WO2005108499A1 - 硬化性と接着性の改善された硬化性組成物 - Google Patents

硬化性と接着性の改善された硬化性組成物 Download PDF

Info

Publication number
WO2005108499A1
WO2005108499A1 PCT/JP2005/007804 JP2005007804W WO2005108499A1 WO 2005108499 A1 WO2005108499 A1 WO 2005108499A1 JP 2005007804 W JP2005007804 W JP 2005007804W WO 2005108499 A1 WO2005108499 A1 WO 2005108499A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
curable composition
zirconium
aluminum
different
Prior art date
Application number
PCT/JP2005/007804
Other languages
English (en)
French (fr)
Inventor
Masayuki Wakioka
Katsuyu Wakabayashi
Toshihiko Okamoto
Masato Kusakabe
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to CN2005800145584A priority Critical patent/CN1950459B/zh
Priority to EP05734515.9A priority patent/EP1746134B1/en
Priority to US11/579,551 priority patent/US7893170B2/en
Priority to JP2006512951A priority patent/JP5225581B2/ja
Publication of WO2005108499A1 publication Critical patent/WO2005108499A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/014Stabilisers against oxidation, heat, light or ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers

Definitions

  • the present invention relates to a silicon-containing group having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond (hereinafter, also referred to as “reactive silicon group”).
  • the present invention relates to a curable composition containing an organic polymer having the formula (1).
  • An organic polymer having a reactive silicon group in the molecule has a characteristic that it reacts with moisture in the air and cures into a rubber even at room temperature.
  • organic polymers having a reactive silicon group in the molecule an organic polymer whose main chain skeleton is a polyoxyalkylene polymer is disclosed in (Patent Document 1) and the like.
  • This polyoxyalkylene polymer has already been industrially produced and is widely used for applications such as sealing materials and adhesives.
  • a typical example of such an organic polymer usually has a reactive silicon group in which two hydrolyzable groups are bonded to one silicon atom in order to maintain elongation and flexibility.
  • the curable composition containing the above organic polymer is cured using a silanol condensation catalyst, and an organic tin catalyst such as dibutyltin bisacetylacetonate is widely used.
  • an organic tin catalyst such as dibutyltin bisacetylacetonate
  • a dealcoholized silicone composition using a titanium catalyst as the non-organic tin catalyst is disclosed in (Patent Document 2), (Patent Document 3) and the like.
  • This dealcoholized silicone composition has already been industrially produced and is widely used for many purposes.
  • Patent Document 4 a curable composition obtained by combining a titanium catalyst, an aluminum catalyst, or a zirconium catalyst as a curing catalyst with respect to an organic polymer containing a reactive silicon group
  • Patent Documents 5 Patent Documents 5
  • Patent Document 6 Patent Document 6
  • Patent Document 7 a curable composition obtained by combining a titanium catalyst, an aluminum catalyst, or a zirconium catalyst as a curing catalyst with respect to an organic polymer containing a reactive silicon group
  • Patent Document 1 JP-A-52-73998
  • Patent Document 2 Japanese Patent Publication No. 39-27643 (US Patent No. 3175993)
  • Patent Document 3 US Patent No. 3334067
  • Patent Document 4 JP-A-2002-249672
  • Patent Document 5 JP-A-58-17154 (JP-B-3-57943)
  • Patent Document 6 Japanese Patent Application Laid-Open No. 62-146959 (Japanese Patent Publication No. 5-45635)
  • Patent Document 7 JP-A-2004-51809
  • a curable composition disclosed in (Patent Document 4) or the like that is, an organic polymer containing a reactive silicon group, a titanium catalyst, an aluminum catalyst, or a zirconium catalyst is used as a curing catalyst.
  • a titanium catalyst, an aluminum catalyst, or a zirconium catalyst is used as a curing catalyst for an organic polymer having a reactive silicon group, remarkable curability is caused by a low molecular weight compound having a hydrolyzable silicon group to be added.
  • the curing rate is lower, and the curing speed is lower than in the case of the organotin-based compounds generally used at present, so that it may not have practical curability.
  • the polyoxyalkylene-based polymer containing a reactive silicon group using the organotin catalyst has good adhesiveness to various adherends. In some cases, it may not be possible to obtain sufficient adhesion to hard-to-adhesive organic adherends such as acrylic resin.
  • the present invention has improved curability and adhesion, including an organic polymer having a reactive silicon group and at least one selected from a titanium catalyst, an aluminum catalyst, and a zirconium catalyst, which are non-tin curing catalysts. It is intended to provide a curable composition.
  • the present inventors have conducted intensive studies to solve such a problem, and as a result, as an organic polymer having a reactive silicon group, three hydroxyl groups or hydrolyzable groups per silicon atom.
  • the titanium atom and the aluminum atom of the catalyst can be further reduced.
  • the present invention provides, as a silicon-containing group capable of crosslinking by forming a siloxane bond, a compound represented by the general formula (1):
  • Curable composition containing (A), titanium catalyst, aluminum catalyst, zirconium catalytic power, at least one selected (B), and low molecular weight compound having a hydrolyzable silicon group and having a molecular weight of 100 to 1000 (C) And the ratio (aZb) of the total number of moles (a) of the titanium, aluminum and zirconium atoms of component (B) to the total number of moles of silicon (b) of component (C) A curable composition larger than 0.08.
  • the low molecular weight conjugate of (C) is preferably a silane conjugate having an amino group.
  • a preferable blending ratio of (A), (B) and (C) is one or more selected from a titanium catalyst, an aluminum catalyst, and a zirconium catalyst based on 100 parts by weight of the organic polymer (A).
  • the main chain skeleton of the organic polymer (A) includes at least one selected from the group consisting of polyoxyalkylene-based polymers, saturated hydrocarbon-based polymers, and (meth) acrylate-based polymers. preferable.
  • the glass transition temperature of the organic polymer (A) is preferably 20 ° C. or lower.
  • the titanium catalyst has a general formula (2):
  • R 1 is an organic group and the four R 1 s may be the same or different from one another, and are more preferably titanium chelates.
  • the titanium chelate is represented by the general formula (3)
  • R 3 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms
  • R 2 and R 3 may be the same or different.
  • n R 2 are identical to each other, Yogu 4 n pieces of R 3 be made different even be identical to one another or may be different.
  • AA 2 is selected as —R 4 or —OR 4 (where R 4 is a hydrocarbon group having 1 to 20 carbon atoms).
  • a 1 and A 2 may be the same or different.
  • 4-n pieces of A 1 is a same each other, the Yogu 4-n-number of A 2 be different from be the same to each other or may be different.
  • n is 0, 1, 2, or 3.
  • R 5 is a divalent hydrocarbon group having 1 to 20 carbon atoms. ) Is preferred.
  • R 6 is an organic group and the three R 6 s may be the same or different from each other, and are more preferably aluminum chelates.
  • aluminum chelate general formula (6):
  • R 8 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms
  • R 7 and R 8 may be the same or different.
  • the m R 7 are the same to each other, it may be made different, the 3- m-number of R 8 may be identical to one another or may be different.
  • the —R 9 or —OR 9 force is also selected (where R 9 is a hydrocarbon group having 1 to 20 carbon atoms).
  • a 3 and A 4 may be the same or different.
  • the 3- m pieces of A 3 have the same mutually, or different, is 3- m pieces of A 4 may be identical to one another or may be different dates.
  • m is 0, 1, or 2.
  • the zirconium catalyst has a general formula (8):
  • R 11 is an organic group and the four R 11 s may be the same or different from each other, and are more preferably a zirconium chelate.
  • zirconium chelate a compound represented by the general formula (9)
  • R 1 and R ′′ are a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms
  • R 13 may be the same or different.
  • One R 12 may be the same or different from each other 4-1
  • R 13 may be the same or different from each other
  • a 5 and A 6 may be —R 14 or — Selected from OR 14 (where R 14 is a hydrocarbon group having 1 to 20 carbon atoms)
  • a 5 and A 6 may be the same or different 4-1 A 5 May be the same or different from each other 4-1
  • a 6 may be the same as or different from each other 1 is 0, 1, 2, or 3
  • R 15 is a divalent hydrocarbon group having 1 to 20 carbon atoms.
  • a titanium catalyst is preferred.
  • R 16 is a substituted or unsubstituted hydrocarbon group, and three R 16 are mutually the same. Or a different one), and more preferably a trimethoxysilyl group.
  • Preferred embodiments of the curable composition according to the present invention include a sealant or an adhesive using the curable composition described in any of the above.
  • a sealant or adhesive with improved curability and adhesion including a non-tin curing catalyst such as a titanium catalyst, an aluminum catalyst, or an organic polymer having a reactive silicon group with a zirconium catalyst.
  • a curable composition can be provided.
  • the main chain skeleton of the organic polymer having a reactive silicon group used in the present invention is not particularly limited, and those having various main chain skeletons can be used.
  • polyoxyalkylene-based polymers such as polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene polyoxypropylene copolymer, and polyoxypropylene polyoxybutylene copolymer Copolymers: Ethylene Propylene copolymer, polyisobutylene, copolymer of isobutylene and isoprene, copolymer of polychloroprene, polyisoprene, isoprene or butadiene with Atari-tolyl and Z or styrene Hydrocarbon polymers such as polybutadiene, isoprene or a copolymer of butadiene with acrylonitrile and styrene, hydrogenated polyolefin polymers obtained by hydrogenating these polyolefin polymers; and adipic acid, etc.
  • Ethylene Propylene copolymer polyisobutylene, copolymer of isobutylene
  • Dibasic acid and Dalicol Polyester polymer obtained by condensation of methacrylate or ring-opening polymerization of ratatatones; (meth) acrylate obtained by radical polymerization of monomers such as ethyl (meth) acrylate and butyl (meth) acrylate -Based polymer; (meth) acrylic acid ester-based monomer, vinyl polymer obtained by radical polymerization of monomers such as butyl acetate, acrylonitrile, and styrene;-obtained by polymerizing vinyl monomer in the organic polymer Graft polymer; Polysulfide polymer; Nylon 6 by ring-opening polymerization of ⁇ -proprotamata, Nylon 6.6 by condensation polymerization of hexamethylene diamine and adipic acid, Nylon 6.6 by hexamethylene diamine and sebacic acid Nylon 6, 10 by condensation polymerization, ⁇ aminoun Polyamide-based polymers such as nylon 11 by condensation polymerization of de
  • saturated hydrocarbon polymers such as polyisobutylene, hydrogenated polyisoprene, and hydrogenated polybutadiene, polyoxyalkylene polymers, and (meth) acrylate polymers have relatively high glass transition temperatures. It is more preferable that the obtained cured product is excellent in cold resistance.
  • the glass transition temperature of the organic polymer as the component (A) is not particularly limited, but is preferably 20 ° C or lower, more preferably 0 ° C or lower, more preferably 20 ° C or lower. It is particularly preferred that it is C or less. If the glass transition temperature is higher than 20 ° C, the viscosity in winter or in a cold region may increase and the workability may deteriorate, and the flexibility of the cured product may decrease and the elongation may decrease.
  • the glass transition temperature is a value measured by DSC.
  • the low molecular weight compound having at least one selected from the group consisting of a titanium catalyst, an aluminum catalyst and a zirconium catalyst as the component (B) of the present invention and a hydrolyzable silicon group as the component (C) is
  • the polyoxyalkylene polymer and the (meth) acrylate polymer are particularly preferable because they have high moisture permeability and are excellent in deep curing when formed into a one-part composition. Is most preferred.
  • the reactive silicon group contained in the organic polymer having a reactive silicon group has a hydrolyzable group bonded to a silicon atom, and is formed by a reaction accelerated by a silanol condensation catalyst. A group that can be crosslinked by forming a siloxane bond.
  • the reactive silicon group contained in the organic polymer having a reactive silicon group used in the present invention has a general formula (1):
  • X represents a hydroxyl group or a hydrolyzable group, and three X's may be the same or different from each other!).
  • the hydrolyzable group is not particularly limited, and may be any conventionally known hydrolyzable group! .
  • Specific examples include a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkoxycarbonyl group.
  • hydrogen atoms, alkoxy groups, acyloxy groups, ketoxime groups, amino groups, amide groups, aminooxy groups, mercapto groups and alkoxy groups are preferred because of their mild hydrolytic properties. From the viewpoint of /, and! /, An alkoxy group is particularly preferred. Therefore, the general formula (11):
  • R 16 is a substituted or unsubstituted hydrocarbon group, and three R 16 s may be the same as or different from each other). Particularly preferred.
  • hydrolyzable trialkoxysilyl group examples include a trimethoxysilyl group, a triethoxysilyl group, and a triisopropoxysilyl group.
  • a triethoxysilyl group is an alcoholic ethanol produced by a hydrolysis reaction of a reactive silicon group, and is particularly preferable because it has higher safety.
  • the number of silicon atoms forming a reactive silicon group is one or more. In the case of silicon atoms linked by a siloxane bond or the like, the number is preferably 20 or less.
  • the reactive silicon group may be introduced by a known method! That is, for example, the following method can be used.
  • An organic polymer having a functional group such as a hydroxyl group in a molecule is reacted with an organic compound having an active group and an unsaturated group having reactivity to this functional group, and contains an unsaturated group.
  • an organic polymer having an active group and an unsaturated group having reactivity to this functional group contains an unsaturated group.
  • an unsaturated group-containing organic polymer is obtained by copolymerization with an unsaturated group-containing epoxy resin conjugate.
  • the hydrosilylation is carried out by reacting the reaction product obtained in step (1) with hydrosilane having a reactive silicon group.
  • the method (a) or the method (c) of reacting a polymer having a hydroxyl group at the terminal with a compound having an isocyanate group and a reactive silicon group is a comparative method. It is preferable because a high reaction rate can be obtained in a short reaction time. Furthermore, the organic polymer having a reactive silicon group obtained by the method (a) becomes a curable composition having lower viscosity and better workability than the organic polymer obtained by the method (c). In addition, since the organic polymer obtained by the method of (mouth) has a strong odor based on mercaptosilane, the method of (ii) is particularly preferred.
  • hydrosilane conjugate used in the method (a) include, for example, halogenated silanes such as trichlorosilane; and alkoxysilanes such as trimethoxysilane and triethoxysilane.
  • halogenated silanes such as trichlorosilane
  • alkoxysilanes such as trimethoxysilane and triethoxysilane.
  • the powers listed are not limited to these.
  • alkoxysilanes are most preferable because the curable composition obtained has a mild hydrolyzability and is easy to handle!
  • a compound having a mercapto group and a reactive silicon group is reacted with a radical initiator and Z or a radical generating source in the presence of a radical generating source to form an organic polymer.
  • a radical initiator and Z or a radical generating source examples include a method of introducing the compound into an unsaturated bond site, but the method is not particularly limited.
  • Specific examples of the compound having a mercapto group and a reactive silicon group include, for example, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropylpyrutriethoxysilane, mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane, and the like. Listed powers are not limited to these.
  • the power is not particularly limited.
  • Specific examples of the above-mentioned compound having an isocyanate group and a reactive silicon group include, for example, ⁇ -isocyanatepropyltrimethoxysilane, ⁇ -isocyanatepropyltriethoxysilane, (isocyanatemethyl) trimethoxysilane. Powers such as silane and (isosinate methyl) triethoxysilane are not limited to these.
  • the organic polymer having a reactive silicon group may have a linear or branched organic polymer having a number average molecular weight of about 500 to 100,000 in terms of polystyrene by GPC, more preferably ⁇ 1 , 000 to 50,000, particularly preferred ⁇ is 3,000 to 30,000. If the number average molecular weight is less than 500, the cured product tends to be inferior in elongation properties, and if it exceeds 100,000, it tends to be inconvenient in terms of workability due to high viscosity.
  • At least one reactive silicon group contained in the organic polymer is required on average in one molecule of the polymer. , Preferably 1.1-5. If the number of reactive silicon groups contained in the molecule is less than one on average, the curability will be insufficient and good rubber elasticity will be exhibited.
  • the reactive silicon group may be at the terminal of the main chain of the organic polymer molecular chain, and may be at the terminal of the side chain, or may be at both terminals.
  • the effective mesh length of the organic polymer component contained in the finally formed cured product becomes long, and therefore, high strength and high strength are obtained. Elongation makes it easier to obtain a rubber-like cured product having a low elastic modulus.
  • the polyoxyalkylene polymer essentially has the general formula (12):
  • R 17 is a linear or branched alkylene group having 14 from 1 carbon atoms.
  • R 17 in the general formula (12) is a polymer having repeating units shown by, R 17 in the general formula (12), carbon atoms Preferred are linear or branched alkylene groups of the formulas 1 to 14, more preferably 2 to 4.
  • Specific examples of the repeating unit represented by the general formula (12) include:
  • the main chain skeleton of the polyoxyalkylene polymer may have only one kind of repeating unit force, or may have two or more kinds of repeating unit forces.
  • those made of a polymer containing a propylene oxide polymer as a main component are preferable because they are amorphous and have relatively low viscosity.
  • a method for synthesizing a polyoxyalkylene polymer for example, a polymerization method using an alkali catalyst such as KOH, and an organic aluminum compound described in JP-A No. 61-215623 and Transition metal compound such as complex obtained by reacting with luffyline-polymerization method using vorphyrin complex catalyst, JP-B-46-27250, JP-B-59-15336, U.S. Pat. No. 3278457, U.S. Pat. Japanese Patent No. 3278459, U.S. Pat. No. 3,427,256, U.S. Pat. No. 3,427,334, U.S. Pat. No. 3,427,335, and the like.
  • Examples thereof include a polymerization method using a catalyst, and a polymerization method using a catalyst having a phosphazene compound power as exemplified in JP-A-11-060722, but are not particularly limited.
  • a method for producing a polyoxyalkylene polymer having a reactive silicon group is disclosed in
  • Japanese Patent Application Laid-Open No. 8-231707 each of which has a number average molecular weight of 6,000 or more, a high molecular weight of Mw ZMn of 1.6 or less, a narrow molecular weight distribution, and an ability to exemplify a polyoxyalkylene polymer. It is not limited to these.
  • the above polyoxyalkylene polymers having a reactive silicon group may be used alone or in combination of two or more.
  • the saturated hydrocarbon-based polymer is a polymer substantially containing no carbon-carbon unsaturated bond other than an aromatic ring, and the polymer constituting the skeleton thereof includes (1) ethylene, propylene, 11-butene, A olefin-based compound having 2 to 6 carbon atoms such as isobutylene is polymerized as a main monomer, (2) a gen-based compound such as butadiene, isoprene or the like is homopolymerized, or Can be obtained by copolymerizing and then hydrogenating the isobutylene-based polymer and hydrogenated polybutadiene-based polymer.
  • the preferred isobutylene-based polymer is particularly preferable since the number of functional groups can be increased.
  • Those whose main chain skeleton is a saturated hydrocarbon-based polymer are characterized by excellent heat resistance, weather resistance, durability, and moisture barrier properties.
  • all of the monomer units may be formed from isobutylene units, or a copolymer with another monomer may be used. Those containing 50% by weight or more of repeating units are preferred. Those containing 80% by weight or more are more preferred. Those containing 90 99% by weight are particularly preferred.
  • Japanese Patent Publication No. 4-69659 Japanese Patent Publication No. 7-108928, JP-A-63-254149 and JP-A-64-64149 — Forces described in each specification of 22904, JP-A-1-197509, JP-A-2539445, JP-A-2873395, JP-A-7-53882, etc., but not particularly limited thereto. .
  • the above-mentioned saturated hydrocarbon polymers having a reactive silicon group may be used alone or in combination of two or more.
  • the (meth) acrylate-based monomer constituting the main chain of the (meth) acrylate-based polymer is not particularly limited, and various types can be used.
  • the following vinyl-based monomers can be copolymerized.
  • the butyl-based monomer include styrene, butyltoluene, and ⁇ -methyl.
  • Styrene-based monomers such as styrene, chlorostyrene, styrenesulfonic acid and salts thereof; perfluoroethylene, perfluoroethylene Fluorine-containing monomer such as propylene and bi-lidene fluoride; silicon-containing monomer such as butyltrimethoxysilane and butyltriethoxysilane; maleic anhydride, maleic acid, monoalkyl and dialkyl esters of maleic acid; fumaric acid, Monoalkyl and dialkyl esters of fumaric acid; maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenolmaleimide, cyclohexalemaleimide, etc.
  • Maleimide monomers nitrile group-containing monomer such as acrylonitrile and metal-tolyl; amide group-containing monomer such as acrylamide and methacrylamide; Bulesters such as acid butyl, propionate, pivalate, benzoate and cinnamate; alkenes such as ethylene and propylene; conjugated gens such as butadiene and isoprene; butyl chloride and bi-lidene chloride , Aryl chloride, Aryl Alcohol and the like. These may be used alone or a plurality of them may be copolymerized.
  • a polymer composed of a styrene-based monomer and a (meth) acrylic-acid-based monomer is preferable in view of the physical properties of the product. More preferably, it is a (meth) acrylic polymer having an acrylate monomer and a methacrylate monomer, and particularly preferably an acryl polymer having an acrylate monomer.
  • butyl acrylate-based monomers are more preferred because physical properties such as low viscosity of the blend, low modulus of the cured product, high elongation, weather resistance and heat resistance are required.
  • copolymers mainly containing ethyl acrylate are more preferred.
  • This polymer mainly composed of ethyl acrylate is excellent in oil resistance, but tends to be slightly inferior in low-temperature characteristics (cold resistance). It is also possible to replace it. However, as the proportion of butyl acrylate is increased, its good oil resistance is impaired. Therefore, for applications requiring oil resistance, the ratio is preferably set to 40% or less. % Is more preferable.
  • the ratio is preferably 40% or less. According to various uses and required purposes, it is possible to obtain a suitable polymer by changing the ratio in consideration of required properties such as oil resistance, heat resistance and low-temperature characteristics.
  • examples of excellent physical properties such as oil resistance, heat resistance, and low-temperature properties include ethyl acrylate, butyl acrylate, and 2-methoxyethyl acrylate (40 to 50Z20 to 30Z30 by weight).
  • these preferred monomers may be copolymerized with other monomers, and further, may be subjected to block copolymerization.In such a case, it is preferable that the monomers be contained in a weight ratio of 40% or more.
  • (meth) acrylic acid means acrylic acid and ⁇ or methacrylic acid.
  • the method for synthesizing the (meth) acrylate polymer is not particularly limited, and may be a known method. However, azo compounds, peroxides, etc. are usually used as polymerization initiators.
  • the polymer obtained by the free radical polymerization method described above has a problem that the viscosity becomes large when the value of the molecular weight distribution is generally 2 or more. Therefore, a low-V, (meth) acrylate polymer having a narrow molecular weight distribution and a low viscosity, and having a high proportion of (meth) acrylate polymers having a crosslinkable functional group at the molecular chain end. In order to obtain, it is preferable to use a living radical polymerization method.
  • an "atom transfer radical” in which an organic halide is polymerized from a (meth) acrylate-based monomer using a sulfonyl halide compound or the like as an initiator and a transition metal complex as a catalyst.
  • the ⁇ polymerization method '' has the features of the above-mentioned ⁇ living radical polymerization method '' and has a terminal such as halogen which is relatively advantageous for the functional group conversion reaction, and has a high degree of freedom in designing initiators and catalysts. It is even more preferable as a method for producing a (meth) acrylate polymer having a specific functional group.
  • the atom transfer radical polymerization method includes, for example, Matyjaszewski et al., J. Am. Chem. Soc. 1995, Vol. 117, p. 5614.
  • Japanese Patent Publication No. 3-14068 Japanese Patent Publication No. 4-55444, and Japanese Patent Application Laid-Open No. Publications disclose a production method using a free radical polymerization method using a chain transfer agent.
  • Japanese Patent Application Laid-Open No. 9-272714 discloses a method using an atom transfer radical polymerization method. The present invention is not particularly limited thereto.
  • the (meth) acrylic acid ester-based polymer having a reactive silicon group may be used alone or in combination of two or more.
  • organic polymers having a reactive silicon group may be used alone or in combination of two or more.
  • a polyoxyalkylene polymer having a reactive silicon group a saturated hydrocarbon polymer having a reactive silicon group, a (meth) acrylate polymer having a reactive silicon group, Organic group
  • An organic polymer obtained by blending two or more selected types can also be used.
  • a preferred specific example is a compound having a reactive silicon group and substantially having a molecular chain represented by the following general formula (13): CH—C (R 18 ) (COOR 19 ) (13)
  • R 18 is the same as above, R 2 ° represents an alkyl group having 10 or more carbon atoms
  • R 19 in the general formula (13) for example, a methyl group, an ethyl group, a propyl group, an n-butyl group, a t-butyl group, a 2-ethylhexyl group, etc.
  • the alkyl group is 1 to 4, more preferably 1 to 2.
  • the alkyl group of R 19 may be used alone or in combination of two or more.
  • R 2Q in the general formula (14) for example, lauryl group, tridecyl group, cetyl group, stearyl group, behenyl group and the like have 10 or more carbon atoms, usually 10 to 30, preferably 10 to 30 carbon atoms. To 20 long-chain alkyl groups. As in the case of R 19 , the alkyl group of R 2Q may be used alone or in combination of two or more.
  • the molecular chain of the (meth) acrylic acid ester-based copolymer is substantially a monomer unit force represented by the formulas (13) and (14). It means that the total of the monomer units of the formulas (13) and (14) present in the copolymer exceeds 50% by weight.
  • the total of the monomer units of the formulas (13) and (14) is preferably at least 70% by weight.
  • the abundance ratio of the monomer unit of the formula (13) and the monomer unit of the formula (14) is preferably 95: 5 to 40:60 by weight, and 90:10 to 60:40. Power is even better!
  • the monomer units other than those represented by the formulas (13) and (14) contained in the copolymer include, for example, ⁇ , ⁇ unsaturated monomers such as acrylic acid and methacrylic acid. Carboxylic acids; amides such as acrylamide, methacrylamide, ⁇ -methylol acrylamide, and ⁇ -methylol methacrylamide Epoxide group, glycidyl acrylate, glycidyl methacrylate, etc., an amino group such as acetylaminoethyl acrylate, acetylaminoethyl methacrylate, aminoethyl vinyl ether; and other acrylonitrile, styrene, (X —Examples include monomer units derived from methylstyrene, alkyl butyl ether, butyl chloride, butyl acetate, butyl propionate, ethylene, and the like.
  • the main chain skeleton of the organic polymer may contain other components such as a urethane binding component as long as the effects of the present invention are not significantly impaired.
  • the urethane binding component is not particularly limited, and examples thereof include a group generated by a reaction between an isocyanate group and an active hydrogen group (hereinafter, also referred to as an amide segment).
  • the amide segment has the general formula (15):
  • R 21 represents a hydrogen atom or a substituted or unsubstituted organic group.
  • the amide segment include a urethane group generated by a reaction between an isocyanate group and a hydroxyl group; a urea group generated by a reaction between an isocyanate group and an amino group; and an urea group; And a thiourethane group generated by the above reaction.
  • a group generated by the reaction of active hydrogen in the urethane group, urea group and thiourethane group with an isocyanate group is also included in the group represented by the general formula (15).
  • an organic polymer having an active hydrogen-containing group at the terminal can be combined with an excess of a polyisocyanate compound. After reacting to form a polymer having an isocyanate group at the terminal of the polyurethane-based main chain, or at the same time, all or a part of the isocyanate group has the general formula (16) Z—R 22 —SiX (16)
  • R 22 is a divalent organic group, more preferably a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms.
  • Z is an active hydrogen-containing group selected from a hydroxyl group, a carboxyl group, a mercapto group and an amino group (primary or secondary). Which are produced by a method of reacting a Z group of a silicon compound represented by the following formula: Examples of known production methods for organic polymers related to this production method include JP-B-46-12154 (US Pat. No. 3,632,557), JP-A-58-109529 (US Pat. No. 4,374,237), and 62-13430 (U.S. Pat. No. (US Patent No.
  • an organic polymer having an active hydrogen-containing group at a terminal is represented by the general formula (17)
  • Examples of the organic polymer having an active hydrogen-containing group at the terminal include an oxygen-terminated organic polymer.
  • examples include a silalkylene polymer (polyether polyol), a polyacryl polyol, a polyester polyol, a saturated hydrocarbon polymer having a hydroxyl group at a terminal (polyolefin polyol), a polythiol conjugate, a polyamine conjugate, and the like.
  • polyether polyols, polyacryl polyols, and polyolefin polyols are preferred because the resulting organic polymer has a relatively low glass transition temperature and the resulting cured product has excellent cold resistance.
  • polyether polyols are particularly preferable because the viscosity of the obtained organic polymer is low, the workability is good, and the deep part curability is good.
  • polyacryl polyols and saturated hydrocarbon polymers are more preferred because the cured product of the obtained organic polymer has good weather resistance and heat resistance.
  • polyether polyol those produced according to the above production method can also be used, but those having at least 0.7 hydroxyl groups at the terminal per molecular terminal on the average of the whole molecule can be used. Is preferred. Specifically, such as an oxyalkylene polymer produced using a conventional alkali metal catalyst and a polyhydroxy conjugate having at least two hydroxyl groups in the presence of a double metal cyanide complex ⁇ cesium. Examples of the initiator include an oxyalkylene polymer produced by reacting an alkylene oxide.
  • a polymerization method using a double metal cyanide complex has a lower degree of unsaturation, a lower viscosity in which MwZMn is narrower, and a high acid resistance and high weather resistance oxyalkylene. It is preferable because a polymer can be obtained.
  • Examples of the polyacryl polyol include polyols having a (meth) acrylic acid alkyl ester (co) polymer as a skeleton and having a hydroxyl group in the molecule.
  • an atom transfer radical polymerization method is more preferable because a living radial polymerization method is preferable because a molecular weight distribution is narrow and a viscosity can be reduced.
  • Specific examples include UH-2000 manufactured by Toagosei Co., Ltd.
  • polyisocyanate conjugate examples include aromatic polyisocyanates such as toluene (tolylene) diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate; Fats such as isocyanate and hexamethylene diisocyanate Group polyisocyanates and the like.
  • aromatic polyisocyanates such as toluene (tolylene) diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate
  • Fats such as isocyanate and hexamethylene diisocyanate Group polyisocyanates and the like.
  • the silicon compound represented by the general formula (16) is not particularly limited, but specific examples include ⁇ -aminopropyltrimethoxysilane and ⁇ - ( ⁇ -aminoethyl))-aminopropyltrimethoxysilane.
  • JP-A-10-53637 (US Pat. No. 169545 [This is described!] This is a Michael addition reaction of various a, ⁇ unsaturated carbohydrate compounds with a primary amino group-containing silane, or various (meth) atalyloyl group-containing silanes.
