WO2009089754A1 - Procédé de préparation d'une couche d'absorption de la lumière d'une pile solaire à film de cuivre-indium-gallium-soufre-sélénium - Google Patents

Procédé de préparation d'une couche d'absorption de la lumière d'une pile solaire à film de cuivre-indium-gallium-soufre-sélénium Download PDF

Info

Publication number
WO2009089754A1
WO2009089754A1 PCT/CN2008/073805 CN2008073805W WO2009089754A1 WO 2009089754 A1 WO2009089754 A1 WO 2009089754A1 CN 2008073805 W CN2008073805 W CN 2008073805W WO 2009089754 A1 WO2009089754 A1 WO 2009089754A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
gallium
selenium
sulfur
indium
Prior art date
Application number
PCT/CN2008/073805
Other languages
English (en)
French (fr)
Inventor
Fuqiang Huang
Yaoming Wang
Original Assignee
Shanghai Institute Of Ceramics, Chinese Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute Of Ceramics, Chinese Academy Of Sciences filed Critical Shanghai Institute Of Ceramics, Chinese Academy Of Sciences
Priority to JP2010540020A priority Critical patent/JP5646342B2/ja
Priority to EP08870889.6A priority patent/EP2234168A4/en
Priority to BRPI0821501A priority patent/BRPI0821501B8/pt
Priority to CN2008801240397A priority patent/CN101960610B/zh
Publication of WO2009089754A1 publication Critical patent/WO2009089754A1/zh
Priority to US12/826,008 priority patent/US9735297B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Definitions

