WO2020105926A1 - 황 도핑 환원 그래핀 옥사이드, 그 제조방법 및 황 도핑 환원 그래핀 옥사이드를 함유한 폴리이미드 나노복합체 - Google Patents

황 도핑 환원 그래핀 옥사이드, 그 제조방법 및 황 도핑 환원 그래핀 옥사이드를 함유한 폴리이미드 나노복합체

Info

Publication number
WO2020105926A1
WO2020105926A1 PCT/KR2019/015263 KR2019015263W WO2020105926A1 WO 2020105926 A1 WO2020105926 A1 WO 2020105926A1 KR 2019015263 W KR2019015263 W KR 2019015263W WO 2020105926 A1 WO2020105926 A1 WO 2020105926A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
graphene oxide
reduced graphene
doped
doped reduced
Prior art date
Application number
PCT/KR2019/015263
Other languages
English (en)
French (fr)
Inventor
유남호
구본철
유재상
장세규
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Publication of WO2020105926A1 publication Critical patent/WO2020105926A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only

Definitions

  • the present invention relates to sulfur-doped reduced graphene oxide, a method for producing the same, and a polyimide nanocomposite comprising the same, in more detail, using an organic solvent and a reducing agent separately using sulfur, a by-product generated in the process of petroleum refining. It is not environmentally friendly and relates to a method for producing reduced graphene oxide that simultaneously performs reduction and doping and a nanocomposite containing the sulfur-containing reduced graphene oxide.
  • the object of the present invention is to provide a new method for reducing graphene oxide and a method for preparing sulfur-doped reduced graphene oxide that simultaneously conducts sulfur doping. It is to provide a sulfur-doped reduced graphene oxide that can be used in the industrial field.
  • Another object of the present invention is to provide a polyimide nanocomposite comprising the reduced grain oxide doped with sulfur.
  • a reduced graphene oxide doped with sulfur having a D peak / G peak intensity ratio of 1.03 to 1.30, which is obtained by Raman analysis of the reduced graphene oxide doped with sulfur and reduced graphene oxide. do .
  • the content of the sulfur is 1 to 5 parts by weight based on 100 parts by weight of the sulfur-doped reduced graphene oxide, and carbon after heat treatment at 800 ° C. obtained by thermogravimetric analysis of the sulfur-doped reduced graphene oxide
  • the content of 80 to 88% by weight and 10% weight loss temperature is 700 to 750 °C.
  • the full width at half-maximum (FWHM) of the maximum peak at 20 ° ⁇ 2 ⁇ ⁇ 30 ° is 7 ° to 12 °
  • the interlayer distance (d002) between the sulfur-doped reduced graphene oxide is 3.1 to 3.9 km.
  • a method for preparing reduced graphene oxide doped with sulfur comprising removing sulfur from the stirred product.
  • the mixing of the graphene oxide and sulfur is carried out at 120 ° C to 250 ° C without an organic solvent.
  • the graphene oxide is graphene oxide obtained through a chemical exfoliation method.
  • the heat treatment is carried out at 100 to 300 °C.
  • the step of removing the sulfur is performed by ultrasonic treatment, and a washing process using at least one solvent selected from methylene chloride and tetrahydrofuran.
  • the mixing ratio of graphene oxide and sulfur is 1: 1 to 1:10 by weight.
  • a nanocomposite containing the above-mentioned sulfur-doped reduced graphene oxide and polyimide is provided.
  • the content of the sulfur-doped graphene oxide is 1 to 5 parts by weight based on 100 parts by weight of the total weight of the polyimide nanocomposite.
  • the sulfur which is a by-product obtained in a large amount during the refining process of petroleum during the reduction of graphene oxide, simultaneously reduces the graphene oxide and doping sulfur with respect to the graphene oxide
  • sulfur is compared with the conventional manufacturing method.
  • the doped reduced graphene oxide can be easily and faster produced.
  • the sulfur remaining upon reduction of graphene oxide can be collected and reused upon reduction of graphene oxide. Therefore, the manufacturing cost is reduced compared to the conventional manufacturing method.
  • the polyimide nanocomposite containing the above-mentioned sulfur-doped reduced graphene oxide is used, a film having excellent gas diffusion barrier properties can be manufactured.
  • Figure 1a is a graphene oxide of Example 1 (GO), sulfur doped reduced graphene oxide (Sulfur-rGO), thermogravimetric analysis result data of hydrazine-reduced graphene oxide (Hydrazine-rGO) obtained according to Comparative Example 1 It shows.
  • Figure 1b is a graphene oxide of Example 1 (GO), sulfur-doped reduced graphene oxide (Sulfur-rGO), thermogravimetric analysis results of hydrazine-reduced graphene oxide (Hydrazine-rGO) obtained according to Comparative Example 1 It is shown.
  • FIG. 2 is an X-ray diffraction analysis of graphene oxide (GO) of Example 1, sulfur doped reduced graphene oxide (Sulfur-rGO), and hydrazine-reduced graphene oxide (Hydrazine-rGO) obtained according to Comparative Example 1. The results are shown.
  • Figure 3 shows the results of Raman spectroscopy analysis of graphene oxide (GO), sulfur doped reduced graphene oxide (Sulfur-rGO) of Example 1 and hydrazine-reduced graphene oxide (Hydrazine-rGO) obtained according to Comparative Example 1 It is shown.
  • Figure 4 shows the powder resistance measurement results of the graphene oxide (GO) of Example 1, sulfur-doped reduced graphene oxide (Sulfur-rGO) and hydrazine-reduced graphene oxide (Hydrazine-rGO) obtained according to Comparative Example 1 It is shown.
  • FIG. 5a to 5e show transmission electron microscopy images of Sulfur-rGO obtained according to Example 1 and Energy Dispersive Spectrometer (EDS) mapping analysis results
  • FIG. 5a shows graphene of Sulfur-rGO It shows the image in the form of a sheet
  • Figure 5b is a graph for the content of carbon (C), oxygen (O), sulfur (S)
  • Figure 5d and 5e are It shows the distribution of sulfur (S) and carbon (C), respectively.
  • Example 7 shows a photoelectron spectral analysis graph corresponding to S2p of Sulfur-rGO obtained according to Example 1.
  • Figure 8a shows the permeability (Permeability) of the polyimide nanocomposite film obtained in Example 3-6 and the polyimide film of Comparative Example 2.
  • 8B is an electron scanning microscope photograph showing a fracture surface of the polyimide nanocomposite of Example 3 (graphene content: 5 parts by weight).
  • a reduced graphene oxide doped with sulfur having a D peak / G peak intensity ratio of 1.03 to 1.30, which is obtained by Raman analysis of the reduced graphene oxide doped with sulfur and reduced graphene oxide. do.
  • the D peak / G peak intensity ratio is, for example, 0.7 to 0.80, for example, 0.79.
  • the sulfur-doped reduced graphene oxide may further include at least one selected from carbon nanotubes, carbon sheets, graphite, and carbon fibers.
  • the content of sulfur is 1 to 5 parts by weight, for example 2 to 5 parts by weight, for example 4 parts by weight, based on 100 parts by weight of sulfur-doped reduced graphene oxide.
  • the content of carbon after heat treatment at 800 ° C. obtained by thermogravimetric analysis of the sulfur-doped reduced graphene oxide is 80 to 88%.
  • the content of carbon is increased compared to the content of carbon of reduced graphene oxide doped with sulfur obtained using hydrazine as a reducing agent. From these results, it can be seen that the thermal stability of the reduced graphene oxide doped with sulfur of the present invention was improved.
  • a method of using hydrazine as a reducing agent is known when producing reduced graphene oxide from graphene oxide.
  • hydrazine as a reducing agent
  • development of an environmentally friendly and simple process is required when manufacturing reduced graphene oxide because mass reduction is not easy due to the problem of the harmfulness of expensive reducing agents and the complexity of the reducing process.
  • the method for producing sulfur-doped reduced graphene according to the present invention includes the steps of preparing graphene oxide and doping and reducing graphene oxide using molten sulfur. same.
  • the graphite may be selected from one of carbon materials (carbon nanotube, carbon sheet, graphite, carbon fiber), and it is preferable to use graphite.
  • the graphene oxide is to prepare graphene oxide by generating a chemical species including oxygen (Oxygen) between graphite layers through acid treatment on natural or artificial graphite.
  • the acid may be selected from one or more of the group consisting of nitric acid, sodium nitrate, sulfuric acid, acetic acid, and ascorbic acid.
  • the content of oxygen in the graphene oxide of the present specification may be, for example, 0.1 to 40 atomic%.
  • graphene oxide in the present specification is a graphene oxide forming a sheet structure of a single atomic layer or a small film in which a plurality of carbon atoms are covalently connected to each other to form a polycyclic aromatic molecule arranged in one plane.
  • a plurality of pieces of graphene oxide in the form of plates are interconnected to form a network structure arranged in one plane, and combinations thereof are possible.
  • Carbon atoms connected by the covalent bond form a 6-membered ring as a basic repeating unit, but it is also possible to further include a 5-membered ring and / or a 7-membered ring.
  • the graphene oxide may be composed of a plurality of layers having multiple sheet structures stacked on each other, and has an average thickness of about 100 nm or less, for example, about 10 nm or less, and specifically 0.01 to 10 nm.
  • sulfur is mixed with graphene oxide in a weight ratio in order to dope and reduce the graphene oxide.
  • the weight ratio of the graphene oxide and sulfur is preferably 1: 1 to 1:10, and preferably 1: 3. If the sulfur content is less than the above range, the stirring reaction between graphene oxide and sulfur is difficult, and if it is more than the above range, it may be difficult to remove sulfur after completion of the reaction.
  • the mixture of graphene oxide and sulfur is heat treated.
  • the heat treatment is carried out at 100 to 300 °C.
  • the heat treatment is preferably performed at 120 ° C to 250 ° C, more preferably 150 to 180 ° C, even more preferably 180 ° C.
  • the heat treatment time varies depending on the heat treatment temperature, but it is preferable to react, for example, for 30 minutes to 6 hours, preferably for 3 hours to 4 hours.
  • reaction mixture When the reaction mixture is heat-treated to 150 to 180 ° C, for example, 170 ° C during the heat treatment, it is made into a viscous molten phase.
  • the molten phase contains molten sulfur.
  • sulfur-doped reduced graphene oxide (Sulfur-rGO) may be prepared through a reaction of a molten phase mixture containing molten sulfur and graphene oxide.
  • the step of removing sulfur as described above may include adding a sulfur soluble solvent to the stirred product to dissolve sulfur to obtain a sulfur solution; And removing the sulfur soluble solvent from the sulfur solution or recrystallizing the sulfur solution to remove sulfur, and recovering the removed sulfur.
  • the recycling rate of sulfur is 30 to 90%, for example about 72%.
  • sulfur soluble solvent refers to a solvent having a solubility property for sulfur, and as a non-limiting example, the sulfur soluble solvent is tetrahydrofuran (THF), methylene chloride, dimethyldisulfide (CS2), sulfolane ( Sulfurane), chloroform, toluene, xylene, acetonitrile, dichloromethane, N-methylpyrrolidone (NMP), ethyl acetate, dimethyl ether (DME), trichloroethylene, polyethylene glycol, isopropyl ketone, acetonitrile, dichloro Ethane, dimethylacetamide, dimethylformamide, cumene, benzene, p-chlorotoluene, 1,3-mesitylene, styrene, chlorobenzene, alphamethylstyrene, ethylbenzene, diethanolamine, e
  • THF tetrahydr
  • step of removing sulfur for example, ultrasonic treatment and washing with one or more solvents selected from methylene chloride and tetrahydrofuran are performed.
  • the step of removing sulfur may be washed with tetrahydrofuran and methylene chloride and subjected to ultrasonic treatment to remove some sulfur to prepare sulfur-doped reduced graphene oxide.
  • unreacted sulfur or sulfur that is physically attached to the reduced graphene oxide may be removed.
  • the removed sulfur can be recycled.
  • the manufacturing method of the present invention reduction and doping of graphene oxide may be simultaneously performed. Therefore, the manufacturing step is simple and easy, and since an expensive hydrazine is not used as a reducing agent, the manufacturing cost can be reduced.
  • the sulfur content in the sulfur doped reduced graphene oxide is 1 to 5 parts by weight, for example, 4 parts by weight based on 100 parts by weight of sulfur doped reduced graphene oxide.
  • the sulfur doped reduced graphene oxide of the present invention may have a two-dimensional transparent sheet-like graphene structure.
  • sulfur-doped reduced graphene oxide sulfur can be introduced to specific functionalized sites such as ketones, epoxy groups, phenol groups, and the like. This can be confirmed from the following reaction schemes 1 and 2.
  • the present invention provides a polyimide nanocomposite containing the above-mentioned sulfur-doped reduced graphene oxide.
  • the polyimide nanocomposite contains the above-mentioned sulfur-doped reduced graphene oxide and polyimide.
  • the content of the reduced graphene oxide doped with sulfur in the nanocomposite is 1 to 5 parts by weight based on 100 parts by weight of the nanocomposite.
