CN101002335A - Cis化合物半导体薄膜太阳能电池以及形成该太阳能电池的光吸收层的方法 - Google Patents

Cis化合物半导体薄膜太阳能电池以及形成该太阳能电池的光吸收层的方法 Download PDF

Info

Publication number
CN101002335A
CN101002335A CNA2005800269290A CN200580026929A CN101002335A CN 101002335 A CN101002335 A CN 101002335A CN A2005800269290 A CNA2005800269290 A CN A2005800269290A CN 200580026929 A CN200580026929 A CN 200580026929A CN 101002335 A CN101002335 A CN 101002335A
Authority
CN
China
Prior art keywords
light absorbing
solar cell
absorbing zone
compound semiconductor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800269290A
Other languages
English (en)
Other versions
CN101002335B (zh
Inventor
栗谷川悟
名古屋义则
田中良明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35839346&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101002335(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Publication of CN101002335A publication Critical patent/CN101002335A/zh
Application granted granted Critical
Publication of CN101002335B publication Critical patent/CN101002335B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

在低温下进行膜的形成以提高转换效率和生产率,且使所用衬底材料能广泛选择。本发明涉及CIS化合物半导体薄膜太阳能电池的光吸收层和形成该层的方法。该光吸收层包括由Cux(In1-y Gay)(Se1-z Sz)2表示的、具有黄铜矿型结构的化合物,其成分的比例满足0.86≤x≤0.98,0.05≤y≤0.25,0≤z≤0.3,x=αT+β,α=0.015y-0.00025,β=-7.9y+1.105,设T(℃)为退火温度,且x的允许范围为±0.02。该层在低温(约500≤T≤550)下通过硒化方法形成。衬底采用具有低熔点的钠钙玻璃。