  • the invention mainly relates to a preparation method of a copper indium gallium sulphide selenide thin film solar cell light absorbing layer. It belongs to the solar cell energy field. Background technique
  • Solar energy and the environment are two major strategic issues for the sustainable development of human society.
  • the development and utilization of clean renewable energy is becoming more and more important and urgent.
  • Solar energy is a clean, abundant, and geographically-restricted renewable energy source.
  • the effective development and utilization of solar energy is of great significance.
  • Solar cells are one of the main forms of efficient use of solar energy by humans. Copper indium gallium sulphide selenide thin film solar cells are the most promising solar cells of the new generation. It has the advantages of low cost, high efficiency, long life, good low light performance and strong radiation resistance.
  • the preparation methods of the light absorption layer of the copper indium gallium sulphide selenide thin film solar cell can be divided into two categories:
  • the first type is a high vacuum gas phase method, such as thermal evaporation, magnetron sputtering and molecular beam epitaxy.
  • the small-area copper indium gallium sulfide selenium film prepared by such a method has good quality, and the corresponding photoelectric conversion efficiency of the battery is high.
  • 5% ⁇ In the United States Renewable Energy Laboratory (NREL) using a three-dimensional co-evaporation method of the effective area of 0. 405cm 2 of copper indium gallium selenide thin film solar cells, the photoelectric conversion efficiency of up to 19.5%.
  • NREL United States Renewable Energy Laboratory
  • the second type is the non-vacuum liquid phase method.
  • the non-vacuum liquid phase method for preparing the copper indium gallium sulphide selenide thin film solar cell light absorbing layer can greatly reduce the production cost of the battery, and can be conveniently A large area film is prepared.
  • the process of the oxide-based non-vacuum liquid phase method is as follows: 1. preparing a liquid phase precursor containing an oxide fine powder of each element such as copper, indium, gallium, etc. 2. coating the liquid phase precursor through various non-vacuum processes A precursor film is obtained on the substrate, 3. The precursor film is subjected to high temperature reduction and selenized to obtain a copper indium gallium selenide film.
  • An oxide non-vacuum liquid phase method reported by Kapur et al., characterized in that the oxide in the liquid phase precursor is obtained by mechanical ball milling. Micron-sized micropowder (US Pat. No. 6, 127, 202).
  • the submicron mixed oxide fine powder is obtained by pyrolysis of droplets, and then the obtained fine powder is ultrasonically sprayed onto a substrate to obtain a precursor film (US Pat. No. 6). , 268, 014).
  • the oxide-based non-vacuum liquid phase method for preparing a copper indium gallium selenide thin film light absorbing layer has the characteristics of low process cost, but the disadvantages of the process are also obvious.
  • oxide precursor films need to be reduced with hydrogen at high temperatures, which wastes a lot of time and energy.
  • oxide of gallium is very stable, it is difficult to be completely reduced even under very severe conditions, which leads to high impurity content of the target copper indium gallium selenide film, and difficulty in incorporation of gallium.
  • the copper indium gallium alloy film obtained by reduction is also difficult to be completely selenized.
  • the preparation of copper indium gallium sulphide selenide film by spray pyrolysis has the characteristics of low process cost.
  • the flatness of the film is difficult to control, and large area uniformity is difficult to ensure.
  • the copper indium gallium selenide thin film solar cell prepared by spray pyrolysis has low photoelectric conversion efficiency. This method is difficult to prepare a copper indium gallium selenide film with photovoltaic quality, and basically has no potential for industrial production.
  • Bhattacharya Since Bhattacharya was the first to successfully deposit CuInSe 2 thin films by electrochemical methods in 1983, J. Elec trochem. Soc. 130, 2040, 1983), the research on the preparation of copper indium gallium selenide thin films by electrochemical method has been extensively and deeply carried out. . Bhattacharya uses a two-ply method, in which a layer of copper-rich copper indium gallium selenide film is electrochemically deposited, and then indium, gallium, selenium and the like are deposited on the film to adjust the composition of the film to satisfy the solar cell. Claim.
  • the photoelectric conversion efficiency of the copper indium gallium selenide solar cell prepared by the process is 15.4% (Thin Solid Films 361-362, 396, 2000), which is the highest temperature of the copper indium gallium selenide thin film solar cell currently prepared by electrochemical method. effectiveness.
  • the preparation of copper indium gallium selenide film by electrochemical method has the advantages of low cost, high utilization rate of raw materials, and easy deposition of a large area film.
  • the deposition potentials of copper, indium and gallium are difficult to match, the prepared copper indium gallium selenide film is easily rich in copper, and the stoichiometry of the film is difficult to control, and the impurity phase composition is high.
  • the non-oxide based non-vacuum liquid phase process is a new process developed by Nanosolar to prepare a copper indium gallium selenide film (US Pat. No. 7, 306, 823).
  • the process is characterized in that firstly preparing nanoparticles or quantum dots of elements such as copper or indium or gallium or selenium, and coating one or more layers of copper on the surface of the nanoparticles or quantum dots, A coating of elements such as indium, gallium, sulfur, and selenium controls the stoichiometric ratio of each element in the coated nanoparticles by controlling the composition of the coating and the thickness of the coating.
  • the obtained coated nanoparticles are dispersed in a solvent to form a slurry, and the obtained slurry is subjected to a non-vacuum process such as printing, printing, etc. to form a precursor film, and then a copper indium gallium selenide film is formed by rapid annealing.
  • the process has the characteristics of low cost, high utilization rate of raw materials, flexible substrate, easy preparation of large-area film, etc., but due to the use of nanoparticles, particle size, particle size distribution, surface morphology and stoichiometry of nanoparticles Various parameters require strict control, which makes the process difficult to control, the process is complicated, and the repeatability is difficult to guarantee.
  • the object of the present invention is to provide a novel method for preparing a copper indium gallium sulphide selenide thin film solar cell light absorbing layer.
  • the present invention provides a new method for preparing a light absorption layer of a copper indium gallium sulphide selenide thin film solar cell, which uses a non-vacuum liquid chemical method, and the preparation process thereof includes the following steps -
  • the various source solutions obtained in 1 are as follows: copper indium gallium sulphide selenide thin film solar cell light absorbing layer CLU x l ni — y Ga y Se 2 — Z S Z (where 0 x 0. 3, O ⁇ y ⁇ l , 0 z 2) a stoichiometric ratio of copper, indium, gallium, and an excess of sulfur and selenium, configured as a mixed solution containing copper, indium, gallium, sulfur, and selenium;
  • the precursor solution prepared in step 2 is prepared on various substrates by various non-vacuum liquid phase processes
  • the precursor film prepared in the step 3 is dried and annealed to form a target copper indium gallium sulphide compound film.
  • Figure 1 Flow chart of preparation process of copper indium gallium sulphide selenide film precursor solution; X-ray diffraction pattern of copper indium gallium sulphide selenide film prepared by X-ray diffraction of copper indium gallium sulphide selenide film precursor solution after drying at 160 ° C; copper prepared on quartz substrate Ultraviolet-visible transmission spectrum of indium gallium sulphide selenide film; front and side scanning electron micrograph of copper indium gallium sulphide film prepared on quartz substrate; high resolution electron micrograph of copper indium gallium sulphide film;
  • aromatic group includes monocyclic aromatic hydrocarbons having 6 carbon atoms, 10 bicyclic aromatic hydrocarbons, tricyclic aromatic hydrocarbons having 14 carbon atoms, and 1-4 substitutions per ring.
  • aryl groups include, but are not limited to, phenyl, naphthyl, anthracenyl.
  • a chalcogen compound or a halogen compound of copper, indium or gallium, and a simple or amine salt or a sulfonium salt of sulfur or selenium are dissolved in a solvent containing a strong coordinating group, and added.
  • a certain solution adjuster to form a stable source solution of copper, indium, gallium, sulfur, and selenium is added.
  • the chalcogen compound described in 1 includes, wherein M is copper (Cu), which is a mixture of one or more of sulfur (S), selenium (Se), and tellurium (Te).
  • M copper
  • S sulfur
  • Se selenium
  • Te tellurium
  • the corresponding chalcogenide may be, but not limited to, Cu 2 S, Cu 2 Se, Cu 2 (S, Se) and the like.
  • the chalcogen compound described in 1 further includes M wherein M is copper (Cu), which is a mixture of one or more of sulfur (S), selenium (Se), and tellurium (Te).
  • M copper
  • S sulfur
  • Se selenium
  • Te tellurium
  • the corresponding chalcogenide may be, but not limited to, CuS, CuSe, Cu (S, Se) and the like.
  • the chalcogen compound described in 1 further includes M' 2 a, M, which is a mixture of one or two of indium (In), gallium (Ga), and is sulfur (S), selenium (Se), bismuth ( A mixture of one or more of Te).
  • the corresponding chalcogenide may be, but not limited to, In 2 Se 3 , Ga 2 Se 3 , (In, Ga) 2 Se 3 , (In, Ga) 2 (S, Se) 3 or the like.
  • the chalcogen compound described in 1 further includes ⁇ ' ft wherein M is copper (Cu), M' is a mixture of one or two of indium (In), gallium (Ga), and is sulfur (S), selenium.
  • the corresponding chalcogenide may be, but not limited to, CuInS 2 , Cu (In, Ga) Se 2 , Cu (In, Ga) (S, Se) 2 or the like.
  • the halogen compound described in 1 includes MX, M is copper (Cu), and X is chlorine (Cl), bromine (Br), and iodine.
  • the corresponding halogen compound may be, but not limited to, Cul, CuBr, Cu (Br, I) and the like.
  • the halogen compound described in 1 further includes M, M is copper (Cu), and X is a mixture of one or more of chlorine (Cl), bromine (Br), and iodine (I).
  • the corresponding halogen compound may be, but not limited to, CuI 2 , CuBr 2 , Cu (Br, 1 and the like.
  • the halogen compound described in 1 further includes M' X 3 , ⁇ , which is a mixture of one or two of indium ( ⁇ ), gallium (Ga), and X is chlorine (Cl), bromine (Br), and iodine. A mixture of one or more of (I).
  • the corresponding halogen compound may be, but not limited to, Inl 3 , Gal 3 , (In, Ga) I 3 , (In, Ga) (Br, I) 3 and the like.
  • the chalcogen compound described in 1 further includes ⁇ ', wherein M is copper (Cu), M' is a mixture of one or two of indium (In), gallium (Ga), and X is chlorine (Cl), A mixture of one or more of bromine (Br) and iodine (I).
  • the corresponding chalcogenide may be, but not limited to, Culnl 4 , Cu (In, Ga) I 4 , Cu (In, Ga) (I, Br) 4 and the like.
  • the chalcogen compound of copper, indium or gallium and the compound of the group 3 ⁇ 4 may be used singly or in combination.
  • the source solutions of copper, indium, and gallium may be combined or may be separately configured. When configured separately, separate source solutions can be configured, and multiple source solutions (eg, based on stoichiometry) can be mixed as needed. For example, a source solution of copper and indium, and a source solution of gallium are prepared, and the two are combined as needed to obtain a precursor of a copper indium gallium sulphide film.
  • the ratio of the chalcogenide or the group IIIb compound of copper, indium or gallium to the elemental or amine salt or sulfonium salt of sulfur or selenium is adjusted according to the needs of the product. That is, its ratio and amount are based on the light absorption layer of the copper indium gallium sulphide selenide thin film solar cell. (where 0 x 0. 3,
  • the stoichiometric ratio of copper, indium, and gallium in O ⁇ y ⁇ l , 0 z 2) is determined.
  • the solvent containing a strong coordinating group described in 1 includes: water (0), liquid ammonia (NH 3 ), anthraquinone (R 4 R 5 N-NR 6 R 7 ), lower alcohol, ethanolamine, two Ethanolamine, triethanolamine, isopropanolamine, formamide, N-methylformamide, hydrazine, hydrazine-dimethylformamide, acetamide, hydrazine-methylacetamide, hydrazine, hydrazine-dimethylacetamide, A mixture of one or more of dimethyl sulfoxide, cyclic sulfone, and pyrrolidone.
  • the solvent containing a strong coordinating group includes: liquid ammonia, an anthraquinone compound (R 4 R 5 N-NR 6 R 7 ), diethanolamine, triethanolamine or a combination thereof.
  • R 4 , R 5 , R 6 and R 7 in the quinone compound (R 4 R 5 N-NR 6 R 7 ) independently represent an aryl group, a hydrogen group, a methyl group, an ethyl group, and 3 to 6 carbon atoms. ⁇ .
  • Lower alcohols include: methanol, ethanol, propanol, isopropanol, butanol, isobutanol, sec-butanol, tert-butanol, pentanol, optically active pentanol, isoamyl alcohol, secondary pentanol, tert-amyl alcohol, Secondary isoamyl alcohol.
  • alkyl groups as described herein include straight or branched chain fluorenyl groups.
  • the sulfhydryl group may also be a cyclic fluorenyl group.
  • the solution adjusting agent described in 1 includes: (1) chalcogen element, (2) transition metal, (3) alkali metal chalcogenide, (4) alkaline earth metal chalcogenide, (5) chalcogen amine Salt, (6) alkali metal, (7) alkaline earth metal.
  • the chalcogen elements include: one or more of sulfur (S), selenium (Se), and tellurium (Te); transition metals include: nickel (Ni), palladium (Pd), platinum (Pt), antimony ( An alloy or mixture of one or more of Rh), iridium (Ir), ruthenium (Ru); the alkali metal chalcogenide includes: ⁇ , wherein lanthanum is lithium (Li), sodium (Na), potassium (K) One or more of ruthenium (Rb) and ruthenium (Cs), one or more of sulfur (S), selenium (Se), and tellurium (Te); alkaline earth metal chalcogenides include: B is one or more of magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba), and is one or more of sulfur (S), selenium (Se), and cerium (Te).
  • transition metals include: nickel (Ni), palladium (Pd), platinum (Pt), antimony
  • a chalcogenide amine salt comprising one or more of various salts of hydrogen sulfide (H 2 S), hydrogen selenide (H 2 Se) or hydrogen halide (H 2 Te) and NR fc; a mixture, wherein R 2 , each independently represents an aryl group, a hydrogen group, a methyl group, an ethyl group, an alkyl group of 3 to 6 carbon atoms; the alkali metal includes: lithium (Li), sodium (Na), potassium (K) An alloy or mixture of one or more of ⁇ (Rb), ⁇ (Cs); alkaline earth metal Including: an alloy or a mixture of one or more of magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba).
  • H 2 S hydrogen sulfide
  • H 2 Se hydrogen selenide
  • H 2 Te hydrogen halide
  • NR fc NR fc
  • R 2 each independently represents an aryl group, a hydrogen group,
  • the source solution is sufficiently stable, it may not be necessary to add a solution modifier.
  • the amount of the solution adjusting agent to be added depends on the necessity as long as the solution is stabilized. This is known to those skilled in the art.
  • the components of the solution conditioner can be separated.
  • the components of the above solution conditioner are removed, for example, by filtration. It will be appreciated that the residue of the components of certain solution modifiers in the source solution will not affect the target product and therefore may not necessarily be separated.
  • the various source solutions obtained in 1 are according to a copper indium gallium sulphide selenide thin film solar cell light absorbing layer Ci- x I y Ga y Se 2 — (where 0 x 0. 3, O ⁇ y ⁇ l , 0 z 2)
  • the Cm- x I - y Ga y Se 2 - z Sz of the step 2 is preferably 03 ⁇ 4 ⁇ 3 ⁇ 4 ⁇ 0.3, 0.23 ⁇ 4 ⁇ 3 ⁇ 4 ⁇ 0.4, 03 ⁇ 4 ⁇ 0.2.
  • the sulfur and selenium described in 2 are excessive, and the degree of excess is from 0% to 800%, preferably from 100% to 400%. The degree of excess depends on the needs of the target copper indium gallium sulphide compound film.
  • the mixed solution prepared in the step 2 is subjected to various non-vacuum liquid phase processes to prepare a precursor film on various substrates.
  • the non-vacuum process described in 3 includes: (1) spin-coating, (2) casting method
  • the substrate described in 3 includes: polyimide, silicon wafer, amorphous hydrogenated silicon wafer, silicon carbide, silicon dioxide, quartz, sapphire, glass, metal, diamond-like carbon, hydrogenated diamond-like carbon, nitriding Gallium, gallium arsenide, antimony, silicon germanium alloy, ⁇ , boron carbide, boron nitride, silicon nitride, aluminum oxide, antimony oxide, tin oxide, zinc titanate, plastic, and the like.
  • the precursor film prepared in the step 3 is dried and annealed to form a target copper indium gallium sulphide compound film.
  • the drying of 4 can be carried out at room temperature to 80 °C.
  • the drying may also be carried out in other temperature ranges as long as it does not limit the object of the invention.
  • the precursor film described in 4 has an annealing temperature of 50 ° C to 850 ° C, preferably 250 ° C to 650 ° C.
  • the chemical composition of the target copper indium gallium sulphide compound film described in 4 is 0 z 2.
  • the thickness of the target copper indium gallium sulphide compound film described in 4 can be determined as needed. For example, 5 ⁇ ! ⁇ 5000 nm, preferably 100 nm to 3000 nm.
  • Advantage The non-vacuum liquid phase chemical preparation method of the copper indium gallium sulphide selenide thin film solar cell light absorbing layer provided by the invention has the advantages of simple process, low cost, strong controllability and good repeatability compared with the conventional high vacuum gas phase method.
  • the method provided by the present invention has neither the problem of incomplete selenization of the precursor film in the oxide-based non-vacuum liquid phase method nor the non-oxidation developed by Nanosolar, compared with the existing non-vacuum liquid phase method.
  • the problem of complex control of coated nanoparticles required by the non-vacuum liquid phase method is not difficult to control the stoichiometry of the film in the electrochemical deposition method.
  • the method provided by the invention can conveniently realize the precise control and continuous adjustment of the stoichiometry of each element in the target copper indium gallium sulfide selenium film at the atomic scale level; at the same time, the multilayer film can be prepared and the layers can be adjusted.
  • the chemical composition of the film enables effective control of the distribution of each element in the target copper indium gallium sulphide compound film.
  • the method provided by the invention has low annealing temperature, good uniformity of film composition, high surface flatness, good crystallinity, high degree of orientation, and low impurity content, and various substrates, including polyimide, etc., can be used.
  • the organic flexible substrate can conveniently adjust the stoichiometric ratio and distribution of each element in the film, and is easy to prepare a large-area high-quality copper indium gallium sulfide selenium compound film, and the utilization of copper, indium, gallium, sulfur, selenium and other raw materials.
  • the rate can be as high as 100%.
  • Example 1 1. Preparation of copper indium gallium sulphide selenide film precursor solution
  • a corresponding volume of the above copper-containing indium solution and a gallium-containing solution are mixed to obtain a copper indium gallium sulphide film precursor solution.
  • Preparing the copper indium gallium sulphide selenide precursor film on the substrate by using the copper indium gallium sulphide selenide precursor solution obtained above by a certain non-vacuum film forming process (spin coating method, casting method, printing method, printing method, etc.);
  • the precursor film is dried at a low temperature (room temperature ⁇ 80 ⁇ ) and rapidly annealed at a high temperature (250 ° C to 650 ° C) to form a copper indium gallium sulphide film.
  • the copper indium gallium sulphide selenium precursor solution was dried in a dry inert gas stream at 120 ° C to 20 (TC) to obtain a black powder, and the powder was characterized by X-ray diffraction (Fig. 3).
  • the powder is a copper indium gallium sulphide selenide phase.
  • the copper indium gallium sulphide selenide film prepared on a quartz substrate is characterized by X-ray diffraction (Fig. 3), and the X-ray diffraction pattern indicates that the film is a copper indium gallium sulphide phase. And has a strong (112) orientation.
  • the copper indium gallium sulfide selenium film prepared on the quartz substrate was tested by ultraviolet-visible transmission spectroscopy, and the test results (Fig. 4) showed that the prepared copper indium gallium sulphide film had a band gap satisfying the copper indium gallium sulphide.
  • the prepared copper indium gallium sulphide selenide film was characterized by microstructure.
  • the left side of FIG. 5 is the front side scanning electron micrograph of the copper indium gallium sulphide film, and the right side is the scanning electron micrograph of the copper indium gallium sulphide film.
  • the prepared copper indium gallium sulfide selenium film has high surface flatness, good composition uniformity and high degree of crystallization.
  • Figure 6 is a high-resolution transmission electron micrograph of a copper indium gallium sulphide selenide film. It can be seen from the figure that the film has good crystallinity, wherein the interplanar spacing is 0.331 nm, and the (112) crystal plane of the copper indium gallium sulphide crystal The spacing corresponds.
  • a buffer layer having a thickness of about 50 nm is deposited, and then a window layer and an interdigital electrode are prepared, and finally an anti-reflection film is deposited to obtain a copper indium gallium sulphide selenide thin film solar cell unit device.
  • the battery structure is shown in Figure 7.
  • a corresponding volume of the above copper-containing indium solution and a gallium-containing solution are mixed to obtain a copper indium gallium sulphide film precursor solution.
  • the copper indium gallium sulphide selenide precursor solution obtained by the above method is prepared on a substrate by a certain non-vacuum film forming process (spin coating method, casting method, printing method, printing method, etc.); The precursor film is dried at a low temperature (room temperature ⁇ 8 CTC) and then rapidly annealed at a high temperature (250 ° C to 65 (TC) to form a copper indium gallium sulphide film.
  • a certain non-vacuum film forming process spin coating method, casting method, printing method, printing method, etc.
  • the method for disposing the copper indium gallium sulphide selenide film precursor solution is the same as in the first embodiment.
  • the preparation method of the copper indium gallium sulfide selenium film is the same as in the first embodiment.
  • the method for disposing the copper indium gallium sulphide selenide film precursor solution is the same as in the first embodiment.
  • the preparation method of the copper indium gallium sulfide selenium film is the same as in the first embodiment.
  • Example 1 The electrical property characterization method was the same as in Example 1, and the characterization results were similar to those in Example 1.
  • the optical property characterization method was the same as in Example 1, and the characterization results were similar to those in Example 1.
  • the method for disposing the copper indium gallium sulphide selenide film precursor solution is the same as in the first embodiment.
  • the preparation method of the copper indium gallium sulfide selenium film is the same as in the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