  • a gas diffusion barrier film can be produced.
  • the sulfur-doped reduced graphene oxide nanocomposite is a polyimide nanocomposite containing sulfur-doped reduced graphene oxide, and is prepared according to the following method.
  • the sulfur-doped reduced graphene oxide is dispersed in an organic solvent such as N-methyl 2-pyrrolidone, and then ultrasonicated to obtain an S-rGO dispersion.
  • diamine and acid anhydride for forming polyimide are added to the S-RGO dispersion to obtain a mixture, and the mixture is stirred to contain a reduced graphene oxide dispersion doped with polyamic acid and sulfur as a polymerization reaction product of diamine and acid anhydride.
  • the mixture can be obtained.
  • the diamine and the acid anhydride can be used as long as they can be used in the production of polyimide.
  • the diamine compound may be, for example, one or more selected from aromatic diamine, alicyclic diamine and aliphatic diamine.
  • Aromatic diamines are, for example, 3,3'-dihydroxybenzidine, p-phenylenediamine, m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 1,3-bis ( 4,4'-aminophenoxy) benzene, 4,4'-diamino-1,5-phenoxypentane, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-dia Minobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 2,2'-dia Minodiphenylpropane, bis (3,5-diethyl-4-aminophenyl) methane, diaminodiphenylsulfone, diaminobenzophen
  • Alicyclic diamines are, for example, 1,4-diaminocyclohexane, 1,4-cyclohexanebis (methylamine), 4,4'-diaminodicyclohexylmethane (MCA), 4,4'-methylene bis (2-methyl cyclohexylamine) (MMCA) and mixtures thereof.
  • Aliphatic diamines are, for example, ethylenediamine (EN), 1,3-diaminopropane (13DAP), tetramethylenediamine, 1,6-hexamethylenediamine (16DAH)), 1,12-diaminododecane (112DAD) And aliphatic diamines selected from the group consisting of mixtures thereof.
  • the acid dihydrate may be, for example, a compound represented by Formula 1 below.
  • R 5 is one selected from the group represented by Formula 2.
  • Acid dianhydrides are, for example, pyromellitic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA), 4- (2,5- Dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dianhydride (TDA), pyromellitic acid dianhydride (1,2,4) , 5-benzene tetracarboxylic dianhydride, PMDA), benzophenone tetracarboxylic dianhydride (BTDA), biphenyl tetracarboxylic dianhydride (BPDA), oxydiphthalic dianhydride (ODPA) , Biscarboxyphenyl dimethyl silane dianhydride (SiDA), bis dicarboxyphenoxy diphenyl sulfide dianhydride (BDSDA), sulfonyl diphthal
  • the polyimide of the polyimide nanocomposite has a number average molecular weight of 10,000 to 500,000 g / mol.
  • the mixture is cast on a substrate, followed by an imidization reaction to obtain a nanocomposite containing a reduced graphene oxide doped with polyimide and sulfur.
  • the imidization reaction includes, for example, a method of dehydrating by heating, a method of dehydrating using a dehydrating agent, and the like.
  • the method of performing dehydration by heating is performed at a high temperature of 300 to 400 ° C, for example, and imidization is performed.
  • the method of carrying out dehydration using a dehydrating agent is performed at a temperature of 200 ° C. or lower to imidize. It is also possible to use a catalyst such as an acid or a base together with a dehydrating agent. For example, an organic acid such as p-hydroxyphenylacetic acid is used as the acid catalyst, and isoquinoline, triethylamine, pyridine, 1,4-diazabicyclo [2.2.2] octane, etc. are used as the base catalyst. .
  • the polyimide according to one embodiment has a number average molecular weight of 10,000 to 500,000 g / mol.
  • the polyimide is, for example, a polymer represented by the following formula (3).
  • n 20 to 400.
  • the polyimide nanocomposite containing the sulfur-doped reduced graphene oxide of the present invention and the film containing the same have gas diffusion barrier properties. These films can be used across various fields such as heavy metal filters, semiconductors, conductive films, batteries, and automotive materials.
  • the graphite was chemically exfoliated using the Broaddie's method.
  • Dropping funnel was replaced with nitrogen, and 45 ml of fuming nitric acid (HNO 3 ) was added, and then slowly dropped over 2 hours. Thereafter, magnetic stirring was performed at 0 ° C for 4 hours, followed by stirring at room temperature for 24 hours. After 24 hours, 25 ml of fuming nitric acid (HNO 3 ) is added. After this, the mixture was magnetically stirred at room temperature for 24 hours, and then neutralized by slowly pouring the mixture into excess 0 ° C distilled water. Thereafter, the washing process was repeated to pH neutral with a filter and distilled water, and then dried in a vacuum oven at 50 ° C for 24 hours.
  • HNO 3 fuming nitric acid
  • the THF solution in which sulfur, a filtrate obtained by filtration in the above production method, was dissolved was evaporated under reduced pressure to remove THF to recover sulfur (recycled sulfur).
  • the recycle rate of sulfur thus obtained is about 72%.
  • Example 1-1 Preparation of reduced graphene oxide doped with sulfur
  • a sulfur-doped reduced graphene oxide was prepared in the same manner as in Example 1, except that dimethyl disulfide (CS2) was used instead of THF to remove the remaining sulfur, and recycled sulfur was recovered.
  • CS2 dimethyl disulfide
  • a sulfur-doped reduced graphene oxide was prepared in the same manner as in Example 1, except that methylene chloride was used instead of THF to remove the remaining sulfur, and recycled sulfur was recovered.
  • Example 3 Huangyi Doped restoration Graphene Oxide Preparation of containing polyimide nanocomposite and polyimide nanocomposite film
  • the sulfur-doped reduced graphene oxide nanocomposite is a polyimide nanocomposite containing sulfur-doped reduced graphene oxide.
  • S-RGO sulfur-doped reduced graphene oxide
  • NMP sulfur-doped reduced graphene oxide
  • PMDA pyromellitic dianhydride
  • the solution was cast on a silicon substrate and heat treated at 90 ° C for 2 hours, 150 ° C for 1 hour, 200 ° C for 30 minutes, 250 ° C for 1 hour, and 280 ° C for 30 minutes to obtain a composite film.
  • the film is removed from the silicon substrate using distilled water, and heat treated in a convection oven for 1 hour to produce polyimide nanocomposite and polyimide nano containing polyimide represented by Chemical Formula 3 and reduced graphene oxide doped with sulfur.
  • a composite membrane was prepared.
  • the content of S-RGO in the nanocomposite is about 0.5 parts by weight based on 100 parts by weight of the nanocomposite.
  • n is about 100.
  • the content of S-RGO in the nanocomposite was carried out in the same manner as in Example 5, except that the content of S-RGO was changed so as to be changed to about 1 part by weight based on 100 parts by weight of the nanocomposite, polyimide nanocomposite and polyimide A nanocomposite membrane was obtained.
  • the content of S-RGO in the nanocomposite was carried out in the same manner as in Example 5, except that the content of S-RGO was changed to be about 3 parts by weight based on 100 parts by weight of the nanocomposite, polyimide nanocomposite and polyimide A nanocomposite membrane was obtained.
  • the content of S-RGO in the nanocomposite was carried out in the same manner as in Example 5, except that the content of S-RGO was changed so that the content of S-RGO was changed to about 1 5 parts by weight based on 100 parts by weight of the nanocomposite. A mid nanocomposite film was obtained.
  • Comparative example 1 Reduction using hydrazine hydrate Graphene Preparation of oxide (rGO)
  • graphene oxide reduced with hydrazine hydrate was prepared by the following method.
  • rGO Graphene oxide oxidized by Brodie's method, sulfur doping reduced graphene oxide (Sulfur-rGO), hydrazine hydrate reduced graphene oxide (Hydrazine-) was carried out each of the following experiments.
  • a polyamic acid solution was prepared by reacting at room temperature for 24 hours under a nitrogen atmosphere. After casting the TKDRL polyamic acid solution to the substrate, the thickness is approximately 10 by heat treatment at 90 ° C for 2 hours, 150 ° C for 1 hour, 200 ° C for 30 minutes, 250 ° C for 1 hour, and 280 ° C for 30 minutes. A polyimide film of mm was obtained.
  • Graphene oxide (GO) obtained according to Example 1 sulfur-doped reduced graphene oxide (Sulfur-Rgo), thermal weight for reduced graphene oxide (Hydrazine-rGO) obtained using hydrazine obtained according to Comparative Example 1
  • the analysis results are shown in FIG. 1.
  • the thermogravimetric analysis was performed under a nitrogen atmosphere, and TA (SDT: TGA + DSC) 2010 TGA / DSC1 (METTLER TOLEDO) (temperature range: room temperature to 1600 ° C.) was used for thermogravimetric analysis.
  • the inter-layer distance between rGOs is a value obtained by using a peak in a region where 2 ⁇ is 24.5 degrees.
  • the 2 ⁇ value of graphite is approximately 26.4 °.
  • the GO whose properties are changed by functional groups containing oxygen while undergoing oxidation-reduction, has a 2 ⁇ value of 11.9 °.
  • Sulfur-rGO has a 2 ⁇ value of 24.5
  • Hydrazine-rGO has a 2 ⁇ value of 24.7.
  • the half-peak width of the main peak of Sulfur-rGO is smaller than the half-width of the main peak of Hydrazine-rGO, showing that the peak of Sulfur-rGO is sharp, which is more crystalline due to the effect of doped sulfur.
  • the XRD peak is strong at around 23 °, and this effect is interpreted to have a smaller 2 ⁇ value than Hydrazine-rGO. Based on the results above, it was found that Sulfur-rGO showed a similar level of reduction compared to Hydrazine-rGO.
  • the sulfur-doped reduced graphene oxide obtained according to Example 1 had a higher interlayer distance compared to Hydrazine-Rgo of Comparative Example 1. From these results, many oxygen-containing groups were intercalated in the interlayer space. I could see that.
  • Raman spectroscopy for graphene oxide (GO) obtained according to Example 1, reduced graphene oxide doped with sulfur (Sulfur-rGO), and reduced graphene oxide (Hydrazine-rGO) obtained using hydrazine obtained according to Comparative Example 1 The analysis results are shown in Figure 3 and Table 2 below. Raman analysis was performed using Raman 2010 Spectra (NT-MDT Development Co.) (Laser system: 473, 633, 785 nm, Lowest Raman shift: ⁇ 50 cm-1, Spatial resolution: about 500 nm) Did.
  • Graphene exhibits peaks at 1350 cm -1 , 1580 cm -1 , and 2700 cm -1 in the Raman analysis spectrum, which provides information about graphene thickness, crystallinity, and charge doping.
  • the peak appearing at 1580 cm -1 is a peak called G mode, which is due to the vibration mode corresponding to the stretching of the carbon-carbon bond, and the energy of the G-mode is determined by the density of the surplus charge doped with graphene.
  • the peak appearing at 2700cm -1 is a peak called 2D-mode, which is useful when evaluating the thickness of graphene.
  • the peak from 1350 cm -1 is a peak called D mode and is a peak that appears when the SP 2 crystal structure is defective.
  • the D / G intensity ratio gives information about the disorder of graphene crystals.
  • the D peak is a peak indicating a defect in the crystal structure.
  • the reduced graphene oxide is reduced in the graphene oxide, and thus the I G / I D ratio changes according to a change in the sp 2 crystal structure.
  • Powder resistance to graphene oxide (GO) obtained according to Example 1, reduced graphene oxide doped with sulfur (Sulfur-rGO), and reduced graphene oxide (Hydrazine-rGO) obtained using hydrazine obtained according to Comparative Example 1 4 shows the results of measuring electrical conductivity with a measuring device.
  • FIG. 5A shows an image of a graphene sheet form of Sulfur-rGO, and EDS mapping analysis was performed in the range of FIG. 5C to confirm whether sulfur was doped.
  • Figure 5b is a graph of the content of carbon (C), oxygen (O), sulfur (S),
  • Figure 5d and 5e shows the state in which sulfur (S), carbon (C) are distributed, respectively.
  • FIG. 6 shows a photoelectron spectroscopic analysis graph corresponding to C1s of Sulfur-rGO
  • FIG. 7 shows a photoelectron spectroscopic analysis graph corresponding to S2p of Sulfur-rGO.
  • the oxygen permeability of the polyimide nanocomposite film obtained according to Example 3-6 and the polyimide film of Comparative Example 2 was measured at 23 ° C. using OX-TRAN 2/21 (MOCON instrument). Oxygen permeability measurement results are shown in FIGS. 8A to 8D and Table 3 below.
  • Figure 8a shows the permeability (Permeability) of the polyimide nanocomposite film obtained in Example 3-6 and the polyimide film of Comparative Example 2.
  • Figure 8b shows the fracture surface (Fracture surface) of the polyimide nanocomposite of Example 3
  • Figure 8c shows a 3D X-ray CT tomography image (tomography image) of the polyimide nanocomposite of Example 6.
  • the polyimide nanocomposite film of Example 6 showed a result in which the oxygen permeability was significantly reduced compared to the polyimide film of Comparative Example 2. From this, it was found that the polyimide nanocomposite film of Example 6 has a gas diffusion barrier property and thus gas permeability is reduced. It can be seen from FIGS. 8B and 8C that the sulfur-rGO has a uniform dispersed phase in the polyimide nanocomposite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

