CN110752272B - 一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法 - Google Patents

一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法 Download PDF

Info

Publication number
CN110752272B
CN110752272B CN201910994160.5A CN201910994160A CN110752272B CN 110752272 B CN110752272 B CN 110752272B CN 201910994160 A CN201910994160 A CN 201910994160A CN 110752272 B CN110752272 B CN 110752272B
Authority
CN
China
Prior art keywords
cigse
film
solar cell
sputtering
efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910994160.5A
Other languages
English (en)
Other versions
CN110752272A (zh
Inventor
肖振宇
訾威
程念
高梦格
刘文元
李昱森
吴月月
孙书杰
赵志强
孙柱柱
李彦磊
房良
刘江峰
涂友超
耿晓菊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinyang Normal University
Original Assignee
Xinyang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinyang Normal University filed Critical Xinyang Normal University
Priority to CN201910994160.5A priority Critical patent/CN110752272B/zh
Publication of CN110752272A publication Critical patent/CN110752272A/zh
Application granted granted Critical
Publication of CN110752272B publication Critical patent/CN110752272B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • H01L31/0323Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2 characterised by the doping material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于太阳能电池制备领域,具体涉及一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法。具体步骤如下:先在基底上溅射钼电极,然后配制CIGSe前驱体溶液,将前驱体溶液旋涂在基底上制备CIGSe预制膜,加热并硒化退火,得CIGSe薄膜;然后在CIGSe薄膜上制备硫化镉薄膜,然后在硫化镉薄膜上依次溅射氧化锌和铟掺杂氧化锡薄膜,最后进行银电极蒸镀,即得到柔性CIGSe薄膜太阳能电池。通过在CIGSe前驱体溶液中引入铋和钾的化合物,来促进CIGSe晶体的生长,钝化晶界缺陷,进而提高CIGSe太阳能电池的性能。本发明环保安全成本低,有效提高了CIGSe薄膜太阳能电池效率。