Description

CIS化合物半导体薄膜太阳能电池以及形成该太阳能电池的光吸收层的方法
技术领域
本发明涉及CIS化合物半导体薄膜太阳能电池以及形成该太阳能电池的光吸收层的方法。
背景技术
如图4所示,CIS化合物半导体薄膜太阳能电池1的基本结构包括在(钠钙)玻璃衬底2上依次叠加于其上的金属背电极3、光吸收层4、界面层(缓冲层)5、窗口层6和上电极7的多层结构。光吸收层由CIS化合物半导体如p型Cu-III-VI2族黄铜矿半导体的薄膜构成,例如铜铟联硒化物(CIS)、铜铟镓联硒化物(CIGS)或铜铟镓联硒硫化物(CIGSS),或者具有包括作为表层的CIGSS的薄层的CIGS。
在CIS化合物半导体薄膜太阳能电池中,趋势是增加作为其光吸收层成分的镓和硫的含量以提高转换效率(参见例如专利文献1、2和3)。专利文献1公开了一种形成CIS化合物半导体薄膜太阳能电池的光吸收层的方法。在这种方法中,通过多源沉积法得到范围为0.117-0.434的镓含量(第III族元素中的镓比例),因而达到高转换效率。然而,在通过多源沉积法形成具有高的镓比例y(y=Ga/(Ga+In))的化合物半导体的薄膜的情况中,这个方法作为工业技术具有下列严重问题:(1)镓的使用量增加导致成本增加;(2)在多源沉积中难以确保得到遍及大面积的均匀性,而且膜形成装置复杂且昂贵;以及(3)膜的形成须在高温下进行,导致很多限制衬底材料的因素。另一方面,非常适合工业中在大面积上均匀形成CIS化合物半导体薄膜的硒化方法,是基于组元的热扩散,因而具有一些问题,例如(4)由于镓的扩散速度远小于其它元素,因此应进行长时间的高温过程。
在一些CIS化合物半导体薄膜太阳能电池中,光吸收层具有包括铜和铟作为层的成分的组成,其中为了提高转换效率减小了铜对铟的比例(参见例如专利文献4、5、6和7)。在专利文献4、5和7描述的CIS化合物半导体薄膜太阳能电池的这种光吸收层中或它们的制备工艺中,光吸收层的成分不包括镓。而且,在制备专利文献4中所述的太阳能电池时,采用由气相沉积法形成的固体硒层作为硒源。在这方面,专利文献4所述的太阳能电池不同于本发明的电池,因为其采用气体作为硒源。在制备专利文献6和7所述的太阳能电池时,通过共沉积方法形成CIS膜。这些太阳能电池不同于本发明的电池,因为其通过溅射法产生包括Cu-Ga合金层和铟层而且具有给定的组成的多层前体膜,并在包括含有硒和/或硫的气体的气氛中以给定的低温热处理。专利文献5包括关于CIGS和CIGSS用作光吸收层的叙述。然而,该光吸收层中的镓比例y(y=Ga/(Ga+In))不如本发明的低。
专利文献1:日本专利No.3244408(JP-A-9-82992)
专利文献2:日本专利No.3249408(JP-A-10-135495)
专利文献3:日本专利No.3249407(JP-A-10-135498)
专利文献4:JP-A-4-127483
专利文献5. JP-A-9-506475
专利文献6:JP-A-4-369871
专利文献7:JP-A-8-111425
发明内容
本发明要解决的问题
为了消除上述问题而实现本发明。本发明的目的是通过进行形成CIS化合物半导体薄膜的过程生产具有高转换效率的CIS化合物半导体薄膜太阳能电池,(1)低成本,(2)大面积均匀,并且能使(3)衬底材料广泛选择,而且维持(4)高产率。
解决问题的手段
(1)本发明提供了具有多层结构的CIS化合物半导体薄膜太阳能电池(的光吸收层),其包括衬底和以下列顺序层叠其上的金属背电极、光吸收层、界面层(缓冲层)、窗口层和上电极,特征在于光吸收层包括由式Cux(In1-y Gay)(Se1-z Sz)2表示的、具有黄铜矿型结构且成分比例满足0.86≤x≤0.98(优选0.90≤x≤0.96)、0.05≤y≤0.25和0≤z≤0.3的化合物。
(2)本发明进一步提供了根据(1)的CIS化合物半导体薄膜太阳能电池,其中该光吸收层包括由式Cux(In1-y Gay)(Se1-zSz)2表示的、具有黄铜矿型结构且成分比例满足0.86≤x≤0.98(优选0.90≤x≤0.96)、0.05≤y≤0.25、0≤z≤0.3的化合物,其中x=αT+β,α=0.015y-0.00025,β=-7.9y+1.105,设T(℃)为退火温度(anneal temperature)且x的允许范围为±0.02。
(3)本发明还进一步提供了根据(1)或(2)的CIS化合物半导体薄膜太阳能电池,其中衬底为钠钙玻璃。
(4)本发明进一步提供了形成具有多层结构的CIS化合物半导体薄膜太阳能电池的光吸收层的方法,其中该太阳能电池包括衬底和以下列顺序层叠其上的金属背电极、光吸收层、界面层(缓冲层)、窗口层和上电极,其中该光吸收层包括由式Cux(In1-y Gay)(Se1-zSz)2表示的、具有黄铜矿型结构且成分比例满足0.86≤x≤0.98(优选0.90≤x≤0.96)、0.05≤y≤0.25和0≤z≤0.3的化合物,该光吸收层在低温下通过硒化方法形成。
(5)本发明进一步提供了形成根据(4)的CIS化合物半导体薄膜太阳能电池的光吸收层的方法,特征在于形成光吸收层的前体,该前体由包括Cux、In1-y和Gay的元素构成,其中成分的比例满足x=αT+β,α=0.015y-0.00025,β-7.9y+1.105,假设T(℃)为退火温度且x的允许范围为±0.02。
