CN113185834A - 一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法 - Google Patents

一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法 Download PDF

Info

Publication number
CN113185834A
CN113185834A CN202110438411.9A CN202110438411A CN113185834A CN 113185834 A CN113185834 A CN 113185834A CN 202110438411 A CN202110438411 A CN 202110438411A CN 113185834 A CN113185834 A CN 113185834A
Authority
CN
China
Prior art keywords
solution
electromagnetic shielding
polymer
preparing
graphene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110438411.9A
Other languages
English (en)
Inventor
雷蕊英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Polytechnic Institute
Original Assignee
Shaanxi Polytechnic Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Polytechnic Institute filed Critical Shaanxi Polytechnic Institute
Priority to CN202110438411.9A priority Critical patent/CN113185834A/zh
Publication of CN113185834A publication Critical patent/CN113185834A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法,具体包括如下过程:具体包括如下步骤:步骤1,制备还原氧化石墨烯;步骤2,将步骤1所得还原氧化石墨烯和碳纳米管分别超声溶解并分散于N,N‑二甲基乙酰胺中,得混合液A;步骤3,根据步骤2所得混合液A制备石墨烯/碳纳米管/聚酰胺酸均相溶液;步骤4,向步骤3所得溶液加入邻苯二甲酸二丁酯,并搅拌均匀,得混合液B;步骤5,取出步骤4中得到的溶液,转移到玻璃皿上,进行干燥、加热,即得。本发明以RGO/CNTs为纳米填料,DBP为致孔剂,使RGO/CNTs在泡壁内部发生取向和富集,降低填充量的同时提高了电磁屏蔽性能。

