TW201621068A - 銅銦鎵硒之表面硫化的製程方法 - Google Patents

銅銦鎵硒之表面硫化的製程方法 Download PDF

Info

Publication number
TW201621068A
TW201621068A TW103142723A TW103142723A TW201621068A TW 201621068 A TW201621068 A TW 201621068A TW 103142723 A TW103142723 A TW 103142723A TW 103142723 A TW103142723 A TW 103142723A TW 201621068 A TW201621068 A TW 201621068A
Authority
TW
Taiwan
Prior art keywords
layer
indium gallium
copper indium
gallium selenide
vulcanization
Prior art date
Application number
TW103142723A
Other languages
English (en)
Inventor
侯惟仁
陳梓斌
李昇翰
郭峻江
Original Assignee
新能光電科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新能光電科技股份有限公司 filed Critical 新能光電科技股份有限公司
Priority to TW103142723A priority Critical patent/TW201621068A/zh
Priority to CN201510151213.9A priority patent/CN106159024A/zh
Publication of TW201621068A publication Critical patent/TW201621068A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一種銅銦鎵硒太陽能電池板的製造方法,特別為銅銦鎵硒表面硫化之方法,使銅銦鎵硒層之表面轉化為銅銦鎵硫硒(CIGSxSe1-x),以提升銅銦鎵硒薄膜太陽能電池的發電效率與性能。