Description

一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法
技术领域
本发明属于太阳能电池制备领域,具体涉及一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法。
背景技术
太阳能具有取之不尽用之不竭、分布广泛、安全、绿色环保等优点,是最具潜力的可再生能源。太阳能电池是将太阳能直接转换为电能的装置,成为了全球各国在可再生能源领域的主要研究方向。目前硅太阳电池已广泛应用于人们生产、生活中,如大型电站、分布式电站、光伏路灯等,但由于硅太阳能电池片薄脆易碎,需要使用钢化玻璃进行封装保护,这使得硅太阳能电池十分厚重,无法弯曲,不能应用到更广泛的人们生活中。而柔性太阳能电池易于提高太阳电池的质量比功率,而且相比于玻璃封装硅太阳能电池而言,有很多新的优点:可以卷曲;电池厚度很薄、质量轻;性能稳定、转换效率高;使用的半导体材料少,有效地降低了原材料的成本;生产过程中能耗少;易于卷对卷(roll-to-roll)大面积连续生产、便于携带和运输。可弯曲折叠的柔性太阳能电池可以广泛的应用在凹凸不平的场合,成为当前和未来相当长的一段时间内太阳能电池的热点领域。
实用化的柔性太阳能电池对吸光层有着苛刻的要求,需要吸光层稳定、高效、固态和轻薄,就当前的技术进展而言,铜铟镓硒(CIGSe)薄膜太阳能电池是制备柔性太阳太阳能电池的首选。但当前商业化制备柔性CIGSe太阳能电池的都需要高真空的设备和苛刻的制备条件,并且核心技术被国外公司所掌握,使得柔性CIGSe太阳能电池的制备成本居高不下。而柔性CIGSe太阳能电池的技术关键就是聚酰亚胺或者不锈钢基底无法在高温条件下长时间硒化,导致CIGSe吸光层的微结构性能差和不良晶界缺陷多,从而导致柔性CIGSe太阳能电池的效率偏低。
中国专利CN105118877A公开了一种铜铟镓硫硒薄膜材料的制备方法,首先是在基底上制备Cu(InxCa1-x)aSb预制层,然后进行硒化退火,得到Cu(InxCa1-x)a(SySe1-y)b薄膜材料,此方法中使用反应溅射制备Cu(InxCa1-x)aSb预制层,需要使用铜源、铟源、镓源和硫源等4种以上的多源靶材,使得制备成本高昂;另外,在后续硒化退火中使用二乙基硒气体对Cu(InxCa1-x)aSb预制层进行硒化,需要高真空的设备和苛刻的制备条件,这使得CIGSSe太阳能电池的制备成本居高不下。同时,此方法中硒化温度需要达到650℃,而聚酰亚胺基底、不锈钢基底等柔性基底无法在如此高温条件下长时间硒化,这将导致CIGSSe吸光层的微结构性能差和不良晶界缺陷多,从而导致柔性CIGSSe太阳能电池的效率偏低。
发明内容
为解决现有技术中CIGSe太阳能电池的制备需要高真空的设备和苛刻的制备条件,成本高、光电转化效率偏低的问题,本发明提供一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法。
为实现上述目的,本发明采用以下技术方案:
一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法,包括以下步骤:
步骤A.在洁净的聚酰亚胺/不锈钢基底上溅射1μm的钼电极;
步骤B.配制CIGSe前驱体溶液:取铜粉或铜化合物、铟粉或铟化合物、镓粉或镓化合物、硒粉或硒化合物与添加剂以摩尔比1.1:0.83:0.35:2.29:0.01~0.9混合,加入溶剂,密封加热搅拌至将上述固体完全溶解,所述添加剂为含铋化合物和含钾化合物的组合;
步骤C.将步骤B制备的CIGSe前驱体溶液旋涂在镀有钼电极的聚酰亚胺/不锈钢基底上,得CIGSe预制膜;