Description

一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法
技术领域
本发明属于聚合物基碳纳米复合材料技术领域,涉及一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法。
背景技术
电磁屏蔽材料可以用来延长设备的使用寿命,改善电磁兼容性,降低电磁辐射对人体的不良影响,减小对精密仪器的误操作,且对国防信息安全和国家秘密的保护等方面有重要意义。常见的电磁屏蔽材料通常是在橡胶、树脂等基体中分散铁、钴、镍等金属和金属氧化物获得,然而金属具有密度大、耐腐蚀性差、耐疲劳性差、处理成本高和基于反射的电磁干扰屏蔽机制,往往限制了其广泛应用。碳材料具有高导电率、重量轻、化学性能稳定、热性能好、环境友好、易于加工、机械性能优良等特点,目前已成为新型电磁屏蔽材料的理想选择。
目前被广泛用作电磁屏蔽材料的碳材料主要包括石墨烯、炭黑、碳纤维、碳纳米管,碳纤维等,以弹性体材料或者聚合物薄膜为基体复合而成,复合方法主要包括双渗透法、相分离法、原位聚合法、溶液共混法等。分散在基体中的碳材料形成的导电网络为电子提供了传输通道,从而提高了电磁波的衰减。然而,纳米级碳材料在聚合物基体中存在着容易团聚和分散不均匀等问题,成为聚合物基电磁屏蔽材料亟需解决的关键技术。此外,传统的单碳材料的电磁干扰强度较低,填料添加量高,泡孔形貌差,从而限制了其在航空航天、先进信息技术领域(如5G通信技术)的应用。因此,开发简单有效的制备重量轻、填充低、泡孔结构均匀、电磁屏蔽效能好的聚合物基电磁屏蔽材料显得尤为重要。
发明内容
本发明的目的是提供一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法,该方法以还原氧化石墨烯(RGO)/碳纳米管(CNTs)为纳米填料,邻苯二甲酸丁酯(DBP)为致孔剂,采用热致相分离法将微孔结构引入复合材料,使RGO/CNTs在泡壁内部发生取向和富集,降低填充量的同时提高了电磁屏蔽性能。
本发明所采用的技术方案是,一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法,具体包括如下步骤:
步骤1,制备还原氧化石墨烯;
步骤2,将步骤1所得还原氧化石墨烯和碳纳米管分别超声溶解并分散于N,N-二甲基乙酰胺中,得混合液A;
步骤3,根据步骤2所得混合液A制备石墨烯/碳纳米管/聚酰胺酸均相溶液;
步骤4,向步骤3所得溶液加入邻苯二甲酸二丁酯,并搅拌均匀,得混合液B;
步骤5,取出步骤4中得到的溶液,转移到玻璃皿上,进行干燥、加热,即得。
本发明的特点还在于:
步骤2中还原氧化石墨烯和碳纳米管的质量比为2:(1~10)。
步骤3的具体过程为:
将步骤2所得混合液A置于圆底三口烧瓶中,通入氮气保护,加入BTDA,磁力搅拌使BTDA充分溶解,然后加入ODA,继续在室温下磁力搅拌4-6h,得到均匀分散的氧化石墨烯/碳纳米管/聚酰胺酸溶液。
氧化石墨烯/碳纳米管/聚酰胺酸溶液中氧化石墨烯含量为2wt%、碳纳米管含量为1wt%-10wt%,固含量为15wt%。
BTDA和ODA的摩尔比为1:1。
邻苯二甲酸二丁酯的质量分数为均相溶液的18%。
步骤5的具体过程为:
将步骤4所得均相溶液转移到两个玻璃皿上,形成厚度均匀的膜,将膜在80℃-100℃下干燥6-10h,并在室温下用丙酮萃取48h,随后将膜于160-180℃烘箱中加热4-8h后,继续在180℃-200℃的烘箱中加热2-4h,即得。
本发明的有益效果是,本发明以还原氧化石墨烯(RGO)/碳纳米管(CNTs)为纳米填料,以力学性能和热稳定性良好的聚酰亚胺(PI)为基体,邻苯二甲酸丁酯(DBP)为致孔剂,采用热致相分离法将微孔结构引入复合材料,使RGO/CNTs在泡壁内部发生取向和富集,降低填充量的同时提高了电磁屏蔽性能,从而制得一种聚酰亚胺基碳纳米复合微孔电磁屏蔽材料。本发明所采用的制备方法简单有效,操作可控性强,成本较低。所制备碳纳米填料的PI微孔复合材料具有良好的电磁屏蔽性能,同时材料密度较低,满足对轻质高性能电磁屏蔽材料有较高要求的高端领域的应用。
附图说明
图1(a)、(b)是本发明一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法中实施例1-5和对比例1提供的GO和RGO的透射电镜图;
