TWI485872B - 漿料與太陽能電池之吸光層的形成方法 - Google Patents

漿料與太陽能電池之吸光層的形成方法 Download PDF

Info

Publication number
TWI485872B
TWI485872B TW101140930A TW101140930A TWI485872B TW I485872 B TWI485872 B TW I485872B TW 101140930 A TW101140930 A TW 101140930A TW 101140930 A TW101140930 A TW 101140930A TW I485872 B TWI485872 B TW I485872B
Authority
TW
Taiwan
Prior art keywords
slurry
light absorbing
cigs
absorbing layer
layer
Prior art date
Application number
TW101140930A
Other languages
English (en)
Other versions
TW201419561A (zh
Inventor
mei wen Huang
Yen Chih Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW101140930A priority Critical patent/TWI485872B/zh
Priority to CN201210516825.XA priority patent/CN103811569B/zh
Publication of TW201419561A publication Critical patent/TW201419561A/zh
Application granted granted Critical
Publication of TWI485872B publication Critical patent/TWI485872B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • H01L31/0323Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2 characterised by the doping material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

漿料與太陽能電池之吸光層的形成方法
本發明係關於太陽能電池,更特別關於形成其吸光層之漿料組成。
CIGS鍍膜技術主要可分為共蒸鍍(Co-evaporation)、濺鍍(Sputtering)等真空製程技術,以及塗佈(Coating)、化學噴灑熱解法(Chemical spray pyrolysis)、電沉積(Electrodeposition)等非真空製程技術。真空製程的設備及其維護費昂貴,雖然光電轉換效率高但也有高成本的問題。非真空製程技術具有低設備成本及高材料使用率的優點,在量產上相當具有優勢及潛力,因此許多公司及研究機構積極地投入非真空製程技術。非真空製程當中化學噴灑熱解法因緻密性較差及材料使用率較低等缺點,近來已較少使用。電鍍法經常遭遇鍍膜均勻性不佳及氣泡等問題,因此投入的廠商較少。塗佈製程是最被看好,且投入廠商也最多的技術。
目前以塗佈製程製備銅銦鎵硒太陽能電池吸收光層的流程大致可歸納為三步驟:前驅物漿料的製備、以濕式塗佈法將漿料鍍於鉬基材上、再以高溫硒化方式將前驅物內的元素或化合物反應成銅銦鎵硒薄膜。前驅物漿料的形式大致可分為粒子型及溶液型,不論形式為何,都需透過高溫反應形成銅銦鎵硒化合物,因此現有的技術當中大都需製備二個以上的前驅物以製備吸光層。雖然高溫反應方式 所得的銅銦鎵硒薄膜效率已驗證,但前驅物製備繁雜且費時,且高溫反應時很難避免雜相生成而難以掌控薄膜的組成。