步骤D.将CIGSe预制膜上表面朝下置于石墨盒中,并加入硒粉,然后在惰性气体保护下进行硒化退火,冷却至室温,得到CIGSe薄膜;
步骤E.在CIGSe薄膜上制备硫化镉薄膜:将CdSO4溶解于去离子水中,边搅拌边加入氨水和上述CIGSe薄膜,并加入硫脲,加热后将CIGSe薄膜取出并用去离子水反复冲洗;
步骤F.在硫化镉薄膜上溅射氧化锌薄膜;
步骤G.在氧化锌薄膜上溅射铟掺杂氧化锡薄膜;
步骤H.在铟掺杂氧化锡薄膜上蒸镀银电极。
进一步地,所述步骤A中溅射钼电极具体步骤为:在氩气压力为2~3Pa、直流溅射功率为200~250W的条件下溅射30~60min,然后调节氩气压力为1~0.1Pa再溅射30~60min。
进一步地,所述步骤B中加热温度为45~60℃,时间为2~6h;所述铜化合物为硝酸铜,铟化合物为硝酸铟,镓化合物为硝酸镓,硒化合物为二氧化硒,所述含铋化合物为氯化铋或硝酸铋,含钾化合物为氯化钾或氢氧化钾,溶剂为乙二胺和乙二硫醇的混合溶液。
进一步地,所述步骤C中旋涂的具体步骤如下:在2000~3000rpm的转速下旋涂20~40s,然后在280~320℃的条件下加热2~5min,重复8~10次后在280~320℃下加热3~5min。
进一步地,所述步骤D中加入硒粉的量为200~500mg,惰性气体为氩气或氮气,退火温度为480~500℃,退火时间为10~30min。
进一步地,所述步骤E中CdSO4、去离子水、氨水和硫脲的加入比为76.8mg:200 mL:12.5mL:110mg,加热温度为60~80℃,加热时间为10~15min。
进一步地,所述步骤F中的溅射参数如下:功率为100~150W,氩气压力为0.1~0.5Pa,溅射时间为5~10min。
进一步地,所述步骤G中的溅射参数如下:功率为100~150W,氩气压力为0.1~0.5Pa,溅射时间为3~5min。
进一步地,所述步骤H中热蒸镀电流为50~80A,蒸镀时间为5~10min。
与现有技术相比,本发明具有以下有益效果:
本发明通过环保、廉价的溶液法和固态硒源硒化法来制备CIGSe薄膜,安全、对设备要求低,能够极大的降低CIGSe的生产成本。同时在前驱体溶液中引入微量的铋离子(Bi3 +)和碱金属离子(K+)作为低熔点助剂,其中Bi3+在硒化过程中能形成准液态金属硒化铋(Bi2Se3),在提高CIGSe晶体质量的同时降低CIGSe晶体的所需要的温度;K+在硒化的过程中,能够进入CIGSe晶体间隙中,减少CIGSe晶体中的不良缺陷,同时也能够促进CIGSe晶粒生长。通过引入微量的铋离子Bi3+和碱金属离子K+,极大的降低CIGSe吸光层硒化的时间和温度,在柔性基底可承受的范围内(450~500℃)获得高质量的CIGSe吸光层,从而制备高效率的柔性CIGSe太阳能电池。
附图说明
图1为实施例1制备的柔性CIGSe薄膜太阳能电池表面扫描电镜图;
图2为实施例1制备的柔性CIGSe薄膜太阳能电池I-V测试图。
具体实施方式
以下结合实施例和附图对本发明做进一步详细说明。
实施例1
步骤A、在洁净的聚酰亚胺/不锈钢基底上溅射钼电极:在氩气的压力达到2Pa时,打开直流溅射电源,将功率调节到200W,预溅射5 min,然后移开金属挡板,在基底上溅射30min,之后将腔体内的氩气压力调节到1Pa,溅射30 min,关闭电源,得到致密度和结合力都良好的钼电极。
步骤B、配制CIGSe前驱体溶液:首先,称量铜粉(0.0699g,1.10mmol)、铟粉(0.0960g,0.83mmol)、镓粉(0.0250g,0.35mmol)、硒粉(0.1812g,2.29mmol)、氯化铋粉末(0.0104g,0.0456mmol)和氯化钾粉末(0.0034g,0.0456mmol)加入25mL的锥形瓶中;接着加入5mL乙二胺和5mL乙二硫醇。最后,将圆底烧瓶密封后放在加热台上,60℃下磁力搅拌2h,所有的物质完全溶解,形成CIGSe分子前驱体溶液。在密闭的环境中,溶液可以保存数周。