图2是本发明一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法实施例1-5和对比例1中PI基复合微孔薄膜的红外光谱图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明是一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法,具体包括如下步骤:
步骤1,采用改进的Hummers法制备氧化石墨烯(GO),将所得GO置于超声清洗机中超声剥离,透析直到PH值大约为7,水合肼还原得到还原氧化石墨烯(RGO);
低温反应阶段:量取200mL浓硫酸倒入烧杯,烧杯放入冰浴中冷却至0℃,称取鳞片石墨粉和硝酸钠,其质量比为20:7,将原料放入1000mL三口烧瓶中,开启超声,1h以后加入40g KMnO4(~10g/20min),关闭超声并开始搅拌,控制温度3~10℃(最佳温度4℃),反应时间1.5~2h;
中温反应:把烧杯移至水浴锅,开启超声,水浴温度控制在35~40℃反应1~2h;
高温反应:把所得混合液缓慢加入约500mL的低温去离子水中,接着将以上混合液置于90~100℃水浴中反应60min,期间保持适度机械搅拌;高温反应后加入600mL去离子水中止反应,随后加入30mL(30Vol%)的双氧水,待反应约100min后直到没有气体产生为止。配制一种混合酸溶液(H2O:H2O2:H2SO4=1:0.23:0.26),用这种混合酸溶液提纯所得的棕色的GO溶液15次~20次。低速离心洗涤去除过量的酸及副产物,将洗涤后呈中性的氧化石墨分散于蒸馏水中,超声振荡剥离40min,超声结束后。通过高速梯度离心法提取GO水溶液:在2500r·min-1转速下离心30min~40min,上层液即是氧化石墨烯分散液,把获得的氧化石墨配成0.8mg/mL的溶液,向其中加入水合肼(氧化石墨和水合肼的质量配比为1:1),放入100℃的水浴中加热搅拌2~3h后,取出过滤后室温风干8~12h,可得到石墨烯,将其用研钵研磨成粉。
步骤2,将步骤1所得还原氧化石墨烯(RGO)和碳纳米管(CNTs)分别超声溶解和分散于N,N-二甲基乙酰胺(DMAc),其中RGO和CNTs的质量比为2:(1~10)。
步骤3,将步骤2中所得结果置于圆底三口烧瓶中,通入氮气保护,加入3,3’,4,4’--二苯酮四酸二酐(BTDA),磁力搅拌使之充分溶解,然后分批加入4,4’-二氨基二苯醚(ODA),BTDA和ODA的摩尔比为1:1。继续在室温下磁力搅拌4-6h,得到均匀分散的氧化石墨烯含量为2wt%,碳纳米管含量为1wt%-10wt%,固含量15wt%的氧化石墨烯/碳纳米管/聚酰胺酸溶液。
步骤4,向步骤3所得溶液加入邻苯二甲酸二丁酯(DBP),继续搅拌2h~3h,其中DBP的质量分数为均相溶液的18%。
步骤5,将步骤4所得均相溶液转移到两个玻璃皿上,形成一定厚度的薄膜,将薄膜在80℃-100℃下干燥6-10h,并在室温下用丙酮萃取48h,随后将薄膜于160-180℃烘箱中加热4-8h后,继续在180℃-200℃的烘箱中加热2-4h,取出即得到聚酰亚胺基复合微孔薄膜。其泡孔尺寸为0.43-1.03μm,电磁屏蔽效能为7.53-14.43dB。
实施例1
称取0.303g(2wt%)干燥后的还原氧化石墨烯和0.152g(1wt%)碳纳米管,溶于72.3mL DMAc中,超声搅拌1h。再将上述溶液置于圆底三口烧瓶中,通入氮气保护,加入9.66gBTDA(0.03mol),磁力搅拌使之充分溶解,然后分批加入6.12gODA(0.03mol),继续在室温下磁力搅拌4h,然后加入17.4mL DBP,继续磁力搅拌2h,得到均匀分散的氧化石墨烯/碳纳米管/聚酰胺酸溶液。然后将溶液转移到玻璃皿上,将此玻璃皿于80℃下干燥6h;然后室温下在丙酮溶液中萃取48h,随后将薄膜在160℃下连续加热4h,升温至180℃下加热2h,热酰亚胺化后得到石墨烯含量为2wt%,碳纳米管含量为1wt%的聚酰亚胺基石墨烯/碳纳米管复合材料。
实施例2
称取0.31g(2wt%)干燥后的还原氧化石墨烯和0.465g(3wt%)碳纳米管,溶于73.8mL DMAc中,超声搅拌1h。再将上述溶液置于圆底三口烧瓶中,通入氮气保护,加入9.66gBTDA(0.03mol),磁力搅拌使之充分溶解,然后分批加入6.12gODA(0.03mol),继续在室温下磁力搅拌5h,然后加入17.8mL DBP,继续磁力搅拌2h,得到均匀分散的氧化石墨烯/碳纳米管/聚酰胺酸溶液。然后将溶液转移到玻璃皿上,将此玻璃皿于85℃下干燥10h;然后室温下在丙酮溶液中萃取48h,随后将薄膜在165℃下连续加热8h,升温至190℃下加热3h,热酰亚胺化后得到石墨烯含量为2wt%,碳纳米管含量为3wt%的聚酰亚胺基石墨烯/碳纳米管复合材料。