綜上所述,目前亟需新的漿料形成太陽能電池的吸光層,以克服前述多重前驅物漿料的問題。
本發明一實施例提供一種漿料,包括:1重量份之掺雜銻之銅銦鎵硒奈米粒子;0.05至0.15重量份之分散劑;以及4至7重量份之有機溶劑,其中掺雜銻之銅銦鎵硒奈米粒子藉由分散劑懸浮於有機溶劑中。
本發明一實施例提供一種太陽能電池之吸光層的形成方法,包括:提供基板,形成背面電極層於基板上;將上述之漿料施加於背面電極層上;加熱以移除有機溶劑形成前驅物層;以及熱處理前驅物層以形成吸光層。
本發明一實施例提供一種漿料,包括:1重量份之掺雜銻之銅銦鎵硒奈米粒子;0.05至0.15重量份之分散劑;以及4至7重量份之溶劑,其中掺雜銻之銅銦鎵硒奈米粒子藉由分散劑懸浮於有機溶劑中。若有機溶劑之用量過多,則漿料的固含量易過低,不利於塗佈製程。若有機溶劑之用量過低,則漿料黏度易過高,塗佈易出現龜裂問題。若分散劑之用量過低,漿料中掺雜銻之銅銦鎵硒(CIGS:Sb)奈米粒子易於聚集而無法有效分散。若分散劑之用量過高, 則漿料過於黏稠導致塗佈不易,且後續加熱形成吸光層的步驟中難以移除分散劑而易有殘碳問題。
上述CIGS:Sb之組成如式1所示:Cu1-x (In1-y Gay )Se2±z :Sbw (式1)
在式1中,0≦x≦0.2,0.1≦y≦0.9,0≦z≦0.2,且0<w≦0.2。依化學計量秤取銅粉、銦粉、硒粉、含結晶水之硝酸鎵、及硒化銻置入高壓反應器中,搭配有機溶劑進行反應,即可得式1之產物。由於銻(Sb)有助熔融長晶的效果,因此含有CIGS:Sb之前驅層在熱處理後能形成黃銅礦結構的吸光層。另一方面,先形成式1之CIGS:Sb漿料可簡化多重前驅物的製備流程,且CIGS:Sb的穩定性高,不易在熱處理時發生元素比例的變化,較易控制吸光層之組成。
在本發明一實施例中,有機溶劑可為C1-6 之單醇(只含一個羥基)甲醇、正丙醇、其他合適單醇、或上述之組合。在本發明一實施例中,分散劑可為(1)陰離子型:具有帶負電的極性基團,如羧基。(2)陽離子型:具有帶正電的極性基團,如氨基。(3)電中性型:如乙二醇。(4)非離子型:多以環氧乙烷基鏈構成如polyethoxylated glycols(PEG)、Alkylphenol ethoxylates(APE)等。舉例來說,分散劑可為乙醇胺。將CIGS:Sb粉體、分散劑、及有機溶劑置於適當的分散裝置如球磨機後,即可得漿料。在本發明一實施例中,漿料中的CIGS:Sb粒子的平均粒徑介於10nm至50nm之間。若CIGS:Sb粒子的平均粒徑過大,在濕式塗佈後易形 成孔洞於前驅物層中。即使在高溫熱處理前驅物層後,上述孔洞仍會殘留於最後形成的吸光層中,並影響太陽能電池的效能。
本發明一實施例亦提供太陽能電池之吸光層的形成方法。舉例來說,可先施加背面電極層於基板上。基板可為玻璃、PI薄膜、金屬箔、或其他合適的板狀材料。背面電極層可為任何導電材料如金屬、合金、或其他合適的導電材料。在本發明一實施例中,背面電極層為鉬。接著將上述漿料施加於背面電極層上,其施加方法可為濕式塗佈如刮刀塗佈法、浸潤法、噴塗法、旋轉塗佈法、或其他合適的濕式塗佈法。接著移除有機溶劑以形成前驅物層。最後再經一熱處理製程使CIGS:Sb前驅物層長晶形成黃銅礦結構的晶體,即完成吸光層。
在本發明一實施例中,可在加熱前驅物層之步驟中通入硒蒸氣或硫蒸氣以避免加熱過程中硒元素的揮發,而微量的硫蒸氣有助於CIGS表面能階的調控,可幫助效率的提升。使吸光層的硒或硫的含量增加,進而調整吸光層之能帶隙範圍。
移除有機溶劑形成前驅物層的溫度介於90℃至150℃之間。若加熱漿料的溫度過低,則無法去除有機溶劑。如此一來,前驅物層中殘留的有機溶劑在之後更高溫的加熱製程時,可能快速氣化而形成孔洞於吸光層中。若加熱漿料的溫度過高,則可能快速氣化有機溶劑而形成孔洞於吸光層中。