步骤C、CIGSe预制膜的制备:在聚酰亚胺/不锈钢基底上旋涂CIGSe前驱体溶液,在2000 rpm 的转速下旋涂40s,在320℃下加热2min,然后重复8次旋涂加热,最后再在320℃下加热3min,以利于完全去除有机配体,最后得到1600nm厚度的CIGSe薄膜。
步骤D、CIGSe预制膜热处理:将CIGSe预制膜上表面朝下置于石墨盒中,并加入硒粉后放于快速升温炉中,在惰性气体保护下进行硒化退火,退火温度为480℃,持续时间10min然后立刻关闭快速升温炉,打开快速升温炉的炉门,以利于石墨盒迅速冷却到室温,得到CIGSe薄膜。
步骤E、在CIGSe薄膜上制备硫化镉薄膜:准确称取76.8 mg CdSO4 溶解于200mL去离子水中,之后取12.5 mL的氨水在搅拌过程中缓慢滴加到大烧杯中,滴加过程中先产生白色絮状沉淀,随着氨水的继续滴加,白色沉淀消失,变成均一透明的溶液。将CIGSe样品放入大烧杯中,同时将准确称取的110mg硫脲溶解于上述溶液中,将溶液缓慢加热到60℃,并在该温度下保温15min,待硫化镉薄膜生长完全之后,将CIGSe样品从大烧杯中取出,使用去离子反复冲洗,得到50nm厚的硫化镉薄膜。
步骤F、在硫化镉薄膜上制备氧化锌薄膜。电池阻挡层氧化锌的制备是使用交流磁控溅射氧化锌靶材完成。其操作的工艺流程与直流磁控溅射相类似,溅射参数为:功率100W,氩气压力为0.4Pa,溅射时间为5min,得到50nm厚的氧化锌薄膜。
步骤G、在氧化锌薄膜上制备铟掺杂氧化锡(ITO)薄膜。用磁控溅射直流溅射铟掺杂氧化锡,溅射参数为:功率100W,氩气压力为0.5Pa,时间为3min,得到200 nm厚的铟掺杂氧化锡薄膜。
步骤H、蒸镀银电极。选择钨绞丝为银丝载体,热蒸镀电流为50A,蒸镀10min,得到1μm厚的银电极,柔性CIGSe薄膜太阳能电池制备完成。
图1为本实施例所制备的柔性不锈钢基底上的CIGSe薄膜表面扫描电镜图,从图中可以看出,所制备得到的CIGSe薄膜的晶体质量高,晶粒尺寸大且十分致密,可以制备出高转换效率的柔性CIGSe薄膜太阳能电池。
图2为本实施例所制备的柔性CIGSe薄膜太阳能电池的光电性能测试结果,使用SAN-EI公司的XEF-300太阳光模拟器和Keithley公司的2400数字源表组成的太阳能电池测试系统测试得到太阳能电池伏安特性曲线(I-V测试图),从图中可以看出,制备所得的柔性CIGSe薄膜太阳能电池的开路电压(Voc)为619 mV,短路电流(Jsc)为26.78 mA/cm2,填充因子(FF)为66.13%,光电转换效率(Eff)为11.19%,在柔性CIGSe薄膜太阳能电池中达到国际一流水平。
实施例2
步骤A、在洁净的聚酰亚胺/不锈钢基底上溅射钼电极:在氩气的压力达到3Pa时,打开直流溅射电源,将功率调节到250W,预溅射5 min,然后移开金属挡板,在基底上溅射60min,之后将腔体内的氩气压力调节到0.1Pa,溅射60min,关闭电源,得到致密度和结合力都良好的钼电极。
步骤B、配制CIGSe前驱体溶液:首先,称量硝酸铜(0.206g,1.10mmol)、硝酸铟(0.250g,0.83mmol)、硝酸镓(0.0895g,0.35mmol)、二氧化硒(0.2541g,2.29mmol)、硝酸铋粉末(0.193g,0.4mmol)和氢氧化钾粉末(0.0228g,0.4mmol)加入25mL的锥形瓶中;接着加入5mL乙二胺和5mL乙二硫醇。最后,将圆底烧瓶密封后放在加热台上,45℃下磁力搅拌6h,所有的物质完全溶解,形成CIGSe分子前驱体溶液。在密闭的环境中,溶液可以保存数周。