황과 환원 그래핀 옥사이드를 포함하며, 상기 황이 도핑된 환원 그래핀 옥사이드의 라만 분석에 의하여 구해지는 D피크/G피크 세기비(intensity ratio)가 1.03 내지 1.31인 황이 도핑된 환원 그래핀 옥사이드와, 상기 황이 도핑된 환원 그래핀 옥사이드를 황 또는 석유의 정제과정에서 발생되는 부산물인 황을 이용하여 제조하는 방법 및 이를 포함하는 폴리이미드 나노복합체를 제공한다. 본 발명에 따라 제조된 황 도핑된 환원 그래핀 옥사이드는 환원 과정에서 환원제 및 용매를 별도로 사용하지 않아서 원가 절감의 효과가 가능하다. 또한, 간단한 방법으로 종래 기술에 비해 빠르게 환원과 도핑이 동시에 진행할 수 있다는 장점이 있다. 상술한 황 도핑된 환원 그래핀 옥사이드를 함유한 폴리이미드 나노복합체를 이용하면 가스 확산 배리어 특성을 갖는 막을 제조할 수 있다.

Description

황 도핑 환원 그래핀 옥사이드, 그 제조방법 및 황 도핑 환원 그래핀 옥사이드를 함유한 폴리이미드 나노복합체
본 발명은 황 도핑 환원 그래핀 옥사이드, 그 제조 방법 및 이를 포함하는 폴리이미드 나노복합체에 관한 것으로서, 더욱 상세하게 석유의 정제과정에서 발생되는 부산물인 황을 환원제로 이용하여 유기 용매 및 환원제를 별도로 사용하지 않아 친환경적이며 환원과 도핑을 동시에 병행하는 환원 그래핀 옥사이드의 제조 방법과 상기 황 함유 환원 그래핀 옥사이드를 함유한 나노복합체에 관한 것이다.
고도의 과학기술 및 산업발달에 따라 보다 우수한 특성을 가진 재료들이 요구 되고 있다. 이에 따라 기존의 재료들을 대체할 수많은 연구가 진행되고 있으며 특히 우수한 기계적, 전기적 물성을 지닌 그래핀은 반도체, 슈퍼캐패시터, 연료전지, 복합체 등 여러 산업 분야에 걸쳐서 각광받고 있는 물질이다. 이러한 산업의 요구에 따라 그래핀을 대량으로 생산하기 위해 흑연을 화학적 박리법을 사용하여 흑연의 산화-환원 과정을 통하여 환원 그래핀 옥사이드를 제조한다.
그러나 현재 사용되고 있는 방법들은 고가의 환원제를 사용하고 또한 환원제들의 유해성 문제가 야기되고 있다. 또한 환원 공정의 복잡함 때문에 대량화에 어려움을 겪고 있는 상황이다. 위와 같은 문제점을 해결하기 위하여 환원 그래핀 옥사이드의 제조방법에 있어 친환경적이며 간단한 공정에 대한 연구가 활발하게 진행되고 있다.
본 발명의 목적은 그래핀 옥사이드의 새로운 환원법과 황(Sulfur) 도핑을 동시에 진행하는 황이 도핑된 환원 그래핀 옥사이드의 제조방법을 제공함으로써 저가의 원료와 환원 과정에서 용매를 사용하지 않고 간단한 공정으로 다양한 산업분야에 활용할 수 있는 황이 도핑된 환원 그래핀 옥사이드를 제공하는 것이다.
본 발명의 다른 목적은 상기 황이 도핑된 환원 그래인 옥사이드를 포함하는 폴리이미드 나노복합체를 제공하는 것이다.
본 발명의 목적을 이루기 위하여
황과 환원 그래핀 옥사이드를 포함하며, 상기 황이 도핑된 환원 그래핀 옥사이드의 라만 분석에 의하여 구해지는 D피크/G피크 세기비(intensity ratio)가 1.03 내지 1.30인 황이 도핑된 환원 그래핀 옥사이드가 제공된다 .
상기 황의 함량은 황이 도핑된 환원 그래핀 옥사이드의 충중량 100 중량부를 기준으로 하여 1 내지 5 중량부이고, 상기 황이 도핑된 환원 그래핀 옥사이드의 열중량 분석에 의하여 구해지는 800℃에서 열처리한 후의 탄소의 함량은 80 내지 88중량%이고 10% 중량 감소 온도가 700 내지 750℃이다. 그리고 상기 황이 도핑된 환원 그래핀 옥사이드의 Cu-Kα를 사용한 X선 회절(XRD) 분석 결과 그래프에서 20°<2θ<30°에서의 최대 피크의 반치폭(Full width at Half-maximum; FWHM)은 7°내지 12°이고, 황이 도핑된 환원 그래핀 옥사이드간의 층간거리(d002)는 3.1 내지 3.9 Å이다.
또한 상기 황이 도핑된 환원 그래핀 옥사이드의 X선 광전자분석에서 결합에너지 163.6 ev, 165.9 ev 및 168.5 eV 영역에서 주피크(main peak)와 부피크가 나타난다.
본 발명의 다른 목적을 이루기 위하여 그래핀 옥사이드에 황을 부가하여 황과 그래핀 옥사이드의 혼합물을 제조하는 단계;
상기 혼합물을 열처리하여 황(sulfur)을 용융황(molten sulfure)으로 전환한 다음, 반응 혼합물을 교반하는 단계; 및
상기 교반된 결과물로부터 황을 제거하는 단계를 포함하는 황이 도핑된 환원그래핀 옥사이드의 제조방법이 제공된다.
상기 그래핀 옥사이드와 황의 혼합이 120℃ 내지 250℃에서 유기용매 없이 실시된다. 그리고 상기 그래핀 옥사이드는 화학적 박리법을 통하여 얻은 그래핀 옥사이드이다.
상기 열처리가 100 내지 300℃에서 실시된다. 그리고 상기 황을 제거하는 단계는 초음파 처리와, 메틸렌클로라이드, 테트라하이드로퓨란 중에서 선택된 하나 이상의 용매를 이용한 세척과정을 실시한다. 또한 상기 황과 그래핀 옥사이드의 혼합물의 제조단계에서 그래핀 옥사이드와 황(Sulfur)의 혼합비는 1:1 내지 1:10 중량비이다.
본 발명의 또 다른 목적을 달성하기 위하여 상술한 황 도핑 환원 그래핀 옥사이드와 폴리이미드를 함유한 나노복합체가 제공된다.
상기 황이 도핑된 그래핀 옥사이드의 함량은 폴리이미드 나노복합체 총중량 100 중량부를 기준으로 하여 1 내지 5 중량부이다.
본 발명에 따라 그래핀 옥사이드의 환원시 석유의 정제과정에서 대량으로 얻어지는 부산물인 황을 이용하면, 그래핀 옥사이드의 환원과 그래핀 옥사이드에 대한 황의 도핑을 동시에 진행하므로 종래의 제조방법과 비교하여 황이 도핑된 환원 그래핀 옥사이드를 용이하면서 보다 빠르게 제조할 수 있다. 또한 그래핀 옥사이드의 환원시 남은 황은 수집하여 그래핀 옥사이드의 환원시 재사용이 가능하다. 따라서 종래의 제조방법과 비교하여 제조비용이 감소된다. 상술한 황 도핑된 환원 그래핀 옥사이드를 함유한 폴리이미드 나노복합체를 이용하면 가스 확산 배리어 특성이 우수한 막을 제조할 수 있다.
도 1a은 실시예 1의 그래핀 옥사이드(GO), 황 도핑된 환원 그래핀 옥사이드(Sulfur-rGO), 비교예 1에 따라 얻은 히드라진-환원 그래핀 옥사이드(Hydrazine-rGO)의 열중량 분석결과 데이터를 나타낸 것이다.
도 1b는 실시예 1의 그래핀 옥사이드(GO), 황 도핑된 환원 그래핀옥사이드(Sulfur-rGO), 비교예 1에 따라 얻은 히드라진-환원 그래핀 옥사이드(Hydrazine-rGO)의 열중량 분석 결과를 나타낸 것이다.
도 2은 실시예 1의 그래핀 옥사이드(GO), 황 도핑된 환원 그래핀옥사이드(Sulfur-rGO) 및 비교예 1에 따라 얻은 히드라진-환원 그래핀 옥사이드(Hydrazine-rGO)의 X-선 회절 분석결과를 나타낸 것이다.
도 3은 실시예 1의 그래핀 옥사이드(GO), 황 도핑된 환원 그래핀옥사이드(Sulfur-rGO) 및 비교예 1에 따라 얻은 히드라진-환원 그래핀 옥사이드(Hydrazine-rGO)의 라만 분광법 분석결과를 나타낸 것이다.
도 4은 실시예 1의 그래핀 옥사이드(GO), 황 도핑된 환원 그래핀옥사이드(Sulfur-rGO) 및 비교예 1에 따라 얻은 히드라진-환원 그래핀 옥사이드(Hydrazine-rGO)의 분체저항 측정결과를 나타낸 것이다.
도 5a 내지 도 5e는 실시예 1에 따라 얻은 Sulfur-rGO의 투과 전자 현미경 이미지 및 에너지 분산형 분광법(Energy Dispersive Spectrometer: EDS) 맵핑(mapping) 분석 결과를 나타낸 것으로서 도 5a는 Sulfur-rGO의 그래핀 시트 형태의 이미지를 나타낸 것이고, 도 5b는 탄소(C), 산소(O), 황(S)의 함량에 대한 그래프이고, 도 5c의 범위에서 EDS 맵핑 분석 결과를 나타낸 것이고, 도 5d와 5e는 각각 황(S), 탄소(C) 가 분포되어있는 모습을 나타낸 것이다
도 6은 실시예 1에 따라 얻은 Sulfur-rGO의 C1s에 해당하는 광전자 분광 분석 그래프를 나타낸 것이다.
도 7은 실시예 1에 따라 얻은 Sulfur-rGO의 S2p에 해당하는 광전자 분광 분석 그래프를 나타낸 것이다.
도 8a는 실시예 3-6에 따라 얻은 폴리이미드 나노복합체막 및 비교예 2의 폴리이미드막의 투과도(Permeability)를 나타낸 것이다.
도 8b는 실시예 3의 폴리이미드 나노복합체(그래핀 함량: 5 중량부)의 프랙처 표면(Fracture surface)을 나타낸 전자주사현미경 사진이다.
도 8c는 실시예 6의 폴리이미드 나노복합체의 3D X-ray CT 토모그래피 이미지(tomography image)를 나타낸 것이다.
이하, 본 발명의 황이 도핑된 환원 그래핀 옥사이드 및 그 제조방법과 상기 황이 도핑된 환원 그래핀 옥사이드를 함유한 나노복합체에 대하여 보다 상세하게 살펴보기로 한다.
황과 환원 그래핀 옥사이드를 포함하며, 상기 황이 도핑된 환원 그래핀 옥사이드의 라만 분석에 의하여 구해지는 D피크/G피크 세기비(intensity ratio)가 1.03 내지 1.30인 황이 도핑된 환원 그래핀 옥사이드가 제공된다.
D피크/G피크 세기비(intensity ratio)는 예를 들어 0.7 내지 0.80, 예를 들어 0.79이다.
상기 황이 도핑된 환원 그래핀 옥사이드는 탄소나노튜브, 카본시트, 흑연 및 탄소섬유 중에서 선택된 하나 이상이 더 포함될 수 있다.
상기 황이 도핑된 환원 그래핀 옥사이드의 라만 분석에 의하여 구해지는 2D 피크가 (2600 내지 2800cm-1)에서 나타난다.
상기 황의 함량은 황이 도핑된 환원 그래핀 옥사이드의 충중량 100 중량부를 기준으로 하여 1 내지 5 중량부, 예를 들어 2 내지 5 중량부, 예를 들어 4 중량부이다.
상기 황이 도핑된 환원 그래핀 옥사이드의 열중량 분석에 의하여 구해지는 800℃에서 열처리한 후의 탄소의 함량은 80 내지 88%이다. 이러한 탄소의 함량은 환원제로서 히드라진을 사용하여 얻은 황이 도핑된 환원 그래핀 옥사이드의 탄소의 함량에 비하여 증가된 것이다. 이러한 결과로부터 본 발명의 황이 도핑된 환원 그래핀 옥사이드는 열적 안정성이 개선된 것을 확인할 수 있다.
상기 황이 도핑된 환원 그래핀 옥사이드의 Cu-Kα를 사용한 X선 회절(XRD) 분석 결과 그래프에서 20°<2θ<30°에서의 최대 피크의 반치폭(Full width at Half-maximum; FWHM)은 7°내지 12°이고, 황이 도핑된 환원 그래핀 옥사이드간의 층간거리(d002)는 3.1Å 내지 3.9 Å이다. 그리고 상기 황이 도핑된 환원 그래핀 옥사이드의 X선 광전자분석에서 결합에너지 163.6 eV, 165.9 eV 및 168.5 eV 영역에서 주피크와 부피크가 나타난다. 이 피크는 황과 관련된 피크이며 황이 도핑된 것을 확인할 수 있다. 본 명세서에서 "주피크(main peak)"는 세기가 가장 큰 피크를 의미하며 "부피크"는 주피크에 비하여 세기가 작은 피크를 의미한다.