熱處理前驅物層以形成吸光層的溫度介於500℃至600℃之間。此加熱步驟的主要目的在於使CIGS:Sb的奈米粒子成長為黃銅礦的晶體,並可移除殘留的有機溶劑與分散劑。若加熱前驅物層之溫度過低,則不易完全形成黃銅礦結晶。若加熱前驅物層之溫度過高,則底部基材易因高溫而損壞。
為了讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數實施例配合所附圖示,作詳細說明如下:
【實施例】 實施例1
依表1之化學計量秤取銅粉、銦粉、硒粉、與含結晶水之硝酸鎵,放入1L高壓反應器中。將600mL乙二胺溶液加入高壓反應器中攪拌均勻,再依表1之化學計量秤取硒化銻(實施例1-8不需此步驟)並將其加入高壓反應器。在完全密封高壓反應器後,以氮氣置換高壓反應器中空氣,將高壓反應器置於加熱器中,將溫度提升至200℃,反應24小時後降溫至室溫。以過濾方式分開溶劑與合金粉體,烘乾後以ICP-MS驗證合金粉體組成如表1。第1圖係實施例1-1的掺雜銻之銅銦鎵硒(CIGS:Sb)合金粉體與硒化銻(Sb2 Se3 )之XRD比較圖,而第2圖係實施1-1的CIGS:Sb合金粉體與Sb2 Se3 之Ramman比較圖。由第1及2圖可知,上述合成方法形成的CIGS:Sb合金粉體不含硒化銻之雜相。第3圖係不同In/Ga含量的CIGS:Sb的XRD比較圖。 由第3圖可知,CIGS:Sb合金粉體不含硒化銻之雜相,且不同In/Ga的組成會使特徵吸收峰產生明顯位移,由此可知在合金粉體的合成階段便可控制吸光層組成。
實施例2
接著分散實施例1之合金粉體以形成漿料。為使漿料與鉬基材具有良好接著力,溶劑之表面張力係數需小於40mN/m,且分散劑係於350℃即可熱分解的化學品,以避免殘碳影響吸光層的光電轉換效率。取0.1g實施例1-3的CIGS:Sb奈米粉體置於2ml的溶劑中,再加入0.01g的分散劑,經過18小時後觀察粉體分散情形。表2為不同溶劑及分散劑分散粉體的結果,溶劑以單醇的效果較佳,而分散劑則以含有胺基的分散劑之效果最好。
實施例3
取實施例2之測試3的溶劑及分散劑製作漿料。取10g實施例1-3的CIGS:Sb合金粉體置於溼式研磨機(JBM-b035)中,再加入0.8g乙醇胺、70ml的正丙醇、及釔鋯珠480g(粒徑為50μm),在35℃及轉速2000rpm之條件下研磨3.5小時。研磨完成後以篩網分離釔鋯珠球及研磨液,再以減壓蒸餾方式濃縮研磨液至所需濃度(10-15 wt%)。所得到之漿體顏色呈深褐色。以動態光散射儀(Zetasizer NanoZS)測試其漿體中CIGS:Sb粒子的粒徑大小,可知漿料中CIGS:Sb粒子的平均粒徑為50nm。
取鍍鉬玻璃,將上述漿料溼式塗佈於15cm×30cm的鉬基材上,經多次塗佈仍無觀察到塗層剝落的現象。將此塗層置於大氣環境下100-150℃的加熱板上以移除溶劑,得到厚度大於2.5μm之CIGS:Sb前驅物薄膜。由SEM觀察此前驅物薄膜,不論是由上視或剖視的SEM照片均可觀察到前驅物薄膜堆疊地非常密實。
取上述前驅物薄膜進行高溫硒化製程。取5 cm2 的前驅物薄膜試片置於石英玻璃支撐物上,取2g硒粉放置於石英船上,並將石英船及石英玻璃支撐物放入六吋管狀高溫爐中的均溫區。封閉管狀高溫爐兩端後,以真空泵浦將管狀高溫爐抽至真空再通入氮氣至常壓,重覆兩次換氣動作確使爐內無氧氣。加熱管狀高溫爐至530℃後維持此溫度20 至30分鐘,之後停止加熱以冷卻管內溫度至常溫,即可將試片取出。以SEM分析試片並觀察在前驅物薄膜在高溫下的長晶情形,由上視及側視的SEM照片可知CIGS:Sb晶體的尺寸由數十奈米增加至約1μm。由XRD可確認CIGS:Sb晶體為黃銅礦結構且無雜相存在。
比較例1
與實施例3相似,差異在以實施例2中測試5的分散溶劑及分散劑進行研磨。取10g的CIGS:Sb奈米粉體置於溼式研磨機(JBM-b035)中,再加入0.8g醚胺、70ml的甲醇、及釔鋯珠480g(粒徑為50μm),在35℃及轉速2000 rpm之條件下研磨3.5小時。研磨完成後以篩網分離釔鋯珠球及研磨分散液,再將取得的研磨分散液以減壓蒸餾方式濃縮至所需濃度(固含量10-30 wt%),所得到之前驅物墨水顏色呈深灰黑色。以動態光散射儀(Zetasizer NanoZS)測試其粒徑大小,可知漿料中CIGS:Sb粒子的平均粒徑為200nm。