步骤C、CIGSe预制膜的制备:在聚酰亚胺/不锈钢基底上旋涂CIGSe前驱体溶液,在3000 rpm 的转速下旋涂20s,在280℃下加热5min,然后重复6次旋涂加热,最后再在280℃下加热5min,以利于完全去除有机配体,最后得到约1200nm厚度的CIGSe薄膜。
步骤D、CIGSe预制膜热处理:将CIGSe预制膜上表面朝下置于石墨盒中,并加入500g硒粉后放于快速升温炉中,在氮气保护下进行硒化退火,退火温度为500℃,持续时间30min然后立刻关闭快速升温炉,打开快速升温炉的炉门,以利于石墨盒迅速冷却到室温,得到CIGSe薄膜。
步骤E、在CIGSe薄膜上制备硫化镉薄膜:准确称取76.8 mg CdSO4 溶解于200mL去离子水中,之后取12.5 mL的氨水在搅拌过程中缓慢滴加到大烧杯中,滴加过程中先产生白色絮状沉淀,随着氨水的继续滴加,白色沉淀消失,变成均一透明的溶液。将CIGSe样品放入大烧杯中,同时将准确称取的110mg硫脲溶解于上述溶液中,将溶液缓慢加热到80℃,并在该温度下保温10min,待硫化镉薄膜生长完全之后,将CIGSe样品从大烧杯中取出,使用去离子反复冲洗,得到60nm厚的硫化镉薄膜。
步骤F、在硫化镉薄膜上制备氧化锌薄膜。电池阻挡层氧化锌的制备是使用交流磁控溅射氧化锌靶材完成。其操作的工艺流程与直流磁控溅射相类似,溅射参数为:功率150W,氩气压力为0.1Pa,溅射时间为10min,得到80nm厚的氧化锌薄膜。
步骤G、在氧化锌薄膜上制备铟掺杂氧化锡(ITO)薄膜。用磁控溅射直流溅射铟掺杂氧化锡,溅射参数为:功率150W,氩气压力为0.1Pa,时间为5min,得到300 nm厚的铟掺杂氧化锡薄膜。
步骤H、蒸镀银电极。选择钨绞丝为银丝载体,热蒸镀电流为80A,蒸镀5min,得到1.5μm厚的银电极。柔性CIGSe薄膜太阳能电池制备完成。
实施例3
本实施例中步骤与实施例1大致相似,相同之处不再赘述,不同之处在于步骤B中未添加氯化铋粉末。
实施例4
本实施例中步骤与实施例1大致相似,相同之处不再赘述,不同之处在于步骤B中未添加氯化钾粉末。
实施例5
本实施例中步骤与实施例1大致相似,相同之处不再赘述,不同之处在于步骤B中未添加氯化铋粉末和氯化钾粉末。
在室温、光强为100mW/cm2的条件下,使用SAN-EI公司的XEF-300太阳光模拟器测试实施例1~4所制得的CIGSe太阳能电池的光电转换效率,电池的有效面积为0.37cm2。测试结果如表1所示。
Figure DEST_PATH_IMAGE001
由上表可以看出,未添加氯化铋粉末和氯化钾粉末时,柔性CIGSe太阳能电池的光电转换效率为7.35%,而在分别添加氯化铋粉末、氯化钾粉末后,柔性CIGSe太阳能电池的光电转换效率为9.36%、9.64%,分别提高了27.35%、31.16%,在同时添加氯化铋粉末、氯化钾粉末后,柔性CIGSe太阳能电池的光电转换效率为11.19%,相比于未添加氯化铋粉末、氯化钾粉末的样品,光电转换效率提高了52.24%,柔性CIGSe太阳能电池的性能得到了极大的提升。因此,在柔性CIGSe太阳能电池中同时引入铋和钾,是一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法。
以上所述之实施例,只是本发明的较佳实施例而已,仅仅用以解释本发明,并非限制本发明实施范围,对于本技术领域的技术人员来说,当然可根据本说明书中所公开的技术内容,通过置换或改变的方式轻易做出其它的实施方式,故凡在本发明的原理上所作的变化和改进等,均应包括于本发明申请专利范围内。