(6)本发明进一步提供了形成根据(4)或(5)的CIS化合物半导体薄膜太阳能电池的光吸收层的方法,其中用于形成光吸收层的退火温度T(℃)的范围约为500℃≤T≤550℃(优选为500℃≤T≤530℃,更优选为505℃≤T≤515℃)。
本发明的优点
根据本发明,即使光吸收层中的镓比例y(y=Ga/(Ga+In))低,CIS化合物半导体薄膜太阳能电池也能具有高转换效率。另外,光吸收层是通过低温硒化方法形成的,不仅提高了生产率和减少了生产能耗,并且衬底材料可从更广的范围选择。
具体实施方式
下面将说明本发明的实施例。
首先,CIS化合物半导体薄膜太阳能电池1的基本结构是多层结构,如图4所示,其包括衬底2和以下列顺序层叠其上的金属背电极3、光吸收层4、界面层(缓冲层)5、窗口层6和上电极7。形成在玻璃衬底2上的金属背电极3是具有高熔点的高抗蚀金属,例如钼或钛,其厚度为1-2μm。光吸收层4是显示p型传导的CIS化合物半导体薄膜,其厚度为1-3μm。也就是说,该光吸收层由Cu-III-VI2族黄铜矿(型)半导体构成,例如铜铟联硒化物(CIS)、铜铟镓联硒化物(CIGS)或铜铟镓联硒硫化物(CIGSS),或者具有包括作为表层的CIGSS的薄层的CIGS。界面层(缓冲层)5是II-VI族化合物半导体的薄膜,其为透明的,具有高阻抗,且可含有氢氧化物。窗口层6是金属氧化物半导体的透明导电薄膜,其是由显示n型传导的氧化锌制成的,具有大的带隙宽度,是透明并导电的,具有0.5-3μm的厚度。光吸收层4和窗口层6构成p-n结,其用于产生太阳能电池的光电伏打效应。然而,光吸收层4(p型)的表面具有低阻抗部分,其中铜、硒等的含量高且具有半金属性质。因此在光吸收层4和窗口层6之间形成完全绝缘的p-n结是不可能的。为了覆盖光吸收层4(p型)表面的这种低阻抗部分,在光吸收层4(p型)上形成透明且具有高阻抗的界面层(缓冲层)5。形成在光吸收层4上的界面层(缓冲层)5、窗口层6和上电极7由透明材料制成,以利于阳光传送到光吸收层4。
本发明涉及上述的CIS化合物半导体薄膜太阳能电池和形成该太阳能电池的光吸收层的方法。如上所述,在CIS化合物半导体薄膜太阳能电池中,倾向于增加作为光吸收层成分的镓和硫的含量以提高转换效率。然而,本发明中,即使减少了镓的比例y(y=Ga/(Ga+In)),太阳能电池的转换效率也令人满意地与具有高的镓比例y的电池的转换效率相当。而且,在该形成光吸收层的方法中,是在低温下通过硒化方法形成光吸收层,其基于不同于多源沉积方法的组元的热扩散,该方法有效地得到了均匀、质量好的化合物半导体薄膜。另外,提高了生产率并减少了生产能耗,而且衬底材料能从更广的范围选择。
在本发明的CIS化合物半导体薄膜太阳能电池1中,光吸收层4,特别地,包括由式Cux(In1-y Gay)(Se1-zSz)2表示的、具有黄铜矿型结构且成分比例满足0.86≤x≤0.98(优选0.90≤x≤0.96)、0.05≤y≤0.25和0≤z≤0.3的化合物,其中x=αT+β,α=0.015y-0.00025且β=-7.9y+1.105,设T(℃)为退火温度且x的允许范围为±0.02。
图1是示出了本发明的CIS化合物半导体薄膜太阳能电池的光吸收层4A(当铜的比例取1,即x=1)与现有技术(专利文献1)的CIS化合物半导体薄膜太阳能电池的光吸收层4B的成分范围的比较关系的图。如图1所示,光吸收层4A的成分范围和光吸收层4B的成分范围之间看起来出现了重合。然而,这种情况下铜的含量不是1,即不满足上述x=1的情况,而是在0.86≤x≤0.98(优选为0.90≤x≤0.96)的范围内。特征在于铜对第III族元素(即Ga+In)的比例x(下文中该比例称为铜的比例x)通过改变镓的比例y(y=Ga/(Ga+In))而改变。结果,光吸收层4A的成分范围和光吸收层4B的成分范围之间没有重合。
图2是示出了根据本发明、采用具有低镓比例y(y为1 3%,设y=Ga/(Ga+In))的CIS化合物半导体薄膜作为光吸收层4A的太阳能电池1 A与采用具有高镓比例y(y为30%)的CIS化合物半导体薄膜作为光吸收层4C的太阳能电池1C的电压/电流特性的比较关系的图。发现两个太阳能电池之间的电压/电流特性和转换效率不存在差异。
顺便指出,在镓的比例y为13%的情况下,S/(S+Se)为20%。因此,该光吸收层的成分范围与现有技术(专利文献1)的CIS化合物半导体薄膜太阳能电池的光吸收层4B的成分范围不重合。
在采用包括具有高镓比例y(y为30%)的CIS化合物半导体薄膜的光吸收层4C的太阳能电池1C中,需要530℃或更高的退火温度。相反,在太阳能电池1A的情况中,其采用包括具有低镓比例y(y为13%)的CIS化合物半导体薄膜的光吸收层4A,衬底的退火在520℃或更低的低温下进行,因此,能采用便宜的钠钙玻璃,其具有约510-520℃的热扭变点且用于建筑用途等。用于CIS化合物半导体薄膜的退火温度T(℃)可在500℃≤T≤550℃的范围内,优选为500℃≤T≤530℃,更优选为505℃≤T≤515℃。这里所用的退火温度T(℃)的值是衬底温度的估计值,为[炉温]-30℃。
在通过低温退火(520℃或更低)的硒化方法形成本发明的CIS化合物半导体薄膜太阳能电池的光吸收层4A时,镓的扩散如上文所述不完全。因此,铜比例x的最佳值根据镓比例y和退火温度在0.86≤x≤0.98(优选0.90≤x≤0.96)的范围内变化。