Description

銅銦鎵硒之表面硫化的製程方法
本發明係關於一種銅銦鎵硒(CIGSe)太陽能電池板的製造方法,尤其關於一種將銅銦鎵硒膜層進行(表面)硫化之方法,使銅銦鎵硒層之表面轉化為銅銦鎵硫硒(CIGSxSe1-x),以提升銅銦鎵硒太陽能電池的發電效率與性能。
薄膜太陽能電池的一材質中CIGSe(copper indium gallium(di)selenide)為銅、銦、鎵以及硒所組成的化合物半導體材料,以多晶薄膜的形式存在,為太陽能電池中主要之吸光材料,本身屬於p型半導體,通常搭配一n型半導體形成p-n接面後,可使吸光產生的電子電洞對分離,於正負兩端收集電流而發電。圖1顯示一習知銅銦鎵硒太陽能電池板中的結構示意圖。銅銦鎵硒太陽能電池單元100的一第一電極層112設置於一玻璃基板111。第一電極層112可以為例如一鉬金屬層。一銅銦鎵硒層(CIGSe)113設置於第一電極層112上。一n型半導體硫化鎘層114設置於銅銦鎵硒層113上。設置一第二電極層115於硫化鎘層114上。第二電極層115可以為一氧化鋅(ZnO)、氧化銦錫(ITO)層或AZO層等。
根據先前技術,如:美國專利US 5,981,868,在p型半導體CIGSe 層與n型半導體層之間,加入一層銅銦鎵硫硒(CIGSxSe1-x)後可進一步提高銅銦鎵硒之光電轉換效率,得到發電量較大之薄膜太陽能電池。該銅銦鎵硫硒層之形成方式主要為,將銅銦鎵硒層置於高溫下,引入含硫元素之前驅物,使硫與銅銦鎵硒進行化學反應,取代原銅銦鎵硒層表面之部分硒元素,進而形成銅銦鎵硫硒/銅銦鎵硒雙層結構,一般稱為(表面)硫化製程。之後,在銅銦鎵硫硒層上接續成長n型半導體層與後段製程,以得到完整之薄膜太陽能電池。
習知技術中,硫化製程主要使用H2S、H2S/O2等氣體前驅物作為硫元素之來源,如美國專利US 8,614,114 B2中針對金屬前驅物加入H2Se、H2S之熱處理方式,說明其最佳之製程溫度曲線、壓力與環境氣體種類。
然而,硫化氫本身帶有毒性,吸入高濃度硫化氫可於短時間內致命,而低濃度的硫化氫對眼、呼吸系統及中樞神經都有影響,因此,該製程需要在高度安全的狀態下進行,造成生產設備、檢測及監控設備、及維護成本的增加,與工作人員的安全風險。此外,以氣體前驅物進行製程時,除了製程所需時間較長,並需額外測試與控管氣體濃度、氣體流場分佈等製程參數,不但費時亦不易達到工業上大面積均勻、連續生產穩定等要求。
有鑒於此,本發明提供一種能夠改善前述製程缺點之硫化方式,可縮短製程時間且降低設備成本,並達到穩定量產且大面積均勻之膜層品質。
本發明中,銅銦鎵硒之表面硫化方式包含:提供一銅銦鎵硒層於基板上,該基板可以包含有一第一電極層;沈積一層元素硫於該銅銦鎵硒層上;將鍍有元素硫之銅銦鎵硒層置入高溫爐進行退火製程後,於該銅銦鎵硒層表面 上形成一銅銦鎵硫硒層。
依本發明一實施例,提供銅銦鎵硒之表面硫化的製程方法,該方法包含:利用沈積技術,沈積一元素硫層於一銅銦鎵硒層上;以及進行退火程序,而於該銅銦鎵硒層之表面上形成一硫化處理層。
於一實施例中,該銅銦鎵硒層被承載於一基板上,該基板材料為玻璃、聚醯亞胺薄膜、或不鏽鋼箔。
於一實施例中,該基板上包含有一層導電材料薄膜作為一電極層。
於一實施例中,該元素硫層之厚度為0.1至10微米。
於一實施例中,該沈積技術使用蒸鍍法(evaporation)、旋轉塗佈法(spin-coating)、浸塗法(dip-coating)、噴霧式塗佈(Spray Coating)或刮片法(doctor-blading)。
於一實施例中,該退火程序包含一升溫步驟、一持溫步驟與一降溫步驟。
於一實施例中,該升溫步驟之升溫速率係介於25至300℃/min。
於一實施例中,該持溫步驟的持溫時間係介於1至30分鐘。
依據本發明一實施例,以沈積元素硫之方式,可較容易控制元素硫層317之膜厚的大小與均勻性,而且不需要習知技術中將製程氣體混合及均勻化的程序,以及特別去除了退火製程時氣流大小與流場分佈之影響,故製程的穩定性與良率較高。
100‧‧‧電池單元
111‧‧‧於一玻璃基板
112‧‧‧第一電極層
113‧‧‧銅銦鎵硒層
114‧‧‧硫化鎘層
115‧‧‧第二電極層
200‧‧‧銅銦鎵硒太陽能電池板
300‧‧‧電池單元
311‧‧‧玻璃基板
312‧‧‧第一電極層
313‧‧‧銅銦鎵硒層
314‧‧‧硫化鎘層
315‧‧‧第二電極層
316‧‧‧硫化處理層
317‧‧‧元素硫層
圖1顯示一習知銅銦鎵硒太陽能電池板中一個電池單元(cell)的示意圖。
圖2顯示一習知銅銦鎵硒太陽能電池板的示意圖。
圖3顯示本發明一實施例之銅銦鎵硒太陽能電池板的製造方法的流程圖。
圖4顯示本發明一實施例製造過程中一步驟之銅銦鎵硒太陽能電池單元之剖面的示意圖。
圖5顯示本發明一實施例之銅銦鎵硒太陽能電池單元之剖面的示意圖。
圖3顯示本發明一實施例之銅銦鎵硒太陽能電池板的製造方法的流程圖。圖4顯示本發明一實施例製造過程中一步驟之銅銦鎵硒太陽能電池單元之剖面的示意圖。圖5顯示本發明一實施例之銅銦鎵硒太陽能電池單元之剖面的示意圖。如圖3、圖4及圖5所示,依據本發明一實施例,提供一種銅銦鎵硒太陽能電池板的製造方法,其中,該銅銦鎵硒太陽能電池板包含至少一電池單元300,且該方法包含以下步驟。
步驟S12:形成一第一電極層312於一玻璃基板311上。例如,可以沉積一鉬金屬層作為第一電極層312。
步驟S14:形成一銅銦鎵硒層313於第一電極層312上。
