RU2010131761A - Способ получения светопоглощающего слоя тонкопленочных солнечных элементов из меди-индия-галлия-серы-селена - Google Patents

Способ получения светопоглощающего слоя тонкопленочных солнечных элементов из меди-индия-галлия-серы-селена Download PDF

Info

Publication number
RU2010131761A
RU2010131761A RU2010131761/28A RU2010131761A RU2010131761A RU 2010131761 A RU2010131761 A RU 2010131761A RU 2010131761/28 A RU2010131761/28 A RU 2010131761/28A RU 2010131761 A RU2010131761 A RU 2010131761A RU 2010131761 A RU2010131761 A RU 2010131761A
Authority
RU
Russia
Prior art keywords
selenium
sulfur
copper
gallium
aforementioned
Prior art date
Application number
RU2010131761/28A
Other languages
English (en)
Other versions
RU2446510C1 (ru
Inventor
Фукианг ХУАНГ (CN)
Фукианг ХУАНГ
Яоминг ВАНГ (CN)
Яоминг ВАНГ
Original Assignee
Шанхайский Институт Керамики Китайской Академии Наук (Cn)
Шанхайский Институт Керамики Китайской Академии Наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шанхайский Институт Керамики Китайской Академии Наук (Cn), Шанхайский Институт Керамики Китайской Академии Наук filed Critical Шанхайский Институт Керамики Китайской Академии Наук (Cn)
Publication of RU2010131761A publication Critical patent/RU2010131761A/ru
Application granted granted Critical
Publication of RU2446510C1 publication Critical patent/RU2446510C1/ru

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

1. Способ получения светопоглощающего слоя тонкопленочного солнечного элемента из меди-индия-галлия-серы-селена (МИГСС) путем использования безвакуумного жидкофазного метода, включающего следующие стадии: ! (1) формирование устойчивых исходных растворов меди, индия, галлия, серы и селена путем растворения халькогенидов или галогенидов меди, индия, галлия и составляющих серы и селена в растворителе с сильными координационными группами, с последующим добавлением в раствор кондиционирующей добавки; при этом вышеупомянутые составляющие серы и селена выбираются из группы, состоящей из элементарной серы, элементарного селена, аминных или гидразиновых солей серы и селена; ! (2) получение смешанного раствора меди, индия, галлия, серы и селена путем смешивания исходных растворов, полученных на стадии (1), в соответствии со стехиометрическими соотношениями меди, индия и галлия в формуле Cu1-xJn1-yGaySe2-zSz в светопоглощающем слое тонкопленочного солнечного элемента на базе МИГСС вместе с избыточной серой и селеном, при этом 0≤х≤0,3, 0≤у≤1, 0≤z≤2, а степень избыточности серы или селена составляет 0-800%; ! (3) использование вышеупомянутого смешанного раствора, полученного на стадии (2), для получения тонкой пленки-предшественника на подложке посредством безвакуумного жидкофазного метода; ! (4) сушка и отжиг вышеупомянутой тонкой пленки-предшественника, полученной на стадии (3), для получения искомой составной тонкой пленки из МИГСС. ! 2. Способ по п.1, в котором ! вышеупомянутые халькогениды меди, индия и галлия из стадии (1) описаны формулой MQ, где М - медь, a Q - один или несколько халькогенов, выбранных из группы, состоящей из серы, селена и

Claims (14)