铜铟镓硫硒薄膜太阳电池光吸收层的制备方法 技术领域
本发明主要涉及铜铟镓硫硒薄膜太阳电池光吸收层的制备方法。 属于太阳 电池能源领域。 背景技术
能源和环境是人类社会可持续发展的两大战略问题, 清洁可再生能源的开 发和利用显得越来越重要和紧迫。 太阳能是一种清洁、 丰富、 而且不受地域限 制的可再生能源, 太阳能的有效开发和利用具有十分重要的意义。 太阳电池是 人类有效利用太阳能的主要形式之一。 铜铟镓硫硒薄膜太阳电池是新一代最有 发展前途的太阳电池。 它具有成本低、 效率高、 寿命长、 弱光性能好、 抗辐射 能力强等多个方面的优点。 但铜铟镓硫硒薄膜太阳电池至今没有产业化的主要 障碍, 在于其光吸收层铜铟镓硫硒薄膜的制备工艺复杂, 导致电池成品率低, 生产成本过高。
铜铟镓硫硒薄膜太阳电池光吸收层的制备方法可以分为两大类: 第一类是 高真空气相法, 如热蒸发、 磁控溅射和分子束外延等。 采用这类方法所制备的 小面积铜铟镓硫硒薄膜质量好, 相应的电池光电转换效率高。 美国可再生能源 实验室 (NREL)采用三歩共蒸发法制备的有效面积为 0. 405cm2的铜铟镓硒薄膜太 阳电池, 其光电转换效率最高可达 19. 5%。但这类方法在制备大面积薄膜时难以 保证薄膜的均匀性, 而且制备工艺复杂, 成品率低, 设备投资高, 原料利用率 低, 生产效率亦低, 导致生产成本非常高, 大规模生产难以实施。 第二类是非 真空液相法, 与传统的高真空气相法相比, 采用非真空液相法制备铜铟镓硫硒 薄膜太阳电池光吸收层可以大幅度地降低电池的生产成本, 而且可以方便地制 备大面积薄膜。 近年来, 有关非真空液相法制备铜铟镓硫硒薄膜太阳电池光吸 收层的研究得到广泛而深入的开展, 主要有以下几种- ( 1 ) 氧化物基非真空液相法
氧化物基非真空液相法的工艺流程为: ①、 制备含铜、 铟、 镓等各元素氧化物 微粉的液相前驱体,②、将液相前驱体通过各种非真空工艺涂敷在衬底上得到前驱 薄膜, ③、 将前驱薄膜经高温还原后硒化得到铜铟镓硒薄膜。 Kapur等人报道的氧 化物非真空液相法,其特征在于其液相前驱体中的氧化物是通过机械球磨得到的亚 微米级微粉(U. S. Pat. No. 6, 127, 202)。 而 Eberspacher和 Pauls所报道的方法 中, 其中亚微米级的混合氧化物微粉是通过高温分解液滴得到的,然后将所得到的 微粉超声喷射到衬底上得到前驱薄膜 (U. S. Pat. No. 6, 268, 014)。
氧化物基非真空液相法制备铜铟镓硒薄膜光吸收层虽然具有工艺成本低廉的 特点, 但该工艺方法的不足之处也显而易见。首先, 氧化物前驱体薄膜需要在高温 下用氢气 ( )还原,这需要浪费许多时间和能源。其次, 由于镓的氧化物非常稳定, 甚至是在非常苛刻的条件下都难以被还原完全,这将导致目标铜铟镓硒薄膜杂质含 量高, 镓元素摻入困难。 最后, 由于反应动力学的问题, 经还原所得到的铜铟镓合 金薄膜也难以硒化完全。
( 2 ) 喷雾热解法
喷雾热解法制备铜铟镓硫硒薄膜具有工艺成本低廉的特点,但由于该方法制备 的铜铟镓硫硒薄膜杂质含量过高, 薄膜平整度难以控制, 大面积均匀性难以保证。
采用喷雾热解法制备的铜铟镓硒薄膜太阳电池,其光电转换效率均很低。该方 法难以制备具有光伏质量的铜铟镓硒薄膜, 基本不具备工业生产的潜力。
( 3 ) 电化学法
自从 1983年 Bhattacharya第一个采用电化学法成功沉积 CuInSe2薄膜以来、J. Elec trochem. Soc. 130, 2040, 1983), 有关电化学法制备铜铟镓硒薄膜的研究得 到广泛而深入的开展。 Bhattacharya采用二歩法, 即在电化学沉积一层富铜的铜 铟镓硒薄膜后, 又在该薄膜上蒸镀铟、 镓、 硒等元素, 以调整薄膜的成分, 使之满 足太阳电池的要求。 通过该工艺制备的铜铟镓硒太阳电池光电转换效率为 15. 4% ( Thin Solid Films 361-362, 396, 2000) , 这是目前通过电化学法制备的铜 铟镓硒薄膜太阳电池的最高效率。
电化学法制备铜铟镓硒薄膜具有价格低廉的, 原料利用率高,沉积大面积薄膜 容易等优点。但由于铜与铟、镓的沉积电位难以匹配, 制备的铜铟镓硒薄膜易大量 富铜, 薄膜的化学计量难以控制, 杂质相成分很高。 为了调整铜铟镓硒薄膜中各元 素的计量, 往往需要后续物理气相法的辅助, 这将大幅度地增加薄膜制备的工艺成 本。
(4 ) 非氧化物基非真空液相法
非氧化物基非真空液相法是 Nanosolar 公司开发的一种制备铜铟镓硒薄膜的 新工艺(U. S. Pat. No. 7, 306, 823)。 该工艺的特点是首先制备铜或铟或镓或硒等 元素的纳米粒子或量子点, 再在该纳米粒子或量子点的表面包覆一层或多层含铜、 铟、 镓、硫、 硒等元素的涂层, 通过控制涂层的成分和涂层的厚度, 控制包覆纳米 粒子中各元素的化学计量比。 将得到的包覆纳米粒子分散在一定溶剂中形成浆料, 将制得的浆料经印刷、打印等非真空工艺形成前驱薄膜,然后通过快速退火形成铜 铟镓硒薄膜。
该工艺具有成本低廉、 原料利用率高、 可使用柔性衬底、 易制备大面积薄膜 等特点, 但由于使用的是纳米颗粒, 纳米颗粒的粒径大小、 粒径分布、 表面形貌和 化学计量等多种参数都需要严格的控制, 致使该工艺控制困难, 过程复杂, 可重复 性难以得到保证。
由以上可以看出, 现有的铜铟镓硫硒薄膜的制备方法存在各种各样的缺陷, 开发一种新型制备方法以克服上述方法的缺陷,对铜铟镓硫硒薄膜太阳电池的产业 化无疑是一种巨大的推动, 具有十分重要的意义。 发明内容
本发明目的在于提供一种新的铜铟镓硫硒薄膜太阳电池光吸收层的制备方 法。 为此, 本发明提供一种新的新的铜铟镓硫硒薄膜太阳电池光吸收层的制备 方法, 它釆用非真空液相化学方法, 其制备工艺流程包括以下几个歩骤-
①、 将铜、 铟、 镓的硫族化合物或 ¾族化合物, 和硫、 硒的单质或胺类盐或 肼类盐溶解于含有强配位基团的溶剂中, 并加入一定的溶液调节剂, 形成稳定 的铜、 铟、 镓、 硫、 硒的源溶液;
②、 将①所得到的各种源溶液按铜铟镓硫硒薄膜太阳电池光吸收层 CLU xlniyGaySe2ZSZ (其中 0 x 0. 3, O^y^ l , 0 z 2)中铜、 铟、 镓的化学计 量比, 和过量的硫和硒, 配置成含铜、 铟、 镓、 硫、 硒的混合溶液;
③、将步骤②制备的混合溶液通过各种非真空液相工艺, 在各种衬底上制备 出前驱薄膜;
④、 将步骤③制备的前驱薄膜, 经干燥, 并退火后, 形成目标铜铟镓硫硒化 合物薄膜。 附图概述
图 1 铜铟镓硫硒薄膜前驱溶液制备工艺流程图; 铜铟镓硫硒薄膜前驱溶液在 160°C下干燥后所得到粉体的 X射线衍 在石英衬底上制备的铜铟镓硫硒薄膜的 X射线衍射图; 在石英衬底上制备的铜铟镓硫硒薄膜的紫外 -可见透射光谱图; 在石英衬底上制备的铜铟镓硫硒薄膜的正面和断面扫描电镜图; 铜铟镓硫硒薄膜的高分辨电镜图;
铜铟镓硫硒薄膜太阳电池结构示意图。 本发明的最佳实施方案
发明人经过大量实验和研究发现, 采用新的非真空液相化学方法, 可以达 到以下优点: 工艺简单, 成本低廉, 设备投资少, 原料利用率高, 可控性强, 可重复性好, 易于实现大面积、 高质量薄膜的制备和大规模生产。 在此基础上 完成了本发明。 如本文所用, 所述的 "芳香基" , 包括含有 6个碳原子的单环芳烃, 10个 子的双环芳烃, 14个碳原子的三环芳烃, 并且每个环上可以有 1-4个取代 例如, 芳香基包括但不限于苯基、 萘基、 蒽基。 步骤①
本发明的步骤①中, 将铜、 铟、 镓的硫族化合物或卤族化合物, 和硫、 硒的 单质或胺类盐或肼类盐溶解于含有强配位基团的溶剂中, 并加入一定的溶液调 节剂, 形成稳定的铜、 铟、 镓、 硫、 硒的源溶液。
其中①中所述的硫族化合物包括 ,其中 M为铜(Cu), 为硫(S)、硒(Se)、 碲(Te)中的一种或几种的混合。 如相应的硫族化合物可以是但不限于 Cu2S, Cu2Se, Cu2 (S,Se)等。
其中①中所述的硫族化合物还包括 M 其中 M为铜(Cu), 为硫(S)、硒(Se)、 碲(Te)中的一种或几种的混合。如相应的硫族化合物可以是但不限于 CuS, CuSe , Cu (S, Se)等。
其中①中所述的硫族化合物还包括 M' 2a, M, 为铟(In)、 镓(Ga)中一种或 两种的混合, 为硫(S)、 硒(Se)、 碲(Te)中的一种或几种的混合。 如相应的硫 族化合物可以是但不限于 In2Se3, Ga2Se3, (In,Ga) 2Se3, (In, Ga) 2 (S, Se) 3等。 其中①中所述的硫族化合物还包括匪' ft其中 M为铜(Cu), M' 为铟(In)、 镓(Ga)中一种或两种的混合, 为硫(S)、 硒(Se)、 碲(Te)中的一种或几种的混 合。 如相应的硫族化合物可以是但不限于 CuInS2, Cu (In, Ga) Se2 , Cu (In, Ga) (S,Se) 2等。
其中①中所述的卤族化合物包括 MX, M为铜(Cu), X为氯(Cl)、 溴 (Br)、 碘
(I)中的一种或几种的混合。 如相应的卤族化合物可以是但不限于 Cul, CuBr, Cu (Br, I)等。
其中①中所述的卤族化合物还包括 M , M为铜(Cu), X为氯(Cl)、 溴 (Br)、 碘(I)中的一种或几种的混合。如相应的卤族化合物可以是但不限于 CuI2,CuBr2, Cu (Br, 1 等。
其中①中所述的卤族化合物还包括 M' X3, Μ, 为铟(Ιη)、 镓(Ga)中一种或 两种的混合, X为氯(Cl)、 溴 (Br)、 碘(I)中的一种或几种的混合。 如相应的卤 族化合物可以是但不限于 Inl3, Gal3, (In, Ga) I3, (In, Ga) (Br, I) 3等。