步驟S16:利用沈積技術,沈積一元素硫層317於銅銦鎵硒層313上,隨後再進行退火程序,而於銅銦鎵硒層313上形成一硫化處理層316,其中硫化處理層316可以為銅銦鎵硫硒層(CIGSxSe1-x),或者例如Cu(In1-xGax)(Se1-ySy)2或CuInS2。於退火程序中,銅銦鎵硒層313與元素元素硫層317的元素會互相擴散而形成硫 化處理層316,藉以達到對銅銦鎵硒層313之表面進行硫化處理的功能。
步驟S18:形成一硫化鎘層314於硫化處理層316上。
步驟S20:形成一第二電極層315於硫化鎘層314上。例如,可以沉積一氧化鋅(ZnO)、氧化銦錫(ITO)層或AZO層作為第二電極層315。
於一實施例中,提供一銅銦鎵硒層313於基板上,該基板可為玻璃、聚醯亞胺薄膜、不鏽鋼箔等可耐受一定高溫之材料,其上可含有作為電極之導電層;銅銦鎵硒層313可藉由共蒸鍍法(co-evaporation)、濺鍍法(sputtering)、快速熱退火法(RTA)、硒化氫法(H2Se)等該領域熟悉可行之方式沈積於基板上。於銅銦鎵硒層313上,以沈積技術沈積一層元素硫,該層元素硫厚度可為0.1~10微米,較佳係1~5微米,沈積方式可利用蒸鍍法(evaporation)、旋轉塗佈法(spin-coating)、浸塗法(dip-coating)、噴霧式塗佈(Spray Coating)或刮片法(doctor-blading)等任何習知可行之方法。將鍍有元素硫之銅銦鎵硒層313置入高溫爐中進行退火程序,退火溫度係介於350~700℃,較佳為550~650℃;升溫速度介於25~300℃/min,退火時間介於1~30分鐘。退火製程結束後,可於銅銦鎵硒層313上形成一層銅銦鎵硫硒層。該經過表面硫化之銅銦鎵硒層313可繼續進行後續製程而得到高效率之太陽能面板。
【實施例】
以下更具體地說明一實施例。以快速熱退火方法沈積一層銅銦鎵硒層313於鍍有500nm鉬金屬層312之玻璃基板311,該銅銦鎵硒層313厚度約為2微米,以熱蒸鍍法在銅銦鎵硒層313表面上沈積一層約5微米厚之元素硫。將該已鍍有元素硫之銅銦鎵硒層313送進高溫爐內進行退火製程;過程中,以約100℃/min之速率升溫至550℃,持溫15分鐘後以約150℃/min之速率降溫回室溫,即 完成表面硫化製程;可於銅銦鎵硒表面上形成一銅銦鎵硫硒層,經電子顯微鏡分析可得知硫化層厚度約為70nm。該產物可繼續進行後端製程以獲得高效率之銅銦鎵硒薄膜太陽能面板。
依本發明之實施方式,以沈積元素硫之方式,可較容易控制元素硫層317之膜厚的大小與均勻性,而且不需要習知技術中將製程氣體混合及均勻化的程序,以及特別去除了退火製程時氣流大小與流場分佈之影響,故製程的穩定性與良率較高。而且,使用硫元素作為製造材料,提高了製程安全性。此外,利用沈積技術亦能夠提高製造速度減少製程工時,能夠更進一步減少製造的成本。
此外,利用沈積技術,沈積一元素硫層317於銅銦鎵硒層313上之方法的好處列舉於如下。硫元素本質上是無毒的元素,能夠製程安全性高,對於製造設備、檢測及監控設備的安全性要求較低。
依據習知技術,需要通入多種製程氣體進入反應室內,對於製程氣體的混合及均勻化的控制較為困難。相對於此,利用沈積技術,較容易控制元素硫層317之膜厚,也較容易控制元素硫層317的均勻性,而且不需要前述製程氣體的混合及均勻化,故製程的穩定性也相對較高。此外,利用沈積技術形成元素硫層317的速度也快於習知利用H2S、H2S/O2、In2Se3等蒸氣對銅銦鎵硒層113其表面進行硫化處理的速度,因此依據本實施例之製造工時也少於習知技術的製造工時,能夠更進一步減少製造的成本。
此外,於前述實施例中,雖然是記載,於利用沈積技術沈積一元素硫層317於銅銦鎵硒層313上之步驟後,且於形成一硫化鎘層314於硫化處理層316上之步驟前,進行退火程序。但是,本發明不限制退火程序的順序,只要是 在利用沈積技術沈積一元素硫層317於銅銦鎵硒層313上之步驟後即可。
依據本發明一實施例,提供一種銅銦鎵硒太陽能電池板的製造方法,可以包含以下步驟。
步驟S42:形成一第一電極層312於一玻璃基板311上。例如,可以沉積一鉬金屬層作為第一電極層312。
步驟S44:形成一銅銦鎵硒層313於第一電極層312上。
步驟S46:利用沈積技術,沈積一元素硫層317於銅銦鎵硒層313上,
步驟S48:形成一硫化鎘層314於元素硫層317上。
步驟S50:形成一第二電極層315於硫化鎘層314上。例如,可以沉積一氧化鋅(ZnO)、氧化銦錫(ITO)層或AZO層作為第二電極層315。
步驟S60:進行退火程序,使銅銦鎵硒層313及元素硫層317的元素互相擴散,而於銅銦鎵硒層313上形成一硫化處理層316,其中硫化處理層316可以為銅銦鎵硫硒層(CIGSxSe1-x)。應了解的是,步驟S60僅需於步驟S46之後執行即可,其亦可以於步驟S48或步驟S50之後再執行,本發明不限制退火程序的順序。
於一實施例中,步驟S46至步驟S60也可以重覆實施,不限制進行一次。
綜上所述,依據本發明一實施例,利用沈積技術,較容易控制元素硫層317之膜厚,也較容易控制元素硫層317的均勻性,而且不需要前述製程氣體的混合及均勻化,故製程的穩定性也相對較高。所使用之硫作為製造材料,提高了製程安全性。此外,利用沈積技術亦能夠提高製造速度減少製程工時,能夠更進一步減少製造的成本。
300‧‧‧電池單元
311‧‧‧玻璃基板
312‧‧‧第一電極層
313‧‧‧銅銦鎵硒層
317‧‧‧元素硫層

Claims (8)

  1. 一種銅銦鎵硒之表面硫化的製程方法,該方法包含:利用沈積技術,沈積一元素硫層於一銅銦鎵硒層上;以及進行退火程序,而於該銅銦鎵硒層之表面上形成一硫化處理層。
  2. 如請求項1所述之銅銦鎵硒之表面硫化的製程方法,其中該銅銦鎵硒層被承載於一基板上,該基板材料為玻璃、聚醯亞胺薄膜、或不鏽鋼箔。
  3. 如請求項2所述之銅銦鎵硒之表面硫化的製程方法,其中該基板上包含有一層導電材料薄膜作為一電極層。
  4. 如請求項1所述之銅銦鎵硒之表面硫化的製程方法,其中該元素硫層之厚度為0.1至10微米。
  5. 如請求項1所述之銅銦鎵硒之表面硫化的製程方法,其中該沈積技術使用蒸鍍法(evaporation)、旋轉塗佈法(spin-coating)、或浸塗法(dip-coating)、噴霧式塗佈(Spray Coating)或刮片法(doctor-blading)。
  6. 如請求項1所述之銅銦鎵硒之表面硫化的製程方法,其中該退火程序包含一升溫步驟、一持溫步驟與一降溫步驟。
  7. 如請求項6所述之銅銦鎵硒之表面硫化的製程退火程序,其中,該升溫步驟之升溫速率係介於25至300℃/min。
  8. 如請求項6所述之銅銦鎵硒之表面硫化的製程退火程序,該持溫步驟的持溫時間係介於1至30分鐘。
TW103142723A 2014-12-09 2014-12-09 銅銦鎵硒之表面硫化的製程方法 TW201621068A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103142723A TW201621068A (zh) 2014-12-09 2014-12-09 銅銦鎵硒之表面硫化的製程方法
CN201510151213.9A CN106159024A (zh) 2014-12-09 2015-04-01 一种铜铟镓硒表面硫化的工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103142723A TW201621068A (zh) 2014-12-09 2014-12-09 銅銦鎵硒之表面硫化的製程方法