Claims (8)

1.一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法,其特征在于,包括以下步骤:
步骤A.在洁净的聚酰亚胺/不锈钢基底上溅射1μm的钼电极;
步骤B.配制CIGSe前驱体溶液:取铜粉或铜化合物、铟粉或铟化合物、镓粉或镓化合物、硒粉或硒化合物与添加剂以摩尔比1.1:0.83:0.35:2.29:0.01~0.9混合,加入溶剂,密封加热搅拌至固体完全溶解,所述添加剂为含铋化合物和含钾化合物的组合;
步骤C.将步骤B制备的CIGSe前驱体溶液旋涂在镀有钼电极的聚酰亚胺/不锈钢基底上,得CIGSe预制膜;
步骤D.将CIGSe预制膜上表面朝下置于石墨盒中,并加入硒粉,然后在惰性气体保护下进行硒化退火,冷却至室温,得到CIGSe薄膜;加入硒粉的量为200~500mg,惰性气体为氩气或氮气,退火温度为480~500℃,退火时间为10~30min;
步骤E.在CIGSe薄膜上制备硫化镉薄膜:将CdSO4溶解于去离子水中,边搅拌边加入氨水和上述CIGSe薄膜,并加入硫脲,加热后将CIGSe薄膜取出并用去离子水反复冲洗;
步骤F.在硫化镉薄膜上溅射氧化锌薄膜;
步骤G.在氧化锌薄膜上溅射铟掺杂氧化锡薄膜;
步骤H.在铟掺杂氧化锡薄膜上蒸镀银电极。
2.根据权利要求1所述的一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法,其特征在于,所述步骤A中溅射钼电极具体步骤为:在氩气压力为2~3Pa、直流溅射功率为200~250W的条件下溅射30~60min,然后调节氩气压力为1~0.1Pa再溅射30~60min。
3.根据权利要求1所述的一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法,其特征在于,所述步骤B中加热温度为45~60℃,时间为2~6h;所述铜化合物为硝酸铜,铟化合物为硝酸铟,镓化合物为硝酸镓,硒化合物为二氧化硒,所述含铋化合物为氯化铋或硝酸铋,含钾化合物为氯化钾或氢氧化钾,溶剂为乙二胺和乙二硫醇的混合溶液。
4.根据权利要求1所述的一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法,其特征在于,所述步骤C中旋涂的具体步骤如下:在2000~3000rpm的转速下旋涂20~40s,然后在280~320℃的条件下加热2~5min,重复8~10次后在280~320℃下加热3~5min。
5.根据权利要求1所述的一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法,其特征在于,所述步骤E中CdSO4、去离子水、氨水和硫脲的加入比为76.8mg:200 mL:12.5mL:110mg,加热温度为60~80℃,加热时间为10~15min。
6.根据权利要求1所述的一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法,其特征在于,所述步骤F中的溅射参数如下:功率为100~150W,氩气压力为0.1~0.5Pa,溅射时间为5~10min。
7.根据权利要求1所述的一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法,其特征在于,所述步骤G中的溅射参数如下:功率为100~150W,氩气压力为0.1~0.5Pa,溅射时间为3~5min。
8.根据权利要求1所述的一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法,其特征在于,所述步骤H中热蒸镀电流为50~80A,蒸镀时间为5~10min。
CN201910994160.5A 2019-10-18 2019-10-18 一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法 Active CN110752272B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910994160.5A CN110752272B (zh) 2019-10-18 2019-10-18 一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910994160.5A CN110752272B (zh) 2019-10-18 2019-10-18 一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法

