  • Graphene dispersion preparation according to the present invention is a very simple process, it is possible to use a simple stirring method by dispersing graphite in an ionic liquid.
  • the ionic liquid may be used as it is, or a polymerization initiator may be added to the ionic liquid and heated to form an ionic liquid polymer, thereby making a graphene dispersion having excellent dispersion stability. Thereafter, the solvent is removed from the graphene dispersion and dried to obtain graphene particles.
  • a method of ion-exchanging an anion component of the ionic liquid with a desired anion is used.
  • the graphene particles obtained at this time are graphene-ionic liquid composites in which an ionic liquid is bonded to the surface.
  • Graphene dispersion preparation method is a very simple process, it is possible to use a simple stirring method by dispersing graphite in an ionic liquid.
  • the ionic liquid may be used as it is, or a polymerization initiator may be added to the ionic liquid and heated to form an ionic liquid polymer, thereby making a graphene dispersion having excellent dispersion stability.
  • the solvent-based conversion is used to ion exchange the anion component of the ionic liquid with the desired anion.
  • the graphene particles obtained at this time are graphene-ionic liquid composites in which an ionic liquid is bonded to the surface.
  • the graphite usable in the present invention may use graphite itself, or any one of graphite, which has been pretreated, to help layer separation.
  • Representative methods of pretreatment to aid in laminar separation include acid treatment of graphite by dipping it in nitric acid or sulfuric acid aqueous solution, or heating it to a high temperature (for example, a temperature of 1,000 degrees Celsius) to expand the graphite or use these methods in parallel. There are many ways to do this.
  • the ionic liquid that can be used in the present invention is a compound composed of a combination of cations and anions, and may be used in the form of a monomer or a polymer, using any one of these components or a mixture of more than these.
  • Examples of representative cations constituting the ionic liquid of the present invention are as shown in the formula (1).
  • R 1 to R 10 independently represent each other selected from the following group. i) hydrogen, ii) halogen, iii) alkyl, alkenyl, alkynyl, benzyl, phenyl consisting of C 1 to C 25 hydrocarbons, which may include O, N, Si and S as heteroatoms, and optionally Cl , Br, F, I, OH, NH 2 , SH may include a group.
  • the anion constituting the ionic liquid polymer is not particularly limited as an inorganic or inorganic element, and specific examples thereof include [CH 3 CO 2 ] - , [HSO 4 ] - , [CH 3 OSO 3 ] - , [ C 2 H 5 OSO 3 ] - , [AlCl 4 ] - , [CO 3 ] 2- , [HCO 3 ] - , [NO 2 ] - , [NO 3 ] - , [SO 4 ] 2- , [PO 4 ] 3-, [HPO 4] 2- , [H 2 PO 4] -, [HSO 3] -, [CuCl 2] -, Cl -, Br -, I -, [BF 4] -, [PF 6] - , [SbF 6 ] - , [CF 3 SO 3 ] - , [HCF 2 CF 2 SO 3 ] - , [CF 3 HFCCF 2 SO 3 ] -
  • the content of the ionic liquid used as the accelerator of the reduction reaction and the dispersant of the graphene oxide should be at least 1 times the weight of the ionic liquid to the weight of the graphene oxide.
  • the maximum content of the ionic liquid is not particularly limited.
  • the graphene dispersion obtained by the above-mentioned method can be used by centrifuging to remove large particulate graphite mass.
  • heat-treated expandable graphite at a high temperature, but heat-treatment at a temperature of about 600 to 1,200 for 10 to 300 seconds is preferable. It is preferable to disperse the heat treated expandable graphite in the ionic liquid. The expandable graphite can then simply be dispersed and dispersed in the ionic liquid.
  • a graphene dispersion having excellent dispersion stability By adding a polymerization initiator to the graphene dispersion to make the ionic liquid high molecular weight, a graphene dispersion having excellent dispersion stability can be obtained.
  • Initiators for polymerizing ionic liquids to form ionic liquid polymers include 2,2-azobisisobutyronitrile (AIBN), 1,1′-azobiscyclohexanecarbonitrile (ABCN), benzoyl peroxide (BP ) And the like.
  • the content of the polymerization initiator may be used in an amount of 0.1 to 3 parts by weight based on the content of the ionic liquid, and the polymerization reaction may be performed at a temperature of 50-80 degrees Celsius for about 5-72 hours.
  • the reaction conditions may be adjusted so that the molecular weight of the finally polymerized ionic liquid polymer is in the range of 1,000-2,000,000 grams / mol. If the molecular weight is 1,000 grams / mol or less, the long-term stability of the graphene dispersion is not good, and if it is 2,000,000 grams / mol or more, the molecular weight is too high, solubility is deteriorated.
  • the graphene dispersion made by the above-mentioned method is a graphene dispersion well dispersed in an organic solvent.
  • anions that can be used to facilitate the dispersion of the ionic liquid in the organic solvent include [BF 4 ] - , [ PF 6 ] - , [SbF 6 ] - , [CF 3 SO 3 ] - , [HCF 2 CF 2 SO 3 ] - , [CF 3 HFCCF 2 SO 3 ] - , [HCClFCF 2 SO 3 ] , [(CF 3 SO 2 ) 2 N] - , [(CF 3 CF 2 SO 2 ) 2 N] - , [(CF 3 SO 2 ) 3 C] - , [CF 3 CO 2 ] - , [CF 3 OCFHCF 2 SO 3 ] -, [CF 3 CF 2 OCFHCF 2 SO 3] - can be given -, [CF 3 CFHOCF 2 CF 2 SO 3
  • the solvent of the graphene solution dispersed in the organic solvent as described above it can be configured to be well dispersed in water or an aqueous solvent by replacing the anionic component of the ionic liquid.
  • the graphite is added to the ionic liquid and stirred to obtain a graphene dispersion in which graphene is dispersed in the ionic liquid.
  • the polymerization initiator is added to the solution and reacted to polymerize the ionic liquid, the viscosity increases and a graphene dispersion in the gel state is obtained.
  • the graphene dispersion in this gel state is very well dispersed in polar organic solvents such as propylene carbonate, 1-methylpyrrolidone, dimethylformamide, acetonitrile, nitromethane, acetone, tetrahydrofuran, and thus uniformly dispersed in the organic solvent.
  • polar organic solvents such as propylene carbonate, 1-methylpyrrolidone, dimethylformamide, acetonitrile, nitromethane, acetone, tetrahydrofuran, and thus uniformly dispersed in the organic solvent.
  • a dispersed graphene solution can be obtained.
  • a method of obtaining a water-dispersible graphene dispersion from the dispersed graphene solution is to use a method of exchanging anions of the ionic liquid of the solution with anions that are easy to disperse.
  • a compound having a bromine group such as tetrabutylammonium bromide or tetrabutylphosphonium bromide
  • the ionicity surrounding the graphene is substituted with a bromine group (ion exchange reaction).
  • the graphene / ionic liquid composite substituted with the bromine-based anion thus formed is dispersed in an aqueous solvent and graphene is precipitated. After washing this, redispersion is performed again in the aqueous solvent to obtain a graphene dispersion uniformly dispersed in the aqueous solvent.
  • the gel-form product may contain propylene carbonate, 1-methylpyrrolidone, If more solvents such as dimethylformamide, acetonitrile, nitromethane, acetone, tetrahydrofuran and the like are added to a low viscosity state, the anion exchange reaction using tetraammonium bromide can be easily performed.
  • tetrabutylammonium bromide or tetrabutylphosphonium bromide is solid at room temperature, propylene carbonate, 1-methylpyrrolidone, dimethylformamide, acetonitrile, nitromethane, acetone, tetrahydrofuran, etc. It is more effective if it is melted in advance.
  • the dispersed graphene dispersion may be obtained by dispersing the treated graphene in an aqueous solvent.
  • This aqueous graphene dispersion is stable for a considerable period of time at room temperature, but there is a problem that the graphene particles eventually precipitate after a long time. Therefore, when the ionic liquid polymer is added to the aqueous graphene dispersion, dispersion stability is remarkably improved, and graphene does not precipitate even if left for a long time.
  • the ionic liquid polymer used herein is a high molecular weight obtained by adding a polymerization initiator to ionic liquid molecules having anions soluble in an aqueous solvent.
  • An ionic liquid polymer having a molecular weight of 1,000 to 2,000,000 grams / mole may be used.
  • the molecular weight of the ionic liquid when the molecular weight is 1,000 grams / mole or less, the molecular weight of the ionic liquid is low and there is little dispersion stability.
  • Example 3 relates to a graphene dispersion stabilized with an ionic liquid polymer through an oxidation and reduction process, the specific method of which is as follows.
  • graphite is prepared by stirring 5 grams of graphite in a solution of 25 grams of KMnO 4 , 3.75 grams of NaNO 3 , and 170 milliliters of H 2 SO 4 , and the graphite oxide is stirred in water for 30 minutes and centrifuged to give yellow oxide.
  • An aqueous graphene oxide dispersion is obtained.
  • 19 milliliters of the aqueous graphene oxide dispersion was mixed with 400 milligrams of poly (1-vinyl-3-ethyl imidazolium) bromide as an ionic liquid polymer and stirred to obtain an aqueous graphene oxide dispersion stabilized with an ionic liquid polymer. .
  • This solution is a graphene dispersion dispersed in water, and a portion of the solution is taken and observed with an atomic force microscope. As a result of the AFM photograph of FIG. 4 and the graph showing the thickness profile, the height is 1-2. It was confirmed that the graphene-ionic liquid polymer composite is about nanometer.
  • Example 4 is an example of the process of converting the graphene dispersion obtained in Example 2 into water dispersible by the ion exchange method.
  • a graphene-ionic liquid polymer composite may be prepared by polymerizing the ionic liquid or using the ionic liquid as a polymer.
  • the cation of the ionic liquid monomer has a functional group capable of inducing a polymerization reaction, and the anion is [BF 4 ] - , [PF 6 ] - , [CF 3 for efficient separation of the graphene-ionic liquid polymer composite.
  • the ionic liquid monomer having SO 2 ) 2 N] - [(CF 3 CF 2 SO 2 ) 2 N] -
  • Polymerization of the ionic liquid can produce graphene-ionic liquid polymer composites.
  • the graphene-ionic liquid polymer composite refers to a material containing graphene and an ionic liquid polymer.
  • any one of 2,2-azobisisobutyronitrile (AIBN), 1,1-azobiscyclohexanecarbonitrile (ABCN), and benzoyl peroxide (BP) is just to mix and use the above.
  • the content of the polymerization initiator may be used in an amount of 0.1 to 3 parts by weight based on 100 parts by weight of the ionic liquid, and the polymerization may be performed at a temperature of 50 to 80 degrees Celsius for about 5-72 hours.
  • the temperature and the reaction time of the reaction is less than the lower limit, the reaction rate is too low or the reaction is not very good due to the high molecular weight is not good, if used above the upper limit unnecessarily large amount or long time Or the temperature is too high to deteriorate the ionic liquid polymer or the solvent evaporation is severe and disadvantageous.
  • the graphene oxide may be reduced using a prepolymerized ionic liquid polymer.
  • the oxidized graphene is put in a solvent such as propylene carbonate, and the ionic liquid polymer is added thereto and heated to a temperature of 100 degrees Celsius or more to undergo a reduction reaction.
  • the ionic liquid polymer combines with the graphene to stabilize and prevents the graphene from aggregating again during the reduction process.
  • the method using the ionic liquid polymer is more effective because the graphene-ionic liquid polymer composite can be directly produced while causing a reduction reaction without a separate polymerization step after the reduction process. That is, the graphene-ionic liquid polymer composite is naturally obtained by combining the ionic liquid polymer with graphene during the reduction process.
  • Both methods produce a graphene-ionic liquid polymer composite, wherein the ionic liquid polymer in the composite is preferably adjusted to have a weight average molecular weight in the range of 1,000-2,000,000 grams / mol. If the molecular weight is 1,000 grams / mol or less, the long-term stability of the graphene dispersion is not good, and if it is 2,000,000 grams / mol or more, the molecular weight is too high, solubility is deteriorated.
  • the graphene-ionic liquid polymer composite according to the present invention can easily change the compatibility with an aqueous, organic, or ionic liquid electrolyte by exchanging anions bound to the ionic liquid polymer according to a conventional anion exchange reaction. have.
  • the anion of the ionic liquid polymer in the complex Cl -, Br -, [NO 3] -, [CH 3 SO 4] - the compatibility with water-based electrolyte together excellent if it is a combination, this anion substituted by [BF 4] -, [PF 6] -, [CF 3 sO 2) 2 N] -, [(CF 3 CF 2 sO 2) 2 N] - when presented combination is excellent in compatibility with an organic electrolyte Do.
  • the graphene-ionic liquid polymer composite of the present invention is obtained in the form of a slurry through a process such as filtration, it may be dried to form a powder or processed into other forms.
  • Graphite oxide was treated by acid treatment of graphite (SP-1, Bay Carbon) using Hummer method (Hummers W, Offeman R., "Preparation of graphite oxide", Jounal of the American Chemical Society, 80, 1958, 1339). Manufacture.
  • the graphite oxide is stirred for about 1 hour using propylene carbonate as a solvent to obtain an organic solvent dispersion in which graphene oxide is dispersed at a concentration of 1.0 mg / ml.
  • the electrical resistance of the graphene-ionic liquid polymer composite sample prepared according to the time of the reduction reaction was measured through a standard 4-terminal method (CMT series, Jandel Probe). When the electrical resistance was too low to be measured by the 4-terminal method, it was measured by the 2-terminal method. When the reduction time was 0, 0.5, 1, 2, 6, 12 hours, the electrical resistance was measured as> 10 12 , 10 10 , 10 9 , 10 6 , 10 5 , 10 3 Ohm / sq, respectively. It can be seen from the comparative example that the reduction reaction time is required about 12 hours to obtain a graphene-ionic liquid polymer composite having an electrical resistance of 10 3 Ohm / sq by a general heat reduction method.
  • Graphite oxide was treated by acid treatment of graphite (SP-1, Bay Carbon) using Hummer method (Hummers W, Offeman R., "Preparation of graphite oxide", Jounal of the American Chemical Society, 80, 1958, 1339). Prepared. After preparing the graphite oxide, an organic solvent dispersion having graphene oxide dispersed at a concentration of 1.0 mg / ml was obtained by stirring it for about 1 hour using propylene carbonate as a solvent.
  • the filter was filtered using a filter paper, and the electrical resistance of the graphene-ionic liquid polymer composite remaining on the filter paper was confirmed. As a result, the reduction of graphene oxide was rapidly progressed to 10 3 Ohm / sq. could.
  • Example 6 shows 70 mg of 1-octyl-3-methyl imidazolium bistrifluoromethylsulfonylamide [1-octyl-3-methylimidazolium bis (trifluoromethyl) sulfonylamide] as an ionic liquid in a graphene oxide organic solvent dispersion. Same as Example 5 except mixing. Even in Example 6, the precipitation of the graphene-ionic liquid polymer composite did not occur even after the reduction reaction, and the reduction reaction proceeded rapidly within about 1 hour, and thus the graphene-ionic liquid polymer having an electrical resistance of 10 3 Ohm / sq. It was confirmed that the composite was produced.
  • Example 7 was mixed with 70 mg using 1-butyl-3-methyl pyrrolidinium bistrifluoromethylsulfonylamide [1-octyl-3-methylimidazolium bis (trifluoromethyl) sulfonylamide] as an ionic liquid. Is the same as Example 5. In the case of Example 7, the precipitation of the graphene-ionic liquid polymer composite did not occur after the reduction reaction, and the reduction reaction proceeded rapidly within about 1 hour, and thus the graphene-ionic liquid having an electrical resistance of 10 3 Ohm / sq. It was confirmed that the polymer composite was prepared.
  • Example 8 mixes 70 mg of 1-butyl-3-methyl pyrrolidinium bistrifluoromethylsulfonylamide [1-octyl-3-methylimidazolium bis (trifluoromethyl) sulfonylamide] as an ionic liquid and adjusts the temperature of the reduction reaction. It is the same as Example 3 except having made 200 degree
  • Example 9 mixes 70 mg of 1-vinyl-3-ethyl imidazolium bistrifluoromethylsulfonylamide [1-vinyl-3-ethylimidazolium bis (trifluoromethyl) sulfonylamide] as an ionic liquid and at a temperature of about 150 degrees
  • Graphene dispersions were prepared by stirring for 1 hour.
  • About 2 weight percent of 2,2-azobisisobutyronitrile (AIBN) was added to the graphene dispersion treated by the above method as a polymerization initiator relative to the ionic liquid and reacted for 6 hours at a temperature of 65 degrees Celsius.
  • the graphene-ionic liquid polymer composite was formed by polymerizing the liquid.
  • the graphene-ionic liquid polymer composite was filtered and dried to measure the electrical resistance, and it was confirmed that it had a value of 10 4 Ohm / sq.
  • Example 10 1-ethyl-3-methylimidazolium bistrifluoromethylsulfonylamide (1-ethyl-3-methylimidazolium bis (trifluoromethyl) sulfonyl amide, which is an ionic liquid, was prepared using the graphite oxide prepared according to Example 1). ] And stirred for 1 hour to obtain a solution of graphene oxide dispersed in an ionic liquid at a concentration of 1.0 mg / ml. When the graphene oxide dispersion was stirred in the framework of a temperature of about 300 degrees, it was observed that the reduction reaction proceeded while changing the color of the reactant to black within about 10 minutes. As a result of confirming the electrical resistance of the reactants, it was confirmed that the reduction of graphene oxide proceeded as fast as 10 4 Ohm / sq.
  • Example 11 polymerized 1-vinyl-3-ethyl imidazolium bistrifluoromethylsulfonylamide [1-vinyl-3-ethylimidazolium bis (trifluoromethyl) sulfonylamide] as an ionic liquid to prepare poly (1-vinyl-3).
  • -Ethyl imidazolium) bistrifluoromethylsulfonylamide was prepared first and then added to the graphene oxide dispersion to induce a reduction reaction.
  • 1-vinyl-3-ethyl imidazolium bistrifluoromethylsulfonylamide [1-vinyl-3-ethylimidazolium bis (trifluoromethyl) sulfonylamide] was dissolved in dimethylformamide (DMF). After dissolving at 5% by weight, 2,2-azobisisobutyronitrile (AIBN) as a polymerization initiator was added at about 2% by weight relative to the ionic liquid and reacted for 6 hours at a temperature of 65 ° C. Vinyl-3-ethyl imidazolium) bistrifluoromethylsulfonylamide was prepared and dried.
  • AIBN 2,2-azobisisobutyronitrile
  • Graphene oxide which is separated from each layer by oxidizing pristine graphite, is mixed with an ionic liquid polymer to form a graphene oxide-ionic liquid polymer, which is formed by using a reducing agent or heat.
  • a graphene-ionic liquid polymer composite obtained by reducing graphene oxide is prepared.
  • the method for preparing the graphene-ionic liquid polymer composite using the method of the above method (i) is as follows.
  • General graphite is oxidized using a mixed solution of KMnO 4 , H 2 SO 4 , HNO 3, etc., as known by the Hummer method, and dispersed in water or an organic solvent to obtain a graphene oxide dispersion.
  • an ionic liquid polymer is mixed with the solution to form a graphene oxide-ionic liquid polymer.
  • the oxidation yes If it is dispersed in a water-pin as an anion of a hydrophilic ionic liquid polymer, for example, the ionic liquid polymer [NO 3] -, Cl - , Br -, I -, [CH 3 SO 4] - is It is preferable to use an ionic liquid polymer which is bound, and when graphene oxide is dispersed in an organic solvent such as propylene carbonate, the anion of the hydrophobic ionic liquid polymer, for example, the ionic liquid polymer, may be [(CF 3 SO 2 ) 2 N] - , [(CF 3 CF 2 SO 2 ) 2 N] - , [(CF 3 SO 2 ) 3 C] - , [CF 3 CO 2 ] - , [CF 3 OCFHCF 2 SO 3 ] - , [CF 3 CF 2 OCFHCF 2 SO 3] -, [CF 3 CFHOCF 2 CF 2 SO 3] - it is preferred to use the
  • a reducing agent including hydrazine, hydroquinone, sodium borohydride, or the like is added to the graphene oxide-ionic liquid polymer dispersion, or the temperature of the dispersion is 100.
  • a reducing agent including hydrazine, hydroquinone, sodium borohydride, or the like is added to the graphene oxide-ionic liquid polymer dispersion, or the temperature of the dispersion is 100.
  • a reducing agent including hydrazine, hydroquinone, sodium borohydride, or the like is added to the graphene oxide-ionic liquid polymer dispersion, or the temperature of the dispersion is 100.
  • the ionic liquid polymer in the process of producing graphene-ionic liquid polymer composite by reducing graphene oxide, the ionic liquid polymer exhibits the effect of stabilizing by combining with graphene to prevent the graphene from aggregating again during the reduction process.
  • graphene in graphene-ionic liquid polymer composites has the effect of exhibiting a high available specific surface area.
  • the ionic liquid monomer has a functional group capable of inducing a polymerization reaction to the cation, and the anion is [BF 4 ] - , [PF 6 ] - , [CF 3 for efficient separation of the graphene-ionic liquid polymer composite.
  • the graphene-ionic liquid polymer composite is prepared by adding a polymerization initiator for polymerization of the ionic liquid to the graphene-ionic liquid monomer solution.
  • a polymerization initiator for polymerization of the ionic liquid any one of 2,2-azobisisobutyronitrile (AIBN), 1,1 ⁇ -azobiscyclohexanecarbonitrile (ABCN), and benzoyl peroxide (BP) Or you may mix and use more.
  • the content of the polymerization initiator may be used in an amount of 0.1 to 3 parts by weight based on the content of the ionic liquid, and the polymerization reaction may be performed at a temperature of 50-80 degrees Celsius for about 5-72 hours.
  • the temperature and the reaction time of the reaction is less than the lower limit, the reaction rate is too low or the reaction is not very good due to the high molecular weight is not good, the use of more than the upper limit unnecessarily large amount or long time reaction Or the temperature is too high to deteriorate the ionic liquid polymer or the solvent evaporation is severe and disadvantageous.
  • An example of the method of (i) or (ii) is to prepare a graphene-ionic liquid polymer composite, wherein the ionic liquid polymer in the composite is adjusted to have a weight average molecular weight in the range of 1,000-2,000,000 grams / mol It is preferable. If the molecular weight is 1,000 grams / mol or less, the long-term stability of the graphene dispersion is not good, and if it is 2,000,000 grams / mol or more, the molecular weight is too high, solubility is deteriorated.
  • the composite consisting of graphene-ionic liquid polymer is characterized in that composed of 5 to 95 wt% of graphene and 5 to 95 wt% of ionic liquid polymer. If the graphene content is less than 5 wt%, the electrical conductivity of the composite is very low, and because the amount of graphene that can form an electric double layer with an electrolyte is too small, it is difficult to secure sufficient capacitance, and the graphene content is 95 wt%. Exceeding the% causes a problem that the workability of the graphene composite is lowered.
  • the graphene-ionic liquid polymer composite according to the present invention can easily change the compatibility with an aqueous, organic, or ionic liquid electrolyte by exchanging anions bound to the ionic liquid polymer according to a conventional anion exchange reaction. have.
  • the anion of the ionic liquid polymer in the complex Cl -, Br -, [NO 3] -, [CH 3 SO 4] - the compatibility with water-based electrolyte together excellent if it is a combination, this anion substituted by [BF 4] -, [PF 6] -, [CF 3 sO 2) 2 N] -, [(CF 3 CF 2 sO 2) 2 N] - when presented combination is excellent in compatibility with an organic electrolyte Do.
  • Graphene-ionic liquid polymer composite of the present invention is obtained in the form of a slurry through a process such as filtration, it can be used as a material of various electrochemical devices.
  • organic-inorganic materials such as binders, carbon materials, metal particles, and electrically conductive polymers may be selectively mixed.
  • polyperfluorosulfonic acid Nafion
  • polytetrafluoroethylene polytetrafluoroethylene
  • polyvinylidene fluoride copolymer etc.
  • carbon materials activated carbon, graphite, carbon black, carbon nanotube, fullerene, etc.
  • electrically conductive polymer examples include polyaniline, polypyrrole, polythiophene, and derivatives thereof.
  • binder material content ranges from 1 to 20 wt% of graphene content, and if the content is less than 1 wt%, the complementary effect of the mechanical properties is too small, and if it is more than 20 wt%, the binder, which is an electrical insulator, enters too much.
  • the performance as an electrochemical device is deteriorated and is rather disadvantageous.
  • the electrochemical device refers to various devices such as a battery, a fuel cell, a capacitor or a combination thereof, a supercapacitor, an ultracapacitor, or an electric double layer capacitor. That is, it can be used in various electrochemical devices so that the capacitance is much better than the prior art.
  • Graphite oxide was treated by acid treatment of graphite (SP-1, Bay Carbon) using Hummer method (Hummers W, Offeman R., "Preparation of graphite oxide", Jounal of the American Chemical Society, 80, 1958, 1339). It was prepared and put in water and stirred for 30 minutes to obtain an aqueous dispersion of graphene oxide dispersed at a concentration of 1.0 mg / ml.
  • Comparative Example 1 is the same as in Example 12, except that 3 wt% of polytetrafluoroethylene was mixed with the binder material in the graphene obtained by the reduction reaction without using the ionic liquid polymer.
  • Graphite oxide prepared through the acid treatment method of Example 12 was placed in propylene carbonate, an organic solvent, and ultrasonically dispersed to obtain a solution in which graphene oxide was dispersed in an organic solvent at a concentration of 1.0 mg / ml.
  • 50 mg of poly (1-vinyl-3-ethylimidazolium) bistrifluoromethylsulfonylamide poly (1-vinyl-3-ethylimidazolium bis (trifluoromethyl) sulfonylamide]] as an ionic liquid polymer was added.
  • the graphene-ionic liquid polymer composite was prepared by raising the temperature of the solution to 150 ° C. for 1 hour to react.
  • the ionic liquid polymer composite is as in the electron scanning microscope observation picture of FIG.
  • Comparative Example 4 is the same as Example 13 except that graphene is prepared without using an ionic liquid polymer.
  • H 2 SO 4 and HNO 3 are inserted into each layer of graphite, and expandable graphite (expandable graphite, Grafguard) is subjected to a heat treatment at a temperature of 1,000 degrees for 1 minute, and then 1 mg of ionic liquid 1-vinyl-3-ethyl 3 g of imidazolium hexafluorophosphate (1-vinyl-3-ethyl imidazolium hexafluorophosphate) was added, ground with a rod bowl, and then ultrasonically dispersed for 30 minutes to form a graphene-ionic liquid monomer.
  • the graphene dispersion preparation method according to the present invention and the graphene-ionic liquid polymer composite prepared therefrom and the preparation method thereof are graphene-ion using a graphene dispersion prepared by dispersing graphite in an ionic liquid.
  • a sex liquid polymer composite can be prepared.
  • the graphene-ionic liquid polymer composite thus prepared can be used as an electrode material of an electrochemical device such as a supercapacitor or an electric double layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inert Electrodes (AREA)