1. Способ получения светопоглощающего слоя тонкопленочного солнечного элемента из меди-индия-галлия-серы-селена (МИГСС) путем использования безвакуумного жидкофазного метода, включающего следующие стадии:
(1) формирование устойчивых исходных растворов меди, индия, галлия, серы и селена путем растворения халькогенидов или галогенидов меди, индия, галлия и составляющих серы и селена в растворителе с сильными координационными группами, с последующим добавлением в раствор кондиционирующей добавки; при этом вышеупомянутые составляющие серы и селена выбираются из группы, состоящей из элементарной серы, элементарного селена, аминных или гидразиновых солей серы и селена;
(2) получение смешанного раствора меди, индия, галлия, серы и селена путем смешивания исходных растворов, полученных на стадии (1), в соответствии со стехиометрическими соотношениями меди, индия и галлия в формуле Cu1-xJn1-yGaySe2-zSz в светопоглощающем слое тонкопленочного солнечного элемента на базе МИГСС вместе с избыточной серой и селеном, при этом 0≤х≤0,3, 0≤у≤1, 0≤z≤2, а степень избыточности серы или селена составляет 0-800%;
(3) использование вышеупомянутого смешанного раствора, полученного на стадии (2), для получения тонкой пленки-предшественника на подложке посредством безвакуумного жидкофазного метода;
(4) сушка и отжиг вышеупомянутой тонкой пленки-предшественника, полученной на стадии (3), для получения искомой составной тонкой пленки из МИГСС.
2. Способ по п.1, в котором
вышеупомянутые халькогениды меди, индия и галлия из стадии (1) описаны формулой MQ, где М - медь, a Q - один или несколько халькогенов, выбранных из группы, состоящей из серы, селена и теллура; или
вышеупомянутые халькогениды меди, индия и галлия из стадии (1) описаны формулой M2Q, где М - медь, a Q - один или несколько халькогенов, выбранных из группы, состоящей из серы, селена и теллура; или
вышеупомянутые халькогениды меди, индия и галлия из стадии (1) описаны формулой М′2Q3, где М′ - индий и/или галлий, a Q - один или несколько халькогенов, выбранных из группы, состоящей из серы, селена и теллура; или
вышеупомянутые халькогениды меди, индия и галлия из стадии (1) описаны формулой MM′Q2, где М - медь, М′ - индий и/или галлий, a Q - один или несколько халькогенов, выбранных из группы, состоящей из серы, селена и теллура.
3. Способ по п.1, в котором
вышеупомянутые галогениды меди, индия и галлия из стадии (1) описаны формулой MX, где М - медь, а Х - один или несколько галогенов, выбранных из группы, состоящей из хлора, брома и йода; или
вышеупомянутые галогениды меди, индия и галлия из стадии (1) описаны формулой МХ2, где М - медь, а X - один или несколько галогенов, выбранных из группы, состоящей из хлора, брома и йода; или
вышеупомянутые галогениды меди, индия и галлия из стадии (1) описаны формулой М′А3, где М′ - индий и/или галлий, а X - один или несколько галогенов, выбранных из группы, состоящей из хлора, брома и йода; или
вышеупомянутые галогениды меди, индия и галлия из стадии (1) описаны формулой ММ′Х4 где М - медь, М′ - индий и/или галлий, а X - один или несколько галогенов, выбранных из группы, состоящей из хлора, брома и йода.
4. Способ по п.1, в котором
а) вышеупомянутые аминные соли серы и селена из стадии (1) образованы путем соединения H2S и H2Se с N-R1R2R3, при этом R1, R2 и R3 независимо друг от друга выбираются из группы: арил, водород, метил, этил или С36 алкил; или
б) вышеупомянутые гидразиновые соли серы и селена из стадии (1) образованы путем соединения H2S и H2Se с R4R5N-NR6R7, при этом R4, R5, R6 и R7 независимо друг от друга выбираются из группы: арил, водород, метил, этил или С36 алкил.
5. Способ по п.1, в котором вышеупомянутый растворитель из стадии (1), содержащий сильные координационные группы, выбирается из следующей группы: вода (Н2O), жидкий аммиак, соединения гидразина с формулой R4R5N-NR6R7, низший спирт, этаноламин, диэтаноламин, триэтаноламин, изопропаноламин, формамид, N-метилформамид, N,N-диметилформамид, ацетамид, N-метилацетамид, N,N-диметилацетамид, диметилсульфоксид, тетрагидротиофен-1,1-диоксид, пирролидон или их смесь; при этом R4, R5, R6 и R7 независимо друг от друга выбираются из группы: арил, водород, метил, этил или С36 алкил.