图3示出了表示Cu/(Ga+In)比例x和转换效率(%)之间关系的实验数据:(a)是采用了具有镓比例y为25%的光吸收层的太阳能电池的情况;以及(b)是采用了具有镓比例y为15%的光吸收层的太阳能电池的情况。
图3(a)所示如下。在采用了具有镓比例y为25%、通过在520℃退火形成的光吸收层的太阳能电池1E中,由于退火温度高达520℃,产生了充分的镓扩散,并且当Cu/(Ga+In)比例约为0.96时得到了转换效率的最佳值。相反,在采用了具有镓比例为25%、通过在500℃退火形成的光吸收层的太阳能电池1F中,当Cu/(Ga+In)比例约为0.88时得到转换效率的最佳值。
图3(b)所示如下。在采用具有镓比例y为15%的光吸收层的太阳能电池1G和1H中,尽管光吸收层经历了低温退火(500-520℃),其Cu/(Ga+In)比例的最佳值保持可与镓比例y为25%的情况相比的高。这是因为其扩散的镓的总量更小。
从这些实验结果发现,即使通过低温退火,当镓比例y保持相对低(约15%)且采用适合镓比例y和退火温度T(℃)的Cu/(Ga+In)比率时,也能制造出比通过具有高镓比例的组成的低温退火得到的产品具有更高转换效率的CIS化合物半导体薄膜太阳能电池。顺便指出,这里所用的退火温度T(℃)是衬底温度的估计值,为[炉温]-30℃。
关于镓和铜比例的粗略关系表达式如下:
x=αT+β(其中x为铜的比例,y为Ga/(In+Ga);α=0.015y-0.00025,β=-7.9y+1.105;设T(℃)为退火温度且500℃≤T≤550℃),x的允许范围为±0.02。
如图3所示,即使镓比例y在低比例范围内,本发明的CIS化合物半导体薄膜太阳能电池的光吸收层也能达到高的转换效率。另外,在形成层的过程中通过采用低温硒化方法,不仅提高了生产率并使生产能耗减少,而且衬底材料能从更广的范围选择。
下面详细说明形成本发明的CIS化合物半导体薄膜太阳能电池的光吸收层的方法。
在衬底上形成金属背电极后,通过例如专利文献2或3所示的低温退火硒化方法形成包括Cu、In、Ga、Se和S的光吸收层。
例如,包括Cu-Ga合金层和铟层的光吸收层前体(前体膜)通过溅射形成以具有下述成分比例,并且该前体膜在例如上面所示的低温下、在包括含硒和/或硫气体的气氛中热处理。因此,形成了具有上述组成的光吸收层。该光吸收层前体(前体膜)由包括Cux、In1-y和Gay且其比例满足0.86≤x≤0.98(优选为0.90≤x≤0.96)、0.05≤y≤0.25和(0≤z≤0.3)的成分构成,  其中x=αT+β,α=0.01 5y-0.00025,β=-7.9y+1.105,设T(℃)为退火温度且x的允许范围为±0.02。
本申请基于2004年8月9日提交的日本专利申请(申请号2004-232238),其内容在这里以参考的形式并入。
附图说明
[图1]图1是示出了本发明的CIS化合物半导体薄膜太阳能电池的光吸收层4A(其中x=1)的组成与根据现有技术(专利文献1)的CIS化合物半导体薄膜太阳能电池的光吸收层4B的成分范围的比较关系的图。
[图2]图2是示出了根据本发明、采用具有低镓比例y(y为13%)的光吸收层4A的CIS化合物半导体薄膜太阳能电池1A与采用具有高镓比例y(y为30%)的光吸收层4C的CIS化合物半导体薄膜太阳能电池1C之间的太阳能电池特性的比较关系的图。
[图3](a)是示出了表示太阳能电池1E和1F中的Cu/(Ga+In)比例和转换效率之间关系的实验数据的图,太阳能电池1E采用了具有镓比例y为25%、通过在520℃退火形成的光吸收层;太阳能电池1F采用了具有镓比例y为25%、通过在500℃退火形成的光吸收层。(b)是示出了太阳能电池1G和1H中的Cu/(Ga+In)比例和转换效率之间关系的实验数据的图,太阳能电池1G采用了具有镓比例y为15%、通过在520℃退火形成的光吸收层;太阳能电池1H采用了具有镓比例y为15%、通过在500℃退火形成的光吸收层。
[图4]图4是示出根据本发明的CIS化合物半导体薄膜太阳能电池的基本构造的图。
附图标记说明
1   CIS化合物半导体薄膜太阳能电池
1A  本发明的CIS化合物半导体薄膜太阳能电池
1A  本发明采用包括具有低镓比例y(y为13%)的CIS化合物半导体薄膜的光吸收层4A的太阳能电池
1B  现有技术的CIS化合物半导体薄膜太阳能电池
1C  采用包括具有高镓比例y(y为30%)的CIS化合物半导体薄膜的光吸收层4C的太阳能电池
1E  采用通过在520℃退火形成、具有镓比例y为25%的光吸收层的太阳能电池
1F  采用通过在500℃退火形成、具有镓比例y为25%的光吸收层的太阳能电池
1G  采用通过在520℃退火形成、具有镓比例y为15%的光吸收层的太阳能电池
1H  采用通过在500℃退火形成、具有镓比例y为15%的光吸收层的太阳能电池
2   衬底
3   金属背电极
4   光吸收层
4A  本发明的CIS化合物半导体薄膜太阳能电池的光吸收层(其中x=1)
4A  根据本发明包括具有低镓比例y(y为13%)的CIS化合物半导体薄膜的光吸收层
4B  现有技术(参考文献1)的CIS化合物半导体薄膜太阳能电池的光吸收层
4C  包括具有高镓比例y(y为30%)的CIS化合物半导体薄膜的光吸收层
5  界面层(缓冲层)
6  窗口层
7  上电极