Abstract

본 발명은 그래핀 분산액 제조 방법 및 이를 통해 제조되는 그래핀-이온성 액체 고분자 복합물 및 그 제조 방법에 관한 것으로, 흑연을 이온성 액체에 넣어 분산시킴으로써 제조된 그래핀 분산액을 이용하여 그래핀-이온성 액체 고분자 복합물을 제조할 수 있다.

Description

그래핀 분산액 및 그래핀-이온성 액체 고분자 복합물
본 발명은 그래핀 분산액 및 그래핀-이온성 액체 고분자 복합물 그리고 그 제조 방법에 관한 것으로, 보다 상세하게는 흑연을 이온성 액체에 넣어 분산시킴으로써 제조되는 그래핀 분산액 및 그래핀과 이온성 액체 고분자가 결합된 그래핀-이온성 액체 고분자 복합물, 그리고 이들 제조 방법에 관한 것이다.
그래핀(graphene) 또는 카본 나노플레이트(이하 그래핀이라 부른다)는 층상구조를 갖는 것으로 알려져 있는 흑연의 각 층을 말하는 것으로서, 전하이동도가 약 20,000 내지 50,000 cm/Vs 로 높고 비표면적이 2,630 m2/g으로 매우 높아 최근 이를 초고용량 수퍼커패시터 또는 전기이중층 커패시터와 같은 전기화학 장치에 응용하려는 연구가 진행되고 있다.
그래핀은 화학기상증착법 (chemical vapor deposition; CVD)에 의해 기판 표면에 직접 그래핀을 형성하는 경우도 있으나 (참고문헌: Science 3012, 1191, 2006 및 Nature Materials 7, 406, 2008), 대량생산을 위해서는 주로 흑연으로부터 각 층을 분리하여 제조한다.
흑연의 각 층을 분리하기 위한 기존의 기술은 흑연을 강산 용액으로 처리하여 각 층 물질이 산화된 형태로 분리하여 물 등의 용매에 분산시킨 후 이를 다시 환원시켜 그래핀 분산액을 얻는 방법과 팽창가능한 흑연(expandable graphite)을 약 1,000도 정도의 높은 온도에서 열처리하여 그래핀을 얻는 방법등이 제안되어 있다. (참고문헌: Carbon, 45, 1558, 2007, Nature Nanotechnology, 3, 101, 2008).
이들 방법은 모두 흑연의 각 층을 분리시키기 위해 흑연의 층간 결합력을 약화시키거나 또는 기체를 팽창시켜 각 층을 분리하는 기술이다. 먼저, 높은 온도로 가열하는 방법은 흑연을 높은 온도로 가열하여 층간 길이를 팽창시킨 후 여기에 기체를 주입하여 층간 결합력을 저하시켜 분리하는 방법이고, 강산 용액을 이용하는 방법은 강산으로 흑연을 처리하면 각 층 표면을 산소를 갖는 물질로 개질하게 되고 이는 각 층의 전하 상태를 변경하여 각 층이 쉽게 분리된다. 일단 각 층을 분리시킨 후, 즉 표면에 산화된 그래핀을 제조한 후 표면의 산화 상태를 환원시키면 중성의 그래핀을 얻을 수 있다.
이 방법들은 그래핀 분산액을 직접 얻을 수 있기는 하지만 용매계가 바뀌는 경우에는, 즉 수계 용매에서 유기계 용매로 또는 그 반대로 변환해야 하는 경우에는 별도의 용매계 변경을 위한 복잡한 처리과정을 거쳐야 한다.
이들 방법은 결국 약 1,000도 정도의 높은 온도로 가열하거나 또는 일단 산화시킨 후 다시 환원시키는 복잡한 공정을 거쳐야 하는 단점, 이러한 산화환원 과정을 거치면서 그래핀 표면에 상당히 많은 결함이 존재하게 되거나, 또한 일단 만들어진 그래핀을 용매에 다시 분산시키거나 용매계 변환을 위해서는 복잡한 별도의 과정을 거쳐야 하는 등의 단점이 있어 대량 생산에는 적합하지 않은 방법이고 따라서 응용성 면에서 상당히 제한적일 수 밖에 없다.
또한 그래핀을 이용하기 위해서는 흑연으로부터 각 층을 대량으로 분리해 내기 위하여, 지금까지 알려져 있는 용액상에서 그래핀 또는 그래핀 분산액을 제조하는 방법은 흑연을 먼저 산화시킨 후 다시 환원시키는 산화환원법, 용액상에서 계면활성제 등의 화합물을 이용하여 가열교반하여 그래핀을 제조하는 방법, 용액상에서 흑연에 전압을 가하여 그래핀을 제조하는 방법 등 다양한 방법이 고안되었다.
산화환원법은 흑연을 미리 산화시킨 후 이를 다시 환원시켜야 하는 복잡한 과정을 거치기는 하지만, 나노 물질의 층 개수가 1개 내지 수개의 층으로 이루어져 있고 면적이 비교적 넓은 그래핀에 가장 가까운 구조의 물질을 제조할 수 있는 것으로 알려져 있다. 또한 일반 흑연을 원재료로 사용하기 때문에 가장 경제적인 방법이기도 하다.
산화환원법에 의한 그래핀 제조의 일반적인 방법은 소위 Hummer 법으로 알려져 있는 방법으로서, 일반 흑연을 KMnO4, H2SO4, HNO3 등의 혼합용액을 이용하여 처리하면 흑연 내 각 층의 표면이 산화되어 탄소의 일부가 산소와 결합하여 카보닐기를 갖게 된다. 이는 물 등의 수계 용매에 분산이 매우 잘 되어 수계 용매에 분산되어 있는 산화그래핀 분산액을 만든다. 이후 이 분산액에 하이드라진 등의 환원제 화합물을 첨가하여 상온 또는 가열하면서 교반하면 환원반응이 일어나 그래핀이 만들어진다.
그러나 상기 산화환원법의 경우 산화 그래핀을 물 등의 비점이 비교적 낮은 용매에 분산하고 하이드라진 하이드레이트와 같은 환원제를 사용할 경우 반응온도를 크게 높일 수 없기 때문에 많은 양의 환원제를 사용하거나 또는 환원 시간이 길어야 한다는 단점이 있다. 또한 환원 반응 후 그래핀 표면에 하이드라진과 같은 입자들이 남아있어 이를 세척하여 제거해야 한다는 불편함도 있다. 이때 하이드라진계 환원제 함량을 증가시키면 환원공정을 어느 정도 단축시킬 수는 있지만 결국 용매가 물과 같은 수계 용매이므로 비등점이 낮아 환원시간을 많이 높일 수 없어 환원시간 단축에 한계가 있다. 이 환원시간은 그래핀의 대량 생산에 상당한 제약이 되는 것으로서, 흑연으로부터 그래핀을 짧은 시간에 대량 생산하기 위해서는 환원 시간이 현저히 짧아져야 한다.
또한, 상기 방법들은 산화그래핀을 환원하는 과정에서 그래핀이 분산액 내에서 다시 뭉치는 현상이 발생하기 때문에 전기화학반응을 위한 그래핀의 가용 비표면적이 줄어드는 문제가 있을 수 있고, 그래핀 분산액에 다시 바인더 물질을 혼합해야 하기 때문에 공정이 번거롭다는 단점이 있다.
따라서, 상기에 제시된 문제점을 해결하고 이온성 액체를 포함하는 여러 전해질과 상용성이 높은 새로운 그래핀-이온성 액체 고분자 복합물의 제조 방법의 개발이 필요하다.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 흑연을 이온성 액체에 넣어 분산시킴으로써 그래핀 분산액을 제조하고, 그래핀 분산액 제조 시 이온성 액체가 단량체인 경우 이를 중합시키거나 고분자인 이온성 액체를 사용하여 그래핀-이온성 액체 고분자 복합물을 제조할 수 있는 그래핀 분산액 제조 방법 및 이를 통해 제조되는 그래핀-이온성 액체 고분자 복합물 및 그 제조 방법을 제공하는데 그 목적이 있다.
이러한 목적을 달성하기 위하여, 본 발명은 흑연을 이온성 액체에 넣어 분산된 그래핀 분산액을 제조할 수 있다.
또한 본 발명은 흑연으로 만들어진 그래핀에 이온성 액체 고분자가 결합된 그래핀-이온성 액체 고분자 복합물을 제공한다.
상기 흑연은 일반 흑연, 산화와 환원 처리된 흑연, 고온으로 열처리된 흑연 또는 이들을 병행하여 처리된 흑연일 수 있다.
상기 분산은 교반으로 하며, 그리고 상기 이온성 액체는 양이온 및 음이온의 조합으로 구성된 화합물로서 단량체 (monomer) 형태이거나 고분자 (polymer) 형태이며, 이들 성분 중 어느 하나를 사용하거나 또는 둘 이상을 혼합하여 사용할 수 있다.
상기 이온성 액체는 양이온으로 아래 화학식 1에 나타낸 어느 하나를 포함하거나,
<화학식 1>
Figure PCTKR2010005401-appb-I000001
(여기서, R1 내지 R10은 서로 독립적으로 다음의 그룹에서 선택된 어느 하나임을 나타낸다. i) 수소, ii) 할로겐, iii) C1 내지 C25의 탄화수소로 구성된 알킬, 알케닐, 알키닐, 벤질, 페닐로서 O, N, Si 및 S를 이종원자로 포함할 수 있으며, 또한 선택적으로 Cl, Br, F, I, OH, NH2, SH의 그룹을 포함할 수 있다.)
음이온으로 [CH3CO2]-, [HSO4]-, [CH3OSO3]-, [C2H5OSO3]-, [AlCl4]-, [CO3]2-, [HCO3]-, [NO2]-, [NO3]-, [SO4]2-, [PO4]3-, [HPO4]2-, [H2PO4]-, [HSO3]-, [CuCl2]-, Cl-, Br-, I-, [BF4]-, [PF6]-, [SbF6]-, [CF3SO3]-, [HCF2CF2SO3]-, [CF3HFCCF2SO3]-, [HCClFCF2SO3]-, [(CF3SO2)2N]-, [(CF3CF2SO2)2N]-, [(CF3SO2)3C]-, [CF3CO2]-, [CF3OCFHCF2SO3]-, [CF3CF2OCFHCF2SO3]-, [CF3CFHOCF2CF2SO3]- 중 어느 하나를 포함하거나, 또는 상기 양이온 및 음이온을 모두 사용할 수 있다.
상기 이온성 액체 고분자의 분자량이 1,000 - 2,000,000 그램/몰일 수 있다.
상기 분산액에 중합 개시제를 첨가하여 이온성 액체를 고분자량화할 수 있다.
상기 분산액의 이온성 액체의 음이온 성분을 이온 교환하여 용매계를 변환할 수 있다.
상기 이온성 액체의 음이온 성분을 이온 교환시 이온교환 반응을 쉽게 하기 위해서 젤 형태의 그래핀 분산액 생성물에 프로필렌카보네이트, 1-메틸피롤리돈, 디메틸포름아마이드, 아세토니트릴, 니트로메탄, 아세톤, 테트라하이드로퓨란 용매를 더 첨가하여 점도가 낮은 상태로 바꾸어줄 수 있다.
상기 이온성 액체는 상기 산화 그래핀을 1 중량부로 했을 때 1중량부 이상 첨가될 수 있다.
상기 그래핀 분산액 제조 방법에서, 첨가되는 이온성 액체가 단량체인 경우 이를 중합시키거나 상기 이온성 액체를 고분자로 사용하는 그래핀-이온성 액체 고분자 복합물을 제조할 수 있다.
상기 그래핀 5 ~ 95 중량% 및 상기 이온성 액체 고분자 5 ~ 95 중량%로 구성될 수 있다.
상기 이온성 액체를 중합하기 위한 중합개시제로서 2,2-아조비스이소부티로니트릴 (AIBN), 1,1-아조비스시클로헥산카보니트릴 (ABCN), 벤조일 퍼록사이드 (BP) 중 어느 하나 이상을 사용할 수 있다.
상기 중합개시제는 상기 이온성 액체 100 중량부당 0.1 내지 3 중량부를 사용할 수 있다.
상기 복합물은 바인더, 탄소재료, 금속입자 및 전기 전도성 고분자를 하나 이상 더 포함할 수 있다.
상기 바인더는 폴리퍼플루오로술폰산, 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드 공중합물 중 어느 하나이고, 상기 탄소재료는 활성탄소, 흑연, 카본블랙, 카본나노튜브, 플러렌 중 어느 하나 이상이며, 상기 전기 전도성 고분자는 폴리아닐린, 폴리피롤, 폴리티오펜 및 이들의 유도체 중 어느 하나 이상일 수 있다.
그래핀 분산액 제조 방법에서, 첨가되는 이온성 액체가 단량체인 경우 이를 중합시키거나 상기 이온성 액체를 고분자로 사용하여 그래핀-이온성 액체 고분자 복합물이 제조될 수 있다.
본 발명에 따르면, 흑연을 이온성 액체에 넣어 분산시킴으로써 그래핀 분산액을 제조하고, 그래핀 분산액 제조 시 사용되는 이온성 액체가 단량체인 경우 이를 중합시키거나 고분자인 이온성 액체를 사용하여 그래핀-이온성 액체 고분자 복합물을 제조할 수 있는 효과가 있다.
또한, 상온에서 흑연을 이온성 액체에 넣어 그래핀 분산액을 쉽게 얻고 이 그래핀 분산액으로부터 그래핀-이온성 액체 고분자 복합물을 얻을 수 있으며, 이온성 액체의 음이온 성분을 이온교환법에 의해 치환하면 용매계를 쉽게 변환할 수 있는 효과가 있다.
또한, 산화된 그래핀을 환원시키는 시간이 단축되고, 환원 후 입자상의 이물이 없다. 따라서 본 발명의 환원 기술을 이용하면 순수한 그래핀 분산액 및 그래핀-이온성 액체 고분자 복합물을 제조할 수 있을 뿐만 아니라, 환원 시간, 즉 제조시간이 단축되어 그래핀 분산액 및 그래핀-이온성 액체 고분자 복합물의 대량 제조가 가능해진다.
또한 산화 그래핀에 이온성 액체 고분자를 사용하거나 또는 이온성 액체 단량체를 사용하여 환원공정을 거친 후 적당 시점에 이온성 액체 고분자 제조를 위한 중합개시제를 첨가하여 가열하면 이온성 액체가 고분자화되면서 별도의 처리과정 없이 간단하게 그래핀-고분자 복합물을 제조할 수 있는 장점이 있다.
또한 본 발명에 따른 그래핀 분산액 및 그래핀-이온성 액체 고분자 복합물은 이온성 액체를 통한 그래핀의 표면상태 변화 즉 친수성 및 소수성의 변화가 용이해진다.
본 발명에 따른 그래핀-이온성 액체 고분자 복합물은 그래핀이 필요한 분야에서 활용 가능하며 특히 배터리, 연료전지, 커패시터 또는 이들의 복합장치, 수퍼커패시터, 울트라커패시터, 또는 전기이중층 커패시터 등의 전기화학 장치에서 전극재료로서 활용이 가능하다.
도 1은 실시예 1의 이온성 액체를 이용하여 제조한 그래핀의 투과전자현미경(TEM) 사진이다.