그래핀 옥사이드로부터 환원 그래핀 옥사이드를 제조할 때 환원제로서 히드라진을 이용하는 방법이 알려져 있다. 환원제로서 히드라진을 이용하는 경우에는 고가의 환원제들의 유해성 문제, 환원 공정의 복잡함 때문에 대량화가 용이하지 않아 환원 그래핀 옥사이드를 제조할 때 친환경적이며 간단한 공정에 대한 연구에 대한 개발이 요구된다.
또한 석유의 정제과정에서 대량으로 발생되는 부산물인 대량의 황(부생유황)을 재활용할 수 있는 방법에 대한 연구가 필요하다.이에 본 발명자들은 상술한 사항을 감안하여 안출된 것으로서, 용융 황(molten sulfur), 특히 석유의 정제과정에서 발생된 부산물인 황을 이용하여, 환원 그래핀 옥사이드의 제조 시간을 단축하면 그래핀 옥사이드의 환원과 황의 도핑을 동시에 진행할 수 있는 황 도핑된 환원 그래핀 옥사이드를 제조하는 방법을 개발하고 본 발명을 완성하였다. 이 방법을 이용하면 그래핀 옥사이드의 환원과 황의 도핑이 동시에 이루어질 수 있고 황이 제거 가능하여 재사용 가능하다.
본 발명에 의한 황 도핑된 환원 그래핀 제조방법은 그래핀 옥사이드를 제조하는 단계와, 용융 황을 이용하여 그래핀 옥사이드를 도핑 및 환원시키는 단계를 포함하며 각 단계를 보다 상세하게 설명하면 후술하는 바와 같다.
우선, 흑연의 산화 과정을 통하여 그래핀 옥사이드를 제조하는 과정을 거친다.
상기 흑연은 탄소재료(탄소나노튜브, 카본시트, 흑연, 탄소섬유) 중 1종이 선택되어 사용될 수 있으며, 흑연을 사용하는 것이 바람직하다.
상기 그래핀 옥사이드는 천연 또는 인공 흑연에 산(acid) 처리를 통하여, 흑연 층간에 산소(Oxygen)을 포함한 화학종이 생성되게 함으로써 그래핀 옥사이드를 제조하는 것이다. 상기 산은 질산, 질산나트륨, 황산, 아세트산, 아스코르브산으로 이루어진 군 중 1종 이상이 선택되어 사용될 수 있다.
본 명세서의 그래핀 옥사이드에서 산소의 함량은 예를 들어 0.1 내지 40 원자%일 수 있다. 그리고 본 명세서에서 용어 "그래핀 옥사이드"는 복수개의 탄소 원자들이 서로 공유결합으로 연결되어 일평면상으로 배열되는 폴리시클릭 방향족 분자를 형성하는 그래핀 옥사이드가 단일 원자층의 시트 구조를 형성하거나 작은 필름 조각인 플레이트 형태의 그래핀 옥사이드가 복수개 상호연결되어 일평면상으로 배열된 네크워크구조를 형성한 것으로서 이들의 조합도 가능하다. 상기 공유결합으로 연결된 탄소 원자들은 기본 반복단위로서 6원자환을 형성하지만 5원환 및/또는 7원환을 더 포함하는 것도 가능하다. 상기 그래핀 옥사이드는 시트구조가 여러 개 서로 적층된 복수층으로 이루어질 수 있고 평균 두께가 약 100nm 이하, 예를 들어 약 10nm 이하이고, 구체적으로 0.01 내지 10nm이다.
하나의 구현예에서, 상기 그래핀 옥사이드를 도핑 및 환원하기 위하여 그래핀 옥사이드에 황(Sulfur)을 중량비로 혼합한다. 상기 그래핀 옥사이드와 황(Sulfur)의 중량비는 1:1 내지 1:10, 바람직하게는 1:3의 중량비로 혼합되는 것이 바람직하다. 황의 함량이 상기 범위보다 작으면 그래핀 옥사이드와 황의 교반 반응이 어렵고, 상기 범위보다 많으면 반응 종결 후 황을 제거하기가 어려워질 수 있다.
상기 그래핀 옥사이드와 황의 혼합물을 열처리한다.
상기 열처리는 100 내지 300℃에서 실시된다. 열처리는, 바람직하게는 120℃ 내지 250℃, 더 바람직하게는 150 내지 180℃, 보다 더 바람직하게는 180℃에서 실시된다. 열처리시간은 열처리온도에 따라 달라지지만, 예를 들어 30분 내지 6시간, 바람직하게는 3시간 내지 4시간 동안 반응시키는 것이 바람직하다.
상기 열처리 과정중 반응 혼합물을 150 내지 180℃, 예를 들어 170℃까지 열처리하면 점성을 갖는 용융 상(molten phase)으로 만든다. 용융 상은 용융 황(molten sulfur)을 함유한다. 열처리 과정중, 용융 황과 그래핀 옥사이드를 함유한 용융 상 혼합물의 반응을 통하여 황 도핑 환원 그래핀 옥사이드(Sulfur-rGO)를 제조할 수 있다.
상기 반응이 종결된 후 황을 제거하는 단계를 실시한다. 이와 같이 황을 제거하는 단계는 상기 교반된 결과물에 황 용해성 용매(sulfur soluble solvent)를 부가하여 황을 용해하여 황 용액을 얻는 단계; 및 상기 황 용액으로부터 황 용해성 용매를 제거하거나 황 용액을 재결정하여 황을 제거하고, 제거된 황을 회수하는 단계를 포함할 수 있다.
황의 재활용률(recycyle rate)은 30 내지 90%, 예를 들어 약 72%이다.
본 명세서에서 용어 "황 용해성 용매"는 황에 대한 용해도 특성을 갖는 용매를 나타내며, 비제한적인 예로서 상기 황 용해성 용매는 테트라하이드로퓨란(THF), 메틸렌 클로라이드, 디메틸디설파이드(CS2), 설포란(Sulfurane), 클로로포름, 톨루엔, 자일렌, 아세토니트릴, 디클로로메탄, N-메틸피롤리돈(NMP), 에틸 아세테이트, 디메틸에테르(DME), 트리클로로에틸렌, 폴리에틸렌글리콜, 이소프로필 케톤, 아세토니트릴, 디클로로에탄, 디메틸아세트아미드, 디메틸포름아미드, 쿠멘(cumene), 벤젠, p-클로로톨루엔, 1,3-메시틸렌, 스티렌, 클로로벤젠, 알파메틸스티렌, 에틸벤젠, 디에탄올아민, 에틸아민, 디에틸아민, 메틸아민, 에틸렌디아민, 디에틸렌 트리아민, 프로필아민,에탄올아민, 이소프로필아민, 트리에틸렌테트라아민, 클로로아닐린, 트리에틸아민, 트리에탄올아민, 디메톡시에탄, 디메톡시메탄, 디옥산 중에서 선택된 하나 이상을 들 수 있다.
황을 제거하는 단계를 예를 들어 초음파 처리와, 메틸렌클로라이드, 테트라하이드로퓨란 중에서 선택된 하나 이상의 용매를 이용한 세척과정을 실시한다.
일구현예에 의하면 황을 제거하는 단계는 테트라하이드로퓨란과 메틸렌 클로라이드를 이용하여 세척하고 초음파 처리를 실시하여 일부 황을 제거하여 황 도핑 환원 그래핀 옥사이드를 제조할 수 있다. 황을 제거하는 단계에서 미반응 황 또는 환원 그래핀 옥사이드에서 물리적으로 붙어 있는 황을 제거할 수 있다. 이와 같은 제거된 황을 재활용(recycle)할 수 있다.
본 발명의 제조방법에 따르면 그래핀 옥사이드의 환원 및 도핑이 동시에 진행될 수 있다. 따라서 제조단계가 간단하고 용이하며 환원제로서 고가의 히드라진을 사용하지 않으므로 제조비용이 저렴해질 수 있다.
황 도핑 환원 그래핀 옥사이드에서 황의 함량은 황 도핑 환원 그래핀 옥사이드 100 중량부를 기준으로 하여 1 내지 5 중량부, 예를 들어 4중량부이다. 그리고 본 발명의 황 도핑 환원 그래핀 옥사이드는 이차원 투명한 쉬트(sheet) 형상의 그래핀 구조를 가질 수 있다.
황 도핑 환원 그래핀 옥사이드에서 황은 케톤, 에폭시기, 페놀기 등과 같은 특정 기능화된 사이트에 도입될 수 있다. 이는 하기 반응식 1 및 2로부터 확인 가능하다.
[반응식 1]
Figure PCTKR2019015263-appb-I000001
[반응식 2]
Figure PCTKR2019015263-appb-I000002
다른 측면에 의하면, 본 발명은 상술한 황이 도핑된 환원 그래핀 옥사이드를 함유한 폴리이미드 나노복합체를 제공한다. 상기 폴리이미드 나노복합체는 상술한 황이 도핑된 환원 그래핀 옥사이드와 폴리이미드를 함유한다.
나노복합체에서 황이 도핑된 환원 그래핀 옥사이드의 함량은 나노복합체 100 중량부를 기준으로 하여 1 내지 5 중량부이다. 이러한 나노복합체를 이용하면 가스 확산 배리어 필름을 제조할 수 있다.
상기 황이 도핑된 환원 그래핀 옥사이드 나노복합체는 황이 도핑된 환원 그래핀 옥사이드를 함유한 폴리이미드 나노복합체로서 하기 방법에 따라 제조된다.
황이 도핑된 환원 그래핀 옥사이드를 N-메틸 2-피롤리돈과 같은 유기용매에 분산한 다음, 이를 초음파 처리하여 S-rGO 분산액을 얻는다.
이어서 폴리이미드를 형성하기 위한 디아민과 산무수물을 상기 S-RGO 분산액에 부가하여 혼합물을 얻고 이 혼합물을 교반하여 디아민과 산무수물의 중합 반응 생성물인 폴리아믹산과 황이 도핑된 환원 그래핀 옥사이드 분산액을 함유하는 혼합물을 얻을 수 있다.
상기 디아민과 산무수물은 폴리이미드 제조시 사용가능한 것이라면 모두 다 사용 가능하다. 디아민 화합물은 예를 들어 방향족 디아민, 지환식 디아민 및 지방족 디아민 중에서 선택된 하나 이상일 수 있다.
방향족 디아민은 예를 들어 3,3'-디하이드록시벤지딘, p-페닐렌디아민, m-페닐렌디아민, 2,5-디아미노톨루엔, 2,6-디아미노톨루엔, 1,3-비스(4,4'-아미노페녹시)벤젠, 4,4'-디아미노-1,5-페녹시펜탄, 4,4'-디아미노비페닐, 3,3'-디메틸-4,4'-디아미노비페닐, 3,3'-디메톡시-4,4'-디아미노비페닐, 4,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐메탄, 2,2'-디아미노디페닐프로판, 비스(3,5-디에틸-4-아미노페닐)메탄, 디아미노디페닐술폰, 디아미노벤조페논, 디아미노나프탈렌, 1,4-비스(4-아미노페녹시)벤젠, 1,4-비스(4-아미노페닐)벤젠, 9,10-비스(4-아미노페닐)안트라센, 1,3-비스(4-아미노페녹시)벤젠, 4,4'-비스(4-아미노페녹시)디페닐술폰, 2,2-비스[4-(4-아미노페녹시)페닐]프로판, 2,2'-트리플루오로메틸-4,4'-디아미노비페닐 및 이들의 혼합물로 구성된 군에서 선택될 수 있다.
지환식 디아민은 예를 들어 1,4-디아미노시클로헥산, 1,4-시클로헥산비스(메틸아민), 4,4'-디아미노디시클로헥실메탄(MCA), 4,4'-메틸렌 비스(2-메틸 사이클로헥실아민)(MMCA) 및 이들의 혼합물로 구성된 군에서 선택될 수 있다.
지방족 디아민은 예를 들어 에틸렌디아민(EN), 1,3-디아미노프로판(13DAP), 테트라메틸렌디아민, 1,6-헥사메틸렌디아민(16DAH)), 1,12-디아미노도데칸(112DAD) 및 이들의 혼합물로 구성된 군에서 선택되는 지방족 디아민으로 구성된 군에서 선택되는 1종 이상일 수 있다.
산 이수물은 예를 들어 하기 화학식 1로 표시되는 화합물일 수 있다.
[화학식 1]
Figure PCTKR2019015263-appb-I000003
화학식 1중, R5는 화학식 2로 표시되는 그룹 중에서 선택된 하나이다.
[화학식 2]
Figure PCTKR2019015263-appb-I000004
화학식 2중, *는 결합위치를 나타낸다.