  • a Michael addition reaction with a primary amino group-containing compound can also be used as the silicon compound of the general formula (16).
  • the reactive silicon group-containing isocyanate conjugate of the general formula (17) is not particularly limited. Specific examples include, for example, ⁇ -trimethoxysilylpropyl isocyanate, ⁇ -triethoxysilylmethyl isocyanate, and the like. Is mentioned. Further, as described in JP-A-2000-119365 (US Pat. No. 6,046,270), a compound obtained by reacting a silicon compound of the general formula (16) with an excess of the above polyisocyanate compound is obtained. The resulting compound can also be used as a reactive silicon group-containing isocyanate conjugate of the general formula (17).
  • the amide segment is large in the main chain skeleton of the organic polymer as the component (II) of the present invention, the viscosity of the organic polymer becomes high, and a composition having poor workability may be obtained.
  • the amide segment in the main chain skeleton of the component (II) tends to improve the curability of the composition of the present invention. Therefore, when an amide segment is contained in the main chain skeleton of the component ( ⁇ ), the number of amide segments per molecule is preferably 1 to 10, preferably 1.5 to 7, more preferably 2 to 5 per molecule. Individuals are particularly preferred. If the number is less than one, the curability may not be sufficient.If the number is more than 10, the organic polymer may have a high viscosity and the composition may have poor workability.
  • the component (B) one or more selected from a titanium catalyst, an aluminum catalyst, and a zirconium catalyst are used. These catalysts function as curing catalysts for the organic polymer as the component (A).
  • organotin compounds such as dibutyltin dilaurate and dibutyltin bisacetylacetonate have been used as a curing catalyst for an organic polymer having a reactive silicon group as the component (A).
  • the catalyst (B) By using the catalyst (B), a curable composition having practical curing characteristics can be obtained even though it is a non-organic tin catalyst. Further, compared to the case where another curing catalyst such as an organic tin catalyst is used, the adhesion to a poorly adherent organic adherend such as acrylic resin can be improved.
  • the titanium catalyst also preferably has a curable point force.
  • the compound such as TiO which does not function as a curing catalyst for the component (A), can
  • the catalyst is a compound having a titanium atom, an aluminum atom, or a zirconium atom bonded to a hydroxyl group or a substituted or unsubstituted alkoxy group.
  • a preferred specific example of the titanium catalyst is represented by the general formula (2) ):
  • R 1 is an organic group, more preferably a hydrocarbon group in the substituted or Hi ⁇ conversion 1 to 20 carbon atoms, four R 1 may be identical to each other, or different And titanium alkoxide can be exemplified as a typical compound.
  • the compound represented by the general formula (2) some or all of the four OR 1 groups in the general formula (2) are represented by the general formula (18):
  • R 23 is an organic group, more preferably a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
  • Examples of the titanium catalyst not represented by the general formula (2) include a general formula (19):
  • R 24 is an organic group, more preferably 1 to 4 carbon atoms. 20 substituted or unsubstituted hydrocarbon groups wherein a 24 R 24 s may be the same as or different from each other, and a is 1, 2, or 3.) Titanium halide alkoxides may be mentioned.
  • titanium alkoxide is preferable in terms of stability against moisture and curability.
  • R 2 and R 3 are a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and R 2 and R 3 may be the same or different.
  • n pieces of R 2 may be identical to each other, Yogu 4-n-number of R 3 be made different even be identical to one another or may be different.
  • a 2 is selected as —R 4 or —OR 4 (where R 4 is a hydrocarbon group having 1 to 20 carbon atoms).
  • a 1 and A 2 may be the same or different.
  • 4-n pieces of A 1 is a same each other, the Yogu 4-n-number of A 2 be different from be the same to each other or may be different.
  • n is 0, 1, 2, or 3.
  • R 5 is a divalent hydrocarbon group having 1 to 20 carbon atoms.
  • the titanium chelate represented by the formula (1) is more preferable in view of compatibility with the component (II), high catalytic activity, and storage stability. Titanium chelates of the general formula (3) are particularly preferred because of their high catalytic activity. Titanium chelates of formula (3) where ⁇ is 2 are most preferred because of their relatively low crystallinity (melting point), good workability and high catalytic activity.
  • titanium alkoxide represented by the general formula (2) examples include titanium tetramethoxide, titanium tetraethoxide, titanium tetraaryloxide, titanium tetra ⁇ -propoxide, titanium tetraisopropoxide, Titanium tetra ⁇ -butoxide, titanium tetraisobutoxide, titanium tetra sec-butoxide, titanium tetrabutoxide, titanium tetra n-pentyloxide, titanium tetracyclopentyloxide, titanium tetrahexoxide, titanium tetracyclohexyloxide, titanium Benzyl oxide, titanium tetraoctyloxide, titanium tetrakis (2-ethylhexyloxide), titanium tetradecyloxide, titanium ⁇ Tetradodecyloxide, titanium tetrastearyloxide, titanium tetrabutoxide dimer, titanium te
  • titanium acylate in which a part or all of four OR 1 groups in the general formula (2) are groups represented by the general formula (18) include titanium acrylate triiso Propoxide, titanium methacrylate triisopropoxide, titanium dimethacrylate diisopropoxide, titanium isopropoxide trimethacrylate, titanium hexanoate triisopropoxide, tita-dimethyl stearate triisopropoxide, and the like.
  • halogenated titanium alkoxide represented by the general formula (19) include titanium dimethyl chloride triisopropoxide, titanium dichloride diisopropoxide, titanium isopropoxide trichloride, and titanium bromide triisopropoxide. , Titanium fluoride triisopropoxide, titanium chloride triethoxide, titanium chloride tributoxide, and the like.
  • titanium chelate represented by the general formula (3) or (4) include titanium-dimethoxide bis (ethynoleacetoacetate), titanium dimethoxide bis (acetinoleacetonate), and titanium dimethoxide.
  • Ethoxide bis (ethyl acetate acetate), titanium diethoxide bis (acetinoleacetonate), titanium diisopropoxide bis (ethynoleacetoacetate), titanium diisopropoxide acetate (methyl acetate acetate) ), Titanium diisopropoxide bis (t-butylacetoacetate), titanium diisopropoxide bis (methyl-3-oxo4,4-dimethylhexanoate), titanium diisopropoxide bis (ethyl-3-oxo4,4) , 4 trifluoropentanoate), titanium diisopropoxy Dobis (acetyl acetate), titanium diisopropoxide bis (2,2,6,6-tetramethyl-3,5-heptanedionate), titanium di n-butoxide bis (ethyl acetate acetate), titanium g n-butoxide bis (acetyl acetate), titadium diisobutoxide bis (e
  • titanium catalysts other than those described above include titanium tris (dioctyl phosphate) isopropoxide, titanium tris (dodecylbenzenesulfonate) isopropoxide, dihydroxytitanium bislatate, and the like. .
  • chelating reagent capable of forming the chelating ligand of the titanium chelate include 13-diketones such as acetylacetone, 2,2,4,4-tetramethyl-3,5 heptanedione, and ethyl acetoacetate.
  • acetylacetone, methyl acetoacetate, and ethyl acetoacetate are more preferable in terms of curability, storage stability, and availability. And ethyl acetate.
  • each chelating ligand is different even if they are the same!
  • the following method (2) or (e) can be used.
  • a method using a titanium chelate that has been chelated in a material are examples of a material.
  • R 6 is an organic group, more preferably a hydrocarbon group in the substituted or Hi ⁇ conversion 1 to 20 carbon atoms, the three R 6 are also the same to each other, or different And aluminum alkoxide can be exemplified as a typical compound.
  • the compound represented by the general formula (5) some or all of the three OR 6 groups in the general formula (5) are represented by the general formula (20):
  • R 25 is an organic group, more preferably a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
  • Aluminum acylate which is an acyloxy group represented by .
  • Examples of the aluminum catalyst not represented by the general formula (5) include a general formula (21):
  • R 26 is an organic group, more preferably 1 to 2 carbon atoms. 20 substituted or unsubstituted hydrocarbon groups, and b R 26 s may be the same or different from each other, and b is either 1 or 2.
  • Aluminum alkoxide is exemplified.
  • R 8 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms
  • R 7 and R 8 may be the same or different.
  • the m R 7 are the same to each other, it may be made different, the 3- m-number of R 8 may be identical to one another or may be different.
  • the —R 9 or —OR 9 force is also selected (where R 9 is a hydrocarbon group having 1 to 20 carbon atoms).
  • a 3 and A 4 may be the same or different.
  • the 3- m pieces of A 3 have the same mutually, or different, is 3- m pieces of A 4 may be identical to one another or may be different dates.
  • m is 0, 1, or 2.
  • R 1Q is a divalent hydrocarbon group having 1 to 20 carbon atoms.
  • the aluminum chelate of the general formula (6) is particularly preferred because of its high catalytic activity.
  • aluminum alkoxide represented by the general formula (5) include aluminum trimethoxide, aluminum triethoxide, aluminum triallyloxide, and aluminum-alkoxide.
  • aluminum acylate in which a part or all of three OR 6 groups in the general formula (5) are groups represented by the general formula (20) include aluminum acrylate diisopro Examples include poxide, aluminum methacrylate diisopropoxide, aluminum isopropoxide dimethacrylate, aluminum hexanoate diisopropoxide, and aluminum dimethyl stearate diisopropoxide.
  • halogenated aluminum alkoxide represented by the general formula (21) include aluminum-dimethyl chloride diisopropoxide, aluminum isopropoxide dichloride, aluminum-dimethyl bromide diisopropoxide, and aluminum fluoride dichloride. Isopropoxide, aluminum-dimethyl chloride ethoxide, aluminum chloride dibutoxide, etc.
  • aluminum chelate of the general formula (6) or the general formula (7) examples include aluminum methoxide bis (ethyl acetate acetate), aluminum methoxide bis (acetyl acetonate), and aluminum ethoxide bis ( Ethyl acetate acetate), aluminum ethoxide bis (acetyl acetate), aluminum isopropoxide bis (ethyl acetate), aluminum isopropoxide bis (methyl acetate acetate), aluminum isopropoxide bis (t —Butyl acetate acetate), aluminum dimethoxide (ethyl acetate acetate), aluminum dimethoxide (acetyl acetate), aluminum diethoxide (ethyl acetate acetate), aluminum diethoxide (acetyl acetate), aluminum Me-diisopropoxide (ethyl acetate acetate), aluminum diisopropoxide (methyl acetate acetate), aluminum diisopropoxide (e (
  • aluminum catalysts other than those described above include aluminum bis (dioctyl phosphate) isopropoxide, aluminum bis (dodecylbenzenesulfonate) isopropoxide, hydroxyaluminum bislatate, And the like.
  • chelating reagent capable of forming the chelating ligand of the aluminum chelate include 13-diketones such as acetylacetone, 2,2,4,4-tetramethyl-3,5-heptanedione, and acetoacetic acid.
  • the following method (2) or (e) can be used.
  • (2) Aluminum touch that was previously chelated A method of adding a medium.
  • Preferred examples of the zirconium catalyst include general formula (8):
  • R 11 is an organic group, more preferably a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, and the four R 11 are different even if they are the same as each other.
  • zirconium alkoxide can be exemplified as a typical compound. Examples of the compound represented by the other general formula of that (8), the general formula (8) is the general formula some or all of the four OR 11 groups in (22):
  • R 27 is an organic group, more preferably a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms).
  • R 28 is an organic group, more preferably 1 to 4 carbon atoms. 20 substituted or unsubstituted hydrocarbon groups, and c R 28 s may be the same or different from each other, and c is 1, 2, or 3.) Zirconium halide alkoxides.
  • zirconium alkoxide is also preferable in terms of stability against moisture and curability.
  • R 1 R is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms
  • R 13 may be the same or different.
  • One R 12 may be the same or different from each other 4-1
  • R 13 may be the same or different from each other
  • a 5 and A 6 may be —R 14 or — Selected from OR 14 (where R 14 is a hydrocarbon group having 1 to 20 carbon atoms)
  • a 5 and A 6 may be the same or different 4-1
  • a 5 May be the same or different from each other 4-1
  • a 6 may be the same as or different from each other 1 is 0, 1, 2, or 3
  • the zirconium chelate represented by the formula (1) is more preferable in view of compatibility with the component ( ⁇ ), high catalytic activity, and storage stability.
  • Zirconium chelates of the general formula (9) are particularly preferred because of their high catalytic activity.
  • zirconium alkoxide represented by the general formula (8) include zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetraaryloxide, and zirconium tetraaryloxide.
  • zirconium acylate in which a part or all of the four OR 11 groups in the general formula (8) are groups represented by the general formula (22) include zirconium atalylate triisopro Oxides, zirconium methacrylate triisopropoxide, zirconium dimethacrylate diisopropoxide, zirconium isopropoxide trimethacrylate, zirconium hexanoate triisopropoxide, zirconium stearate triisopropoxide, and the like.
  • zirconium atalylate triisopro Oxides zirconium methacrylate triisopropoxide, zirconium dimethacrylate diisopropoxide, zirconium isopropoxide trimethacrylate, zirconium hexanoate triisopropoxide, zirconium stearate triisopropoxide, and the like.
  • zirconium halide alkoxide of the general formula (23) include zirconium-dimethyl chloride triisopropoxide, zirconium dichloride diisopropoxide, zirconium-dimethyl isopropoxide trichloride, and zirconium bromide.
  • zirconium chelate represented by the general formula (9) or (10) include zirconium-dimethyldimethoxide bis (ethynoleacetoacetate), zirconium dimethoxide bis (acetyl acetonate), zirconium diethoxide.
  • di-dimethyldiethoxybis ethyl acetate
  • zirconium diethoxybis acetinoleacetonate
  • dinoreconidum diisopropoxide bis ethynoleacetoacetate
  • zirconium diethoxy Isopropoxide bis (acetyl acetate), zirconium dibutoxide bis (ethyl acetate acetate), zirconium dibutoxide bis (acetyl acetate, zirconium dibutoxide bis (acetyl acetate, zirconium triisopropoxide (ethyl acetate acetate), zirconium triacetate Isopropoxide (acetyl acetate), zirconium tri-n-butoxide (ethyl acetate), zirconium tri-n-butoxide (acetyl acetate), zirconium isopoxide trioxide (ethinolacetoacetate), zir
  • zirconium catalysts other than those described above include zirconium tris (dioctyl phosphate) isopropoxide, zirconium tris (dodecyl benzene sulfonate) isopropoxide, dihydroxy zirconium bislatate, and the like. Is mentioned.
  • chelating reagent capable of forming the chelating ligand of the zirconium chelate include 13-diketones such as acetylacetone, 2,2,4,4-tetramethyl-3,5-heptanedione, and acetoacetic acid.
  • the zirconium chelate is added as the component (II) of the present invention, the following method (2) or (e) can be used.
  • (2) A method of adding zirconium catalyst which has been chelated in advance.
  • E A zirconium compound capable of reacting with a chelating agent such as zirconium tetraisopropoxide or zirconium dichloride diisopropoxide and a chelating agent such as ethyl ethyl acetate are added to the composition of the present invention.
  • a zirconium chelate that has been chelated in step 1 a zirconium chelate that has been chelated in step 1.
  • the catalyst of component (II) can be used alone or in combination of two or more.
  • a low molecular weight compound having a molecular weight of 100 to 1000 and having a hydrolyzable silicon group is used as the component (C).
  • various compounds having a hydrolyzable silicon group and a molecular weight of 100 to 1,000 can be used without particular limitation.
  • Specific examples include a silane coupling agent having a hydrolyzable silicon group and another functional group (C1), and a compound having only a reactive silicon group as a functional group (C2). .
  • the silane coupling agent as the component (C1) includes an adhesiveness-imparting agent, a physical property modifier, A compound that can function as an agent, a dispersibility improver for an inorganic filler, and the like.
  • Examples of the reactive silicon group of the silane coupling agent include the general formula (24):
  • R 29 and R 3Q each independently represent an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or R, SiO-
  • Triorganosiloxy group represented by 3 shows a Zureka, when R 29 or R 3 ° is present two or more, they may be different Yogu be the same.
  • R ' is a hydrocarbon group having 1 carbon atom and 20 powers, and three R's may be the same or different.
  • Y represents a hydrolyzable group, and when two or more Ys are present, they may be the same or different.
  • d represents 0, 1, 2 or 3
  • e represents 0, 1, or 2.
  • e in k (SiR 29 YO) groups they may be the same or different.
  • k represents an integer from 0 to 19. However, it satisfies d + ⁇ e ⁇ l).
  • Y in the general formula (24) is not particularly limited, and may be a conventionally known hydrolyzable group.
  • Specific examples include a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoxime group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkoxycarbonyl group.
  • a hydrogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group and an alkenyl group are preferable, and the hydrolyzability is mild and handling is easy.
  • the alkoxy group is particularly preferable in view of the power. More specifically, a methoxy group, an ethoxy group, and the like also have a favorable hydrolysis rate.
  • the number of hydrolysable groups is preferably 2 or more, particularly preferably 3 or more.
  • Examples of the functional group other than the hydrolyzable silicon group include a primary, secondary, and tertiary amino group, a mercapto group, an epoxy group, a carboxyl group, a butyl group, an isocyanate group, an isocyanurate, and a nitrogen atom. It can.
  • primary, secondary, and tertiary amino groups, epoxy groups, isocyanate groups, isocyanurates, and the like are more preferred because of their high adhesiveness improving effect, and more preferred are primary amino groups. preferable.
  • silane coupling agent examples include ⁇ -isocyanatepropyltrimethoxysila. Emissions, I- iso Xia sulphonate propyl triethoxysilane, .gamma.
  • Aminopurobiruto triethoxysilane I Aminopuropiru Triisopropoxysilane, ⁇ -aminopropinolemethyldimethoxysilane, ⁇ -aminopropylmethyl ethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopro ⁇ - (2-aminoethyl) aminopropyltriethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyl ethoxysilane, ⁇ - (2-aminoethyl) aminopropyl triisopropoxysilane, ⁇ - (6-aminohexyl) aminopropyltrimethoxysilane, 3-((ethylamino) 2-methylpropyltrimethoxysilane, ⁇ -ureidopropyl trimethoxysilane, ⁇ -
  • silane coupling agents examples include the above reactant of aminosilane and epoxysilane, the reactant of aminosilane and isocyanate silane, and partial condensates of various silane coupling agents.
  • the compound having only a hydrolyzable silicon group as a functional group which is the component (C2), is a compound that can function as a dehydrating agent, a cross-linking agent, a physical property adjusting agent, or the like.
  • the component (C2) various compounds can be used without particular limitation as long as they have only a reactive silicon group as a functional group and have a molecular weight of 100 to: LOOO. Is the general formula (25):
  • R 31 and R 32 are a hydrocarbon group having 1 to 20 carbon atoms, and R 31 and R 32 may be the same or different.
  • F is 0, 1, 2 or 3 or a partially hydrolyzed condensate thereof.
  • component (C2) include tetramethoxysilane, tetraethoxysilane, ethoxytrimethoxysilane, dimethoxydiethoxysilane, methoxytriethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, and tetra-n-butoxy.
  • Tetraalkoxysilanes such as silane, tetra-i-butoxysilane, tetra-t-butoxysilane; methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltriphenoxysilane, and ethyltrimethoxysilane
  • Trialkoxysilanes such as butyltrimethoxysilane and phenoltrimethoxysilane; dialkoxysilanes such as dimethyldimethoxysilane, getyldimethoxysilane and diphenyldimethoxysilane Silane; trimethyl Monoalkoxysilanes such as tylmethoxysilane and triphenylmethoxysilane; dimethyldioxysilane; and partially hydrolyzed condensates thereof.
  • the partially hydrolyzed condensate of the organosilicate compound a commercially available product can be used.
  • examples of such condensates include methyl silicate 51 and ethyl silicate 40 (both are made by Colcoat).
  • the low molecular weight compound having a molecular weight of 100 to 1000 and having a hydrolyzable silicon group as the component (C) can be used alone or in combination of two or more.
  • the total number of moles (a) of the titanium, aluminum, and zirconium atoms of the component (B) in the composition and the total number of moles of the silicon atom of the component (C) in the composition is essential that the ratio (a Zb) to b) is larger than 0.08.
  • the value of aZb is 0.08 or less, the curing speed is remarkably reduced, and practical curability cannot be obtained when used as a sealing material or an adhesive.
  • the value of a / b is preferably larger than 0.10, and particularly preferably larger than 0.15.
  • the amount of the component (B) to be used is about 0.1 to 15 parts by weight with respect to 100 parts by weight of the component (A), as long as the value of aZb is larger than 0.08. Is preferably about 0.5 to 10 parts by weight, more preferably about 2 to 8 parts by weight. If the amount of component (B) is less than this range, a practical curing speed may not be obtained, and the curing reaction may not proceed sufficiently. On the other hand, when the amount of the component (B) exceeds this range, the pot life tends to be too short, resulting in poor workability.
  • the amount of the component (C) used is about 0.1 to 15 parts by weight with respect to 100 parts by weight of the component (A), as long as the value of aZb is larger than 0.08. Is preferred 1 to: L0 parts by weight is more preferred 3 to 7 parts by weight is particularly preferred. If the amount of component (C) is below this range, the adhesiveness and storage stability may not be sufficient, and the effect of improving the tensile properties may not be sufficient. On the other hand, if the amount of the component (C) exceeds this range, a practical curing speed may not be obtained, and the curing reaction may not be sufficiently advanced.
  • the curing catalyst of the present invention one or more selected from a titanium catalyst, an aluminum catalyst, and a zirconium catalyst are used, but other curing catalysts can be used in combination so long as the effects of the present invention are not reduced.
  • Specific examples include carboxylic acid metal salts such as tin 2-ethylhexanoate, tin versatate, and bismuth 2-ethylhexanoate; dibutyltin dilaurate, dibutyltin maleate, dibutyltin phthalate, dibutyltin dioctanoate, dibutyltin.
  • a filler can be added to the composition of the present invention.
  • fillers include reinforcing fillers such as fume silicic acid, precipitated silica, crystalline silica, fused silica, dolomite, carboxylic anhydride, hydrous carboxylic acid, and carbon black; heavy calcium carbonate, colloidal calcium carbonate, Magnesium carbonate, diatomaceous earth, calcined clay, clay, talc, titanium oxide, bentonite, organic bentonite, ferric oxide, aluminum fine powder, flint powder, zinc oxide, activated zinc white, shirasu balloon, glass micro balloon, phenol And fillers such as fat powder such as organic microballoons of fat and salt, and resin, PVC powder and PMMA powder; and fibrous fillers such as asbestos, glass fiber and filament.
  • the amount is 1 to 250 parts by weight, preferably 10 to 200 parts by weight, per 100 parts by weight of the polymer of component (A).
  • the filler is uniformly mixed with a dehydrating agent such as calcium oxide, and then sealed in a bag made of an airtight material. It is also possible to dehydrate and dry in advance by leaving it for an appropriate time. This low moisture filler By using the compound, storage stability can be improved, particularly when a one-part composition is used.
  • a dehydrating agent such as calcium oxide
  • a polymer powder using a polymer such as methyl methacrylate as a raw material, Amorphous silica or the like can be used as a filler.
  • hydrophobic silica or the like which is a fine powder of silicon dioxide having a hydrophobic group bonded to the surface thereof, as a filler makes it possible to increase the transparency.
  • a high composition can be obtained.
  • the surface of the silicon dioxide fine powder generally has a silanol group (—SiOH).
  • SiO—hydrophobic group is hydrophobic silica. More specifically, dimethylsiloxane, hexamethyldisilazane, dimethyldichlorosilane, trimethoxyoctylsilane, trimethylsilane, and the like are reactively bonded to silanol groups present on the surface of silicon dioxide fine powder. is there.
  • the silicon dioxide fine powder whose surface is formed of silanol groups (—SiOH) is called hydrophilic silica fine powder.
  • calcium carbonate such as titanium oxide and heavy calcium carbonate, magnesium carbonate, talc, ferric oxide, zinc oxide, and shirasu balloon.
  • a filler selected from the above is used in an amount of 5 to 200 parts by weight based on 100 parts by weight of the organic polymer (A) having a reactive silicon group, preferable results can be obtained.
  • the greater the specific surface area of calcium carbonate the greater the effect of improving the strength at break, elongation at break, and adhesiveness of the cured product.
  • these fillers may be used alone or in combination of two or more.
  • calcium carbonate When calcium carbonate is used, it is desirable to use calcium carbonate in combination with fine particles of surface-treated fine calcium carbonate and heavy calcium carbonate.
  • Surface treatment of fine calcium carbonate The surface treatment, which preferably has a particle size of 0.5 / zm or less, is preferably treated with a fatty acid or a fatty acid salt. Further, calcium carbonate having a large particle diameter preferably has a particle diameter of 1 ⁇ m or more, and a surface-treated calcium carbonate can be used.
  • the composition In order to improve the workability (such as sharpness) of the composition and to make the surface of the cured product matte, it is preferable to use an organic balloon or an inorganic balloon. These fillers can be surface-treated, and may be used alone or in combination of two or more.
  • the particle size of the balloon In order to improve workability (such as sharpness), is preferably 0.1 mm or less.
  • the thickness In order to make the surface of the cured product matte, the thickness is preferably 5 to 300 m.
  • the composition of the present invention is a sizing board, especially a ceramic sizing board, such as a sizing board for a house, an adhesive for an outer wall tile, and an adhesive for an outer wall tile, for example, because the cured product has good chemical resistance.
  • the adhesive is preferably used for adhesives that remain on joints, but it is desirable that the design of the outer wall and the design of the sealing material be in harmony.
  • high-quality exterior walls are being used as the exterior walls by spatter coating, coloring aggregates, and the like.
  • the composition of the present invention contains a scale-like or granular substance having a diameter of 0.1 mm or more, preferably about 0.1 to 5.Omm, the cured product will have such a high-grade outer wall.
  • this cured product is an excellent composition that lasts for a long time.
  • the surface has a sanding-like or sandstone-like roughness, and when a flaky substance is used, the surface becomes uneven due to the scale.
  • the preferred diameter, compounding amount, material, and the like of the flaky or granular substance are as follows, as described in JP-A-953063.
  • the diameter is 0.1 mm or more, preferably about 0.1 to 5.0 mm, and an appropriate size is used according to the material, pattern, and the like of the outer wall. It is also possible to use those with a thickness of about 0.2 mm to 5. Omm or about 0.5 mm to 5. Omm. In the case of a scale-like substance, the thickness is as thin as about 1Z10 to 1Z5 in diameter (0.01 to about L00mm).
  • the scaly or granular substance is premixed in the main sealing material and transferred to the construction site as a sealing material, and is mixed into the main sealing material at the construction site when used.
  • the scaly or granular substance is mixed in an amount of about 1 to 200 parts by weight with respect to 100 parts by weight of a composition such as a sealing material composition or an adhesive composition.
  • the compounding amount is individual scale-like or Is appropriately selected depending on the size of the granular substance, the material of the outer wall, the pattern, and the like.
  • Examples of the scaly or granular substance include natural substances such as ky sand, My power, synthetic rubber, synthetic resin, and inorganic substances such as alumina. In order to enhance the design when filling the joints, it is colored in an appropriate color according to the material and pattern of the outer wall.
  • finishing method and the like are described in JP-A-9-53063.
  • a balloon preferably having an average particle diameter of 0.1 mm or more
  • a sanding-like or sandstone-like surface with a rough feeling can be obtained, and the weight of the surface can be reduced.
  • the preferred diameter, compounding amount, material and the like of the balloon are as follows, as described in JP-A-10-251618.
  • the balloon is a spherical filler and has a hollow inside.
  • Materials for the balloon include inorganic materials such as glass, shirasu, and silica, and organic materials such as phenolic resin, urea resin, polystyrene, and saran.
  • the inorganic material and the organic material can be compounded, or a plurality of layers can be formed by lamination.
  • Inorganic, organic, or composite balloons can be used.
  • the same balloon may be used, or a plurality of types of balloons of different materials may be used in combination.
  • the balloon one whose surface is processed or coated can be used, and that whose surface has been treated with various surface treatment agents can be used. For example, coating an organic balloon with calcium carbonate, talc, titanium oxide, or the like, or treating an inorganic nonane with a silane coupling agent for surface treatment may be mentioned.
  • the balloon preferably has a particle size of 0.1 mm or more. It is also possible to use one with a thickness of about 0.2 mm to 5. Omm or about 0.5 mm to 5. Omm. If it is less than 0.1 mm, even if it is blended in a large amount, it may only increase the viscosity of the composition and may not exhibit a rough feeling.
  • the blending amount of nolane can be easily determined according to the degree of roughness of the intended sanding tone or sandstone tone. In general, it is desirable to blend a composition having a particle size of 0.1 mm or more at a volume concentration in the composition of 5 to 25 vol%.
  • the balloon volume concentration is less than 5 vol% If it exceeds 25vol%, the viscosity of the sealing material / adhesive increases, the workability is poor, and the modulus of the cured product increases, and the basic performance of the sealing material / adhesive tends to be impaired. .
  • the balance with the basic performance of the sealing material is particularly preferred, and the volume concentration is 8 to 22 vol%.
  • a slip inhibitor as described in JP-A-2000-154368 and a cured product as described in JP-A-2001-164237 are formed in an uneven state.
  • an amine compound for giving an opaque state in particular, primary and Z or secondary amine having a melting point of 35 ° C. or more can be added.
  • the thermally expandable fine hollow particles described in JP-A-2004-51701 or JP-A-2004-66749 can be used.
  • the heat-expandable fine-grained hollow body refers to a low-boiling compound such as a hydrocarbon having 1 to 5 carbon atoms, which is a polymer outer shell material (a salty vinylidene copolymer, an acrylonitrile copolymer, or a salty polymer). It is a plastic sphere wrapped in a spherical shape with a dani-lindene acrylonitrile copolymer).
  • the composition of the present invention contains particles of a cured sealing material
  • the cured product can form irregularities on the surface and improve the design.
  • the preferred, diameter, compounding amount, material and the like of the cured sealing material particles are as follows as described in JP-A-2001-115142.
  • the diameter is preferably from 0.1 mm to: Lmm, more preferably from about 0.2 to 0.5 mm.
  • the amount is preferably 5 to: L00% by weight, more preferably 20 to 50% by weight in the curable composition.
  • the material include polyurethane resin, silicone, modified silicone, and polysulfur rubber. Although it is not limited as long as it is used as a material, a modified silicone-based sealing material is preferable.
  • a tackifier may be added to the composition of the present invention.