6. Способ по п.5, в котором вышеупомянутый низший спирт выбирается из следующей группы: метанол, этанол, пропанол, изопропанол, бутанол, изобутацол, втор-бутанол, трет-бутанол, пентанол, оптически активный пентанол (2-метил-1-бутанол), изопентанол, втор-пентанол, трет-пентанол и 3-метил-2-бутанол, а также их смеси.
7. Способ по п.1, в котором вышеупомянутая кондиционирующая добавка в растворе из стадии (1) выбирается из следующей группы: (1) халькоген, (2) переходный металл, (3) халькогенид щелочного металла, (4) халькогенид щелочноземельного металла, (5) аминная соль халькогена, (6) щелочной металл, (7) щелочноземельный металл.
8. Способ по п.7, в котором
(а) вышеупомянутый халькоген выбирается из группы, состоящей из следующих элементов: сера, селен, теллур и их комбинация;
(б) вышеупомянутый переходный металл выбирается из группы, состоящей из следующих элементов: Ni, Pd, Pt, Rh, Ir, Ru, их сплавы или комбинации;
(в) вышеупомянутый халькогенид щелочного металла, обозначенный как А2Q, при этом А выбирается из группы, состоящей из следующих элементов: Li, Na, К, Rb, Cs, их комбинации, a Q выбирается из группы, состоящей из следующих элементов: S, Se, Те, их комбинации;
(г) вышеупомянутый халькогенид щелочноземельного металла, обозначенный как BQ, при этом В выбирается из группы, состоящей из следующих элементов: Mg, Са, Sr, Ва, их комбинации, a Q выбирается из группы, состоящей из следующих элементов: S, Se, Те, их комбинации;
(д) вышеупомянутая аминная соль халькогена представляет собой одну соль или смесь солей, образованных соединением H2S и H2Se или Н2Те с N-R1R2R3, при этом R1, R2 и R3 независимо друг от друга выбираются из группы: арил, водород, метил, этил, С36 алкил;
(е) вышеупомянутый щелочной металл выбирается из группы, состоящей из следующих элементов: Li, Na, К, Rb, Cs, а также их сплавы или комбинации;
(ж) вышеупомянутый щелочноземельный металл выбирается из группы, состоящей из следующих элементов: Mg, Са, Sr, Ва, а также их сплавы или комбинации.
9. Способ по п.1, в котором вышеупомянутая степень избыточности серы или селена составляет 100-400%.
10. Способ по п.1, в котором вышеупомянутый светопоглощающий слой тонкопленочных солнечных элементов из МИГСС из стадии (2) соответствует формуле Cu1-xJn1-yGaySe1-zSz где 0≤х≤0,3, 0,2≤у≤0,4, 0≤z≤0,2.
11. Способ по п. 1, в котором
а) вышеупомянутый безвакуумный жидкофазный метод, используемый на стадии (3) для получения тонкой пленки-предшественника, выбирается из группы, состоящей из следующих операций: центрифугирование, пленочное литье, осаждение , методом распыления, покрытие методом погружения, трафаретная печать, струйная печать, капельное литье, нанесение валиком, шлицевое покрытие, покрытие методом дозирующего валика, капиллярное покрытие, покрытие с помощью бруса с сечением в форме запятой, покрытие с помощью гравированного цилиндра и т.д.;
б) вышеупомянутая подложка из стадии (3) выбирается из группы, состоящей из следующих элементов: полиимид, кремниевая пластина, пластина из гидрогенизированного аморфного кремния, карбид кремния, оксид кремния, кварц, сапфир, стекло, металл, алмазоподобный углерод, гидрогенизированный алмазоподобный углерод, нитрид галлия, арсенид галлия, германий, сплавы Si-Ge, оксид индия и титана, карбид бора, нитрид кремния, оксид алюминия, окись церия, оксид олова, титанат цинка и пластик.
12. Способ по п.1, в котором отжиг вышеупомянутой тонкой пленки-предшественника выполняется в диапазоне температур от 50 до 850°С.
13. Способ по п.12, в котором отжиг вышеупомянутой тонкой пленки-предшественника выполняется в диапазоне температур от 250 до 650°С.
14. Способ по п.1, в котором толщина вышеупомянутой искомой составной тонкой пленки из МИГСС из стадии (4) составляет 5-5000 нм.
RU2010131761/28A 2007-12-29 2008-12-29 Способ получения светопоглощающего слоя тонкопленочных солнечных элементов из меди-индия-галлия-серы-селена RU2446510C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710173785.2 2007-12-29
CNA2007101737852A CN101471394A (zh) 2007-12-29 2007-12-29 铜铟镓硫硒薄膜太阳电池光吸收层的制备方法