取鍍鉬玻璃,將上述漿料溼式塗佈於15cm 30cm的鉬基材上,經多次塗佈仍無觀察到塗層剝落的現象。將此塗層置於大氣環境下100-150℃的加熱板上以移除溶劑,得到厚度大於3μm之CIGS:Sb前驅物薄膜。由SEM觀察此前驅物薄膜,不論是上視或剖視均可觀察到前驅物薄膜具有許多孔隙,其堆疊的密實程度不如實施例3的前驅物薄膜。
取上述前驅物薄膜進行高溫硒化製程。取5 cm2 的前驅物薄膜試片置於石英玻璃支撐物上,取2g硒粉放置於石英 船上,並將石英船及石英玻璃支撐物放入六吋管狀高溫爐中的均溫區。封閉管狀高溫爐兩端後,以真空泵浦將管狀高溫爐抽至真空再通入氮氣至常壓,重覆兩次換氣動作確使爐內無氧氣。加熱管狀高溫爐至530℃後維持此溫度20至30分鐘,之後停止加熱以冷卻管內溫度至常溫,即可將試片取出。以SEM分析取出試片並觀察前驅物薄膜在高溫下的長晶情形,由上視之SEM照片可知CIGS:Sb晶體亦有明顯長晶但有明顯的孔洞,應來自於前驅物薄膜的堆疊密實度不佳。由剖視之SEM照片可知長晶情形侷限於吸光層的表面,表面下只觀察到少部份熔融而無明顯長晶。
由實施例3及比較例1的比較可知,漿料中CIGS:Sb粒子的平均粒徑大小會顯著地影響奈米粒子在高溫時的熔融程度,與薄膜的長晶情形。
比較例2
與實施例3類似,差別在於漿料中所含的奈米粒子並非實施例1-3的CIGS:Sb而是實施例1-8的CIGS。以SEM觀察長晶後的CIGS薄膜,發現薄膜之長晶明顯有分層的現象,上半層有明顯長晶,下半層長晶情形較不明顯。長晶情形的差異將影響吸光層照光後產生的電流大小。將實施例3及比較例2的薄膜製成元件(請參考Solid-State Electronics,Vol.56,Iss.1,Feb.2011,Pages 175-178)後,比較兩者之電流值。實施例3中長晶較完全的吸光層(CIGS:Sb)所測到的電流值約為30mA/cm2 ,而比較例2中 長晶較差的吸光層(CIGS)所測到的電流值約為22mA/cm2 。由上述比較可知,掺雜Sb至CIGS確實能提昇太陽能電池的電流。
比較例3
依表3之化學計量秤取銅粉、銦粉、硒粉、與含結晶水之硝酸鎵,放入1L高壓反應器中。將600mL乙二胺溶液加入高壓反應器中攪拌均勻。在完全密封高壓反應器後,以氮氣置換高壓反應器中空氣,將高壓反應器置於加熱器中,將溫度提升至200℃,反應24小時後降溫至室溫。以過濾方式分開溶劑與合金粉體,烘乾後以ICP-MS驗證合金粉體組成如表3。
接著取上述CIGS粉體10g與Sb2 Se3 粉體0.5g進行實施例3之球磨製程,形成漿料。除了球磨的合金粉體不同外,其他球磨參數、濕式塗佈於鉬玻璃上、乾燥、及高溫熱處理使前驅物薄膜長晶等製程則相同。以SEM觀察長晶後的CIGS+Sb2 Se3 薄膜,發現薄膜之長晶明顯有分層的現象,顯示其奈米粉體的熔融現象不如預期。將上述薄膜製成元件後(請參考Solid-State Electronics,Vol.56,Iss.1,Feb.2011,Pages 175-178),比較例3中分層的吸光層(CIGS+Sb2 Se3 )所測到的電流值約為10mA/cm2 。由電性的 結果可以發現將Sb與CIGS直接混合的方法不能增加光電轉換效率。
雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
第1圖係本發明一實施例中,掺雜銻之銅銦鎵硒(CIGS:Sb)合金粉體與硒化銻(Sb2 Se3 )之XRD比較圖;第2圖係本發明一實施例中,掺雜銻之銅銦鎵硒(CIGS:Sb)合金粉體與硒化銻(Sb2 Se3 )之Ramman比較圖;以及第3圖係本發明一實施例中,不同In/Ga含量的掺雜銻之銅銦鎵硒(CIGS:Sb)的XRD比較圖。