Claims (6)

1.一种具有多层结构的CIS化合物半导体薄膜太阳能电池,其包括衬底和以下列顺序层叠其上的金属背电极、光吸收层、界面层(缓冲层)、窗口层和上电极,
其中所述光吸收层包括由Cux(In1-y Gay)(Se1-zSz)2表示的、具有黄铜矿型结构的化合物,其成分的比例满足0.86≤x≤0.98、0.05≤y≤0.25和0≤z≤0.3。
2.根据权利要求1的CIS化合物半导体薄膜太阳能电池,其中所述光吸收层包括由Cux(In1-y Gay)(Se1-zSz)2表示的、具有黄铜矿型结构的化合物,其成分的比例满足0.86≤x≤0.98,0.05≤y≤0.25,0≤z≤0.3,x=αT+β,α=0.015y-0.00025,β=-7.9y+1.105,设T(℃)为退火温度,且x的允许范围为±0.02。
3.根据权利要求1或2的CIS化合物半导体薄膜太阳能电池,其中所述衬底为钠钙玻璃。
4.一种形成具有多层结构的CIS化合物半导体薄膜太阳能电池的光吸收层的方法,其中所述太阳能电池包括衬底和以下列顺序层叠其上的金属背电极、光吸收层、界面层(缓冲层)、窗口层和上电极,
其中所述光吸收层包括由Cux(In1-yGay)(Se1-zSz)2表示的、具有黄铜矿型结构的化合物,其成分的比例满足0.86≤x≤0.98、0.05≤y≤0.25和0≤z≤0.3,而且
其中所述光吸收层在低温下通过硒化方法形成。
5.根据权利要求4的形成CIS化合物半导体薄膜太阳能电池的光吸收层的方法,其特征在于形成所述光吸收层的前体,所述前体由包括Cux、In1-y和Gay的元素构成,其中成分比例满足x=αT+β,α=0.015y-0.00025,β=-7.9y+1.105,设T(℃)为退火温度,且x的允许范围为±0.02。
6.根据权利要求4或5的形成CIS化合物半导体薄膜太阳能电池的光吸收层的方法,其中用于形成所述光吸收层的退火温度T(℃)的范围约为500℃≤T≤550℃。
CN2005800269290A 2004-08-09 2005-08-09 太阳能电池以及形成该太阳能电池的光吸收层的方法 Active CN101002335B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004232238A JP2006049768A (ja) 2004-08-09 2004-08-09 Cis系化合物半導体薄膜太陽電池及び該太陽電池の光吸収層の製造方法
JP232238/2004 2004-08-09
PCT/JP2005/014570 WO2006016577A1 (ja) 2004-08-09 2005-08-09 Cis系化合物半導体薄膜太陽電池及び該太陽電池の光吸収層の製造方法

Publications (2)

Publication Number Publication Date
CN101002335A true CN101002335A (zh) 2007-07-18
CN101002335B CN101002335B (zh) 2010-04-14

Family

ID=35839346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800269290A Active CN101002335B (zh) 2004-08-09 2005-08-09 太阳能电池以及形成该太阳能电池的光吸收层的方法

Country Status (7)

Country Link
US (1) US20070289624A1 (zh)
EP (1) EP1788636B1 (zh)
JP (1) JP2006049768A (zh)
KR (1) KR20070055497A (zh)
CN (1) CN101002335B (zh)
DE (1) DE602005019422D1 (zh)
WO (1) WO2006016577A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009089754A1 (fr) * 2007-12-29 2009-07-23 Shanghai Institute Of Ceramics, Chinese Academy Of Sciences Procédé de préparation d'une couche d'absorption de la lumière d'une pile solaire à film de cuivre-indium-gallium-soufre-sélénium
CN102194925A (zh) * 2010-02-26 2011-09-21 韩国电子通信研究院 制造薄膜光吸收层的方法及使用其制造薄膜太阳能电池的方法
CN103026495A (zh) * 2010-07-14 2013-04-03 富士胶片株式会社 电子器件用基板及包含该基板的光电转换器件

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017860B2 (en) * 2006-05-15 2011-09-13 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
US9105776B2 (en) 2006-05-15 2015-08-11 Stion Corporation Method and structure for thin film photovoltaic materials using semiconductor materials
KR100909179B1 (ko) 2006-07-24 2009-07-22 주식회사 엘지화학 Cis계 태양전지 흡수층의 제조방법
US8071179B2 (en) * 2007-06-29 2011-12-06 Stion Corporation Methods for infusing one or more materials into nano-voids if nanoporous or nanostructured materials
US7919400B2 (en) * 2007-07-10 2011-04-05 Stion Corporation Methods for doping nanostructured materials and nanostructured thin films
US8287942B1 (en) 2007-09-28 2012-10-16 Stion Corporation Method for manufacture of semiconductor bearing thin film material
US20090087939A1 (en) * 2007-09-28 2009-04-02 Stion Corporation Column structure thin film material using metal oxide bearing semiconductor material for solar cell devices
US8058092B2 (en) 2007-09-28 2011-11-15 Stion Corporation Method and material for processing iron disilicide for photovoltaic application
US8759671B2 (en) 2007-09-28 2014-06-24 Stion Corporation Thin film metal oxide bearing semiconductor material for single junction solar cell devices
US8614396B2 (en) 2007-09-28 2013-12-24 Stion Corporation Method and material for purifying iron disilicide for photovoltaic application
US7998762B1 (en) 2007-11-14 2011-08-16 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
JP2009259872A (ja) * 2008-04-11 2009-11-05 Rohm Co Ltd 光電変換装置およびその製造方法、および固体撮像装置
JP2011524270A (ja) * 2008-05-30 2011-09-01 コーニング インコーポレイテッド 光起電性ガラス積層物品および層状物品
US8642138B2 (en) 2008-06-11 2014-02-04 Stion Corporation Processing method for cleaning sulfur entities of contact regions
EP2144026B1 (de) * 2008-06-20 2016-04-13 Volker Probst Prozessvorrichtung und verfahren zum prozessieren von gestapelten prozessgütern
US9087943B2 (en) 2008-06-25 2015-07-21 Stion Corporation High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material
US8003432B2 (en) 2008-06-25 2011-08-23 Stion Corporation Consumable adhesive layer for thin film photovoltaic material
US7855089B2 (en) 2008-09-10 2010-12-21 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
US8008112B1 (en) 2008-09-29 2011-08-30 Stion Corporation Bulk chloride species treatment of thin film photovoltaic cell and manufacturing method
US8026122B1 (en) 2008-09-29 2011-09-27 Stion Corporation Metal species surface treatment of thin film photovoltaic cell and manufacturing method
US8236597B1 (en) 2008-09-29 2012-08-07 Stion Corporation Bulk metal species treatment of thin film photovoltaic cell and manufacturing method
US8476104B1 (en) 2008-09-29 2013-07-02 Stion Corporation Sodium species surface treatment of thin film photovoltaic cell and manufacturing method
US8501521B1 (en) 2008-09-29 2013-08-06 Stion Corporation Copper species surface treatment of thin film photovoltaic cell and manufacturing method
US8394662B1 (en) 2008-09-29 2013-03-12 Stion Corporation Chloride species surface treatment of thin film photovoltaic cell and manufacturing method
US8008110B1 (en) 2008-09-29 2011-08-30 Stion Corporation Bulk sodium species treatment of thin film photovoltaic cell and manufacturing method
US8425739B1 (en) 2008-09-30 2013-04-23 Stion Corporation In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials
US7863074B2 (en) 2008-09-30 2011-01-04 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US8383450B2 (en) 2008-09-30 2013-02-26 Stion Corporation Large scale chemical bath system and method for cadmium sulfide processing of thin film photovoltaic materials
US7947524B2 (en) 2008-09-30 2011-05-24 Stion Corporation Humidity control and method for thin film photovoltaic materials
US7910399B1 (en) 2008-09-30 2011-03-22 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8741689B2 (en) 2008-10-01 2014-06-03 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
US20110018103A1 (en) 2008-10-02 2011-01-27 Stion Corporation System and method for transferring substrates in large scale processing of cigs and/or cis devices
US8003430B1 (en) 2008-10-06 2011-08-23 Stion Corporation Sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8435826B1 (en) 2008-10-06 2013-05-07 Stion Corporation Bulk sulfide species treatment of thin film photovoltaic cell and manufacturing method
USD625695S1 (en) 2008-10-14 2010-10-19 Stion Corporation Patterned thin film photovoltaic module
US8168463B2 (en) 2008-10-17 2012-05-01 Stion Corporation Zinc oxide film method and structure for CIGS cell
US8344243B2 (en) 2008-11-20 2013-01-01 Stion Corporation Method and structure for thin film photovoltaic cell using similar material junction
CN102308174B (zh) 2008-11-28 2015-08-05 福尔克尔·普洛波斯特 生产半导体层和由单质硒和/或单质硫处理的涂层衬底特别是平面衬底的方法
KR101054988B1 (ko) 2009-03-31 2011-08-05 엘지이노텍 주식회사 태양광 발전장치 및 이의 제조방법
US8134069B2 (en) 2009-04-13 2012-03-13 Miasole Method and apparatus for controllable sodium delivery for thin film photovoltaic materials
US7785921B1 (en) * 2009-04-13 2010-08-31 Miasole Barrier for doped molybdenum targets
USD628332S1 (en) 2009-06-12 2010-11-30 Stion Corporation Pin striped thin film solar module for street lamp
USD662040S1 (en) 2009-06-12 2012-06-19 Stion Corporation Pin striped thin film solar module for garden lamp
USD632415S1 (en) 2009-06-13 2011-02-08 Stion Corporation Pin striped thin film solar module for cluster lamp
USD662041S1 (en) 2009-06-23 2012-06-19 Stion Corporation Pin striped thin film solar module for laptop personal computer
USD652262S1 (en) 2009-06-23 2012-01-17 Stion Corporation Pin striped thin film solar module for cooler
US8507786B1 (en) 2009-06-27 2013-08-13 Stion Corporation Manufacturing method for patterning CIGS/CIS solar cells
USD627696S1 (en) 2009-07-01 2010-11-23 Stion Corporation Pin striped thin film solar module for recreational vehicle
US9284639B2 (en) * 2009-07-30 2016-03-15 Apollo Precision Kunming Yuanhong Limited Method for alkali doping of thin film photovoltaic materials
US8398772B1 (en) 2009-08-18 2013-03-19 Stion Corporation Method and structure for processing thin film PV cells with improved temperature uniformity
FR2951022B1 (fr) * 2009-10-07 2012-07-27 Nexcis Fabrication de couches minces a proprietes photovoltaiques, a base d'un alliage de type i-iii-vi2, par electro-depots successifs et post-traitement thermique.
US8809096B1 (en) 2009-10-22 2014-08-19 Stion Corporation Bell jar extraction tool method and apparatus for thin film photovoltaic materials
KR20110060139A (ko) * 2009-11-30 2011-06-08 삼성전자주식회사 태양 전지 제조 방법
US20110162696A1 (en) * 2010-01-05 2011-07-07 Miasole Photovoltaic materials with controllable zinc and sodium content and method of making thereof
US8859880B2 (en) 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices
KR20110128580A (ko) 2010-05-24 2011-11-30 삼성전자주식회사 태양 전지 제조 방법
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
US8628997B2 (en) 2010-10-01 2014-01-14 Stion Corporation Method and device for cadmium-free solar cells
US8048707B1 (en) 2010-10-19 2011-11-01 Miasole Sulfur salt containing CIG targets, methods of making and methods of use thereof
US7935558B1 (en) 2010-10-19 2011-05-03 Miasole Sodium salt containing CIG targets, methods of making and methods of use thereof
US9169548B1 (en) 2010-10-19 2015-10-27 Apollo Precision Fujian Limited Photovoltaic cell with copper poor CIGS absorber layer and method of making thereof
US8728200B1 (en) 2011-01-14 2014-05-20 Stion Corporation Method and system for recycling processing gas for selenization of thin film photovoltaic materials
US8998606B2 (en) 2011-01-14 2015-04-07 Stion Corporation Apparatus and method utilizing forced convection for uniform thermal treatment of thin film devices
WO2012176589A1 (ja) * 2011-06-22 2012-12-27 京セラ株式会社 光電変換装置
US20130000702A1 (en) * 2011-06-30 2013-01-03 Miasole Photovoltaic device with resistive cigs layer at the back contact
KR101193106B1 (ko) 2011-07-19 2012-10-19 한국에너지기술연구원 Cu-Se 이성분계 나노입자 플럭스를 이용한 Cu-Se 박막을 포함하는 CI(G)S계 박막의 제조방법 및 그 방법에 의해 제조된 CI(G)S계 박막
US10043921B1 (en) 2011-12-21 2018-08-07 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Photovoltaic cell with high efficiency cigs absorber layer with low minority carrier lifetime and method of making thereof
KR101389832B1 (ko) * 2012-11-09 2014-04-30 한국과학기술연구원 구리인듐셀레늄(cigs) 또는 구리아연주석황(czts)계 박막형 태양전지 및 그의 제조방법
CN103030119B (zh) * 2013-01-10 2015-01-07 华北电力大学 用作太阳能电池吸收层的稀土半导体化合物及其制备方法
US9786804B2 (en) 2013-07-12 2017-10-10 Solar Frontier K.K. Thin-film solar cell and production method for thin-film solar cell