Publications (2)

Publication Number Publication Date
RU2010131761A true RU2010131761A (ru) 2012-02-10
RU2446510C1 RU2446510C1 (ru) 2012-03-27

Family

ID=40828635

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010131761/28A RU2446510C1 (ru) 2007-12-29 2008-12-29 Способ получения светопоглощающего слоя тонкопленочных солнечных элементов из меди-индия-галлия-серы-селена

Country Status (8)

Country Link
US (1) US9735297B2 (ru)
EP (1) EP2234168A4 (ru)
JP (1) JP5646342B2 (ru)
KR (1) KR101633388B1 (ru)
CN (2) CN101471394A (ru)
BR (1) BRPI0821501B8 (ru)
RU (1) RU2446510C1 (ru)
WO (1) WO2009089754A1 (ru)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471394A (zh) 2007-12-29 2009-07-01 中国科学院上海硅酸盐研究所 铜铟镓硫硒薄膜太阳电池光吸收层的制备方法
JP5511320B2 (ja) * 2008-11-11 2014-06-04 京セラ株式会社 薄膜太陽電池の製法
CN101700873B (zh) * 2009-11-20 2013-03-27 上海交通大学 铜锌锡硒纳米粒子的制备方法
JP5464984B2 (ja) * 2009-11-26 2014-04-09 京セラ株式会社 半導体層の製造方法および光電変換装置の製造方法
US20120280362A1 (en) * 2009-12-18 2012-11-08 The Regents Of The University Of California Simple route for alkali metal incorporation in solution-processed crystalline semiconductors
CN102130202A (zh) * 2010-01-14 2011-07-20 正峰新能源股份有限公司 非真空形成铜铟镓硫硒吸收层及硫化镉缓冲层的方法及系统
EP2530728B1 (en) * 2010-01-29 2018-01-31 Kyocera Corporation Method for manufacturing a semiconductor layer, method for manufacturing a photoelectric conversion device, and a semiconductor layer forming solution
CN101820029A (zh) * 2010-02-11 2010-09-01 昆山正富机械工业有限公司 非真空制作铜铟镓硒和/或硫的太阳能电池
CN101818375A (zh) * 2010-02-11 2010-09-01 昆山正富机械工业有限公司 以非真空工艺制作铜铟镓硒(硫)光吸收层的方法
CN101820030A (zh) * 2010-02-11 2010-09-01 昆山正富机械工业有限公司 非真空制作铜铟镓硒和/或硫光吸收层的方法
DE102011004652A1 (de) * 2010-02-26 2011-09-01 Electronics And Telecommunications Research Institute Verfahren zur Herstellung einer lichtabsorbierenden Dünnfilmschicht und ein dieses verwendendes Verfahren zur Herstellung einer Dünnfilm-Solarzelle
CN101789469B (zh) * 2010-03-05 2013-01-02 中国科学院上海硅酸盐研究所 铜铟镓硒硫薄膜太阳电池光吸收层的制备方法
CN101771106B (zh) * 2010-03-05 2011-10-05 中国科学院上海硅酸盐研究所 铜锌镉锡硫硒薄膜太阳电池光吸收层的制备方法
CN102024858B (zh) * 2010-04-19 2013-12-04 福建欧德生光电科技有限公司 油墨、薄膜太阳能电池及其制造方法
CN101885071B (zh) * 2010-05-28 2012-04-25 电子科技大学 一种铜锌锡硒纳米粉末材料的制备方法
CN101958369B (zh) * 2010-07-27 2011-12-28 上海太阳能电池研究与发展中心 一种铜铟镓硒薄膜材料的制备方法
CN101944552B (zh) * 2010-07-30 2012-02-29 合肥工业大学 一种太阳能电池光吸收层材料cigs薄膜的制备方法
US8282995B2 (en) 2010-09-30 2012-10-09 Rohm And Haas Electronic Materials Llc Selenium/group 1b/group 3a ink and methods of making and using same
KR101875159B1 (ko) * 2010-10-01 2018-07-06 어플라이드 머티어리얼스, 인코포레이티드 갈륨 아르제나이드 광흡수층을 지닌 고효율 태양 전지 소자
KR101116705B1 (ko) * 2010-10-06 2012-03-13 한국에너지기술연구원 Cigs 박막의 용액상 제조방법 및 이에 의해 제조된 cigs 박막
US20120100663A1 (en) * 2010-10-26 2012-04-26 International Business Machines Corporation Fabrication of CuZnSn(S,Se) Thin Film Solar Cell with Valve Controlled S and Se
CN102024878A (zh) * 2010-11-03 2011-04-20 上海联孚新能源科技有限公司 一种太阳能电池用铜铟镓硫薄膜的制备方法
JP2013545316A (ja) * 2010-12-03 2013-12-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 硫化/セレン化銅インジウムガリウムコーティングおよび膜を製造するための分子前駆体および方法
TWI531078B (zh) * 2010-12-29 2016-04-21 友達光電股份有限公司 太陽電池的製造方法