  • the tackifying resin is not particularly limited, but those commonly used at room temperature, whether solid or liquid, can be used. Specific examples include a styrene-based block copolymer, a hydrogenated product thereof, a phenol resin, a modified phenol resin (for example, a cash oil-modified phenol resin, a tall oil-modified phenol resin, etc.), a terpene phenol resin, Xylene phenol resin, cyclopentadiene phenol resin, coumarone indene resin, rosin resin, rosin ester resin, hydrogenated rosin ester resin, xylene resin, low molecular weight polystyrene resin, styrene copolymer Combined resin, petroleum resin (for example, C5 hydrocarbon resin, C9 hydrocarbon resin, C5C9 hydrocarbon copolymer resin, etc.), hydrogenated petroleum resin, terpene resin, DCPD resin petroleum
  • Styrene-based block copolymers and their hydrogenated celluloses include styrene butagen-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), styrene-ethylene-butylene styrene block copolymer.
  • SBS styrene butagen-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SEBS styrene ethylene propylene styrene block copolymer
  • SIBS styrene isobutylene styrene block copolymer
  • the tackifying resin may be used alone or in combination of two or more.
  • the tackifying resin is used in an amount of 5 to 1,000 parts by weight, preferably 10 to: L00 parts by weight based on 100 parts by weight of the organic polymer (A).
  • a plasticizer can be added to the composition of the present invention.
  • the viscosity and slump properties of the curable composition and the mechanical properties such as tensile strength and elongation of the cured product obtained by curing the composition can be adjusted by adding the plasticizer.
  • plasticizer examples include phthalic acid esters such as dibutyl phthalate, diheptyl phthalate, di (2-ethylhexyl) phthalate and butylbenzyl phthalate; dioctyl adipate, dioctyl sebacate, dibutyl sebacate, succinate
  • Non-aromatic dibasic acid esters such as isodecyl acid; aliphatic esters such as butyl oleate and methyl acetyl risilinolate; phosphoric esters such as tricresyl phosphate and tributyl phosphate; trimellitic esters ; Chlorinated paraffins Hydrocarbon oils such as alkyl diphenyls and partially hydrogenated terphenyls; process oils; and epoxy plasticizers such as epoxidized soybean oil and benzyl epoxy stearate.
  • phthalic acid esters such as dibutyl phthalate, dihepty
  • a polymer plasticizer can be used.
  • the use of a high-molecular plasticizer maintains the initial physical properties for a long time as compared with the case of using a low-molecular plasticizer that is a plasticizer that does not contain a polymer component in the molecule. Further, the drying property (also referred to as coating property) when an alkyd paint is applied to the cured product can be improved.
  • the polymer plasticizer include a vinyl polymer obtained by polymerizing a vinyl monomer by various methods; esters of polyalkylene glycol such as diethylene glycol dibenzoate, triethylene glycol dibenzoate, and pentaerythritol ester Polyester plasticizers obtained from dibasic acids such as sebacic acid, adipic acid, azelaic acid and phthalic acid and dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol and dipropylene glycol; Polyether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, etc.
  • esters of polyalkylene glycol such as diethylene glycol dibenzoate, triethylene glycol dibenzoate, and pentaerythritol ester Polyester plasticizers obtained from dibasic acids such as sebacic acid, adipic acid, azelaic acid and phthalic acid and dihydric alcohols such as ethylene
  • Converted poly ethers such derivatives as etc., polystyrene and poly one a - poly styrene such as methyl styrene; polybutadiene, polybutene, polyisobutylene, butadiene Atarironitori Le, polyclonal port Puren like are limited to forces which may be mentioned Not something.
  • polymeric plasticizers those that are compatible with the polymer of the component (A) are preferable.
  • polyethers and bullet polymers are preferred.
  • polypropylene glycol is more preferable because the surface hardening property and the deep-side hardening property are improved, and the hardening is not delayed after storage.
  • a bullet polymer is preferred from the viewpoint of compatibility, weather resistance, and heat resistance.
  • acrylic polymers such as alkyl acrylates, are more preferred, and acrylic polymers and Z or methacrylic polymers are more preferred.
  • an atom transfer radical polymerization method is more preferable because a living radical polymerization method is preferable because a molecular weight distribution is narrow and a viscosity can be reduced.
  • an alkyl acrylate monomer described in JP-A-2001-207157 can be subjected to continuous bulk polymerization at high temperature and pressure. Therefore, it is preferable to use a polymer obtained by the so-called SGO process!
  • the number average molecular weight of the high molecular weight plasticizer is preferably 500 to 15000, more preferably 800 to 10,000, more preferably ⁇ 1000 to 8000, and specially ⁇ 1000. It is 1000-5000. Most preferably, it is 1000-3000. If the molecular weight is too low, the plasticizer flows out over time due to heat or rainfall, and the initial physical properties cannot be maintained for a long time, and the alkyd paintability cannot be improved. On the other hand, if the molecular weight is too high, the viscosity increases, and the workability deteriorates.
  • the molecular weight distribution of the high-molecular plasticizer is not particularly limited, but is preferably narrow, and preferably less than 1.80. 1. 70 or less is more preferred 1. 60 or less is still preferred 1. 50 or less is more preferred 1. 40 or less is particularly preferred 1. 30 or less is most preferred.
  • the number average molecular weight is measured by a GPC method for a vinyl polymer and by a terminal group analysis method for a polyether polymer.
  • the molecular weight distribution (MwZMn) is measured by the GPC method (polystyrene conversion).
  • the polymer plasticizer does not have a reactive silicon group! However, it may have a reactive silicon group. When it has a reactive silicon group, it acts as a reactive plasticizer and can prevent migration of a plasticizer which is a cured product. When the compound has a reactive silicon group, the number is preferably 1 or less, more preferably 0.8 or less per molecule on average. When using a plasticizer having a reactive silicon group, particularly an oxyalkylene polymer having a reactive silicon group, its number average molecular weight must be lower than that of the polymer of component (A). It is.
  • Plasticizers may be used alone or in combination of two or more. Further, a low-molecular plasticizer and a high-molecular plasticizer may be used in combination. In addition, these plasticizers can be blended at the time of polymer production.
  • the amount of the plasticizer to be used is 5 to 150 parts by weight, preferably 10 to 120 parts by weight, more preferably 20 to: LOO parts by weight based on 100 parts by weight of the polymer of the component (A). If the amount is less than 5 parts by weight, the effect as a plasticizer will not be exhibited, and if it exceeds 150 parts by weight, the mechanical strength of the cured product will be insufficient.
  • a compound that generates a compound having a monovalent silanol group in the molecule by hydrolysis may be added.
  • This compound has the effect of lowering the modulus of the cured product without deteriorating the stickiness of the surface of the cured product.
  • Special The compound which produces trimethylsilanol is preferable.
  • Examples of the compound that produces a compound having a monovalent silanol group in the molecule by hydrolysis include compounds described in JP-A-5-117521. Also, compounds which are derivatives of alkyl alcohols such as hexanol, octanol and decanol and which produce silicon compounds which generate RSiOH such as trimethylsilanol by hydrolysis,
  • the resulting compound can be mentioned.
  • the compound that forms a compound having a monovalent silanol group in the molecule by hydrolysis is 0.1 to 20 parts by weight based on 100 parts by weight of the organic polymer (A) having a reactive silicon group. , Preferably 0.5 to: used in the range of L0 parts by weight.
  • a thixotropic agent may be added to the curable composition of the present invention, if necessary, to prevent sagging and improve workability.
  • the anti-sagging agent is not particularly limited, and examples thereof include polyamide waxes; hydrogenated castor oil derivatives; and metal silicates such as calcium stearate, aluminum stearate, and barium stearate.
  • a rubber powder having a particle diameter of 10 to 500 m as described in JP-A-11-349916 or an organic fiber as described in JP-A-2003-155389 is used, the thixotropic property is increased. And a composition with high workability is obtained.
  • thixotropic agents anti-sagging agents
  • the thixotropic agent is used in an amount of 0.1 to 20 parts by weight based on 100 parts by weight of the organic polymer (A) having a reactive silicon group.
  • a compound containing an epoxy group in one molecule can be used.
  • a compound having an epoxy group is used, the restorability of the cured product can be improved.
  • Epoxy group-containing compounds include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxide conjugates, epoxide hydrin derivatives, and mixtures thereof. Etc. can be exemplified.
  • E-PS epoxidized soybean oil, epoxidized ama-oil, bis (2-ethylhexyl) -4,5-epoxycyclohexane-1,2-dicarboxylate (E-PS), epoxy otatinol Stearate, epoxy butinolestearate and the like.
  • E-PS is particularly preferred.
  • the epoxy conjugate is preferably used in an amount of 0.5 to 50 parts by weight based on 100 parts by weight of the organic polymer (A) having a reactive silicon group.
  • Photocurable substances can be used in the composition of the present invention.
  • a photocurable material When a photocurable material is used, a film of the photocurable substance is formed on the surface of the cured product, and the tackiness and weather resistance of the cured product can be improved.
  • a photo-curable substance is a substance which undergoes a chemical change in molecular structure in a short time by the action of light to produce physical changes such as curing.
  • Many compounds of this kind are known, such as organic monomers, oligomers, resins and compositions containing them, and any commercially available compounds can be employed. Typical examples thereof include unsaturated acrylic compounds, polycaffeic acid burs, and azidhidani resin. As unsaturated acrylic compounds
  • Aronix! All products are products of Toa Gosei Chemical Industry Co., Ltd.)
  • Polyvinyl cinnamate is a photosensitive resin having a cinnamoyl group as a photosensitive group.
  • Azide resin is known as a photosensitive resin having an azide group as a photosensitive group.
  • a photosensitive resin see March 1972 Published on March 17, published by the Printing Society of Japan, page 93-, page 106-, page 117-), and these may be used alone or in admixture, and if necessary, sensitizers may be added. Can be used.
  • the addition of a sensitizer such as ketones or nitro compounds, or an accelerator such as amines may enhance the effect in some cases.
  • the photocurable substance is used in an amount of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the organic polymer (A) having a reactive silicon group. If the amount is less than 0.1 part by weight, the effect of enhancing the weather resistance is not sufficient. If the amount is more than 20 parts by weight, the cured product becomes too hard and cracks tend to occur.
  • An oxygen curable substance can be used in the composition of the present invention.
  • oxygen-curable substance examples include unsaturated compounds that can react with oxygen in the air.They react with oxygen in the air to form a hardened film near the surface of the hardened material, and the surface becomes sticky or hardened. It acts to prevent the attachment of dust and dirt.
  • Specific examples of the oxygen-curable substance include drying oils such as tung oil and linseed oil, and various alkyd resins obtained by modifying the compounds; acrylic polymers modified with the drying oil, epoxy resins and the like.
  • NBR obtained by copolymerizing a liquid polymer such as a polymer of styrene, or a monomer such as Atari nitrile or styrene, which has copolymerizability with these gen-based compounds, so that the gen-based compounds are mainly used.
  • liquid copolymers such as SBR and various modified products thereof (maleated modified product, boiled oil modified product, etc.). These may be used alone or in combination of two or more. Of these, tung oil and liquid gen-based polymers are particularly preferred.
  • the effect may be enhanced by using a catalyst or a metal dryer that promotes the oxidative curing reaction.
  • Examples of these catalysts and metal dryers include metal salts such as cobalt naphthenate, lead naphthenate, zirconium naphthenate, cobalt octoate, and zirconium octoate, and amine compounds.
  • the amount of the oxygen-curable substance used is in the range of 0.1 to 20 parts by weight based on 100 parts by weight of the organic polymer having a reactive silicon group (A). More preferably, it is 0.5 to: LO parts by weight. When the amount is less than 0.1 part by weight, the improvement of the stainability becomes insufficient, and when it exceeds 20 parts by weight, the tensile properties of the cured product tend to be impaired.
  • an oxygen-curable substance is preferably used in combination with a photocurable substance.
  • An antioxidant can be used in the composition of the present invention.
  • an antioxidant is used, the heat resistance of the cured product can be increased.
  • antioxidants include hindered phenols, monophenols, bisphenols, and polyphenols. 1S Hindered phenols are particularly preferred.
  • Tinuvin 622LD, Tinuvin 144, CHIMASSORB944LD, CHIMASSORB119FL all of which are manufactured by Chinoku 'Specialty' Chemicals Co., Ltd.
  • MARK LA-57, MARK LA-62, MARK LA-67, MARK LA-63, MARK LA-68 all made by Asahi Denka Kogyo K.K.
  • the hindered amine-based light stabilizer shown can also be used.
  • Specific examples of the antioxidant are also described in JP-A-4-283259 and JP-A-9-194731.
  • the amount of the antioxidant used is preferably in the range of 0.1 to 10 parts by weight based on 100 parts by weight of the organic polymer (A) having a reactive silicon group, and more preferably 0.2. About 5 parts by weight.
  • a light stabilizer can be used in the composition of the present invention.
  • the use of a light stabilizer can prevent the cured product from deteriorating.
  • Benzotriazole compounds, hinderdamine compounds, benzoate compounds and the like can be exemplified as light stabilizers.
  • Hinderdamine compounds are particularly preferred.
  • the light stabilizer is used in an amount of 0.1 to 10 parts by weight, more preferably 0.2 to 10 parts by weight, based on 100 parts by weight of the organic polymer having a reactive silicon group (A). 5 parts by weight. Specific examples of the light stabilizer are also described in JP-A-9-194731.
  • a photocurable substance is used in combination with the composition of the present invention, particularly when an unsaturated acrylic compound is used, as described in JP-A-5-70531, 3 It is preferable to use a hindered amine light stabilizer containing a graded amine for improving the storage stability of the composition.
  • Hindered amine light stabilizers containing tertiary amines Nubin 622LD, Tinuvin 144, CHIMASSORB119FL (all of which are manufactured by Chinoku's Specialty Chemicals Co., Ltd.); MARK LA-57, LA-62, LA-67, LA-63 And light stabilizers such as SANOL LS-765, LS-292, LS-2626, LS-1114, LS-744 (all manufactured by Sankyo Co., Ltd.).
  • An ultraviolet absorber can be used in the composition of the present invention.
  • the use of an ultraviolet absorber can improve the surface weather resistance of the cured product.
  • Benzophenone-based, benzotriazole-based, salicylate-based, substituted tolyl-based and metal chelate-based compounds can be exemplified as ultraviolet absorbers.
  • Benzotriazole-based compounds are particularly preferred.
  • the amount of the UV absorber used is preferably in the range of 0.1 to 10 parts by weight, more preferably 0.2 to 10 parts by weight, based on 100 parts by weight of the organic polymer having a reactive silicon group (A). 5 parts by weight. It is preferable to use a phenolic or hindered phenolic antioxidant, a hindered amine light stabilizer and a benzotriazole ultraviolet absorber in combination.
  • An epoxy resin can be added to the composition of the present invention.
  • the composition to which the epoxy resin is added is particularly preferable as an adhesive, particularly an adhesive for exterior wall tiles.
  • Flame retardant epoxy resins such as epichlorohydrin-bisphenol A type epoxy resin, epichlorohydrin-bisphenol F type epoxy resin, and glycidyl ether of tetrabromobisphenol A , Novolak type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol A glycidyl ether type epoxy resin of kapsum with propylene oxide, p-oxybenzoic acid glycidyl ether ester type epoxy resin, m— Aminopheno mono-epoxy resin, diamino diphenyl methane epoxy resin, urethane-modified epoxy resin, various alicyclic epoxy resins, N, N-diglycidyl dilin, N, N-diglycidyl o-toluidine , Triglycidyl isocyanurate
  • the used epoxy resin can be used.
  • a resin containing at least two epoxy groups in a molecule is preferred because it has high reactivity upon curing and has a point force such that the cured product easily forms a three-dimensional network.
  • Even better Preferable examples include bisphenol A type epoxy resin or novolak type epoxy resin.
  • the ratio of ( ⁇ ) ⁇ epoxy resin is less than 1 ⁇ 100, the effect of improving the impact strength and toughness of the cured epoxy resin becomes difficult, and the ratio of (A) Z epoxy resin exceeds 100Z1. In this case, the strength of the cured organic polymer becomes insufficient.
  • the preferred ratio of use differs depending on the application of the curable resin composition and the like, but cannot be unconditionally determined. For example, the impact resistance, flexibility, toughness, and peel strength of the cured epoxy resin are improved. If you do
  • the component (A) is used in an amount of 1 to 100 parts by weight, preferably 5 to 100 parts by weight, based on 100 parts by weight of the epoxy resin.
  • an epoxy resin curing agent for curing the epoxy resin can be used in combination with the composition of the present invention.
  • an epoxy resin curing agent that is generally used without any particular limitation can be used.
  • Ketimine can be used as a curing agent for epoxy resins. Ketimine exists stably in a moisture-free state, and is decomposed into primary amine and ketone by water, and the generated primary amine becomes a room temperature curing agent for epoxy resin. When ketimine is used, a one-pack type composition can be obtained. Such ketimine can be obtained by a condensation reaction between an amine compound and a carbonyl compound.
  • ketimine For the synthesis of ketimine, known amine compounds and carbodiyl conjugates may be used.
  • the amine compounds include ethylenediamine, propylenediamine, trimethylenediamine, and tetramethylenediamine.
  • Diamines such as 1,3,3 diaminobutane, 2,3 diaminobutane, pentamethylenediamine, 2,4 diaminopentane, hexamethylenediamine, p-phenylenediamine, p, ⁇ '-biphenylenediamine
  • Polyvalent amines such as 1,2,3 triaminopropane, triaminobenzene, tris (2-aminoethyl) amine and tetrakis (aminomethyl) methane; polyalkyls such as diethylenetriamine, triethylenetriamine and tetraethylenepentamine; Lenpolyamine; polyoxyanolylene-based polyamine; ⁇ -aminopropyltriethoxy Aminosilanes such as silane, ⁇ (monoaminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ - ( ⁇ -aminoethyl) y-amin
  • Examples of the carbon compound include aldehydes such as acetaldehyde, propionaldehyde, ⁇ -butyraldehyde, isobutyraldehyde, getylacetaldehyde, glyoxal, and benzaldehyde; cyclopentanone, trimethylcyclopentanone, and cyclohexanone.
  • aldehydes such as acetaldehyde, propionaldehyde, ⁇ -butyraldehyde, isobutyraldehyde, getylacetaldehyde, glyoxal, and benzaldehyde
  • cyclopentanone trimethylcyclopentanone
  • cyclohexanone cyclohexanone
  • cyclic ketones such as trimethylcyclohexanone; aliphatic ketones such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl ketone, dipropyl ketone, diisopropyl ketone, dibutyl ketone and diisobutyl ketone; 13 dicarbonitrile such as acetylacetone, methyl acetoacetate, ethyl acetoacetate, dimethyl malonate, getyl malonate, methylethyl malonate, dibenzoylmethane Compounds; and the like can be used.
  • the imino group When an imino group is present in the ketimine, the imino group may be reacted with styrene oxide; glycidyl ethers such as butyldaricidyl ether and arylglycidyl ether; and glycidyl ester.
  • styrene oxide glycidyl ethers such as butyldaricidyl ether and arylglycidyl ether
  • glycidyl ester These ketimines may be used singly or in combination of two or more.
  • For 100 parts by weight of epoxy resin 1 to: LOO parts by weight may be used. The amount used depends on the type of epoxy resin and ketimine.
  • the curable composition of the present invention includes phosphorus-based plasticizers such as ammonium polyphosphate and tricresyl phosphate, aluminum hydroxide, magnesium hydroxide, and heat-expandable graphite. Flame retardants can be added. The above flame retardants may be used alone or in combination of two or more.
  • the flame retardant is used in an amount of 5 to 200 parts by weight, preferably 10 to: LOO part by weight based on 100 parts by weight of the component (A).
  • a solvent can be used for the purpose of reducing the viscosity of the composition, increasing the thixotropy, and improving the workability.
  • various compounds can be used without particular limitation. Specific examples include hydrocarbon solvents such as toluene, xylene, heptane, hexane, petroleum solvents, halogen solvents such as trichloroethylene, ester solvents such as ethyl acetate and butyl acetate, acetone, methyl ethyl ketone, and the like.
  • Ketone solvents such as methyl isobutyl ketone, ether solvents, alcohol solvents such as methanol, ethanol and isopropanol, and silicone solvents such as hexamethylcyclotrisiloxane, otatamethylcyclotetrasiloxane and decamethylcyclopentasiloxane.
  • the boiling point of the solvent is preferably 150 ° C or higher, more preferably 200 ° C or higher, and more preferably 250 ° C or higher, due to the problem of air pollution when the composition is used indoors. Particularly preferred.
  • These solvents may be used alone or in combination of two or more.
  • the amount of the solvent is preferably 3 parts by weight or less, more preferably 1 part by weight or less, based on 100 parts by weight of the organic polymer as the component (A). It is most preferred that it is not included.
  • additives may be added to the curable composition of the present invention, if necessary, for the purpose of adjusting various physical properties of the curable composition or the cured product.
  • additives include, for example, curability modifiers, radical inhibitors, metal deactivators, ozone deterioration inhibitors, phosphorus peroxide decomposers, lubricants, pigments, foaming agents, Ants, fungicides and the like.
  • curability modifiers include, for example, curability modifiers, radical inhibitors, metal deactivators, ozone deterioration inhibitors, phosphorus peroxide decomposers, lubricants, pigments, foaming agents, Ants, fungicides and the like.
  • curability modifiers include, for example, curability modifiers, radical inhibitors, metal deactivators, ozone deterioration inhibitors, phosphorus peroxide decomposers, lubricants, pigments, foaming agents, Ants, fungicides and the like.
  • the curable composition of the present invention can be prepared as a one-component type in which all the components are premixed, sealed and stored, and are cured by the moisture in the air after construction, and can be separately used as a curing agent.
  • Components such as a curing catalyst, a filler, a plasticizer, and water may be blended in advance, and the blended material and the polymer composition may be mixed before use to prepare a two-component type. From the viewpoint of workability, the one-component type is preferable.
  • the curable composition is a one-component type, since all the components are preliminarily compounded, the components containing water are used after being dehydrated and dried in advance, or the pressure is reduced during mixing and kneading. It is preferred to dehydrate with water.
  • the curable composition is of a two-component type, it is not necessary to blend a curing catalyst with a main ingredient containing a polymer having a reactive silicon group. Although there is little worry about gelling, it is preferable to dehydrate and dry when long-term storage stability is required.
  • Dehydration and drying methods include heating and drying for powdered solids, and vacuum dehydration for liquids or dehydration using synthetic zeolite, activated alumina, silica gel, quicklime, magnesium oxide, etc. The method is preferred. Alternatively, a small amount of the isocyanate conjugate may be blended, and the isocyanate group may be reacted with water for dehydration. Further, an oxazolidinide compound such as 3-ethyl-2-methyl-2- (3-methylbutyl) 1,3 oxazolidine may be blended, reacted with water and dehydrated.
  • an oxazolidinide compound such as 3-ethyl-2-methyl-2- (3-methylbutyl) 1,3 oxazolidine may be blended, reacted with water and dehydrated.
  • Lower alcohols such as methanol and ethanol by vigorous dehydration drying; n-propyltrimethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, methylsilicate, ethyl silicate, ⁇ -mercaptopropylmethyldimethoxysilane, Storage stability is further improved by adding an alkoxysilane conjugate such as ⁇ -mercaptopropylmethylethoxysilane or ⁇ -glycidoxypropyltrimethoxysilane.
  • the amount of the dehydrating agent is 0.1 to 20 parts by weight based on 100 parts by weight of the organic polymer having a reactive silicon group ( ⁇ ). Parts by weight, preferably in the range of 0.5 to 10 parts by weight, are preferred.
  • the method for preparing the curable composition of the present invention is not particularly limited. Conventional methods such as mixing, kneading at room temperature or under heat using a mixer, roll, or stirrer, or dissolving and mixing the components using a small amount of a suitable solvent may be employed. .
  • the curable composition of the present invention When exposed to the atmosphere, the curable composition of the present invention forms a three-dimensional network by the action of moisture, and cures to a solid having rubber-like elasticity.
  • the curable composition of the present invention includes a pressure-sensitive adhesive, a sealing material for roads such as buildings “vehicles” and “automobiles", an adhesive, a molding agent, a vibration-proof material, a vibration-proof material, a sound-proof material, a foam material, and a paint. It can be used for spraying materials.
  • a cured product obtained by curing the curable composition of the present invention is excellent in flexibility and adhesiveness, and among these, it is more preferable to use the cured product as a sealing material or an adhesive.
  • electric and electronic parts materials such as solar cell back-side sealing materials, electric insulating materials such as insulating coatings for electric wires and cables, elastic adhesives, contact-type adhesives, spray-type sealing materials, crack repair materials, and tiles
  • the curable composition of the present invention may be used for an adhesive for an interior panel, an adhesive for an exterior panel, an adhesive for tile, an adhesive for stone, an adhesive for ceiling finishing, an adhesive for floor finishing, and an adhesive for wall finishing.
  • polyoxypropylene diol having a molecular weight of about 2,000 as an initiator propylene oxide was polymerized using a zinc hexocyano cobaltate glyme complex catalyst, and the number average molecular weight was about 25,500 (Tosoh HLC- Using 8120 GPC, TSK-GEL H type manufactured by Tosoh was used as a column, and polypropylene oxide having a molecular weight in terms of polystyrene measured using THF as a solvent was obtained. Subsequently, a methanol solution of 1.2 times equivalent of NaOMe was added to the hydroxyl group of the hydroxyl-terminated polypropylene oxide to remove methanol, and methanol was distilled off.
  • Trimethoxysilane was reacted with 1.1 parts by weight of trimethoxysilane at 90 ° C for 2 hours with 100 parts by weight of polymer and 150 ppm of an isopropanol solution containing 3 wt% of platinum of a platinum siloxane complex as a catalyst.
  • a terminal polyoxypropylene polymer (A-1) was obtained.
  • NMR measured in CDC1 solvent using JEOL i ⁇ NM-LA400
  • the relative value ( ⁇ ⁇ ⁇ ') of the peak integrated value (at around 0.6 ppm) was determined, and the silyl group introduction rate ( ⁇ , ⁇ ⁇ ) was examined.
  • the average of the terminal trimethoxysilyl groups was 1. There were three.
  • polystyrene-equivalent molecular weight measured using THF as the solvent was obtained.
  • the polyoxyalkylene polymer having a trialkoxysilyl group as the component (A) As the polyoxyalkylene polymer having a trialkoxysilyl group as the component (A), the polymer (A-1 to A-2) obtained in Synthesis Examples 1 to 2 or a commercially available trimethoxysilyl group Using "ST-50" and “ST-53” manufactured by Hanse Chemie, which are organic polymers containing, and further using the polymer (A-3) obtained in Synthesis Example 3 having a methyldimethoxysilyl group, was blended in the following manner.
  • an organotin catalyst dibutyltin bis (acetyl acetate) (manufactured by Nitto Danisei, Neostan U-220), and the component (C), buturtrimethoxysilane (manufactured by Toray's Dow Corning Silicone, A- 171) and N- ( ⁇ -aminoethyl) ⁇ -aminopropyltrimethoxysilane (manufactured by Toray 'Dowkoung' Silicone Co., Ltd., 1120) were weighed, mixed with a spatula for 3 minutes, and mixed. After mixing, a mold having a thickness of about 5 mm was filled with a spatula to prepare a flat surface.
  • This time was defined as the curing start time, the surface was touched with a spatula, and the time when the compound did not adhere to the spatula was measured as skinning time.
  • the skinning time was measured under the conditions of 23 ° C and 50% RH.
  • Table 1 shows the evaluation results of the composition and the curability (skinning time).
  • Table 1 shows the ratio (aZb) of the total number of moles of titanium atoms (a) in component (B) to the total number of moles of silicon atoms (b) in component (C).
  • the skinning time was 96 hours or more, it was indicated as N.
  • a silane compound represented by the following formula was reacted at 90 ° C. for 5 hours to obtain a polyoxypropylene polymer (A-4) having an average of 1.1 terminal trimethoxysilyl groups.
  • the trialkoxysilyl group-containing organic polymer as the component ( ⁇ ), the polymers obtained in Synthesis Examples 1, 2, 4, and 6 ( ⁇ -1, ⁇ -2, ⁇ -4, Using ⁇ -6), it was compounded by the following method.
  • Each of the curable compositions was extruded from the cartridge so as to be in intimate contact with various adherends (polycarbonate and acrylic) to prepare samples. After curing the prepared sample at 23 ° C for 7 days, the adhesiveness was evaluated by a 90 degree hand peel test. Judge in destruction mode The cohesive failure rate was designated as A for 90 to 100%, B for 70 to 90%, and C for 0 to 70%. Table 2 shows the results.