도 2 및 도 3은 실시예 3의 이온성 액체를 이용하여 제조한 그래핀-이온성 액체 고분자 복합물의 투과전자현미경(TEM) 사진들이다.
도 4는 실시예 3의 이온성 액체를 이용하여 제조한 그래핀-이온성 액체 고분자 복합물의 원자현미경(AFM) 관찰 결과의 사진 및 그래프이다.
도 5는 실시예 13의 그래핀-이온성액체 고분자 복합물의 전자주사현미경 관찰사진이다.
본 발명에 따른 그래핀 분산액 제조는 매우 간단한 공정으로서, 흑연을 이온성 액체에 넣어 분산시키는 것으로 단순하게 교반하는 방법을 이용할 수 있다. 이때 이온성 액체는 그대로 사용하거나 또는 이온성 액체에 중합개시제를 넣고 가열하여 이온성 액체 고분자를 만들어 분산 안정성이 우수한 그래핀 분산액을 만들 수 있다. 이후 그래핀 분산액에서 용매를 제거하여 건조하면 그래핀 입자를 얻을 수 있고, 용매계 변환을 위해서는 이온성 액체의 음이온 성분을 원하는 음이온으로 이온교환하는 방법을 사용한다. 이때 얻어진 그래핀 입자는 표면에 이온성 액체가 결합되어 있는 형태의 그래핀-이온성액체 복합물이다.
이하, 첨부한 도면들을 참조하여 본 발명의 실시예를 상세히 설명한다.
본 발명에 따른 그래핀 분산액 제조 방법은 매우 간단한 공정으로서, 흑연을 이온성 액체에 넣어 분산시키는 것으로 단순하게 교반하는 방법을 이용할 수 있다.
그리고 이온성 액체는 그대로 사용하거나 또는 이온성 액체에 중합개시제를 넣고 가열하여 이온성 액체 고분자를 만들어 분산 안정성이 우수한 그래핀 분산액을 만들 수 있다. 이때 용매계 변환을 위해서는 이온성 액체의 음이온 성분을 원하는 음이온으로 이온교환하는 방법을 사용한다. 이때 얻어진 그래핀 입자는 표면에 이온성 액체가 결합되어 있는 형태의 그래핀-이온성액체 복합물이다.
먼저 본 발명에 사용 가능한 흑연은 흑연 자체를 사용하거나 또는 층상 분리를 돕기 위해 미리 처리된 흑연 등 어느 것이나 사용할 수 있다. 층상분리를 돕기 위해 미리 처리하는 대표적인 방법은 흑연을 질산, 황산 수용액에 담가 산처리하거나 또는 높은 온도로(예를 들어 섭씨 1,000도의 온도) 가열하여 흑연을 팽창시키거나 또는 이들 방법을 병행해서 사용하거나 하는 등 여러 가지 방법이 가능하다.
본 발명에 사용할 수 있는 이온성 액체는 양이온 및 음이온의 조합으로 구성된 화합물로서 단량체 (monomer) 형태이거나 고분자 (polymer) 형태로서, 이들 성분 중 어느 하나를 사용하거나 또는 그 이상을 혼합하여 사용할 수 있다. 본 발명의 이온성 액체를 구성하는 대표적인 양이온의 예로는 화학식 1에 나타낸 바와 같다.
화학식 1
Figure PCTKR2010005401-appb-C000001
여기서, R1 내지 R10은 서로 독립적으로 다음의 그룹에서 선택된 어느 하나임을 나타낸다. i) 수소, ii) 할로겐, iii) C1 내지 C25의 탄화수소로 구성된 알킬, 알케닐, 알키닐, 벤질, 페닐로서 O, N, Si 및 S를 이종원자로 포함할 수 있으며, 또한 선택적으로 Cl, Br, F, I, OH, NH2, SH의 그룹을 포함할 수 있다.
상기 이온성 액체 고분자를 구성하는 음이온은 무기 또는 무기원소로 이루어진 화합물로서 특별히 한정되지 않으며, 이의 구체적인 예로는 [CH3CO2]-, [HSO4]-, [CH3OSO3]-, [C2H5OSO3]-, [AlCl4]-, [CO3]2-, [HCO3]-, [NO2]-, [NO3]-, [SO4]2-, [PO4]3-, [HPO4]2-, [H2PO4]-, [HSO3]-, [CuCl2]-, Cl-, Br-, I-, [BF4]-, [PF6]-, [SbF6]-, [CF3SO3]-, [HCF2CF2SO3]-, [CF3HFCCF2SO3]-, [HCClFCF2SO3]-, [(CF3SO2)2N]-, [(CF3CF2SO2)2N]-, [(CF3SO2)3C]-, [CF3CO2]-, [CF3OCFHCF2SO3]-, [CF3CF2OCFHCF2SO3]-, [CF3CFHOCF2CF2SO3]-를 포함한다.
이때 환원반응의 촉진제 및 산화그래핀의 분산제로 사용하는 이온성 액체의 함량은 산화그래핀 무게 대비 이온성 액체의 무게가 1배 이상이 되어야 한다. 이온성 액체의 함량이 이보다 낮을 경우 환원은 가능하지만 환원된 그래핀을 재분산시키는데 상당한 시간이 걸리거나 또는 입자로 침전되어 재분산이 안 되는 문제점이 발생하여 불리하다. 그러나 이온성 액체의 최대 함량은 특별한 제한이 없다. 이는 일단 이온성 액체의 함량이 그래핀 무게의 1배 이상 즉, 산화 그래핀을 1로 했을 때 이온성 액체가 1중량부 이상 함량되면 환원도 잘 되고 환원된 그래핀의 재분산도 잘 되기 때문이다.
상술한 방법에 의해 얻은 그래핀 분산액을 원심 분리하여 크기가 큰 입자상의 흑연덩어리를 제거하여 사용할 수 있다.
팽창성 흑연 (expandable graphite)을 이용하여 용매 변환하는 방법 등을 이하에서 설명한다.
먼저 팽창성 흑연을 고온에서 열처리하여 사용하는 것이 바람직한데, 약 600 ~ 1,200 정도의 온도에서 10 ~ 300 초간 열처리하는 것이 바람직하다. 이와 같이 열처리된 팽창성 흑연을 이온성 액체에서 분산시키는 것이 바람직하다. 이때 팽창성 흑연을 이온성 액체에서 간단하게 교반 분산시킬 수 있다.
상기 그래핀 분산액에 중합개시제를 첨가하여 이온성 액체를 고분자량화하면 분산안정성이 매우 우수한 그래핀 분산액을 얻을 수 있다. 이온성 액체를 중합하여 이온성 액체 고분자를 만들기 위한 개시제로는 2,2-아조비스이소부티로니트릴 (AIBN), 1,1`-아조비스시클로헥산카보니트릴 (ABCN), 벤조일 퍼록사이드 (BP) 등을 사용하면 된다. 중합개시제의 함량은 이온성 액체 함량 대비 0.1 내지 3 중량부 사용하면 되고, 중합반응은 섭씨 50-80도의 온도에서 5-72시간 정도 반응시키면 된다.
상기 반응의 중합개시제 함량, 온도 및 반응시간의 경우 하한치 미만일 경우에는 반응속도가 너무 낮거나 또는 반응이 잘 안 일어나 고분자량화가 잘 안 되어 불리하고, 상한치 이상의 사용하면 불필요하게 많은 양 또는 오랜 시간 반응시키거나 온도가 너무 높아 오히려 이온성 액체 고분자를 열화시키거나 또는 용매 증발이 심하여 오히려 불리하다.
상기 반응 조건은 최종적으로 중합된 이온성 액체 고분자의 분자량이 1,000 - 2,000,000 그램/몰의 범위가 되도록 조절하면 된다. 분자량이 1,000 그램/몰 이하이면 그래핀 분산액의 장기 안정성이 좋지 않아 불리하고, 2,000,000 그램/몰 이상이면 분자량이 너무 높아 용해도가 떨어져 오히려 불리하다.
상술한 방법으로 만들어진 그래핀 분산액은 유기 용매에 분산이 잘 되는 그래핀 분산액으로서, 이 때 이온성 액체가 유기용매에 분산이 용이하도록 하기 위해 사용할 수 있는 음이온의 예로는 [BF4]-, [PF6]-, [SbF6]-, [CF3SO3]-, [HCF2CF2SO3]-, [CF3HFCCF2SO3]-, [HCClFCF2SO3]-, [(CF3SO2)2N]-, [(CF3CF2SO2)2N]-, [(CF3SO2)3C]-, [CF3CO2]-, [CF3OCFHCF2SO3]-, [CF3CF2OCFHCF2SO3]-, [CF3CFHOCF2CF2SO3]- 를 들 수 있다.
상기와 같이 유기용매에 분산된 그래핀 용액의 용매를 변경하고자 하는 경우에는 이온성 액체의 음이온 성분을 치환함으로써 물 또는 수계 용매에 분산이 잘 되도록 구성할 수 있다.
상술한 바와 같이 흑연을 이온성 액체에 넣고 교반함으로써 이온성 액체에 그래핀이 분산되어 있는 그래핀 분산액을 수득한다. 이 용액에 중합개시제를 첨가한 후 반응시킴으로써 이온성 액체를 고분자 중합하게 되면 점도가 높아지면서 젤 상태의 그래핀 분산액이 얻어진다.
이 젤 상태의 그래핀 분산액은 프로필렌카보네이트, 1-메틸피롤리돈, 디메틸포름아마이드, 아세토니트릴, 니트로메탄, 아세톤, 테트라하이드로퓨란과 같은 극성 유기용매에 매우 잘 분산되기 때문에 상기 유기용매에 균일하게 분산된 그래핀 용액을 얻을 수 있다.
상기 분산된 그래핀 용액으로부터 수분산 그래핀 분산액을 얻는 방법은 상기 용액의 이온성 액체의 음이온을 수분산시키기 용이한 음이온으로 교환하는 방법을 이용하는 것이다. 예를 들면, 상기 중합반응을 거친 젤 상태 또는 유기 용매가 더 첨가된 상태의 그래핀 분산액에 테트라부틸암모늄브로마이드 또는 테트라부틸포스포늄브로마이드 등의 브롬기를 갖는 화합물을 첨가하면 그래핀을 감싸고 있는 이온성액체 고분자의 음이온 성분이 브롬기로 치환된다(이온교환 반응).
이와 같이 만들어진 브롬계 음이온으로 치환된 그래핀/이온성 액체 복합물은 수계 용매에 분산되는 형태로 바뀌면서 그래핀은 침전된다. 이를 세척한 후 다시 수계 용매에 재분산시키면 수계 용매에 균일하게 분산되어 있는 그래핀 분산액을 얻을 수 있다.
상기 방법 중 일차 중합반응에 의해 만들어진 젤 형태의 생성물을 테트라부틸암모늄브로마이드 또는 테트라부틸포스포늄브로마이드로 이온교환 시 이온교환 반응을 쉽게 하기 위해서는 젤 형태의 생성물에 프로필렌카보네이트, 1-메틸피롤리돈, 디메틸포름아마이드, 아세토니트릴, 니트로메탄, 아세톤, 테트라하이드로퓨란 등의 용매를 더 첨가하여 점도가 낮은 상태로 바꾸어주면 보다 용이하여 테트라암모늄브로마이드를 이용한 음이온 교환반응을 수행할 수 있다.
또한 테트라부틸암모늄브로마이드 또는 테트라부틸포스포늄브로마이드가 상온에서 고체이기 때문에 이 브로마이드 화합물을 프로필렌카보네이트, 1-메틸피롤리돈, 디메틸포름아마이드, 아세토니트릴, 니트로메탄, 아세톤, 테트라하이드로퓨란등이 용매에 미리 녹여 사용하면 더욱 효과적이다.
반면, 산화, 환원 과정을 거친 그래핀은 주로 수계 용매에 잘 분산되므로, 이와 같이 처리된 그래핀을 수계 용매에 분산시키면 수분산 그래핀 분산액을 얻을 수 있다. 이 수계 그래핀 분산액은 상온에서 상당 기간 안정하기는 하지만 시간이 많이 지나면 결국 그래핀 입자가 침전되는 문제점이 있다. 따라서 이 수계 그래핀 분산액에 이온성 액체 고분자를 첨가하면 분산안정성이 현저히 향상되어 오랜 시간 동안 방치해도 그래핀이 침전되지 않는다.
여기에 사용되는 이온성 액체 고분자는 수계 용매에 용해 가능한 음이온을 갖는 이온성 액체 분자를 중합개시제를 첨가하여 고분자량화한 것으로서, 분자량이 1,000 - 2,000,000 그램/몰인 이온성 액체 고분자를 사용하면 된다.
이때 분자량이 1,000 그램/몰 이하이면 이온성 액체의 분자량이 낮아 분산안정성이 거의 없어 불리하고, 분자량이 2,000,000 그램/몰 이상이면 분자량이 너무 커서 수계 용매에 용해가 어려워 오히려 불리하다. 이 경우에 사용 가능한 이온성 액체의 음이온으로는 로는 [CH3CO2]-, [HSO4]-, [CH3OSO3]-, [C2H5OSO3]-, [AlCl4]-, [CO3]2-, [HCO3]-, [NO2]-, [NO3]-, [SO4]2-, [PO4]3-, [HPO4]2-, [H2PO4]-, [HSO3]-, [CuCl2]-, Cl-, Br-, I-등이 바람직하게 사용된다.
상기 언급된 내용을 실시예를 이용하여 보다 구체적으로 설명하고자 한다. 그러나 본 발명의 범위는 실시예에 국한되는 것은 아니다.
<실시예 1>
1,000도의 온도에서 1분간 열처리한 팽창성 흑연 1 밀리그램을 이온성 액체인 1-부틸-3-메틸이미다졸리움 헥사플루오로포스페이트 (1-vinyl-3-ethyl imidazolim hexafluorophosphate) 3 그램에 넣고 800 rpm으로 20분 동안 교반하였다. 이 과정을 통해 진회색의 이온성액체 분산액을 얻었으며, 상기 샘플의 일부를 채취하여 투과전자주사현미경을 통해 관찰한 결과 단일층으로 분리된 그래핀이 도 1의 사진과 같이 관찰되었다.
<실시예 2>
1,000도의 온도에서 1분간 열처리한 팽창성 흑연 1 밀리그램을 이온성 액체인 1-비닐-3-에틸이미다졸리움 트리플루오로메틸설포닐이미드 (1-vinyl-3-ethyl imidazolim trifluoromethylsulfonylimide) 3 그램에 넣고 700 rpm으로 교반하였다. 이후 상기 그래핀 분산액에 중합개시제인 2,2-아조비스이소부티로니트릴 (AIBN) 0.03 그램을 투입하고 섭씨 65도의 온도에서 6시간 동안 반응시킴으로써 이온성 액체를 중합하였다. 이 과정을 거친 그래핀 분산액은 젤 상태로 되는데, 여기에 프로필렌카보네이트를 20 그램 더 첨가하여 교반하면 진회색의 그래핀 분산액을 얻는데, 이 용액이 유기 용매에 균일하게 분산되어 있는 그래핀 분산액이다.
<실시예 3>
실시예 3은 산화, 환원과정을 통해 이온성 액체 고분자로 안정화시킨 그래핀 분산액에 관한 것으로 이의 구체적인 제조방법은 다음과 같다.