KR101124226B1 (ko) * 2011-02-15 2012-03-27 한국화학연구원 전구체를 이용한 cis 박막의 제조방법
US20140220728A1 (en) * 2011-02-18 2014-08-07 Hugh Hillhouse Methods of forming semiconductor films including i2-ii-iv-vi4 and i2-(ii,iv)-iv-vi4 semiconductor films and electronic devices including the semiconductor films
WO2013019299A2 (en) * 2011-05-11 2013-02-07 Qd Vision, Inc. Method for processing devices including quantum dots and devices
TW201318967A (zh) * 2011-06-10 2013-05-16 Tokyo Ohka Kogyo Co Ltd 聯胺配位Cu硫屬化物錯合物及其製造方法,光吸收層形成用塗佈液,以及光吸收層形成用塗佈液之製造方法
US8268270B1 (en) * 2011-06-10 2012-09-18 Tokyo Ohka Kogyo Co., Ltd. Coating solution for forming a light-absorbing layer of a chalcopyrite solar cell, method of producing a light-absorbing layer of a chalcopyrite solar cell, method of producing a chalcopyrite solar cell and method of producing a coating solution for forming a light-absorbing layer of a chalcopyrite solar cell
CN102347401A (zh) * 2011-09-02 2012-02-08 普乐新能源(蚌埠)有限公司 太阳能电池铜铟镓硒膜层的制备方法
JP5739300B2 (ja) * 2011-10-07 2015-06-24 Dowaエレクトロニクス株式会社 セレン化インジウム粒子粉末およびその製造方法
RU2492938C1 (ru) * 2012-02-15 2013-09-20 Микаил Гаджимагомедович Вердиев Способ нанесения пленок веществ на различные подложки
KR101326770B1 (ko) * 2012-02-24 2013-11-20 영남대학교 산학협력단 태양 전지 제조 방법
WO2013125818A1 (ko) * 2012-02-24 2013-08-29 영남대학교 산학협력단 태양 전지 제조 장치 및 태양 전지 제조 방법
KR101326782B1 (ko) * 2012-02-24 2013-11-08 영남대학교 산학협력단 태양 전지 제조 장치
KR101298026B1 (ko) * 2012-04-13 2013-08-26 한국화학연구원 태양전지 광활성층의 제조방법
US9082619B2 (en) 2012-07-09 2015-07-14 International Solar Electric Technology, Inc. Methods and apparatuses for forming semiconductor films
CN102790130B (zh) * 2012-08-09 2015-08-05 中国科学院长春应用化学研究所 一种吸光层薄膜的制备方法
KR101388451B1 (ko) * 2012-08-10 2014-04-24 한국에너지기술연구원 탄소층이 감소한 ci(g)s계 박막의 제조방법, 이에 의해 제조된 박막 및 이를 포함하는 태양전지
US8992874B2 (en) * 2012-09-12 2015-03-31 Tokyo Ohka Kogyo Co., Ltd. Method of producing hydrazine-coordinated Cu chalcogenide complex
US20140117293A1 (en) * 2012-10-29 2014-05-01 Tokyo Ohka Kogyo Co., Ltd. Coating solution for forming light-absorbing layer, and method of producing coating solution for forming light-absorbing layer
CN102983222A (zh) * 2012-12-06 2013-03-20 许昌天地和光能源有限公司 具有梯度带隙分布的吸收层制备方法
TWI495740B (zh) * 2012-12-14 2015-08-11 Nat Inst Chung Shan Science & Technology 軟性太陽能電池光吸收層之真空製程設備及其製造方法
KR101450426B1 (ko) * 2013-01-09 2014-10-14 연세대학교 산학협력단 칼코겐화물 흡수층용 나트륨 도핑 용액 및 이를 이용한 박막태양전지 제조방법
ITUD20130030A1 (it) * 2013-03-01 2014-09-02 Sumeet Kumar Nanomateriali compositi ibridi
KR101590224B1 (ko) * 2013-04-11 2016-01-29 제일모직주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
US9105798B2 (en) * 2013-05-14 2015-08-11 Sun Harmonics, Ltd Preparation of CIGS absorber layers using coated semiconductor nanoparticle and nanowire networks
CN105308760B (zh) * 2013-06-03 2019-06-18 东京应化工业株式会社 络合物溶液、光吸收层及太阳能电池的制造方法
CN103325886B (zh) * 2013-06-09 2017-07-18 徐东 一种具有能带梯度分布的铜铟铝硒(cias)薄膜的制备方法
WO2015016651A1 (ko) * 2013-08-01 2015-02-05 주식회사 엘지화학 태양전지 광흡수층 제조용 응집상 전구체 및 이의 제조방법
KR102164628B1 (ko) 2013-08-05 2020-10-13 삼성전자주식회사 나노 결정 합성 방법