  • Example Comparative Example Composition (parts by weight)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

[課題] 非有機錫触媒を用いて、良好な硬化性と接着性を有する硬化性組成物を提供すること。 [解決手段] シロキサン結合を形成することにより架橋し得るケイ素含有基として、反応性ケイ素基を有する有機重合体(A)、チタン触媒、アルミニウム触媒、ジルコニウム触媒から選ばれる1種以上(B)、および加水分解性ケイ素基を有する分子量100~1000の低分子量化合物(C)を含有する硬化性組成物であって、かつ、(B)成分のチタン原子とアルミニウム原子とジルコニウム原子の総モル数(a)と(C)成分のケイ素原子の総モル数(b)との比(a/b)が、0.08よりも大きいことを特徴とする硬化性組成物。                                                                                     

Description

明 細 書
硬化性と接着性の改善された硬化性組成物
技術分野
[0001] 本発明は、ケィ素原子に結合した水酸基または加水分解性基を有し、シロキサン 結合を形成することにより架橋し得るケィ素含有基 (以下、「反応性ケィ素基」ともいう 。)を有する有機重合体を含有する硬化性組成物に関する。
背景技術
[0002] 分子内に反応性ケィ素基を有する有機重合体は、室温においても空気中の水分と 反応してゴム状に硬化するという特徴を有する。分子内に反応性ケィ素基を有する 有機重合体の中でも、主鎖骨格がポリオキシアルキレン系重合体である有機重合体 は、(特許文献 1)などに開示されている。このポリオキシアルキレン系重合体は既に 工業的に生産されており、シーリング材、接着剤などの用途に広く使用されている。こ のような有機重合体の代表例は、通常、伸びや柔軟性を保持するために、ケィ素原 子 1つあたり 2つの加水分解性基が結合してなる反応性ケィ素基を有する。
[0003] 上記の有機重合体を含有する硬化性組成物は、シラノール縮合触媒を用いて硬化 させており、通常、ジブチルスズビスァセチルァセトナートなどの有機錫系触媒が広く 使用されている。し力しながら、近年、有機錫系化合物はその毒性が指摘されており 、代替となる非錫硬化触媒が望まれている。
[0004] この非有機錫系触媒としてチタン触媒を使用する脱アルコール型シリコーン組成物 は、(特許文献 2)、(特許文献 3)などに開示されている。この脱アルコール型シリコー ン組成物は既に工業的に生産されており、多くの用途に広く使用されている。
[0005] 一方、反応性ケィ素基を含有する有機重合体に対して、硬化触媒としてチタン触媒 、アルミニウム触媒、または、ジルコニウム触媒を組み合わせた硬化性組成物につい ても (特許文献 4)、(特許文献 5)、(特許文献 6)、(特許文献 7)などに開示されてい る。
特許文献 1:特開昭 52— 73998号公報
特許文献 2:特公昭 39 - 27643号公報 (米国特許 3175993号) 特許文献 3:米国特許 3334067号
特許文献 4:特開 2002— 249672号公報
特許文献 5:特開昭 58— 17154号公報 (特公平 3— 57943号公報)
特許文献 6 :特開昭 62— 146959号公報 (特公平 5— 45635号公報)
特許文献 7:特開 2004 - 51809号公報
発明の開示
発明が解決しょうとする課題
[0006] ところが (特許文献 4)などに開示されて ヽる硬化性組成物、すなわち反応性ケィ素 基を含有する有機重合体に対し硬化触媒としてチタン触媒、アルミニウム触媒、また は、ジルコニウム触媒を組み合わせた硬化性組成物の場合、一液型組成物とした場 合の接着性や貯蔵安定性を改善する目的で加水分解性ケィ素基を有する低分子量 化合物を添加する必要がある。しかしながら、反応性ケィ素基を有する有機重合体 の硬化触媒としてチタン触媒、アルミニウム触媒、または、ジルコニウム触媒を用いた 場合、添加する加水分解性ケィ素基を有する低分子量化合物によって、著しく硬化 性が低下するという問題があり、現在一般的に使用されている有機錫系化合物の場 合に比べると、硬化速度が小さぐ実用的な硬化性を持つには至らない場合があつ た。
[0007] また、前記有機錫触媒を使用した反応性ケィ素基を含有するポリオキシアルキレン 系重合体は、各種の被着体への接着性が良好であることがよく知られている力 ァク リル樹脂などの難接着有機系被着体に対しては十分な接着性が得られない場合が めつに。
[0008] 本発明は、非錫硬化触媒であるチタン触媒、アルミニウム触媒、ジルコニウム触媒 から選ばれる 1種以上と反応性ケィ素基を有する有機重合体を含む、硬化性と接着 性が改良された硬化性組成物を提供することを目的とするものである。
課題を解決するための手段
[0009] 本発明者等は、このような問題を解決するために鋭意検討した結果、反応性ケィ素 基を有する有機重合体として、ケィ素原子 1つあたり 3つの水酸基または加水分解性 基が結合してなる反応性ケィ素基を有する有機重合体を用い、その硬化触媒として チタン触媒、アルミニウム触媒、ジルコニウム触媒力 選ばれる 1種以上を用い、添カロ 剤として加水分解性ケィ素基を有する低分子量化合物を組み合わせることにより、さ らに、前記触媒のチタン原子とアルミニウム原子とジルコニウム原子の総モル数と加 水分解性ケィ素基を有する低分子量化合物のケィ素原子の総モル数との比を特定 の値にすることで、非有機錫触媒でありながら十分に実用的な硬化性と接着性を示 す硬化性組成物が得られることを見出し、本発明を完成させた。
[0010] すなわち、本発明は、シロキサン結合を形成することにより架橋し得るケィ素含有基 として、一般式 (1) :
-SiX (1)
3
(式中、 Xは水酸基または加水分解性基を示し、 3つの Xは相互に同一であっても、 異なって!/ヽてもよ ヽ)で表される反応性ケィ素基を有する有機重合体 (A)、チタン触 媒、アルミニウム触媒、ジルコニウム触媒力 選ばれる 1種以上 (B)、および加水分解 性ケィ素基を有する分子量 100〜 1000の低分子量化合物(C)を含有する硬化性 組成物であって、かつ、(B)成分のチタン原子とアルミニウム原子とジルコニウム原子 の総モル数 (a)と (C)成分のケィ素原子の総モル数 (b)との比(aZb) 1S 0. 08より も大き 、ことを特徴とする硬化性組成物に関する。
[0011] (C)の低分子量ィ匕合物は、好ましくは、アミノ基を有するシランィ匕合物である。
[0012] 前記 (A)、 (B)、 (C)の好ましい配合比率としては、有機重合体 (A) 100重量部に 対して、チタン触媒、アルミニウム触媒、ジルコニウム触媒力 選ばれる 1種以上 (B) 0. 1〜15重量部、低分子量化合物(C) 0. 1〜15重量部である。
[0013] 有機重合体 (A)の主鎖骨格としては、ポリオキシアルキレン系重合体、飽和炭化水 素系重合体、(メタ)アクリル酸エステル系重合体力 なる群力 選択される少なくとも 1種が好ましい。
[0014] また、有機重合体 (A)のガラス転移温度は、好ましくは 20°C以下である。
[0015] 前記チタン触媒としては、一般式 (2):
TKOR1) (2)
4
(式中、 R1は有機基であり、 4個の R1は相互に同一であっても、異なっていてもよい) が好ましぐより好ましくはチタニウムキレートである。 [0016] チタニウムキレートとしては、一般式(3)
[0017] [化 7]
Figure imgf000005_0001
[0018] [式中、
Figure imgf000005_0002
R3は水素原子または炭素原子数 1から 20の炭化水素基であり、 R2およ び R3は同一であっても、異なっていてもよい。 n個の R2は相互に同一であっても、異 なっていてもよぐ 4 n個の R3は相互に同一であっても、異なっていてもよい。 A A 2は— R4または— OR4力 選ばれる(ここで R4は炭素原子数 1から 20の炭化水素基で ある)。 A1および A2は同一であっても、異なっていてもよい。 4— n個の A1は相互に同 一であっても、異なっていてもよぐ 4— n個の A2は相互に同一であっても、異なって いてもよい。 nは 0、 1、 2、 3のいずれかである。 ]で表される化合物および Zまたは一 般式 (4) :
[0019] [化 8]
Figure imgf000005_0003
[0020] (式中、
Figure imgf000005_0004
ΑΊま前記と同じ。 R5は、炭素原子数 1から 20の 2価の炭化水素基で ある。)で表される化合物が好ましい。
[0021] 前記アルミニウム触媒としては、一般式(5):
Al(OR6) (5)
3
(式中、 R6は有機基であり、 3個の R6は相互に同一であっても、異なっていてもよい) が好ましぐより好ましくはアルミニウムキレートである。 [0022] アルミニウムキレートとしては、一般式(6):
[0023]
[0024] [式
Figure imgf000006_0001
中、 R8は水素原子または炭素原子数 1から 20の炭化水素基であり、 R7およ び R8は同一であっても、異なっていてもよい。 m個の R7は相互に同一であっても、異 なっていてもよく、 3— m個の R8は相互に同一であっても、異なっていてもよい。 A3、 A4は— R9または— OR9力も選ばれる(ここで R9は炭素原子数 1から 20の炭化水素基 である)。 A3および A4は同一であっても、異なっていてもよい。 3— m個の A3は相互に 同一であっても、異なっていてもよく、 3— m個の A4は相互に同一であっても、異なつ ていてもよい。 mは 0、 1、 2のいずれかである。 ]で表される化合物および Zまたは一 般式 (7) :
[0025] [化 10]
Figure imgf000006_0002
[0026] (式中、 R8、 Α3、 ΑΊま前記と同じ。 R1Qは、炭素原子数 1から 20の 2価の炭化水素基で ある。)で表される化合物が好ましい。
[0027] 前記ジルコニウム触媒としては、一般式 (8):
Zr(ORn) (8)
4
(式中、 R11は有機基であり、 4個の R11は相互に同一であっても、異なっていてもよい) が好ましぐより好ましくはジルコニウムキレートである。 [0028] ジルコニウムキレートとしては、一般式(9)
[0029] [化 11]
Figure imgf000007_0001
[0030] [式中、 R , R"は水素原子または炭素原子数 1から 20の炭化水素基であり、 およ び R13は同一であっても、異なっていてもよい。 1個の R12は相互に同一であっても、異 なっていてもよぐ 4—1個の R13は相互に同一であっても、異なっていてもよい。 A5、 A 6は— R14または— OR14から選ばれる(ここで R14は炭素原子数 1から 20の炭化水素基 である)。 A5および A6は同一であっても、異なっていてもよい。 4—1個の A5は相互に 同一であっても、異なっていてもよぐ 4—1個の A6は相互に同一であっても、異なって いてもよい。 1は 0、 1、 2、 3のいずれかである。 ]で表される化合物および Zまたは一 般式 (10) :
[0031] [化 12]
Figure imgf000007_0002
[0032] (式中、 R13、 A5、 A6は前記と同じ。 R15は、炭素原子数 1から 20の 2価の炭化水素基 である。)で表される化合物が好ましい。
[0033] (B)成分としては、チタン触媒が好ま 、。
[0034] また、有機重合体 (A)が有する反応性ケィ素基の少なくとも一部は、一般式(11):
-Si (OR16) (11)
3
(式中、 R16は置換あるいは非置換の炭化水素基であり、 3つの R16は相互に同一であ つても、異なっていてもよい)で表される加水分解性のトリアルコキシシリル基が好まし ぐ更に好ましくは、トリメトキシシリル基である。
[0035] また、本発明に係る硬化性組成物の好ま ヽ実施態様としては、前記 ヽずれかに 記載の硬化性組成物を用いてなるシーリング材または接着剤が挙げられる。
発明の効果
[0036] 非錫硬化触媒であるチタン触媒、アルミニウム触媒、または、ジルコニウム触媒と反 応性ケィ素基を有する有機重合体を含む、硬化性と接着性が改良された、シーラント や接着剤などとして有用な硬化性組成物を提供できる。
発明を実施するための最良の形態
[0037] 以下、本発明につ 、て詳しく説明する。
[0038] 本発明に用いる反応性ケィ素基を有する有機重合体の主鎖骨格は特に制限はな ぐ各種の主鎖骨格を持つものを使用することができる。
[0039] 具体的には、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオ キシテトラメチレン、ポリオキシエチレン ポリオキシプロピレン共重合体、ポリオキシ プロピレン ポリオキシブチレン共重合体等のポリオキシアルキレン系重合体;ェチ レン プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレン等との共重 合体、ポリクロ口プレン、ポリイソプレン、イソプレンあるいはブタジエンとアタリ口-トリ ルおよび Zまたはスチレン等との共重合体、ポリブタジエン、イソプレンあるいはブタ ジェンとアクリロニトリル及びスチレン等との共重合体、これらのポリオレフイン系重合 体に水素添加して得られる水添ポリオレフイン系重合体等の炭化水素系重合体;ァ ジピン酸等の 2塩基酸とダリコールとの縮合、または、ラタトン類の開環重合で得られ るポリエステル系重合体;ェチル (メタ)アタリレート、ブチル (メタ)アタリレート等のモノ マーをラジカル重合して得られる (メタ)アクリル酸エステル系重合体;(メタ)アクリル 酸エステル系モノマー、酢酸ビュル、アクリロニトリル、スチレン等のモノマーをラジカ ル重合して得られるビニル系重合体;前記有機重合体中でのビニルモノマーを重合 して得られるグラフト重合体;ポリサルファイド系重合体; ε一力プロラタタムの開環重 合によるナイロン 6、へキサメチレンジァミンとアジピン酸の縮重合によるナイロン 6 · 6 、へキサメチレンジァミンとセバシン酸の縮重合によるナイロン 6 · 10、 ε アミノウン デカン酸の縮重合によるナイロン 11、 ε ーァミノラウ口ラタタムの開環重合によるナイ ロン 12、上記のナイロンのうち 2成分以上の成分を有する共重合ナイロン等のポリアミ ド系重合体;たとえばビスフエノール Αと塩ィ匕カルボニルより縮重合して製造されるポ リカーボネート系重合体、ジァリルフタレート系重合体等が例示される。
[0040] さらに、ポリイソブチレン、水添ポリイソプレン、水添ポリブタジエン等の飽和炭化水 素系重合体や、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体 は比較的ガラス転移温度が低ぐ得られる硬化物が耐寒性に優れることからより好ま しい。
[0041] (A)成分である有機重合体のガラス転移温度は、特に限定はな 、が、 20°C以下で あることが好ましぐ 0°C以下であることがより好ましぐ 20°C以下であることが特に 好ましい。ガラス転移温度が 20°Cを上回ると、冬季または寒冷地での粘度が高くなり 作業性が悪くなる場合があり、また、硬化物の柔軟性が低下し、伸びが低下する場合 がある。前記ガラス転移温度は DSC測定による値を示す。
[0042] また、本発明の(B)成分であるチタン触媒、アルミニウム触媒、ジルコニウム触媒か ら選ばれる 1種以上、および、(C)成分である加水分解性ケィ素基を有する低分子量 化合物は、その添加量が多いと、得られる組成物の深部硬化性が低下する場合があ る。従って、ポリオキシアルキレン系重合体および (メタ)アクリル酸エステル系重合体 は、透湿性が高く 1液型組成物にした場合に深部硬化性に優れることから特に好まし ぐポリオキシアルキレン系重合体は最も好ましい。
[0043] 反応性ケィ素基を有する有機重合体中に含有される反応性ケィ素基は、ケィ素原 子に結合した加水分解性基を有し、シラノール縮合触媒によって加速される反応に よりシロキサン結合を形成することにより架橋しうる基である。
[0044] 本発明に用いる反応性ケィ素基を有する有機重合体中に含有される反応性ケィ素 基は、一般式 (1) :
-SiX (1)
3
(式中、 Xは水酸基または加水分解性基を示し、 3つの Xは相互に同一であっても、 異なって!/、てもよ 、)で表される基を用いることができる。
[0045] 加水分解性基としては、特に限定されず、従来公知の加水分解性基であればよ!、 。具体的には、例えば水素原子、ハロゲン原子、アルコキシ基、ァシルォキシ基、ケト キシメート基、アミノ基、アミド基、酸アミド基、アミノォキシ基、メルカプト基、ァルケ- ルォキシ基等が挙げられる。これらの内では、水素原子、アルコキシ基、ァシルォキ シ基、ケトキシメート基、アミノ基、アミド基、アミノォキシ基、メルカプト基およびアルケ -ルォキシ基が好ましぐ加水分解性が穏やかで取扱!/、やす!/、と!/、う観点からアルコ キシ基が特に好ましい。したがって、一般式(11):
-Si (OR16) (11)
3
(式中、 R16は置換あるいは非置換の炭化水素基であり、 3つの R16は相互に同一であ つても、異なっていてもよい)で表される加水分解性のトリアルコキシシリル基が特に 好ましい。
[0046] 加水分解性のトリアルコキシシリル基のより具体的な例示としては、トリメトキシシリル 基、トリエトキシシリル基、トリイソプロボキシシリル基が挙げられる。活性が高く良好な 硬化性が得られることから、トリメトキシシリル基、トリエトキシシリル基がより好ましぐト リメトキシシリル基が特に好ましい。また、トリエトキシシリル基は、反応性ケィ素基の加 水分解反応に伴って生成するアルコール力 エタノールであり、より高い安全性を有 することから特に好ましい。
[0047] 反応性ケィ素基を形成するケィ素原子は 1個以上であるが、シロキサン結合などに より連結されたケィ素原子の場合には、 20個以下であることが好ましい。
[0048] 反応性ケィ素基の導入は公知の方法で行えばよ!、。すなわち、例えば以下の方法 が挙げられる。
[0049] (ィ)分子中に水酸基等の官能基を有する有機重合体に、この官能基に対して反応 性を示す活性基および不飽和基を有する有機化合物を反応させ、不飽和基を含有 する有機重合体を得る。もしくは、不飽和基含有エポキシィ匕合物との共重合により不 飽和基含有有機重合体を得る。つ!ヽで得られた反応生成物に反応性ケィ素基を有 するヒドロシランを作用させてヒドロシリル化する。
[0050] (口)(ィ)法と同様にして得られた不飽和基を含有する有機重合体にメルカプト基お よび反応性ケィ素基を有する化合物を反応させる。
[0051] (ハ)分子中に水酸基、エポキシ基やイソシァネート基等の官能基を有する有機重 合体に、この官能基に対して反応性を示す官能基および反応性ケィ素基を有する化 合物を反応させる。
[0052] 以上の方法のなかで、(ィ)の方法、または (ハ)のうち末端に水酸基を有する重合 体とイソシァネート基および反応性ケィ素基を有する化合物を反応させる方法は、比 較的短い反応時間で高い転ィ匕率が得られる為に好ましい。更に、(ィ)の方法で得ら れた反応性ケィ素基を有する有機重合体は、(ハ)の方法で得られる有機重合体より も低粘度で作業性の良い硬化性組成物となること、また、(口)の方法で得られる有機 重合体は、メルカプトシランに基づく臭気が強 、ことから、(ィ)の方法が特に好ま ヽ
[0053] (ィ)の方法において用いるヒドロシランィ匕合物の具体例としては、例えば、トリクロ口 シラン、のようなハロゲン化シラン類;トリメトキシシラン、トリエトキシシランのようなアル コキシシラン類などが挙げられる力 これらに限定されるものではない。特にアルコキ シシラン類は、得られる硬化性組成物の加水分解性が穏やかで取り扱!/ヽやす!/、ため に最も好ましい。
[0054] (口)の合成法としては、たとえば、メルカプト基および反応性ケィ素基を有する化合 物を、ラジカル開始剤および Zまたはラジカル発生源存在下でのラジカル付加反応 によって、有機重合体の不飽和結合部位に導入する方法等が挙げられるが、特に限 定されるものではな ヽ。前記メルカプト基および反応性ケィ素基を有する化合物の具 体例としては、たとえば、 γ—メルカプトプロピルトリメトキシシラン、 γ—メルカプトプ 口ピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリェトキ シシランなどが挙げられる力 これらに限定されるものではない。
[0055] (ハ)の合成法のうち末端に水酸基を有する重合体とイソシァネート基および反応 性ケィ素基を有する化合物を反応させる方法としては、たとえば、特開平 3— 47825 号公報に示される方法等が挙げられる力 特に限定されるものではない。前記イソシ ァネート基および反応性ケィ素基を有する化合物の具体例としては、たとえば、 γ— イソシァネートプロピルトリメトキシシラン、 γ—イソシァネートプロピルトリエトキシシラ ン、(イソシァネートメチル)トリメトキシシラン、(イソシァネートメチル)トリエトキシシラン などが挙げられる力 これらに限定されるものではない。 [0056] 反応性ケィ素基を有する有機重合体は直鎖状、または分岐を有してもよぐその数 平均分子量は GPCにおけるポリスチレン換算において 500〜100, 000程度、より 好まし <は 1, 000〜50, 000であり、特に好まし <は 3, 000〜30, 000である。数平 均分子量が 500未満では、硬化物の伸び特性の点で不都合な傾向があり、 100, 0 00を越えると、高粘度となる為に作業性の点で不都合な傾向がある。
[0057] 高強度、高伸びで、低弾性率を示すゴム状硬化物を得るためには、有機重合体に 含有される反応性ケィ素基は重合体 1分子中に平均して少なくとも 1個、好ましくは 1 . 1〜5個存在するのがよい。分子中に含まれる反応性ケィ素基の数が平均して 1個 未満になると、硬化性が不充分になり、良好なゴム弾性挙動を発現しに《なる。反 応性ケィ素基は、有機重合体分子鎖の主鎖の末端ある!、は側鎖の末端にあってもよ いし、また、両方にあってもよい。特に、反応性ケィ素基が分子鎖の主鎖の末端にの みあるときは、最終的に形成される硬化物に含まれる有機重合体成分の有効網目長 が長くなるため、高強度、高伸びで、低弾性率を示すゴム状硬化物が得られやすくな る。
[0058] 前記ポリオキシアルキレン系重合体は、本質的に一般式(12):
R17— O— (12)
(式中、 R17は炭素原子数 1から 14の直鎖状もしくは分岐アルキレン基である。)で示 される繰り返し単位を有する重合体であり、一般式(12)における R17は、炭素原子数 1から 14の、さらには 2力ら 4の、直鎖状もしくは分岐アルキレン基が好ましい。一般式 (12)で示される繰り返し単位の具体例としては、
-CH O—、 -CH CH O—、 -CH CH (CH ) 0 CH CH (C H ) 0 C
2 2 2 2 3 2 2 5
H C (CH ) O—、 -CH CH CH CH O—
2 3 2 2 2 2 2
等が挙げられる。ポリオキシアルキレン系重合体の主鎖骨格は、 1種類だけの繰り返 し単位力 なってもよいし、 2種類以上の繰り返し単位力 なってもよい。特にシーラ ント等に使用される場合には、プロピレンォキシド重合体を主成分とする重合体から 成るものが非晶質であることや比較的低粘度である点から好ましい。
[0059] ポリオキシアルキレン系重合体の合成法としては、例えば、 KOHのようなアルカリ 触媒による重合法、特開昭 61— 215623号に示される有機アルミニウム化合物とポ ルフィリンとを反応させて得られる錯体のような遷移金属化合物—ボルフイリン錯体触 媒による重合法、特公昭 46— 27250号、特公昭 59— 15336号、米国特許 327845 7号、米国特許 3278458号、米国特許 3278459号、米国特許 3427256号、米国 特許 3427334号、米国特許 3427335号等に示される複合金属シアンィ匕物錯体触 媒による重合法、特開平 10— 273512号に例示されるポリホスファゼン塩カもなる触 媒を用いる重合法、特開平 11— 060722号に例示されるホスファゼン化合物力もな る触媒を用いる重合法等、があげられるが、特に限定されるものではない。
[0060] 反応性ケィ素基を有するポリオキシアルキレン系重合体の製造方法は、特公昭 45
— 36319号、同 46— 12154号、特開昭 50— 156599号、同 54— 6096号、同 55
— 13767号、同 55— 13468号、同 57— 164123号、特公平 3— 2450号、米国特 許 3632557、米国特許 4345053、米国特許 4366307、米国特許 4960844等の 各公報に提案されているもの、また特開昭 61— 197631号、同 61— 215622号、同 61— 215623号、同 61— 218632号、特開平 3— 72527号、特開平 3— 47825号
、特開平 8— 231707号の各公報に提案されている数平均分子量 6, 000以上、 Mw ZMnが 1. 6以下の高分子量で分子量分布が狭 、ポリオキシアルキレン系重合体が 例示できる力 特にこれらに限定されるものではない。
[0061] 上記の反応性ケィ素基を有するポリオキシアルキレン系重合体は、単独で使用して もよ 、し 2種以上併用してもょ 、。
[0062] 前記飽和炭化水素系重合体は芳香環以外の炭素 炭素不飽和結合を実質的に 含有しない重合体であり、その骨格をなす重合体は、(1)エチレン、プロピレン、 1一 ブテン、イソブチレンなどのような炭素原子数 2から 6のォレフイン系化合物を主モノ マーとして重合させるか、(2)ブタジエン、イソプレンなどのようなジェン系化合物を単 独重合させ、あるいは、上記ォレフィン系化合物とを共重合させた後、水素添加する などの方法により得ることができる力 イソブチレン系重合体や水添ポリブタジエン系 重合体は、末端に官能基を導入しやすぐ分子量を制御しやすぐまた、末端官能基 の数を多くすることができるので好ましぐイソブチレン系重合体が特に好ましい。
[0063] 主鎖骨格が飽和炭化水素系重合体であるものは、耐熱性、耐候性、耐久性、及び 、湿気遮断性に優れる特徴を有する。 [0064] イソブチレン系重合体は、単量体単位のすべてがイソブチレン単位から形成されて いてもよいし、他単量体との共重合体でもよいが、ゴム特性の面力 イソブチレンに由 来する繰り返し単位を 50重量%以上含有するものが好ましぐ 80重量%以上含有す るものがより好ましぐ 90 99重量%含有するものが特に好ましい。
[0065] 飽和炭化水素系重合体の合成法としては、従来、各種重合方法が報告されて 、る 1S 特に近年多くのいわゆるリビング重合が開発されている。飽和炭化水素系重合 体、特にイソブチレン系重合体の場合、 Kennedyらによって見出されたィ-ファー重 合(J. P. Kennedyら、 J. Polymer Sci. , Polymer Chem. Ed. 1997年、 1 5卷、 2843頁)を用いることにより容易に製造することが可能であり、分子量 500 1 00, 000程度を、分子量分布 1. 5以下で重合でき、分子末端に各種官能基を導入 でさることが知られている。
[0066] 反応性ケィ素基を有する飽和炭化水素系重合体の製法としては、たとえば、特公 平 4— 69659号、特公平 7— 108928号、特開昭 63— 254149号、特開昭 64— 22 904号、特開平 1— 197509号、特許公報第 2539445号、特許公報第 2873395号 、特開平 7— 53882号の各明細書などに記載されている力 特にこれらに限定される ものではない。
[0067] 上記の反応性ケィ素基を有する飽和炭化水素系重合体は、単独で使用してもよい し 2種以上併用してもよい。