먼저 흑연 5 그램을 KMnO4 25 그램, NaNO3 3.75 그램, H2SO4 170 밀리리터의 용액에서 교반하여 반응시킴으로써 산화흑연을 제조하고, 상기 산화흑연은 물에서 30분동안 교반하고 원심분리함으로써 황색의 산화그래핀 수분산액을 얻는다. 상기 산화그래핀 수분산액 19 밀리리터에 이온성 액체 고분자로서 폴리(1-비닐-3-에틸 이미다졸리움) 브로마이드 400 밀리그램을 혼합하여 교반함으로써 이온성 액체 고분자로 안정화된 산화그래핀 수분산액을 수득하였다.
이후, 히드라진 3.2 밀리몰을 첨가하여 약 90도의 온도에서 1시간동안 환원반응을 시키면 용액이 황색에서 검은색으로 바뀌면서 이온성 액체 고분자로 안정화된 그래핀 수분산액을 얻을 수 있었다. 상기 그래핀 수분산액은 5개월 이상 방치해도 침전이 일어나지 않는 안정한 분산액임으로 확인하였으며, 이 샘플의 일부를 채취하여 투과전자현미경 (transmission electron microscope)으로 관찰한 결과 응집현상이 일어나지 않고 단일층으로 분리된 그래핀-이온성 액체 고분자 복합물로 존재하는 것을 도 2 및 도 3의 사진과 같이 확인하였다. 도 2 및 도 3은 같은 시료를 배율을 달리하여 찍은 사진이다. 이 용액이 물에 분산된 그래핀 분산액으로서, 이 용액의 일부를 채취하여 원자현미경 (atomic force microscope)으로 관찰한 결과는 도 4의 AFM 사진과 두께 프로파일을 나타내는 그래프에 나타난 바와 같이 높이는 1-2 나노미터 정도인 그래핀-이온성 액체 고분자 복합물임을 확인하였다.
<실시예 4>
실시예 4는 실시예 2에서 수득한 그래핀 분산액을 이온교환법에 의해 수분산성으로 변환하는 과정에 대한 실시예이다.
실시예 2에서 얻은 그래핀 분산액 20 그램에 테트라부틸암모늄 브로마이드를 3.6 그램 첨가하여 10 분 동안 교반하면 진회색의 침전물이 생긴다. 이 침전물을 수득하여 건조한 후 이를 다시 물에 분산하여 수계 분산된 그래핀을 얻는다.
한편, 상기 그래핀 분산액 제조 방법에서 흑연에 첨가되는 이온성 액체가 단량체인 경우 이를 중합시키거나 이온성 액체를 고분자로 사용하는 그래핀-이온성 액체 고분자 복합물을 제조할 수 있다.
이때 이온성 액체 단량체의 양이온에 중합반응을 유도할 수 있는 작용기를 가지고 있고, 음이온은 그래핀-이온성 액체 고분자 복합물의 효과적인 분리를 위해 [BF4]-, [PF6]-,[CF3SO2)2N]-, [(CF3CF2SO2)2N]-를 가지고 있는 이온성 액체 단량체를 사용하는 경우, 환원 반응 후 이온성 액체의 중합반응을 위한 중합개시제를 넣고 반응함으로서 이온성 액체를 고분자화하면 그래핀-이온성 액체 고분자 복합물을 제조할 수 있다. 여기서, 그래핀-이온성 액체 고분자 복합물은 그래핀과 이온성 액체 고분자를 포함하는 물질을 의미한다.
이때 이온성 액체를 중합하기 위한 개시제로는 2,2-아조비스이소부티로니트릴 (AIBN), 1,1-아조비스시클로헥산카보니트릴 (ABCN), 벤조일 퍼록사이드 (BP) 중 어느 하나 또는 그 이상을 혼합하여 사용하면 된다. 중합개시제의 함량은 이온성 액체 100 중량부 대비 0.1 내지 3 중량부 사용하면 되고, 중합반응은 섭씨 50-80도의 온도에서 5-72시간 정도 반응시키면 된다. 상기 반응의 개시제 함량, 온도 및 반응시간의 경우 하한치 미만일 경우에는 반응속도가 너무 낮거나 또는 반응이 잘 안 일어나 고분자량화가 잘 안 되어 불리하고, 상한치 이상의 사용하면 불필요하게 많은 양 또는 오랜 시간 반응시키거나 온도가 너무 높아 오히려 이온성 액체 고분자를 열화시키거나 또는 용매 증발이 심하여 오히려 불리하다.
그러나 상술한 바와 같이 이온성 액체를 사용하여 산화그래핀을 환원시킨 후 여기에 중합개시제를 넣고 중합하는 대신 미리 중합된 이온성 액체 고분자를 사용하여 산화 그래핀을 환원시켜도 무방하다. 즉, 산화처리된 그래핀을 프로필렌 카보네이트 등의 용매에 넣고 여기에 이온성 액체 고분자를 넣고 섭씨 100도 이상의 온도로 가열하여 환원 반응을 거치면 된다. 이때 이온성 액체 고분자는 그래핀과 결합하여 안정화시키는 효과를 나타내어 그래핀이 환원과정중에 다시 뭉치는 현상을 방지하는 역할을 한다.
이와 같이 이온성 액체 고분자를 이용하는 방법은 환원공정 후 별도의 중합화 과정 없이 환원반응을 일으키면서 그래핀-이온성 액체 고분자 복합물을 직접 만들 수 있어 훨씬 효과적이다. 즉, 환원공정 중 이온성 액체 고분자가 그래핀과 결합하여 자연스럽게 그래핀-이온성 액체 고분자 복합물이 얻어진다.
상기 두 방법 모두 그래핀-이온성 액체 고분자 복합물을 제조되는데, 이때 상기 복합물내의 이온성 액체 고분자는 중량평균 분자량이 1,000 - 2,000,000 그램/몰의 범위가 되도록 조절하는 것이 바람직하다. 분자량이 1,000 그램/몰 이하이면 그래핀 분산액의 장기 안정성이 좋지 않아 불리하고, 2,000,000 그램/몰 이상이면 분자량이 너무 높아 용해도가 떨어져 오히려 불리하다.
또한 본 발명에 따른 그래핀-이온성 액체 고분자 복합물은 이온성 액체 고분자에 결합된 음이온을 통상적인 음이온 교환반응에 따라 교환시킴으로써 수계, 유기계, 또는 이온성 액체 전해질과의 상용성을 쉽게 변화시킬 수 있다. 예를 들어, 상기 복합물내의 이온성 액체 고분자의 음이온으로 Cl-, Br-, [NO3]-, [CH3SO4]-이 결합되어 있는 경우 수계 전해질과의 상용성이 우수한데, 이를 음이온 치환하여 [BF4]-, [PF6]-,[CF3SO2)2N]-, [(CF3CF2SO2)2N]-가 결합되게 하면 유기계 전해질과의 상용성이 우수하다.
본 발명의 그래핀-이온성 액체 고분자 복합물은 여과 등의 과정을 거쳐 슬러리의 형태로 얻어지게 되며, 이를 건조하여 분말형태로 만들거나 또는 다른 형태로 가공하여 사용할 수 있다.
상기 언급된 내용을 실시예를 이용하여 보다 구체적으로 설명하고자 한다. 그러나 본 발명의 범위는 실시예에 국한되는 것은 아니다.
<비교예 1>
Hummer방법 (Hummers W, Offeman R., "Preparation of graphite oxide", Jounal of the American Chemical Society, 80, 1958, 1339)을 이용하여 흑연 (SP-1, Bay Carbon사)를 산처리하여 산화그래파이트를 제조한다. 상기 산화그래파이트를 프로필렌카보네이트를 용매로 하여 약 1시간 동안 교반함으로써 1.0 mg/ml의 농도로 산화그래핀이 분산된 유기용매 분산액을 얻는다.
상기 산화그래핀 분산액을 약 150 도의 온도에서 약 12시간동안 교반하면 산화그래핀이 환원되면서 검은색의 색상을 갖는 그래핀-이온성 액체 고분자 복합물이 제조되는 것을 확인하였다. 또한 위의 환원반응이 진행되면서 그래핀이 용액내에서 뭉치면서 환원반응이 종료된 후에는 그래핀이 침전되는 것을 확인하였다.
상기와 같이 열을 이용한 산화그래핀의 환원반응에 있어, 환원반응의 시간에 따라 제조된 그래핀-이온성 액체 고분자 복합물 시료의 전기저항을 표준 4-단자법 (CMT series, Jandel Probe)을 통해 측정하였으며, 전기저항이 4-단자법으로 측정할 수 없을 정도로 낮은 경우에는 2-단자법을 이용하여 측정하였다. 환원시간이 0, 0.5, 1, 2, 6, 12 시간일 경우 전기저항은 각각 >1012, 1010, 109, 106, 105, 103 Ohm/sq로 측정되었다. 상기 비교예를 통해 일반적인 열 환원방법으로 103 Ohm/sq의 전기저항을 나타내는 그래핀-이온성 액체 고분자 복합물을 얻기 위해서는 환원반응시간이 약 12시간 정도 필요한 것을 알 수 있다.
<실시예 5>
Hummer방법 (Hummers W, Offeman R., "Preparation of graphite oxide", Jounal of the American Chemical Society, 80, 1958, 1339)을 이용하여 흑연 (SP-1, Bay Carbon사)을 산처리하여 산화그래파이트를 제조하였다. 산화그래파이트를 제조한 후, 프로필렌카보네이트를 용매로 하여 이를 약 1시간 동안 교반함으로써 1.0 mg/ml의 농도로 산화그래핀이 분산된 유기용매 분산액을 얻는다.
상기 산화그래핀 분산액 20 ml에 이온성 액체인 1-부틸-3-메틸 이미다졸리움 비스트리플루오로메틸술포닐아미드 [1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonylamide] 70 mg을 혼합하고 약 150 도의 온도에서 교반하였다. 상기의 경우 환원시간이 약 0.5 시간이 지나면서 반응물의 색상이 검은색으로 변하면서 환원반응이 진행되는 것을 관찰할 수 있었으며, 또한 환원반응 이후에도 그래핀의 침전이 일어나지 않고 안정적으로 분산된 그래핀 분산액을 제조할 수 있었다. 약 1시간의 환원반응 후에 여과지를 이용하여 여과시킨 후, 여과지 위에 남은 그래핀-이온성 액체 고분자 복합물의 전기저항을 확인한 결과 103 Ohm/sq으로 빠른 시간내에 산화그래핀의 환원이 진행된 것을 확인할 수 있었다.
<실시예 6>
실시예 6은 산화그래핀 유기용매 분산액에 이온성 액체로서 1-옥틸-3-메틸 이미다졸리움 비스트리플루오로메틸술포닐아미드 [1-octyl-3-methylimidazolium bis(trifluoromethyl)sulfonylamide] 70 mg을 혼합하는 것을 제외하고는 실시예 5와 동일하다. 실시예 6의 경우에도 환원반응 이후에도 그래핀-이온성 액체 고분자 복합물의 침전이 일어나지 않았으며, 약 1시간 이내에 환원반응이 빠르게 진행되어 전기저항이 103 Ohm/sq인 그래핀-이온성 액체 고분자 복합물이 제조되는 것을 확인하였다.
<실시예 7>
실시예 7은 이온성 액체로서 1-부틸-3-메틸 피롤리디늄 비스트리플루오로메틸술포닐아미드 [1-octyl-3-methylimidazolium bis(trifluoromethyl)sulfonylamide]을 사용하여 70 mg 혼합한 것을 제외하고는 실시예 5와 동일하다. 실시예 7의 경우에도 환원반응 이후에 그래핀-이온성 액체 고분자 복합물의 침전이 일어나지 않았으며, 약 1시간 이내에 환원반응이 빠르게 진행되어 전기저항이 103 Ohm/sq인 그래핀-이온성 액체 고분자 복합물이 제조되는 것을 확인하였다.
<실시예 8>
실시예 8은 이온성 액체로서 1-부틸-3-메틸 피롤리디늄 비스트리플루오로메틸술포닐아미드 [1-octyl-3-methylimidazolium bis(trifluoromethyl)sulfonylamide] 70 mg 혼합하고, 환원반응의 온도를 200 도로 한 것을 제외하고는 실시예 3과 동일하다. 실시예 3의 경우에 환원반응이 약 0.5시간 내에 진행되는 것을 확인하였으며, 이때 전기저항은 약 103 Ohm/sq임을 확인하였다.
<비교예 2>
비교예 2는 이온성 액체로서 1-부틸-3-메틸 이미다졸리움 비스트리플루오로메틸술포닐아미드 [1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonylamide]를 사용하되 15 mg을 혼합한 것을 제외하고는 실시예 5와 동일하다. 비교예 2의 경우 환원반응시간이 2시간에서 전기저항이 약 103 Ohm/sq인 그래핀-이온성 액체 고분자 복합물핀을 제조할 수 있었으나, 환원반응중에 그래핀-이온성 액체 고분자 복합물이 용액내에서 뭉치는 현상이 발생하였다.
<실시예 9>
실시예 9는 이온성 액체로서 1-비닐-3-에틸 이미다졸리움 비스트리플루오로메틸술포닐아미드 [1-vinyl-3-ethylimidazolium bis(trifluoromethyl)sulfonylamide] 70 mg을 혼합하고 약 150 도의 온도에서 1시간 동안 교반함으로써 그래핀 분산액을 제조하였다. 상기의 방법으로 처리한 그래핀 분산액에 중합개시제로 2,2-아조비스이소부티로니트릴 (AIBN)를 이온성 액체 대비 약 2 중량퍼센트를 투입하고 섭씨 65도의 온도에서 6시간 동안 반응시켜 이온성 액체를 중합함으로써 그래핀-이온성 액체 고분자 복합물을 형성하였다. 상기 그래핀-이온성 액체 고분자 복합물을 여과과정을 거치고 건조하여 전기저항을 측정한 결과 104 Ohm/sq의 값을 갖는 것을 확인하였다.
<실시예 10>
실시예 10은 실시예 1에 따라 제조한 산화그래파이트를 이온성 액체인 1-에틸-3-메틸이미다졸리움 비스트리플루오로메틸술포닐아미드 [1-ethyl-3-methylimidazolium bis(trifluoromethyl)sulfonyl amide]에 직접 넣고 1시간 동안 교반함으로써 1.0 mg/ml의 농도로 산화그래핀이 이온성 액체에 분산된 용액을 얻는다. 상기 산화그래핀 분산액을 약 300도의 온도의 틀에서 교반하면 약 10분이내에 반응물의 색상이 검은색으로 변하면서 환원반응이 진행되는 것을 관찰하였다. 상기 반응물의 전기저항을 확인한 결과 104 Ohm/sq으로 빠른 시간내에 산화그래핀의 환원이 진행된 것을 확인할 수 있었다.
<실시예 11>