其中①中所述的硫族化合物还包括匪' ,其中 M为铜(Cu),M' 为铟(In)、 镓(Ga)中一种或两种的混合, X为氯(Cl)、 溴(Br)、 碘(I)中的一种或几种的混 合。 如相应的硫族化合物可以是但不限于 Culnl4, Cu (In, Ga) I4 , Cu (In, Ga) (I,Br) 4等。
所述步骤①中, 铜、 铟、 镓的硫族化合物和 ¾族化合物可以单独使用, 也 可以混合使用。
此外, 应当理解, 所述铜、 铟、 镓的源溶液可以合并配置, 也可以单独配 置。 在单独配置时, 可以先配置单独的源溶液, 需要时将多种源溶液(例如根据 化学计量比)进行混合。 例如, 制备铜和铟的源溶液、 以及镓的源溶液, 在需要 时将二者合并获得铜铟镓硫硒薄膜的前驱物。
所述步骤①中, 铜、 铟、 镓的硫族化合物或 ¾族化合物、 与硫、 硒的单质 或胺类盐或肼类盐之间的配比根据产物的需要进行调节。 也即, 其配比和用量 根据铜铟镓硫硒薄膜太阳电池光吸收层
Figure imgf000007_0001
(其中 0 x 0. 3,
O^y^ l , 0 z 2)中铜、 铟、 镓的化学计量比而确定。
其中①中所述的含有强配位基团的溶剂包括: 水 ( 0)、 液氨(NH3)、 肼类化 合物(R4R5N-NR6 R7)、 低级醇、 乙醇胺、 二乙醇胺、 三乙醇胺、 异丙醇胺、 甲酰 胺、 N-甲基甲酰胺、 Ν, Ν-二甲基甲酰胺、 乙酰胺、 Ν-甲基乙酰胺、 Ν,Ν-二甲基 乙酰胺、 二甲基亚砜、 环定砜、 吡咯垸酮中的一种或几种的混合物。 优选地是, 所述含有强配位基团的溶剂包括: 液氨、 肼类化合物(R4R5N-NR6 R7)、 二乙醇胺、 三乙醇胺或其组合。 其中肼类化合物(R4R5N-NR6 R7)中的 R4、 R5、 R6、 R7分别独立 表示芳香基、 氢基、 甲基、 乙基、 3-6个碳原子的垸基。 低级醇包括: 甲醇、 乙 醇、 丙醇、 异丙醇、 丁醇、 异丁醇、 仲丁醇、 叔丁醇、 戊醇、 旋光性戊醇、 异 戊醇、 仲戊醇、 叔戊醇、 仲异戊醇。 如本文所用, 本发明所述的烷基包括直链 或支链垸基。 所述垸基还可以是环状垸基。
本领域技术人员可以理解, 为了使得所得到的溶液更为稳定, 还可以加入 溶液调节剂。 其中①中所述的溶液调节剂包括: (1)硫族元素, (2)过渡金属, (3)碱金属硫族化合物, (4)碱土金属硫族化合物, (5)硫族元素胺类盐, (6)碱 金属, (7)碱土金属。 其中的硫族元素包括: 硫(S)、 硒(Se)、 碲(Te)中的一种 或几种; 过渡金属包括: 镍(Ni)、 钯(Pd)、 铂(Pt)、 铑(Rh)、 铱(Ir)、 钌(Ru) 中的一种或几种的合金或混合物;碱金属硫族化合物包括: Α^,其中 Α为锂 (Li)、 钠(Na)、 钾(K)、 铷(Rb)、 铯(Cs)中的一种或几种, 为硫(S)、 硒(Se)、 碲(Te) 中的一种或几种; 碱土金属硫族化合物包括: 其中 B 为镁 (Mg)、 钙(Ca)、 锶(Sr)、 钡(Ba)中的一种或几种, 为硫(S)、 硒(Se)、 碲(Te)中的一种或几种; 硫族元素胺类盐包括硫化氢(H2S), 硒化氢(H2Se)或碲化氢(H2Te)与 N-R fc形成 的各种盐中的一种或几种的混合物, 其中 、 R2、 分别独立表示芳香基、氢基、 甲基、 乙基、 3-6个碳原子的烷基; 碱金属包括: 锂 (Li)、 钠(Na)、 钾(K)、 铷 (Rb)、铯(Cs)中的一种或几种的合金或混合物;碱土金属包括:镁 (Mg)、钙(Ca)、 锶(Sr)、 钡(Ba)中的一种或几种的合金或混合物。
应当理解, 如果源溶液足够稳定, 则可以不需要加入溶液调节剂。 所述溶 液调节剂的加入量根据需要而定, 只要使得溶液稳定即可。 这对于本领域技术 人员是已知的。
所述溶液调节剂的组分可以进行分离。例如通过过滤的方法除去上述溶液调 节剂中的组分。 应当理解, 某些溶液调节剂的组分在源溶液中的残留不会对目 标产物造成影响, 因此可以不必分离。 歩骤②
本发明的步骤②中将①所得到的各种源溶液按铜铟镓硫硒薄膜太阳电池光 吸收层 Ci— xI — yGaySe2— (其中 0 x 0. 3, O^y^ l , 0 z 2)中铜、 铟、 镓的 化学计量比, 和过量的硫和硒, 配置成含铜、 铟、 镓、 硫、 硒的混合溶液。 步骤②的 Cm— xI — yGaySe2zSz式中优选 0¾≡χ¾Ξ0.3, 0.2¾Ξγ¾Ξ0.4, 0¾Ξζ≤Ξ0.2。 其中②中所述的硫、硒过量,其过量程度为 0%〜800%,优选为 100%〜400%。 其过量程度根据目标铜铟镓硫硒化合物薄膜的需要而定。 步骤③
本发明的步骤③中将步骤②制备的混合溶液通过各种非真空液相工艺,在各 种衬底上制备出前驱薄膜。
其中③中所述的非真空工艺包括: (1)旋涂法(Spin-coating) , (2)流延法
(Tape-casting) , (3) 喷雾沉积法 (Spray-deposition) , (4) 提拉法 (Dip-coating), (5)丝网印刷法(Screen-printing), (6)喷墨打印法(Ink-jet printing), (7)滴注成膜法 (Drop-casting), (8)滚涂法 (Roller-coating), (9) 模缝涂布法(Slot Die Coating), (10)平棒涂布法(Meiyerbar coating), (11) 毛细管涂布法 (Capillary coating), (12) Comma涂布法(Comma-coating), (13) 凹版涂布法(Gravure-coating)等各种非真空工艺。
其中③中所述的衬底包括: 聚酰亚胺、 硅片、 非晶氢化硅片、 碳化硅、 二氧 化硅、 石英、 蓝宝石、 玻璃、 金属、 类金刚石碳、 氢化类金刚石碳、 氮化镓、 砷化镓、 锗、 硅锗合金、 ιτο、 碳化硼、 氮化硼、 氮化硅、 氧化铝、 氧化铈、 氧 化锡、 钛酸锌、 塑料等。 歩骤④
本发明的步骤④中将步骤③制备的前驱薄膜, 经干燥, 并退火后, 形成目标 铜铟镓硫硒化合物薄膜。
其中④的干燥可以在室温〜 80°C进行。 所述干燥也可以在其它温度范围进 行, 只要不对本发明的发明目的产生限制即可。
其中④中所述的前驱薄膜退火温度为 50°C〜850°C, 优选为 250°C〜650°C。 其中④中所述的 目标铜铟镓硫硒化合物薄膜的化学成分为
Figure imgf000009_0001
0 z 2。
其中④中所述的目标铜铟镓硫硒化合物薄膜的厚度可以根据需要而确定。例 如为 5ηπ!〜 5000nm, 优选为 100nm〜3000nm。 优点 本发明所提供的铜铟镓硫硒薄膜太阳电池光吸收层的非真空液相化学制备 方法, 与传统的高真空气相法相比, 其工艺简单, 成本低廉, 可控性强, 可重 复性好, 易于实现大面积、 高质量薄膜的制备和大规模生产, 而且设备投资少, 原料利用率高, 可大幅度降低铜铟镓硫硒薄膜太阳电池的生产成本, 促进铜铟 镓硫硒薄膜太阳电池产业化的快速发展。
而且, 本发明所提供方法, 与现有的非真空液相法相比, 它既不存在氧化 物基非真空液相法中前驱薄膜硒化不完全的问题, 也不存在 Nanosolar所开发 的非氧化物基非真空液相法所需要的对包覆纳米粒子的复杂控制问题, 也不存 在电化学沉积法中薄膜的化学计量难以控制的问题, 还不存在喷雾热解法中薄 膜的杂质元素含量过高的问题。
本发明所提供的方法可以方便地在原子尺度的级别上实现对目标铜铟镓硫 硒薄膜中各元素化学计量的精确控制和连续可调; 同时, 还可以通过制备多层 膜和调整各层膜的化学成分, 实现对目标铜铟镓硫硒化合物薄膜中各元素分布 的有效控制。
本发明所提供的方法具有退火温度低, 所制备的薄膜成分均匀性好, 表面 平整度高, 结晶性好, 取向度高, 杂质含量少, 可使用各种衬底, 包括聚酰亚 胺等有机柔性衬底, 可方便的调整薄膜中各元素的化学计量比及其分布, 易于 制备大面积高质量的铜铟镓硫硒化合物薄膜, 并且铜、 铟、 镓、 硫、 硒等原料 的利用率几乎可高达 100%。 本发明的其他方面由于本文的公开内容, 对本领域的技术人员而言是显而 易见的。
下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说 明本发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方 法, 通常按照常规条件, 或按照制造厂商所建议的条件进行。 除非另外说明, 否则所有的份数为重量份, 所有的百分比为重量百分比。
除非另有定义或说明, 本文中所使用的所有专业与科学用语与本领域技术 熟练人员所熟悉的意义相同。 此外任何与所记载内容相似或均等的方法及材料 皆可应用于本发明方法中。 实施例 1 : 1、 铜铟镓硫硒薄膜前驱溶液的制备
( a) 含铜铟溶液的制备
取 lmmol 硫硒化亚铜 Cu2 (S, Se), 0. 5mmol三硒化二铟 In2Se3, 0. 2 mmol三 碘化铟 Inl3, 0〜8mmol硫 S禾 Π 0〜8mmol硒 Se, 加入 2〜16ml 甲基肼, 乙醇胺 和二甲基亚砜的混合溶剂中, 其中甲基肼, 乙醇胺和二甲基亚砜的体积比为 1 〜3 : 1〜6: 1〜8, 经搅拌得到澄清的溶液。
(b ) 含镓溶液的制备。
取 0· 6mmol三硒化二镓 G¾Se3, 0· 3mmol三溴化镓 GaBr3, 0· 1 mmol三碘化 镓 Gal3, 0〜8mmol硒 Se和微量的钌粉, 加入 l〜8ml 甲基肼, 乙醇胺和二甲基 亚砜的混合溶剂中, 其中甲基肼, 乙醇胺和二甲基亚砜的体积比为 1〜3: 1〜6: 1〜8, 充分搅拌后, 经 0. 2μπι孔径的过滤器过滤后, 得到澄清的含镓溶液。
( c ) 铜铟镓硫硒薄膜前驱溶液的制备
按铜铟镓硫硒薄膜中铜、 铟、 镓的化学计量比, 取相应体积的上述含铜铟 溶液和含镓溶液进行混合, 得到铜铟镓硫硒薄膜前驱溶液。