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3244408B2 (ja) * 1995-09-13 2002-01-07 松下電器産業株式会社 薄膜太陽電池及びその製造方法
US5731031A (en) * 1995-12-20 1998-03-24 Midwest Research Institute Production of films and powders for semiconductor device applications
US5985691A (en) * 1997-05-16 1999-11-16 International Solar Electric Technology, Inc. Method of making compound semiconductor films and making related electronic devices
JPH11284209A (ja) * 1998-03-27 1999-10-15 Yazaki Corp カルコパイライト構造化合物半導体薄膜の製造方法及びそれを有する太陽電池の製造方法
JPH11298016A (ja) * 1998-04-10 1999-10-29 Yazaki Corp 太陽電池
US6127202A (en) * 1998-07-02 2000-10-03 International Solar Electronic Technology, Inc. Oxide-based method of making compound semiconductor films and making related electronic devices
JP3089407B2 (ja) * 1998-10-09 2000-09-18 工業技術院長 太陽電池薄膜の作製方法
US20020189665A1 (en) * 2000-04-10 2002-12-19 Davis, Joseph & Negley Preparation of CIGS-based solar cells using a buffered electrodeposition bath
EP1167587A1 (en) * 2000-06-30 2002-01-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Preparation of compounds based on phase equilibria of Cu-In-Se
US6559372B2 (en) * 2001-09-20 2003-05-06 Heliovolt Corporation Photovoltaic devices and compositions for use therein
JP3897622B2 (ja) * 2002-03-18 2007-03-28 松下電器産業株式会社 化合物半導体薄膜の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009089754A1 (fr) * 2007-12-29 2009-07-23 Shanghai Institute Of Ceramics, Chinese Academy Of Sciences Procédé de préparation d'une couche d'absorption de la lumière d'une pile solaire à film de cuivre-indium-gallium-soufre-sélénium
CN101960610B (zh) * 2007-12-29 2012-04-11 中国科学院上海硅酸盐研究所 铜铟镓硫硒薄膜太阳电池光吸收层的制备方法
US9735297B2 (en) 2007-12-29 2017-08-15 Shanghai Institute Of Ceramics, Chinese Academy Of Sciences Method for preparing light absorption layer of copper-indium-gallium-sulfur-selenium thin film solar cells
CN102194925A (zh) * 2010-02-26 2011-09-21 韩国电子通信研究院 制造薄膜光吸收层的方法及使用其制造薄膜太阳能电池的方法
CN102194925B (zh) * 2010-02-26 2014-08-20 韩国电子通信研究院 制造薄膜光吸收层的方法及使用其制造薄膜太阳能电池的方法
CN103026495A (zh) * 2010-07-14 2013-04-03 富士胶片株式会社 电子器件用基板及包含该基板的光电转换器件