실시예 11은 이온성 액체인 1-비닐-3-에틸 이미다졸리움 비스트리플루오로메틸술포닐아미드 [1-vinyl-3-ethylimidazolium bis(trifluoromethyl)sulfonylamide]을 중합하여 폴리(1-비닐-3-에틸 이미다졸리움) 비스트리플루오로메틸술포닐아미드를 먼저 제조한 후, 이를 산화그래핀 분산액에 첨가하여 환원반응을 유도하였다.
상기 이온성 액체의 중합반응을 위하여 1-비닐-3-에틸 이미다졸리움 비스트리플루오로메틸술포닐아미드 [1-vinyl-3-ethylimidazolium bis(trifluoromethyl) sulfonylamide]를 디메틸포름아미드(DMF)에 약 5 중량퍼센트로 용해시킨 후, 중합개시제로 2,2-아조비스이소부티로니트릴 (AIBN)을 이온성 액체 대비 약 2 중량퍼센트로 투입하여 섭씨 65도의 온도에서 6시간 동안 반응시킴으로써 폴리(1-비닐-3-에틸 이미다졸리움) 비스트리플루오로메틸술포닐아미드를 제조하고 이를 건조하여 수득하였다.
상기 폴리(1-비닐-3-에틸 이미다졸리움) 비스트리플루오로메틸술포닐아미드 100 mg을 프로필렌카보네이트에 분산된 산화그래핀 분산액에 첨가하고 약 150도의 온도에서 1시간동안 환원반응시킴으로써 그래핀-이온성 액체 고분자 복합물을 형성하였다. 상기 그래핀-이온성 액체 고분자 복합물을 여과하여 건조한 후, 전기저항을 측정한 결과 104 Ohm/sq인 것을 확인하였다.
이하 본 발명의 그래핀-이온성 액체 고분자의 복합물을 제조하는 방법에 대해 아래와 같이 보다 상세히 설명한다.
(i) 일반흑연 (pristine graphite)을 산화하여 각층을 분리한 산화그래핀 (graphene oxide)을 이온성 액체 고분자를 혼합하여 산화그래핀-이온성 액체 고분자를 형성하고, 이를 환원제 또는 열을 이용하여 산화그래핀을 환원시킴으로써 얻은 그래핀-이온성액체 고분자 복합물을 제조한다.
(ii) 산이 흑연의 각층에 삽입되어 있는 팽창성흑연 (expandable graphite)을 고온 열처리하거나, 알칼리 금속을 흑연의 각층에 삽입시킨 흑연 (intercalated graphite)을 마이크로파로 처리하거나 혹은 흑연을 전기화학적 방법으로 처리한 후, 이를 이온성 액체 단량체에 넣고 분산시켜 그래핀-이온성 액체 단량체를 형성하고, 상기 이온성 액체를 중합함으로써 얻은 그래핀-이온성액체 고분자 복합물을 제조한다.
먼저 상기 방법 (i)의 방법을 이용한 그래핀-이온성액체 고분자 복합물의 제조하는 방법은 다음과 같다. 일반 흑연을 Hummer방법으로 알려진 바와 같이 KMnO4, H2SO4, HNO3등의 혼합용액을 이용하여 산화시키고 물 또는 유기용매에 분산함으로써 산화그래핀 분산액을 얻는다. 이후 상기 용액에 이온성 액체 고분자를 혼합하여 산화그래핀-이온성 액체 고분자를 형성한다.
이때 산화그래핀이 물에 분산되어 있을 경우 친수성 이온성 액체 고분자, 예를 들면 이온성 액체 고분자의 음이온으로 [NO3]-, Cl-, Br-, I-, [CH3SO4]-이 결합되어 있는 이온성 액체 고분자를 사용하는 것이 바람직하며, 산화그래핀이 프로필렌카보네이트와 같은 유기용매에 분산되어 있을 경우 소수성 이온성 액체 고분자, 예를 들면 이온성 액체 고분자의 음이온으로 [(CF3SO2)2N]-, [(CF3CF2SO2)2N]-, [(CF3SO2)3C]-, [CF3CO2]-, [CF3OCFHCF2SO3]-, [CF3CF2OCFHCF2SO3]-, [CF3CFHOCF2CF2SO3]- 등이 결합되어 있는 이온성 액체 고분자를 사용하는 것이 바람직하다.
이후 상기 산화그래핀-이온성 액체 고분자 분산액에 하이드라진(hydrazine), 하이드로퀴논(hydroquinone), 소듐보로하이드라이드(sodium borohydride) 등을 포함하는 환원제를 투입하여 환원시키거나, 상기 분산액의 온도를 100도 내지 300도로 하여 열을 이용한 환원과정을 통해 그래핀-이온성액체 고분자 복합물을 제조한다.
본 발명에서 산화그래핀을 환원시켜 그래핀-이온성 액체 고분자 복합물을 제조하는 과정에서 이온성 액체 고분자는 그래핀과 결합하여 안정화시키는 효과를 나타내어 그래핀이 환원과정중에 다시 뭉치는 현상을 방지할 수 있으며, 따라서 그래핀-이온성액체 고분자 복합물내의 그래핀은 높은 가용 비표면적을 나타내는 효과를 나타낸다.
본 발명의 그래핀-이온성액체 고분자 복합물을 제조하는 또 다른 방법으로 상기 (ii)에 제시된 방법을 설명하면 다음과 같다. 산이 흑연의 각층에 삽입되어 있는 팽창성흑연 (expandable graphite)을 고온 열처리하거나, 알칼리 금속을 흑연의 각층에 삽입시킨 흑연 (intercalated graphite)을 마이크로파로 처리하거나 혹은 흑연을 전기화학적 방법으로 처리함으로써 흑연의 각 층간 인력을 감소시킨다.
이후 이를 이온성 액체 단량체 용액에 넣고 분산시킴으로써 그래핀-이온성 액체 단량체 분산액을 형성한다. 이때 이온성 액체 단량체는 양이온에 중합반응을 유도할 수 있는 작용기를 가지고 있고, 음이온은 그래핀-이온성 액체 고분자 복합물의 효과적인 분리를 위해 [BF4]-, [PF6]-,[CF3SO2)2N]-, [(CF3CF2SO2)2N]-를 가지고 있는 것이 바람직하다.
이후 상기 그래핀-이온성 액체 단량체 용액에 이온성 액체의 중합반응을 위한 중합개시제를 투입하여 반응함으로써 그래핀-이온성액체 고분자 복합물을 제조한다. 이때 이온성 액체 단량체를 중합하기 위한 개시제로는 2,2-아조비스이소부티로니트릴 (AIBN), 1,1`-아조비스시클로헥산카보니트릴 (ABCN), 벤조일 퍼록사이드 (BP) 중 어느 하나 또는 그 이상을 혼합하여 사용하면 된다.
중합개시제의 함량은 이온성 액체 함량 대비 0.1 내지 3 중량부 사용하면 되고, 중합반응은 섭씨 50-80도의 온도에서 5-72시간 정도 반응시키면 된다. 상기 반응의 개시제 함량, 온도 및 반응시간의 경우 하한치 미만일 경우에는 반응속도가 너무 낮거나 또는 반응이 잘 안 일어나 고분자량화가 잘 안 되어 불리하고, 상한치 이상을 사용하면 불필요하게 많은 양 또는 오랜 시간 반응시키거나 온도가 너무 높아 오히려 이온성 액체 고분자를 열화시키거나 또는 용매 증발이 심하여 오히려 불리하다.
상기 (i) 또는 (ii)의 방법의 예로서 그래핀-이온성액체 고분자 복합물을 제조되는데, 이때 상기 복합물내의 이온성 액체 고분자는 중량평균 분자량이 1,000 - 2,000,000 그램/몰의 범위가 되도록 조절하는 것이 바람직하다. 분자량이 1,000 그램/몰 이하이면 그래핀 분산액의 장기 안정성이 좋지 않아 불리하고, 2,000,000 그램/몰 이상이면 분자량이 너무 높아 용해도가 떨어져 오히려 불리하다.
또한, 그래핀-이온성 액체 고분자로 구성된 복합물은 그래핀 5 ~ 95 wt% 및 이온성 액체 고분자 5 ~ 95 wt%로 구성되는 것임을 특징으로 한다. 그래핀의 함량이 5 wt% 미만이면 복합물의 전기전도도가 매우 낮으며 전해질과 전기이중층을 형성할 수 있는 그래핀의 양이 너무 적기 때문에 충분한 정전용량을 확보하기 어렵고, 그래핀의 함량이 95 wt%를 초과하면 그래핀 복합물의 가공성이 저하되는 문제점이 발생한다.
또한 본 발명에 따른 그래핀-이온성액체 고분자 복합물은 이온성 액체 고분자에 결합된 음이온을 통상적인 음이온 교환반응에 따라 교환시킴으로써 수계, 유기계, 또는 이온성 액체 전해질과의 상용성을 쉽게 변화시킬 수 있다. 예를 들어, 상기 복합물내의 이온성 액체 고분자의 음이온으로 Cl-, Br-, [NO3]-, [CH3SO4]-이 결합되어 있는 경우 수계 전해질과의 상용성이 우수한데, 이를 음이온 치환하여 [BF4]-, [PF6]-,[CF3SO2)2N]-, [(CF3CF2SO2)2N]-가 결합되게 하면 유기계 전해질과의 상용성이 우수하다.
본 발명의 그래핀-이온성액체 고분자 복합물은 여과 등의 과정을 거쳐 슬러리의 형태로 얻어지게 되며, 이를 각종 전기화학 장치의 재료로 활용할 수 있다.
이때 그래핀-이온성액체 고분자 복합물의 기계적 성질을 보완하거나 또는 다른 전기적 성질을 보완하기 위해 별도의 유무기 재료, 예를 들면 바인더, 탄소재료, 금속입자 및 전기전도성 고분자를 선택적으로 혼합하여 사용할 수 있다.
바인더로는 폴리퍼플루오로술폰산 (Nafion), 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드 공중합물 등을 사용할 수 있으며, 탄소재료로는 활성탄소, 흑연, 카본블랙, 카본나노튜브, 플러렌 등이 있으며, 전기전도성 고분자로는 폴리아닐린, 폴리피롤, 폴리티오펜 및 이들의 유도체 등이 있다.
통상적인 바인더 물질의 함량범위는 그래핀 함량대비 1 ~ 20 wt%로서, 함량이 1 wt% 미만이면 기계적 성질의 보완효과가 너무 미미하여 불리하고, 20 wt% 이상이면 전기적 절연체인 바인더가 너무 많이 들어가 전기화학 장치로서의 성능이 저하되어 오히려 불리하다. 여기서 상기 전기화학 장치는 배터리, 연료전지, 커패시터 또는 이들의 복합장치, 수퍼커패시터, 울트라커패시터, 또는 전기이중층 커패시터 등 다양한 장치를 의미한다. 즉, 정전용량이 종래보다 매우 우수하도록 다양한 전기화학 장치에 사용될 수 있다.
상기 언급된 내용을 실시예를 이용하여 보다 구체적으로 설명하고자 한다. 그러나 본 발명의 범위는 실시예에 국한되는 것은 아니다.
<실시예 12>
Hummer방법 (Hummers W, Offeman R., "Preparation of graphite oxide", Jounal of the American Chemical Society, 80, 1958, 1339)을 이용하여 흑연 (SP-1, Bay Carbon사)을 산 처리하여 산화그래파이트를 제조하고 이를 물에 넣고 30분 동안 교반함으로써 1.0 mg/ml의 농도로 산화그래핀이 분산된 수분산액을 얻는다.
상기 산화그래핀 수분산액 20 ml에 이온성 액체 고분자로서 폴리(1-비닐-3-에틸 이미다졸리움) 브로마이드 [poly(1-vinyl-3-ethylimidazolium) bromide] 100 mg을 혼합하여 교반함으로써 산화그래핀-이온성 액체 고분자를 수득하였다. 이후, 환원제로서 하이드라진 하이드레이트 6.4 mmol을 첨가하여 약 90도의 온도에서 1시간동안 환원반응시킴으로써 그래핀-이온성 액체 고분자 복합물을 제조할 수 있다.
<비교예 3>
비교예 1은 이온성 액체 고분자를 사용하지 않고, 환원반응을 통해 수득한 그래핀에 바인더 물질로 폴리테트라플루오로에틸렌을 3 wt% 혼합한 것을 제외하고는 실시예 12와 동일하다.
<실시예 13>
실시예 12의 산처리 방법을 통해 제조된 산화그래파이트를 유기용매인 프로필렌 카보네이트에 넣고 초음파 분산함으로써 유기용매에 1.0 mg/ml의 농도로 산화그래핀이 분산된 용액을 얻는다. 상기 용액 20 ml에 이온성 액체 고분자로서 폴리(1-비닐-3-에틸이미다졸리움) 비스트리플루오로메틸술포닐아미드 [poly(1-vinyl-3-ethylimidazolium bis(trifluoromethyl)sulfonylamide] 50 mg을 혼합하여 교반함으로써 산화그래핀-이온성 액체 고분자를 수득하였다. 이후 상기 용액의 온도를 150도로 올려 1시간동안 반응시킴으로써 그래핀-이온성 액체 고분자 복합물을 제조하였다. 본 실시예 13의 그래핀-이온성액체 고분자 복합물은 도 5의 전자주사현미경 관찰사진에서와 같다.
<비교예 4>
비교예 4는 이온성 액체 고분자를 사용하지 않고 그래핀을 제조하는 것을 제외하고는 실시예 13과 동일하다.
<실시예 14>
H2SO4 및 HNO3가 흑연의 각 층에 삽입되어 있는 팽창성 흑연 (expandable graphite, Grafguard사)을 1,000도의 온도에서 1분간 열처리한 후, 1 mg을 이온성 액체인 1-비닐-3-에틸이미다졸리움 헥사플루오로포스페이트 (1-vinyl-3-ethyl imidazolium hexafluorophosphate) 3 g에 넣고 막대사발로 그라인딩 한 후, 다시 30분간 초음파 분산하여 그래핀-이온성 액체 단량체를 형성하였다. 이후 상기 용액에 중합개시제로 2,2-아조비스이소부티로니트릴 (AIBN) 0.03 g을 투입하고 섭씨 65도의 온도에서 6시간 동안 반응시킴으로써 그래핀-이온성액체 고분자 복합물을 형성하였다.
이와 같이 본 발명에 따른 그래핀 분산액 제조 방법 및 이를 통해 제조되는 그래핀-이온성 액체 고분자 복합물 및 그 제조 방법은 흑연을 이온성 액체에 넣어 분산시킴으로써 제조된 그래핀 분산액을 이용하여 그래핀-이온성 액체 고분자 복합물을 제조할 수 있다.
또한, 이와 같이 제조된 그래핀-이온성 액체 고분자 복합물을 수퍼커패시터 또는 전기이중층 등의 전기화학 장치의 전극재료로 이용할 수 있는 효과가 있다.
이상에서, 본 발명의 구성 및 동작을 상기한 설명 및 도면에 따라 도시하였지만 이는 예를 들어 설명한 것에 불과하며, 본 발명의 기술적 사상 및 범위를 벗어나지 않는 범위 내에서 다양한 변화 및 변경이 가능함은 물론이다.