산 이무수물은 예를 들어 파이로멜리트산 이무수물(Pyromellitic dianhydride), 2,2-비스(3,4-디카르복시페닐)헥사플루오로프로판 디안하이드라이드(6FDA), 4-(2,5-디옥소테트라하이드로푸란-3-일)-1,2,3,4-테트라하이드로나프탈렌-1,2-디카르복실릭 디안하이드라이드(TDA), 피로멜리틱산 디안하이드라이드(1,2,4,5-벤젠 테트라카르복실릭 디안하이드라이드, PMDA), 벤조페논 테트라카르복실릭 디안하이드라이드(BTDA), 비페닐 테트라카르복실릭 디안하이드라이드(BPDA), 옥시디프탈릭 디안하이드라이드(ODPA), 비스카르복시페닐 디메틸 실란 디안하이드라이드(SiDA), 비스 디카르복시페녹시 디페닐 설파이드 디안하이드라이드(BDSDA), 술포닐 디프탈릭안하이드라이드(SO2DPA), 사이클로부탄 테트라카르복실릭 디안하이드라이드(CBDA), 이소프로필리덴이페녹시 비스 프탈릭안하이드라이드(6HBDA), 비사이클로[2.2.2]-7-옥텐-2,3,5,6-테트라카르복실산 디안하이드라이드(BTA)로 구성된 군에서 선택되는 1종 이상을 들 수 있다.
일구현예에 따른 폴리이미드 나노복합체의 폴리이미드는 수평균분자량이 10,000 내지 500,000 g/mol이다.
이어서 상기 혼합물을 기판에 캐스팅하고 나서 이미드화 반응을 실시하여 폴리이미드와 황이 도핑된 환원 그래핀 옥사이드를 함유하는 나노복합체를 얻을 수 있다.
이미드화 반응은 예를 들어 가열에 의하여 탈수고리화를 실시하는 방법과 탈수제를 사용하여 탈수고리화를 실시하는 방법 등이 있다. 가열에 의하여 탈수고리화를 실시하는 방법은 예를 들어 300 내지 400℃의 고온에서 실시하여 이미드화를 실시한다.
탈수제를 사용하여 탈수고리화를 실시하는 방법은 200℃ 이하의 온도에서 실시하여 이미드화를 실시한다. 탈수제와 함께 산, 염기 등의 촉매를 사용하여 실시하는 것도 가능하다. 예를 들어 상기 산 촉매로는 p-하이드록시페닐아세트산 등의 유기산을 사용하고 염기 촉매로는 이소퀴놀린, 트리에틸아민, 피리딘, 1,4-디아자바이사이클로[2.2.2]옥탄 등을 사용한다.
일구현예에 따른 폴리이미드는 수평균분자량이 10,000 내지 500,000 g/mol이다.
본 발명에서 폴리이미드는 예를 들어 하기 화학식 3로 표시되는 고분자이다.
<화학식 3>
Figure PCTKR2019015263-appb-I000005
화학식 3중 n은 20 내지 400이다.
본 발명의 황 도핑 환원 그래핀 옥사이드를 함유한 폴리이미드 나노복합체 및 이를 포함하는 필름은 가스 확산 배리어 특성을 갖는다. 이러한 필름은 중금속 필터, 반도체, 도전성 필름, 배터리, 자동차용 소재 등 여러 분야에 걸쳐서 활용 될 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: 황이 도핑된 환원 그래핀 옥사이드(Sulfur-rGO)의 제조
흑연을 브로드 방법(Brodie's method)을 이용하여 화학적 박리를 시켰다.
흑연 5.0g과 42.5g의 염소산나트륨(NaClO)를 500ml 플라스크에 넣고 얼음배쓰(Ice bath)에 넣었다.
적하깔대기(Dropping funnel)을 질소 치환하여 발연 질산(Fuming nitric acid, HNO3)를 45ml 넣어준 후 2시간에 걸쳐서 천천히 떨어뜨려 준다. 그 후 0℃에서 4시간 동안 자석 교반을 시켜준 후 상온에서 24시간 교반시켰다. 24시간 후 25ml의 발연 질산(Fuming nitric acid, HNO3)을 추가로 넣어 준다. 이 후 상온에서 24시간동안 자석교반을 시켜준 후 과량의 0℃ 증류수에 혼합물을 천천히 부어주며 중화를 시켰다. 그 후 필터와 증류수로 세척 과정을 PH 중성까지 반복한 후 50℃ 진공오븐에서 24시간 건조하였다.
상기 제조된 그래핀 옥사이드(GO) 1g과 석유 정제과정에서 발생된 부산물인 황(Sulfur) 분말 3g을 막자 사발을 사용하여 잘 섞어준 후 500ml 둥근 바닥 플라스크에 넣어주었다. 이 후 오일 배쓰(Oil bath)의 온도를 180℃로 설정한 후 자석 교반을 시켜준다. 120℃ 부근에서 황(Sulfur)이 녹기 시작하면서 교반이 시작 됨을 확인할 수 있었다. 상기 반응 혼합물의 온도를 170℃에 까지 가열하여 용융 황(molten sulfur)을 얻고 이를 함유한 반응 혼합물을 4시간 동안 교반한 후 반응을 종결시켰다. 반응이 끝난 후 상기 반응 결과물을 상온으로 냉각한 후, 남아있는 황(Sulfur)을 제거하기 위해 THF 를 이용하여 초음파 처리를 실시하였다. 이어서 여과를 실시하여 고체와 황이 용해된 THF 용액을 얻었다.
상기 고체를 물과 에탄올로 세척하고 나서 180℃의 진공오븐에서 24시간 건조시켜 황이 도핑된 환원 그래핀 옥사이드(Sulfur-rGO)를 제조하였다.
상기 제조방법에서 여과하여 얻은 여액인 황이 용해된 THF 용액을 감압증발하여 THF를 제거하여 황(재활용 황)을 회수하였다. 이렇게 얻은 황의 재활용률(recycyle rate)은 약 72%이다.
실시예 1-1: 황이 도핑된 환원 그래핀 옥사이드의 제조
남아있는 황(Sulfur)을 제거하기 위해 THF 대신 디메틸 디설파이드(CS2)를 이용한 것을 제외하고는, 실시예 1과 동일하게 실시하여 황이 도핑된 환원 그래핀 옥사이드를 제조하였고 재활용 황을 회수하였다.
실시예 1-2: 황이 도핑된 환원 그래핀 옥사이드의 제조
남아있는 황(Sulfur)을 제거하기 위해 THF 대신 메틸렌 클로라이드를 이용한 것을 제외하고는, 실시예 1과 동일하게 실시하여 황이 도핑된 환원 그래핀 옥사이드를 제조하였고 재활용 황을 회수하였다.
실시예 2: 황이 도핑된 환원 그래핀 옥사이드의 제조
그래핀 옥사이드(GO) 1g과 황(Sulfur) 분말 3g 대신 그래핀 옥사이드(GO) 1g과 실시예 1에 따라 황이 도핑된 그래핀 옥사이드를 제조한 후 남은 황을 회수하여 얻은 재활용 황(Sulfur) 분말 3g으로 변화된 것을 제외하고는 실시예 1과 동일하게 실시하여 황이 도핑된 환원 그래핀 옥사이드를 제조하였다.
실시예 3: 황이 도핑된 환원 그래핀 옥사이드 함유 폴리이미드 나노복합체 및 폴리이미드 나노복합체막의 제조
황이 도핑된 환원 그래핀 옥사이드 나노복합체는 황이 도핑된 환원 그래핀 옥사이드를 함유한 폴리이미드 나노복합체이다.
황이 도핑된 환원 그래핀 옥사이드(S-RGO)을 NMP 4.9ml에 분산하고 이를 0 °에서 30분동안 초음파 처리를 실시하여 S-RGO 분산액을 얻었다. 이어서, 3,3'-디하이드록시벤지딘(3,3'-dihydroxybenzidine,  DHB ) 0.43 g, 파이로멜리틱 디안하이드라이드(PMDA)0.44 g을 S-RGO 분산액에 부가하여 혼합물을 얻고 이 혼합물을 24시간 동안 교반하여 깨끗하고 점성을 갖는 용액을 얻었다.
Figure PCTKR2019015263-appb-I000006
Figure PCTKR2019015263-appb-I000007
상기 용액을 실리콘 기판에 캐스팅하고 이를 90 ℃에서 2시간, 150 ℃에서 1시간, 200 ℃에서 30분, 250 ℃에서 1시간, 280 ℃에서 30 분 동안 열처리하여 복합체막을 얻었다. 증류수를 이용하여 실리콘 기판으로부터 막을 제거하고 이를 컨벡션 오븐(convection oven)에서 1시간 동안 열처리하여 하기 화학식 3으로 표시되는 폴리이미드와 황이 도핑된 환원 그래핀 옥사이드를 함유한 폴리이미드 나노복합체 및 폴리이미드 나노복합체막을 제조하였다. 이러한 나노복합체에서 S-RGO의 함량은 나노복합체 100 중량부를 기준으로 하여 약 0.5 중량부이다.
<화학식 3>
Figure PCTKR2019015263-appb-I000008
화학식 3중 n은 약 100이다.
실시예 4: 폴리이미드 나노복합체 및 폴리이미드 나노복합체막의 제조
나노복합체에서 S-RGO의 함량은 나노복합체 100 중량부를 기준으로 하여 약 1 중량부로 변화되도록 S-RGO의 함량이 변화된 것을 제외하고는, 실시예 5와 동일하게 실시하여 폴리이미드 나노복합체 및 폴리이미드 나노복합체막을 얻었다.
실시예 5: 폴리이미드 나노복합체 및 폴리이미드 나노복합체막의 제조
나노복합체에서 S-RGO의 함량은 나노복합체 100 중량부를 기준으로 하여 약 3 중량부로 변화되도록 S-RGO의 함량이 변화된 것을 제외하고는, 실시예 5와 동일하게 실시하여 폴리이미드 나노복합체 및 폴리이미드 나노복합체막을 얻었다.
실시예 6: 폴리이미드 나노복합체 및 폴리이미드 나노복합체막의 제조
나노복합체에서 S-RGO의 함량은 나노복합체 100 중량부를 기준으로 하여 약 1 5 중량부로 변화되도록 S-RGO의 함량이 변화된 것을 제외하고는, 실시예 5와 동일하게 실시하여 폴리이미드 나노복합체 및 폴리이미드 나노복합체막을 얻었다.
비교예 1: 히드라진 하이드레이트(Hydrazine hydrate)를 이용한 환원 그래핀 옥사이드(rGO)의 제조
본 발명의 비교예로서 히드라진 하이드레이트(Hydrazine hydrate)로 환원시킨 그래핀 옥사이드를 하기의 방법으로 제조하였다.
상기 실시예 1과 동일한 과정으로 제조한 그래핀 옥사이드 1g을 증류수 500ml에 넣은 후 1시간 초음파 처리를 시켜주었다. 상기 혼합액에 히드라진 하이드레이트(Hydrazine hydrate) 30ml를 넣어준 후 후 환류 냉각기를 설치하고 Oil bath의 온도를 100℃로 설정하고 24시간 자석교반 시켜주었다. 반응 종결 후 필터와 메탄올, 증류수로 세척을 하였다. 그 후 70℃ 진공오븐에서 24시간 건조를 시켰다.
본 발명의 Sulfur-rGO의 환원된 정도 및 도핑유무를 확인하기 위하여 Brodie's 방법으로 산화시킨 그래핀 옥사이드(GO), 황 도핑 환원 그래핀 옥사이드(Sulfur-rGO), 하이드라진 하이드레이트 환원 그래핀 옥사이드(Hydrazine-rGO)로 각각 하기의 실험을 진행하였다.
비교예 2: 폴리이미드 및 폴리이미드막의 제조
DHB 0.43 g, PMDA 0.44 g및 N-메틸-2-피롤리돈 1.04 g을 첨가한 후, 질소 분위기 하에서 24시간 상온 반응하여 폴리아믹산 용액을 제조하였다. TKDRL 폴리아믹산 용액을 기판에 캐스팅 한 후, 90 ℃에서 2시간, 150 ℃에서 1시간, 200 ℃에서 30분, 250 ℃에서 1시간, 280 ℃에서 30 분 동안 단계적인 열처리를 하여 두께가 약 10 mm인 폴리이미드막을 얻었다.
평가예 1: 열중량 분석 ( Thermogravimetric analysis: TGA )
실시예 1에 따라 얻은 그래핀 옥사이드(GO), 황이 도핑된 환원 그래핀 옥사이드(Sulfur-Rgo), 비교예 1에 따라 얻은 히드라진을 이용하여 얻은 환원 그래핀 옥사이드(Hydrazine-rGO)에 대한 열중량 분석결과를 도 1에 나타내었다. 열중량 분석은 질소 분위기 하에서 측정이 진행되었고, 열중량 분석시 TA (SDT: TGA+DSC) 2010 TGA/DSC1 (METTLER TOLEDO사) (온도 범위: 상온 내지 1600℃)를 이용하였다.