Publications (1)

Publication Number Publication Date
TW201621068A true TW201621068A (zh) 2016-06-16

Family

ID=56755324

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103142723A TW201621068A (zh) 2014-12-09 2014-12-09 銅銦鎵硒之表面硫化的製程方法

Country Status (2)

Country Link
CN (1) CN106159024A (zh)
TW (1) TW201621068A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876294A (zh) * 2017-03-03 2017-06-20 中国科学院上海微系统与信息技术研究所 纳米孪晶铜布线层的制备方法
CN107093639A (zh) * 2017-03-30 2017-08-25 华南理工大学 一种铜锌锡硫薄膜的硒化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471394A (zh) * 2007-12-29 2009-07-01 中国科学院上海硅酸盐研究所 铜铟镓硫硒薄膜太阳电池光吸收层的制备方法
TWI377691B (en) * 2009-02-27 2012-11-21 Nexpower Technology Corp Thin film solar cell and manufacturing method thereof
CN101908580B (zh) * 2010-06-25 2012-07-25 清华大学 一种连续制备铜铟镓硒硫太阳能电池吸收层的工艺
TWI456779B (zh) * 2011-12-28 2014-10-11 Ind Tech Res Inst 光吸收層之改質方法

Also Published As

Publication number Publication date
CN106159024A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
TWI520366B (zh) 用於大規模cigs基薄膜光伏材料的艙內摻雜鈉的方法和系統
Lakhe et al. Characterization of electrochemically deposited CuInTe2 thin films for solar cell applications
KR101154774B1 (ko) 태양전지 및 이의 제조방법
CN102694077B (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
US8916411B1 (en) Absorber layer for a thin film photovoltaic device with a double-graded band gap
CN106784036A (zh) 一种掺杂碲化镉薄膜电池及其制作方法
TWI502762B (zh) 化合物太陽能電池與硫化物單晶奈米粒子薄膜的製造方法
TW201621068A (zh) 銅銦鎵硒之表面硫化的製程方法
KR101734362B1 (ko) Acigs 박막의 저온 형성방법과 이를 이용한 태양전지의 제조방법
KR101482786B1 (ko) 산화인듐을 이용한 cigs 광흡수층 제조방법
WO2023109712A1 (zh) 宽禁带铜镓硒光吸收层及其制备方法、太阳能电池
TW201424027A (zh) 薄膜太陽能電池之製作方法
CN103194726A (zh) 一种铜铟镓硒薄膜的制造工艺
US9484488B1 (en) CIGSSe thin film for solar cell, preparation method thereof and its application to thin film solar cell
TWI619614B (zh) 太陽能吸收層及其製作方法
TWI520353B (zh) 吸收層的形成方法與薄膜太陽能電池
KR20130059228A (ko) 태양전지 및 이의 제조방법
KR102025091B1 (ko) CZT(S,Se)계 박막, 시드가 형성된 전구체층을 이용하는 CZT(S,Se)계 박막 형성방법 및 CZT(S,Se)계 박막 태양전지와 그 제조방법
CN105932093A (zh) 一种高质量cigs薄膜太阳能电池吸收层的制备方法
TWI505479B (zh) 薄膜太陽能電池的光吸收層及其製造方法
KR101299584B1 (ko) 박막 태양전지 및 그 제조방법
TWI532204B (zh) I-iii-vi族化合物薄膜太陽能電池製造方法
JP5985459B2 (ja) 太陽電池の製造方法
KR20140110152A (ko) 박막형 태양전지 및 그 제조방법
TW201424015A (zh) 薄膜太陽能電池晶片及其製作方法