Claims (19)

  1. 흑연이 이온성 액체에 분산되어 있는 그래핀 분산액.
  2. 제1항에 있어서, 상기 흑연은 일반 흑연, 산화와 환원 처리된 흑연, 고온으로 열처리된 흑연 또는 이들을 병행하여 처리된 흑연인 것을 특징으로 하는 그래핀 분산액.
  3. 제1항 또는 제2항에 있어서, 상기 분산은 교반으로 하며, 그리고 상기 이온성 액체는 양이온 및 음이온의 조합으로 구성된 화합물로서 단량체 (monomer) 형태이거나 고분자 (polymer) 형태이며, 이들 성분 중 어느 하나를 사용하거나 또는 둘 이상을 혼합하여 사용하는 것을 특징으로 하는 그래핀 분산액.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 이온성 액체는 양이온으로 아래 화학식 1에 나타낸 어느 하나를 포함하거나,
    <화학식 1>
    Figure PCTKR2010005401-appb-I000002
    (여기서, R1 내지 R10은 서로 독립적으로 다음의 그룹에서 선택된 어느 하나임을 나타낸다. i) 수소, ii) 할로겐, iii) C1 내지 C25의 탄화수소로 구성된 알킬, 알케닐, 알키닐, 벤질, 페닐로서 O, N, Si 및 S를 이종원자로 포함할 수 있으며, 또한 선택적으로 Cl, Br, F, I, OH, NH2, SH의 그룹을 포함할 수 있다.)
    음이온으로 [CH3CO2]-, [HSO4]-, [CH3OSO3]-, [C2H5OSO3]-, [AlCl4]-, [CO3]2-, [HCO3]-, [NO2]-, [NO3]-, [SO4]2-, [PO4]3-, [HPO4]2-, [H2PO4]-, [HSO3]-, [CuCl2]-, Cl-, Br-, I-, [BF4]-, [PF6]-, [SbF6]-, [CF3SO3]-, [HCF2CF2SO3]-, [CF3HFCCF2SO3]-, [HCClFCF2SO3]-, [(CF3SO2)2N]-, [(CF3CF2SO2)2N]-, [(CF3SO2)3C]-, [CF3CO2]-, [CF3OCFHCF2SO3]-, [CF3CF2OCFHCF2SO3]-, [CF3CFHOCF2CF2SO3]- 중 어느 하나를 포함하거나, 또는
    상기 양이온 및 음이온을 모두 사용하는 것,
    을 특징으로 하는 그래핀 분산액.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 이온성 액체 고분자의 분자량이 1,000 - 2,000,000 그램/몰인 것이 사용되는 것을 특징으로 하는 그래핀 분산액.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 분산액에 중합 개시제를 첨가하여 이온성 액체를 고분자량화 하는 것을 특징으로 하는 그래핀 분산액.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 분산액의 이온성 액체의 음이온 성분을 이온 교환하여 용매계를 변환하는 것을 특징으로 하는 그래핀 분산액.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 이온성 액체의 음이온 성분을 이온 교환시 이온교환 반응을 쉽게 하기 위해서 젤 형태의 그래핀 분산액 생성물에 프로필렌카보네이트, 1-메틸피롤리돈, 디메틸포름아마이드, 아세토니트릴, 니트로메탄, 아세톤, 테트라하이드로퓨란 용매를 더 첨가하는 것을 특징으로 하는 그래핀 분산액.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 이온성 액체는 상기 산화 그래핀 무게대비 1배 이상 첨가되는 것을 특징으로 하는 그래핀 분산액.
  10. 그래핀에 이온성 액체 고분자가 결합된 그래핀-이온성 액체 고분자 복합물.
  11. 제10항에 있어서, 상기 그래핀-이온성 액체 고분자 복합물이 제1항 내지 제9항 중 어느 한 항의 그래핀 분산액에서 첨가되는 이온성 액체가 단량체인 경우 이를 중합시키거나, 또는 상기 이온성 액체를 고분자로 사용되어 제조되는 것을 특징으로 하는 그래핀-이온성 액체 고분자 복합물.
  12. 제10항 또는 제11항에 있어서,
    상기 그래핀 5 ~ 95 중량% 및 상기 이온성 액체 고분자 5 ~ 95 중량%로 구성되는 것을 특징으로 하는 그래핀-이온성 액체 고분자 복합물.
  13. 제11항 또는 제12항에 있어서, 이온성 액체를 중합하기 위한 중합개시제로서 2,2-아조비스이소부티로니트릴 (AIBN), 1,1-아조비스시클로헥산카보니트릴 (ABCN), 벤조일 퍼록사이드 (BP) 중 어느 하나 이상을 사용하는 것을 특징으로 하는 그래핀-이온성 액체 고분자 복합물.
  14. 제11항 내지 제13항 중 어느 한 항에 있어서, 상기 중합개시제는 상기 이온성 액체 100 중량부당 0.1 내지 3 중량부를 사용하는 것을 특징으로 하는 그래핀-이온성 액체 고분자 복합물 제조 방법.
  15. 제10항 내지 제14항 중 어느 한 항에 있어서, 상기 복합물은 바인더, 탄소재료, 금속입자 및 전기 전도성 고분자를 하나 이상 더 포함하는 것을 특징으로 하는 그래핀-이온성 액체 고분자 복합물.
  16. 제15항에 있어서, 상기 바인더는 폴리퍼플루오로술폰산, 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드 공중합물 중 어느 하나이고,
    상기 탄소재료는 활성탄소, 흑연, 카본블랙, 카본나노튜브, 플러렌 중 어느 하나 이상이며,
    상기 전기 전도성 고분자는 폴리아닐린, 폴리피롤, 폴리티오펜 및 이들의 유도체 중 어느 하나 이상인 것,
    을 특징으로 하는 그래핀-이온성 액체 고분자 복합물.
  17. 제1항 내지 제9항의 그래핀 분산액을 제조하기 위한 방법으로서,
    상기 흑연을 산화 처리하여 산화 그래핀을 제조하는 단계; 및
    상기 산화그래핀을 용매에 분산하여 이온성 액체를 첨가하거나 또는 상기 산화그래핀에 직접 이온성 액체를 첨가하여 그래핀 분산액을 만드는 단계;
    상기 분산액을 섭씨 100도 이상의 온도로 가열하거나 환원제를 이용하여 환원시키는 단계;
    를 포함하는 것을 특징으로 하는 그래핀 제조방법.
  18. 제1항 내지 제9항의 그래핀 분산액을 제조하기 위한 방법으로서,
    팽창성흑연 (expandable graphite)을 고온 열처리하거나, 알칼리 금속을 흑연의 각층에 삽입시킨 흑연 (intercalated graphite)을 마이크로파로 처리하거나 혹은 흑연을 전기화학적 방법으로 처리한 후, 이를 이온성 액체에 넣어 분산시키는 것을 특징으로 하는 그래핀 제조방법.
  19. 제17항 또는 제18항의 그래핀 제조방법에서, 상기 그래핀 분산액에 첨가되는 이온성 액체가 단량체인 경우 이를 중합시키거나, 또는 상기 이온성 액체를 고분자로 사용되어 제조되는 것을 특징으로 하는 그래핀-이온성 액체 고분자 복합물 제조방법.
PCT/KR2010/005401 2009-12-22 2010-08-16 그래핀 분산액 및 그래핀-이온성 액체 고분자 복합물 WO2011078462A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012545833A JP2013514963A (ja) 2009-12-22 2010-08-16 グラフェン分散液およびグラフェン−イオン性液体高分子複合物
CN2010800592413A CN102712779A (zh) 2009-12-22 2010-08-16 石墨烯分散液以及石墨烯-离子液体聚合物复合材料
EP10839659.9A EP2518103A4 (en) 2009-12-22 2010-08-16 GRAPHENE DISPERSION AND IONIC-GRAPHENE LIQUID POLYMER COMPOUND
US13/518,421 US20120261612A1 (en) 2009-12-22 2010-08-16 Dispersion of graphene-based materials modified with poly(ionic liquid)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20090129361 2009-12-22
KR10-2009-0129361 2009-12-22
KR20100014723 2010-02-18
KR10-2010-0014723 2010-02-18
KR10-2010-0061995 2010-06-29
KR20100061995 2010-06-29

Publications (2)

Publication Number Publication Date
WO2011078462A2 true WO2011078462A2 (ko) 2011-06-30
WO2011078462A3 WO2011078462A3 (ko) 2011-08-25

Family

ID=44196227

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2010/005401 WO2011078462A2 (ko) 2009-12-22 2010-08-16 그래핀 분산액 및 그래핀-이온성 액체 고분자 복합물
PCT/KR2010/009235 WO2011078585A2 (ko) 2009-12-22 2010-12-22 전기화학 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009235 WO2011078585A2 (ko) 2009-12-22 2010-12-22 전기화학 장치

Country Status (6)

Country Link
US (2) US20120261612A1 (ko)
EP (2) EP2518103A4 (ko)
JP (2) JP2013514963A (ko)
KR (2) KR101550386B1 (ko)
CN (2) CN102712779A (ko)
WO (2) WO2011078462A2 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732230A (zh) * 2012-06-29 2012-10-17 华南理工大学 用于太阳能中高温热利用的离子液体纳米流体的制备方法
EP2570462A1 (en) 2011-09-19 2013-03-20 Instytut Technologii Materialów Elektronicznych Method of producing graphene layers and paste comprising graphene nanoplatelets
CN103681000A (zh) * 2012-09-25 2014-03-26 海洋王照明科技股份有限公司 一种石墨烯纸的制备方法
CN103680977A (zh) * 2012-09-26 2014-03-26 海洋王照明科技股份有限公司 石墨烯/离子液体复合电极及其制备方法与电容器
CN103681002A (zh) * 2012-09-26 2014-03-26 海洋王照明科技股份有限公司 掺氮石墨烯/离子液体复合电极及其制备方法与电容器
WO2014058860A1 (en) * 2012-10-09 2014-04-17 Saudi Basic Industries Corporation Graphene-based composite materials, method of manufacture and applications thereof
WO2014112337A1 (ja) * 2013-01-15 2014-07-24 学校法人 芝浦工業大学 誘電材料及びこれを用いた電気化学素子

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140150970A1 (en) 2010-11-19 2014-06-05 Ppg Industries Ohio, Inc. Structural adhesive compositions
US8796361B2 (en) 2010-11-19 2014-08-05 Ppg Industries Ohio, Inc. Adhesive compositions containing graphenic carbon particles
CN103155242B (zh) * 2010-12-22 2016-06-01 海洋王照明科技股份有限公司 电极片及其制备方法及超级电容器和锂离子电池
US8865754B2 (en) 2011-03-03 2014-10-21 Proteotech Inc. Compounds for the treatment of neurodegenerative diseases
KR101275636B1 (ko) * 2011-08-30 2013-06-17 전자부품연구원 도핑 폴리머층을 포함하는 그래핀 기반 적층체
KR101303285B1 (ko) * 2011-09-08 2013-09-04 한국기계연구원 환원된 산화 그래핀층 및 코팅층이 순차적으로 적층되는 그래핀 페이퍼 및 이의 제조방법
US20160077074A1 (en) 2011-12-21 2016-03-17 The Regents Of The University Of California Interconnected corrugated carbon-based network
KR101328495B1 (ko) 2011-12-28 2013-11-13 전자부품연구원 음이온성 고분자가 표면처리된 세라믹 입자 및 표면처리방법
US9484158B2 (en) * 2012-02-17 2016-11-01 The Trustees Of Princeton University Graphene-ionic liquid composites
CN104541349A (zh) 2012-03-05 2015-04-22 加州大学评议会 具有由互连波纹状碳基网络制成的电极的电容器
CN102683035B (zh) * 2012-05-02 2014-09-24 清华大学 一种用于超级电容器的碳纳米电极材料及其制备方法
KR101347198B1 (ko) * 2012-05-03 2014-01-10 한국에너지기술연구원 염료감응태양전지 표면 코팅액의 제조방법, 그 코팅액 및 그를 도포한 염료감응태양전지
CA2872477C (en) * 2012-05-03 2018-01-23 Ppg Industries Ohio, Inc. Adhesive compositions containing graphenic carbon particles
US20130295290A1 (en) * 2012-05-03 2013-11-07 Ppg Industries Ohio, Inc. Compositions with a sulfur-containing polymer and graphenic carbon particles
EP2851364A4 (en) 2012-05-14 2015-12-30 Univ Tokyo NOVEL GRAPHENEANODISPERSION AND PROCESS FOR THE PREPARATION THEREOF
DE102012109404A1 (de) * 2012-10-02 2014-04-03 Byk-Chemie Gmbh Graphen-haltige Suspension, Verfahren zu deren Herstellung, Graphenplättchen und Verwendung
CN103779083A (zh) * 2012-10-23 2014-05-07 海洋王照明科技股份有限公司 一种氮掺杂石墨烯/金属复合集流体及其制备方法
US9545625B2 (en) * 2012-11-09 2017-01-17 Arizona Board Of Regents On Behalf Of Arizona State University Ionic liquid functionalized reduced graphite oxide / TiO2 nanocomposite for conversion of CO2 to CH4
KR20140075836A (ko) * 2012-11-27 2014-06-20 삼성전기주식회사 전극 구조체 및 그 제조 방법, 그리고 상기 전극 구조체를 구비하는 에너지 저장 장치
CN103839694B (zh) * 2012-11-27 2016-09-07 海洋王照明科技股份有限公司 一种石墨烯/金属集流体的制备方法
CN103839698A (zh) * 2012-11-27 2014-06-04 海洋王照明科技股份有限公司 石墨烯复合电极材料及其制备方法和应用
CN103971944A (zh) * 2013-01-28 2014-08-06 海洋王照明科技股份有限公司 石墨烯-离子液体复合材料及超级电容器的制备方法
CN103971945A (zh) * 2013-01-28 2014-08-06 海洋王照明科技股份有限公司 石墨烯-离子液体复合材料及超级电容器的制备方法
CN103971943A (zh) * 2013-01-28 2014-08-06 海洋王照明科技股份有限公司 石墨烯-离子液体复合材料及超级电容器的制备方法
CN103971951B (zh) * 2013-01-28 2017-02-01 海洋王照明科技股份有限公司 超级电容器的制备方法
KR101455588B1 (ko) * 2013-02-08 2014-10-31 신라대학교 산학협력단 적층 캐패시터 및 이를 이용한 전자파차폐막
CN103991861A (zh) * 2013-02-20 2014-08-20 海洋王照明科技股份有限公司 氮掺杂石墨烯及其制备方法
CN104008894A (zh) * 2013-02-21 2014-08-27 海洋王照明科技股份有限公司 掺氮石墨烯材料及其制备方法、掺氮石墨烯电极和电化学电容器
KR101817260B1 (ko) 2013-02-22 2018-01-11 삼성전자주식회사 그래핀-나노소재 복합체, 이를 채용한 전극 및 전기소자, 및 상기 그래핀-나노소재 복합체의 제조방법
EP2970627A4 (en) * 2013-03-15 2016-11-23 Reliance Ind Ltd POLYMER-GRAPH-NANO COMPOSITES
US9290524B2 (en) 2013-03-15 2016-03-22 Washington State University Methods for producing functionalized graphenes
JP6028650B2 (ja) * 2013-03-26 2016-11-16 東洋インキScホールディングス株式会社 炭素触媒、炭素触媒の製造方法、及び該炭素触媒を用いた触媒インキ並びに燃料電池
KR102055776B1 (ko) * 2013-03-28 2019-12-13 인텔렉추얼디스커버리 주식회사 질소 도핑한 환원된 산화 그래핀(N-doped rGO)을 이용한 n형 반도체의 제조 방법
JP2014225508A (ja) * 2013-05-15 2014-12-04 住友電気工業株式会社 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法
ITMI20130834A1 (it) * 2013-05-22 2014-11-23 Versalis Spa Procedimento di polimerizzazione cationica per la sintesi di polimeri nano-strutturati contenenti grafene
CN103320056B (zh) * 2013-07-11 2015-08-19 中国科学院宁波材料技术与工程研究所 集成材粘合剂
ES2534575B1 (es) 2013-09-24 2016-01-14 Consejo Superior De Investigaciones Científicas (Csic) Exfoliación de grafito con disolventes eutécticos profundos
KR20150063269A (ko) * 2013-11-29 2015-06-09 삼성전자주식회사 리튬 공기 전지용 복합전극, 그 제조방법 및 이를 포함한 리튬 공기 전지
KR101634961B1 (ko) 2013-12-26 2016-07-01 한국과학기술원 그래핀 수화젤과 그래핀 수화젤 나노복합재료, 및 이들의 제조방법
KR101614320B1 (ko) 2013-12-31 2016-04-21 한국세라믹기술원 흑연산화물 농축 슬러리 코팅액 제조 방법 및 흑연산화물 코팅물 제조 방법
WO2015131933A1 (en) 2014-03-05 2015-09-11 Westfälische Wilhelms-Universität Münster Method of producing graphene by exfoliation of graphite
TWI583043B (zh) * 2014-03-31 2017-05-11 長興材料工業股份有限公司 電解質組合物
CN103887075B (zh) * 2014-04-11 2017-04-26 电子科技大学 一种制造高比容量电极薄膜的方法
EP3050846A4 (en) * 2014-04-28 2016-11-16 Ningbo Morsh Technology Co Ltd GRAPHIC COMPOSITE POWDER MATERIAL AND METHOD OF MANUFACTURING THEREOF
CN103980424A (zh) * 2014-05-08 2014-08-13 嘉兴学院 一种石墨烯-聚离子液体复合材料及其制备方法和应用
DE102014007137A1 (de) * 2014-05-16 2015-11-19 Dräger Safety AG & Co. KGaA Elektrode für einen elektronischen Gassensor, Herstellungsverfahren für eine Elektrode und Verwendung einer Elektrode
AU2015277264B2 (en) 2014-06-16 2019-08-15 The Regents Of The University Of California Hybrid electrochemical cell
CN104071778A (zh) * 2014-06-20 2014-10-01 宁波墨西科技有限公司 石墨烯分散液及制备石墨烯材料粉体的方法
JP6345020B2 (ja) * 2014-07-29 2018-06-20 住友化学株式会社 成膜方法、膜及び分散液
CN104122311A (zh) * 2014-07-29 2014-10-29 无锡百灵传感技术有限公司 一种基于富勒烯功能化改性电极的电化学传感器的制备方法
JP6581340B2 (ja) * 2014-10-10 2019-09-25 株式会社Adeka 層状物質含有液の製造方法
WO2016063036A1 (en) * 2014-10-21 2016-04-28 2-Dtech Limited Methods for the production of 2-d materials
EP3016186A1 (en) * 2014-10-31 2016-05-04 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Use of a poly(ionic liquid) as a binder material for electrodes in electrochemical devices
CA2968139C (en) 2014-11-18 2023-01-10 The Regents Of The University Of California Porous interconnected corrugated carbon-based network (iccn) composite
CN104525254B (zh) * 2014-12-24 2016-08-17 东华大学 一种用于降解甲基橙的含金催化剂及其制备和应用
CN104617291A (zh) * 2015-01-24 2015-05-13 复旦大学 一种均匀碳包覆的锂离子电池正负极材料及其制备方法
EP3272813A4 (en) * 2015-03-18 2018-08-22 Adeka Corporation Liquid containing layered-substance and method for producing same
CN104843682A (zh) * 2015-04-07 2015-08-19 大连理工大学 一种还原氧化石墨烯的制备方法及其应用
KR102093118B1 (ko) 2015-05-11 2020-05-27 한국과학기술원 그래핀 섬유 복합체, 이의 제조 방법 및 이를 포함하는 발열 소재
JP6455861B2 (ja) * 2015-05-28 2019-01-23 国立研究開発法人物質・材料研究機構 電極材料、その製造方法、および、それを用いた蓄電デバイス
KR101824207B1 (ko) * 2015-06-19 2018-03-14 순천향대학교 산학협력단 탄소나노튜브 전계효과 트랜지스터의 제조방법
WO2017083566A1 (en) * 2015-11-12 2017-05-18 Cornell University High performance electrodes
KR101751733B1 (ko) 2015-12-10 2017-06-28 성균관대학교산학협력단 음이온성 물질의 흡착 또는 센싱 방법
US10351661B2 (en) 2015-12-10 2019-07-16 Ppg Industries Ohio, Inc. Method for producing an aminimide
US10377928B2 (en) 2015-12-10 2019-08-13 Ppg Industries Ohio, Inc. Structural adhesive compositions
CA3006997A1 (en) 2015-12-22 2017-06-29 The Regents Of The University Of California Cellular graphene films
CN105548313A (zh) * 2016-01-06 2016-05-04 辽宁大学 一种检测低浓度多巴胺的修饰电极及其制备方法和应用
CN105572200B (zh) * 2016-01-06 2018-09-21 辽宁大学 一种在抗坏血酸存在的条件下检测多巴胺的修饰玻碳电极、制备方法及应用
CN105462390B (zh) * 2016-01-08 2017-08-25 石棉县亿欣钙业有限责任公司 环境友好型手持设备电子屏幕修复材料
IL260398B (en) 2016-01-22 2022-08-01 Univ California high voltage devices
CN105776187A (zh) * 2016-01-27 2016-07-20 复旦大学 一种绿色环保制备高浓度超净石墨烯分散液的方法
CN108698831B (zh) * 2016-02-15 2022-06-03 国立大学法人东京工业大学 含sp2型碳的组合物、含石墨烯量子点的组合物和它们的制造方法、以及石墨的剥离方法
BR112018069339B1 (pt) 2016-03-23 2023-12-05 The Regents Of The University Of California Sistema eletroquímico, e, método para fabricar um sistema eletroquímico
CN105633285A (zh) * 2016-03-24 2016-06-01 浙江零维光伏科技有限公司 一种有机薄膜太阳能电池碳电极的制备方法
KR102068257B1 (ko) * 2016-03-31 2020-01-20 주식회사 엘지화학 고분자-그래핀 하이브리드의 제조 방법
BR112018068945B1 (pt) 2016-04-01 2023-11-21 The Regents Of The University Of California Supercapacitor, e, método para fabricação de um eletrodo funcionalizado
CN106053561B (zh) * 2016-05-11 2018-08-17 华中科技大学 纳米石墨烯-碳纳米管-离子液体复合膜及其制备与应用
KR101866190B1 (ko) * 2016-05-31 2018-06-12 가천대학교 산학협력단 그래핀 금속나노입자-복합체
CN106124255B (zh) * 2016-06-17 2019-01-29 苍南县宝丰印业有限公司 一种石墨烯/离子液体复合材料富集空气中邻苯二甲酸酯的方法
US11097951B2 (en) 2016-06-24 2021-08-24 The Regents Of The University Of California Production of carbon-based oxide and reduced carbon-based oxide on a large scale
CN106430155A (zh) * 2016-08-17 2017-02-22 吉林吉大地球科学与地质开发股份有限公司 一种基于离子液体制备石墨烯的方法
EA201990587A1 (ru) 2016-08-31 2019-07-31 Дзе Риджентс Оф Дзе Юнивёрсити Оф Калифорния Устройства, содержащие материалы на основе углерода, и их производство
US11634545B2 (en) 2016-12-19 2023-04-25 Adeka Corporation Layered-substance-containing solution and method of manufacturing same
CN106829941A (zh) * 2017-04-07 2017-06-13 厦门大学 一种石墨烯的制备方法
CN107189493A (zh) * 2017-04-10 2017-09-22 桂林理工大学 一种离子液体改性石墨烯的制备方法
KR101977232B1 (ko) * 2017-05-29 2019-09-10 한국생산기술연구원 전극 및 이를 구비한 에너지 저장 복합 재료
CN110892572B (zh) 2017-07-14 2023-02-17 加利福尼亚大学董事会 用碳纳米点制备高导电多孔石墨烯用于超级电容器应用的简单方法
KR102124789B1 (ko) * 2017-07-21 2020-06-22 충남대학교산학협력단 스폰지 구조의 그래핀닷-백금니켈 하이브리드의 제조방법 및 그에 의해 제조된 그래핀닷-백금니켈 하이브리드 촉매
CN107715283A (zh) * 2017-09-14 2018-02-23 江门大诚医疗器械有限公司 石墨烯极性碎片溶液、石墨烯织物及阴道填塞器
CN107574000A (zh) * 2017-10-10 2018-01-12 广西科技大学 一种导电润滑脂的制备方法
CN107596932B (zh) * 2017-10-16 2020-11-17 黑龙江青谷酒庄有限公司 一种阳离子交换膜及其制备方法和应用
DE102017223892A1 (de) * 2017-12-29 2019-07-04 Sixonia Tech Gmbh Verfahren zur Herstellung eines funktionalisierten Halbleiter- oder Leitermaterials und dessen Verwendung
CN111602218B (zh) * 2018-01-16 2022-02-18 株式会社村田制作所 蓄电器件以及蓄电器件的制造方法
CN108461308B (zh) * 2018-01-25 2019-11-12 齐鲁工业大学 一种石墨烯/聚离子液体复合材料及制备方法和应用
CN108424613A (zh) * 2018-02-02 2018-08-21 桂林理工大学 一种离子液体改性石墨烯/碳纳米管/环氧树脂复合材料的制备方法
CN108530621B (zh) * 2018-03-19 2021-01-01 厦门理工学院 一种可溶性的导电聚合物及其制备方法
CN110734516B (zh) * 2018-07-19 2022-03-01 中国石油天然气股份有限公司 一种离子液体改性氟化石墨烯制备含氟异丁烯、异戊二烯聚合物的方法
CN111313067B (zh) * 2018-12-11 2021-05-04 中国科学院大连化学物理研究所 基于离子液体有静电作用复合碱性电解质膜及制备和应用
CN109576047B (zh) * 2019-01-14 2021-06-15 西南交通大学 一种用离子液体制备高润滑性能石墨烯的方法
CN109868340A (zh) * 2019-02-20 2019-06-11 常州市宝平不锈钢制品有限公司 一种炼钢用高效增碳剂及其制备方法
KR20200104708A (ko) 2019-02-27 2020-09-04 현대자동차주식회사 기계적 강성 및 수소 이온 전도성이 향상된 연료전지용 막-전극 접합체 및 그 제조방법
CN110203917B (zh) * 2019-05-29 2021-04-02 常熟理工学院 一种石墨烯超分散剂及其制备方法和在石墨烯中的应用
US10938032B1 (en) 2019-09-27 2021-03-02 The Regents Of The University Of California Composite graphene energy storage methods, devices, and systems
CN113387348B (zh) * 2020-08-14 2022-07-19 中国科学院过程工程研究所 一种利用复合离子液体制备石墨烯的方法
KR102415110B1 (ko) * 2020-09-23 2022-07-01 주식회사 지에버 건·습식 그래핀 플레이크의 제조방법 및 이에 따라 제조된 그래핀 플레이크
KR102415100B1 (ko) * 2020-09-23 2022-06-30 주식회사 지에버 건·습식 그래핀 플레이크 조성물의 제조방법 및 이에 따라 제조된 그래핀 플레이크 조성물
CN113248738B (zh) * 2021-06-24 2022-07-01 西南科技大学 一种二维材料改性环氧树脂复合材料及其制备方法
CN115015347B (zh) * 2022-04-20 2024-03-26 华东师范大学 基于微管的离子液体胶体/水界面的搭建及其应用
CN114852998A (zh) * 2022-04-20 2022-08-05 西南交通大学 一种电化学插层法制备聚苯胺杂化石墨烯材料的方法
CN115050984A (zh) * 2022-06-15 2022-09-13 一汽解放汽车有限公司 一种改性氧化石墨烯涂层双极板的制备方法及其应用
CN115368747B (zh) * 2022-09-27 2023-04-07 西南交通大学 一种提升蜡质沥青低温性能的分散剂及其沥青和制备方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7167353B2 (en) * 2002-04-24 2007-01-23 Nisshinbo Industries, Inc. Ionic liquid, method of dehydration, electrical double layer capacitor, and secondary battery
US7321012B2 (en) * 2003-02-28 2008-01-22 The University Of Connecticut Method of crosslinking intrinsically conductive polymers or intrinsically conductive polymer precursors and the articles obtained therefrom
JP2004289130A (ja) * 2003-03-04 2004-10-14 Jeol Ltd 電気二重層キャパシタ
US20050227146A1 (en) * 2003-12-12 2005-10-13 Dania Ghantous Medium rate and high rate batteries
TWI262614B (en) * 2003-12-30 2006-09-21 Lg Chemical Ltd Ionic liquid-modified cathode and electrochemical device using the same
WO2006026064A2 (en) * 2004-08-05 2006-03-09 University Of Wyoming Poly(ionic liquid)s as materials for co2 separation
CN101006535A (zh) * 2004-08-30 2007-07-25 日清纺织株式会社 密闭型电容器
US20090269667A1 (en) * 2006-05-31 2009-10-29 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Porous Electrically Conductive Carbon Material And Uses Thereof
JP5298309B2 (ja) * 2007-02-17 2013-09-25 国立大学法人東京工業大学 カーボンオニオンおよびその製造方法、ならびに、ゲル組成物およびその製造方法
US7745047B2 (en) * 2007-11-05 2010-06-29 Nanotek Instruments, Inc. Nano graphene platelet-base composite anode compositions for lithium ion batteries
JP5429845B2 (ja) * 2007-12-04 2014-02-26 Necエナジーデバイス株式会社 非水電解液、ゲル電解質及びそれらを用いた二次電池
US8211958B2 (en) * 2007-12-05 2012-07-03 The Research Foundation Of State University Of New York Polyolefin nanocomposites with functional ionic liquids and carbon nanofillers
KR101435999B1 (ko) * 2007-12-07 2014-08-29 삼성전자주식회사 도펀트로 도핑된 산화그라펜의 환원물, 이를 포함하는 박막및 투명전극
JP5860591B2 (ja) * 2008-01-07 2016-02-16 ウィシス テクノロジー ファウンデーション,インコーポレイティド 物質溶媒と複合マトリクスを同定し、特徴付ける方法および装置、並びにその使用方法
CN100586848C (zh) * 2008-01-22 2010-02-03 东北师范大学 带有离子液体阳离子基团修饰的具有导电性的单层石墨片的制备方法
US20100035093A1 (en) 2008-04-27 2010-02-11 Ruoff Rodney S Ultracapacitors and methods of making and using
US20090303660A1 (en) * 2008-06-10 2009-12-10 Nair Vinod M P Nanoporous electrodes and related devices and methods
WO2010065346A1 (en) * 2008-11-25 2010-06-10 The University Of Alabama Exfoliation of graphite using ionic liquids
CN101409368B (zh) * 2008-12-05 2010-12-01 北京理工大学 一种采用离子液体型固态聚合物电解质的锂二次电池
CN101575095B (zh) * 2009-05-26 2012-12-12 北京大学 石墨烯的制备方法
KR20110061909A (ko) * 2009-12-02 2011-06-10 삼성전자주식회사 도펀트로 도핑된 그라펜 및 이를 이용한 소자