[0068] 前記 (メタ)アクリル酸エステル系重合体の主鎖を構成する (メタ)アクリル酸エステル 系モノマーとしては特に限定されず、各種のものを用いることができる。例示するなら ば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル 酸 n—プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸 n—ブチル、(メタ)ァ クリル酸イソブチル、(メタ)アクリル酸 tert—ブチル、(メタ)アクリル酸 n—ペンチル、( メタ)アクリル酸 n キシル、(メタ)アクリル酸シクロへキシル、(メタ)アクリル酸 n— ヘプチル、(メタ)アクリル酸 n—ォクチル、(メタ)アクリル酸 2—ェチルへキシル、(メタ )アクリル酸ノエル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル 酸フヱ-ル、(メタ)アクリル酸トルィル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸 2 —メトキシェチル、(メタ)アクリル酸 3—メトキシブチル、(メタ)アクリル酸 2—ヒドロキシ ェチル、(メタ)アクリル酸 2—ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)ァ クリル酸グリシジル、(メタ)アクリル酸 2—アミノエチル、 Ύ— (メタクリロイルォキシプロ タクリロイルォキシメチルトリメトキシシラン、メタクリロイルォキシメチルトリエトキシシラ ン、メタクリロイルォキシメチルジメトキシメチルシラン、メタクリロイルォキシメチルジェ トキシメチルシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸ト リフルォロメチルメチル、(メタ)アクリル酸 2—トリフルォロメチルェチル、(メタ)アタリ ル酸 2—パーフルォロェチルェチル、(メタ)アクリル酸 2—パーフルォロェチルー 2— パーフルォロブチルェチル、(メタ)アクリル酸パーフルォロェチル、(メタ)アクリル酸 トリフルォロメチル、(メタ)アクリル酸ビス(トリフルォロメチル)メチル、(メタ)アクリル酸 2—トリフルォロメチルー 2—パーフルォロェチルェチル、(メタ)アクリル酸 2—パーフ ルォ口へキシルェチル、(メタ)アクリル酸 2—パーフルォロデシルェチル、(メタ)ァク リル酸 2—パーフルォ口へキサデシルェチル等の(メタ)アクリル酸系モノマーが挙げ られる。前記 (メタ)アクリル酸エステル系重合体では、(メタ)アクリル酸エステル系モ ノマーとともに、以下のビニル系モノマーを共重合することもできる。該ビュル系モノ マーを例示すると、スチレン、ビュルトルエン、 α—メチルスチレン、クロルスチレン、 スチレンスルホン酸及びその塩等のスチレン系モノマー;パーフルォロエチレン、パ 一フルォロプロピレン、フッ化ビ-リデン等のフッ素含有ビュルモノマー;ビュルトリメト キシシラン、ビュルトリエトキシシラン等のケィ素含有ビュル系モノマー;無水マレイン 酸、マレイン酸、マレイン酸のモノアルキルエステル及びジアルキルエステル;フマル 酸、フマル酸のモノアルキルエステル及びジアルキルエステル;マレイミド、メチルマ レイミド、ェチルマレイミド、プロピルマレイミド、ブチルマレイミド、へキシルマレイミド、 ォクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フエ-ルマレイミド、シク 口へキシルマレイミド等のマレイミド系モノマー;アクリロニトリル、メタタリ口-トリル等の 二トリル基含有ビュル系モノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビ- ル系モノマー;酢酸ビュル、プロピオン酸ビュル、ピバリン酸ビュル、安息香酸ビュル 、桂皮酸ビュル等のビュルエステル類;エチレン、プロピレン等のアルケン類;ブタジ ェン、イソプレン等の共役ジェン類;塩化ビュル、塩化ビ-リデン、塩化ァリル、ァリル アルコール等が挙げられる。これらは、単独で用いても良いし、複数を共重合させて も構わない。なかでも、生成物の物性等から、スチレン系モノマー及び (メタ)アクリル 酸系モノマーからなる重合体が好ましい。より好ましくは、アクリル酸エステルモノマー 及びメタクリル酸エステルモノマー力 なる (メタ)アクリル系重合体であり、特に好まし くはアクリル酸エステルモノマー力もなるアクリル系重合体である。一般建築用等の用 途においては配合物の低粘度、硬化物の低モジュラス、高伸び、耐候、耐熱性等の 物性が要求される点から、アクリル酸ブチル系モノマーが更に好ましい。一方、 自動 車用途等の耐油性等が要求される用途においては、アクリル酸ェチルを主とした共 重合体が更に好まし 、。このアクリル酸ェチルを主とした重合体は耐油性に優れるが 低温特性 (耐寒性)にやや劣る傾向があるため、その低温特性を向上させるために、 アクリル酸ェチルの一部をアクリル酸ブチルに置き換えることも可能である。ただし、 アクリル酸ブチルの比率を増やすに伴 、その良好な耐油性が損なわれて 、くので、 耐油性を要求される用途にはその比率は 40%以下にするのが好ましぐ更には 30 %以下にするのがより好ましい。また、耐油性を損なわずに低温特性等を改善するた めに側鎖のアルキル基に酸素が導入されたアクリル酸 2—メトキシェチルゃアタリ ル酸— 2—エトキシェチル等を用いるのも好ましい。ただし、側鎖にエーテル結合を 持つアルコキシ基の導入により耐熱性が劣る傾向にあるので、耐熱性が要求されると きには、その比率は 40%以下にするのが好ましい。各種用途や要求される目的に応 じて、必要とされる耐油性や耐熱性、低温特性等の物性を考慮し、その比率を変化 させ、適した重合体を得ることが可能である。例えば、限定はされないが耐油性ゃ耐 熱性、低温特性等の物性バランスに優れている例としては、アクリル酸ェチル Zァク リル酸ブチル Zアクリル酸 2—メトキシェチル(重量比で 40〜50Z20〜30Z30〜 20)の共重合体が挙げられる。本発明においては、これらの好ましいモノマーを他の モノマーと共重合、更にはブロック共重合させても構わなぐその際は、これらの好ま し 、モノマーが重量比で 40%以上含まれて 、ることが好まし 、。なお上記表現形式 で例えば (メタ)アクリル酸とは、アクリル酸および Ζあるいはメタクリル酸を表す。
(メタ)アクリル酸エステル系重合体の合成法としては、特に限定されず、公知の方 法で行えばよい。但し、重合開始剤としてァゾ系化合物、過酸化物などを用いる通常 のフリーラジカル重合法で得られる重合体は、分子量分布の値が一般に 2以上と大 きぐ粘度が高くなるという問題を有している。従って、分子量分布が狭ぐ粘度の低 V、 (メタ)アクリル酸エステル系重合体であって、高 、割合で分子鎖末端に架橋性官 能基を有する (メタ)アクリル酸エステル系重合体を得るためには、リビングラジカル重 合法を用いることが好ましい。
[0070] 「リビングラジカル重合法」の中でも、有機ハロゲン化物ある 、はハロゲン化スルホ ニル化合物等を開始剤、遷移金属錯体を触媒として (メタ)アクリル酸エステル系モノ マーを重合する「原子移動ラジカル重合法」は、上記の「リビングラジカル重合法」の 特徴に加えて、官能基変換反応に比較的有利なハロゲン等を末端に有し、開始剤 や触媒の設計の自由度が大きいことから、特定の官能基を有する (メタ)アクリル酸ェ ステル系重合体の製造方法としてはさらに好まし 、。この原子移動ラジカル重合法と しては例えば、 Matyjaszewskiら、ジャーナル ·ォブ ·アメリカン ·ケミカルソサエティ 一 (J. Am. Chem. Soc. ) 1995年、 117卷、 5614頁など力挙げられる。
[0071] 反応性ケィ素基を有する (メタ)アクリル酸エステル系重合体の製法としては、たとえ ば、特公平 3— 14068号公報、特公平 4— 55444号公報、特開平 6— 211922号公 報等に、連鎖移動剤を用いたフリーラジカル重合法を用いた製法が開示されている 。また、特開平 9— 272714号公報等に、原子移動ラジカル重合法を用いた製法が 開示されている力 特にこれらに限定されるものではない。
[0072] 上記の反応性ケィ素基を有する (メタ)アクリル酸エステル系重合体は、単独で使用 してもょ 、し 2種以上併用してもょ 、。
[0073] これらの反応性ケィ素基を有する有機重合体は、単独で使用してもよいし 2種以上 併用してもよい。具体的には、反応性ケィ素基を有するポリオキシアルキレン系重合 体、反応性ケィ素基を有する飽和炭化水素系重合体、反応性ケィ素基を有する (メタ )アクリル酸エステル系重合体、力 なる群力 選択される 2種以上をブレンドしてなる 有機重合体も使用できる。
[0074] 反応性ケィ素基を有するポリオキシアルキレン系重合体と反応性ケィ素基を有する
(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法は、特 開昭 59— 122541号、特開昭 63— 112642号、特開平 6— 172631号、特開平 11 — 116763号公報等に提案されている力 特にこれらに限定されるものではない。好 ましい具体例は、反応性ケィ素基を有し分子鎖が実質的に、下記一般式 (13): CH— C (R18) (COOR19) (13)
2
(式中、 R18は水素原子またはメチル基、 R19は炭素原子数 1から 8のアルキル基を示 す)で表される炭素原子数 1から 8のアルキル基を有する (メタ)アクリル酸エステル単 量体単位と、下記一般式(14):
-CH -C (R18) (COOR20) - (14)
2
(式中、 R18は前記に同じ、 R2°は炭素原子数 10以上のアルキル基を示す)で表される 炭素原子数 10以上のアルキル基を有する (メタ)アクリル酸エステル単量体単位から なる共重合体に、反応性ケィ素基を有するポリオキシアルキレン系重合体をブレンド して製造する方法である。
[0075] 前記一般式(13)の R19としては、たとえばメチル基、ェチル基、プロピル基、 n—ブ チル基、 t—ブチル基、 2 ェチルへキシル基等の炭素原子数 1から 8、好ましくは 1 力 4、さらに好ましくは 1から 2のアルキル基があげられる。なお、 R19のアルキル基は 単独でもよぐ 2種以上混合していてもよい。
[0076] 前記一般式(14)の R2Qとしては、たとえばラウリル基、トリデシル基、セチル基、ステ ァリル基、ベへニル基等の炭素原子数 10以上、通常は 10から 30、好ましくは 10から 20の長鎖のアルキル基があげられる。なお、 R2Qのアルキル基は R19の場合と同様、 単独でもよぐ 2種以上混合したものであってもよい。
[0077] 該 (メタ)アクリル酸エステル系共重合体の分子鎖は実質的に式( 13)及び式(14) の単量体単位力 なる力 ここで 、う「実質的に」とは該共重合体中に存在する式(1 3)及び式(14)の単量体単位の合計が 50重量%をこえることを意味する。式( 13)及 び式(14)の単量体単位の合計は好ましくは 70重量%以上である。
[0078] また式(13)の単量体単位と式(14)の単量体単位の存在比は、重量比で 95 : 5〜 40: 60力 子ましく、 90: 10〜60: 40力さらに好まし!/、。
[0079] 該共重合体に含有されて!ヽてもよ!/ヽ式( 13)及び式(14)以外の単量体単位として は、たとえばアクリル酸、メタクリル酸等の α , β 不飽和カルボン酸;アクリルアミド、 メタクリルアミド、 Ν—メチロールアクリルアミド、 Ν—メチロールメタクリルアミド等のアミ ド基、グリシジルアタリレート、グリシジルメタタリレート等のエポキシ基、ジェチルァミノ ェチルアタリレート、ジェチルアミノエチルメタタリレート、アミノエチルビ-ルエーテル 等のアミノ基を含む単量体;その他アクリロニトリル、スチレン、 (X—メチルスチレン、ァ ルキルビュルエーテル、塩化ビュル、酢酸ビュル、プロピオン酸ビュル、エチレン等 に起因する単量体単位があげられる。
[0080] 反応性ケィ素基を有する飽和炭化水素系重合体と反応性ケィ素基を有する (メタ) アクリル酸エステル系共重合体をブレンドしてなる有機重合体は、特開平 1 16876
4号、特開 2000— 186176号公報等に提案されている力 特にこれらに限定される ものではない。
[0081] さらに、反応性ケィ素官能基を有する (メタ)アクリル酸エステル系共重合体をプレン ドしてなる有機重合体の製造方法としては、他にも、反応性ケィ素基を有する有機重 合体の存在下で (メタ)アクリル酸エステル系単量体の重合を行う方法が利用できる。 この製造方法は、特開昭 59— 78223号、特開昭 59— 168014号、特開昭 60— 22 8516号、特開昭 60— 228517号等の各公報に具体的に開示されている力 これら に限定されるものではない。
[0082] 一方、有機重合体の主鎖骨格中には本発明の効果を大きく損なわない範囲でウレ タン結合成分等の他の成分を含んで 、てもよ 、。
[0083] 前記ウレタン結合成分としては特に限定されないが、イソシァネート基と活性水素 基との反応により生成する基 (以下、アミドセグメントともいう)を挙げることができる。
[0084] 前記アミドセグメントは一般式(15) :
NR21 - C ( = 0) - (15)
(R21は水素原子または置換あるいは非置換の有機基を表す)で表される基である。
[0085] 前記アミドセグメントとしては、具体的には、イソシァネート基と水酸基との反応によ り生成するウレタン基;イソシァネート基とアミノ基との反応により生成する尿素基;イソ シァネート基とメルカプト基との反応により生成するチォウレタン基などを挙げることが できる。また、本発明では、上記ウレタン基、尿素基、及び、チォウレタン基中の活性 水素が、更にイソシァネート基と反応して生成する基も、一般式(15)の基に含まれる [0086] アミドセグメントと反応性ケィ素基を有する有機重合体の工業的に容易な製造方法 を例示すると、末端に活性水素含有基を有する有機重合体に、過剰のポリイソシァネ 一トイ匕合物を反応させて、ポリウレタン系主鎖の末端にイソシァネート基を有する重合 体とした後、あるいは同時に、該イソシァネート基の全部または一部に一般式(16) Z— R22— SiX (16)
3
[ただし、式中、 Xは前記と同じ。 R22は、 2価の有機基であり、より好ましくは炭素原子 数 1から 20の置換もしくは非置換の 2価の炭化水素基である。 Zは水酸基、カルボキ シル基、メルカプト基およびアミノ基(1級または 2級)から選ばれた活性水素含有基 である。 ]で表されるケィ素化合物の Z基を反応させる方法により製造されるものを挙 げることができる。この製造方法に関連した、有機重合体の公知の製造法を例示する と、特公昭 46— 12154号(米国特許 3632557号)、特開昭 58— 109529号(米国 特許 4374237号)、特開昭 62— 13430号(米国特許 4645816号)、特開平 8— 53 528号(EP0676403)、特開平 10— 204144号(EP0831108)、特表 2003— 50 8561 (米国特許 6197912号)、特開平 6— 211879号(米国特許 5364955号)、特 開平 10— 53637号(米国特許 5756751号;)、特開平 11— 100427号、特開 2000 — 169544号、特開 2000— 169545号、特開 2002— 212415号、特許第 331336 0号、米国特許 4067844号、米国特許 3711445号、特開 2001— 323040号、など が挙げられる。
[0087] また、末端に活性水素含有基を有する有機重合体に一般式 (17)
0 = C=N-R22-SiX (17)
3
(ただし、式中、 R22、 Xは前記に同じ。)で示される反応性ケィ素基含有イソシァネー ト化合物とを反応させることにより製造されるものを挙げることができる。この製造方法 に関連した、有機重合体の公知の製造法を例示すると、特開平 11— 279249号 (米 国特許 5990257号)、特開 2000— 119365号(米国特許 6046270号)、特開昭 5 8 - 29818号(米国特許 4345053号)、特開平 3—47825号(米国特許 5068304 号)、特開平 11— 60724号、特開 2002— 155145号、特開 2002— 249538号、 W 003/018658, WO03/059981,など力挙げられる。
[0088] 末端に活性水素含有基を有する有機重合体としては、末端に水酸基を有するォキ シアルキレン重合体(ポリエーテルポリオール)、ポリアクリルポリオール、ポリエステル ポリオール、末端に水酸基を有する飽和炭化水素系重合体 (ポリオレフインポリオ一 ル)、ポリチオールィ匕合物、ポリアミンィ匕合物などが挙げられる。これらの中でも、ポリ エーテルポリオール、ポリアクリルポリオール、および、ポリオレフインポリオールは、 得られる有機重合体のガラス転移温度が比較的低ぐ得られる硬化物が耐寒性に優 れることから好ましい。特に、ポリエーテルポリオールは、得られる有機重合体の粘度 が低く作業性が良好であり、深部硬化性が良好である為に特に好ましい。また、ポリ アクリルポリオールおよび飽和炭化水素系重合体は、得られる有機重合体の硬化物 の耐候性 ·耐熱性が良好である為により好ま 、。
[0089] ポリエーテルポリオールとしては、 、かなる製造方法にぉ 、て製造されたものでも使 用することが出来るが、全分子平均で分子末端当り少なくとも 0. 7個の水酸基を末端 に有するものが好ましい。具体的には、従来のアルカリ金属触媒を使用して製造した ォキシアルキレン重合体や、複合金属シアン化物錯体ゃセシウムの存在下、少なくと も 2つの水酸基を有するポリヒドロキシィ匕合物などの開始剤に、アルキレンォキシドを 反応させて製造されるォキシアルキレン重合体などが挙げられる。
[0090] 上記の各重合法の中でも、複合金属シアン化物錯体を使用する重合法は、より低 不飽和度で、 MwZMnが狭ぐより低粘度でかつ、高耐酸性、高耐候性のォキシァ ルキレン重合体を得ることが可能であるため好ましい。
[0091] 前記ポリアクリルポリオールとしては、(メタ)アクリル酸アルキルエステル(共)重合体 を骨格とし、かつ、分子内にヒドロキシル基を有するポリオールを挙げることができる。 この重合体の合成法は、分子量分布が狭ぐ低粘度化が可能なことからリビングラジ カル重合法が好ましぐ原子移動ラジカル重合法がさらに好ましい。また、特開 2001 - 207157号公報に記載されて 、るアクリル酸アルキルエステル系単量体を高温、 高圧で連続塊状重合によって得た、いわゆる SGOプロセスによる重合体を用いるの が好ましい。具体的には、東亞合成 (株)製の UH— 2000等が挙げられる。
[0092] 前記ポリイソシァネートイ匕合物の具体例としては、トルエン(トリレン)ジイソシァネー ト、ジフエ-ルメタンジイソシァネート、キシリレンジイソシァネート等の芳香族系ポリイ ソシァネート;イソフォロンジイソシァネート、へキサメチレンジイソシァネート等の脂肪 族系ポリイソシァネートなどを挙げることができる。
[0093] 一般式(16)のケィ素化合物としては特に限定はないが、具体的に例示すると、 γ —ァミノプロピルトリメトキシシラン、 Ν—(β—アミノエチル) Ί—ァミノプロピルトリメ トキシシラン、 γ - (Ν フエ-ル)ァミノプロピルトリメトキシシラン、 Ν ェチルアミノィ ソブチルトリメトキシシラン、 Ν シクロへキシルァミノメチルトリエトキシシラン、 Ν シ クロへキシルアミノメチルジェトキシメチルシラン、 Ν フエニルアミノメチルトリメトキシ シラン等のアミノ基含有シラン類; Ύ—ヒドロキシプロピルトリメトキシシラン等のヒドロキ シ基含有シラン類; Ύ—メルカプトプロピルトリメトキシシラン等のメルカプト基含有シ ラン類;等が挙げられる。また、特開平 6— 211879号 (米国特許 5364955号)、特 開平 10— 53637号(米国特許 5756751号)、特開平 10— 204144号(EP083110 8)、特開 2000— 169544号、特開 2000— 169545号【こ記載されて!ヽる様【こ、各種 の a , β 不飽和カルボ-ル化合物と一級アミノ基含有シランとの Michael付加反 応物、または、各種の (メタ)アタリロイル基含有シランと一級アミノ基含有化合物との Michael付加反応物もまた、一般式(16)のケィ素化合物として用いることができる。
[0094] 一般式(17)の反応性ケィ素基含有イソシァネートイ匕合物としては特に限定はない 力 具体的に例示すると、 γ トリメトキシシリルプロピルイソシァネート、 γ—トリエト シリルメチルイソシァネート等が挙げられる。また、特開 2000— 119365号 (米国特 許 6046270号)に記載されている様に、一般式(16)のケィ素化合物と、過剰の前記 ポリイソシァネートイ匕合物を反応させて得られる化合物もまた、一般式(17)の反応性 ケィ素基含有イソシァネートイ匕合物として用いることができる。
[0095] 本発明の (Α)成分である有機重合体の主鎖骨格中にアミドセグメントが多いと、有 機重合体の粘度が高くなり、作業性の悪い組成物となる場合がある。一方、(Α)成分 の主鎖骨格中のアミドセグメントによって、本発明の組成物の硬化性が向上する傾向 がある。従って、(Α)成分の主鎖骨格中にアミドセグメントを含む場合、アミドセグメン トは 1分子あたり平均で、 1〜10個が好ましぐ 1. 5〜7個がより好ましぐ 2〜5個が特 に好ましい。 1個よりも少ない場合には、硬化性が十分ではない場合があり、 10個より も大きい場合には、有機重合体が高粘度となり作業性の悪い組成物となる場合があ る。
[0096] 本発明では、 (B)成分として、チタン触媒、アルミニウム触媒、ジルコニウム触媒力 選ばれる 1種以上を使用する。これらの触媒は、(A)成分である有機重合体の硬化 触媒として機能する。従来、(A)成分である反応性ケィ素基を有する有機重合体の 硬化触媒として、ジブチル錫ジラウレートやジブチル錫ビスァセチルァセトネートなど の有機錫化合物が用いられているが、本発明の触媒 (B)を用いることにより、非有機 錫触媒でありながら、実用的な硬化特性を有する硬化性組成物が得られる。また、有 機錫触媒などの他の硬化触媒を用いた場合と比較して、アクリル榭脂などの難接着 有機系被着体に対する接着性を高めることができる。
[0097] チタン触媒、アルミニウム触媒、および、ジルコニウム触媒の中では、チタン触媒が 硬化性の点力も好ましい。
[0098] なお、(A)成分の硬化触媒として機能しな!、TiOなどの化合物は、本発明の(B)
2
成分に含まれない。
[0099] 前記触媒は、水酸基または置換あるいは非置換のアルコキシ基と結合したチタン 原子、アルミニウム原子、または、ジルコニウム原子を有する化合物であり、前記チタ ン触媒の好ましい具体例としては、一般式 (2):
TKOR1) (2)
4
(式中、 R1は有機基であり、より好ましくは炭素原子数 1から 20の置換あるいは非置 換の炭化水素基であり、 4個の R1は相互に同一であっても、異なっていてもよい)で 表され、その中でもチタニウムアルコキシドが代表的な化合物として例示できる。その 他に一般式(2)で表される化合物としては、一般式(2)中の 4個の OR1基の一部また は全部が一般式(18) :
-OCOR23 (18)
(式中、 R23は有機基であり、より好ましくは炭素原子数 1から 20の置換あるいは非置 換の炭化水素基である。 )で表されるァシルォキシ基であるチタニウムァシレートが挙 げられる。
[0100] また、一般式 (2)で表されないチタン触媒としては、一般式(19):
TiX1 (OR24) (19)
4~a a (式中、 X1はハロゲン原子であり、 4— a個の X1は相互に同一であっても、異なってい てもよい。 R24は有機基であり、より好ましくは炭素原子数 1から 20の置換あるいは非 置換の炭化水素基であり a個の R24は相互に同一であっても、異なっていてもよい。 a は 1、 2、 3のいずれかである。)で表されるハロゲン化チタニウムアルコキシドが挙げ られる。
[0101] これらの中でも、チタニウムアルコキシドは、湿分に対する安定性、および、硬化性 の点力 好ましい。
[0102] 前記一般式 (2)で表されるチタン触媒の中でも、一般式 (3):
[0103] [化 13]
( 3 )
Figure imgf000024_0001
[0104] [式中、 R2、 R3は水素原子または炭素原子数 1から 20の炭化水素基であり、 R2およ び R3は同一であっても、異なっていてもよい。 n個の R2は相互に同一であっても、異 なっていてもよぐ 4— n個の R3は相互に同一であっても、異なっていてもよい。
Figure imgf000024_0002
A 2は— R4または— OR4力 選ばれる(ここで R4は炭素原子数 1から 20の炭化水素基で ある)。 A1および A2は同一であっても、異なっていてもよい。 4— n個の A1は相互に同 一であっても、異なっていてもよぐ 4— n個の A2は相互に同一であっても、異なって いてもよい。 nは 0、 1、 2、 3のいずれかである。 ]で表されるチタニウムキレートおよび Zまたは一般式 (4) : [0105] [化 14]
Figure imgf000025_0001
[0106] (式中、
Figure imgf000025_0002
ΑΊま前記と同じ。 R5は、炭素原子数 1から 20の 2価の炭化水素基で ある。)で表されるチタニウムキレートが、(Α)成分との相溶性、触媒活性の高さ、およ び、貯蔵安定性の点から、より好ましい。一般式 (3)のチタニウムキレートは、触媒活 性が高いことから、特に好ましい。一般式(3)の ηが 2であるチタニウムキレートは、比 較的結晶性 (融点)が低ぐ作業性が良好で、触媒活性が高い為、最も好ましい。
[0107] 一般式(2)で表されるチタニウムアルコキシドを具体的に例示すると、チタニウムテ トラメトキシド、チタニウムテトラエトキシド、チタニウムテトラァリルォキシド、チタニウム テトラ η—プロポキシド、チタニウムテトライソプロポキシド、チタニウムテトラ η—ブトキ シド、チタニウムテトライソブトキシド、チタニウムテトラ sec—ブトキシド、チタニウムテト ラ tーブトキシド、チタニウムテトラ n—ペンチルォキシド、チタニウムテトラシクロペンチ ルォキシド、チタニウムテトラへキシルォキシド、チタニウムテトラシクロへキシルォキ シド、チタニウムテトラべンジルォキシド、チタニウムテトラオクチルォキシド、チタニゥ ムテトラキス(2—ェチルへキシルォキシド)、チタニウムテトラデシルォキシド、チタ- ゥムテトラドデシルォキシド、チタニウムテトラステアリルォキシド、チタニウムテトラブト キシドダイマー、チタニウムテトラキス(8—ヒドロキシォクチルォキシド)、チタニウムジ イソプロポキシドビス(2—ェチルー 1, 3—へキサンジォラト)、チタニウムビス(2—ェ チルへキシルォキシ)ビス(2—ェチルー 1, 3—へキサンジォラト)、チタニウムテトラ キス(2—クロロェトキシド)、チタニウムテトラキス(2—ブロモェトキシド)、チタニウムテ トラキス(2—メトキシェトキシド)、チタニウムテトラキス(2—エトキシェトキシド)、チタ ユウムブトキシドトリメトキシド、チタニウムジブトキシドジメトキシド、チタニウムブトキシ ドトリエトキシド、チタニウムジブトキシドジェトキシド、チタニウムブトキシドトリイソプロ ポキシド、チタニウムジブトキシドジイソプロポキシド、チタニウムテトラフエノキシド、チ タ-ゥムテトラキス(o クロロフエノキシド)、チタニウムテトラキス(m—-トロフエノキシ ド)、チタニウムテトラキス (p—メチルフエノキシド)、チタニウムテトラキス(トリメチルシ リルォキシド)、などが挙げられる。
[0108] 一般式(2)中の 4個の OR1基の一部または全部が一般式(18)で表される基である チタニウムァシレートを具体的に例示すると、チタニウムアタリレートトリイソプロポキシ ド、チタニウムメタタリレートトリイソプロポキシド、チタニウムジメタクリレートジイソプロ ポキシド、チタニウムイソプロポキシドトリメタタリレート、チタニウムへキサノエートトリイ ソプロポキシド、チタ-ゥムステアレートトリイソプロポキシド、などが挙げられる。
[0109] 一般式(19)のハロゲンィ匕チタニウムアルコキシドを具体的に例示すると、チタ-ゥ ムクロライドトリイソプロポキシド、チタニウムジクロライドジイソプロポキシド、チタニウム イソプロポキシドトリクロライド、チタニウムブロマイドトリイソプロポキシド、チタニウムフ ルォライドトリイソプロポキシド、チタニウムクロライドトリエトキシド、チタニウムクロライド トリブトキシド、などが挙げられる。
[0110] 一般式 (3)または一般式 (4)のチタニウムキレートを具体的に例示すると、チタ-ゥ ムジメトキシドビス(ェチノレアセトアセテート)、チタニウムジメトキドビス(ァセチノレアセト ネート)、チタニウムジエトキシドビス(ェチルァセトアセテート)、チタニウムジエトキド ビス(ァセチノレアセトネート)、チタニウムジイソプロボキシドビス(ェチノレアセトァセテ ート)、チタニウムジイソプロボキシドビス (メチルァセトアセテート)、チタニウムジイソ プロポキシドビス(t ブチルァセトアセテート)、チタニウムジイソプロボキシドビス(メ チルー 3—ォキソ 4, 4ージメチルへキサノエート)、チタニウムジイソプロポキシドビ ス(ェチルー 3—ォキソ 4, 4, 4 トリフルォロペンタノエート)、チタニウムジイソプロ ポキシドビス(ァセチルァセトネート)、チタニウムジイソプロボキシドビス(2, 2, 6, 6 ーテトラメチルー 3, 5—ヘプタンジォネート)、チタニウムジ n—ブトキシドビス(ェチ ルァセトアセテート)、チタニウムジー n—ブトキシドビス(ァセチルァセトネート)、チタ ユウムジイソブトキシドビス(ェチノレアセトアセテート)、チタニウムジイソブトキシドビス( ァセチルァセトネート)、チタニウムジー t ブトキシドビス(ェチノレアセトアセテート)、 チタニウムジ t—ブトキシドビス(ァセチルァセトネート)、チタニウムジー 2—ェチル へキソキシドビス(ェチルァセトアセテート)、チタニウムジー 2—ェチルへキソキシドビ ス(ァセチルァセトネート)、 1, 2—ジォキシェタンチタニウムビス(ェチルァセトァセテ 一ト)、 1, 3 ジォキシプロパンチタニウムビス(ェチルァセトアセテート)、 2, 4 ジォ キシペンタンチタニウムビス(ェチルァセトアセテート)、 2, 4 ジメチルー 2, 4 ジォ キシペンタンチタニウムビス(ェチルァセトアセテート)、チタニウムジイソプロボキシド ビス(トリエタノールアミネート)、チタニウムテトラキス(ェチルァセトアセテート)、チタ 二ゥムテトラキス(ァセチルァセトネート)、チタニウムビス(トリメチルシロキシ)ビス(ェ チノレアセトアセテート)、チタニウムビス(トリメチノレシ口キシ)ビス(ァセチノレアセトナー ト)、などが挙げられる。これらの中でも、チタニウムジエトキシドビス(ェチルァセトァ セテート)、チタニウムジエトキドビス(ァセチルァセトネート)、チタニウムジイソプロボ キシドビス(ェチノレアセトアセテート)、チタニウムジイソプロボキシドビス(ァセチノレア セトネート)、チタニウムジブトキシドビス(ェチルァセトアセテート)、チタニウムジブト キシドビス (ァセチルァセトネート) 1S 入手性および触媒活性の点力も好ましぐチタ 二ゥムジエトキシドビス(ェチノレアセトアセテート)、チタニウムジイソプロボキシドビス( ェチノレアセトアセテート)、チタニウムジブトキシドビス(ェチノレアセトアセテート)がより 好ましぐチタニウムジイソプロボキシドビス(ェチルァセトアセテート)が最も好ましい
[0111] また、上記以外のチタン触媒を具体的に記載すると、チタニウムトリス (ジォクチルフ ォスフェート)イソプロポキシド、チタニウムトリス(ドデシルベンゼンスルフォネート)イソ プロポキシド、ジヒドロキシチタニウムビスラタテート、などが挙げられる。
[0112] また、前記チタニウムキレートのキレート配位子を形成し得るキレート試薬の具体例 としては、ァセチルアセトン、 2, 2, 4, 4ーテトラメチルー 3, 5 ヘプタンジオンなど の 13ージケトン、ァセト酢酸ェチル、ァセト酢酸ェチル、ァセト酢酸 tーブチル、ァセト 酢酸ァリル、ァセト酢酸(2—メタクリロキシェチル)、 3 ォキソ—4, 4 ジメチルへキ サン酸メチル、 3—ォキソ—4, 4, 4 トリフルォロブタン酸ェチルなどの j8—ケトエス テル、マロン酸ジメチル、マロン酸ジェチルなどの j8—ジエステルが硬化性の点から 好ましく、 j8—ジケトンおよび j8—ケトエステルが硬化性および貯蔵安定性の点から より好ましく、 β—ケトエステルが特に好ましい。また、硬化性、貯蔵安定性および入 手性の点から、ァセチルアセトン、ァセト酢酸メチル、ァセト酢酸ェチルがより好ましく 、ァセト酢酸ェチルが特に好ましい。また、キレート配位子が 2個以上存在する場合、 それぞれのキレート配位子は同一であっても異なって!/、てもよ!/、。