Also Published As

Publication number Publication date
US20070289624A1 (en) 2007-12-20
WO2006016577A1 (ja) 2006-02-16
CN101002335B (zh) 2010-04-14
JP2006049768A (ja) 2006-02-16
DE602005019422D1 (de) 2010-04-01
EP1788636A4 (en) 2007-09-05
EP1788636A1 (en) 2007-05-23
EP1788636B1 (en) 2010-02-17
KR20070055497A (ko) 2007-05-30

Similar Documents

Publication Publication Date Title
CN101002335B (zh) 太阳能电池以及形成该太阳能电池的光吸收层的方法
Naghavi et al. Buffer layers and transparent conducting oxides for chalcopyrite Cu (In, Ga)(S, Se) 2 based thin film photovoltaics: present status and current developments
Niki et al. CIGS absorbers and processes
JP4384237B2 (ja) Cis系薄膜太陽電池の製造方法
US20060219288A1 (en) Process and photovoltaic device using an akali-containing layer
US20100319777A1 (en) Solar cell and method of fabricating the same
CN102652368B (zh) 太阳能电池中使用的Cu-In-Zn-Sn-(Se,S)基薄膜及其制造方法
CN1151560C (zh) 一种铜铟镓硒薄膜太阳能电池及其制备方法
US20140090706A1 (en) Solar cell apparatus and method of fabricating the same
JP2011129631A (ja) Cis系薄膜太陽電池の製造方法
KR20100109315A (ko) 태양전지 및 이의 제조방법
KR101219835B1 (ko) 태양전지 및 이의 제조방법
JPH11298016A (ja) 太陽電池
EP2702615B1 (en) Method of preparing a solar cell
KR20120113130A (ko) 태양전지 및 이의 제조방법
KR101081300B1 (ko) 태양전지 및 이의 제조방법
CN103339741A (zh) 太阳能电池设备及其制造方法
CN103098233B (zh) 太阳能电池及其制造方法
KR101154696B1 (ko) 태양전지 및 이의 제조방법
KR101180998B1 (ko) 태양전지 및 이의 제조방법
KR20200097118A (ko) Cigs 박막 태양전지 제조방법
KR102596328B1 (ko) Czts계 박막 태양전지 광흡수층의 제조방법, 이로부터 제조되는 czts계 박막 태양전지 광흡수층
KR101081079B1 (ko) 태양전지 및 이의 제조방법
KR102066053B1 (ko) 소다석회유리 절연층을 포함하는 플렉시블 박막 태양전지 및 그 제조방법
WO2019016325A1 (en) CIGS-BASED THIN FILM SOLAR CELLS ON A METALLIC SUBSTRATE

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SOLAR FRONTIER K. K.

Free format text: FORMER OWNER: SHOWA SHELL SEKIYU K.K.

Effective date: 20150217

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150217

Address after: Tokyo, Japan

Patentee after: Showa Shell Sekiyu K.K.

Address before: Tokyo, Japan

Patentee before: Showa Shell Sekiyu K. K.