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CARBON, vol. 45, 2007, pages 1558
HUMMERS W; OFFEMAN R.: "Preparation of graphite oxide", JOUNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 80, 1958, pages 1339
HUMMERS W; OFFEMAN R.: "Preparation of graphite oxide", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 80, 1958, pages 1339
NATURE MATERIALS, vol. 7, 2008, pages 406
NATURE NANOTECHNOLOGY, vol. 3, 2008, pages 101
SCIENCE, vol. 3012, 2006, pages 1191
See also references of EP2518103A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2570462A1 (en) 2011-09-19 2013-03-20 Instytut Technologii Materialów Elektronicznych Method of producing graphene layers and paste comprising graphene nanoplatelets
CN102732230A (zh) * 2012-06-29 2012-10-17 华南理工大学 用于太阳能中高温热利用的离子液体纳米流体的制备方法
CN103681000A (zh) * 2012-09-25 2014-03-26 海洋王照明科技股份有限公司 一种石墨烯纸的制备方法
CN103680977A (zh) * 2012-09-26 2014-03-26 海洋王照明科技股份有限公司 石墨烯/离子液体复合电极及其制备方法与电容器
CN103681002A (zh) * 2012-09-26 2014-03-26 海洋王照明科技股份有限公司 掺氮石墨烯/离子液体复合电极及其制备方法与电容器
WO2014058860A1 (en) * 2012-10-09 2014-04-17 Saudi Basic Industries Corporation Graphene-based composite materials, method of manufacture and applications thereof
WO2014112337A1 (ja) * 2013-01-15 2014-07-24 学校法人 芝浦工業大学 誘電材料及びこれを用いた電気化学素子
JPWO2014112337A1 (ja) * 2013-01-15 2017-01-19 学校法人 芝浦工業大学 誘電材料及びこれを用いた電気化学素子

Also Published As

Publication number Publication date
EP2518103A4 (en) 2014-07-30
US20120261612A1 (en) 2012-10-18
KR20120104264A (ko) 2012-09-20
JP2013534686A (ja) 2013-09-05
KR101550386B1 (ko) 2015-09-08
US20120256138A1 (en) 2012-10-11
WO2011078585A2 (ko) 2011-06-30
EP2518103A2 (en) 2012-10-31
KR20110073222A (ko) 2011-06-29
WO2011078585A3 (ko) 2011-11-17
WO2011078462A3 (ko) 2011-08-25
JP2013514963A (ja) 2013-05-02
CN102763251A (zh) 2012-10-31
EP2518805A2 (en) 2012-10-31
CN102712779A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
WO2011078462A2 (ko) 그래핀 분산액 및 그래핀-이온성 액체 고분자 복합물
JP4384488B2 (ja) 整列した単層カーボンナノチューブの繊維及びその製造方法
WO2017191887A1 (ko) 습식 방사공정을 이용한 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유의 제조 방법
Salavagione et al. Synthesis of poly (vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties
WO2017217832A1 (ko) 탄소 에어로겔 전구체의 제조 방법, 이에 의하여 제조된 탄소 에어로겔 전구체 및 탄소 에어로겔
US20120063988A1 (en) Dissolution Of Graphite, Graphite And Graphene Nanoribbons In Superacid Solutions And Manipulation Thereof
CN107011568B (zh) 复合石墨烯/炭黑为导电介质的半导体聚合物及制备方法
KR101858719B1 (ko) 분산제 및 이의 제조 방법
WO2017052064A1 (ko) 탄소 나노튜브 분산액 및 이의 제조방법
Pathak et al. Improved thermomechanical and electrical properties of reduced graphene oxide reinforced polyaniline–dodecylbenzenesulfonic acid/divinylbenzene nanocomposites
JP6225848B2 (ja) 窒化ホウ素ナノシート含有分散液、窒化ホウ素ナノシート複合体及びその製造方法
WO2003004740A1 (en) Single-wall carbon nanotube alewives process for making and compositions thereof
Zhang et al. A novel approach for transferring water-dispersible graphene nanosheets into organic media
WO2010058975A2 (ko) 탄소나노튜브-폴리(x-4-스티렌술포네이트) 복합체 및 이를 이용하여 제조되는 탄소나노튜브-전도성 고분자 복합체
WO2011071295A2 (ko) 탄소나노튜브-고분자 이온성 액체 복합체 및 이를 이용하여 제조되는 탄소나노튜브-전도성 고분자 복합체
WO2022196977A1 (en) Method of manufacturing lithium battery electrodes with enhanced electrical and ionic conductivity
Soares et al. Poly (vinylidene fluoride-co-hexafluoropropylene)/polyaniline blends assisted by phosphonium–based ionic liquid: dielectric properties and β-phase formation
CN102898872B (zh) 功能化石墨烯、其制备方法及在石墨烯/非极性聚合物复合材料中的应用
WO2018131896A1 (ko) 액정복합탄소섬유 및 이의 제조방법
Li et al. Preparation of hydroxyl and (3‐aminopropyl) triethoxysilane functionalized multiwall carbon nanotubes for use as conductive fillers in the polyurethane composite
Ahmad et al. Exfoliated graphene reinforced polybenzimidazole nanocomposites with high dielectric permittivity at low percolation threshold
WO2020105926A1 (ko) 황 도핑 환원 그래핀 옥사이드, 그 제조방법 및 황 도핑 환원 그래핀 옥사이드를 함유한 폴리이미드 나노복합체
WO2015182829A1 (ko) 그래핀-고분자 복합체 및 이의 제조방법
KR20140081997A (ko) 개질화된 탄소나노튜브를 포함하는 기계적 물성과 전기 전도성이 우수한 고분자 나노복합재 및 이의 제조방법
Hill et al. Solubilization of carbon nanotubes via polymer attachment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059241.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839659

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012545833

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13518421

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010839659

Country of ref document: EP