Claims (8)

  1. 一種漿料,包括:1重量份之掺雜銻之銅銦鎵硒奈米粒子;0.05至0.15重量份之分散劑,其中該分散劑具有胺基;以及4至7重量份之有機溶劑,其中該有機溶劑係C1-6 之單醇,其中該掺雜銻之銅銦鎵硒奈米粒子藉由該分散劑懸浮於該有機溶劑中。
  2. 如申請專利範圍第1項所述之漿料,其中該單醇係甲醇、正丙醇、或上述之組合。
  3. 如申請專利範圍第1項所述之漿料,其中該分散劑係乙醇胺。
  4. 如申請專利範圍第1項所述之漿料,其中該掺雜銻之銅銦鎵硒奈米粒子之平均粒徑介於10至50nm之間。
  5. 如申請專利範圍第1項所述之漿料,其中該掺雜銻之銅銦鎵硒奈米粒子之組成為Cu1-x (In1-y Gay )Se2±z :Sbw ,其中0≦x≦0.2,0.1≦y≦0.9,0≦z≦0.2,且0<w≦0.2。
  6. 一種太陽能電池之吸光層的形成方法,包括:提供一基板,形成一背面電極層於該基板上;將申請專利範圍第1項所述之漿料施加於該背面電極層上;加熱該漿料,以形成一前驅物層;以及加熱該前驅物層以形成一吸光層。
  7. 如申請專利範圍第6項所述之太陽能電池之吸光層的形成方法,其中加熱該前驅物層以形成該吸光層之步驟係進行於硒蒸氣或硫蒸氣的環境下。
  8. 如申請專利範圍第6項所述之太陽能電池之吸光層的形成方法,其中加熱該前驅物層以形成該吸光層之步驟的溫度介於500℃至600℃之間。
TW101140930A 2012-11-05 2012-11-05 漿料與太陽能電池之吸光層的形成方法 TWI485872B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101140930A TWI485872B (zh) 2012-11-05 2012-11-05 漿料與太陽能電池之吸光層的形成方法
CN201210516825.XA CN103811569B (zh) 2012-11-05 2012-12-05 浆料与太阳能电池之吸光层的形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101140930A TWI485872B (zh) 2012-11-05 2012-11-05 漿料與太陽能電池之吸光層的形成方法