Publications (2)

Publication Number Publication Date
CN110752272A CN110752272A (zh) 2020-02-04
CN110752272B true CN110752272B (zh) 2021-07-06

Family

ID=69278927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910994160.5A Active CN110752272B (zh) 2019-10-18 2019-10-18 一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法

Country Status (1)

Country Link
CN (1) CN110752272B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719625A (zh) * 2005-06-03 2006-01-11 清华大学 铜铟镓硒或铜铟镓硫薄膜太阳能电池吸收层的制备方法
CN101471394A (zh) * 2007-12-29 2009-07-01 中国科学院上海硅酸盐研究所 铜铟镓硫硒薄膜太阳电池光吸收层的制备方法
CN101789470A (zh) * 2010-02-12 2010-07-28 昆山正富机械工业有限公司 非真空制作铜铟镓硒吸收层的方法
CN103400896A (zh) * 2013-07-24 2013-11-20 中国科学院上海高等研究院 一种铜铟镓硒柔性薄膜太阳能电池及其制备方法
CN103474505A (zh) * 2012-06-06 2013-12-25 尚越光电科技有限公司 铜铟镓硒薄膜太阳能电池大规模生产中的碱金属掺杂方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100850000B1 (ko) * 2005-09-06 2008-08-01 주식회사 엘지화학 태양전지 흡수층의 제조방법
US9397238B2 (en) * 2011-09-19 2016-07-19 First Solar, Inc. Method of etching a semiconductor layer of a photovoltaic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719625A (zh) * 2005-06-03 2006-01-11 清华大学 铜铟镓硒或铜铟镓硫薄膜太阳能电池吸收层的制备方法
CN101471394A (zh) * 2007-12-29 2009-07-01 中国科学院上海硅酸盐研究所 铜铟镓硫硒薄膜太阳电池光吸收层的制备方法
CN101789470A (zh) * 2010-02-12 2010-07-28 昆山正富机械工业有限公司 非真空制作铜铟镓硒吸收层的方法
CN103474505A (zh) * 2012-06-06 2013-12-25 尚越光电科技有限公司 铜铟镓硒薄膜太阳能电池大规模生产中的碱金属掺杂方法
CN103400896A (zh) * 2013-07-24 2013-11-20 中国科学院上海高等研究院 一种铜铟镓硒柔性薄膜太阳能电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Bismuth-ion doped Cu(In,Ga)Se2 thin films: Preparation, microstructures, and electrical properties;Fu-Shan Chen等;《SOLAR ENERGY MATERIALS AND SOLAR CELLS》;20140222;第124卷;第166-171页 *

Also Published As

Publication number Publication date
CN110752272A (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
Shafarman et al. Cu (InGa) Se2 Solar Cells
Aihara et al. Fabrication of Cu2SnS3 thin films by sulfurization of evaporated Cu‐Sn precursors for solar cells
Caballero et al. CuIn1− xGaxSe2‐based thin‐film solar cells by the selenization of sequentially evaporated metallic layers
CN106298995A (zh) 一种银掺杂铜锌锡硫硒光吸收层薄膜材料及其在太阳能电池中的应用
Dong et al. Sol-gel processed CZTS thin film solar cell on flexible molybdenum foil
US20100243043A1 (en) Light Absorbing Layer Of CIGS Solar Cell And Method For Fabricating The Same
US8642884B2 (en) Heat treatment process and photovoltaic device based on said process
US20140124011A1 (en) Heat Treatment Process and Photovoltaic Device Based on Said Process
CN101527332B (zh) 一种高效薄膜太阳能电池光吸收层的制备方法
Saha A Status Review on Cu2ZnSn (S, Se) 4‐Based Thin‐Film Solar Cells
Pallavolu et al. Fabrication of monoclinic-Cu2SnS3 thin-film solar cell and its photovoltaic device performance
Ikeda et al. A superstrate solar cell based on In2 (Se, S) 3 and CuIn (Se, S) 2 thin films fabricated by electrodeposition combined with annealing
Chu et al. Semi-transparent thin film solar cells by a solution process
Chander et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: a review on high throughput processed methods
JP6143737B2 (ja) 化合物太陽電池および硫化物単結晶ナノ粒子を有する薄膜の形成方法
Zhang Organic nanostructured thin film devices and coatings for clean energy
CN107134507B (zh) 具有梯度成分太阳能电池吸收层铜铟硫硒薄膜的制备方法
US20120180858A1 (en) Method for making semiconducting film and photovoltaic device
CN103469170B (zh) 一种用于薄膜太阳能电池的溅射靶
CN110752272B (zh) 一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法
Qi et al. Optimization of the substrate temperature of narrow bandgap CIS solar cells by three stage coevaporation process
CN109671803A (zh) 一种薄膜太阳能电池制备方法
Petti et al. Thin Films in Photovoltaics
KR102015985B1 (ko) 태양전지용 cigs 박막의 제조방법
CN106684210B (zh) 一种用于太阳电池的铜锌锡硫硒薄膜制备方法、该方法制备的薄膜及包含该薄膜的太阳电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant