WO2006109660A1 - 放熱装置 - Google Patents

放熱装置 Download PDF

Info

Publication number
WO2006109660A1
WO2006109660A1 PCT/JP2006/307307 JP2006307307W WO2006109660A1 WO 2006109660 A1 WO2006109660 A1 WO 2006109660A1 JP 2006307307 W JP2006307307 W JP 2006307307W WO 2006109660 A1 WO2006109660 A1 WO 2006109660A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating substrate
stress relaxation
heat dissipation
aluminum plate
relaxation member
Prior art date
Application number
PCT/JP2006/307307
Other languages
English (en)
French (fr)
Inventor
Kota Otoshi
Eiji Kono
Hidehito Kubo
Masahiko Kimbara
Yuichi Furukawa
Shinobu Yamauchi
Ryoichi Hoshino
Nobuhiro Wakabayashi
Shintaro Nakagawa
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toyota Jidoshokki, Showa Denko K.K. filed Critical Kabushiki Kaisha Toyota Jidoshokki
Priority to EP06731255.3A priority Critical patent/EP1873827B1/en
Priority to CN2006800113253A priority patent/CN101156241B/zh
Priority to US11/910,460 priority patent/US20090139704A1/en
Priority to KR1020077025597A priority patent/KR101242286B1/ko
Publication of WO2006109660A1 publication Critical patent/WO2006109660A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/0373Conductors having a fine structure, e.g. providing a plurality of contact points with a structured tool
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09681Mesh conductors, e.g. as a ground plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/0969Apertured conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • H05K3/4015Surface contacts, e.g. bumps using auxiliary conductive elements, e.g. pieces of metal foil, metallic spheres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a heat dissipation device, and more specifically, a semiconductor mounted on an insulating substrate, including an insulating substrate with one surface serving as a heating element mounting surface and a heat sink fixed on the other surface of the insulating substrate.
  • the present invention relates to a heat dissipation device that dissipates heat generated from a heating element such as an element from a heat sink.
  • aluminum includes an aluminum alloy in addition to pure aluminum, unless expressed as “pure aluminum”.
  • insulating substrate with a ceramic force and one surface is a heating element mounting surface, and a highly thermally conductive metal such as aluminum or copper (including copper alloy, the same applies hereinafter), and is formed on the other surface of the insulating substrate.
  • a heat dissipation device including a soldered heat sink is used, and a power module is configured by soldering a semiconductor element to a heating element mounting surface of an insulating substrate of the heat dissipation device.
  • the heat dissipation performance of the heat dissipation device is required to be maintained over a long period of time.
  • the thermal stress occurs due to the difference in thermal expansion coefficient between the insulating substrate and the heat sink, causing cracks in the insulating substrate, cracking in the solder layer joining the insulating substrate and the heat sink, In some cases, there is a problem that the heat dissipation performance deteriorates in some cases where the joint surface of the heat sink to the insulating substrate may be warped.
  • one side has been a heating element mounting surface. It has an insulating substrate, a heat sink soldered to the other surface of the insulating substrate, and a heat sink screwed to the heat sink, and the heat sink is made of a highly thermally conductive material such as aluminum or copper.
  • a material in which a low thermal expansion material such as an Invar alloy is interposed between the plate-like radiator bodies is proposed (see Patent Document 1).
  • the heat dissipating device described in Patent Document 1 has a problem that the material cost increases because it is necessary to use a heat dissipating body made of a high thermal conductivity material and a low thermal expansion material. Furthermore, since the heat dissipation body and the heat sink are only screwed together, sufficient heat dissipation performance cannot be obtained that the thermal conductivity between them is not sufficient!
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-153075
  • An object of the present invention is to provide a heat dissipation device that solves the above-described problems, has low material cost, and has excellent heat dissipation performance.
  • the present invention has the following aspect.
  • a heat dissipating device including an insulating substrate, one surface of which is a heating element mounting surface, and a heat sink fixed to the other surface of the insulating substrate.
  • a heat dissipation device in which a stress relaxation member made of a highly thermally conductive material and having a stress absorption space is interposed between one surface of the insulating substrate and the heat sink, and the stress relaxation member is metal-bonded to the insulating substrate and the heat sink.
  • a heat dissipation device including an insulating substrate whose surface is a heating element mounting surface, and a heat sink fixed to the other surface of the insulating substrate.
  • a metal layer is formed on the surface of the insulating substrate opposite to the heating element mounting surface, and a stress relaxation member made of a highly thermally conductive material and having a stress absorption space is interposed between the metal layer and the heat sink. And a heat dissipation device in which the stress relaxation member is metal-bonded to the metal layer and the heat sink of the insulating substrate. [0011] 4) The heat dissipation apparatus according to 3) above, wherein the stress relaxation member is brazed to the metal layer of the insulating substrate and the heat sink.
  • non-square means a shape that does not have a mathematically defined acute angle, obtuse angle, or right angle, ie, a circle, an ellipse, an ellipse, It shall mean a substantially polygonal shape with a rounded portion.
  • the “equivalent circle diameter” is an area of a certain shape represented by the diameter of a circle equal to this area.
  • the equivalent circle diameter of the through hole is set to 1 to 4 mm because the equivalent circle diameter of the through hole is too small due to the difference in thermal expansion coefficient between the insulating substrate and the heat sink.
  • the thermal stress is generated in the heat dissipation device, the deformation of the stress relaxation member becomes insufficient, and the stress relaxation performance by the stress relaxation member may not be sufficient, and if the equivalent circle diameter of the through hole is too large, It is a force that may reduce thermal conductivity.
  • the stress relaxation member when the stress relaxation member is brazed to the insulating substrate and the heat sink, if the equivalent circle diameter is too large, the through hole is blocked by the brazing material, and as a result, thermal stress is generated in the heat dissipation device. However, the stress relaxation member may not be deformed at all.
  • the ratio of the total area of all the through holes to the area of one surface of the aluminum plate is within the range of 3 to 50%.
  • the stress relaxation member has an aluminum plate force in which a plurality of recesses are formed on at least one surface, and the recesses are stress absorption spaces.
  • a heat dissipation device as described in any of the above.
  • the equivalent circle diameter of the recess opening is set to l to 4 mm. If the equivalent circle diameter of the recess opening is too small, the thermal expansion coefficient between the insulating substrate and the heat sink If the thermal stress is generated in the heat dissipation device due to the difference in the stress, the deformation of the stress relaxation member may be insufficient, and the stress relaxation performance by the stress relaxation member may not be sufficient. This is because if the diameter is too large, the thermal conductivity may decrease.
  • the stress relaxation member when the stress relaxation member is brazed to an insulating substrate and a heat sink, if the equivalent circle diameter is too small, the recess is blocked by the brazing material, and as a result, thermal stress is generated in the heat dissipation device.
  • the stress relaxation member may not be deformed at all.
  • the ratio of the total opening area of all the recesses formed on the surface to the area of the surface where the recesses of the aluminum plate are formed is within a range of 3 to 50%. If this ratio is too low, the stress relaxation member will not be sufficiently deformed when thermal stress is generated in the heat dissipation device due to the difference in thermal expansion coefficient between the insulating substrate and the heat sink. This is because the stress relaxation performance by the relaxation member may not be sufficient, and if it is too high, the thermal conductivity may decrease.
  • the stress relaxation member has an aluminum plate force in which a plurality of recesses are formed on at least one surface and a plurality of through holes are formed, and the recesses and the through holes serve as stress absorbing spaces.
  • the heat dissipation device according to any one of 1) to 5) above.
  • the thickness of the aluminum plate forming the stress relaxation member is set to 0.3 to 3 mm. If the thickness is too thin, the thermal expansion coefficient between the insulating substrate and the heat sink. When the thermal stress is generated in the heat dissipation device due to the difference in number, the deformation of the stress relaxation member becomes insufficient, and the stress relaxation performance by the stress relaxation member may not be sufficient. It is because thermal conductivity may fall when too large.
  • the stress relaxation member has a corrugated aluminum plate force including a wave crest part, a wave bottom part, and a coupling part that connects the wave crest part and the wave bottom part, and a portion between adjacent coupling parts has a stress absorbing space.
  • the heat dissipation device according to any one of 1) to 5) above.
  • the thickness of the corrugated aluminum plate is set to 0.05 to Lmm. If the thickness is too thin, it becomes difficult to process the corrugated aluminum plate and buckling occurs. This is because if the wall thickness is too thick, it becomes difficult to process the corrugated aluminum plate, and in any case, it is difficult to finish it into a predetermined shape.
  • a plurality of corrugated aluminum plate forces The heat dissipating device according to 16) or 17) above, wherein the corrugated aluminum plate forces are arranged at intervals in the length direction of the wave crest and wave crest.
  • the stress relaxation member is formed of a brazing sheet comprising a core material and a brazing material skin covering both surfaces of the core material, and the insulating substrate or the insulating substrate is formed using the brazing sheet skin material. Any of the above 6) to 21) brazed to the metal layer and the heat sink The heat dissipation device described.
  • a power module comprising the heat dissipation device according to any one of 1) to 23) above and a semiconductor element mounted on an insulating substrate of the heat dissipation device.
  • a stress relaxation member made of a highly thermally conductive material and having a stress absorption space is interposed between the insulating substrate and the heat sink, and the stress relaxation member is insulated. Since it is metal-bonded to the substrate and the heat sink, the thermal conductivity between the insulating substrate and the heat sink is excellent, and the heat dissipation performance of the heat generated from the semiconductor element mounted on the insulating substrate is improved. Even when a thermal stress is generated in the heat dissipation device due to a difference in thermal expansion coefficient between the insulating substrate and the heat sink, the stress relaxation member is deformed by the action of the stress absorption space, and this causes the thermal stress.
  • the stress relaxation member is brazed to the insulating substrate and the heat sink, the stress relaxation member and the insulating substrate, and the stress relaxation member and the heat sink can be bonded simultaneously. Workability when manufacturing is improved.
  • the heat dissipating device described in Patent Document 1 it is necessary to screw the heat dissipating body and the heat sink after soldering the insulating substrate and the heat dissipating body, and the workability during production is poor.
  • a metal layer is formed on the surface of the insulating substrate opposite to the heating element mounting surface, and is made of a highly thermally conductive material between the metal layer and the heat sink.
  • a stress relaxation member having a stress absorption space is interposed, and the stress relaxation member is metal-bonded to the metal layer of the insulating substrate and the heat sink, so that the thermal conductivity between the insulating substrate and the heat sink is excellent. Emanating from a semiconductor element mounted on an insulating substrate Heat dissipation performance is improved.
  • the stress relaxation member is deformed by the action of the stress absorption space, and this causes the thermal stress.
  • cracks may occur in the insulating substrate, cracks may occur in the joint between the metal layer of the insulating substrate and the stress relaxation member, and warpage may occur in the joint surface of the heat sink to the insulating substrate. Is prevented. Therefore, the heat dissipation performance is maintained for a long time.
  • the stress relaxation member for example, the above
  • the stress relaxation member is deformed by the action of the stress absorption space formed by the through holes, and thereby the thermal stress is relieved.
  • the thermal stress relaxation effect is excellent. That is, the largest thermal stress or distortion is likely to occur at the peripheral portion of the insulating substrate in the heat dissipation device, but when configured as in 7) above, the peripheral edge of the insulating substrate in the aluminum plate is caused by the action of the through hole. The part corresponding to the part is easily deformed, and the thermal stress is relieved.
  • the stress relaxation member is deformed by the action of the stress absorption space serving as the concave force, and thereby the thermal stress is relaxed.
  • the thermal stress relaxation effect is excellent.
  • the largest thermal stress or distortion is likely to occur at the peripheral edge of the insulating substrate in the heat dissipation device.
  • the insulating substrate in the aluminum plate is caused by the action of the recess.
  • the peripheral edge and the corresponding part are easily deformed, which relieves thermal stress.
  • the stress relaxation member is deformed by the action of the stress absorbing space which is the recess and the through-hole force, and thereby the thermal stress is relaxed.
  • the stress relaxation member is deformed by the action of the stress absorption space of the corrugated aluminum plate, thereby relieving the thermal stress.
  • the effect of mitigating thermal stress is further improved by the action of the cut portion.
  • the thermal stress relaxation effect is further improved by the action of the space between adjacent corrugated aluminum plates.
  • the thermal stress relaxation effect in different directions is further improved.
  • the heat radiating device of 21) above the wettability of the molten brazing material to the stress relaxation member when the stress relaxation member is brazed to the insulating substrate or the metal layer of the insulating substrate and the heat sink is excellent. Therefore, brazability improves. Also, the strength of the stress relaxation member is reduced by the heating during the brazing, and when the thermal stress is generated in the heat dissipation device, the stress relaxation member is deformed and the stress relaxation effect is excellent immediately.
  • FIG. 1 shows a part of a power module using the heat dissipating device of the first embodiment of the present invention
  • FIG. 2 shows a stress relaxation member.
  • the power module includes a heat dissipation device (1) and a semiconductor element (2) such as an IGBT mounted on the heat dissipation device (1).
  • the heat dissipation device (1) includes a ceramic insulating substrate (3) whose upper surface is a heating element mounting surface, a stress relaxation member (4) bonded to the lower surface of the insulating substrate (3), and a stress relaxation device.
  • a heat sink (5) joined to the lower surface of the member (4).
  • the insulating substrate (3) may be formed of any ceramic force as long as it satisfies the required insulating properties, thermal conductivity, and mechanical strength. For example, Al O, A1N, etc. In Is formed.
  • a circuit layer (6) is formed on the upper surface of the insulating substrate (3), and the semiconductor element (2) is soldered on the circuit layer (6). Illustration of the solder layer is omitted.
  • the circuit layer (6) is made of a metal such as aluminum or copper with excellent conductivity, but pure aluminum with high electrical conductivity, high deformability, high squeezing force, and excellent solderability with semiconductor elements. It is preferably formed by.