Publications (2)

Publication Number Publication Date
TW201419561A TW201419561A (zh) 2014-05-16
TWI485872B true TWI485872B (zh) 2015-05-21

Family

ID=50708064

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101140930A TWI485872B (zh) 2012-11-05 2012-11-05 漿料與太陽能電池之吸光層的形成方法

Country Status (2)

Country Link
CN (1) CN103811569B (zh)
TW (1) TWI485872B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200937644A (en) * 2007-12-06 2009-09-01 Ibm Improved photovoltaic device with solution-processed chalcogenide absorber layer
US20090320916A1 (en) * 2008-05-09 2009-12-31 International Business Machines Corporation Techniques for Enhancing Performance of Photovoltaic Devices
TW201103866A (en) * 2009-07-17 2011-02-01 Univ Nat Taiwan Preparation of chalcopyrite powders via the emulsion process
CN102163555A (zh) * 2010-02-23 2011-08-24 气体产品与化学公司 制造多成分薄膜的方法
US8158537B2 (en) * 2009-11-24 2012-04-17 Aqt Solar, Inc. Chalcogenide absorber layers for photovoltaic applications and methods of manufacturing the same
WO2012071287A1 (en) * 2010-11-22 2012-05-31 E. I. Du Pont De Nemours And Company Inks and processes to make a chalcogen-containing semiconductor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7306823B2 (en) * 2004-09-18 2007-12-11 Nanosolar, Inc. Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells
CN102024858B (zh) * 2010-04-19 2013-12-04 福建欧德生光电科技有限公司 油墨、薄膜太阳能电池及其制造方法
CN102569514B (zh) * 2012-01-04 2014-07-30 中国科学院合肥物质科学研究院 一种制备铜铟镓硒太阳能电池光吸收层的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200937644A (en) * 2007-12-06 2009-09-01 Ibm Improved photovoltaic device with solution-processed chalcogenide absorber layer
US20090320916A1 (en) * 2008-05-09 2009-12-31 International Business Machines Corporation Techniques for Enhancing Performance of Photovoltaic Devices
TW201103866A (en) * 2009-07-17 2011-02-01 Univ Nat Taiwan Preparation of chalcopyrite powders via the emulsion process
US8158537B2 (en) * 2009-11-24 2012-04-17 Aqt Solar, Inc. Chalcogenide absorber layers for photovoltaic applications and methods of manufacturing the same
CN102163555A (zh) * 2010-02-23 2011-08-24 气体产品与化学公司 制造多成分薄膜的方法
WO2012071287A1 (en) * 2010-11-22 2012-05-31 E. I. Du Pont De Nemours And Company Inks and processes to make a chalcogen-containing semiconductor

Also Published As

Publication number Publication date
TW201419561A (zh) 2014-05-16
CN103811569B (zh) 2016-04-13
CN103811569A (zh) 2014-05-21

Similar Documents

Publication Publication Date Title
US9735297B2 (en) Method for preparing light absorption layer of copper-indium-gallium-sulfur-selenium thin film solar cells
TWI609840B (zh) 用於薄膜光伏打裝置之無機鹽-奈米粒子墨水及相關方法
JP6688832B2 (ja) アンチモンがドープされたナノ粒子
US8759142B2 (en) Method for producing thin-film light-absorbing layer and method for manufacturing thin-film solar cell including the same
TWI552373B (zh) 具有高無裂縫限度之cigs奈米粒子墨水調配物
JP5874645B2 (ja) 化合物半導体薄膜太陽電池及びその製造方法
Özdal et al. Comprehensive analysis of spin coated copper zinc tin sulfide thin film absorbers
US20150114456A1 (en) Method for the preparation of low-dimensional materials
TWI570949B (zh) 化合物半導體薄膜之製作方法及具備其化合物半導體薄膜之太陽能電池
TW201300322A (zh) 銅銦鎵硫硒薄膜太陽電池光吸收層的製備方法
TWI485872B (zh) 漿料與太陽能電池之吸光層的形成方法
CN105899462B (zh) 富铜的铜铟(镓)二硒化物/二硫化物纳米粒子的制备
TWI675890B (zh) 具有高無裂縫限度之cigs奈米粒子墨水調配物
KR101327538B1 (ko) 충진밀도가 향상된 구리인듐셀렌계 화합물 박막의 제조 방법