2、 铜铟镓硫硒薄膜的制备
将上述得到的铜铟镓硫硒前驱溶液通过一定的非真空制膜工艺(旋涂法、 流 延法、 印刷法、 打印法等)在衬底上制备出铜铟镓硫硒前驱薄膜; 将前驱薄膜在 低温(室温〜 80Ό )下干燥后, 经高温(250°C〜650°C )快速退火形成铜铟镓硫硒 薄膜。
3、 铜铟镓硫硒薄膜的表征
(a)物相表征
将铜铟镓硫硒前驱溶液在干燥的惰性气流中于 120°C〜20(TC下干燥, 得到 黑色的粉体, 将该粉体进行 X射线衍射表征(如图 3), 结果表明所得到的粉体是 铜铟镓硫硒相。 将在石英衬底上所制备的铜铟镓硫硒薄膜进行 X射线衍射表征 (如图 3), X射线衍射图谱表明薄膜为铜铟镓硫硒相, 而且具有较强的(112)取 向。
(b)电学性能表征
采用四电极法在 Accent HL5500霍尔仪上测定薄膜的电学性能, 测试结果 (如表 1)表明所制备的铜铟镓硫硒薄膜满足铜铟镓硫硒太阳电池器件的要求。
表 1 载流子迁移
载流子浓度
样品 率
(cm 3)
(cm2 V 1 s
铜铟镓硫硒 1. 5 X 1017 1. 12
(c)光学性能表征
将在石英衬底上制备的铜铟镓硫硒薄膜进行紫外-可见透射光谱的测试, 测 试结果(如图 4)表明,所制备的铜铟镓硫硒薄膜其禁带宽度满足铜铟镓硫硒太阳 电池器件的要求。
(d)微结构表征
将所制备的铜铟镓硫硒薄膜进行微结构表征, 图 5左边为铜铟镓硫硒薄膜 的正面扫描电镜图, 右边为铜铟镓硫硒薄膜的断面扫描电镜图, 由图可以看出, 所制备的铜铟镓硫硒薄膜表面平整度高, 成分均一性好, 结晶程度高。 图 6为 铜铟镓硫硒薄膜的高分辨透射电镜图, 由图可以看出, 薄膜的结晶性好, 其中 晶面间距为 0. 331nm, 与铜铟镓硫硒晶体的(112)晶面间距相对应。
4、 铜铟镓硫硒薄膜太阳电池器件的制备
在所制备的铜铟镓硫硒薄膜上, 沉积厚度为 50nm左右的缓冲层, 然后制备 窗口层和叉指电极, 最后沉积减反膜, 即得到铜铟镓硫硒薄膜太阳电池单电池 器件, 电池结构如图 7 所示。 所制备的铜铟镓硫硒薄膜太阳能电池单电池, 经 优化后, 有效面积为 1. 5cm2的单电池, 其光电转换效率可达 13%。
实施例 2 :
1、 铜铟镓硫硒薄膜前驱溶液的制备
( a ) 含铜溶液的制备
取 lmmol 碘化亚铜 Cul, 加入 2〜16ml 乙二胺, 经充分搅拌得到澄清的溶 液。
( b ) 含铟溶液的制备
取 lmmol碘化铟, 4〜8mmol硒 Se, 加入 l〜8ml 甲基肼和正丁醇的混合溶 剂中, 其中甲基肼和正丁醇的体积比为 1〜3: 1〜8, 充分搅拌后, 经 0. 2μπι孔 径的过滤器过滤后, 得到澄清的含铟溶液。
( c ) 含镓溶液的制备
取 1 mmol三碘化镓 Gal3, 4〜8mmol硒 Se, 加入 l〜8ml 甲基肼和正丁醇的 混合溶剂中,其中甲基肼和正丁醇的体积比为 1〜3: 1〜8,充分搅拌后,经 0. 2 孔径的过滤器过滤后, 得到澄清的含镓溶液。
(d) 铜铟镓硫硒薄膜前驱溶液的制备
按铜铟镓硫硒薄膜中铜、 铟、 镓的化学计量比, 取相应体积的上述含铜铟 溶液和含镓溶液进行混合, 得到铜铟镓硫硒薄膜前驱溶液。
2、 铜铟镓硫硒薄膜的制备
将上述得到的铜铟镓硫硒前驱溶液通过一定的非真空制膜工艺 (旋涂法、 流延法、 印刷法、 打印法等) 在衬底上制备出铜铟镓硫硒前驱薄膜; 将前驱薄 膜在低温 (室温〜 8CTC) 下干燥后, 经高温 (250°C〜65(TC) 快速退火形成铜 铟镓硫硒薄膜。
3、 铜铟镓硫硒薄膜的表征
(a) 物相表征方法同实施例 1, 表征结果与实施例 1类似。
(b) 电学性能表征方法同实施例 1, 表征结果与实施例 1类似。
(c) 光学性能表征方法同实施例 1, 表征结果与实施例 1类似。
(d) 微结构表征方法同实施例 1, 表征结果与实施例 1类似。 4、 铜铟镓硫硒薄膜太阳电池器件的制备同实施例 1, 测试结果与实施例
1类似。 实施例 3:
1、 铜铟镓硫硒薄膜前驱溶液的制备
(a) 含铜硒溶液的制备
取 lmmol 氯化亚铜 CuCl, 加入 2〜16ml 乙二胺, 十二硫醇和 N,N_二甲基 甲酰胺的混合溶剂中, 其中乙二胺, 十二硫醇和 N,N-二甲基甲酰胺的体积比为 1〜8: 1〜3: 1〜6, 经充分搅拌得到澄清的含铜溶液。 取 2〜6mmol硒 Se, 加入 4〜16ml 乙二胺, 在 80°C下充分搅拌回流得到澄清的乙二胺硒溶液。 将得到的 乙二胺硒溶液在搅拌下加入到上述的含铜溶液中, 得到含铜硒溶液。
(b) 含铟溶液的制备
取 1 讓 ol三碘化铟 Inl3, 加入 2〜16ml乙醇和异丙醇的混合溶剂中, 其中 乙醇和异丙醇的体积比为 1〜3: 1〜6, 经充分搅拌得到澄清的含铟溶液。
(c) 含镓溶液的制备
取 1 讓 ol三碘化镓 Gal3, 加入 2〜16ml乙醇和异丙醇的混合溶剂中, 其中 乙醇和异丙醇的体积比为 1〜3: 1〜6, 经充分搅拌得到澄清的含铟溶液。 ( d) 铜铟镓硫硒薄膜前驱溶液的制备
铜铟镓硫硒薄膜前驱溶液的配置方法同实施例 1。
2、 铜铟镓硫硒薄膜的制备
铜铟镓硫硒薄膜的制备方法同实施例 1。
3、 铜铟镓硫硒薄膜的表征
( a ) 物相表征方法同实施例 1, 表征结果与实施例 1类似。
(b ) 电学性能表征方法同实施例 1, 表征结果与实施例 1类似。
( c ) 光学性能表征方法同实施例 1, 表征结果与实施例 1类似。
( d ) 微结构表征方法同实施例 1, 表征结果与实施例 1类似。
4、 铜铟镓硫硒薄膜太阳电池器件的制备同实施例 1, 测试结果与 1类似。 实施例 4:
1、 铜铟镓硫硒薄膜前驱溶液的制备
( a) 含铜溶液的制备
取 lmmol 氯化亚铜 CuCl, 加入 2〜16ml 乙二胺, 十二硫醇和 N,N_二甲基 甲酰胺的混合溶剂中, 其中乙二胺, 十二硫醇和 N,N-二甲基甲酰胺的体积比为 1〜8: 1〜3: 1〜6, 经充分搅拌得到澄清的含铜溶液。 取 2〜6mmol硒 Se, 加入 4〜16ml二甲基肼, 经充分搅拌到澄清的二甲基肼硒溶液。将得到的二甲基肼硒 溶液在搅拌下加入到上述的含铜溶液中, 得到含铜硒溶液。
(b ) 含铟镓溶液的制备
取 1 mmol三碘化铟镓(In, Ga) I3, 加入 2〜16ml乙醇和异丙醇的混合溶剂 中, 其中乙醇和异丙醇的体积比为 1〜3: 1〜6, 经充分搅拌得到澄清的含铟溶 液。
( c ) 铜铟镓硫硒薄膜前驱溶液的制备
铜铟镓硫硒薄膜前驱溶液的配置方法同实施例 1。
2、 铜铟镓硫硒薄膜的制备
铜铟镓硫硒薄膜的制备方法同实施例 1。
3、 铜铟镓硫硒薄膜的表征
( a ) 物相表征方法同实施例 1, 表征结果与实施例 1类似。
(b ) 电学性能表征方法同实施例 1, 表征结果与实施例 1类似。 (c) 光学性能表征方法同实施例 1, 表征结果与实施例 1类似。
(d) 微结构表征方法同实施例 1, 表征结果与实施例 1类似。
4、 铜铟镓硫硒薄膜太阳电池器件的制备同实施例 1, 测试结果与实施例 1类似。 实施例 5:
1、 铜铟镓硫硒薄膜前驱溶液的制备
(a) 含铜溶液的制备
取 lmmol 硫化铜 CuS 2mmol硫化铵(NH4) 2S, 加入 2 16ml 三乙醇胺, 水 合肼和二甲基亚砜的混合溶剂中, 其中三乙醇胺, 水合肼和二甲基亚砜的体积 比为 1 8: 1 3: 1 6, 经充分搅拌得到澄清的含铜溶液。 取 2 6mmol硒 Se 加入 4 16ml水合肼, 在 80°C下经充分搅拌回流到澄清的水合肼硒溶液。 将得 到的水合肼硒溶液在搅拌下加入到上述的含铜溶液中, 得到含铜硒溶液。
(b) 含铟镓溶液的制备
取 1 ol三碘化铟镓(In Ga)I3, 加入 2 16ml乙醇和异丙醇的混合溶剂 中, 其中乙醇和异丙醇的体积比为 1 3: 1 6, 经充分搅拌得到澄清的含铟镓 溶液。
(c) 铜铟镓硫硒薄膜前驱溶液的制备
铜铟镓硫硒薄膜前驱溶液的配置方法同实施例 1
2、 铜铟镓硫硒薄膜的制备
铜铟镓硫硒薄膜的制备方法同实施例 1
3、 铜铟镓硫硒薄膜的表征
(a) 物相表征方法同实施例 1, 表征结果与实施例 1类似。
(b) 电学性能表征方法同实施例 1, 表征结果与实施例 1类似。
(c) 光学性能表征方法同实施例 1, 表征结果与实施例 1类似。
(d) 微结构表征方法同实施例 1, 表征结果与实施例 1类似。
4、 铜铟镓硫硒薄膜太阳电池器件的制备同实施例 1, 测试结果与实施例 1类似。 实施例 6:
1、 铜铟镓硫硒薄膜前驱溶液的制备 (a) 含铜溶液的制备
取 lmmol二硒化铜铟 CuInSe2, 2mmol硫化铵(NH4)2S, 加入 2〜16ml乙二胺, 无水肼和二甲基亚砜的混合溶剂中, 其中乙二胺, 无水肼和二甲基亚砜的体积 比为 1〜3: 1〜8: 1〜6, 在低温下经充分搅拌, 经 0.2μηι孔径的过滤器过滤后, 得到澄清的含铜溶液。
(b) 含铟镓溶液的制备
取 1 mmol三硒化二铟镓(In, Ga)2Se3, 加入 2〜16ml 乙二胺和无水肼的混 合溶剂中, 其中乙二胺和无水肼的体积比为 1〜3: 1〜6, 经充分搅拌得到澄清 的含铟镓溶液。
(c) 铜铟镓硫硒薄膜前驱溶液的制备
铜铟镓硫硒薄膜前驱溶液的配置方法同实施例 1。
2、 铜铟镓硫硒薄膜的制备
铜铟镓硫硒薄膜的制备方法同实施例 1。
3、 铜铟镓硫硒薄膜的表征
(a) 物相表征方法同实施例 1, 表征结果与实施例 1类似。
(b) 电学性能表征方法同实施例 1, 表征结果与实施例 1类似。
(c) 光学性能表征方法同实施例 1, 表征结果与实施例 1类似。
(d) 微结构表征方法同实施例 1, 表征结果与实施例 1类似。
4、 铜铟镓硫硒薄膜太阳电池器件的制备同实施例 1, 测试结果与实施例 1类似。

Claims

权 利 要 求
1、 一种铜铟镓硫硒薄膜太阳电池光吸收层的制备方法, 其特征在于采用非 真空液相化学方法制备的工艺步骤为- ①、 将铜、 铟、 镓的硫族化合物或卤族化合物, 和硫、 硒的单质或胺类盐 或肼类盐溶解于含有强配位基团的溶剂中, 并加入一定的溶液调节剂, 形成稳 定的铜、 铟、 镓、 硫、 硒的源溶液;
②、 将①所得到的各种源溶液按铜铟镓硫硒薄膜太阳电池光吸收层
Figure imgf000017_0001
式中铜、 铟、镓的化学计量比, 和过量的硫、硒, 配置成含铜、 铟、镓、硫、硒的混合溶液;所述的硫或硒过量程度为 0-800%; 式中 0 x 0. 3, O^ y^ l , 0 z 2 ;
③、 将步骤②制备的混合溶液通过各种非真空液相工艺, 在各种衬底上制 备出前驱薄膜;
④、 将步骤③制备的前驱薄膜, 经干燥, 并退火后, 形成目标铜铟镓硫硒 化合物薄膜。
2、 按权利要求 1所述的制备方法, 其特征在于- 步骤①中所述的铜、 铟、 镓的硫族化合物为 其中 M为铜, ^为硫、 硒 和碲中的一种或几种的混合; 或
步骤①中所述的铜、 铟、 镓的硫族化合物为 M2 ft 其中 M为铜, 为硫、 硒 和碲中的一种或几种的混合; 或
步骤①中所述的铜、 铟、 镓的硫族化合物为 M, 2 ft, M, 为铟、 镓中一种或 两种的混合, 为硫、 硒和碲中的一种或几种的混合; 或
步骤①中所述的硫族化合物为匪' Q , 其中 M为铜, M, 为铟、 镓中一种或 两种的混合, 为硫、 硒、 碲中的一种或几种的混合。
3、 按权利要求 1所述的制备方法, 其特征在于:
步骤①中所述的卤族化合物为 MX , M为铜, X为氯、 溴和碘中的一种或几种 的混合; 或
或歩骤①中所述的铜、 铟、 镓的卤族化合物为 M , M为铜, X为氯、 溴和 碘中的一种或几种的混合; 或
步骤①中所述的铜、 铟、 镓的卤族化合物为 M ' X3, M, 为铟、 镓中一种或 两种的混合, X为氯、 溴和碘中的一种或几种的混合; 或 步骤①中所述的铜、铟、镓的卤族化合物为匪' , 其中 M为铜, M' 为铟、 镓中一种或两种的混合, 为硫、 硒、 碲中的一种或几种的混合。
4、 按权利要求 1所述的制备方法, 其特征在于:
a)步骤①中所述的硫、硒的胺类盐为硫化氢或硒化氢与 N-R fc形成的各种 盐, 其中 R,、 R2、 R3分别表示芳香基、 氢基、 甲基、 乙基或 3-6个碳原子的垸基; 或
b)步骤①中所述的硫、 硒的肼类盐为硫化氢或硒化氢与 R4R5N-NR6 R7形成的 各种盐, 其中 R4、 R5、 Re, R7分别表示芳香基、 氢基、 甲基、 乙基或 3-6个碳原 子的烷基。
5、 按权利要求 1所述的制备方法, 其特征在于:
步骤①中所述的含有强配位基团的溶剂为:水、液氨、肼类化合物 R4R5N-NR6
R7、低级醇、 乙醇胺、 二乙醇胺、 三乙醇胺、 异丙醇胺、 甲酰胺、 N-甲基甲酰胺、
N,N-二甲基甲酰胺、 乙酰胺、 N-甲基乙酰胺、 N,N-二甲基乙酰胺、 二甲基亚砜、 环定砜和吡咯垸酮中的一种或几种的混合物;
其中 R4、 R5、 R6、 R7分别表示芳香基、 氢基、 甲基、 乙基或 3-6个碳原子的 焼基。
6、按权利要求 5所述的制备方法, 其特征在于: 所述低级醇为甲醇、 乙醇、 丙醇、 异丙醇、 丁醇、 异丁醇、 仲丁醇、 叔丁醇、 戊醇、 旋光性戊醇、 异戊醇、 仲戊醇、 叔戊醇、 仲异戊醇或其组合。
7、 按权利要求 1所述的制备方法, 其特征在于:
步骤①中所述的溶液调节剂为(1)硫族元素, (2)过渡金属, (3)碱金属硫族 化合物, (4)碱土金属硫族化合物, (5)硫族元素胺类盐, (6)碱金属或(7)碱土 金属。
8、 按权利要求 7所述的制备方法, 其特征在于:
(a)所述的硫族元素为硫、 硒和碲中的一种或几种;
(b)所述的过渡金属为镍、 钯、 铂、 铑、 铱和钌中的一种或几种的合金或混 合物;
(c)所述的碱金属硫族化合物为 A , 其中 A为锂、 钠、 钾、 铷和铯中的一 种或几种, 为硫、 硒和碲中的一种或几种;
(d)所述的碱土金属硫族化合物为 其中 B为镁、钙、 锶和钡中的一种或 几种, 为硫、 硒和碲中的一种或几种; (e)所述的硫族元素胺类盐为硫化氢, 硒化氢或碲化氢与 N-RJ^fc形成的各 种盐中的一种或几种的混合物, 其中 Ri、 、 R3分别独立表示芳香基、 氢基、 甲 基、 乙基、 3-6个碳原子的垸基;
(f)所述的碱金属为锂、 钠、 钾、 铷和铯中的一种或几种的合金或混合物; 或
(g)所述的碱土金属为镁、 钙、 锶和钡中的一种或几种的合金或混合物。
9、 按权利要求 1所述的制备方法, 其特征在于步骤②中硫或硒过量程度为 100%-400%。
10、按权利要求 1所述的制备方法, 其特征在于步骤②的
Figure imgf000019_0001
式中 0 x 0. 3, 0. 2 ^y^ 0. 4, 0 ζ 0· 2。
1 1、 按权利要求 1所述的制备方法, 其特征在于:
a)步骤③制备前驱薄膜的非真空液相工艺为旋涂法、 流延法、 喷雾沉积法、 提拉法、 丝网印刷法、 喷墨打印法、 滴注成膜法、 滚涂法、 模缝涂布法、 平棒 涂布法、 毛细管涂布法、 Comma涂布法或凹版涂布法; 或
b)歩骤③所述的衬底为聚酰亚胺、 硅片、 非晶氢化硅片、 碳化硅、 二氧化 硅、 石英、 蓝宝石、 玻璃、 金属、 类金刚石碳、 氢化类金刚石碳、 氮化镓、 砷 化镓、 锗、 硅锗合金、 ιτο、 碳化硼、 氮化硼、 氮化硅、 氧化铝、 氧化铈、 氧化 锡、 钛酸锌和塑料中的任一种。
12、 按权利要求 1 所述的制备方法, 其特征在于所述的前驱薄膜的退火温 度为 50-850°C。
13、 按权利要求 12所述的制备方法, 其特征在于所述的前驱薄膜的退火温 度为 250- 650°C。
14、 按权利要求 1 所述的制备方法, 其特征在于步骤④所形成的目标铜铟 镓硫硒化合物薄膜的厚度为 5ηπ!〜 5000nm。
PCT/CN2008/073805 2007-12-29 2008-12-29 Procédé de préparation d'une couche d'absorption de la lumière d'une pile solaire à film de cuivre-indium-gallium-soufre-sélénium WO2009089754A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010540020A JP5646342B2 (ja) 2007-12-29 2008-12-29 銅・インジウム・ガリウム・硫黄・セレン薄膜太陽電池の光吸収層の製造方法
EP08870889.6A EP2234168A4 (en) 2007-12-29 2008-12-29 METHOD FOR PRODUCING A LIGHT ABSORPTION LAYER OF A SOLAR CELL WITH COPPER INDIUM GALLIUM SULFUR SELENE LAYER
BRPI0821501A BRPI0821501B8 (pt) 2007-12-29 2008-12-29 Método para preparação de uma camada de absorção leve de célula solar de filme fino de cobre-índio-gálio-enxofre-selênio.
CN2008801240397A CN101960610B (zh) 2007-12-29 2008-12-29 铜铟镓硫硒薄膜太阳电池光吸收层的制备方法
US12/826,008 US9735297B2 (en) 2007-12-29 2010-06-29 Method for preparing light absorption layer of copper-indium-gallium-sulfur-selenium thin film solar cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710173785.2 2007-12-29
CNA2007101737852A CN101471394A (zh) 2007-12-29 2007-12-29 铜铟镓硫硒薄膜太阳电池光吸收层的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/826,008 Continuation-In-Part US9735297B2 (en) 2007-12-29 2010-06-29 Method for preparing light absorption layer of copper-indium-gallium-sulfur-selenium thin film solar cells

Publications (1)

Publication Number Publication Date
WO2009089754A1 true WO2009089754A1 (fr) 2009-07-23

Family

ID=40828635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073805 WO2009089754A1 (fr) 2007-12-29 2008-12-29 Procédé de préparation d'une couche d'absorption de la lumière d'une pile solaire à film de cuivre-indium-gallium-soufre-sélénium

Country Status (8)

Country Link
US (1) US9735297B2 (zh)
EP (1) EP2234168A4 (zh)
JP (1) JP5646342B2 (zh)
KR (1) KR101633388B1 (zh)
CN (2) CN101471394A (zh)
BR (1) BRPI0821501B8 (zh)
RU (1) RU2446510C1 (zh)
WO (1) WO2009089754A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141307A (ja) * 2008-11-11 2010-06-24 Kyocera Corp 薄膜太陽電池の製法
WO2011075728A2 (en) * 2009-12-18 2011-06-23 The Regents Of The University Of California A simple route for alkali metal incorporation in solution-processed crystalline semiconductors
CN102652367A (zh) * 2010-01-29 2012-08-29 京瓷株式会社 半导体层的制造方法,光电转换装置的制造方法及半导体层形成用溶液
US8282995B2 (en) 2010-09-30 2012-10-09 Rohm And Haas Electronic Materials Llc Selenium/group 1b/group 3a ink and methods of making and using same
RU2492938C1 (ru) * 2012-02-15 2013-09-20 Микаил Гаджимагомедович Вердиев Способ нанесения пленок веществ на различные подложки
CN104064626A (zh) * 2014-06-25 2014-09-24 青岛科技大学 一种循环浸渍制备Cu2ZnSn(S1-x,Sex)4纳米晶薄膜的方法
CN111569856A (zh) * 2020-04-03 2020-08-25 清华-伯克利深圳学院筹备办公室 In-Ga2O3复合光催化剂及其制备方法和应用

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471394A (zh) 2007-12-29 2009-07-01 中国科学院上海硅酸盐研究所 铜铟镓硫硒薄膜太阳电池光吸收层的制备方法
CN101700873B (zh) * 2009-11-20 2013-03-27 上海交通大学 铜锌锡硒纳米粒子的制备方法
JP5464984B2 (ja) * 2009-11-26 2014-04-09 京セラ株式会社 半導体層の製造方法および光電変換装置の製造方法
CN102130202A (zh) * 2010-01-14 2011-07-20 正峰新能源股份有限公司 非真空形成铜铟镓硫硒吸收层及硫化镉缓冲层的方法及系统
CN101820030A (zh) * 2010-02-11 2010-09-01 昆山正富机械工业有限公司 非真空制作铜铟镓硒和/或硫光吸收层的方法
CN101820029A (zh) * 2010-02-11 2010-09-01 昆山正富机械工业有限公司 非真空制作铜铟镓硒和/或硫的太阳能电池
CN101818375A (zh) * 2010-02-11 2010-09-01 昆山正富机械工业有限公司 以非真空工艺制作铜铟镓硒(硫)光吸收层的方法
DE102011004652A1 (de) * 2010-02-26 2011-09-01 Electronics And Telecommunications Research Institute Verfahren zur Herstellung einer lichtabsorbierenden Dünnfilmschicht und ein dieses verwendendes Verfahren zur Herstellung einer Dünnfilm-Solarzelle
CN101771106B (zh) * 2010-03-05 2011-10-05 中国科学院上海硅酸盐研究所 铜锌镉锡硫硒薄膜太阳电池光吸收层的制备方法
CN101789469B (zh) * 2010-03-05 2013-01-02 中国科学院上海硅酸盐研究所 铜铟镓硒硫薄膜太阳电池光吸收层的制备方法
CN102024858B (zh) * 2010-04-19 2013-12-04 福建欧德生光电科技有限公司 油墨、薄膜太阳能电池及其制造方法
CN101885071B (zh) * 2010-05-28 2012-04-25 电子科技大学 一种铜锌锡硒纳米粉末材料的制备方法
CN101958369B (zh) * 2010-07-27 2011-12-28 上海太阳能电池研究与发展中心 一种铜铟镓硒薄膜材料的制备方法
CN101944552B (zh) * 2010-07-30 2012-02-29 合肥工业大学 一种太阳能电池光吸收层材料cigs薄膜的制备方法
TWI565063B (zh) * 2010-10-01 2017-01-01 應用材料股份有限公司 用在薄膜電晶體應用中的砷化鎵類的材料
KR101116705B1 (ko) * 2010-10-06 2012-03-13 한국에너지기술연구원 Cigs 박막의 용액상 제조방법 및 이에 의해 제조된 cigs 박막
US20120100663A1 (en) * 2010-10-26 2012-04-26 International Business Machines Corporation Fabrication of CuZnSn(S,Se) Thin Film Solar Cell with Valve Controlled S and Se
CN102024878A (zh) * 2010-11-03 2011-04-20 上海联孚新能源科技有限公司 一种太阳能电池用铜铟镓硫薄膜的制备方法
US20130264526A1 (en) * 2010-12-03 2013-10-10 E I Du Pont De Nemours And Company Molecular precursors and processes for preparing copper indium gallium sulfide/selenide coatings and films
TWI531078B (zh) * 2010-12-29 2016-04-21 友達光電股份有限公司 太陽電池的製造方法
KR101124226B1 (ko) * 2011-02-15 2012-03-27 한국화학연구원 전구체를 이용한 cis 박막의 제조방법
EP2676300A4 (en) * 2011-02-18 2017-05-03 University of Washington Through Its Center for Commercialization Methods of forming semiconductor films including i2-ii-iv-vi4 and i2-(ii,iv)-iv-vi4 semiconductor films and electronic devices including the semiconductor films
WO2013019299A2 (en) * 2011-05-11 2013-02-07 Qd Vision, Inc. Method for processing devices including quantum dots and devices
US8268270B1 (en) * 2011-06-10 2012-09-18 Tokyo Ohka Kogyo Co., Ltd. Coating solution for forming a light-absorbing layer of a chalcopyrite solar cell, method of producing a light-absorbing layer of a chalcopyrite solar cell, method of producing a chalcopyrite solar cell and method of producing a coating solution for forming a light-absorbing layer of a chalcopyrite solar cell
TW201318967A (zh) * 2011-06-10 2013-05-16 Tokyo Ohka Kogyo Co Ltd 聯胺配位Cu硫屬化物錯合物及其製造方法,光吸收層形成用塗佈液,以及光吸收層形成用塗佈液之製造方法
CN102347401A (zh) * 2011-09-02 2012-02-08 普乐新能源(蚌埠)有限公司 太阳能电池铜铟镓硒膜层的制备方法
JP5739300B2 (ja) * 2011-10-07 2015-06-24 Dowaエレクトロニクス株式会社 セレン化インジウム粒子粉末およびその製造方法
WO2013125818A1 (ko) * 2012-02-24 2013-08-29 영남대학교 산학협력단 태양 전지 제조 장치 및 태양 전지 제조 방법
KR101326782B1 (ko) * 2012-02-24 2013-11-08 영남대학교 산학협력단 태양 전지 제조 장치
KR101326770B1 (ko) * 2012-02-24 2013-11-20 영남대학교 산학협력단 태양 전지 제조 방법
KR101298026B1 (ko) * 2012-04-13 2013-08-26 한국화학연구원 태양전지 광활성층의 제조방법
US9082619B2 (en) 2012-07-09 2015-07-14 International Solar Electric Technology, Inc. Methods and apparatuses for forming semiconductor films
CN102790130B (zh) * 2012-08-09 2015-08-05 中国科学院长春应用化学研究所 一种吸光层薄膜的制备方法
KR101388451B1 (ko) * 2012-08-10 2014-04-24 한국에너지기술연구원 탄소층이 감소한 ci(g)s계 박막의 제조방법, 이에 의해 제조된 박막 및 이를 포함하는 태양전지
US8992874B2 (en) * 2012-09-12 2015-03-31 Tokyo Ohka Kogyo Co., Ltd. Method of producing hydrazine-coordinated Cu chalcogenide complex
US20140117293A1 (en) * 2012-10-29 2014-05-01 Tokyo Ohka Kogyo Co., Ltd. Coating solution for forming light-absorbing layer, and method of producing coating solution for forming light-absorbing layer
CN102983222A (zh) * 2012-12-06 2013-03-20 许昌天地和光能源有限公司 具有梯度带隙分布的吸收层制备方法
TWI495740B (zh) * 2012-12-14 2015-08-11 Nat Inst Chung Shan Science & Technology 軟性太陽能電池光吸收層之真空製程設備及其製造方法
KR101450426B1 (ko) * 2013-01-09 2014-10-14 연세대학교 산학협력단 칼코겐화물 흡수층용 나트륨 도핑 용액 및 이를 이용한 박막태양전지 제조방법
ITUD20130030A1 (it) * 2013-03-01 2014-09-02 Sumeet Kumar Nanomateriali compositi ibridi
KR101590224B1 (ko) * 2013-04-11 2016-01-29 제일모직주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
US9105798B2 (en) * 2013-05-14 2015-08-11 Sun Harmonics, Ltd Preparation of CIGS absorber layers using coated semiconductor nanoparticle and nanowire networks
CN105308760B (zh) * 2013-06-03 2019-06-18 东京应化工业株式会社 络合物溶液、光吸收层及太阳能电池的制造方法
CN103325886B (zh) * 2013-06-09 2017-07-18 徐东 一种具有能带梯度分布的铜铟铝硒(cias)薄膜的制备方法
ES2869193T3 (es) * 2013-08-01 2021-10-25 Lg Chemical Ltd Método de fabricación de un precursor aglomerado para fabricar una capa de absorción de luz
KR102164628B1 (ko) * 2013-08-05 2020-10-13 삼성전자주식회사 나노 결정 합성 방법
US8999746B2 (en) 2013-08-08 2015-04-07 Tokyo Ohka Kogyo Co., Ltd. Method of forming metal chalcogenide dispersion, metal chalcogenide dispersion, method of producing light absorbing layer of solar cell, method of producing solar cell
CN103602982A (zh) * 2013-11-21 2014-02-26 中国科学院上海硅酸盐研究所 铜铟镓硫硒薄膜太阳电池光吸收层的非真空制备方法
CN103633182B (zh) * 2013-11-27 2017-04-12 上海富际新能源科技有限公司 铜铟镓硫硒敏化半导体阳极太阳电池及其制备方法
KR101462498B1 (ko) * 2013-12-18 2014-11-19 한국생산기술연구원 Cigs 흡수층 제조방법, 이를 이용한 박막 태양전지 제조방법 및 박막 태양전지
CN103928575A (zh) * 2014-04-29 2014-07-16 中国科学院长春应用化学研究所 一种吸光层薄膜、其制备方法和铜基薄膜太阳能电池
CN104037248A (zh) * 2014-07-08 2014-09-10 厦门大学 一种铜铟镓硫硒薄膜材料的制备方法
KR101532883B1 (ko) * 2014-09-02 2015-07-02 성균관대학교산학협력단 전이금속 디칼코게나이드 박막의 형성 방법
WO2016068155A1 (ja) * 2014-10-30 2016-05-06 東京応化工業株式会社 均一系塗布液及びその製造方法、太陽電池用光吸収層及びその製造方法、並びに太陽電池及びその製造方法
JP6554332B2 (ja) * 2014-10-30 2019-07-31 東京応化工業株式会社 均一系塗布液及びその製造方法、太陽電池用光吸収層及びその製造方法、並びに太陽電池及びその製造方法
TW201621068A (zh) * 2014-12-09 2016-06-16 新能光電科技股份有限公司 銅銦鎵硒之表面硫化的製程方法
KR101793640B1 (ko) 2015-09-24 2017-11-20 재단법인대구경북과학기술원 인듐을 이용한 태양전지용 czts계 흡수층 박막, 이의 제조방법 및 이를 이용한 태양전지
CN106340545B (zh) * 2016-09-14 2018-06-12 南京邮电大学 Cis及cigs薄膜太阳能电池吸光层的制备及新溶剂在其中的应用
TWI619614B (zh) * 2017-05-04 2018-04-01 施權峰 太陽能吸收層及其製作方法
CN107195697B (zh) * 2017-06-01 2019-05-03 中南大学 一种铜钡(锶/钙)锡硫(硒)薄膜的制备方法
RU2660408C1 (ru) * 2017-08-11 2018-07-06 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ изготовления светопоглощающих элементов оптических систем на титановых подложках
JP2019087745A (ja) * 2017-11-08 2019-06-06 東京応化工業株式会社 均一系塗布液及びその製造方法
KR102031481B1 (ko) * 2018-02-06 2019-10-11 중앙대학교 산학협력단 금속-칼코겐 박막이 구비된 전자 부재의 제조 방법 및 이에 의해 제조된 금속-칼코겐 박막이 구비된 전자 부재를 포함하는 전자 소자
RU2682836C1 (ru) 2018-05-29 2019-03-21 Общество с ограниченной ответственностью "Солартек" Способ изготовления светопроницаемого тонкопленочного солнечного модуля на основе халькопирита
CN109817734A (zh) * 2018-12-26 2019-05-28 北京铂阳顶荣光伏科技有限公司 一种铜铟镓硒薄膜太阳能电池用吸收层的制备方法
CN110379872A (zh) * 2019-05-31 2019-10-25 北京铂阳顶荣光伏科技有限公司 铜铟镓硒太阳能电池吸收层的制备方法及太阳能电池
US11018275B2 (en) 2019-10-15 2021-05-25 Applied Materials, Inc. Method of creating CIGS photodiode for image sensor applications
CN110752272B (zh) * 2019-10-18 2021-07-06 信阳师范学院 一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法
CN112756604B (zh) * 2020-12-22 2021-11-05 吉林大学 一种类地幔条件烧结聚晶金刚石复合片及其制备方法
RU2764711C1 (ru) * 2021-06-17 2022-01-19 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" (Сколковский институт науки и технологий) Электрон-селективный слой на основе оксида индия, легированного алюминием, способ его изготовления и фотовольтаическое устройство на его основе
CN113571406B (zh) * 2021-07-26 2023-06-27 福建师范大学 一种液相硒化制备硒硫化锑薄膜的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316515A (ja) * 1995-05-22 1996-11-29 Yazaki Corp 薄膜太陽電池の製造方法
US5730852A (en) * 1995-09-25 1998-03-24 Davis, Joseph & Negley Preparation of cuxinygazsen (X=0-2, Y=0-2, Z=0-2, N=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells
US5858121A (en) * 1995-09-13 1999-01-12 Matsushita Electric Industrial Co., Ltd. Thin film solar cell and method for manufacturing the same
US6127202A (en) 1998-07-02 2000-10-03 International Solar Electronic Technology, Inc. Oxide-based method of making compound semiconductor films and making related electronic devices
US6268014B1 (en) 1997-10-02 2001-07-31 Chris Eberspacher Method for forming solar cell materials from particulars
US20060121701A1 (en) * 2004-03-15 2006-06-08 Solopower, Inc. Technique and apparatus for depositing layers of semiconductors for solar cell and module fabrication
US7091136B2 (en) * 2001-04-16 2006-08-15 Basol Bulent M Method of forming semiconductor compound film for fabrication of electronic device and film produced by same
CN101002335A (zh) * 2004-08-09 2007-07-18 昭和砚壳石油株式会社 Cis化合物半导体薄膜太阳能电池以及形成该太阳能电池的光吸收层的方法
US7306823B2 (en) 2004-09-18 2007-12-11 Nanosolar, Inc. Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8715082D0 (en) * 1987-06-26 1987-08-05 Prutec Ltd Solar cells
DE3887650T2 (de) * 1987-11-27 1994-08-04 Siemens Solar Ind Lp Herstellungsverfahren einer Dünnschichtsonnenzelle.
JPH01152766A (ja) * 1987-12-10 1989-06-15 Matsushita Electric Ind Co Ltd セレン化インジウム銅の製造方法
JPH02180715A (ja) * 1988-12-30 1990-07-13 Dowa Mining Co Ltd 1 3 6族化合物の製造方法
JPH0789719A (ja) * 1993-09-20 1995-04-04 Hitachi Maxell Ltd 銅インジウム硫化物またはセレン化物の製造法
US6126740A (en) * 1995-09-29 2000-10-03 Midwest Research Institute Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films
JP4982641B2 (ja) * 2000-04-12 2012-07-25 株式会社林原 半導体層、これを用いる太陽電池、及びそれらの製造方法並びに用途
RU2212080C2 (ru) * 2001-11-16 2003-09-10 Государственное научное учреждение "Институт электроники НАН Беларуси" СПОСОБ ПОЛУЧЕНИЯ ХАЛЬКОПИРИТНЫХ CuInSe2, Cu (In, Ga)Se2, CuGaSe2 ТОНКИХ ПЛЕНОК
US6992202B1 (en) * 2002-10-31 2006-01-31 Ohio Aerospace Institute Single-source precursors for ternary chalcopyrite materials, and methods of making and using the same
CN100490205C (zh) * 2003-07-10 2009-05-20 国际商业机器公司 淀积金属硫族化物膜的方法和制备场效应晶体管的方法
US6875661B2 (en) * 2003-07-10 2005-04-05 International Business Machines Corporation Solution deposition of chalcogenide films
CN1809932A (zh) * 2003-12-05 2006-07-26 松下电器产业株式会社 复合半导体膜、太阳能电池及其制备方法
US20070163383A1 (en) * 2004-02-19 2007-07-19 Nanosolar, Inc. High-throughput printing of nanostructured semiconductor precursor layer
US8679587B2 (en) * 2005-11-29 2014-03-25 State of Oregon acting by and through the State Board of Higher Education action on Behalf of Oregon State University Solution deposition of inorganic materials and electronic devices made comprising the inorganic materials
CA2637111C (en) * 2006-01-12 2013-02-26 Heliovolt Corporation Compositions including controlled segregated phase domain structures
EP1998902A2 (en) * 2006-02-23 2008-12-10 Van Duren, Jeroen K.J. High-throughput formation of semiconductor layer by use of chalcogen and inter-metallic material
US20100029036A1 (en) * 2006-06-12 2010-02-04 Robinson Matthew R Thin-film devices formed from solid group iiia particles
KR101030780B1 (ko) * 2007-11-14 2011-04-27 성균관대학교산학협력단 Ⅰ-ⅲ-ⅵ2 나노입자의 제조방법 및 다결정 광흡수층박막의 제조방법
CN101471394A (zh) 2007-12-29 2009-07-01 中国科学院上海硅酸盐研究所 铜铟镓硫硒薄膜太阳电池光吸收层的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316515A (ja) * 1995-05-22 1996-11-29 Yazaki Corp 薄膜太陽電池の製造方法
US5858121A (en) * 1995-09-13 1999-01-12 Matsushita Electric Industrial Co., Ltd. Thin film solar cell and method for manufacturing the same
US5730852A (en) * 1995-09-25 1998-03-24 Davis, Joseph & Negley Preparation of cuxinygazsen (X=0-2, Y=0-2, Z=0-2, N=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells
US6268014B1 (en) 1997-10-02 2001-07-31 Chris Eberspacher Method for forming solar cell materials from particulars
US6127202A (en) 1998-07-02 2000-10-03 International Solar Electronic Technology, Inc. Oxide-based method of making compound semiconductor films and making related electronic devices
US7091136B2 (en) * 2001-04-16 2006-08-15 Basol Bulent M Method of forming semiconductor compound film for fabrication of electronic device and film produced by same
US20060121701A1 (en) * 2004-03-15 2006-06-08 Solopower, Inc. Technique and apparatus for depositing layers of semiconductors for solar cell and module fabrication
CN101002335A (zh) * 2004-08-09 2007-07-18 昭和砚壳石油株式会社 Cis化合物半导体薄膜太阳能电池以及形成该太阳能电池的光吸收层的方法
US7306823B2 (en) 2004-09-18 2007-12-11 Nanosolar, Inc. Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BHATTACHARYA, J ELECTROCHEM. SOC., vol. 130, 1983, pages 2040
See also references of EP2234168A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141307A (ja) * 2008-11-11 2010-06-24 Kyocera Corp 薄膜太陽電池の製法
WO2011075728A2 (en) * 2009-12-18 2011-06-23 The Regents Of The University Of California A simple route for alkali metal incorporation in solution-processed crystalline semiconductors
WO2011075728A3 (en) * 2009-12-18 2011-10-06 The Regents Of The University Of California A simple route for alkali metal incorporation in solution-processed crystalline semiconductors
US20120280362A1 (en) * 2009-12-18 2012-11-08 The Regents Of The University Of California Simple route for alkali metal incorporation in solution-processed crystalline semiconductors
CN102652367A (zh) * 2010-01-29 2012-08-29 京瓷株式会社 半导体层的制造方法,光电转换装置的制造方法及半导体层形成用溶液
CN102652367B (zh) * 2010-01-29 2015-01-28 京瓷株式会社 半导体层的制造方法,光电转换装置的制造方法及半导体层形成用溶液
US8282995B2 (en) 2010-09-30 2012-10-09 Rohm And Haas Electronic Materials Llc Selenium/group 1b/group 3a ink and methods of making and using same
RU2492938C1 (ru) * 2012-02-15 2013-09-20 Микаил Гаджимагомедович Вердиев Способ нанесения пленок веществ на различные подложки
CN104064626A (zh) * 2014-06-25 2014-09-24 青岛科技大学 一种循环浸渍制备Cu2ZnSn(S1-x,Sex)4纳米晶薄膜的方法
CN111569856A (zh) * 2020-04-03 2020-08-25 清华-伯克利深圳学院筹备办公室 In-Ga2O3复合光催化剂及其制备方法和应用
CN111569856B (zh) * 2020-04-03 2023-06-09 清华-伯克利深圳学院筹备办公室 In-Ga2O3复合光催化剂及其制备方法和应用