  • a metal layer (7) is formed on the lower surface of the insulating substrate (3), and a stress relaxation member (4) is brazed to the metal layer (7).
  • the brazing material layer is not shown.
  • the metal layer (7) is formed of a metal such as aluminum or copper having excellent thermal conductivity, but has high thermal conductivity, high deformability, and excellent wettability with a molten brazing material. It is preferably formed of pure aluminum with high purity.
  • the insulating substrate (3), the circuit layer (6), and the metal layer (7) constitute a power module substrate (8).
  • the stress relaxation member (4) has a high thermal conductive material force and has a stress absorption space.
  • the stress relieving member (4) has a plurality of non-square, here circular circular holes (9) formed of staggered aluminum plates (10), and the through holes (9) It is a stress absorption space.
  • the circular through hole (9) has a position corresponding to at least the peripheral edge of the insulating substrate (3) in the aluminum plate (10), that is, the peripheral edge corresponding to the peripheral edge of the insulating substrate (3) in the aluminum plate (10). Including the whole.
  • the aluminum plate (10) has a high thermal conductivity of 99% purity, which is excellent in wettability with brazing filler metal whose strength is reduced due to heating during brazing and whose deformability is high, and it is desirable to have a purity of 99. It should be formed of 5% or more pure aluminum.
  • the wall thickness of the aluminum plate (10) is preferably 0.3 to 3 mm, and is preferably 0.3 to 1.5 mm. Since the equivalent circle diameter of the through hole (9), here the through hole (9) is circular, the hole diameter is preferably l to 4 mm. Moreover, it is preferable that the ratio of the total area of all the through holes (9) to the area of one surface of the aluminum plate (10) is in the range of 3 to 50%.
  • the heat sink (5) is preferably a flat hollow shape in which a plurality of cooling fluid passages (11) are provided in parallel, is excellent in thermal conductivity, and is preferably formed of lightweight aluminum. Either a liquid or a gas may be used as the cooling fluid.
  • the stress relaxation member (4), the metal layer (7) of the power module substrate (8), and the heat sink (5) are brazed, for example, as follows. That is, the stress relaxation member (4) is It is formed of an aluminum brazing sheet comprising a core material having pure aluminum strength and an aluminum brazing material skin covering both surfaces of the core material.
  • the aluminum brazing material for example, an Al—Si alloy, an Al—Si—Mg alloy, or the like is used.
  • the thickness of the skin material is preferably about 10 to 200 ⁇ m.
  • this thickness is too thin, there is a risk that brazing will be insufficiently supplied and brazing failure may occur, and if this thickness is too thick, there will be an excessive amount of brazing filler metal, which may cause voids and decrease in thermal conductivity. .
  • the power module substrate (8), the stress relaxation member (4) and the heat sink (5) are arranged in a stack and restrained by an appropriate jig, and an appropriate load is applied to the joint surface. Heat to 570 to 600 ° C in a vacuum atmosphere or an inert gas atmosphere. In this way, the stress relaxation member (4), the metal layer (7) of the power module substrate (8), and the heat sink (5) are brazed simultaneously.
  • the stress relaxation member (4), the metal layer (7) of the power module substrate (8), and the heat sink (5) may be brazed as follows. That is, the stress relaxation member (4) is formed of the pure aluminum bare material. Next, the power module substrate (8), the stress relaxation member (4), and the heat sink (5) are arranged in a laminated form. At this time, between the stress relaxation member (4) and the metal layer (7) and the heat sink (5) of the power module substrate (8), there are also forces such as A1-Si alloy and Al-Si-Mg alloy, respectively. A sheet-like aluminum brazing material is interposed. The thickness of the sheet-like aluminum brazing material is preferably about 10 to 200 ⁇ m.
  • brazing is performed in the same manner as in the case of using the aluminum brazing sheet described above.
  • the stress relaxation member (4), the metal layer (7) of the power module substrate (8), and the heat sink (5) are brazed simultaneously.
  • FIG. 3 shows a second embodiment of the heat dissipation device according to the present invention.
  • the metal layer (7) is not formed on the lower surface of the insulating substrate (3) of the power module substrate (8).
  • the stress relaxation member (20) shown in FIG. 4 also has an aluminum plate (10) force in which a plurality of rectangular through holes (21) are formed in a staggered arrangement, and the through holes (21) serve as stress absorbing spaces. ing.
  • the through hole (21) has at least a position corresponding to the peripheral edge of the insulating substrate (3) in the aluminum plate (10), that is, a peripheral edge corresponding to the peripheral edge of the insulating substrate (3) in the aluminum plate (10). Including the whole is formed.
  • the ratio of the total area of all the through holes (21) to the area of one surface of the aluminum plate (10) is in the range of 3 to 50% as in the case of the stress relaxation member (4) shown in FIG. I prefer that.
  • a square through hole (21) may be formed instead of the circular through hole (9).
  • the through holes (9) and (21) are stress absorbing spaces.
  • the stress relaxation member (25) shown in Fig. 7 also has an aluminum plate (10) force in which a plurality of spherical recesses (26) are formed in a staggered arrangement on one surface, and the recess (26) is a stress absorption space. It has become.
  • the stress relaxation member (30) shown in Fig. 8 also has an aluminum plate (10) force in which a plurality of spherical recesses (26) are arranged side by side on both sides, and the recess (26) is a stress absorbing space. It has become.
  • the recess (26) on one side of the aluminum plate (10) and the recess (26) on the other side are formed at different positions when viewed from the plane.
  • the stress relaxation member (31) shown in Fig. 9 has a plurality of truncated conical recesses (32) arranged in a staggered pattern on one side.
  • the formed aluminum plate (10) also has a force, and the recess (32) is a stress absorbing space.
  • the stress relaxation member (34) shown in Fig. 10 also has an aluminum plate (10) force in which a plurality of frustoconical recesses (32) are arranged vertically and horizontally on both sides, and the recess (32) is stressed. It is an absorption space.
  • the recess (32) on one side of the aluminum plate (10) and the recess (32) on the other side are formed at different positions as seen from the plane.
  • the recesses (26) and (32) are at least an insulating substrate (10) in the aluminum plate (10). 3) including the peripheral edge corresponding to the peripheral edge of 3), but the peripheral edge of the insulating substrate (3) is the same as in the case of the stress relaxation member (22X23) shown in FIGS. It should just be formed only in the peripheral part corresponding to.
  • the ratio of the total opening area of all the recesses (26X32) formed on the surface to the area of the surface where the recesses (26X32) of the aluminum plate (10) is formed is in the range of 3 to 50%. It is preferable that it exists in.
  • the stress relaxation member (36) shown in Fig. 11 also has an aluminum plate (10) force in which a plurality of quadrangular pyramid recesses (37) are formed in a staggered arrangement on one side, and the recess (37) is stressed. It is an absorption space.
  • the stress relaxation member (38) shown in Fig. 12 also has an aluminum plate (10) force in which a plurality of quadrangular pyramid recesses (37) are arranged vertically on both sides, and the recess (37) is stressed. It is an absorption space.
  • the recess (37) on one side of the aluminum plate (10) and the recess (37) on the other side are formed at different positions as seen from the plane.
  • the stress relaxation member (40) shown in Fig. 13 also has an aluminum plate (10) force in which a plurality of rectangular parallelepiped recesses (41) are arranged vertically and horizontally on one surface, and the recess (41) absorbs stress. It is a space.
  • the longitudinal direction of the adjacent recesses (41) in each row of the vertically arranged recesses (41) is directed in a direction different by 90 degrees.
  • the longitudinal direction of the adjacent recesses (41) in each row is oriented 90 degrees different.
  • the stress relaxation member (42) shown in Fig. 14 also has an aluminum plate (10) force in which a plurality of rectangular parallelepiped recesses (41) are formed on both sides in a staggered arrangement, and the recess (41) absorbs stress. It is a space.
  • the recess (41) on one side of the aluminum plate (10) is different from the recess (41) on the other side when viewed from the plane. Is formed.
  • the longitudinal direction of the recess (41) on one surface of the aluminum plate (10) faces the same direction, and the longitudinal direction of the recess (41) on the other surface is the longitudinal direction of the recess (41) on the one surface. Look in the direction perpendicular to
  • the stress relieving member (45) shown in FIG. 15 also has an aluminum plate (10) force in which a plurality of through holes (46X47) are formed, and the through holes (46X47) serve as stress absorbing spaces. That is, at the four corners of the aluminum plate (10), a plurality of short linear through holes (each having a plurality of inclined parallel lines connecting two adjacent sides across each corner of the aluminum plate (10) ( 46) are formed at intervals in the length direction of the parallel lines. Further, in the portion excluding the four corners of the aluminum plate (10), a plurality of arc-shaped through holes (47) are formed on the plurality of concentric circles at intervals in the circumferential direction. Also in the case of this stress relaxation member (45), the ratio of the total area of all the through holes (46X47) to the area of one surface of the aluminum plate (10) is preferably in the range of 3 to 50%. .
  • the stress relaxation member (50) shown in Fig. 16 also has an aluminum plate (10) force in which a plurality of groove-like recesses (51) are formed on one surface, and the recess (51) is a stress absorbing space. It has become.
  • the recess (51) is shaped like a continuous V or V shape.
  • the stress relieving member (53) shown in FIG. 17 also has an aluminum plate (10) force in which a plurality of V-groove recesses (54X55) are formed on both sides, and the recess (54X55) becomes a stress absorption space. ing.
  • the recesses (54) on one surface of the aluminum plate (10) extend in the length direction of the aluminum plate (10) and are spaced apart in the width direction of the aluminum plate (10)!
  • the recesses (55) on the other surface of the aluminum plate (10) extend in the width direction of the aluminum plate (10) and are spaced apart in the length direction of the aluminum plate (10).
  • the sum of the depth of the recess (54) on one surface of the aluminum plate (10) and the depth of the recess (55) on the other surface is smaller than the thickness of the aluminum plate (10).
  • the stress relaxation member (57) shown in Fig. 18 has an aluminum plate (10) force in which a plurality of V-groove recesses (58X59) are formed on both surfaces and a plurality of through holes (60) are formed.
  • the recess (58X59) and the through hole (60) are the stress absorption space.
  • the recesses (58) on one surface of the aluminum plate (10) extend in the length direction of the aluminum plate (10) and are spaced apart in the width direction of the aluminum plate (10).
  • the recesses (59) on the other surface of the aluminum plate (10) extend in the width direction of the aluminum plate (10) and are spaced apart in the length direction of the aluminum plate (10).
  • the sum of the depth of the recess (58) on one side of the aluminum plate (10) and the depth of the recess (59) on the other side is larger than the thickness of the aluminum plate (10).
  • a through hole (60) is formed at the intersection of both recesses (58X59).
  • the aluminum plate (10) forming the stress relaxation member shown in FIGS. 4 to 18 is the same as the case of the stress relaxation member (4) shown in FIG. 4 to 18 are brazed to the power module substrate (8) and the heat sink (5) in the same manner as in the first and second embodiments described above.
  • the stress relaxation member (63) shown in FIG. 19 includes a wave crest (64), a wave bottom (65), and a connecting portion (66) that connects the wave crest (64) and the wave bottom (65).
  • the corrugated aluminum plate (67) is a force, and the portion between adjacent connecting portions (66) is a stress absorbing space.
  • the wave crest (64), the wave bottom (65), and the connection (66) are connected to the wave crest (64) and the wave bottom (65) in the length direction.
  • An excision (68) extending in a direction perpendicular to is formed. Therefore, the corrugated aluminum plate (67) is divided into two parts except for both ends.
  • the stress relaxation member (70) shown in FIG. 20 has a wave crest (64) on the wave crest (64), the wave bottom (65) and the connection (66) of the corrugated aluminum plate (67) similar to FIG. ) And a cutting part (68) force extending in a direction perpendicular to the length direction of the wave bottom part (65).
  • a plurality of cutting parts are formed side by side in the width direction of the corrugated aluminum plate (67). Therefore, the corrugated aluminum plate (67) is divided into a plurality of parts except for both ends.
  • the stress relieving member (72) shown in Fig. 21 has a plurality of uncut portions, here two corrugated aluminum plates (67) force, wave crest (64) and wave bottom (65) lengths. Arranged in the direction with a gap.
  • the number of corrugated aluminum plates (67) is not limited. Then, the positions of the wave crest (64) and the wave bottom (65) of the adjacent corrugated aluminum plates (67) are shifted in the width direction of the wave crest (64) and the wave bottom (65).
  • the wall thickness is preferably 0.05 to lmm.
  • the corrugated aluminum plate (67) like the stress relaxation member (4) shown in Fig. 2, has a high thermal conductivity, and its strength decreases due to heating during brazing, and its purity is high. It is formed from pure aluminum with a purity of 99% or more, preferably a purity of 99.5% or more.
  • the stress relaxation member (63X70) (72) shown in FIGS. 19 to 21 is brazed to the power module substrate (8) and the heat sink (5) in the same manner as in the first and second embodiments described above. Is done.
  • the heat dissipation device of the present invention includes an insulating substrate whose one surface is a heating element mounting surface, and a heat sink fixed to the other surface of the insulating substrate, and generates heat such as a semiconductor element mounted on the insulating substrate. It is preferably used to dissipate heat generated from the body from the heat sink.
  • FIG. 1 is a vertical sectional view showing a first embodiment of a heat dissipation device according to the present invention and showing a part of a power module using the heat dissipation device.
  • FIG. 2 is a perspective view showing a stress relaxation member used in the heat dissipation device of FIG.
  • FIG. 3 is a view corresponding to FIG. 1, showing a second embodiment of the heat dissipation device according to the present invention.
  • FIG. 4 is a perspective view showing a first modification of the stress relaxation member.
  • FIG. 5 is a partially cutaway perspective view showing a second modification of the stress relaxation member.
  • FIG. 6 is a partially cutaway perspective view showing a third modification of the stress relaxation member.
  • FIG. 7 is a partially cutaway perspective view showing a fourth modification of the stress relaxation member.
  • FIG. 8 is a partially cutaway perspective view showing a fifth modification of the stress relaxation member.
  • FIG. 9 is a partially cutaway perspective view showing a sixth modification of the stress relaxation member.
  • FIG. 10 is a partially cutaway perspective view showing a seventh modification of the stress relaxation member.
  • FIG. 11 is a partially cutaway perspective view showing an eighth modification of the stress relaxation member.
  • FIG. 12 is a partially cutaway perspective view showing a ninth modification of the stress relaxation member.
  • FIG. 13 is a perspective view showing a tenth modification of the stress relaxation member.
  • FIG. 14 is a perspective view showing an eleventh modification of the stress relaxation member.
  • FIG. 15 is a perspective view showing a twelfth modification of the stress relaxation member.
  • FIG. 16 is a perspective view showing a thirteenth modification of the stress relaxation member.
  • FIG. 17 is a perspective view showing a fourteenth modification of the stress relaxation member.
  • FIG. 18 is a perspective view showing a fifteenth modification of the stress relaxation member.
  • FIG. 19 is a perspective view showing a sixteenth modification of the stress relaxation member.
  • FIG. 20 is a perspective view showing a seventeenth modification of the stress relaxation member.
  • FIG. 21 is a perspective view showing an eighteenth modification of the stress relaxation member.

Abstract

 放熱装置1は、一面が発熱体搭載面となされた絶縁基板3と、絶縁基板3の他面に固定されたヒートシンク5とを備えている。絶縁基板3における発熱体搭載面とは反対側の面に金属層7を形成する。絶縁基板3の金属層7とヒートシンク5との間に、複数の貫通穴9が形成されたアルミニウム板10からなり、かつ貫通穴9が応力吸収空間となっている応力緩和部材4を介在させる。応力緩和部材4を、絶縁基板3の金属層7およびヒートシンク5にろう付する。この放熱装置1によれば、材料コストが安くなるとともに、放熱性能が優れたものになる。

Description

明 細 書
放熱装置
技術分野
[0001] この発明は放熱装置に関し、さらに詳しくは、一面が発熱体搭載面となされた絶縁 基板と、絶縁基板の他面に固定されたヒートシンクとを備えており、絶縁基板に搭載 される半導体素子などの発熱体から発せられる熱をヒートシンクから放熱する放熱装 置に関する。
[0002] この明細書および特許請求の範囲において、「アルミニウム」という用語には、「純ァ ルミ-ゥム」と表現する場合を除いて、純アルミニウムの他にアルミニウム合金を含む ものとする。
背景技術
[0003] たとえば IGBT (Insulated Gate Bipolar Transistor)などの半導体素子を使用したパ ヮーモジュールにおいては、半導体素子力も発せられる熱を効率良く放熱して、半導 体素子の温度を所定温度以下に保つ必要がある。そこで、従来、 Al O、 A1Nなどの
2 3 セラミック力もなりかつ一面が発熱体搭載面となされた絶縁基板と、アルミニウムまた は銅 (銅合金を含む。以下、同じ)などの高熱伝導性金属により形成され、かつ絶縁 基板の他面にはんだ付けされたヒートシンクとを備えた放熱装置が用いられており、 放熱装置の絶縁基板の発熱体搭載面に半導体素子がはんだ付けされることによつ てパワーモジュールが構成されて 、た。
[0004] ところで、たとえばハイブリットカーなどに用いられるパワーモジュールにおいては、 放熱装置の放熱性能が長期間にわたって維持されることが要求されているが、上述 した従来の放熱装置によれば、使用条件によっては、絶縁基板とヒートシンクとの熱 膨張係数の相違に起因して熱応力が発生し、絶縁基板にクラックが生じたり、絶縁基 板とヒートシンクとを接合しているはんだ層にクラックが生じたり、ヒートシンクの絶縁基 板への接合面に反りが生じたりすることがあり、いずれの場合にも放熱性能が低下す るという問題があった。
[0005] そこで、このような問題を解決した放熱装置として、一面が発熱体搭載面となされた 絶縁基板と、絶縁基板の他面にはんだ付けされた放熱体と、放熱体にねじ止めされ たヒートシンクとを備えており、放熱体が、アルミニウム、銅などの高熱伝導性材料か らなる 1対の板状放熱体本体間に、インバー合金などの低熱膨張材が介在させられ たものが提案されている (特許文献 1参照。 )
しかしながら、特許文献 1記載の放熱装置においては、高熱伝導性材料と低熱膨 張材とからなる放熱体を用いる必要があるので、材料コストが高くなるという問題があ る。さらに、放熱体とヒートシンクとがねじ止めされているだけであるので、両者間での 熱伝導性が十分ではなぐ十分な放熱性能が得られな!/ヽ。
特許文献 1 :特開 2004— 153075号公報
発明の開示
発明が解決しょうとする課題
[0006] この発明の目的は、上記問題を解決し、材料コストが安ぐし力も放熱性能の優れ た放熱装置を提供することにある。
課題を解決するための手段
[0007] 本発明は、上記目的を達成するために以下の態様力もなる。
[0008] 1)一面が発熱体搭載面となされた絶縁基板と、絶縁基板の他面に固定されたヒート シンクとを備えた放熱装置において、
絶縁基板の片面とヒートシンクとの間に、高熱伝導性材料からなり、かつ応力吸収 空間を有する応力緩和部材が介在させられ、応力緩和部材が、絶縁基板およびヒー トシンクに金属接合されている放熱装置。
[0009] 2)応力緩和部材が絶縁基板およびヒートシンクにろう付されて 、る上記 1)記載の放 熱装置。
[0010] 3)—面が発熱体搭載面となされた絶縁基板と、絶縁基板の他面に固定されたヒート シンクとを備えた放熱装置において、
絶縁基板における発熱体搭載面とは反対側の面に金属層が形成され、当該金属 層とヒートシンクとの間に、高熱伝導性材料からなり、かつ応力吸収空間を有する応 力緩和部材が介在させられ、応力緩和部材が、絶縁基板の金属層およびヒートシン クに金属接合されている放熱装置。 [0011] 4)応力緩和部材が絶縁基板の金属層およびヒートシンクにろう付されている上記 3) 記載の放熱装置。
[0012] 5)絶縁基板がセラミック力もなる上記 1)〜4)のうちのいずれかに記載の放熱装置。
[0013] 6)応力緩和部材が、複数の貫通穴が形成されたアルミニウム板力 なり、貫通穴が 応力吸収空間となっている上記 1)〜5)のうちのいずれかに記載の放熱装置。
[0014] 7)貫通穴が、アルミニウム板における少なくとも絶縁基板の周縁部と対応する位置 に形成されて ヽる上記 6)記載の放熱装置。
[0015] 8)貫通穴が非角形であり、貫通穴の円相当径が l〜4mmである上記 6)または 7)記 載の放熱装置。
[0016] なお、この明細書および特許請求の範囲において、「非角形」という用語は、数学 的に定義される鋭角、鈍角および直角を持たない形状、すなわち円、だ円、長円や、 コーナ部がアール状となされたほぼ多角形状などを意味するものとする。また、この 明細書および特許請求の範囲において、「円相当径」は、ある形状の面積を、この面 積と等しい円の直径で表したものである。
[0017] 上記 8)の放熱装置において、貫通穴の円相当径を l〜4mmとしたのは、貫通穴の 円相当径が小さすぎると、絶縁基板とヒートシンクとの熱膨張係数の相違に起因して 放熱装置に熱応力が発生した場合の応力緩和部材の変形が不十分になって、応力 緩和部材による応力緩和性能が十分ではなくなるおそれがあり、貫通穴の円相当径 が大きすぎると、熱伝導性が低下するおそれがある力 である。特に、応力緩和部材 を絶縁基板およびヒートシンクにろう付する場合には、上記円相当径カ 、さすぎると、 貫通穴がろう材により塞がれ、その結果放熱装置に熱応力が発生した場合にも応力 緩和部材が全く変形しなくなることがある。
[0018] 9)アルミニウム板の一面の面積に対するすべての貫通穴の面積の合計の割合が 3 〜50%の範囲内にある上記 6)〜8)のうちのいずれかに記載の放熱装置。
[0019] 上記 9)の放熱装置において、アルミニウム板の一面の面積に対するすべての貫通 穴の面積の合計の割合を 3〜50%の範囲内としたのは、この割合が低すぎると、絶 縁基板とヒートシンクとの熱膨張係数の相違に起因して放熱装置に熱応力が発生し た場合の応力緩和部材の変形が不十分になって、応力緩和部材による応力緩和性 能が十分ではなくなるおそれがあり、高すぎると、熱伝導性が低下するおそれがある 力 である。
[0020] 10)応力緩和部材が、少なくともいずれか一面に複数の凹所が形成されたアルミ二 ゥム板力 なり、凹所が応力吸収空間となっている上記 1)〜5)のうちのいずれかに記 載の放熱装置。
[0021] 11)凹所が、アルミニウム板における少なくとも絶縁基板の周縁部と対応する位置に 形成されて!ヽる上記 10)記載の放熱装置。
[0022] 12)凹所の開口が非角形であり、凹所の開口の円相当径が l〜4mmである上記 10) または 11)記載の放熱装置。
[0023] 上記 12)の放熱装置において、凹所の開口の円相当径を l〜4mmとしたのは、凹 所の開口の円相当径が小さすぎると、絶縁基板とヒートシンクとの熱膨張係数の相違 に起因して放熱装置に熱応力が発生した場合の応力緩和部材の変形が不十分にな つて、応力緩和部材による応力緩和性能が十分ではなくなるおそれがあり、凹所の 開口の円相当径が大きすぎると、熱伝導性が低下するおそれがあるからである。特に 、応力緩和部材を絶縁基板およびヒートシンクにろう付する場合には、上記円相当径 が小さすぎると、凹所がろう材により塞がれ、その結果放熱装置に熱応力が発生した 場合にも応力緩和部材が全く変形しなくなることがある。
[0024] 13)アルミニウム板の凹所が形成された面の面積に対する当該面に形成された全凹 所の開口面積の合計の割合が 3〜50%の範囲内にある上記 10)〜12)のうちのいず れかに記載の放熱装置。
[0025] 上記 13)の放熱装置において、アルミニウム板の凹所が形成された面の面積に対す る当該面に形成された全凹所の開口面積の合計の割合を 3〜50%の範囲内とした のは、この割合が低すぎると、絶縁基板とヒートシンクとの熱膨張係数の相違に起因 して放熱装置に熱応力が発生した場合の応力緩和部材の変形が不十分になって、 応力緩和部材による応力緩和性能が十分ではなくなるおそれがあり、高すぎると、熱 伝導性が低下するおそれがあるからである。
[0026] 14)応力緩和部材が、少なくとも一面に複数の凹所が形成されるとともに、複数の貫 通穴が形成されたアルミニウム板力 なり、凹所および貫通穴が応力吸収空間となつ て 、る上記 1)〜5)のうちの 、ずれかに記載の放熱装置。
[0027] 15)応力緩和部材を形成するアルミニウム板の肉厚が 0. 3〜3mmである上記 6)〜1 4)のうちのいずれかに記載の放熱装置。
[0028] 上記 15)の放熱装置において、応力緩和部材を形成するアルミニウム板の肉厚を 0 . 3〜3mmとしたのは、この肉厚が薄すぎると、絶縁基板とヒートシンクとの熱膨張係 数の相違に起因して放熱装置に熱応力が発生した場合の応力緩和部材の変形が 不十分になって、応力緩和部材による応力緩和性能が十分ではなくなるおそれがあ り、この肉厚が厚すぎると熱伝導性が低下するおそれがあるからである。
[0029] 16)応力緩和部材が、波頂部、波底部および波頂部と波底部とを連結する連結部と よりなる波形のアルミニウム板力 なり、隣り合う連結部どうしの間の部分が応力吸収 空間となっている上記 1)〜5)のうちのいずれかに記載の放熱装置。
[0030] 17)波形アルミニウム板の肉厚が 0. 05〜 lmmである上記 16)記載の放熱装置。
[0031] 上記 17)の放熱装置において、波形アルミニウム板の肉厚を 0. 05〜: Lmmとしたの は、この肉厚が薄すぎると、波形アルミニウム板の加工が困難になるとともに座屈が 発生することがあり、この肉厚が厚すぎると、波形アルミニウム板の加工が困難になり 、いずれの場合にも所定の形状に仕上げることが困難になるからである。
[0032] 18)波形アルミニウム板の波頂部、波底部および連結部に、波頂部および波底部の 長さ方向と直交する方向に伸びる少なくとも 1つの切除部が形成されている上記 16) または 17)記載の放熱装置。
[0033] 19)複数の波形アルミニウム板力 波頂部および波底部の長さ方向に間隔をおいて 配置されている上記 16)または 17)記載の放熱装置。
[0034] 20)隣り合う波形アルミニウム板の波頂部および波底部の位置力 波頂部および波 底部の幅方向にずれて 、る上記 19)記載の放熱装置。
[0035] 21)アルミニウム板力 純度 99%以上の純アルミニウム力もなる上記 6)〜20)のうちの いずれかに記載の放熱装置。
[0036] 22)応力緩和部材が、芯材と芯材の両面を被覆するろう材製皮材とからなるブレー ジングシートにより形成され、ブレージングシートの皮材を用いて絶縁基板または絶 縁基板の金属層と、ヒートシンクとにろう付されている上記 6)〜21)のうちのいずれかに 記載の放熱装置。
[0037] 23)応力緩和部材が、シート状ろう材を用いて絶縁基板または絶縁基板の金属層と 、ヒートシンクとにろう付されている上記 6)〜21)のうちのいずれかに記載の放熱装置。
[0038] 24)上記 1)〜23)のうちのいずれかに記載の放熱装置と、放熱装置の絶縁基板に搭 載された半導体素子とを備えたパワーモジュール。
発明の効果
[0039] 上記 1)の放熱装置によれば、絶縁基板とヒートシンクとの間に、高熱伝導性材料か らなり、かつ応力吸収空間を有する応力緩和部材が介在させられ、応力緩和部材が 、絶縁基板およびヒートシンクに金属接合されているので、絶縁基板とヒートシンクと の間の熱伝導性が優れたものになり、絶縁基板に搭載される半導体素子から発せら れる熱の放熱性能が向上する。し力も、絶縁基板とヒートシンクとの熱膨張係数の相 違に起因して放熱装置に熱応力が発生した場合にも、応力吸収空間の働きによりに より応力緩和部材が変形し、これにより熱応力が緩和されるので、絶縁基板にクラック が生じたり、絶縁基板と応力緩和部材との接合部にクラックが生じたり、ヒートシンクの 絶縁基板への接合面に反りが生じたりすることが防止される。したがって、放熱性能 が長期間にわたって維持される。また、応力緩和部材として、たとえば上記 6)〜20)記 載のものを用いると、応力緩和部材のコストが安くなり、その結果放熱装置の材料コ ストが安くなる。
[0040] 上記 2)の放熱装置によれば、応力緩和部材が絶縁基板およびヒートシンクにろう付 されているので、応力緩和部材と絶縁基板、および応力緩和部材とヒートシンクとを 同時に接合することができ、製作する際の作業性が向上する。特許文献 1記載の放 熱装置においては、絶縁基板と放熱体とをはんだ付けした後に放熱体とヒートシンク とをねじ止めする必要があり、製作の際の作業性が悪い。
[0041] 上記 3)の放熱装置によれば、絶縁基板における発熱体搭載面とは反対側の面に 金属層が形成され、当該金属層とヒートシンクとの間に、高熱伝導性材料からなり、か つ応力吸収空間を有する応力緩和部材が介在させられ、応力緩和部材が、絶縁基 板の金属層およびヒートシンクに金属接合されているので、絶縁基板とヒートシンクと の間の熱伝導性が優れたものになり、絶縁基板に搭載される半導体素子から発せら れる熱の放熱性能が向上する。し力も、絶縁基板とヒートシンクとの熱膨張係数の相 違に起因して放熱装置に熱応力が発生した場合にも、応力吸収空間の働きによりに より応力緩和部材が変形し、これにより熱応力が緩和されるので、絶縁基板にクラック が生じたり、絶縁基板の金属層と応力緩和部材との接合部にクラックが生じたり、ヒー トシンクの絶縁基板への接合面に反りが生じたりすることが防止される。したがって、 放熱性能が長期間にわたって維持される。また、応力緩和部材として、たとえば上記
6)〜20)記載のものを用いると、応力緩和部材のコストが安くなり、その結果放熱装置 の材料コストが安くなる。
[0042] 上記 4)の放熱装置によれば、応力緩和部材が絶縁基板の金属層およびヒートシン クにろう付されているので、応力緩和部材と絶縁基板の金属層、および応力緩和部 材とヒートシンクとを同時に接合することができ、製作する際の作業性が向上する。特 許文献 1記載の放熱装置においては、絶縁基板と放熱体とをはんだ付けした後に放 熱体とヒートシンクとをねじ止めする必要があり、製作の際の作業性が悪い。
[0043] 上記 6)〜20)の放熱装置によれば、応力緩和部材のコストが安くなり、その結果放熱 装置の材料コストが安くなる。
[0044] 上記 6)〜9)の放熱装置によれば、貫通穴からなる応力吸収空間の働きにより応力 緩和部材が変形し、これにより熱応力が緩和される。
[0045] 上記 7)の放熱装置によれば、熱応力緩和効果が優れたものになる。すなわち、放 熱装置における絶縁基板の周縁部に最も大きな熱応力や歪みが発生しやすいが、 上記 7)のように構成されて 、ると、貫通穴の働きによりによりアルミニウム板における 絶縁基板の周縁部と対応する部分が変形しやすくなり、これにより熱応力が緩和され る。
[0046] 上記 10)の放熱装置によれば、凹所力 なる応力吸収空間の働きにより応力緩和部 材が変形し、これにより熱応力が緩和される。
[0047] 上記 11)の放熱装置によれば、熱応力緩和効果が優れたものになる。すなわち、放 熱装置における絶縁基板の周縁部に最も大きな熱応力や歪みが発生しやすいが、 上記 11)のように構成されて 、ると、凹所の働きによりによりアルミニウム板における絶 縁基板の周縁部と対応する部分が変形しやすくなり、これにより熱応力が緩和される [0048] 上記 14)の放熱装置によれば、凹所および貫通穴力 なる応力吸収空間の働きに より応力緩和部材が変形し、これにより熱応力が緩和される。
[0049] 上記 16)および 17)の放熱装置の放熱装置によれば、波形アルミニウム板の応力吸 収空間の働きにより応力緩和部材が変形し、これにより熱応力が緩和される。
[0050] 上記 18)の放熱装置によれば、切除部の働きにより、熱応力緩和効果が一層向上 する。
[0051] 上記 19)の放熱装置によれば、隣り合う波形アルミニウム板間の空間の働きにより、 熱応力緩和効果が一層向上する。
[0052] 上記 20)の放熱装置によれば、異なる方向の熱応力緩和効果が一層向上する。
[0053] 上記 21)の放熱装置によれば、応力緩和部材と、絶縁基板または絶縁基板の金属 層およびヒートシンクとをろう付する際の応力緩和部材に対する溶融ろう材の濡れ性 が優れたものになるので、ろう付性が向上する。し力も、上記ろう付の際の加熱により 応力緩和部材の強度が低下し、放熱装置に熱応力が発生した場合に、応力緩和部 材が変形しやすぐ応力緩和効果が優れたものになる。
発明を実施するための最良の形態
[0054] 以下、この発明の実施形態を、図面を参照して説明する。なお、以下の説明におい て、図 1の上下を上下というものとする。また、全図面を通じて同一部分および同一物 には同一符号を付して重複する説明を省略する。
[0055] 図 1はこの発明の第 1の実施形態の放熱装置を用 V、たパワーモジュールの一部分 を示し、図 2は応力緩和部材を示す。
[0056] 図 1において、パワーモジュールは、放熱装置 (1)と、放熱装置 (1)に搭載された、た とえば IGBTなどの半導体素子 (2)とを備えている。
[0057] 放熱装置 (1)は、上面が発熱体搭載面となされたセラミック製絶縁基板 (3)と、絶縁基 板 (3)の下面に接合された応力緩和部材 (4)と、応力緩和部材 (4)の下面に接合された ヒートシンク (5)とを備えて 、る。
[0058] 絶縁基板 (3)は、必要とされる絶縁特性、熱伝導率および機械的強度を満たして 、 れば、どのようなセラミック力 形成されていてもよいが、たとえば Al O、 A1Nなどに より形成される。絶縁基板 (3)の上面に回路層 (6)が形成され、回路層 (6)上に半導体 素子 (2)がはんだ付けされている。はんだ層の図示は省略する。回路層 (6)は導電性 に優れたアルミニウム、銅などの金属により形成されるが、電気伝導率が高ぐ変形 能が高ぐし力も半導体素子とのはんだ付け性に優れた純度の高い純アルミニウムに より形成されていることが好ましい。また、絶縁基板 (3)の下面に金属層 (7)が形成され 、金属層 (7)に応力緩和部材 (4)がろう付されている。ろう材層の図示は省略する。金 属層 (7)は、熱伝導性に優れたアルミニウム、銅などの金属により形成されるが、熱伝 導率が高ぐ変形能が高ぐしかも溶融したろう材との濡れ性に優れた純度の高い純 アルミニウムにより形成されていることが好ましい。そして、絶縁基板 (3)、回路層 (6)お よび金属層 (7)によりパワーモジュール用基板 (8)が構成されている。
[0059] 応力緩和部材 (4)は高熱伝導性材料力 なり、応力吸収空間を有している。図 2に 示すように、応力緩和部材 (4)は、複数の非角形、ここでは円形貫通穴 (9)が千鳥配置 状に形成されたアルミニウム板 (10)力 なり、貫通穴 (9)が応力吸収空間となっている 。円形貫通穴 (9)は、アルミニウム板 (10)における少なくとも絶縁基板 (3)の周縁部と対 応する位置、すなわちアルミニウム板 (10)における絶縁基板 (3)の周縁部と対応する 周縁部を含んで、全体に形成されている。アルミニウム板 (10)は、熱伝導率が高ぐろ う付時の加熱により強度が低下して変形能が高ぐし力も溶融したろう材との濡れ性 に優れた純度 99%以上、望ましく純度 99. 5%以上の純アルミニウムにより形成され ているのがよい。アルミニウム板 (10)の肉厚は 0. 3〜3mmであることが好ましぐ 0. 3 〜1. 5mmであることが望ましい。貫通穴 (9)の円相当径、ここでは貫通穴 (9)が円形 であるから、その穴径は l〜4mmであることが好ましい。また、アルミニウム板 (10)の 一面の面積に対するすべての貫通穴 (9)の面積の合計の割合が 3〜50%の範囲内 にあることが好ましい。
[0060] ヒートシンク (5)は、複数の冷却流体通路 (11)が並列状に設けられた偏平中空状で あり、熱伝導性に優れるとともに、軽量であるアルミニウムにより形成されていることが 好ましい。冷却流体としては、液体および気体のいずれを用いてもよい。
[0061] 応力緩和部材 (4)と、パワーモジュール用基板 (8)の金属層 (7)およびヒートシンク (5) とのろう付は、たとえば次のようにして行われる。すなわち、応力緩和部材 (4)を上記 純アルミニウム力 なる芯材と、芯材の両面を被覆するアルミニウムろう材製皮材とか らなるアルミニウムブレージングシートにより形成する。なお、アルミニウムろう材として は、たとえば Al— Si系合金、 Al— Si— Mg系合金などが用いられる。また、皮材の厚 みは 10〜200 μ m程度であることが好ましい。この厚みが薄すぎるとろう材の供給不 足となってろう付不良を起こすおそれがあり、この厚みが厚すぎるとろう材過多となつ てボイドの発生や熱伝導性の低下を招くおそれがある。
[0062] っ 、で、パワーモジュール用基板 (8)、応力緩和部材 (4)およびヒートシンク (5)を積 層状に配置するとともに適当な治具により拘束し、接合面に適当な荷重を加えながら 、真空雰囲気中または不活性ガス雰囲気中において、 570〜600°Cに加熱する。こ うして、応力緩和部材 (4)と、パワーモジュール用基板 (8)の金属層 (7)およびヒートシン ク (5)とが同時にろう付される。
[0063] また、応力緩和部材 (4)と、パワーモジュール用基板 (8)の金属層 (7)およびヒートシン ク (5)とのろう付は、次のようにして行ってもよい。すなわち、応力緩和部材 (4)を上記純 アルミニウムのベア材により形成する。ついで、パワーモジュール用基板 (8)、応力緩 和部材 (4)およびヒートシンク (5)を積層状に配置する。このとき、応力緩和部材 (4)と、 パワーモジュール用基板 (8)の金属層 (7)およびヒートシンク (5)との間に、それぞれ A1 — Si系合金、 Al— Si— Mg系合金など力もなるシート状アルミニウムろう材を介在さ せておく。シート状アルミニウムろう材の厚みは 10〜200 μ m程度であることが好まし い。この厚みが薄すぎるとろう材の供給不足となってろう付不良を起こすおそれがあり 、この厚みが厚すぎるとろう材過多となってボイドの発生や熱伝導性の低下を招くお それがある。その後、上述したアルミニウムブレージングシートを用いた場合と同様に してろう付する。こうして、応力緩和部材 (4)と、パワーモジュール用基板 (8)の金属層( 7)およびヒートシンク (5)とが同時にろう付される。
[0064] 図 3はこの発明による放熱装置の第 2の実施形態を示す。
[0065] 図 3に示す放熱装置 (15)の場合、パワーモジュール用基板 (8)の絶縁基板 (3)の下 面には金属層 (7)は形成されておらず、応力緩和部材 (4)が絶縁基板 (3)に直接ろう付 されている。このろう付は、たとえば上記第 1の実施形態の場合と同様にして行われる [0066] 図 4〜図 21は応力緩和部材の変形例を示す。
[0067] 図 4に示す応力緩和部材 (20)は、複数の方形貫通穴 (21)が千鳥配置状に形成され たアルミニウム板 (10)力もなり、貫通穴 (21)が応力吸収空間となっている。貫通穴 (21) は、アルミニウム板 (10)における少なくとも絶縁基板 (3)の周縁部と対応する位置、す なわちアルミニウム板 (10)における絶縁基板 (3)の周縁部と対応する周縁部を含んで 、全体に形成されている。アルミニウム板 (10)の一面の面積に対するすべての貫通穴 (21)の面積の合計の割合は、図 2に示す応力緩和部材 (4)の場合と同様に、 3〜50% の範囲内にあることが好まし 、。
[0068] 図 5に示す応力緩和部材 (22)の場合、アルミニウム板 (10)の周縁部のみ、すなわち アルミニウム板 (10)における絶縁基板 (3)の周縁部と対応する位置のみに、複数の円 形貫通穴 (9)が形成されている。この場合にも、アルミニウム板 (10)の一面の面積に対 するすべての貫通穴 (9)の面積の合計の割合は、図 2に示す応力緩和部材 (4)の場合 と同様に、 3〜50%の範囲内にあることが好ましい。
[0069] 図 6に示す応力緩和部材 (23)の場合、アルミニウム板 (10)の周縁部のみ、すなわち アルミニウム板 (10)における絶縁基板 (3)の周縁部と対応する位置のみに、複数の円 形貫通穴 (9)力 内外 2重に形成されている。この場合にも、アルミニウム板 (10)の一 面の面積に対するすべての貫通穴 (9)の面積の合計の割合は、図 2に示す応力緩和 部材 (4)の場合と同様に、 3〜50%の範囲内にあることが好ましい。
[0070] 図 5および図 6に示す応力緩和部材 (22X23)において、円形貫通穴 (9)の代わりに、 方形貫通穴 (21)が形成されていてもよい。いずれの場合においても、貫通穴 (9)(21) が応力吸収空間となっている。
[0071] 図 7に示す応力緩和部材 (25)は、一面に複数の球状凹所 (26)が千鳥配置状に形成 されたアルミニウム板 (10)力もなり、凹所 (26)が応力吸収空間となっている。
[0072] 図 8に示す応力緩和部材 (30)は、両面に複数の球状凹所 (26)が縦横に並んで形成 されたアルミニウム板 (10)力もなり、凹所 (26)が応力吸収空間となっている。アルミユウ ム板 (10)の一面の凹所 (26)と他面の凹所 (26)とは、平面から見て異なった位置に形成 されている。
[0073] 図 9に示す応力緩和部材 (31)は、一面に複数の円錐台状凹所 (32)が千鳥配置状に 形成されたアルミニウム板 (10)力もなり、凹所 (32)が応力吸収空間となっている。
[0074] 図 10に示す応力緩和部材 (34)は、両面に複数の円錐台状凹所 (32)が縦横に並ん で形成されたアルミニウム板 (10)力もなり、凹所 (32)が応力吸収空間となっている。ァ ルミ二ゥム板 (10)の一面の凹所 (32)と他面の凹所 (32)とは、平面から見て異なった位 置に形成されている。
[0075] 図 7〜図 10に示す応力緩和部材 (25)(30)(31)(34)において、凹所 (26)(32)は、アルミ -ゥム板 (10)における少なくとも絶縁基板 (3)の周縁部と対応する周縁部を含んで、全 体に形成されているが、図 5および図 6に示す応力緩和部材 (22X23)の場合と同様に 、絶縁基板 (3)の周縁部と対応する周縁部のみに形成されていればよい。また、図 7 〜図 10に示す応力緩和部材 (25)(30)(31)(34)において、凹所 (26)(32)の開口の円相 当径、ここでは凹所 (26X32)の開口は円形であるから、その直径は l〜4mmであるこ とが好ましい。また、アルミニウム板 (10)の凹所 (26X32)が形成された面の面積に対す る当該面に形成された全凹所 (26X32)の開口面積の合計の割合が 3〜50%の範囲 内にあることが好ましい。
[0076] 図 11に示す応力緩和部材 (36)は、一面に複数の四角錐状凹所 (37)が千鳥配置状 に形成されたアルミニウム板 (10)力もなり、凹所 (37)が応力吸収空間となっている。
[0077] 図 12に示す応力緩和部材 (38)は、両面に複数の四角錐状凹所 (37)が縦横に並ん で形成されたアルミニウム板 (10)力もなり、凹所 (37)が応力吸収空間となっている。ァ ルミ二ゥム板 (10)の一面の凹所 (37)と他面の凹所 (37)とは、平面から見て異なった位 置に形成されている。
[0078] 図 13に示す応力緩和部材 (40)は、一面に複数の直方体状凹所 (41)が縦横に並ん で形成されたアルミニウム板 (10)力もなり、凹所 (41)が応力吸収空間となっている。こ こでは、縦に並んだ凹所 (41)の各列における隣り合う凹所 (41)の長手方向は 90度異 なった方向を向いており、同じく横に並んだ凹所 (41)の各列における隣り合う凹所 (41 )の長手方向は 90度異なった方向を向いている。
[0079] 図 14に示す応力緩和部材 (42)は、両面に複数の直方体状凹所 (41)が千鳥配置状 に形成されたアルミニウム板 (10)力もなり、凹所 (41)が応力吸収空間となっている。ァ ルミ二ゥム板 (10)の一面の凹所 (41)と他面の凹所 (41)とは、平面から見て異なった位 置に形成されている。また、アルミニウム板 (10)の一面の凹所 (41)の長手方向は同方 向を向いており、他面の凹所 (41)の長手方向は、上記一面の凹所 (41)の長手方向と 直角をなす方向を向 ヽて 、る。
[0080] 図 15に示す応力緩和部材 (45)は、複数の貫通穴 (46X47)が形成されたアルミニウム 板 (10)力もなり、貫通穴 (46X47)が応力吸収空間となっている。すなわち、アルミニウム 板 (10)の 4隅部においては、アルミニウム板 (10)の各隅部を挟んで隣接する 2つの辺 を結ぶ傾斜した複数の平行線上に、それぞれ複数の短尺直線状貫通穴 (46)が上記 平行線の長さ方向に間隔をおいて形成されている。また、アルミニウム板 (10)の 4隅 部を除いた部分においては、複数の同心円上に、それぞれ複数の円弧状貫通穴 (47 )が周方向に間隔をおいて形成されている。この応力緩和部材 (45)の場合も、アルミ 二ゥム板 (10)の一面の面積に対するすべての貫通穴 (46X47)の面積の合計の割合が 3〜50%の範囲内にあることが好ましい。
[0081] 図 16に示す応力緩和部材 (50)は、一面に複数の溝状凹所 (51)が形成されたアルミ 二ゥム板 (10)力もなり、凹所 (51)が応力吸収空間となっている。凹所 (51)は V字を連続 したような形状または V字状である。
[0082] 図 17に示す応力緩和部材 (53)は、両面に複数の V溝状凹所 (54X55)が形成された アルミニウム板 (10)力もなり、凹所 (54X55)が応力吸収空間となっている。アルミニウム 板 (10)の一面の凹所 (54)は、アルミニウム板 (10)の長さ方向に伸びかつアルミニウム 板 (10)の幅方向に間隔をお 、て形成されて!、る。アルミニウム板 (10)の他面の凹所 (5 5)は、アルミニウム板 (10)の幅方向に伸びかつアルミニウム板 (10)の長さ方向に間隔 をおいて形成されている。なお、アルミニウム板 (10)の一面の凹所 (54)の深さと他面の 凹所 (55)の深さの合計は、アルミニウム板 (10)の板厚よりも小さくなつて 、る。
[0083] 図 18に示す応力緩和部材 (57)は、両面に複数の V溝状凹所 (58X59)が形成される とともに、複数の貫通穴 (60)が形成されたアルミニウム板 (10)力もなり、凹所 (58X59)お よび貫通穴 (60)が応力吸収空間となっている。アルミニウム板 (10)の一面の凹所 (58) は、アルミニウム板 (10)の長さ方向に伸びかつアルミニウム板 (10)の幅方向に間隔を おいて形成されている。アルミニウム板 (10)の他面の凹所 (59)は、アルミニウム板 (10) の幅方向に伸びかつアルミニウム板 (10)の長さ方向に間隔をおいて形成されている。 そして、アルミニウム板 (10)の一面の凹所 (58)の深さと他面の凹所 (59)の深さの合計 は、アルミニウム板 (10)の板厚よりも大きくなつており、これにより両凹所 (58X59)の交 差部分に貫通穴 (60)が形成されて ヽる。
[0084] 図 4〜図 18に示す応力緩和部材を形成するアルミニウム板 (10)は、図 2に示す応 力緩和部材 (4)の場合と同じである。そして、図 4〜図 18に示す応力緩和部材は、上 述した第 1および第 2の実施形態の場合と同様にして、パワーモジュール用基板 (8) およびヒートシンク (5)にろう付される。
[0085] 図 19に示す応力緩和部材 (63)は、波頂部 (64)、波底部 (65)および波頂部 (64)と波 底部 (65)とを連結する連結部 (66)とよりなる波形のアルミニウム板 (67)力 なり、隣り合 う連結部 (66)どうしの間の部分が応力吸収空間となっている。また、波形アルミニウム 板 (67)の幅方向の中央部において、波頂部 (64)、波底部 (65)および連結部 (66)に、波 頂部 (64)および波底部 (65)の長さ方向と直交する方向に伸びる切除部 (68)が形成さ れている。したがって、波形アルミニウム板 (67)は、両端部を除いて 2つの部分に分割 されている。
[0086] 図 20に示す応力緩和部材 (70)は、図 19と同様な波形アルミニウム板 (67)の波頂部 ( 64)、波底部 (65)および連結部 (66)に、波頂部 (64)および波底部 (65)の長さ方向と直 交する方向に伸びる切除部 (68)力 波形アルミニウム板 (67)の幅方向に並んで複数 形成されている。したがって、波形アルミニウム板 (67)は、両端部を除いて複数の部 分に分割されている。
[0087] 図 21に示す応力緩和部材 (72)は、切除部が形成されていない複数、ここでは 2つ の波形アルミニウム板 (67)力 波頂部 (64)および波底部 (65)の長さ方向に間隔をお ヽ て配置されている。なお、波形アルミニウム板 (67)の数は限定されない。そして、隣り 合う波形アルミニウム板 (67)の波頂部 (64)および波底部 (65)の位置が、波頂部 (64)お よび波底部 (65)の幅方向にずれて 、る。
[0088] なお、図 21に示す応力緩和部材 (72)において、隣り合う波形アルミニウム板 (67)の 波頂部 (64)および波底部 (65)の位置力 波頂部 (64)および波底部 (65)の幅方向にず れていない場合もある。
[0089] 図 19〜図 21に示す応力緩和部材 (63X70X72)において、波形アルミニウム板 (67) の肉厚は 0. 05〜 lmmであることが好ましい。また、波形アルミニウム板 (67)は、図 2 に示す応力緩和部材 (4)の場合と同様に、熱伝導率が高ぐしかもろう付時の加熱に より強度が低下して変形能の高い純度 99%以上、望ましく純度 99. 5%以上の純ァ ルミ-ゥムにより形成されて 、るのがよ 、。図 19〜図 21に示す応力緩和部材 (63X70) (72)は、上述した第 1および第 2の実施形態の場合と同様にして、パワーモジュール 用基板 (8)およびヒートシンク (5)にろう付される。
産業上の利用可能性
[0090] この発明の放熱装置は、一面が発熱体搭載面となされた絶縁基板と、絶縁基板の 他面に固定されたヒートシンクとを備えており、絶縁基板に搭載される半導体素子な どの発熱体から発せられる熱をヒートシンクから放熱するのに好適に用いられる。 図面の簡単な説明
[0091] [図 1]この発明による放熱装置の第 1の実施形態を示し、放熱装置を用いたパワーモ ジュールの一部分を示す垂直断面図である。
[図 2]図 1の放熱装置に用いられる応力緩和部材を示す斜視図である。
[図 3]この発明による放熱装置の第 2の実施形態を示す図 1相当の図である。
[図 4]応力緩和部材の第 1の変形例を示す斜視図である。
[図 5]応力緩和部材の第 2の変形例を示す一部切り欠き斜視図である。
[図 6]応力緩和部材の第 3の変形例を示す一部切り欠き斜視図である。
[図 7]応力緩和部材の第 4の変形例を示す一部切り欠き斜視図である。
[図 8]応力緩和部材の第 5の変形例を示す一部切り欠き斜視図である。
[図 9]応力緩和部材の第 6の変形例を示す一部切り欠き斜視図である。
[図 10]応力緩和部材の第 7の変形例を示す一部切り欠き斜視図である。
[図 11]応力緩和部材の第 8の変形例を示す一部切り欠き斜視図である。
[図 12]応力緩和部材の第 9の変形例を示す一部切り欠き斜視図である。
[図 13]応力緩和部材の第 10の変形例を示す斜視図である。
[図 14]応力緩和部材の第 11の変形例を示す斜視図である。
[図 15]応力緩和部材の第 12の変形例を示す斜視図である。
[図 16]応力緩和部材の第 13の変形例を示す斜視図である。 [図 17]応力緩和部材の第 14の変形例を示す斜視図である。
[図 18]応力緩和部材の第 15の変形例を示す斜視図である。
[図 19]応力緩和部材の第 16の変形例を示す斜視図である。
[図 20]応力緩和部材の第 17の変形例を示す斜視図である。
[図 21]応力緩和部材の第 18の変形例を示す斜視図である。

Claims

請求の範囲
[1] 一面が発熱体搭載面となされた絶縁基板と、絶縁基板の他面に固定されたヒートシ ンクとを備えた放熱装置において、
絶縁基板とヒートシンクとの間に、高熱伝導性材料からなり、かつ応力吸収空間を 有する応力緩和部材が介在させられ、応力緩和部材が、絶縁基板およびヒートシン クに金属接合されている放熱装置。
[2] 応力緩和部材が絶縁基板およびヒートシンクにろう付されて 、る請求項 1記載の放熱 装置。
[3] 一面が発熱体搭載面となされた絶縁基板と、絶縁基板の他面に固定されたヒートシ ンクとを備えた放熱装置において、
絶縁基板における発熱体搭載面とは反対側の面に金属層が形成され、当該金属 層とヒートシンクとの間に、高熱伝導性材料からなり、かつ応力吸収空間を有する応 力緩和部材が介在させられ、応力緩和部材が、絶縁基板の金属層およびヒートシン クに金属接合されている放熱装置。
[4] 応力緩和部材が絶縁基板の金属層およびヒートシンクにろう付されて 、る請求項 3記 載の放熱装置。
[5] 絶縁基板がセラミック力 なる請求項 1〜4のうちのいずれかに記載の放熱装置。
[6] 応力緩和部材が、複数の貫通穴が形成されたアルミニウム板力 なり、貫通穴が応 力吸収空間となっている請求項 1〜5のうちのいずれかに記載の放熱装置。
[7] 貫通穴が、アルミニウム板における少なくとも絶縁基板の周縁部と対応する位置に形 成されて!/ヽる請求項 6記載の放熱装置。
[8] 貫通穴が非角形であり、貫通穴の円相当径が l〜4mmである請求項 6または 7記載 の放熱装置。
[9] アルミニウム板の一面の面積に対するすべての貫通穴の面積の合計の割合が 3〜5 0%の範囲内にある請求項 6〜8のうちのいずれかに記載の放熱装置。
[10] 応力緩和部材が、少なくともいずれか一面に複数の凹所が形成されたアルミニウム 板からなり、凹所が応力吸収空間となっている請求項 1〜5のうちのいずれかに記載 の放熱装置。
[11] 凹所が、アルミニウム板における少なくとも絶縁基板の周縁部と対応する位置に形成 されて ヽる請求項 10記載の放熱装置。
[12] 凹所の開口が非角形であり、凹所の開口の円相当径が l〜4mmである請求項 10ま たは 11記載の放熱装置。
[13] アルミニウム板の凹所が形成された面の面積に対する当該面に形成された全凹所の 開口面積の合計の割合が 3〜50%の範囲内にある請求項 10〜12のうちのいずれ かに記載の放熱装置。
[14] 応力緩和部材が、少なくとも一面に複数の凹所が形成されるとともに、複数の貫通穴 が形成されたアルミニウム板力 なり、凹所および貫通穴が応力吸収空間となってい る請求項 1〜5のうちのいずれかに記載の放熱装置。
[15] 応力緩和部材を形成するアルミニウム板の肉厚が 0. 3〜3mmである請求項 6〜14 のうちの!/、ずれかに記載の放熱装置。
[16] 応力緩和部材が、波頂部、波底部および波頂部と波底部とを連結する連結部とより なる波形のアルミニウム板力 なり、隣り合う連結部どうしの間の部分が応力吸収空間 となっている請求項 1〜5のうちのいずれかに記載の放熱装置。
[17] 波形アルミニウム板の肉厚が 0. 05〜lmmである請求項 16記載の放熱装置。
[18] 波形アルミニウム板の波頂部、波底部および連結部に、波頂部および波底部の長さ 方向と直交する方向に伸びる少なくとも 1つの切除部が形成されている請求項 16ま たは 17記載の放熱装置。
[19] 複数の波形アルミニウム板が、波頂部および波底部の長さ方向に間隔をおいて配置 されて 、る請求項 16または 17記載の放熱装置。
[20] 隣り合う波形アルミニウム板の波頂部および波底部の位置が、波頂部および波底部 の幅方向にずれて 、る請求項 19記載の放熱装置。
[21] アルミニウム板が、純度 99%以上の純アルミニウムからなる請求項 6〜20のうちのい ずれかに記載の放熱装置。
[22] 応力緩和部材が、芯材と芯材の両面を被覆するろう材製皮材とからなるブレージング シートにより形成され、ブレージングシートの皮材を用いて絶縁基板または絶縁基板 の金属層と、ヒートシンクとにろう付されている請求項 6〜21のうちのいずれかに記載 の放熱装置。
[23] 応力緩和部材が、シート状ろう材を用いて絶縁基板または絶縁基板の金属層と、ヒ ートシンクとにろう付されている請求項 6〜21のうちのいずれかに記載の放熱装置。
[24] 請求項 1〜23のうちのいずれかに記載の放熱装置と、放熱装置の絶縁基板に搭載 された半導体素子とを備えたパワーモジュール。
PCT/JP2006/307307 2005-04-06 2006-04-06 放熱装置 WO2006109660A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06731255.3A EP1873827B1 (en) 2005-04-06 2006-04-06 Heat radiating device
CN2006800113253A CN101156241B (zh) 2005-04-06 2006-04-06 散热装置
US11/910,460 US20090139704A1 (en) 2005-04-06 2006-04-06 Heat sink device
KR1020077025597A KR101242286B1 (ko) 2005-04-06 2006-04-06 방열 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005110175A JP4621531B2 (ja) 2005-04-06 2005-04-06 放熱装置
JP2005-110175 2005-04-06

Publications (1)

Publication Number Publication Date
WO2006109660A1 true WO2006109660A1 (ja) 2006-10-19

Family

ID=37086936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307307 WO2006109660A1 (ja) 2005-04-06 2006-04-06 放熱装置

Country Status (6)

Country Link
US (1) US20090139704A1 (ja)
EP (2) EP2863425A3 (ja)
JP (1) JP4621531B2 (ja)
KR (1) KR101242286B1 (ja)
CN (1) CN101156241B (ja)
WO (1) WO2006109660A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007019885A1 (de) 2007-04-27 2008-11-06 Wieland-Werke Ag Kühlkörper
EP2065934A3 (en) * 2007-11-21 2010-02-17 Kabushiki Kaisha Toyoda Jidoshokki Heat dissipation apparatus
EP2065933A3 (en) * 2007-11-21 2010-02-17 Kabushiki Kaisha Toyoda Jidoshokki Heat dissipation apparatus
US7813135B2 (en) * 2007-05-25 2010-10-12 Kabushiki Kaisha Toyota Jidoshokki Semiconductor device
CN102205676A (zh) * 2010-03-31 2011-10-05 株式会社神户制钢所 铝合金钎焊板和热交换器
US8102652B2 (en) * 2006-03-13 2012-01-24 Kabushiki Kaisha Toyota Jidoshokki Base for power module

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604954B2 (ja) * 2005-10-13 2011-01-05 株式会社デンソー 半導体モジュールの絶縁構造
JP5064111B2 (ja) * 2006-06-28 2012-10-31 株式会社ティラド 複合放熱板およびその製造方法並びに、それに用いる熱応力緩和プレート
KR100798474B1 (ko) 2006-11-22 2008-01-28 한국표준과학연구원 전도성 도핑층과 금속층을 갖는 반도체 칩
JP4752785B2 (ja) * 2007-02-15 2011-08-17 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板の製造方法
JP2008294281A (ja) * 2007-05-25 2008-12-04 Showa Denko Kk 半導体装置及び半導体装置の製造方法
JP2008294279A (ja) 2007-05-25 2008-12-04 Showa Denko Kk 半導体装置
JP4945319B2 (ja) 2007-05-25 2012-06-06 昭和電工株式会社 半導体装置
JP4832419B2 (ja) * 2007-12-25 2011-12-07 トヨタ自動車株式会社 半導体モジュール
JP5011088B2 (ja) * 2007-12-26 2012-08-29 日新製鋼株式会社 放熱装置及びパワーモジュール
KR101463075B1 (ko) * 2008-02-04 2014-11-20 페어차일드코리아반도체 주식회사 히트 싱크 패키지
JP4380774B2 (ja) * 2008-03-19 2009-12-09 トヨタ自動車株式会社 パワーモジュール
TWI501360B (zh) * 2008-04-17 2015-09-21 Samsung Electronics Co Ltd 散熱構件用膠帶、包含散熱構件之薄膜上晶片型半導體封裝以及包含該封裝之電子裝置
JP4989552B2 (ja) 2008-05-08 2012-08-01 トヨタ自動車株式会社 電子部品
JP5227681B2 (ja) * 2008-07-11 2013-07-03 株式会社豊田自動織機 半導体装置
JP5114323B2 (ja) * 2008-07-04 2013-01-09 株式会社豊田自動織機 半導体装置
JP5114324B2 (ja) * 2008-07-07 2013-01-09 株式会社豊田自動織機 半導体装置
US8472193B2 (en) * 2008-07-04 2013-06-25 Kabushiki Kaisha Toyota Jidoshokki Semiconductor device
EP2166569A1 (de) * 2008-09-22 2010-03-24 ABB Schweiz AG Kühlvorrichtung für ein Leistungsbauelement
JP2010171279A (ja) * 2009-01-23 2010-08-05 Toyota Motor Corp 放熱装置
JP5261214B2 (ja) * 2009-01-29 2013-08-14 住友軽金属工業株式会社 発熱部品冷却装置用アルミニウム・クラッド材の製造方法
DE102009000514A1 (de) 2009-01-30 2010-08-26 Robert Bosch Gmbh Verbundbauteil sowie Verfahren zum Herstellen eines Verbundbauteil
TW201041496A (en) * 2009-05-15 2010-11-16 High Conduction Scient Co Ltd A manufacturing method of circuit board module equipped with heat sink, and its product
EP2442358A4 (en) * 2009-06-10 2014-04-16 Toyota Motor Co Ltd SEMICONDUCTOR COMPONENT
CN101929819A (zh) * 2009-06-26 2010-12-29 富准精密工业(深圳)有限公司 平板式热管
JP2011023545A (ja) * 2009-07-15 2011-02-03 Nisshin Steel Co Ltd 放熱構造体およびパワーモジュール
WO2011018882A1 (en) * 2009-08-10 2011-02-17 Fuji Electric Systems Co., Ltd. Semiconductor module and cooling unit
DE102009042519A1 (de) * 2009-09-16 2011-03-24 Esw Gmbh Vorrichtung zur Kühlung von Halbleitern
JP5759902B2 (ja) * 2009-11-27 2015-08-05 昭和電工株式会社 積層材およびその製造方法
JP5515947B2 (ja) * 2010-03-29 2014-06-11 株式会社豊田自動織機 冷却装置
JP2011228563A (ja) * 2010-04-22 2011-11-10 Showa Denko Kk 絶縁積層材のろう付方法
EP2565920A4 (en) 2010-04-28 2016-12-21 Toyota Jidoshokki Kk HEAT DISPOSING DEVICE AND SEMICONDUCTOR DEVICE
JP5613452B2 (ja) * 2010-05-19 2014-10-22 昭和電工株式会社 絶縁積層材のろう付方法
JP5382049B2 (ja) * 2010-06-30 2014-01-08 株式会社デンソー 半導体装置
US8587116B2 (en) * 2010-09-30 2013-11-19 Infineon Technologies Ag Semiconductor module comprising an insert
JP5671351B2 (ja) * 2011-01-12 2015-02-18 昭和電工株式会社 電子素子搭載用基板の製造方法
JP5764342B2 (ja) * 2011-02-10 2015-08-19 昭和電工株式会社 絶縁回路基板、ならびにパワーモジュール用ベースおよびその製造方法
JP2012169319A (ja) * 2011-02-10 2012-09-06 Showa Denko Kk 絶縁積層材、絶縁回路基板、パワーモジュール用ベースおよびパワーモジュール
JP5349572B2 (ja) 2011-04-18 2013-11-20 株式会社豊田自動織機 放熱装置及び放熱装置の製造方法
JP5234138B2 (ja) * 2011-05-06 2013-07-10 船井電機株式会社 放熱板
JP5913834B2 (ja) * 2011-05-16 2016-04-27 昭和電工株式会社 放熱装置用ろう材箔
DE102012208767A1 (de) * 2011-06-17 2012-12-20 Robert Bosch Gmbh Elektronische Schaltungsanordnung mit Verlustwärme abgebenden Komponenten
JP2013038123A (ja) * 2011-08-04 2013-02-21 Showa Denko Kk 絶縁回路基板の製造方法
US20130056176A1 (en) * 2011-08-26 2013-03-07 Mikros Manufacturing, Inc. Heat Exchanger with Controlled Coefficient of Thermal Expansion
JP2013115201A (ja) * 2011-11-28 2013-06-10 Toyota Industries Corp 半導体装置
CN103988297B (zh) * 2011-12-12 2018-11-23 三菱综合材料株式会社 功率模块及其制造方法
JP5856838B2 (ja) * 2011-12-22 2016-02-10 昭和電工株式会社 放熱装置用ろう材箔
JP5990925B2 (ja) * 2012-02-16 2016-09-14 富士通株式会社 冷却装置及びその製造方法
JP5969235B2 (ja) * 2012-03-23 2016-08-17 昭和電工株式会社 熱交換器用アルミニウムクラッド材およびその製造方法
JP6060553B2 (ja) * 2012-04-06 2017-01-18 株式会社豊田自動織機 半導体装置
KR101499665B1 (ko) * 2012-05-29 2015-03-06 포리프라스틱 가부시키가이샤 복합 성형체의 제조방법
JP2014017318A (ja) * 2012-07-06 2014-01-30 Toyota Industries Corp 半導体装置
JP2014072314A (ja) * 2012-09-28 2014-04-21 Toyota Industries Corp 半導体装置、及び半導体装置の製造方法
JP5708613B2 (ja) * 2012-11-01 2015-04-30 株式会社豊田自動織機 モジュール
JP6064886B2 (ja) 2012-12-26 2017-01-25 株式会社豊田中央研究所 熱伝導性応力緩和構造体
JP6197329B2 (ja) * 2013-03-28 2017-09-20 三菱マテリアル株式会社 パワーモジュール、及び熱インターフェース板の製造方法
JP5648705B2 (ja) * 2013-04-08 2015-01-07 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール及び緩衝層付パワーモジュール用基板
JP6197365B2 (ja) * 2013-05-21 2017-09-20 三菱マテリアル株式会社 パワーモジュール、及び熱インターフェース板の製造方法
JP6116404B2 (ja) * 2013-07-01 2017-04-19 昭和電工株式会社 放熱装置
DE102013218826A1 (de) * 2013-09-19 2015-03-19 Siemens Aktiengesellschaft Kühlkörper
JP6152893B2 (ja) * 2013-09-30 2017-06-28 富士電機株式会社 半導体装置、半導体装置の組み立て方法、半導体装置用部品及び単位モジュール
KR101534744B1 (ko) * 2013-12-16 2015-07-24 현대자동차 주식회사 터보차저를 갖는 디젤엔진의 냉각 시스템
JP6316219B2 (ja) * 2015-01-22 2018-04-25 三菱電機株式会社 パワー半導体モジュール
DE112015006049T5 (de) 2015-01-26 2017-10-12 Mitsubishi Electric Corporation Halbleiterbauteil und verfahren zum herstellen eines halbleiterbauteils
US20160229689A1 (en) * 2015-02-11 2016-08-11 Analog Devices, Inc. Packaged Microchip with Patterned Interposer
CN107429976B (zh) * 2015-03-16 2021-02-09 达纳加拿大公司 带有具有用于提高平坦度的表面图案的板的换热器和制造该换热器的方法
JP6805743B2 (ja) * 2015-12-24 2020-12-23 アイシン精機株式会社 絶縁基板
JP6549502B2 (ja) * 2016-02-26 2019-07-24 京セラ株式会社 放熱基板およびそれを用いた半導体パッケージならびに半導体モジュール
DE102016218522B3 (de) * 2016-09-27 2017-06-22 Jenoptik Laser Gmbh Optische oder optoelektronische Baugruppe und Verfahren zur Herstellung dafür
DE102017203217A1 (de) * 2017-02-28 2018-08-30 Robert Bosch Gmbh Kontaktanordnung
CN111418055B (zh) * 2017-11-28 2024-03-12 京瓷株式会社 电子元件安装用基板、电子装置以及电子模块
CN108337862B (zh) * 2018-03-02 2019-09-06 惠州市博宇科技有限公司 一种新能源电动车专用铝基板
EP3595105B1 (en) * 2018-07-13 2024-01-24 ABB Schweiz AG A heat sink for a high voltage switchgear
US10490482B1 (en) * 2018-12-05 2019-11-26 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling devices including jet cooling with an intermediate mesh and methods for using the same
JP7367309B2 (ja) * 2019-02-08 2023-10-24 富士電機株式会社 半導体モジュール、半導体装置及び半導体装置の製造方法
JP2020141023A (ja) * 2019-02-27 2020-09-03 株式会社 日立パワーデバイス 半導体装置
US11217505B2 (en) * 2019-09-10 2022-01-04 Aptiv Technologies Limited Heat exchanger for electronics
CN210959284U (zh) * 2019-12-06 2020-07-07 阳光电源股份有限公司 散热器及电气设备
CN112318790B (zh) * 2020-09-09 2022-08-19 西安近代化学研究所 一种高粘度硅基绝热层硫化成型工艺
DE102021201270A1 (de) * 2021-02-10 2022-08-11 Vitesco Technologies GmbH Elektronische Baugruppe mit zumindest einem ersten elektronischen Bauteil und einem zweiten elektronischen Bauteil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878586A (ja) * 1994-09-09 1996-03-22 Kyocera Corp 半導体素子収納用パッケージ
JPH0883872A (ja) * 1994-09-09 1996-03-26 Kyocera Corp 半導体素子収納用パッケージ
JP2003017627A (ja) * 2001-06-28 2003-01-17 Toshiba Corp セラミックス回路基板およびそれを用いた半導体モジュール
JP2004153075A (ja) 2002-10-31 2004-05-27 Mitsubishi Materials Corp パワーモジュール用基板及びパワーモジュール

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612795B2 (ja) * 1989-11-07 1994-02-16 株式会社日立製作所 マルチチップモジュールの冷却構造
JP2675173B2 (ja) * 1990-03-02 1997-11-12 株式会社日立製作所 電子デバイスの冷却装置
JPH05299549A (ja) * 1992-04-20 1993-11-12 Hitachi Ltd 熱伝達冷却装置
JPH10189845A (ja) * 1996-12-25 1998-07-21 Denso Corp 半導体素子の放熱装置
US6124635A (en) * 1997-03-21 2000-09-26 Honda Giken Kogyo Kabushiki Kaisha Functionally gradient integrated metal-ceramic member and semiconductor circuit substrate application thereof
US5988488A (en) * 1997-09-02 1999-11-23 Mcdonnell Douglas Corporation Process of bonding copper and tungsten
US6756019B1 (en) * 1998-02-24 2004-06-29 Caliper Technologies Corp. Microfluidic devices and systems incorporating cover layers
JP2000236050A (ja) * 1999-02-12 2000-08-29 Sony Corp 放熱装置、電子機器及び放熱装置用スペーサ
JP4649027B2 (ja) * 1999-09-28 2011-03-09 株式会社東芝 セラミックス回路基板
US6485816B2 (en) * 2000-01-31 2002-11-26 Ngk Insulators, Ltd. Laminated radiation member, power semiconductor apparatus, and method for producing the same
JP2002237556A (ja) * 2001-02-09 2002-08-23 Mitsubishi Electric Corp パワー半導体装置
WO2002067324A1 (fr) * 2001-02-22 2002-08-29 Ngk Insulators, Ltd. Element pour circuit electronique, procede de fabrication d'un tel element et portion electronique
US20020185726A1 (en) * 2001-06-06 2002-12-12 North Mark T. Heat pipe thermal management of high potential electronic chip packages
JP3793562B2 (ja) * 2001-09-27 2006-07-05 京セラ株式会社 セラミック回路基板
JP2003101184A (ja) * 2001-09-27 2003-04-04 Kyocera Corp セラミック回路基板およびその製造方法
JP2003163315A (ja) * 2001-11-29 2003-06-06 Denki Kagaku Kogyo Kk モジュール
JP4044449B2 (ja) * 2003-01-30 2008-02-06 株式会社住友金属エレクトロデバイス パワーモジュール用基板
US6903929B2 (en) * 2003-03-31 2005-06-07 Intel Corporation Two-phase cooling utilizing microchannel heat exchangers and channeled heat sink
DE10337640A1 (de) * 2003-08-16 2005-03-17 Semikron Elektronik Gmbh Leistungshalbleitermodul mit verbessertem thermischen Kontakt
KR100542188B1 (ko) * 2003-08-26 2006-01-10 삼성에스디아이 주식회사 플라즈마 디스플레이 장치
JP4617209B2 (ja) * 2005-07-07 2011-01-19 株式会社豊田自動織機 放熱装置
US8472193B2 (en) * 2008-07-04 2013-06-25 Kabushiki Kaisha Toyota Jidoshokki Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878586A (ja) * 1994-09-09 1996-03-22 Kyocera Corp 半導体素子収納用パッケージ
JPH0883872A (ja) * 1994-09-09 1996-03-26 Kyocera Corp 半導体素子収納用パッケージ
JP2003017627A (ja) * 2001-06-28 2003-01-17 Toshiba Corp セラミックス回路基板およびそれを用いた半導体モジュール
JP2004153075A (ja) 2002-10-31 2004-05-27 Mitsubishi Materials Corp パワーモジュール用基板及びパワーモジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1873827A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8102652B2 (en) * 2006-03-13 2012-01-24 Kabushiki Kaisha Toyota Jidoshokki Base for power module
US8824144B2 (en) 2006-03-13 2014-09-02 Kabushiki Kaisha Toyota Jidoshokki Base for power module
DE102007019885A1 (de) 2007-04-27 2008-11-06 Wieland-Werke Ag Kühlkörper
WO2008135164A1 (de) 2007-04-27 2008-11-13 Wieland-Werke Ag Kühlkörper
US7813135B2 (en) * 2007-05-25 2010-10-12 Kabushiki Kaisha Toyota Jidoshokki Semiconductor device
EP2065934A3 (en) * 2007-11-21 2010-02-17 Kabushiki Kaisha Toyoda Jidoshokki Heat dissipation apparatus
EP2065933A3 (en) * 2007-11-21 2010-02-17 Kabushiki Kaisha Toyoda Jidoshokki Heat dissipation apparatus
KR101114813B1 (ko) * 2007-11-21 2012-02-15 쇼와 덴코 가부시키가이샤 방열장치
CN102205676A (zh) * 2010-03-31 2011-10-05 株式会社神户制钢所 铝合金钎焊板和热交换器
CN102205676B (zh) * 2010-03-31 2014-10-01 株式会社神户制钢所 铝合金钎焊板和热交换器

Also Published As

Publication number Publication date
CN101156241B (zh) 2010-05-19
EP1873827B1 (en) 2020-09-09
EP1873827A4 (en) 2014-01-01
KR20080002925A (ko) 2008-01-04
EP2863425A3 (en) 2015-08-19
US20090139704A1 (en) 2009-06-04
KR101242286B1 (ko) 2013-03-12
EP2863425A2 (en) 2015-04-22
EP1873827A1 (en) 2008-01-02
JP4621531B2 (ja) 2011-01-26
CN101156241A (zh) 2008-04-02
JP2006294699A (ja) 2006-10-26

Similar Documents

Publication Publication Date Title
WO2006109660A1 (ja) 放熱装置
JP4617209B2 (ja) 放熱装置
JP5007296B2 (ja) パワーモジュール用ベース
JP4867793B2 (ja) 半導体装置
JP4945319B2 (ja) 半導体装置
WO2007072700A1 (ja) 半導体モジュール
EP2224484A1 (en) Semiconductor module
WO2018146933A1 (ja) 半導体装置及び半導体装置の製造方法
CN101789404A (zh) 散热器
JP2008294279A (ja) 半導体装置
JP5282075B2 (ja) 放熱装置
JP2011199202A (ja) 熱拡散部材、放熱部材及び冷却装置
JP2010021241A (ja) 熱電変換装置
JP6738193B2 (ja) 伝熱構造体、絶縁積層材、絶縁回路基板およびパワーモジュール用ベース
JP5987634B2 (ja) パワー半導体モジュール
JP2017183533A (ja) 回路基板付きヒートシンク及びその製造方法
JP4992302B2 (ja) パワー半導体モジュール
JP5481961B2 (ja) 半導体装置
JP2016134586A (ja) パワー半導体モジュール
JP4786302B2 (ja) パワーモジュール用ベースの製造方法
JP2023132550A (ja) 絶縁回路基板
JP4640633B2 (ja) セラミックス回路基板およびパワーモジュール
JP2020017648A (ja) 半導体装置
JP2013026279A (ja) 絶縁積層材、パワーモジュール用ベースおよびパワーモジュール
JP2012222022A (ja) 半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680011325.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11910460

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077025597

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 2006731255

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006731255

Country of ref document: EP