도 1을 참조하여, 황 분말(Sulfur powder)는 350℃ 부근에서 전부 제거 됨을 확인 할 수 있었다. GO는 약 150℃ 부근에서 산소를 포함한 기능기들이 제거되면서 많은 중량 감소를 보였다. 환원 그래핀 옥사이드(r-GO)는 산소를 포함한 기능기들이 제거됐으므로 GO에 비해 열중량 감소가 적은 것을 확인 할 수 있었다. Hydrazine-rGO와 Sulfur-rGO의 데이터를 비교해보면 800℃에서 Sulfur-rGO는 85.3%, Hydrazine-rGO는 79.3%가 남았으며 이를 통하여 Sulfur-rGO가 열 안정성이 높아졌음을 확인 할 수 있다. 이는 또한 도핑된 황(Sulfur)가 그래핀 표면과의 화학적 결합을 하며 열에 의해 쉽게 분해되지 않음으로 해석된다.
또한 실시예 1에 따라 얻은 황이 도핑된 환원 그래핀 옥사이드(Sulfur-Rgo)와 비교예 1에 따라 얻은 히드라진을 이용하여 얻은 환원 그래핀 옥사이드(Hydrazine-rGO)의 중량이 각각 10 %일 때의 열분해 온도를 조사한 결과, 실시예 1의 황이 도핑된 환원 그래핀 옥사이드는 약 750 ℃이고, 비교예 1에 따라 얻은 히드라진을 이용하여 얻은 환원 그래핀 옥사이드는 약 350 ℃로 열적 특성이 더 우수하다는 것을 알 수 있었다.
평가예 2: X-선 회절 분석법 (X-ray diffraction: XRD)
실시예 1에 따라 얻은 그래핀 옥사이드(GO), 황이 도핑된 환원 그래핀 옥사이드(Sulfur-Rgo), 비교예 1에 따라 얻은 히드라진을 이용하여 얻은 환원 그래핀 옥사이드(Hydrazine-rGO)에 대한 X-선 회절 분석결과를 도 2 및 표 1에 나타내었다. X선 회절 분석은 Rigaku사의 SmartLab을 이용하였다.
하기 표 1에서 rGO간의 층간거리는 2θ가 24.5도인 영역의 피크를 이용하여 얻은 값이다.
도 2를 참조하여, 흑연의 2θ값은 대략 26.4°이다. 산화-환원을 거치면서 산소를 포함한 기능기들에 의해 성질이 변하는 GO는 2θ 값이 11.9°이 측정되었다. Sulfur-rGO는 2θ 값이 24.5, Hydrazine-rGO는 2θ 값이 24.7로 측정이 되었다.
구분 rGO간의 층간거리(d002)(Å)
실시예 1의 Sulfur-rGO 3.63
비교예 1의 Hydrazine-rGO 3.6
GO 7.44
표 1에 나타난 바와 같이 Sulfur-rGO의 주피크의 반치폭은 Hydrazine-rGO의 주피크의 반치폭에 비하여 작아 Sulfur-rGO의 피크가 샤프함을 보이는데 이는 도핑된 황(Sulfur)의 영향으로 결정성을 더 커지기 때문이다.또한 Sulfur-rGO의 황(Sulfur)의 문헌상 XRD peak는 23°부근에서 강하게 나타내는데, 이 영향으로 Hydrazine-rGO에 비해 더 작은 2θ값을 가지는 것으로 해석된다. 위와 같은 결과를 토대로 Sulfur-rGO가 Hydrazine-rGO과 비교하여 유사한 수준의 환원 정도를 보였음을 알 수 있었다. 또한 rGO간의 층간거리 특성으로부터 실시예 1에 따라 얻은 황 도핑 환원 그래핀 옥사이드는 비교예 1의 Hydrazine-Rgo에 비하여 층간거리가 더 증가되었는데 이러한 결과로부터 많은 산소 함유 그룹들이 층간 공간에 인터칼레이션된 것을 알 수 있었다.
평가예 3: 라만 분석 (Raman spectroscopy)
실시예 1에 따라 얻은 그래핀 옥사이드(GO), 황이 도핑된 환원 그래핀 옥사이드(Sulfur-rGO), 비교예 1에 따라 얻은 히드라진을 이용하여 얻은 환원 그래핀 옥사이드(Hydrazine-rGO)에 대한 라만 분광법 분석결과를 도 3 및 하기 표 2에 나타내었다. 라만 분석은 Raman 2010 Spectra (NT-MDT Development Co.) (Laser system: 473, 633, 785 nm, Lowest Raman shift: ~ 50 cm-1, 공간해상도(Spatial resolution): 약 500 nm)을 이용하여 실시하였다.
그래핀은 라만분석스펙트럼에서 1350cm-1, 1580cm-1, 2700 cm-1에서 피크를 나타나는데 이 피크는 그래핀의 두께, 결정성 및 전하 도핑 상태에 대한 정보를준다. 1580cm-1에서 나타나는 피크는 G 모드라는 피크로서 이는 탄소-탄소 결합의 스트레칭에 해당하는 진동모드에서 기인하며 G-모드의 에너지는 그래핀에 도핑된 잉여 전하의 밀도에 결정된다. 그리고 2700cm-1에서 나타나는 피크는 2D-모드라는 피크로서 그래핀의 두께를 평가할 때 유용하다. 상기 1350cm-1에서 나오는 피크는 D 모드라는 피크로서 SP2 결정 구조에 결함이 있을 때 나타나는 피크이다. 그리고 상기 D/G 세기비는 그래핀의 결정의 무질서도에 대한 정보를 준다.
구분 D/G 세기비(IG/ID 비)
실시예 1의 GO 0.64
실시예 1의 Sulfur-rGO 1.03
비교예 1의 Hydrazine-rGO 1.31
도 3 및 표 2로부터 상기 그래핀 옥사이드들의 D, G 피크를 확인 할 수 있다. D 피크는 결정구조에 결함을 나타내는 피크인데, 보통 환원 그래핀 옥사이드는 그래핀 옥사이드에서 환원이 되면서 sp2 결정구조의 변화에 따라 IG/ID 비율이 변화하게 된다. 이를 통하여 용융 황을 이용하여 그래핀 옥사이드를 환원하여 얻은 Sulfur-rGO는 히드라진을 이용하여 그래핀 옥사이드를 환원하여 얻은 Hydrazine-rGO와 비교하여 그래핀의 결정성이 더 높고 결함이 작다는 것을 알 수 있었다.
평가예: 4: 분체저항 측정기(Powder resistivity measurement)]
실시예 1에 따라 얻은 그래핀 옥사이드(GO), 황이 도핑된 환원 그래핀 옥사이드(Sulfur-rGO), 비교예 1에 따라 얻은 히드라진을 이용하여 얻은 환원 그래핀 옥사이드(Hydrazine-rGO)에 대한 분체 저항 측정장비로 전기전도도를 측정한 결과를 도 4에 나타내었다.
GO는 표면의 산소를 포함한 기능기 때문에 전기전도도가 매우 낮게 측정되는 것을 확인 할 수 있다. 환원 그래핀 옥사이드는 표면의 기능기들이 제거가 되면서 전기도도가 상승되는데, Hydrazine-rGO는 167 S/cm, Sulfur-rGO는 179 S/cm의 전도도가 측정이 되었다. 데이터를 바탕으로 Sulfur-rGO도 Hydarzine-rGO와 마찬가지로 환원 과정을 통하여 SP3 결합 구조를 가지고 있던 그래핀 표면의 탄소원자들이 SP2 공유 결합을 이룬다는 것을 확인 할 수 있었고 또한 전기 전도도가 더 높게 나온다는 것을 확인 할 수 있었다.
평가예 5: 투과 전자 현미경(Transmission electron microscopy: TEM)]
실시예 1에 따라 얻은 황이 도핑된 환원 그래핀 옥사이드(Sulfur-rGO)에 대한 투과 전자 현미경 촬영 이미지와 EDS 맵핑 결과를 각각 도 5a 부터 5e까지 나타내었다. 투과 전자 현미경은 FEI 사의 Titan cubed 60-300을 이용하였다.
도 5a는 Sulfur-rGO의 그래핀 시트 형태의 이미지를 나타낸 것이고, 황(Sulfur) 도핑 여부를 확인하기 위하여 도 5c의 범위에서 EDS 맵핑 분석을 하였다. 도 5b는 탄소(C), 산소(O), 황(S)의 함량에 대한 그래프이고, 도 5d와 5e는 각각 황(S), 탄소(C) 가 분포되어있는 모습을 나타낸 것이다.
이를 통하여 환원 그래핀 옥사이드 시트 표면 전반에 걸쳐서 황(Sulfur)이 도핑되었음을 확인할 수 있다.
평가예 6: X-선 광전자 분광법 (X-ray photoelectron spectroscopy: XPS)]
실시예 1에 따라 얻은 황이 도핑된 환원 그래핀 옥사이드(Sulfur-rGO)에 대한 X-선 광전자 분광법 분석 결과를 도 6과 도 7에 나타내었다. X-선 광전자 분광 분석기는 Rigaku사의 SmartLab을 이용하였다.
도 6에는 Sulfur-rGO의 C1s에 해당하는 광전자 분광 분석 그래프를 나타내었고 도 7에는 Sulfur-rGO의 S2p에 해당하는 광전자 분광 분석 그래프를 나타낸 것이다.
도 6을 참조하여, Sulfur-rGO는 C-O, C=O 결합에 해당하는 피크가 그래핀 옥사이드에 비해 현저하게 떨어지는 것으로 보아 환원이 되었다는 것을 알 수 있었다. 그리고 도 7을 통하여 C-S 결합에 해당하는 163.6 ev, 165.9 ev의 피크가 강하게 나온 것으로 보아 황(Sulfur)이 도핑이 되었음을 확인 할 수 있었다. 또한 술폭시드(Sulfoxide)에 해당하는 피크가 결합에너지 168.5 eV에서 나타났다. 이러한 X-선 광전자 분광법을 통하여 본 발명에서 그래핀 옥사이드가 환원이 됨과 동시에 도핑이 되었음을 확인 할 수 있었다.
평가예 7: 산소투과도(oxygen transmission rate (OTR)
실시예 3-6에 따라 얻은 폴리이미드 나노복합체막 및 비교예 2의 폴리이미드막에 대하여 OX-TRAN 2/21(MOCON instrument)를 이용하여 산소투과도를 23℃에서 측정하였다. 산소투과도 측정 결과를 도 8a 내지 도 8d 및 하기 표 3에 나타내었다.
도 8a는 실시예 3-6에 따라 얻은 폴리이미드 나노복합체막 및 비교예 2의 폴리이미드막의 투과도(Permeability)를 나타낸 것이다. 도 8a에서 S-RG0 0.5wt%, S-RG0 1wt%, S-RG0 3wt%, S-RG0 5wt% 및 Pure PI는 각각 실시예 3, 실시예 4, 실시예 5, 실시예 6 및 비교예 2에 대한 것을 나타낸다.
도 8b는 실시예 3의 폴리이미드 나노복합체의 프랙처 표면(Fracture surface)을 나타낸 것이고, 도 8c는 실시예 6의 폴리이미드 나노복합체의 3D X-ray CT 토모그래피 이미지(tomography image)를 나타낸 것이다.
구분 S-RGO의 함량(중량부) 산소투과도 cm2/(m2 ·24hr·atm)
실시예 3 0.5 187
실시예 4 1 191
실시예 5 3 70.2
실시예 6 5 50.3
비교예 2 0 1509.9
표 3을 참조하여 실시예 6의 폴리이미드 나노복합체막은 비교예 2의 폴리이미드막과 비교하여 산소투과도가 크게 감소된 결과를 나타냈다. 이로부터 실시예 6의 폴리이미드 나노복합체막은 가스 확산 배리어 특성을 갖고 있어 가스 투과도가 감소된다는 것을 알 수 있었다. 도 8b 및 도 8c로부터 폴리이미드 나노복합체 내에 Sulfur-rGO가 균일한 분산상을 가짐을 알 수 있었다.
앞에서 설명된 본 발명의 실시예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명의 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서, 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.

Claims (19)

  1. 황과 환원 그래핀 옥사이드를 포함하는 황이 도핑된 환원 그래핀 옥사이드이며,
    상기 황이 도핑된 환원 그래핀 옥사이드의 라만 분석에 의하여 구해지는 D피크/G피크 세기비(intensity ratio)가 1.03 내지 1.30인 황이 도핑된 환원 그래핀 옥사이드.
  2. 제1항에 있어서,
    상기 황의 함량은 황이 도핑된 환원 그래핀 옥사이드의 충중량 100 중량부를 기준으로 하여 1 내지 5 중량부인 황이 도핑된 환원 그래핀 옥사이드.
  3. 제1항에 있어서,
    상기 황이 도핑된 환원 그래핀 옥사이드의 열중량 분석에 의하여 구해지는 800℃에서 열처리한 후의 탄소의 함량은 80 내지 88%인 황이 도핑된 환원 그래핀 옥사이드.
  4. 제1항에 있어서,
    상기 황이 도핑된 환원 그래핀 옥사이드의 열중량 분석에 의하여 구해지는 10% 중량 감소온도(T10%) 가 700 내지 750 ℃인 황이 도핑된 환원 그래핀 옥사이드.
  5. 제1항에 있어서,
    상기 황이 도핑된 환원 그래핀 옥사이드의 Cu-Kα를 사용한 X선 회절(XRD) 분석 결과 그래프에서 20°<2θ<30°에서의 최대 피크의 반치폭(Full width at Half-maximum; FWHM)은 7°내지 12°이고, 황이 도핑된 환원 그래핀 옥사이드간의 층간거리(d002)는 3.1 내지 3.9 Å인 황이 도핑된 환원 그래핀 옥사이드.
  6. 제1항에 있어서,
    상기 황이 도핑된 환원 그래핀 옥사이드의 Cu-Kα를 사용한 X선 회절(XRD) 분석 결과 황이 도핑된 환원 그래핀 옥사이드간의 층간거리(d002)는 3.1 내지 3.9 Å인 황이 도핑된 환원 그래핀 옥사이드.
  7. 제1항에 있어서,
    상기 황이 도핑된 환원 그래핀 옥사이드의 X선 광전자분석에서 결합에너지 163.6 ev, 165.9 ev 및 168.5 eV 영역에서 주피크(main peak)와 부피크가 나타나는 황이 도핑된 환원 그래핀 옥사이드.
  8. 제1항에 있어서,
    상기 황이 도핑된 환원 그래핀 옥사이드는 탄소나노튜브, 카본시트, 흑연 및 탄소섬유 중에서 선택된 하나 이상을 더 포함하는 황이 도핑된 환원 그래핀 옥사이드.
  9. 그래핀 옥사이드에 황을 부가하여 황과 그래핀 옥사이드의 혼합물을 제조하는 단계;
    상기 혼합물을 열처리하여 황(sulfur)을 용융황(molten sulfure)으로 전환한 다음, 반응 혼합물을 교반하는 단계; 및
    상기 교반된 결과물로부터 황을 제거하는 단계를 포함하여 제1항 내지 제8항중 어느 한 항의 황이 도핑된 환원 그래핀 옥사이드를 제조하는 황이 도핑된 환원그래핀 옥사이드의 제조방법.
  10. 제9항에 있어서,
    상기 황을 제거하는 단계가,
    상기 교반된 결과물에 황 용해성 용매(sulfur soluble solvent)를 부가하여 황을 용해하여 황 용액을 얻는 단계; 및
    상기 황 용액으로부터 황 용해성 용매를 제거하거나 또는 상기 황 용액을 재결정하여 황을 제거하고, 제거된 황을 회수하는 단계를 포함하는 황이 도핑된 환원 그래핀 옥사이드의 제조방법.
  11. 제10항에 있어서,
    상기 황 용해성 용매가 테트라하이드로퓨란(THF), 메틸렌 클로라이드, 디메틸디설파이드(CS2), 설포란(Sulfurane), 클로로포름, 톨루엔, 자일렌, 아세토니트릴, 디클로로메탄, N-메틸피롤리돈(NMP), 에틸 아세테이트, 디메틸에테르(DME), 트리클로로에틸렌, 폴리에틸렌글리콜, 이소프로필 케톤, 아세토니트릴, 디클로로에탄, 디메틸아세트아미드, 디메틸포름아미드, 쿠멘(cumene), 벤젠, p-클로로톨루엔, 1,3-메시틸렌, 스티렌, 클로로벤젠, 알파메틸스티렌, 에틸벤젠, 디에탄올아민, 에틸아민, 디에틸아민, 메틸아민, 에틸렌디아민, 디에틸렌 트리아민, 프로필아민,에탄올아민, 이소프로필아민, 트리에틸렌테트라아민, 클로로아닐린, 트리에틸아민, 트리에탄올아민, 디메톡시에탄, 디메톡시메탄, 디옥산 중에서 선택된 하나 이상인 황이 도핑된 환원그래핀 옥사이드의 제조방법.
  12. 제9항에 있어서,
    상기 황은,
    황이 도핑된 환원그래핀 옥사이드의 제조시 남은 황을 제거 및 회수하여 얻은 재활용 황인 황이 도핑된 환원그래핀 옥사이드의 제조방법.
  13. 제9항에 있어서,
    상기 그래핀 옥사이드와 황의 혼합이 120℃ 내지 250℃에서 유기용매 없이 실시되는 황이 도핑된 환원그래핀 옥사이드의 제조방법.
  14. 제9항에 있어서,
    상기 그래핀 옥사이드가 화학적 박리법을 통하여 얻은 그래핀 옥사이드인 황이 도핑된 환원그래핀 옥사이드의 제조방법.
  15. 제9항에 있어서,
    상기 열처리가 100 내지 300℃에서 실시하는 황이 도핑된 환원그래핀 옥사이드의 제조방법.
  16. 제9항에 있어서,
    상기 황을 제거하는 단계가 초음파 처리와, 메틸렌클로라이드, 테트라하이드로퓨란 중에서 선택된 하나 이상의 용매를 이용한 세척과정을 실시하는 황이 도핑된 환원그래핀 옥사이드의 제조방법.
  17. 제9항에 있어서,
    상기 황과 그래핀 옥사이드의 혼합물의 제조단계에서 그래핀 옥사이드와 황(Sulfur)의 혼합비는 1:1 내지 1: 10 중량비인 황이 도핑된 환원 그래핀 옥사이드의 제조방법.
  18. 제1항 내지 제8항중 어느 한 항에 따른 황이 도핑된 환원 그래핀 옥사이드와 폴리이미드를 포함하는 폴리이미드 나노복합체
  19. 제18항에 있어서,
    상기 황이 도핑된 그래핀 옥사이드의 함량은 폴리이미드 나노복합체 총중량 100 중량부를 기준으로 하여 1 내지 5 중량부인 폴리이미드 나노복합체.
PCT/KR2019/015263 2018-11-23 2019-11-11 황 도핑 환원 그래핀 옥사이드, 그 제조방법 및 황 도핑 환원 그래핀 옥사이드를 함유한 폴리이미드 나노복합체 WO2020105926A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0146763 2018-11-23
KR1020180146763A KR102182065B1 (ko) 2018-11-23 2018-11-23 황 도핑 환원 그래핀 옥사이드, 그 제조방법 및 황 도핑 환원 그래핀 옥사이드를 함유한 폴리이미드 나노복합체