实施例3
称取0.316g(2wt%)干燥后的还原氧化石墨烯和0.791g(5wt%)碳纳米管,溶于75.4mL DMAc中,超声搅拌1h。再将上述溶液置于圆底三口烧瓶中,通入氮气保护,加入9.66gBTDA(0.03mol),磁力搅拌使之充分溶解,然后分批加入6.12gODA(0.03mol),继续在室温下磁力搅拌4h,然后加入18.2mL DBP,继续磁力搅拌2h,得到均匀分散的氧化石墨烯/碳纳米管/聚酰胺酸溶液。然后将溶液转移到玻璃皿上,将此玻璃皿于100℃下干燥6h;然后室温下在丙酮溶液中萃取48h,随后将薄膜在160℃下连续加热6h,升温至180℃下加热4h,热酰亚胺化后得到石墨烯含量为2wt%,碳纳米管含量为5wt%的聚酰亚胺基石墨烯/碳纳米管复合材料。
实施例4:
称取0.323g(2wt%)干燥后的还原氧化石墨烯和1.13g(7wt%)碳纳米管,溶于77mL DMAc中,超声搅拌1h。再将上述溶液置于圆底三口烧瓶中,通入氮气保护,加入9.66gBTDA(0.03mol),磁力搅拌使之充分溶解,然后分批加入6.12gODA(0.03mol),继续在室温下磁力搅拌6h,然后加入18.6mL DBP,继续磁力搅拌6h,得到均匀分散的氧化石墨烯/碳纳米管/聚酰胺酸溶液。然后将溶液转移到玻璃皿上,将此玻璃皿于100℃下干燥10h;然后室温下在丙酮溶液中萃取48h,随后将薄膜在180℃下连续加热8h,升温至200℃下加热2h,热酰亚胺化后得到石墨烯含量为2wt%,碳纳米管含量为7wt%的聚酰亚胺基石墨烯/碳纳米管复合材料。
实施例5
称取0.334g(2wt%)干燥后的氧化石墨烯和1.67g(10wt%)碳纳米管,溶于80mLDMAc中,超声搅拌1h。再将上述溶液置于圆底三口烧瓶中,通入氮气保护,加入9.66gBTDA(0.03mol),磁力搅拌使之充分溶解,然后分批加入6.12gODA(0.03mol),继续在室温下磁力搅拌4h,然后加入19.2mL DBP,继续磁力搅拌2h,得到均匀分散的氧化石墨烯/碳纳米管/聚酰胺酸溶液。然后将溶液转移到玻璃皿上,将此玻璃皿于100℃下干燥8h;然后室温下在丙酮溶液中萃取48h,随后将薄膜在100℃下连续加热4h,升温至200℃下加热2h,热酰亚胺化后得到石墨烯含量为2wt%,碳纳米管含量为10wt%的聚酰亚胺基石墨烯/碳纳米管复合材料。
比较例1
称取0.30g(2wt%)干燥后的氧化石墨烯溶于71.5mL DMAc中,超声搅拌1h。再将上述溶液置于圆底三口烧瓶中,通入氮气保护,加入9.66gBTDA(0.03mol),磁力搅拌使之充分溶解,然后分批加入6.12gODA(0.03mol),继续3h在室温下磁力搅拌4h,然后加入17.2mLDBP,继续磁力搅拌2h,得到均匀分散的氧化石墨烯/聚酰胺酸溶液。然后将溶液转移到玻璃皿上,将此玻璃皿于80℃下干燥8h;然后室温下在丙酮溶液中萃取48h,随后将薄膜在160℃下连续加热6h,升温至180℃下加热2h,热酰亚胺化后得到石墨烯含量为2wt%的聚酰亚胺基石墨烯复合材料。
表1所示为制备聚酰亚胺基石墨烯/碳纳米管复合材料的实施例和比较例,及所制备复合材料的电磁屏蔽效能。
表1
Figure BDA0003033949710000091
由表1可见,实施例1~5同时使用还原氧化石墨烯和碳纳米管作为碳纳米填料,而对比例1使用纯的还原氧化石墨烯作为碳纳米填料。与对比例1相比,添加CNTs之后,其泡孔尺寸随着CNTs含量的增加先增大后减小,复合薄膜的电磁屏蔽效能进一步提高。RGO为二维导电材料,CNTs为一维导电材料,两者形成三维的导电结点,提高复合薄膜的电磁屏蔽效能,因而使得复合薄膜具有良好的导电性,也使得这种轻质的复合微孔薄膜拥有良好的电磁屏蔽效能。
图1是本发明一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法中实施例1-5和对比例1提供的GO和RGO的透射电镜图,图1(a)为GO透射电镜图,图1(b)为RGO透射电镜图。图2是本发明一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法实施例1-5和对比例1中PI基复合微孔薄膜的红外光谱图。

Claims (7)

1.一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法,其特征在于:具体包括如下步骤:
步骤1,制备还原氧化石墨烯;
步骤2,将步骤1所得还原氧化石墨烯和碳纳米管分别超声溶解并分散于N,N-二甲基乙酰胺中,得混合液A;
步骤3,根据步骤2所得混合液A制备石墨烯/碳纳米管/聚酰胺酸均相溶液;
步骤4,向步骤3所得溶液加入邻苯二甲酸二丁酯,并搅拌均匀,得混合液B;
步骤5,取出步骤4中得到的溶液,转移到玻璃皿上,进行干燥、加热,即得。
2.根据权利要求1所述的一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法,其特征在于:所述步骤2中还原氧化石墨烯和碳纳米管的质量比为2:(1~10)。
3.根据权利要求2所述的一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法,其特征在于:所述步骤3的具体过程为:
将步骤2所得混合液A置于圆底三口烧瓶中,通入氮气保护,加入BTDA,磁力搅拌使BTDA充分溶解,然后加入ODA,继续在室温下磁力搅拌4-6h,得到均匀分散的氧化石墨烯/碳纳米管/聚酰胺酸溶液。
4.根据权利要求3所述的一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法,其特征在于:所述氧化石墨烯/碳纳米管/聚酰胺酸溶液中氧化石墨烯含量为2wt%、碳纳米管含量为1wt%-10wt%,固含量为15wt%。
5.根据权利要求3所述的一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法,其特征在于:所述BTDA和ODA的摩尔比为1:1。
6.根据权利要求3所述的一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法,其特征在于:所述邻苯二甲酸二丁酯的质量分数为均相溶液的18%。
7.根据权利要求3所述的一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法,其特征在于:所述步骤5的具体过程为:
将步骤4所得均相溶液转移到两个玻璃皿上,形成厚度均匀的膜,将膜在80℃-100℃下干燥6-10h,并在室温下用丙酮萃取48h,随后将膜于160-180℃烘箱中加热4-8h后,继续在180℃-200℃的烘箱中加热2-4h,即得。
CN202110438411.9A 2021-04-22 2021-04-22 一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法 Pending CN113185834A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110438411.9A CN113185834A (zh) 2021-04-22 2021-04-22 一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110438411.9A CN113185834A (zh) 2021-04-22 2021-04-22 一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法

Publications (1)

Publication Number Publication Date
CN113185834A true CN113185834A (zh) 2021-07-30

Family

ID=76978166

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110438411.9A Pending CN113185834A (zh) 2021-04-22 2021-04-22 一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法

Country Status (1)

Country Link
CN (1) CN113185834A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113736130A (zh) * 2021-09-01 2021-12-03 大同共聚(西安)科技有限公司 一种多层孔状聚酰亚胺复合薄膜及其制备方法
CN114804078A (zh) * 2022-03-18 2022-07-29 安徽建筑大学 一种聚双环戊二烯基碳纳米管/石墨烯纳米片气凝胶阻燃电磁屏蔽复合材料及其制备方法
WO2024157378A1 (ja) * 2023-01-25 2024-08-02 住友電気工業株式会社 樹脂組成物、絶縁電線および絶縁電線の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110172175A (zh) * 2019-05-28 2019-08-27 哈尔滨工程大学 一种多孔聚酰亚胺导电复合材料的制备方法
CN110550956A (zh) * 2019-09-25 2019-12-10 深圳烯创先进材料研究院有限公司 基于石墨烯聚酰亚胺复合海绵前驱体导热薄膜的制备方法
WO2020105926A1 (ko) * 2018-11-23 2020-05-28 한국과학기술연구원 황 도핑 환원 그래핀 옥사이드, 그 제조방법 및 황 도핑 환원 그래핀 옥사이드를 함유한 폴리이미드 나노복합체

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105926A1 (ko) * 2018-11-23 2020-05-28 한국과학기술연구원 황 도핑 환원 그래핀 옥사이드, 그 제조방법 및 황 도핑 환원 그래핀 옥사이드를 함유한 폴리이미드 나노복합체
CN110172175A (zh) * 2019-05-28 2019-08-27 哈尔滨工程大学 一种多孔聚酰亚胺导电复合材料的制备方法
CN110550956A (zh) * 2019-09-25 2019-12-10 深圳烯创先进材料研究院有限公司 基于石墨烯聚酰亚胺复合海绵前驱体导热薄膜的制备方法
AU2020102143A4 (en) * 2019-09-25 2020-10-15 Shenzhen Strong Advanced Materials Research Institute Co., Ltd Preparation method of graphene polyimide composite sponge precursor-based thermal-conductive film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113736130A (zh) * 2021-09-01 2021-12-03 大同共聚(西安)科技有限公司 一种多层孔状聚酰亚胺复合薄膜及其制备方法
CN114804078A (zh) * 2022-03-18 2022-07-29 安徽建筑大学 一种聚双环戊二烯基碳纳米管/石墨烯纳米片气凝胶阻燃电磁屏蔽复合材料及其制备方法
CN114804078B (zh) * 2022-03-18 2023-07-04 安徽建筑大学 一种聚双环戊二烯基碳纳米管/石墨烯纳米片气凝胶阻燃电磁屏蔽复合材料及其制备方法
WO2024157378A1 (ja) * 2023-01-25 2024-08-02 住友電気工業株式会社 樹脂組成物、絶縁電線および絶縁電線の製造方法

Similar Documents

Publication Publication Date Title
CN113185834A (zh) 一种聚合物基碳纳米复合微孔电磁屏蔽材料的制备方法
Wang et al. Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption
CN102875973B (zh) 一种改性碳纳米管/热固性树脂复合材料及其制备方法
CN112852076A (zh) 一种石墨烯改性聚合物复合材料的制备方法
CN101955631B (zh) 聚苯胺改性多壁碳纳米管/环氧树脂复合材料的制备方法
CN111777841B (zh) 一种基于片层状各向异性的石墨烯/环氧树脂复合材料及其制备方法
CN113956539B (zh) 一种改性六方氮化硼粉体的生产工艺及其应用
CN110204866B (zh) 具有超材料性能石墨稀泡沫/环氧树脂复合材料制备方法
CN111218090A (zh) 一种各向异性的改性石墨烯环氧树脂复合材料的制备方法
CN113604046A (zh) 一种氮化硼/碳纳米管/聚酰亚胺复合材料的制备方法
CN111285344B (zh) 一种磁性微孔碳复合薄膜及其制备方法
CN113461364A (zh) 一种二氧化硅纳米纤维/聚酰亚胺复合气凝胶及其制备方法和应用
CN104788676A (zh) 低介电常数聚酰亚胺/多层氧化石墨烯复合薄膜的制备方法
CN113480833A (zh) 一种石墨烯/螺旋碳纤维/环氧树脂复合材料的制备方法
Peng et al. Fabrication of low dielectric constant fluorinated poly (arylene ether nitrile) composites by cross-linking with metal-organic frameworks
CN111793363B (zh) 一种年轮状石墨烯有机硅树脂仿生复合材料及其制备方法和应用
CN115594943B (zh) 一种改性碳纳米管阻燃增强环氧树脂及其制备方法
CN110591452A (zh) 一种石墨烯导电印刷油墨的制备方法
CN110963491A (zh) 一种石墨烯前驱体及其制备方法和应用
CN115785665A (zh) 一种高强度MXene基电磁屏蔽复合薄膜及其制备方法
CN112940457B (zh) 一种阻燃型环氧基电磁屏蔽材料及制备方法
CN113604047A (zh) 一种氮化硼氧化石墨烯聚酰亚胺复合材料的制备方法
CN108456421A (zh) 一种聚酰亚胺/改性氧化石墨烯复合材料的制备方法
CN113387348B (zh) 一种利用复合离子液体制备石墨烯的方法
CN114133735A (zh) 一种石墨烯-pi薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210730

RJ01 Rejection of invention patent application after publication