[0113] 前記チタニウムキレートを本発明の(B)成分として添加する場合、以下に述べる(二 )または (ホ)の方法を用いることができる。(二)予めキレートイ匕したチタン触媒を添カロ する方法。(ホ)チタニウムテトライソプロボキシドやチタニウムジクロライドジイソプロボ キシドなどのキレート試薬と反応し得るチタンィ匕合物と、ァセト酢酸ェチルなどのキレ ート試薬を、本発明の組成物に添加し、組成物中にてキレートイ匕させたチタニウムキ レートを用いる方法。
[0114] 前記アルミニウム触媒の好ましい具体例としては、一般式(5):
Al(OR6) (5)
3
(式中、 R6は有機基であり、より好ましくは炭素原子数 1から 20の置換あるいは非置 換の炭化水素基であり、 3個の R6は相互に同一であっても、異なっていてもよい)で 表され、その中でもアルミニウムアルコキシドが代表的な化合物として例示できる。そ の他に一般式(5)で表される化合物としては、一般式(5)中の 3個の OR6基の一部ま たは全部が一般式 (20) :
-OCOR25 (20)
(式中、 R25は有機基であり、より好ましくは炭素原子数 1から 20の置換あるいは非置 換の炭化水素基である。 )で表されるァシルォキシ基であるアルミニウムァシレートが 挙げられる。
[0115] また、一般式(5)で表されないアルミニウム触媒としては、一般式(21):
A1X2 (OR26) (21)
3-b b
(式中、 X2はハロゲン原子であり、 3— b個の X2は相互に同一であっても、異なってい てもよい。 R26は有機基であり、より好ましくは炭素原子数 1から 20の置換あるいは非 置換の炭化水素基であり b個の R26は相互に同一であっても、異なっていてもよい。 b は 1、 2のいずれかである。)で表されるハロゲン化アルミニウムアルコキシドが挙げら れる。
[0116] これらの中でも、アルミニウムアルコキシドは、湿分に対する安定性、および、硬化 性の点力も好ましい。 [0117] 前記一般式(5)で表されるアルミ ゥム触媒の中でも、一般式 (6) :
[0118] [化 15]
[0119] [式
Figure imgf000029_0001
中、 R8は水素原子または炭素原子数 1から 20の炭化水素基であり、 R7およ び R8は同一であっても、異なっていてもよい。 m個の R7は相互に同一であっても、異 なっていてもよく、 3— m個の R8は相互に同一であっても、異なっていてもよい。 A3、 A4は— R9または— OR9力も選ばれる(ここで R9は炭素原子数 1から 20の炭化水素基 である)。 A3および A4は同一であっても、異なっていてもよい。 3— m個の A3は相互に 同一であっても、異なっていてもよく、 3— m個の A4は相互に同一であっても、異なつ ていてもよい。 mは 0、 1、 2のいずれかである。 ]で表されるアルミニウムキレートおよ び Zまたは一般式 (7) :
[0120] [化 16]
Figure imgf000029_0002
[0121] (式中、 R8、 Α3、 ΑΊま前記と同じ。 R1Qは、炭素原子数 1から 20の 2価の炭化水素基で ある。)で表されるアルミニウムキレートが、(A)成分との相溶性、触媒活性の高さ、お よび、貯蔵安定性の点から、より好ましい。一般式 (6)のアルミニウムキレートは、触 媒活性が高いことから、特に好ましい。
[0122] 一般式(5)で表されるアルミニウムアルコキシドを具体的に例示すると、アルミニゥ ムトリメトキシド、アルミニウムトリエトキシド、アルミニウムトリアリルォキシド、アルミ-ゥ ムトリ n—プロポキシド、アルミニウムトリイソプロポキシド、アルミニウムトリ n—ブトキシ ド、アルミニウムトリイソブトキシド、アルミニウムトリ sec ブトキシド、アルミニウムトリ t ーブトキシド、アルミニウムトリ n—ペンチルォキシド、アルミニウムトリシクロペンチルォ キシド、アルミニウムトリへキシルォキシド、アルミニウムトリシクロへキシルォキシド、ァ ルミ-ゥムトリベンジルォキシド、アルミニウムトリオクチルォキシド、アルミニウムトリス( 2—ェチルへキシルォキシド)、アルミニウムトリデシルォキシド、アルミニウムトリドデ シルォキシド、アルミニウムトリステアリルォキシド、アルミニウムトリブトキシドダイマー 、アルミニウムトリス(8—ヒドロキシォクチルォキシド)、アルミニウムイソプロポキシドビ ス(2 ェチルー 1, 3 へキサンジォラト)、アルミニウムジイソプロボキシド(2 ェチ ルー 1, 3 へキサンジォラト)、アルミニウム(2 ェチルへキシルォキシ)ビス(2 ェ チルー 1, 3 へキサンジォラト)、アルミニウムビス(2 ェチルへキシルォキシ)(2— ェチル 1, 3 へキサンジォラト)、アルミニウムトリス(2 クロロェトキシド)、アルミ- ゥムトリス(2—ブロモェトキシド)、アルミニウムトリス(2—メトキシェトキシド)、アルミ- ゥムトリス(2—エトキシェトキシド)、アルミニウムブトキシドジメトキシド、アルミニウムメ トキシドジブトキシド、アルミニウムブトキシドジェトキシド、アルミニウムエトキシドジブト キシド、アルミニウムブトキシドジイソプロポキシド、アルミニウムイソプロポキシドジブト キシド、アルミニウムトリフエノキシド、アルミニウムトリス(o クロロフエノキシド)、アルミ -ゥムトリス(m—-トロフエノキシド)、アルミニウムトリス(p—メチルフエノキシド)、など が挙げられる。
[0123] 一般式(5)中の 3個の OR6基の一部または全部が一般式(20)で表される基である アルミニウムァシレートを具体的に例示すると、アルミニウムアタリレートジイソプロポキ シド、アルミニウムメタタリレートジイソプロポキシド、アルミニウムイソプロポキシドジメタ タリレート、アルミニウムへキサノエートジイソプロポキシド、アルミ-ゥムステアレートジ イソプロポキシド、などが挙げられる。
[0124] 一般式(21)のハロゲンィ匕アルミニウムアルコキシドを具体的に例示すると、アルミ -ゥムクロライドジイソプロポキシド、アルミニウムイソプロポキシドジクロライド、アルミ -ゥムブロマイドジイソプロポキシド、アルミニウムフルオライドジイソプロポキシド、ァ ルミ-ゥムクロライドジェトキシド、アルミニウムクロライドジブトキシド、などが挙げられ る。
一般式 (6)または一般式(7)のアルミニウムキレートを具体的に例示すると、アルミ 二ゥムメトキシドビス(ェチルァセトアセテート)、アルミニウムメトキドビス(ァセチルァセ トネート)、アルミニウムエトキシドビス(ェチルァセトアセテート)、アルミニウムエトキド ビス(ァセチルァセトネート)、アルミニウムイソプロポキシドビス(ェチルァセトァセテー ト)、アルミニウムイソプロポキシドビス (メチルァセトアセテート)、アルミニウムイソプロ ポキシドビス(t—ブチルァセトアセテート)、アルミニウムジメトキシド(ェチルァセトァ セテート)、アルミニウムジメトキド(ァセチルァセトネート)、アルミニウムジエトキシド( ェチルァセトアセテート)、アルミニウムジエトキド(ァセチルァセトネート)、アルミ-ゥ ムジイソプロポキシド(ェチルァセトアセテート)、アルミニウムジイソプロボキシド (メチ ルァセトアセテート)、アルミニウムジイソプロボキシド(t—ブチルァセトアセテート)、 アルミニウムイソプロポキシドビス(メチル 3—ォキソ 4, 4 ジメチルへキサノエ一 ト)、アルミニウムイソプロポキシドビス(ェチル— 3—ォキソ—4, 4, 4—トリフルォロぺ ンタノエート)、アルミニウムイソプロポキシドビス(ァセチルァセトネート)、アルミニウム イソプロポキシドビス(2, 2, 6, 6—テトラメチルー 3, 5 ヘプタンジォネート)、アルミ -ゥム n—ブトキシドビス(ェチルァセトアセテート)、アルミニウム n—ブトキシドビス(ァ セチルァセトネート)、アルミニウムイソブトキシドビス(ェチルァセトアセテート)、アル ミニゥムイソブトキシドビス(ァセチルァセトネート)、アルミニウム t—ブトキシドビス(ェ チルァセトアセテート)、アルミニウム t—ブトキシドビス(ァセチルァセトネート)、アルミ -ゥム 2—ェチルへキソキシドビス(ェチルァセトアセテート)、アルミニウム 2—ェチル へキソキシドビス(ァセチルァセトネート)、 1, 2—ジォキシェタンアルミニウム(ェチル ァセトアセテート)、 1, 3 ジォキシプロパンアルミニウム(ェチルァセトアセテート)、 2 , 4 ジォキシペンタンアルミニウム(ェチルァセトアセテート)、 2, 4 ジメチルー 2, 4ージォキシペンタンアルミニウム(ェチルァセトアセテート)、アルミニウムイソプロボ キシドビス(トリエタノールアミネート)、アルミニウムトリス(ェチルァセトアセテート)、ァ ルミ-ゥムトリス(ァセチルァセトネート)、アルミニウム(ァセチルァセトネート)ビス(ェ チルァセトアセテート)などが挙げられる。これらの中でも、アルミニウムエトキシドビス (ェチルァセトアセテート)、アルミニウムエトキドビス(ァセチルァセトネート)、アルミ- ゥムイソプロポキシドビス(ェチルァセトアセテート)、アルミニウムイソプロポキシドビス (ァセチルァセトネート)、アルミニウムブトキシドビス(ェチルァセトアセテート)、アルミ -ゥムブトキシドビス(ァセチルァセトネート)、アルミニウムジメトキシド(ェチルァセト アセテート)、アルミニウムジメトキド(ァセチルァセトネート)、アルミニウムジエトキシド (ェチルァセトアセテート)、アルミニウムジエトキド(ァセチルァセトネート)、アルミ-ゥ ムジイソプロポキシド(ェチルァセトアセテート)、アルミニウムジイソプロボキシド (メチ ルァセトアセテート)、アルミニウムジイソプロボキシド(t—ブチルァセトアセテート)が 、入手性および触媒活性の点から好ましぐアルミニウムエトキシドビス (ェチルァセト アセテート)、アルミニウムイソプロポキシドビス(ェチルァセトアセテート)、アルミ-ゥ ムブトキシドビス(ェチルァセトアセテート)、アルミニウムジメトキシド(ェチルァセトァ セテート)、アルミニウムジエトキシド(ェチルァセトアセテート)、アルミニウムジィソプ ロポキシド(ェチルァセトアセテート)がより好ましぐアルミニウムイソプロポキシドビス (ェチルァセトアセテート)、アルミニウムジイソプロボキシド(ェチルァセトアセテート) が最も好ましい。
[0126] また、上記以外のアルミニウム触媒を具体的に記載すると、アルミニウムビス (ジオタ チルフォスフェート)イソプロポキシド、アルミニウムビス(ドデシルベンゼンスルフォネ ート)イソプロポキシド、ヒドロキシアルミニウムビスラタテート、などが挙げられる。
[0127] また、前記アルミニウムキレートのキレート配位子を形成し得るキレート試薬の具体 例としては、ァセチルアセトン、 2, 2, 4, 4ーテトラメチルー 3, 5—ヘプタンジオンな どの 13ージケトン、ァセト酢酸ェチル、ァセト酢酸ェチル、ァセト酢酸 tーブチル、ァセ ト酢酸ァリル、ァセト酢酸(2—メタクリロキシェチル)、 3—ォキソ—4, 4ージメチルへ キサン酸メチル、 3—ォキソ—4, 4, 4—トリフルォロブタン酸ェチルなどの j8—ケトェ ステル、マロン酸ジメチル、マロン酸ジェチルなどの j8—ジエステルが硬化性の点か ら好ましく、 j8—ジケトンおよび j8—ケトエステルが硬化性および貯蔵安定性の点か らより好ましぐ βーケトエステルが特に好ましい。また、キレート配位子が 2個以上存 在する場合、それぞれのキレート配位子は同一であっても異なっていてもよい。
[0128] 前記アルミニウムキレートを本発明の(Β)成分として添加する場合、以下に述べる( 二)または(ホ)の方法を用いることができる。(二)予めキレートイ匕したアルミニウム触 媒を添加する方法。(ホ)アルミニウムトリイソプロボキシドやアルミニウムクロライドジィ ソプロボキシドなどのキレート試薬と反応し得るアルミニウム化合物と、ァセト酢酸ェチ ルなどのキレート試薬を、本発明の組成物に添加し、組成物中にてキレートイ匕させた アルミニウムキレートを用いる方法。
[0129] 前記ジルコニウム触媒の好ま 、具体例としては、一般式 (8):
Zr (ORn) (8)
4
(式中、 R11は有機基であり、より好ましくは炭素原子数 1から 20の置換あるいは非置 換の炭化水素基であり、 4個の R11は相互に同一であっても、異なっていてもよい)で 表され、その中でもジルコニウムアルコキシドが代表的な化合物として例示できる。そ の他に一般式 (8)で表される化合物としては、一般式 (8)中の 4個の OR11基の一部 または全部が一般式(22) :
-OCOR27 (22)
(式中、 R27は有機基であり、より好ましくは炭素原子数 1から 20の置換あるいは非置 換の炭化水素基である。 )で表されるァシルォキシ基であるジルコニウムァシレートが 挙げられる。
[0130] また、一般式 (8)で表されな!/ヽジルコニウム触媒としては、一般式(23):
ZrX3 (OR28) (23)
4-c c
(式中、 X3はハロゲン原子であり、 4— c個の X3は相互に同一であっても、異なってい てもよい。 R28は有機基であり、より好ましくは炭素原子数 1から 20の置換あるいは非 置換の炭化水素基であり c個の R28は相互に同一であっても、異なっていてもよい。 c は 1、 2、 3のいずれかである。)で表されるハロゲン化ジルコニウムアルコキシドが挙 げられる。
[0131] これらの中でも、ジルコニウムアルコキシドは、湿分に対する安定性、および、硬化 性の点力も好ましい。
[0132] 前記一般式 (8)で表されるジルコニウム触媒の中でも、一般式(9): [0133] [化 17]
Figure imgf000034_0001
[0134] [式中、 R1 R"は水素原子または炭素原子数 1から 20の炭化水素基であり、 およ び R13は同一であっても、異なっていてもよい。 1個の R12は相互に同一であっても、異 なっていてもよぐ 4—1個の R13は相互に同一であっても、異なっていてもよい。 A5、 A 6は— R14または— OR14から選ばれる(ここで R14は炭素原子数 1から 20の炭化水素基 である)。 A5および A6は同一であっても、異なっていてもよい。 4—1個の A5は相互に 同一であっても、異なっていてもよぐ 4—1個の A6は相互に同一であっても、異なって いてもよい。 1は 0、 1、 2、 3のいずれかである。 ]で表されるジルコニウムキレートおよ び Zまたは一般式(10) :
[0135] [化 18]
Figure imgf000034_0002
[0136] (式中、 R13、 Α5、 ΑΊま前記と同じ。 R15は、炭素原子数 1から 20の 2価の炭化水素基 である。 )
で表されるジルコニウムキレートが、(Α)成分との相溶性、触媒活性の高さ、および、 貯蔵安定性の点から、より好ましい。一般式 (9)のジルコニウムキレートは、触媒活性 が高いことから、特に好ましい。
[0137] 一般式(8)で表されるジルコニウムアルコキシドを具体的に例示すると、ジルコユウ ムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラァリルォキシド、ジ ルコ-ゥムテトラ n—プロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウム テトラ n—ブトキシド、ジルコニウムテトライソブトキシド、ジルコニウムテトラ sec—ブトキ シド、ジルコニウムテトラ tーブトキシド、ジルコニウムテトラ n—ペンチルォキシド、ジル コ-ゥムテトラシクロペンチルォキシド、ジルコニウムテトラへキシルォキシド、ジルコ- ゥムテトラシクロへキシル才キシド、ジルコニウムテトラべンジルォキシド、ジルコニウム テトラオクチルォキシド、ジルコニウムテトラキス(2—ェチルへキシルォキシド)、ジル コ-ゥムテトラデシルォキシド、ジルコニウムテトラドデシルォキシド、ジルコニウムテト ラステアリルォキシド、ジルコニウムテトラブトキシドダイマー、ジルコニウムテトラキス( 8—ヒドロキシォクチルォキシド)、ジルコニウムジイソプロボキシドビス(2—ェチルー 1 , 3 -へキサンジォラト)、ジルコニウムビス (2-ェチルへキシルォキシ)ビス(2—ェ チル一 1, 3—へキサンジォラト)、ジルコニウムテトラキス(2—クロ口エトキシド)、ジル コ-ゥムテトラキス(2—ブロモエトキシド)、ジルコニウムテトラキス(2—メトキシェトキ シド)、ジルコニウムテトラキス(2—エトキシェトキシド)、ジルコニウムブトキシドトリメト キシド、ジノレコニゥムジブトキシドジメトキシド、ジノレコニゥムブトキシドトリエトキシド、ジ ノレコニゥムジブトキシドジェトキシド、ジノレコニゥムブトキシドトリイソプロポキシド、ジノレ コ -ゥムジブトキシドジイソプロポキシド、ジルコニウムテトラフエノキシド、ジルコニウム テトラキス(o—クロロフエノキシド)、ジルコニウムテトラキス(m—二トロフエノキシド)、 ジルコニウムテトラキス (p—メチルフエノキシド)、などが挙げられる。
[0138] 一般式 (8)中の 4個の OR11基の一部または全部が一般式(22)で表される基である ジルコニウムァシレートを具体的に例示すると、ジルコニウムアタリレートトリイソプロボ キシド、ジルコニウムメタタリレートトリイソプロポキシド、ジルコニウムジメタクリレートジ イソプロポキシド、ジルコニウムイソプロポキシドトリメタタリレート、ジルコニウムへキサ ノエートトリイソプロポキシド、ジルコニウムステアレートトリイソプロポキシド、などが挙 げられる。
[0139] 一般式(23)のハロゲン化ジルコニウムアルコキシドを具体的に例示すると、ジルコ -ゥムクロライドトリイソプロポキシド、ジルコニウムジクロライドジイソプロポキシド、ジル コ -ゥムイソプロポキシドトリクロライド、ジルコニウムブロマイドトリイソプロポキシド、ジ ルコ -ゥムフルオライドトリイソプロポキシド、ジルコニウムクロライドトリエトキシド、ジル コ -ゥムクロライドトリブトキシド、などが挙げられる。
一般式(9)または一般式(10)のジルコニウムキレートを具体的に例示すると、ジル コ-ゥムジメトキシドビス(ェチノレアセトアセテート)、ジルコニウムジメトキドビス(ァセチ ルァセトネート)、ジルコニウムジエトキシドビス(ェチルァセトアセテート)、ジルコユウ ムジエトキドビス(ァセチルァセトネート)、ジノレコ-ゥムジイソプロポキシドビス(ェチノレ ァセトアセテート)、ジルコニウムジイソプロボキシドビス(メチルァセトアセテート)、ジ ルコ-ゥムジイソプロポキシドビス(t—ブチルァセトアセテート)、ジルコニウムトリメトキ シド(ェチルァセトアセテート)、ジルコニウムトリメトキド(ァセチルァセトネート)、ジル コ -ゥムトリエトキシド(ェチルァセトアセテート)、ジルコニウムトリエトキド(ァセチルァ セトネート)、ジルコニウムトリイソプロポキシド(ェチルァセトアセテート)、ジルコニウム トリイソプロポキシド(ァセチルァセトネート)、ジルコニウムトリイソプロポキシド (メチル ァセトアセテート)、ジルコニウムトリイソプロポキシド (t—ブチルァセトアセテート)、ジ ルコ -ゥムトリ—n—ブトキシド(ェチルァセトアセテート)、ジルコニウムトリ—n—ブトキ シド(ァセチルァセトネート)、ジルコニウムメトキシドトリス(ェチルァセトアセテート)、 ジルコニウムメトキドトリス(ァセチルァセトネート)、ジルコニウムエトキシドトリス(ェチ ルァセトアセテート)、ジルコニウムェトキドトリス(ァセチルァセトネート)、ジルコニウム イソプロポキシドトリス(ェチノレアセトアセテート)、ジルコニウムイソプロポキシドトリス( ァセチルァセトネート)、ジルコニウムイソプロポキシドトリス(メチルァセトアセテート)、 ジルコニウムイソプロポキシドトリス(t—ブチルァセトアセテート)、ジルコニウム n—ブ トキシドトリス(ェチルァセトアセテート)、ジルコニウム n—ブトキシドトリス(ァセチルァ セトネート)、ジルコニウム n—ブトキシド(ァセチルァセトネート)ビス(ェチルァセトァ セテート)、ジルコニウムジイソプロボキシドビス(メチルー 3—ォキソ 4, 4—ジメチル へキサノエ一ト)、ジルコニウムジイソプロボキシドビス(ェチルー 3—ォキソ 4, 4, 4 —トリフルォロペンタノエート)、ジルコニウムジイソプロボキシドビス(ァセチルァセトネ 一ト)、ジルコニウムジイソプロボキシドビス(2, 2, 6, 6—テトラメチル一 3, 5 ヘプタ ンジォネート)、ジルコニウムジ—n—ブトキシドビス(ェチルァセトアセテート)、ジルコ ユウムジ n—ブトキシドビス(ァセチルァセトネート)、ジルコニウムジイソブトキシドビ ス(ェチノレアセトアセテート)、ジルコニウムジイソブトキシドビス(ァセチノレアセトネート )、ジルコニウムジ—t—ブトキシドビス(ェチルァセトアセテート)、ジルコニウムジ—t ブトキシドビス(ァセチルァセトネート)、ジルコニウムジ 2—ェチルへキソキシドビ ス(ェチルァセトアセテート)、ジルコニウムジ一 2—ェチルへキソキシドビス(ァセチル ァセトネート)、 1, 2—ジォキシェタンジルコニウムビス(ェチルァセトアセテート)、 1, 3 ジォキシプロパンジルコニウムビス(ェチルァセトアセテート)、 2, 4 ジォキシぺ ンタンジルコニウムビス(ェチルァセトアセテート)、 2, 4 ジメチルー 2, 4 ジォキシ ペンタンジルコニウムビス(ェチルァセトアセテート)、ジルコニウムジイソプロボキシド ビス(トリエタノールアミネート)、ジルコニウムテトラキス(ェチルァセトアセテート)、ジ ルコ-ゥムテトラキス(ァセチルァセトネート)、などが挙げられる。これらの中でも、ジ ルコ-ゥムジエトキシドビス(ェチルァセトアセテート)、ジルコニウムジエトキドビス(ァ セチノレアセトネート)、ジノレコニゥムジイソプロポキシドビス(ェチノレアセトアセテート)、 ジルコニウムジイソプロボキシドビス(ァセチルァセトネート)、ジルコニウムジブトキシ ドビス(ェチルァセトアセテート)、ジルコニウムジブトキシドビス(ァセチルァセトネート 、ジルコニウムトリイソプロポキシド(ェチルァセトアセテート)、ジルコニウムトリイソプロ ポキシド(ァセチルァセトネート)、ジルコニウムトリー n—ブトキシド(ェチルァセトァセ テート)、ジルコニウムトリ— n—ブトキシド(ァセチルァセトネート)、ジルコニウムイソプ 口ポキシドトリス(ェチノレアセトアセテート)、ジルコニウムイソプロポキシドトリス(ァセチ ルァセトネート)、ジルコニウム n—ブトキシドトリス(ェチルァセトアセテート)、ジルコ- ゥム n—ブトキシドトリス(ァセチルァセトネート)、ジルコニウム n—ブトキシド(ァセチル ァセトネート)ビス (ェチルァセトアセテート)力 入手性および触媒活性の点力も好ま しぐジルコニウムジエトキシドビス(ェチルァセトアセテート)、ジルコニウムジイソプロ ポキシドビス(ェチルァセトアセテート)、ジルコニウムジブトキシドビス(ェチルァセトァ セテート)、ジルコニウムトリイソプロポキシド(ェチルァセトアセテート)、ジルコニウムト リ— n—ブトキシド(ェチルァセトアセテート)、ジルコニウムイソプロポキシドトリス(ェチ ルァセトアセテート)、ジルコニウム n—ブトキシドトリス(ェチルァセトアセテート)、ジル コ -ゥム n—ブトキシド(ァセチルァセトネート)ビス(ェチルァセトアセテート)がより好 ましぐジルコニウムジイソプロボキシドビス(ェチルァセトアセテート)、ジルコニウムト リイソプロボキシド(ェチノレアセトアセテート)、ジルコニウムイソプロポキシドトリス(ェチ ルァセトアセテート)が最も好ま 、。
[0141] また、上記以外のジルコニウム触媒を具体的に記載すると、ジルコニウムトリス (ジォ クチルフォスフェート)イソプロポキシド、ジルコニウムトリス(ドデシルベンゼンスルフォ ネート)イソプロポキシド、ジヒドロキシジルコニウムビスラタテート、などが挙げられる。
[0142] また、前記ジルコニウムキレートのキレート配位子を形成し得るキレート試薬の具体 例としては、ァセチルアセトン、 2, 2, 4, 4ーテトラメチルー 3, 5—ヘプタンジオンな どの 13ージケトン、ァセト酢酸ェチル、ァセト酢酸ェチル、ァセト酢酸 tーブチル、ァセ ト酢酸ァリル、ァセト酢酸(2—メタクリロキシェチル)、 3—ォキソ—4, 4ージメチルへ キサン酸メチル、 3—ォキソ—4, 4, 4—トリフルォロブタン酸ェチルなどの j8—ケトェ ステル、マロン酸ジメチル、マロン酸ジェチルなどの j8—ジエステルが硬化性の点か ら好ましく、 j8—ジケトンおよび j8—ケトエステルが硬化性および貯蔵安定性の点か らより好ましぐ βーケトエステルが特に好ましい。また、キレート配位子が 2個以上存 在する場合、それぞれのキレート配位子は同一であっても異なっていてもよい。
[0143] 前記ジルコニウムキレートを本発明の(Β)成分として添加する場合、以下に述べる( 二)または(ホ)の方法を用いることができる。(二)予めキレートイ匕したジルコニウム触 媒を添加する方法。(ホ)ジルコニウムテトライソプロボキシドやジルコニウムジクロライ ドジイソプロボキシドなどのキレート試薬と反応し得るジルコニウム化合物と、ァセト酢 酸ェチルなどのキレート試薬を、本発明の組成物に添加し、組成物中にてキレートイ匕 させたジルコニウムキレートを用いる方法。
[0144] (Β)成分の触媒は、単独で使用する以外に、 2種以上を組み合わせて使用すること ができる。
[0145] 本発明では、(C)成分として、加水分解性ケィ素基を有する分子量 100〜 1000の 低分子量化合物を使用する。(C)成分としては、加水分解性ケィ素基を有し、分子 量が 100〜1000の化合物であれば特に限定は無ぐ各種の化合物を使用すること ができる。具体的には、加水分解性ケィ素基とそれ以外の官能基を有するシランカツ プリング剤 (C1)、および、官能基として反応性ケィ素基のみを有する化合物 (C2)な どを挙げることができる。
[0146] 前記 (C1)成分であるシランカップリング剤は、接着性付与剤、物性調整剤、脱水 剤、無機充填材の分散性改良剤等として機能し得る化合物である。シランカップリン グ剤の反応性ケィ素基の例としては、一般式 (24):
- (SiR29 Y O) -SiR30 Y (24)
2-e e k 3-d d
(式中、 R29および R3Qは、それぞれ独立に、炭素原子数 1から 20のアルキル基、炭素 原子数 6から 20のァリール基、炭素原子数 7から 20のァラルキル基または R, SiO-
3 で示されるトリオルガノシロキシ基の 、ずれかを示し、 R29または R3°が二個以上存在 するとき、それらは同一であってもよぐ異なっていてもよい。ここで R'は炭素原子数 1 力も 20の炭化水素基であり 3個の R'は同一であってもよぐ異なっていてもよい。 Y は加水分解性基を示し、 Yが二個以上存在する時、それらは同一であってもよぐ異 なっていてもよい。 dは 0、 1、 2または 3を、 eは 0、 1、または 2をそれぞれ示す。また k 個の(SiR29 Y O)基における eについて、それらは同一であってもよぐ異なってい
2-e e
てもよい。 kは 0から 19の整数を示す。但し、 d+∑e≥lを満足するものとする)で表さ れる基を挙げることがでさる。
[0147] 上記一般式 (24)における Yは、特に限定されず、従来公知の加水分解性基であ ればよい。具体的には、例えば水素原子、ハロゲン原子、アルコキシ基、ァシルォキ シ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノォキシ基、メルカプト基、 ァルケ-ルォキシ基等が挙げられる。これらの内では、水素原子、アルコキシ基、ァ シルォキシ基、ケトキシメート基、アミノ基、アミド基、アミノォキシ基、メルカプト基およ びァルケ-ルォキシ基が好ましく、加水分解性が穏やかで取扱 、やす 、と 、う観点 力もアルコキシ基が特に好ましい。より具体的には、メトキシ基、エトキシ基等が加水 分解速度の点力も好ましい。加水分解性基の個数は、 2個以上、特に 3個以上が好 ましい。
[0148] 加水分解性ケィ素基以外の官能基としては、 1級、 2級、 3級のアミノ基、メルカプト 基、エポキシ基、カルボキシル基、ビュル基、イソシァネート基、イソシァヌレート、ノヽ ロゲン等を例示できる。これらの内、 1級、 2級、 3級のアミノ基、エポキシ基、イソシァ ネート基、イソシァヌレート等は接着性改善効果が高い為に好ましぐアミノ基がより 好ましぐ 1級ァミノ基が特に好ましい。
[0149] シランカップリング剤の具体例としては、 γ—イソシァネートプロピルトリメトキシシラ ン、 Ί—イソシァネートプロピルトリエトキシシラン、 γ—イソシァネートプロピルメチル ジエトキシシラン、 Ί—イソシァネートプロピルメチルジメトキシシラン、 (イソシァネート メチル)トリメトキシシラン、 (イソシァネートメチル)ジメトキシメチルシラン、 (イソシァネ 一トメチル)トリエトキシシラン、 (イソシァネートメチル)ジエトキシメチルシラン等のイソ シァネート基含有シラン類; y—ァミノプロピルトリメトキシシラン、 γ—ァミノプロビルト リエトキシシラン、 Ίーァミノプロピルトリイソプロポキシシラン、 γ—ァミノプロピノレメチ ルジメトキシシラン、 γ—ァミノプロピルメチルジェトキシシラン、 γ—(2—アミノエチ ル)ァミノプロピルトリメトキシシラン、 γ— (2—アミノエチル)ァミノプロピルメチルジメト キシシラン、 γ - (2—アミノエチル)ァミノプロピルトリエトキシシラン、 γ - (2—ァミノ ェチル)ァミノプロピルメチルジェトキシシラン、 γ— (2—アミノエチル)ァミノプロピル トリイソプロポキシシラン、 γ— (6—ァミノへキシル)ァミノプロピルトリメトキシシラン、 3 - (Ν ェチルァミノ) 2—メチルプロピルトリメトキシシラン、 γ—ウレイドプロビルト リメトキシシラン、 γ—ウレイドプロピルトリエトキシシラン、 Ν フエ二ノレ一 γ—アミノプ 口ピルトリメトキシシラン、 Ν ベンジノレ一 γ—ァミノプロピルトリメトキシシラン、 Ν ビ -ルベンジル一 γ—ァミノプロピルトリエトキシシラン、 Ν シクロへキシルァミノメチル トリエトキシシラン、 Ν シクロへキシルアミノメチルジェトキシメチルシラン、 Ν—フエ ニルアミノメチルトリメトキシシラン、 (2—アミノエチル)アミノメチルトリメトキシシラン、 Ν , Ν '—ビス [3— (トリメトキシシリル)プロピル]エチレンジァミン等のアミノ基含有シラ ン類; Ν— ( 1 , 3 ジメチルブチリデン) - 3 - (トリエトキシシリル)— 1—プロパンアミ ン等のケチミン型シラン類; Ί—メルカプトプロピルトリメトキシシラン、 Ύ—メルカプト プロピルトリエトキシシラン、 γ メルカプトプロピルメチルジメトキシシラン、 γ メル カプトプロピルメチルジェトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメ チルトリエトキシシラン等のメルカプト基含有シラン類; y—グリシドキシプロピルトリメト キシシラン、 γ—グリシドキシプロピノレトリエトキシシラン、 γ—グリシドキシプロピルメ チノレジメトキシシラン、 j8 (3, 4—エポキシシクロへキシノレ)ェチノレトリメトキシシラン 、 j8 (3, 4—エポキシシクロへキシノレ)ェチノレトリエトキシシラン等のエポキシ基含有 シラン類; j8—カルボキシェチルトリエトキシシラン、 13 カルボキシェチルフエ-ル ビス(2—メトキシエトキシ)シラン、 N— j8— (カルボキシメチル)アミノエチル一 γ—ァ ミノプロピルトリメトキシシラン等のカルボキシシラン類;ビニルトリメトキシシラン、ビニ アタリロイルォキシプロピルトリエトキシシラン、メタクリロイルォキシメチルトリメトキシシ ラン等のビュル型不飽和基含有シラン類; y—クロ口プロピルトリメトキシシラン等のハ ロゲン含有シラン類;トリス(3—トリメトキシシリルプロピル)イソシァヌレート等のイソシ ァヌレートシラン類等を挙げることができる。また、これらを変性した誘導体である、ァ ミノ変性シリルポリマー、シリルィ匕ァミノポリマー、不飽和アミノシラン錯体、フエニルァ ミノ長鎖アルキルシラン、アミノシリルイ匕シリコーン、シリルイ匕ポリエステル等もシラン力 ップリング剤として用いることができる。シランカップリング剤の反応物としては、上記 アミノシランとエポキシシランの反応物、アミノシランとイソシァネートシランの反応物、 各種シランカップリング剤の部分縮合体等を挙げる事ができる。
[0150] 前記 (C2)成分である、官能基として加水分解性ケィ素基のみを有する化合物は、 脱水剤、架橋剤、または、物性調整剤等として機能し得る化合物である。(C2)成分 としては、官能基として反応性ケィ素基のみを有し、分子量が 100〜: LOOOの化合物 であれば特に限定は無ぐ各種の化合物を使用することができるが、具体的には、一 般式(25) :
R31 Si(OR32) (25)
f 4-f
(式中、 R31、 R32は、炭素原子数 1から 20の炭化水素基であり、 R31および R32は同一 であっても、異なっていてもよい。 fは 0、 1、 2または 3を示す。)で表される化合物また はその部分加水分解縮合物を挙げることができる。
[0151] (C2)成分の具体例としては、テトラメトキシシラン、テトラエトキシシラン、エトキシトリ メトキシシラン、ジメトキシジエトキシシラン、メトキシトリエトキシシラン、テトラー n—プ ロボキシシラン、テトラー i—プロボキシシラン、テトラー n—ブトキシシラン、テトラー i— ブトキシシラン、テトラー t ブトキシシランなどのテトラアルコキシシラン (テトラアルキ ルシリケート);メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロボ キシシラン、メチルトリフエノキシシラン、ェチルトリメトキシシラン、ブチルトリメトキシシ ラン、フエ-ルトリメトキシシランなどのトリアルコキシシラン;ジメチルジメトキシシラン、 ジェチルジメトキシシラン、ジフエ-ルジメトキシシランなどのジアルコキシシラン;トリメ チルメトキシシラン、トリフエニルメトキシシランなどのモノアルコキシシラン;ジメチルジ キシシラン;および、それらの部分加水分解縮合物があげられる。
[0152] オルガノシリケートイ匕合物の部分加水分解縮合物は、市販のものを用いることがで きる。このような縮合物としては、例えば、メチルシリケート 51、ェチルシリケート 40 (い ずれもコルコート製)等が挙げられる。
[0153] (C)成分の加水分解性ケィ素基を有する分子量 100〜1000の低分子量化合物は 、単独で使用する以外に、 2種以上を組み合わせて使用することができる。
[0154] 本発明では、組成物中の(B)成分のチタン原子とアルミニウム原子とジルコニウム 原子の総モル数 (a)と、組成物中の(C)成分のケィ素原子の総モル数 (b)との比(a Zb)が、 0. 08よりも大きいことが必須である。 aZbの値が 0. 08以下になると、硬化 速度が著しく低下し、シーリング材ゃ接着剤などに用いた場合に、実用的な硬化性 が得られなくなる。硬化性、貯蔵安定性、および、得られる硬化物の表面の粘着性の 点から、 a/bの値は、 0. 10より大きいことが好ましぐ 0. 15より大きいことが特に好ま しい。
[0155] (B)成分の使用量としては、前記の aZbの値が 0. 08よりも大きいことを満たす範 囲内で、(A)成分 100重量部に対し、 0. 1〜15重量部程度が好ましぐ 0. 5〜10重 量部程度がより好ましぐ 2〜8重量部程度が特に好ましい。(B)成分の配合量力この 範囲を下回ると実用的な硬化速度が得られない場合があり、また硬化反応が充分に 進行し難くなる場合がある。一方、(B)成分の配合量がこの範囲を上回ると可使時間 が短くなり過ぎて作業性が悪くなる傾向がある。
[0156] (C)成分の使用量としては、前記の aZbの値が 0. 08よりも大きいことを満たす範 囲内で、(A)成分 100重量部に対し、 0. 1〜15重量部程度が好ましぐ 1〜: L0重量 部程度がより好ましぐ 3〜7重量部程度が特に好ましい。(C)成分の配合量がこの 範囲を下回ると、接着性や貯蔵安定性が十分ではない場合があり、また引張物性改 善効果が十分ではない場合がある。一方、(C)成分の配合量がこの範囲を上回ると 実用的な硬化速度が得られない場合があり、また硬化反応が充分に進行し難くなる 場合がある。 [0157] 本発明の硬化触媒として、チタン触媒、アルミニウム触媒、ジルコニウム触媒力 選 ばれる 1種以上を使用するが、本発明の効果を低下させない程度に他の硬化触媒を 併用することもできる。具体例としては、 2—ェチルへキサン酸錫、バーサチック酸錫 、 2—ェチルへキサン酸ビスマス等のカルボン酸金属塩;ジブチル錫ジラウレート、ジ ブチル錫マレエート、ジブチル錫フタレート、ジブチル錫ジォクタノエート、ジブチル 錫ビス(2—ェチルへキサノエート)、ジブチル錫ビス(メチルマレエート)、ジブチル錫 ビス(ェチルマレエート)、ジブチル錫ビス(ブチノレマレエート)、ジブチノレ錫ビス(オタ チルマレエート)、ジブチル錫ビス(トリデシルマレエート)、ジブチル錫ビス(ベンジル マレエート)、ジブチル錫ジアセテート、ジォクチル錫ビス(ェチルマレエート)、ジォク チル錫ビス(ォクチルマレエート)、ジブチル錫ジメトキサイド、ジブチル錫ビス(ノエル フエノキサイド)、ジブテュル錫オキサイド、ジブチル錫ビス(ァセチルァセトナート)、 ジブチル錫ビス(ェチルァセトアセテート)、ジブチル錫オキサイドとシリケ一トイ匕合物 との反応物、ジブチル錫オキサイドとフタル酸エステルとの反応物等の 4価の有機錫 化合物が挙げられる。し力しながら、有機錫化合物は添加量に応じて、得られる硬化 性組成物の毒性が強くなる場合がある。
[0158] 本発明の組成物には充填剤を添加することができる。充填剤としては、フュームシリ 力、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケィ酸、含水ケィ酸、お よびカーボンブラックの如き補強性充填剤;重質炭酸カルシウム、膠質炭酸カルシゥ ム、炭酸マグネシウム、ケイソゥ土、焼成クレー、クレー、タルク、酸化チタン、ベントナ イト、有機ベントナイト、酸化第二鉄、アルミニウム微粉末、フリント粉末、酸化亜鉛、 活性亜鉛華、シラスバルーン、ガラスミクロバルーン、フエノール榭脂ゃ塩ィ匕ビ -リデ ン榭脂の有機ミクロバルーン、 PVC粉末、 PMMA粉末など榭脂粉末の如き充填剤; 石綿、ガラス繊維およびフィラメントの如き繊維状充填剤等が挙げられる。充填剤を 使用する場合、その使用量は (A)成分の重合体 100重量部に対して 1〜250重量 部、好ましくは 10〜 200重量部である。
[0159] 前記充填剤は、特開 2001— 181532号公報に記載されているように、酸化カルシ ゥムなどの脱水剤と均一に混合した後、気密性素材で構成された袋に封入し、適当 な時間放置することにより予め脱水乾燥することも可能である。この低水分量充填剤 を使用することにより、特に一液型組成物とする場合、貯蔵安定性を改良することが できる。
[0160] また、透明性の高い組成物を得る場合には、特開平 11— 302527号公報に記載さ れているように、メタクリル酸メチルなどの重合体を原料とした高分子粉体や、非晶質 シリカなどを充填剤として使用することができる。また、特開 2000— 38560号公報に 記載されて 、るように、その表面に疎水基が結合した二酸ィ匕珪素微粉末である疎水 性シリカなどを充填剤として使用することにより透明性の高い組成物を得ることができ る。二酸ィ匕珪素微粉末の表面は、一般的にシラノール基(-SiOH)となっているが、 このシラノール基に有機珪素ハロゲンィ匕物やアルコール類等を反応させることによつ て、(一 SiO—疎水基)を生成させたものが疎水性シリカである。具体的には、二酸ィ匕 珪素微粉末の表面に存在するシラノール基に、ジメチルシロキサン,へキサメチルジ シラザン,ジメチルジクロルシラン,トリメトキシォクチルシラン,トリメチルシラン等を反 応結合させたものである。なお、表面がシラノール基(— SiOH)で形成されている二 酸化珪素微粉末は、親水性シリカ微粉末と呼ばれる。
[0161] これら充填剤の使用により強度の高い硬化物を得たい場合には、主にヒュームシリ 力、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケィ酸、含水ケィ酸およ びカーボンブラック、表面処理微細炭酸カルシウム、焼成クレー、クレー、および活性 亜鉛華などから選ばれる充填剤が好ましぐ反応性ケィ素基を有する有機重合体 (A ) 100重量部に対し、 1〜200重量部の範囲で使用すれば好ましい結果が得られる。 また、低強度で破断伸びが大である硬化物を得たい場合には、主に酸化チタン、重 質炭酸カルシウムなどの炭酸カルシウム、炭酸マグネシウム、タルク、酸化第二鉄、 酸化亜鉛、およびシラスバルーンなどから選ばれる充填剤を、反応性ケィ素基を有 する有機重合体 (A) 100重量部に対して 5〜200重量部の範囲で使用すれば好ま しい結果が得られる。なお、一般的に炭酸カルシウムは、比表面積の値が大きいほど 硬化物の破断強度、破断伸び、接着性の改善効果は大きくなる。もちろんこれら充填 剤は 1種類のみで使用してもよいし、 2種類以上混合使用してもよい。炭酸カルシゥ ムを使用する場合、表面処理微細炭酸カルシウムと重質炭酸カルシウムなどの粒径 が大き 、炭酸カルシウムを併用することが望まし 、。表面処理微細炭酸カルシウムの 粒径は 0. 5 /z m以下が好ましぐ表面処理は脂肪酸や脂肪酸塩で処理されているこ とが好ましい。また、粒径が大きい炭酸カルシウムの粒径は 1 μ m以上が好ましく表 面処理されて ヽな 、ものを用いることができる。
[0162] 組成物の作業性 (キレなど)向上や硬化物表面を艷消し状にするために、有機バル ーン、無機バルーンの添カ卩が好ましい。これらの充填剤は表面処理することもでき、 1 種類のみで使用しても良いし、 2種類以上混合使用することもできる。作業性 (キレな ど)向上には、バルーンの粒径は 0. 1mm以下が好ましい。硬化物表面を艷消し状 にするためには、 5〜300 mが好ましい。
[0163] 本発明の組成物は硬化物の耐薬品性が良好であるなどの理由により、サイジング ボード、特に窯業系サイジングボード、など住宅の外壁の目地や外壁タイルの接着 剤、外壁タイルの接着剤であって目地に接着剤がそのまま残るものなどに好適に用 いられるが、外壁の意匠とシーリング材の意匠が調和することが望ましい。特に、外壁 としてスパッタ塗装、着色骨材などの混入により高級感のある外壁が用いられるように なっている。本発明の組成物に直径が 0. 1mm以上、好ましくは 0. 1〜5. Omm程 度の鱗片状または粒状の物質が配合されていると、硬化物はこのような高級感のある 外壁と調和し、耐薬品性がすぐれるためこの硬化物の外観は長期にわたつて持続す るすぐれた組成物となる。粒状の物質を用いると砂まき調あるいは砂岩調のざらつき 感がある表面となり、鱗片状物質を用いると鱗片状に起因する凹凸状の表面となる。
[0164] 鱗片状または粒状の物質の好ましい直径、配合量、材料などは特開平 9 53063 号公報に記載されて 、るように次の通りである。
[0165] 直径は 0. 1mm以上、好ましくは 0. 1〜5. Omm程度であり、外壁の材質、模様等 に合わせて適当な大きさのものが使用される。 0. 2mm〜5. Omm程度や 0. 5mm 〜5. Omm程度のものも使用可能である。鱗片状の物質の場合には、厚さが直径の 1Z10〜1Z5程度の薄さ(0. 01〜: L 00mm程度)とされる。鱗片状または粒状の 物質は、シーリング主材内に予め混合されてシーリング材として施工現場に運搬され る力、使用に際して、施工現場にてシーリング主材内に混合される。
[0166] 鱗片状または粒状の物質は、シーリング材組成物や接着剤組成物等の組成物 10 0重量部に対して、 1〜200重量部程度が配合される。配合量は、個々の鱗片状また は粒状の物質の大きさ、外壁の材質、模様等によって、適当に選定される。
[0167] 鱗片状または粒状の物質としては、ケィ砂、マイ力等の天然物、合成ゴム、合成榭 脂、アルミナ等の無機物が使用される。 目地部に充填した際の意匠性を高めるため に、外壁の材質、模様等に合わせて、適当な色に着色される。
[0168] 好ま 、仕上げ方法などは特開平 9 - 53063号公報に記載されて 、る。
[0169] また、同様の目的でバルーン (好ましくは平均粒径が 0. 1mm以上のもの)を用い れば砂まき調あるいは砂岩調のざらつき感がある表面になり、かつ軽量ィ匕を図ること ができる。バルーンの好ましい直径、配合量、材料などは特開平 10— 251618号公 報に記載されて 、るように次の通りである。
[0170] バルーンは、球状体充填剤で内部が中空のものである。このバルーンの材料として は、ガラス、シラス、シリカなどの無機系の材料、および、フエノール榭脂、尿素樹脂、 ポリスチレン、サランなどの有機系の材料があげられる力 これらのみに限定されるも のではなぐ無機系の材料と有機系の材料とを複合させたり、また、積層して複数層 を形成させたりすることもできる。無機系の、あるいは有機系の、またはこれらを複合 させるなどしたバルーンを使用することができる。また、使用するバルーンは、同一の バルーンを使用しても、あるいは異種の材料のバルーンを複数種類混合して使用し ても差し支えがない。さらに、バルーンは、その表面を加工ないしコーティングしたも のを使用することもできるし、またその表面を各種の表面処理剤で処理したものを使 用することもできる。たとえば、有機系のバルーンを炭酸カルシウム、タルク、酸ィ匕チ タンなどでコーティングしたり、無機系のノ レーンをシランカップリング剤で表面処理 することなどがあげられる。
[0171] 砂まき調あるいは砂岩調のざらつき感がある表面を得るには、バルーンは粒径が 0 . 1mm以上であることが好ましい。 0. 2mm〜5. Omm程度や 0. 5mm〜5. Omm程 度のものも使用可能である。 0. 1mm未満のものでは、多量に配合しても組成物の粘 度を上昇させるだけで、ざらつき感が発揮されない場合がある。ノ レーンの配合量は 目的とする砂まき調あるいは砂岩調のざらつき感の程度によって容易に定めることが できる。通常、粒径が 0. 1mm以上のものを組成物中の容積濃度で 5〜25vol%の 範囲となる割合で配合することが望まし 、。バルーンの容積濃度が 5vol%未満であ るとざらつき感がなぐまた 25vol%を超えると、シーリング材ゃ接着剤の粘度が高く なり作業性が悪ぐ硬化物のモジュラスも高くなり、シーリング材ゃ接着剤の基本性能 が損なわれる傾向にある。シーリング材の基本性能とのバランスが特に好ま 、容積 濃度は 8〜22vol%である。
[0172] バルーンを用いる際には特開 2000— 154368号公報に記載されているようなスリ ップ防止剤、特開 2001— 164237号公報に記載されているような硬化物の表面を 凹凸状態に加えて艷消し状態にするためのァミン化合物、特に融点 35°C以上の第 1 級および Zまたは第 2級ァミンを添加することができる。
[0173] バルーンの具体例は特開平 2— 129262号、特開平 4 8788号、特開平 4— 173 867号、特開平 5— 1225号、特開平 7— 113073号、特開平 9 53063号、特開平 10— 251618号、特開 2000— 154368号、特開 2001— 164237号、 WO97/05 201号などの各公報に記載されている。
[0174] また、特開 2004— 51701号公報または特開 2004— 66749号公報などに記載の 熱膨張性微粒中空体を使用することができる。熱膨張性微粒中空体とは、炭素原子 数 1から 5の炭化水素などの低沸点化合物を高分子外殻材 (塩ィ匕ビ二リデン系共重 合体、アクリロニトリル系共重合体、または塩ィ匕ビ-リンデン アクリロニトリル共重合 体)で球状に包み込んだプラスチック球体である。本組成物を用いた接着部分をカロ 熱すること〖こよって、熱膨張性微粒中空体の殻内のガス圧が増し、高分子外殻材が 軟化することで体積が劇的に膨張し、接着界面を剥離させる役割を果たす。熱膨張 性微粒中空体の添加により、不要時には加熱するだけで簡単に材料の破壊を伴わ ずに剥離でき、且つ有機溶剤を一切用いな ヽで加熱剥離可能な接着性組成物が得 られる。
[0175] 本発明の組成物がシーリング材硬化物粒子を含む場合も硬化物は表面に凹凸を 形成し意匠性を向上させることができる。シーリング材硬化物粒子の好ま 、直径、 配合量、材料などは特開 2001— 115142号公報に記載されているように次の通りで ある。直径は 0. 1mm〜: Lmm、さらには 0. 2〜0. 5mm程度が好ましい。配合量は 硬化性組成物中に 5〜: L00重量%、さらには 20〜50重量%が好ましい。材料は、ゥ レタン樹脂、シリコーン、変成シリコーン、多硫ィ匕ゴム等を挙げることができシーリング 材に用いられるものであれば限定されないが、変成シリコーン系のシーリング材が好 ましい。
[0176] 本発明の組成物には粘着性付与剤を添加することができる。粘着性付与榭脂とし ては、特に限定されないが、常温で固体、液体を問わず通常使用されるものを使用 することができる。具体例としては、スチレン系ブロック共重合体、その水素添加物、 フエノール榭脂、変性フエノール榭脂(例えば、カシュ一オイル変性フエノール榭脂、 トール油変性フエノール榭脂等)、テルペンフエノール榭脂、キシレン フエノール榭 脂、シクロペンタジェン一フエノール榭脂、クマロンインデン榭脂、ロジン系榭脂、ロジ ンエステル榭脂、水添ロジンエステル榭脂、キシレン榭脂、低分子量ポリスチレン系 榭脂、スチレン共重合体榭脂、石油榭脂 (例えば、 C5炭化水素榭脂、 C9炭化水素 榭脂、 C5C9炭化水素共重合榭脂等)、水添石油榭脂、テルペン系榭脂、 DCPD榭 脂石油榭脂等が挙げられる。これらは単独で用いても良ぐ 2種以上を併用しても良 い。スチレン系ブロック共重合体及びその水素添カ卩物としては、スチレンーブタジェ ン一スチレンブロック共重合体(SBS)、スチレン一イソプレン一スチレンブロック共重 合体(SIS)、スチレン エチレンブチレン スチレンブロック共重合体(SEBS)、ス チレン エチレンプロピレースチレンブロック共重合体(SEPS)、スチレン イソブチ レン スチレンブロック共重合体 (SIBS)等が挙げられる。上記粘着性付与榭脂は単 独で用いてもよぐ 2種以上併用してもよい。
[0177] 粘着性付与榭脂は有機重合体 (A) 100重量部に対して、 5〜1, 000重量部、好ま しくは 10〜: L00重量部の範囲で使用される。
[0178] 本発明の組成物には可塑剤を添加することができる。可塑剤の添カ卩により、硬化性 組成物の粘度やスランプ性および組成物を硬化して得られる硬化物の引張り強度、 伸びなどの機械特性が調整できる。可塑剤の例としては、ジブチルフタレート、ジへ プチルフタレート、ジ(2—ェチルへキシル)フタレート、ブチルベンジルフタレート等 のフタル酸エステル類;ジォクチルアジペート、ジォクチルセバケート、ジブチルセバ ケート、コハク酸イソデシル等の非芳香族二塩基酸エステル類;ォレイン酸プチル、 ァセチルリシリノール酸メチル等の脂肪族エステル類;トリクレジルホスフェート、トリブ チルホスフェート等のリン酸エステル類;トリメリット酸エステル類;塩素化パラフィン類 ;アルキルジフヱ-ル、部分水添ターフェ-ル、等の炭化水素系油;プロセスオイル類 ;エポキシィ匕大豆油、エポキシステアリン酸ベンジル等のエポキシ可塑剤類をあげる ことができる。
[0179] また、高分子可塑剤を使用することができる。高分子可塑剤を使用すると重合体成 分を分子中に含まない可塑剤である低分子可塑剤を使用した場合に比較して、初期 の物性を長期にわたり維持する。更に、該硬化物にアルキド塗料を塗布した場合の 乾燥性 (塗装性ともいう)を改良できる。高分子可塑剤の具体例としては、ビニル系モ ノマーを種々の方法で重合して得られるビュル系重合体;ジエチレングリコールジべ ンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等の ポリアルキレングリコールのエステル類;セバシン酸、アジピン酸、ァゼライン酸、フタ ル酸等の 2塩基酸とエチレングリコール、ジエチレングリコール、トリエチレングリコー ル、プロピレングリコール、ジプロピレングリコール等の 2価アルコールから得られるポ リエステル系可塑剤;分子量 500以上、さらには 1000以上のポリエチレングリコール 、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオール あるいはこれらポリエーテルポリオールの水酸基をエステル基、エーテル基などに変 換した誘導体等のポリエーテル類;ポリスチレンやポリ一 a—メチルスチレン等のポリ スチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン アタリロニトリ ル、ポリクロ口プレン等が挙げられる力 これらに限定されるものではない。
[0180] これらの高分子可塑剤のうちで、(A)成分の重合体と相溶するものが好ましい。こ の点から、ポリエーテル類やビュル系重合体が好ましい。また、ポリエーテル類を可 塑剤として使用すると、表面硬化性および深部硬化性が改善され、貯蔵後の硬化遅 延も起こらないこと力も好ましぐ中でもポリプロピレングリコールがより好ましい。また、 相溶性および耐候性、耐熱性の点からビュル系重合体が好ましい。ビュル系重合体 の中でもアクリル系重合体および Z又はメタクリル系重合体が好ましぐポリアクリル 酸アルキルエステルなどアクリル系重合体がさらに好まし 、。この重合体の合成法は 、分子量分布が狭ぐ低粘度化が可能なことからリビングラジカル重合法が好ましぐ 原子移動ラジカル重合法がさらに好ましい。また、特開 2001— 207157号公報に記 載されて!ヽるアクリル酸アルキルエステル系単量体を高温、高圧で連続塊状重合に よって得た、 、わゆる SGOプロセスによる重合体を用いるのが好まし!/、。
[0181] 高分子可塑剤の数平均分子量は、好ましくは 500〜15000である力 より好ましく ίま 800〜10000であり、さら【こ好まし < ίま 1000〜8000、特【こ好まし <ίま 1000〜500 0である。最も好ましくは 1000〜3000である。分子量が低すぎると熱や降雨により可 塑剤が経時的に流出し、初期の物性を長期にわたり維持できず、アルキド塗装性が 改善できない。また、分子量が高すぎると粘度が高くなり、作業性が悪くなる。高分子 可塑剤の分子量分布は特に限定されないが、狭いことが好ましぐ 1. 80未満が好ま しい。 1. 70以下がより好ましぐ 1. 60以下がなお好ましぐ 1. 50以下がさらに好ま しぐ 1. 40以下が特に好ましぐ 1. 30以下が最も好ましい。
[0182] 数平均分子量はビニル系重合体の場合は GPC法で、ポリエーテル系重合体の場 合は末端基分析法で測定される。また、分子量分布 (MwZMn) GPC法 (ポリスチレ ン換算)で測定される。
[0183] また、高分子可塑剤は、反応性ケィ素基を有しな!/、ものでょ 、が、反応性ケィ素基 を有してもよい。反応性ケィ素基を有する場合、反応性可塑剤として作用し、硬化物 力もの可塑剤の移行を防止できる。反応性ケィ素基を有する場合、 1分子あたり平均 して 1個以下、さらには 0. 8個以下が好ましい。反応性ケィ素基を有する可塑剤、特 に反応性ケィ素基を有するォキシアルキレン重合体を使用する場合、その数平均分 子量は (A)成分の重合体より低!、ことが必要である。
[0184] 可塑剤は、単独で使用してもよぐ 2種以上を併用してもよい。また低分子可塑剤と 高分子可塑剤を併用してもよい。なおこれら可塑剤は、重合体製造時に配合すること も可能である。
[0185] 可塑剤の使用量は、(A)成分の重合体 100重量部に対して 5〜 150重量部、好ま しくは 10〜120重量部、さらに好ましくは 20〜: LOO重量部である。 5重量部未満では 可塑剤としての効果が発現しなくなり、 150重量部を越えると硬化物の機械強度が不 足する。
[0186] 本発明の硬化性糸且成物には、必要に応じて、加水分解により分子内に 1価のシラノ 一ル基を有する化合物を生成する化合物を添加しても良い。この化合物は硬化物の 表面のベたつきを悪化させずに硬化物のモジュラスを低下させる作用を有する。特 にトリメチルシラノールを生成する化合物が好ましい。加水分解により分子内に 1価の シラノール基を有する化合物を生成する化合物としては、特開平 5— 117521号公 報に記載されている化合物をあげることができる。また、へキサノール、ォクタノール、 デカノールなどのアルキルアルコールの誘導体であって加水分解によりトリメチルシ ラノールなどの R SiOHを生成するシリコン化合物を生成する化合物、特開平 11 2
3
41029号公報に記載されているトリメチロールプロパン、グリセリン、ペンタエリスリト ールあるいはソルビトールなどの水酸基数が 3以上の多価アルコールの誘導体であ つて加水分解によりトリメチルシラノールなどの R SiOHを生成するシリコンィ匕合物を
3
生成する化合物をあげることができる。
[0187] また、特開平 7— 258534号公報に記載されているようなォキシプロピレン重合体 の誘導体であって加水分解によりトリメチルシラノールなどの R SiOHを生成するシリ
3
コンィ匕合物を生成する化合物もあげることができる。さらに特開平 6— 279693号公 報に記載されている架橋可能な加水分解性ケィ素含有基と加水分解によりモノシラ ノール含有化合物となりうるケィ素含有基を有する重合体を使用することもできる。
[0188] 加水分解により分子内に 1価のシラノール基を有する化合物を生成する化合物は、 反応性ケィ素基を有する有機重合体 (A) 100重量部に対して、 0. 1〜20重量部、 好ましくは 0. 5〜: L0重量部の範囲で使用される。
[0189] 本発明の硬化性組成物には、必要に応じて垂れを防止し、作業性を良くするため にチクソ性付与剤 (垂れ防止剤)を添加しても良い。垂れ防止剤としては特に限定さ れないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシ ゥム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石酸類等が挙げられる 。また、特開平 11— 349916号公報に記載されているような粒子径 10〜500 mの ゴム粉末や、特開 2003— 155389号公報に記載されているような有機質繊維を用 いると、チクソ性が高く作業性の良好な組成物が得られる。これらチクソ性付与剤 (垂 れ防止剤)は単独で用いてもよぐ 2種以上併用してもよい。チクソ性付与剤は反応 性ケィ素基を有する有機重合体 (A) 100重量部に対して、 0. 1〜20重量部の範囲 で使用される。
[0190] 本発明の組成物においては 1分子中にエポキシ基を含有する化合物を使用できる 。エポキシ基を有する化合物を使用すると硬化物の復元性を高めることができる。ェ ポキシ基を有する化合物としてはエポキシ化不飽和油脂類、エポキシ化不飽和脂肪 酸エステル類、脂環族エポキシィ匕合物類、ェピクロルヒドリン誘導体に示すィ匕合物及 びそれらの混合物等が例示できる。具体的には、エポキシィ匕大豆油、エポキシ化ァ マ-油、ビス(2—ェチルへキシル)—4, 5—エポキシシクロへキサン— 1, 2—ジカー ボキシレート(E— PS)、エポキシオタチノレステアレート、エポキシブチノレステアレート 等があげられる。これらのなかでは E— PSが特に好ましい。エポキシィ匕合物は反応 性ケィ素基を有する有機重合体 (A) 100重量部に対して 0. 5〜50重量部の範囲で 使用するのがよい。
本発明の組成物には光硬化性物質を使用できる。光硬化性物資を使用すると硬化 物表面に光硬化性物質の皮膜が形成され、硬化物のベたつきや耐候性を改善でき る。光硬化性物質とは、光の作用によって力なり短時間に分子構造が化学変化をお こし、硬化などの物性的変化を生ずるものである。この種の化合物には有機単量体、 オリゴマー、榭脂或いはそれらを含む組成物等多くのものが知られており、市販の任 意のものを採用し得る。代表的なものとしては、不飽和アクリル系化合物、ポリケィ皮 酸ビュル類あるいはアジドィ匕榭脂等が使用できる。不飽和アクリル系化合物としては
、アクリル系又はメタクリル系不飽和基を 1ないし数個有するモノマー、オリゴマー或 いはそれ等の混合物であって、プロピレン(又はブチレン、エチレン)グリコールジ (メ タ)アタリレート、ネオペンチルダリコールジ (メタ)アタリレート等の単量体又は分子量 10, 000以下のオリゴエステルが例示される。具体的には、例えば特殊アタリレート( 2官能)のァロニックス M— 210,ァロニックス M— 215,ァロニックス M— 220,ァ口- ックス M— 233,ァ口-ックス M— 240,ァ口-ックス M— 245 ; (3官能)のァ口-ックス M— 305,ァ口-ックス M— 309,ァ口-ックス M— 310,ァ口-ックス M— 315,ァロ ニックス M— 320,ァロニックス M— 325,及び(多官能)のァロニックス M— 400など が例示できるが、特にアクリル官能基を含有する化合物が好ましぐまた 1分子中に 平均して 3個以上の同官能基を含有する化合物が好ま 、。(以上ァロニックスは!、 ずれも東亜合成化学工業株式会社の製品である。 )