US8999746B2 (en) 2013-08-08 2015-04-07 Tokyo Ohka Kogyo Co., Ltd. Method of forming metal chalcogenide dispersion, metal chalcogenide dispersion, method of producing light absorbing layer of solar cell, method of producing solar cell
CN103602982A (zh) * 2013-11-21 2014-02-26 中国科学院上海硅酸盐研究所 铜铟镓硫硒薄膜太阳电池光吸收层的非真空制备方法
CN103633182B (zh) * 2013-11-27 2017-04-12 上海富际新能源科技有限公司 铜铟镓硫硒敏化半导体阳极太阳电池及其制备方法
KR101462498B1 (ko) * 2013-12-18 2014-11-19 한국생산기술연구원 Cigs 흡수층 제조방법, 이를 이용한 박막 태양전지 제조방법 및 박막 태양전지
CN103928575A (zh) * 2014-04-29 2014-07-16 中国科学院长春应用化学研究所 一种吸光层薄膜、其制备方法和铜基薄膜太阳能电池
CN104064626B (zh) * 2014-06-25 2017-11-17 青岛科技大学 一种循环浸渍制备Cu2ZnSn(S1‑x,Sex)4纳米晶薄膜的方法
CN104037248A (zh) * 2014-07-08 2014-09-10 厦门大学 一种铜铟镓硫硒薄膜材料的制备方法
KR101532883B1 (ko) * 2014-09-02 2015-07-02 성균관대학교산학협력단 전이금속 디칼코게나이드 박막의 형성 방법
JP6554332B2 (ja) 2014-10-30 2019-07-31 東京応化工業株式会社 均一系塗布液及びその製造方法、太陽電池用光吸収層及びその製造方法、並びに太陽電池及びその製造方法
WO2016068155A1 (ja) * 2014-10-30 2016-05-06 東京応化工業株式会社 均一系塗布液及びその製造方法、太陽電池用光吸収層及びその製造方法、並びに太陽電池及びその製造方法
TW201621068A (zh) * 2014-12-09 2016-06-16 新能光電科技股份有限公司 銅銦鎵硒之表面硫化的製程方法
KR101793640B1 (ko) 2015-09-24 2017-11-20 재단법인대구경북과학기술원 인듐을 이용한 태양전지용 czts계 흡수층 박막, 이의 제조방법 및 이를 이용한 태양전지
CN106340545B (zh) * 2016-09-14 2018-06-12 南京邮电大学 Cis及cigs薄膜太阳能电池吸光层的制备及新溶剂在其中的应用
TWI619614B (zh) * 2017-05-04 2018-04-01 施權峰 太陽能吸收層及其製作方法
CN107195697B (zh) * 2017-06-01 2019-05-03 中南大学 一种铜钡(锶/钙)锡硫(硒)薄膜的制备方法
RU2660408C1 (ru) * 2017-08-11 2018-07-06 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ изготовления светопоглощающих элементов оптических систем на титановых подложках
JP2019087745A (ja) * 2017-11-08 2019-06-06 東京応化工業株式会社 均一系塗布液及びその製造方法
KR102031481B1 (ko) * 2018-02-06 2019-10-11 중앙대학교 산학협력단 금속-칼코겐 박막이 구비된 전자 부재의 제조 방법 및 이에 의해 제조된 금속-칼코겐 박막이 구비된 전자 부재를 포함하는 전자 소자
RU2682836C1 (ru) 2018-05-29 2019-03-21 Общество с ограниченной ответственностью "Солартек" Способ изготовления светопроницаемого тонкопленочного солнечного модуля на основе халькопирита
CN109817734A (zh) * 2018-12-26 2019-05-28 北京铂阳顶荣光伏科技有限公司 一种铜铟镓硒薄膜太阳能电池用吸收层的制备方法
CN110379872A (zh) * 2019-05-31 2019-10-25 北京铂阳顶荣光伏科技有限公司 铜铟镓硒太阳能电池吸收层的制备方法及太阳能电池
US11018275B2 (en) 2019-10-15 2021-05-25 Applied Materials, Inc. Method of creating CIGS photodiode for image sensor applications
CN110752272B (zh) * 2019-10-18 2021-07-06 信阳师范学院 一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法
CN111569856B (zh) * 2020-04-03 2023-06-09 清华-伯克利深圳学院筹备办公室 In-Ga2O3复合光催化剂及其制备方法和应用
CN112756604B (zh) * 2020-12-22 2021-11-05 吉林大学 一种类地幔条件烧结聚晶金刚石复合片及其制备方法
RU2764711C1 (ru) * 2021-06-17 2022-01-19 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" (Сколковский институт науки и технологий) Электрон-селективный слой на основе оксида индия, легированного алюминием, способ его изготовления и фотовольтаическое устройство на его основе
CN113571406B (zh) * 2021-07-26 2023-06-27 福建师范大学 一种液相硒化制备硒硫化锑薄膜的方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8715082D0 (en) * 1987-06-26 1987-08-05 Prutec Ltd Solar cells
DE3887650T2 (de) * 1987-11-27 1994-08-04 Siemens Solar Ind Lp Herstellungsverfahren einer Dünnschichtsonnenzelle.
JPH01152766A (ja) * 1987-12-10 1989-06-15 Matsushita Electric Ind Co Ltd セレン化インジウム銅の製造方法