Publications (1)

Publication Number Publication Date
WO2020105926A1 true WO2020105926A1 (ko) 2020-05-28

Family

ID=70773891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015263 WO2020105926A1 (ko) 2018-11-23 2019-11-11 황 도핑 환원 그래핀 옥사이드, 그 제조방법 및 황 도핑 환원 그래핀 옥사이드를 함유한 폴리이미드 나노복합체

Country Status (2)

Country Link
KR (1) KR102182065B1 (ko)
WO (1) WO2020105926A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112875751A (zh) * 2020-12-29 2021-06-01 内蒙古工业大学 硫掺杂三氧化二铋的制备方法、负极材料和超级电容器
CN113185834A (zh) * 2021-04-22 2021-07-30 陕西工业职业技术学院 一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法
CN114797897A (zh) * 2022-04-08 2022-07-29 浙江大学 一种硫掺杂钴单原子碳材料及其合成方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100117570A (ko) * 2008-01-03 2010-11-03 내셔널 유니버시티 오브 싱가포르 기능성화된 그래핀 옥사이드
KR20140062202A (ko) * 2012-11-14 2014-05-23 인하대학교 산학협력단 리튬이온전지 음극용 황 도핑한 그래핀 나노시트
KR20160116300A (ko) * 2015-03-27 2016-10-07 재단법인 철원플라즈마 산업기술연구원 열 플라즈마 처리를 이용하는 탄소 소재 기능화 방법, 그 방법을 통해 제조되는 조성물 및 그 조성물을 이용하는 emi 차폐 소재
KR101760321B1 (ko) * 2014-12-29 2017-07-21 성균관대학교산학협력단 이온성 액체를 이용한 도핑된 환원된 그래핀 옥사이드의 제조방법 및 이에 의해 제조되는 도핑된 환원된 그래핀 옥사이드
KR20180050169A (ko) * 2016-11-04 2018-05-14 (주)창성 황원소가 도핑된 환원 그래핀 옥사이드 제조방법 및 이를 사용한 전자파 차폐재 및 그의 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10586979B2 (en) * 2015-11-13 2020-03-10 Robert Bosch Gmbh Sulfur-carbon composite comprising a highly graphitic carbon material for lithium-sulfur batteries and process for preparing the same
WO2017164963A2 (en) * 2016-01-07 2017-09-28 William Marsh Rice University Facile preparation of carbon nanotube hybrid materials by catalyst solutions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100117570A (ko) * 2008-01-03 2010-11-03 내셔널 유니버시티 오브 싱가포르 기능성화된 그래핀 옥사이드
KR20140062202A (ko) * 2012-11-14 2014-05-23 인하대학교 산학협력단 리튬이온전지 음극용 황 도핑한 그래핀 나노시트
KR101760321B1 (ko) * 2014-12-29 2017-07-21 성균관대학교산학협력단 이온성 액체를 이용한 도핑된 환원된 그래핀 옥사이드의 제조방법 및 이에 의해 제조되는 도핑된 환원된 그래핀 옥사이드
KR20160116300A (ko) * 2015-03-27 2016-10-07 재단법인 철원플라즈마 산업기술연구원 열 플라즈마 처리를 이용하는 탄소 소재 기능화 방법, 그 방법을 통해 제조되는 조성물 및 그 조성물을 이용하는 emi 차폐 소재
KR20180050169A (ko) * 2016-11-04 2018-05-14 (주)창성 황원소가 도핑된 환원 그래핀 옥사이드 제조방법 및 이를 사용한 전자파 차폐재 및 그의 제조방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112875751A (zh) * 2020-12-29 2021-06-01 内蒙古工业大学 硫掺杂三氧化二铋的制备方法、负极材料和超级电容器
CN112875751B (zh) * 2020-12-29 2022-09-02 内蒙古工业大学 硫掺杂三氧化二铋的制备方法、负极材料和超级电容器
CN113185834A (zh) * 2021-04-22 2021-07-30 陕西工业职业技术学院 一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法
CN114797897A (zh) * 2022-04-08 2022-07-29 浙江大学 一种硫掺杂钴单原子碳材料及其合成方法和应用

Also Published As

Publication number Publication date
KR102182065B1 (ko) 2020-11-23
KR20200061229A (ko) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2020105926A1 (ko) 황 도핑 환원 그래핀 옥사이드, 그 제조방법 및 황 도핑 환원 그래핀 옥사이드를 함유한 폴리이미드 나노복합체
WO2014003451A1 (en) Polyimide and polyimide film comprising the same
WO2015163595A1 (ko) 층간 자기조립을 이용한 그래핀 기반 나노탄소 섬유 제조 방법
WO2015190645A1 (ko) 물을 분산매로 사용한 폴리이미드의 제조방법 및 물의 회수방법
WO2016195311A2 (ko) 그래핀 분산안정제용 합성수용성고분자, 그 고분자를 포함하는 고안정성 콜로이드 그래핀용액, 그 그래핀용액을 포함하는 그래핀하이드로겔 및 그래핀에어로겔
WO2017146457A2 (ko) 열전환 폴리(벤즈옥사졸-이미드) 공중합체 기반의 초박형 복합막 및 그 제조방법
JP6620805B2 (ja) 剥離層形成用組成物
US10155664B2 (en) Process for synthesizing hybrid bifunctionalized multiwalled carbon nanotubes and applications thereof
JP4324399B2 (ja) グラファイトフィルム及びポリイミドフィルム
JP6790756B2 (ja) ポリイミド、ポリイミド前駆体、及びポリイミドフィルム
WO2016171466A1 (ko) 그래핀 옥사이드 및 그 제조 방법
WO2020009421A1 (ko) 수산화 반응을 이용한 친환경적으로 산화 흑연 및 산화 그래핀을 제조하는 방법
WO2023200191A1 (en) Manufacturing method of polyimide powder and polyimide powder manufactured by the same
Zhi‐Qiang et al. Novel polyimide/graphene oxide composite films with ultralow dielectric constants
WO2022203327A1 (ko) 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트
WO2022114852A1 (ko) 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이로부터 제조된 그라파이트 시트
Bayminov et al. Trends in the synthesis of polyimides and their Nanocomposites
KR101912459B1 (ko) 폴리이미드 나노복합체, 그 제조방법 및 이를 포함하는 복합막
CN112399984A (zh) 包含黏土颗粒和炭黑的聚酰亚胺薄膜及其制备方法
WO2021101323A1 (ko) 열전도 폴리이미드 복합 분말 및 그 제조방법
WO2015046774A1 (ko) 막 증류용 열전환 폴리(벤즈옥사졸-이미드) 공중합체 분리막 및 그 제조방법
WO2020075967A1 (ko) 도데실 설페이트 도핑된 폴리(3,4-에틸렌디옥시티오펜) 필름 및 그 제조방법
WO2010053240A1 (ko) 저온 공정 및 광경화 가능한 유기절연체 및 이를 사용한 유기박막트랜지스터
Yoo et al. Polyimide nanohybrid films with electrochemically functionalized graphene
KR20180046664A (ko) 폴리아민산을 이용한 고순도 그래핀 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887858

Country of ref document: EP

Kind code of ref document: A1