Also Published As

Publication number Publication date
US9735297B2 (en) 2017-08-15
RU2446510C1 (ru) 2012-03-27
CN101471394A (zh) 2009-07-01
JP2011508439A (ja) 2011-03-10
BRPI0821501B8 (pt) 2022-08-23
RU2010131761A (ru) 2012-02-10
JP5646342B2 (ja) 2014-12-24
KR20100099753A (ko) 2010-09-13
CN101960610B (zh) 2012-04-11
BRPI0821501A2 (pt) 2015-06-16
BRPI0821501B1 (pt) 2019-02-12
EP2234168A4 (en) 2015-04-29
EP2234168A1 (en) 2010-09-29
US20110008927A1 (en) 2011-01-13
CN101960610A (zh) 2011-01-26
KR101633388B1 (ko) 2016-06-24

Similar Documents

Publication Publication Date Title
WO2009089754A1 (fr) Procédé de préparation d'une couche d'absorption de la lumière d'une pile solaire à film de cuivre-indium-gallium-soufre-sélénium
Liao et al. Hot-casting large-grain perovskite film for efficient solar cells: film formation and device performance
US20090260670A1 (en) Precursor ink for producing IB-IIIA-VIA semiconductors
JP6312668B2 (ja) 非晶質粒子のコロイド溶液の調製方法
Wang et al. Sb 2 S 3 solar cells: functional layer preparation and device performance
WO2012023519A1 (ja) 化合物半導体薄膜作製用インク、そのインクを用いて得た化合物半導体薄膜、その化合物半導体薄膜を備える太陽電池、およびその太陽電池の製造方法
CN108336233B (zh) 一种蓝黑色钙钛矿薄膜的制备方法及其应用
US9391231B2 (en) Method for preparing a thin layer of an absorber made of copper, zinc and tin sulfide(s), annealed thin layer and photovoltaic device thus obtained
CN102603201A (zh) 一种硒化亚铜薄膜的制备方法
CN108807145B (zh) 一种制备高效铜铟硒和铜铟镓硒薄膜太阳能电池的方法
CN105705596A (zh) 用于薄膜光伏装置的无机盐-纳米粒子墨水及相关方法
CN108461556A (zh) 制备高效czts太阳能电池的前驱体溶液及其电池制备与应用
JP5874645B2 (ja) 化合物半導体薄膜太陽電池及びその製造方法
KR101749137B1 (ko) 태양광 전지용 나노결정질 구리 인듐 디셀레니드 (cis) 및 잉크-기반 합금 흡수재층
Avellaneda et al. Synthesis of Cu2SnS3, Cu3SnS4, and Cu4SnS4 thin films by sulfurization of SnS-Cu layers at a selected temperature and/or Cu layers thickness
TW201300322A (zh) 銅銦鎵硫硒薄膜太陽電池光吸收層的製備方法
Kermadi et al. An in-depth investigation on the grain growth and the formation of secondary phases of ultrasonic-sprayed Cu2ZnSnS4 based thin films assisted by Na crystallization catalyst
CN106340545B (zh) Cis及cigs薄膜太阳能电池吸光层的制备及新溶剂在其中的应用
JP2019024106A (ja) 銅リッチな銅インジウム(ガリウム)ジセレニド/ジスルフィドの調製
CN117174593B (zh) 一种基于添加氨水制备铜锌锡硫硒薄膜前驱体溶液、铜锌锡硫硒薄膜及其光伏器件的方法
Chen et al. Molecular-solution printing of Cu2ZnSnS4 (CZTS) thin film
JP2011099059A (ja) 化合物半導体薄膜作製用インク、そのインクを用いて得た化合物半導体薄膜、その化合物半導体薄膜を備える太陽電池、及びその太陽電池の製造方法
Farhana et al. The impact of pre-annealing temperature on the performance of sb2s3 film in planar solar cell structure
TWI485872B (zh) 漿料與太陽能電池之吸光層的形成方法
CN117320529A (zh) 一种籽晶诱导生长的钙钛矿光活性层和钙钛矿太阳电池的制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880124039.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08870889

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010540020

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4748/DELNP/2010

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2008870889

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008870889

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107017034

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010131761

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0821501

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100629