JPH02180715A (ja) * 1988-12-30 1990-07-13 Dowa Mining Co Ltd 1 3 6族化合物の製造方法
JPH0789719A (ja) * 1993-09-20 1995-04-04 Hitachi Maxell Ltd 銅インジウム硫化物またはセレン化物の製造法
JPH08316515A (ja) * 1995-05-22 1996-11-29 Yazaki Corp 薄膜太陽電池の製造方法
JP3244408B2 (ja) * 1995-09-13 2002-01-07 松下電器産業株式会社 薄膜太陽電池及びその製造方法
US5730852A (en) * 1995-09-25 1998-03-24 Davis, Joseph & Negley Preparation of cuxinygazsen (X=0-2, Y=0-2, Z=0-2, N=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells
US6126740A (en) * 1995-09-29 2000-10-03 Midwest Research Institute Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films
US6268014B1 (en) 1997-10-02 2001-07-31 Chris Eberspacher Method for forming solar cell materials from particulars
US6127202A (en) 1998-07-02 2000-10-03 International Solar Electronic Technology, Inc. Oxide-based method of making compound semiconductor films and making related electronic devices
JP4982641B2 (ja) * 2000-04-12 2012-07-25 株式会社林原 半導体層、これを用いる太陽電池、及びそれらの製造方法並びに用途
EP1428243A4 (en) * 2001-04-16 2008-05-07 Bulent M Basol METHOD OF FORMING A THIN LAYER OF SEMICONDUCTOR COMPOUND FOR THE MANUFACTURE OF AN ELECTRONIC DEVICE, AND THIN LAYER PRODUCED THEREBY
RU2212080C2 (ru) * 2001-11-16 2003-09-10 Государственное научное учреждение "Институт электроники НАН Беларуси" СПОСОБ ПОЛУЧЕНИЯ ХАЛЬКОПИРИТНЫХ CuInSe2, Cu (In, Ga)Se2, CuGaSe2 ТОНКИХ ПЛЕНОК
US6992202B1 (en) * 2002-10-31 2006-01-31 Ohio Aerospace Institute Single-source precursors for ternary chalcopyrite materials, and methods of making and using the same
US6875661B2 (en) * 2003-07-10 2005-04-05 International Business Machines Corporation Solution deposition of chalcogenide films
CN100490205C (zh) * 2003-07-10 2009-05-20 国际商业机器公司 淀积金属硫族化物膜的方法和制备场效应晶体管的方法
EP1662580A1 (en) * 2003-12-05 2006-05-31 Matsushita Electric Industrial Co., Ltd. Compound semiconductor film, solar cell, and methods for producing those
US7306823B2 (en) 2004-09-18 2007-12-11 Nanosolar, Inc. Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells
US20070163383A1 (en) * 2004-02-19 2007-07-19 Nanosolar, Inc. High-throughput printing of nanostructured semiconductor precursor layer
US7736940B2 (en) * 2004-03-15 2010-06-15 Solopower, Inc. Technique and apparatus for depositing layers of semiconductors for solar cell and module fabrication
JP2006049768A (ja) * 2004-08-09 2006-02-16 Showa Shell Sekiyu Kk Cis系化合物半導体薄膜太陽電池及び該太陽電池の光吸収層の製造方法
US8679587B2 (en) * 2005-11-29 2014-03-25 State of Oregon acting by and through the State Board of Higher Education action on Behalf of Oregon State University Solution deposition of inorganic materials and electronic devices made comprising the inorganic materials
KR101245556B1 (ko) * 2006-01-12 2013-03-19 헬리오볼트 코오퍼레이션 제어된 상 분리 도메인 구조를 만드는 장치
JP2009528681A (ja) * 2006-02-23 2009-08-06 デューレン、イェルーン カー.イェー. ファン カルコゲンと金属間物質の使用による高処理能力の半導体層形成
WO2007146964A2 (en) * 2006-06-12 2007-12-21 Robinson Matthew R Thin-film devices fromed from solid particles
KR101030780B1 (ko) * 2007-11-14 2011-04-27 성균관대학교산학협력단 Ⅰ-ⅲ-ⅵ2 나노입자의 제조방법 및 다결정 광흡수층박막의 제조방법
CN101471394A (zh) 2007-12-29 2009-07-01 中国科学院上海硅酸盐研究所 铜铟镓硫硒薄膜太阳电池光吸收层的制备方法

Also Published As

Publication number Publication date
BRPI0821501A2 (pt) 2015-06-16
WO2009089754A1 (fr) 2009-07-23
KR101633388B1 (ko) 2016-06-24
US9735297B2 (en) 2017-08-15
JP2011508439A (ja) 2011-03-10
RU2446510C1 (ru) 2012-03-27
EP2234168A4 (en) 2015-04-29
CN101960610A (zh) 2011-01-26
CN101471394A (zh) 2009-07-01
US20110008927A1 (en) 2011-01-13
EP2234168A1 (en) 2010-09-29
CN101960610B (zh) 2012-04-11
JP5646342B2 (ja) 2014-12-24
BRPI0821501B8 (pt) 2022-08-23
BRPI0821501B1 (pt) 2019-02-12
KR20100099753A (ko) 2010-09-13

Similar Documents

Publication Publication Date Title
RU2010131761A (ru) Способ получения светопоглощающего слоя тонкопленочных солнечных элементов из меди-индия-галлия-серы-селена
JP2011508439A5 (ru)
Di et al. Recent progress of two‐dimensional lead halide perovskite single crystals: crystal growth, physical properties, and device applications
Bu et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module
Soto-Montero et al. Pressing challenges of halide perovskite thin film growth
Haque et al. Processing‐Performance Evolution of Perovskite Solar Cells: From Large Grain Polycrystalline Films to Single Crystals
Petrov et al. A new formation strategy of hybrid perovskites via room temperature reactive polyiodide melts
Fan et al. High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition
Zhang et al. A facile solvothermal growth of single crystal mixed halide perovskite CH 3 NH 3 Pb (Br 1− x Cl x) 3
Saidaminov et al. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth
Romanyuk et al. Recent trends in direct solution coating of kesterite absorber layers in solar cells
TWI431073B (zh) 硒/1b族油墨及其製造及使用方法
US20210159426A1 (en) Perovskite compositions comprising mixed solvent systems
US9196482B2 (en) Solution-based synthesis of CsSnI3
Corzo et al. A universal cosolvent evaporation strategy enables direct printing of perovskite single crystals for optoelectronic device applications
CN102603201A (zh) 一种硒化亚铜薄膜的制备方法
JP2011029624A (ja) セレンインク、並びにその製造方法および使用方法
JP2011052206A (ja) ジカルコゲナイドセレンインク、並びにその製造方法および使用方法
Wang et al. Epitaxial and quasiepitaxial growth of halide perovskites: New routes to high end optoelectronics
CN105705596A (zh) 用于薄膜光伏装置的无机盐-纳米粒子墨水及相关方法
KR101749137B1 (ko) 태양광 전지용 나노결정질 구리 인듐 디셀레니드 (cis) 및 잉크-기반 합금 흡수재층
US9105797B2 (en) Liquid precursor inks for deposition of In—Se, Ga—Se and In—Ga—Se
Tan et al. Molecular ink-derived chalcogenide thin films: Solution-phase mechanisms and solar energy conversion applications
TW201300322A (zh) 銅銦鎵硫硒薄膜太陽電池光吸收層的製備方法
Yang et al. Advances of metal halide perovskite large-size single crystals in photodetectors: from crystal materials to growth techniques

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20210827