ポリケィ皮酸ビニル類としては、シンナモイル基を感光基とする感光性榭脂でありポ リビュルアルコールをケィ皮酸でエステル化したものの他、多くのポリケィ皮酸ビュル 誘導体が例示される。アジド化榭脂は、アジド基を感光基とする感光性榭脂として知 られており、通常はジアジド化合物を感光剤として加えたゴム感光液の他、「感光性 榭脂」(昭和 47年 3月 17日出版、印刷学会出版部発行、第 93頁〜、第 106頁〜、第 117頁〜)に詳細な例示があり、これらを単独又は混合し、必要に応じて増感剤を加 えて使用することができる。なお、ケトン類、ニトロ化合物などの増感剤ゃァミン類など の促進剤を添加すると、効果が高められる場合がある。光硬化性物質は反応性ケィ 素基を有する有機重合体 (A) 100重量部に対して 0. 1〜20重量部、好ましくは 0. 5 〜10重量部の範囲で使用するのがよぐ 0. 1重量部以下では耐候性を高める効果 はなぐ 20重量部以上では硬化物が硬くなりすぎて、ヒビ割れを生じる傾向がある。 本発明の組成物には酸素硬化性物質を使用することができる。酸素硬化性物質に は空気中の酸素と反応し得る不飽和化合物を例示でき、空気中の酸素と反応して硬 化物の表面付近に硬化皮膜を形成し表面のベたつきや硬化物表面へのゴミゃホコリ の付着を防止するなどの作用をする。酸素硬化性物質の具体例には、キリ油、アマ 二油などで代表される乾性油や、該化合物を変性してえられる各種アルキッド榭脂; 乾性油により変性されたアクリル系重合体、エポキシ系榭脂、シリコン榭脂;ブタジェ ン、クロ口プレン、イソプレン、 1, 3 ペンタジェンなどのジェン系化合物を重合また は共重合させてえられる 1, 2 ポリブタジエン、 1, 4 ポリブタジエン、 C5〜C8ジェ ンの重合体などの液状重合体や、これらジェン系化合物と共重合性を有するアタリ口 二トリル、スチレンなどの単量体とをジェン系化合物が主体となるように共重合させて えられる NBR、 SBRなどの液状共重合体や、さらにはそれらの各種変性物(マレイン 化変性物、ボイル油変性物など)などが挙げられる。これらは単独で用いてもよぐ 2 種以上併用してもよい。これらのうちではキリ油や液状ジェン系重合体がとくに好まし い。又、酸化硬化反応を促進する触媒や金属ドライヤーを併用すると効果が高めら れる場合がある。これらの触媒や金属ドライヤーとしては、ナフテン酸コバルト、ナフ テン酸鉛、ナフテン酸ジルコニウム、ォクチル酸コバルト、ォクチル酸ジルコニウム等 の金属塩や、ァミン化合物等が例示される。酸素硬化性物質の使用量は、反応性ケ ィ素基を有する有機重合体 (A) 100重量部に対して 0. 1〜20重量部の範囲で使用 するのがよぐさらに好ましくは 0. 5〜: LO重量部である。前記使用量が 0. 1重量部未 満になると汚染性の改善が充分でなくなり、 20重量部をこえると硬化物の引張り特性 などが損なわれる傾向が生ずる。特開平 3— 160053号公報に記載されているように 酸素硬化性物質は光硬化性物質と併用して使用するのがよい。
[0193] 本発明の組成物には酸ィ匕防止剤 (老化防止剤)を使用することができる。酸化防止 剤を使用すると硬化物の耐熱性を高めることができる。酸ィ匕防止剤としてはヒンダ一 ドフエノール系、モノフエノール系、ビスフエノール系、ポリフエノール系が例示できる 1S 特にヒンダードフエノール系が好ましい。同様に、チヌビン 622LD,チヌビン 144 , CHIMASSORB944LD, CHIMASSORB119FL (以上いずれもチノく'スぺシャ ルティ'ケミカルズ株式会社製); MARK LA- 57, MARK LA— 62, MARK L A— 67, MARK LA— 63, MARK LA— 68 (以上いずれも旭電化工業株式会 ネ土製);サノーノレ LS— 770,サノーノレ LS— 765,サノーノレ LS— 292,サノーノレ LS— 2626,サノーノレ: LS— 1114,サノーノレ: LS— 744 (以上!/、ずれも三共株式会社製)【こ 示されたヒンダードアミン系光安定剤を使用することもできる。酸化防止剤の具体例 は特開平 4— 283259号公報ゃ特開平 9— 194731号公報にも記載されている。酸 化防止剤の使用量は、反応性ケィ素基を有する有機重合体 (A) 100重量部に対し て 0. 1〜10重量部の範囲で使用するのがよぐさらに好ましくは 0. 2〜5重量部であ る。
[0194] 本発明の組成物には光安定剤を使用することができる。光安定剤を使用すると硬 化物の光酸ィ匕劣化を防止できる。光安定剤としてべンゾトリアゾール系、ヒンダードァ ミン系、ベンゾエート系化合物等が例示できる力 特にヒンダードァミン系が好ましい 。光安定剤の使用量は、反応性ケィ素基を有する有機重合体 (A) 100重量部に対し て 0. 1〜10重量部の範囲で使用するのがよぐさらに好ましくは 0. 2〜5重量部であ る。光安定剤の具体例は特開平 9— 194731号公報にも記載されている。
[0195] 本発明の組成物に光硬化性物質を併用する場合、特に不飽和アクリル系化合物を 用いる場合、特開平 5 - 70531号公報に記載されて 、るようにヒンダードアミン系光 安定剤として 3級ァミン含有ヒンダードアミン系光安定剤を用いるのが組成物の保存 安定性改良のために好ま U、。 3級ァミン含有ヒンダードアミン系光安定剤としてはチ ヌビン 622LD,チヌビン 144, CHIMASSORB119FL (以上いずれもチノく'スぺシ ャルティ'ケミカルズ株式会社製); MARK LA- 57, LA— 62, LA— 67, LA— 6 3 (以上いずれも旭電ィ匕工業株式会社製);サノール LS— 765, LS - 292, LS— 26 26, LS- 1114, LS— 744 (以上いずれも三共株式会社製)などの光安定剤が例 示できる。
[0196] 本発明の組成物には紫外線吸収剤を使用することができる。紫外線吸収剤を使用 すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはべンゾフエ ノン系、ベンゾトリアゾール系、サリシレート系、置換トリル系及び金属キレート系化合 物等が例示できる力 特にべンゾトリアゾール系が好ましい。紫外線吸収剤の使用量 は、反応性ケィ素基を有する有機重合体 (A) 100重量部に対して 0. 1〜10重量部 の範囲で使用するのがよぐさらに好ましくは 0. 2〜5重量部である。フエノール系や ヒンダードフエノール系酸ィ匕防止剤とヒンダードアミン系光安定剤とベンゾトリァゾー ル系紫外線吸収剤を併用して使用するのが好ましい。
[0197] 本発明の組成物にはエポキシ榭脂を添加することができる。エポキシ榭脂を添加し た組成物は特に接着剤、殊に外壁タイル用接着剤として好ましい。エポキシ榭脂とし てはェピクロルヒドリン一ビスフエノール A型エポキシ榭脂、ェピクロルヒドリン一ビスフ ェノール F型エポキシ榭脂、テトラブロモビスフエノール Aのグリシジルエーテルなどの 難燃型エポキシ榭脂、ノボラック型エポキシ榭脂、水添ビスフエノール A型エポキシ榭 脂、ビスフエノール Aプロピレンォキシド付カ卩物のグリシジルエーテル型エポキシ榭脂 、 p—ォキシ安息香酸グリシジルエーテルエステル型エポキシ榭脂、 m—アミノフエノ 一ノレ系エポキシ榭脂、ジアミノジフエ二ノレメタン系エポキシ榭脂、ウレタン変'性ェポキ シ榭脂、各種脂環式エポキシ榭脂、 N, N—ジグリシジルァ二リン、 N, N—ジグリシジ ルー o—トルイジン、トリグリシジルイソシァヌレート、ポリアルキレングリコールジグリシ ジルエーテル、グリセリンなどのごとき多価アルコールのグリシジルエーテル、ヒダント イン型エポキシ榭脂、石油榭脂などのごとき不飽和重合体のエポキシィ匕物などが例 示されるが、これらに限定されるものではなぐ一般に使用されているエポキシ榭脂が 使用されうる。エポキシ基を少なくとも分子中に 2個含有するもの力 硬化に際し反応 性が高ぐまた硬化物が 3次元的網目をつくりやすいなどの点力も好ましい。さらに好 ましいものとしてはビスフエノール A型エポキシ榭脂類またはノボラック型エポキシ榭 脂などがあげられる。これらのエポキシ榭脂と反応性ケィ素基を有する有機重合体( A)の使用割合は、重量比で (A) Zエポキシ榭脂 = 100Zl〜lZlOOの範囲である 。 (Α)Ζエポキシ榭脂の割合が 1Ζ100未満になると、エポキシ榭脂硬化物の衝撃 強度ゃ強靱性の改良効果がえられがたくなり、(A)Zエポキシ榭脂の割合が 100Z 1をこえると、有機系重合体硬化物の強度が不十分となる。好ましい使用割合は、硬 化性榭脂組成物の用途などにより異なるため一概には決められないが、たとえばェ ポキシ榭脂硬化物の耐衝撃性、可撓性、強靱性、剥離強度などを改善する場合には
、エポキシ榭脂 100重量部に対して (A)成分を 1〜: L00重量部、さらに好ましくは 5〜 100重量部使用するのがよい。一方、(A)成分の硬化物の強度を改善する場合には 、(A)成分 100重量部に対してエポキシ榭脂を 1〜200重量部、さらに好ましくは 5〜 100重量部使用するのがよ 、。
[0198] エポキシ榭脂を添加する場合、本発明の組成物には、エポキシ榭脂を硬化させる 硬化剤を併用できることは当然である。使用し得るエポキシ榭脂硬化剤としては、特 に制限はなぐ一般に使用されているエポキシ榭脂硬化剤を使用できる。具体的に は、例えば、トリエチレンテトラミン、テトラエチレンペンタミン、ジェチルァミノプロピル ァミン、 N—アミノエチルピペリジン、 m—キシリレンジァミン、 m—フエ二レンジァミン、 ジアミノジフエ-ルメタン、ジアミノジフエ-ルスルホン、イソホロンジァミン、ァミン末端 ポリエーテル等の一級、二級アミン類; 2, 4, 6—トリス(ジメチルアミノメチル)フエノー ル、トリプロピルァミンのような三級アミン類、及び、これら三級アミン類の塩類;ポリア ミド榭脂類;イミダゾール類;ジシアンジアミド類;三弗化硼素錯ィ匕合物類;無水フタル 酸、へキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ドデシニル無水琥珀酸、無 水ピロメリット酸、無水クロレン酸等のような無水カルボン酸類;アルコール類;フエノ ール類;カルボン酸類;アルミニウム又はジルコニウムのジケトン錯ィ匕合物等の化合 物を例示することができるが、これらに限定されるものではない。また、硬化剤も単独 でも 2種以上併用してもよい。
[0199] エポキシ榭脂の硬化剤を使用する場合、その使用量はエポキシ榭脂 100重量部に 対し、 0. 1〜300重量部の範囲である。 [0200] エポキシ榭脂の硬化剤としてケチミンを用いることができる。ケチミンは、水分のな!ヽ 状態では安定に存在し、水分によって一級ァミンとケトンに分解され、生じた一級アミ ンがエポキシ榭脂の室温硬化性の硬化剤となる。ケチミンを用いると 1液型の組成物 を得ることができる。このようなケチミンとしては、ァミン化合物とカルボニル化合物と の縮合反応により得ることができる。
[0201] ケチミンの合成には公知のァミン化合物、カルボ二ルイ匕合物を用いればよいが、た とえばァミン化合物としてはエチレンジァミン、プロピレンジァミン、トリメチレンジァミン 、テトラメチレンジァミン、 1 , 3 ジアミノブタン、 2, 3 ジアミノブタン、ペンタメチレン ジァミン、 2, 4ージァミノペンタン、へキサメチレンジァミン、 p—フエ二レンジァミン、 p , ρ '—ビフエ-レンジァミンなどのジァミン; 1 , 2, 3 トリァミノプロパン、トリァミノベン ゼン、トリス(2—アミノエチル)ァミン、テトラキス (アミノメチル)メタンなどの多価ァミン; ジエチレントリァミン、トリエチレントリァミン、テトラエチレンペンタミンなどのポリアルキ レンポリアミン;ポリオキシァノレキレン系ポリアミン; γーァミノプロピルトリエトキシシラ ン、 Ν ( 一アミノエチル) - Ύ—ァミノプロピルトリメトキシシラン、 Ν - ( β—ァミノ ェチル) yーァミノプロピルメチルジメトキシシランなどのアミノシラン;などが使用さ れうる。また、カルボ-ル化合物としてはァセトアルデヒド、プロピオンアルデヒド、 η— ブチルアルデヒド、イソブチルアルデヒド、ジェチルァセトアルデヒド、グリオキサール 、ベンズアルデヒド等のアルデヒド類;シクロペンタノン、トリメチルシクロペンタノン、シ クロへキサノン、トリメチルシクロへキサノン等の環状ケトン類;アセトン、メチルェチル ケトン、メチルプロピルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、ジェ チルケトン、ジプロピルケトン、ジイソプロピルケトン、ジブチルケトン、ジイソプチルケト ン等の脂肪族ケトン類;ァセチルアセトン、ァセト酢酸メチル、ァセト酢酸ェチル、マロ ン酸ジメチル、マロン酸ジェチル、マロン酸メチルェチル、ジベンゾィルメタン等の 13 ージカルボ二ルイ匕合物;などが使用できる。
[0202] ケチミン中にイミノ基が存在する場合には、イミノ基をスチレンオキサイド;ブチルダリ シジルエーテル、ァリルグリシジルエーテルなどのグリシジルエーテル;グリシジルェ ステルなどと反応させてもよい。これらのケチミンは、単独で用いてもよぐ二種類以 上を併用して用いてもよぐエポキシ榭脂 100重量部に対し、 1〜: LOO重量部使用さ れ、その使用量はエポキシ榭脂およびケチミンの種類によって異なる。
[0203] 本発明の硬化性組成物には、ポリリン酸アンモ-ゥム、トリクレジルホスフェートなど のリン系可塑剤、水酸ィ匕アルミニウム、水酸化マグネシウム、および、熱膨張性黒鉛 などの難燃剤を添加することができる。上記難燃剤は単独で用いてもよぐ 2種以上 併用してちょい。
[0204] 難燃剤は (A)成分 100重量部に対して、 5〜200質量部、好ましくは 10〜: LOO質 量部の範囲で使用される。
[0205] 本発明の組成物には、組成物の粘度を低減し、チクソ性を高め、作業性を改善す る目的で、溶剤を使用することができる。溶剤としては、特に限定は無ぐ各種の化合 物を使用することができる。具体例としては、トルエン、キシレン、ヘプタン、へキサン 、石油系溶媒等の炭化水素系溶剤、トリクロロエチレン等のハロゲン系溶剤、酢酸ェ チル、酢酸ブチル等のエステル系溶剤、アセトン、メチルェチルケトン、メチルイソブ チルケトン等のケトン系溶剤、エーテル系溶剤、メタノール、エタノール、イソプロパノ ール等のアルコール系溶剤、へキサメチルシクロトリシロキサン、オタタメチルシクロテ トラシロキサン、デカメチルシクロペンタシロキサン等のシリコーン系溶剤が例示され る。溶剤を使用する場合、組成物を屋内で使用した時の空気への汚染の問題から、 溶剤の沸点は、 150°C以上が好ましぐ 200°C以上がより好ましぐ 250°C以上が特 に好ましい。これらの溶剤は、単独で使用してもよぐ 2種以上併用してもよい。
[0206] 但し、溶剤の配合量が多い場合には、人体への毒性が高くなる場合があり、また、 硬化物の体積収縮などが見られる場合がある。従って、溶剤の配合量は、(A)成分 の有機重合体 100重量部に対して、 3重量部以下であることが好ましぐ 1重量部以 下であることがより好ましく、溶剤を実質的に含まな 、ことが最も好ま 、。
[0207] 本発明の硬化性組成物には、硬化性組成物又は硬化物の諸物性の調整を目的と して、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、た とえば、硬化性調整剤、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン 系過酸化物分解剤、滑剤、顔料、発泡剤、防蟻剤、防かび剤などがあげられる。これ らの各種添加剤は単独で用いてもよぐ 2種類以上を併用してもよい。本明細書にあ げた添加物の具体例以外の具体例は、たとえば、特公平 4— 69659号、特公平 7— 108928号、特開昭 63— 254149号、特開昭 64— 22904号、特開 2001— 72854 号の各公報などに記載されている。
[0208] 本発明の硬化性組成物は、すべての配合成分を予め配合密封保存し、施工後空 気中の湿気により硬化する 1成分型として調製することも可能であり、硬化剤として別 途硬化触媒、充填材、可塑剤、水等の成分を配合しておき、該配合材と重合体組成 物を使用前に混合する 2成分型として調製することもできる。作業性の点からは、 1成 分型が好ましい。
[0209] 前記硬化性組成物が 1成分型の場合、すべての配合成分が予め配合されるため、 水分を含有する配合成分は予め脱水乾燥してから使用するか、また配合混練中に 減圧などにより脱水するのが好ましい。前記硬化性組成物が 2成分型の場合、反応 性ケィ素基を有する重合体を含有する主剤に硬化触媒を配合する必要がないので 配合剤中には若干の水分が含有されて 、てもゲルイ匕の心配は少な 、が、長期間の 貯蔵安定性を必要とする場合には脱水乾燥するのが好ましい。脱水、乾燥方法とし ては粉状などの固状物の場合は加熱乾燥法、液状物の場合は減圧脱水法または合 成ゼオライト、活性アルミナ、シリカゲル、生石灰、酸ィ匕マグネシウムなどを使用した 脱水法が好適である。また、イソシァネートイ匕合物を少量配合してイソシァネート基と 水とを反応させて脱水してもよい。また、 3 ェチルー 2—メチルー 2—(3—メチルブ チル) 1, 3 ォキサゾリジンなどのォキサゾリジンィ匕合物を配合して水と反応させて 脱水してもよい。力かる脱水乾燥法にカ卩えてメタノール、エタノールなどの低級アルコ ール; n—プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシ シラン、メチルシリケート、ェチルシリケート、 γ メルカプトプロピルメチルジメトキシ シラン、 γ メルカプトプロピルメチルジェトキシシラン、 γ—グリシドキシプロピルトリ メトキシシランなどのアルコキシシランィ匕合物を添加することにより、さらに貯蔵安定性 は向上する。
[0210] 脱水剤、特にビニルトリメトキシシランなどの水と反応し得るケィ素化合物の使用量 は反応性ケィ素基を有する有機重合体 (Α) 100重量部に対して、 0. 1〜20重量部 、好ましくは 0. 5〜10重量部の範囲が好ましい。
[0211] 本発明の硬化性組成物の調製法には特に限定はなぐ例えば上記した成分を配 合し、ミキサーやロールや-一ダーなどを用いて常温または加熱下で混練したり、適 した溶剤を少量使用して成分を溶解させ、混合したりするなどの通常の方法が採用さ れうる。
[0212] 本発明の硬化性組成物は、大気中に暴露されると水分の作用により、三次元的に 網状組織を形成し、ゴム状弾性を有する固体へと硬化する。
[0213] 本発明の硬化性組成物は、粘着剤、建造物'船舶'自動車'道路などのシーリング 材、接着剤、型取剤、防振材、制振材、防音材、発泡材料、塗料、吹付材などに使 用できる。本発明の硬化性組成物を硬化して得られる硬化物は、柔軟性および接着 性に優れることから、これらの中でも、シーリング材または接着剤として用いることがよ り好ましい。また、太陽電池裏面封止材などの電気 ·電子部品材料、電線 'ケーブル 用絶縁被覆材などの電気絶縁材料、弾性接着剤、コンタクト型接着剤、スプレー型シ 一ル材、クラック補修材、タイル張り用接着剤、粉体塗料、注型材料、医療用ゴム材 料、医療用粘着剤、医療機器シール材、食品包装材、サイジングボード等の外装材 の目地用シーリング材、コーティング材、プライマー、電磁波遮蔽用導電性材料、熱 伝導性材料、ホットメルト材料、電気電子用ポッティング剤、フィルム、ガスケット、各 種成形材料、および、網入りガラスや合わせガラス端面 (切断部)の防鲭'防水用封 止材、自動車部品、電機部品、各種機械部品などにおいて使用される液状シール剤 等の様々な用途に利用可能である。更に、単独あるいはプライマーの助けを力りてガ ラス、磁器、木材、金属、榭脂成形物などの如き広範囲の基質に密着しうるので、種 々のタイプの密封組成物および接着組成物としても使用可能である。また、本発明の 硬化性組成物は、内装パネル用接着剤、外装パネル用接着剤、タイル張り用接着剤 、石材張り用接着剤、天井仕上げ用接着剤、床仕上げ用接着剤、壁仕上げ用接着 剤、車両パネル用接着剤、電気 '電子'精密機器組立用接着剤、ダイレクトグレージ ング用シーリング材、複層ガラス用シーリング材、 SSG工法用シーリング材、または、 建築物のワーキングジョイント用シーリング材、としても使用可能である。
実施例
[0214] つぎに実施例および比較例によって本発明を具体的に説明するが、本発明はこれ に限定されるものではない。 [0215] (合成例 1)
分子量約 2, 000のポリオキシプロピレンジオールを開始剤とし、亜鉛へキサシァノ コバルテートグライム錯体触媒にてプロピレンォキシドの重合を行 、、数平均分子量 約 25, 500 (送液システムとして東ソー製 HLC— 8120GPCを用い、カラムは東ソー 製 TSK—GEL Hタイプを用い、溶媒は THFを用いて測定したポリスチレン換算分 子量)のポリプロピレンォキシドを得た。続いて、この水酸基末端ポリプロピレンォキシ ドの水酸基に対して 1. 2倍当量の NaOMeのメタノール溶液を添カ卩してメタノールを 留去し、更に塩ィ匕ァリルを添加して末端の水酸基をァリル基に変換した。未反応の塩 化ァリルを減圧脱揮により除去した。得られた未精製のァリル基末端ポリプロピレンォ キシド 100重量部に対し、 n—へキサン 300重量部と、水 300重量部を混合攪拌した 後、遠心分離により水を除去し、得られたへキサン溶液に更に水 300重量部を混合 攪拌し、再度遠心分離により水を除去した後、へキサンを減圧脱揮により除去した。 以上により、末端がァリル基である数平均分子量約 25, 500の 2官能ポリプロピレン ォキシドを得た (これを重合体 Pとする)。
[0216] 重合体 P100重量部に対し、白金ビュルシロキサン錯体の白金含量 3wt%のイソプ ロパノール溶液 150ppmを触媒として、トリメトキシシラン 1. 1重量部と 90°Cで 2時間 反応させ、トリメトキシシリル基末端ポリオキシプロピレン系重合体 (A—1)を得た。ま た、 NMR (日本電子 i^NM— LA400を用いて、 CDC1溶媒中で測定)を用い
3
、重合体 Pのポリプロピレンォキシド主鎖のメチル基(1. 2ppm付近)のピーク積分値 に対する末端ァリル基— CH— CH = CH (5. lppm付近)のピーク積分値の相対
2 2
値 とする)と、ヒドロシリルイ匕反応後のシリル末端ポリプロピレンォキシド (A— 1)の ポリプロピレンォキシド主鎖のメチル基(1. 2ppm付近)のピーク積分値に対する、末 端シリル基のシリコン原子に結合したメチレン基 CH -CH -CH -Si (OCH ) (
2 2 2 3 3
0. 6ppm付近)のピーク積分値の相対値 (Τ'とする)を求め、シリル基導入率 (Τ,Ζ Τ)を調べると、末端のトリメトキシシリル基は 1分子あたり平均して 1. 3個であった。
[0217] (合成例 2)
分子量約 2, 000のポリオキシプロピレンジオールを開始剤とし、亜鉛へキサシァノ コバルテートグライム錯体触媒にてプロピレンォキシドの重合を行 ヽ、末端が水酸基 である数平均分子量約 25, 500 (送液システムとして東ソー製 HLC -8120GPCを 用い、カラムは東ソー製 TSK— GEL Hタイプを用い、溶媒は THFを用いて測定し たポリスチレン換算分子量)の 2官能ポリプロピレンォキシド (これを重合体 Qとする) を得た。
[0218] 重合体 Q100重量部に対し、 γ—イソシァネートプロピルトリメトキシシラン 1. 8重量 部をカ卩え、 90°Cで 5時間反応させ、トリメトキシシリル基末端ポリオキシプロピレン系重 合体 (A— 2)を得た。また、 NMR (日本電子 i^NM— LA400を用いて、 CDC 1溶媒中で測定)を用い、重合体 Qのポリプロピレンォキシド主鎖のメチル基(1. 2pp
3
m付近)のピーク積分値に対する末端水酸基 OH (3. 8ppm付近)の反応前のピ ーク積分値の相対値 (Uとする)と、反応後のピーク積分値の相対値 (U'とする)を求 め、シリル基導入率 [ (U— U' ) ZU]を調べると、末端のトリメトキシシリル基は 1分子 あたり平均して 1. 4個であった。
[0219] (合成例 3)
重合体 P100重量部に対し、白金ビュルシロキサン錯体の白金含量 3wt%のイソプ ロパノール溶液 150ppmを触媒として、メチルジメトキシシラン 0. 93重量部と 90°Cで 5時間反応させ、末端に平均 1. 3個のメチルジメトキシシリル基を有するポリオキシプ ロピレン系重合体 (A— 3)を得た。
[0220] (実施例 1〜12、比較例 1〜9)
(A)成分であるトリアルコキシシリル基を有するポリオキシアルキレン系重合体とし て、合成例 1〜2で得られた重合体 (A— 1〜A— 2)、または、市販のトリメトキシシリル 基含有有機重合体である Hanse Chemie製「ST— 50」及び「ST— 53」を使用し、 さらに、メチルジメトキシシリル基を有する合成例 3で得られた重合体 (A— 3)を用い、 以下の方法で配合した。
[0221] 有機重合体 100重量部、表面処理膠質炭酸カルシウム(白石工業製、白艷華 CC R) 120重量部、酸化チタン (石原産業製、タイペータ R— 820) 20重量部、可塑剤ジ イソデシルフタレート(新日本理化製、サンソサイザ一 DIDP) 55重量部、チクソ性付 与剤 (楠本化成製、ディスパロン 6500) 2重量部、光安定剤(三共製、サノール LS76 5) 1重量部、紫外線吸収剤 (住友化学製、スミソープ 400) 1重量部、酸化防止剤 (チ ノ 'スペシャルティ'ケミカルズ製、ィルガノックス 1010) 1重量部を計量し、三本ペイ ントロールでよく混練して主剤とした。
[0222] 次に、上記主剤に対して、表 1に示す処方にしたがって、(B)成分のチタニウムジィ ソプロボキシドビス(ェチルァセトアセテート)(松本交商製、オルガチックス TC— 750 )、または、有機錫触媒であるジブチルスズビス (ァセチルァセトネート)(日東ィ匕成製 、ネオスタン U— 220)、(C)成分のビュルトリメトキシシラン(東レ'ダウコーユング 'シ リコーン製、 A— 171)および N— ( β—アミノエチル) Ί—ァミノプロピルトリメトキシ シラン (東レ 'ダウコーユング 'シリコーン製、 Α— 1120)を計量し、スパチュラを使用し て 3分間攪拌、混合した。混合後、厚さ約 5mmの型枠にスパチュラを用いて充填し、 表面を平面状に整えた。この時間を硬化開始時間とし、表面をスパチュラで触り、ス パチユラに配合物が付着しなくなった時間を皮張り時間として測定を行った。皮張り 時間は、 23°C50%RHの条件下で測定した。
[0223] 配合組成、および硬化性 (皮張り時間)の評価結果を表 1に示す。また、(B)成分中 のチタン原子の総モル数(a)と(C)成分中のケィ素原子の総モル数 (b)との比(aZb )の値を表 1に示した。表中、皮張り時間が 96時間以上の場合には Nと表記した。
[0224] [表 1]
Figure imgf000064_0001
表 1に示す通り、本発明の(B)成分であるチタン触媒を用いると、 aZbの値が 0. 08 より大きい場合 (実施例 1 12)には、実用的な硬化性を示した。しかし、 aZbの値力 S 0. 08以下の場合 (比較例 1〜3)には、著しく硬化性が低下した。また、メチルジメト キシシリル基末端ポリオキシプロピレン系重合体を用いた場合 (比較例 4)には、 a/b の値が 0. 08より大きい場合 (比較例 4)にも硬化性が悪ぐ 96時間後も硬化しなかつ た。一方、硬化触媒として有機錫触媒を用いた場合 (比較例 5〜9)には、スズ原子の 総モル数と (C)成分中のケィ素原子の総モル数との比の値は、硬化性 (皮張り時間) との間に、チタン触媒の場合に見られたような相関は示さな力つた。
[0226] (合成例 4)
重合体 P100重量部に対し、白金ビュルシロキサン錯体の白金含量 3wt%のイソプ ロパノール溶液 150ppmを触媒として、下記化学式、
HSi(CH ) OSi (CH ) C H Si(OCH )
3 2 3 2 2 4 3 3
で表されるシラン化合物 2. 3重量部と 90°Cで 5時間反応させ、末端に平均 1. 1個の トリメトキシシリル基を有するポリオキシプロピレン系重合体 (A— 4)を得た。
[0227] (合成例 5)
105°Cに加熱した下記単量体混合物の 2—ブタノール溶液に、重合開始剤として 2
, 2'—ァゾビス(2—メチルブチ口-トリル)を溶力した溶液を 5時間かけて滴下し、そ の後 1時間「後重合」を行って (メタ)アクリル酸エステル系重合体 (A— 5)を得た。
[0228] メチルメタタリレート ·46. 8重量部、ブチルアタリレート · 28. 6重量部、ステアリルメ タクリレート · 20. 1重量部、 γ —メタクリロキシプロピルトリメトキシシラン ·4. 5重量部
、 2, 2,—ァゾビス(2—メチルブチ口-トリル) · 2. 7重量部。
[0229] (合成例 6)
合成例 1で得られた重合体 (Α— 1)と合成例 5で得られた重合体 (Α— 5)を固形分 重量比 80Ζ20で混合した後、溶剤を留去して無溶剤ポリマー (Α—6)を得た。
[0230] (実施例 13〜21、比較例 10)
(Α)成分であるトリアルコキシシリル基含有有機重合体として、合成例 1、合成例 2、 合成例 4、合成例 6で得られた重合体 (Α—1, Α— 2, Α— 4, Α— 6)を使用し、以下 の方法で配合した。
[0231] 有機重合体 (Α) 100重量部、表面処理膠質炭酸カルシウム(白石工業製、白艷華 CCR) 120重量部、酸化チタン (石原産業製、タイペータ R— 820) 20重量部、可塑 剤ジイソデシルフタレート(新日本理化製、サンソサイザ一 DIDP) 55重量部、チクソ 性付与剤 (楠本化成製、ディスパロン 6500) 2重量部、光安定剤(三共製、サノール LS765) 1重量部、紫外線吸収剤 (住友化学製、スミソープ 400) 1重量部、酸化防止 剤(チノく'スペシャルティ'ケミカルズ製、ィルガノックス 1010) 1重量部、(C)成分のビ -ルトリメトキシシラン(東レ 'ダウコーユング 'シリコーン製、 A— 171) 2重量部と N— ( β—アミノエチル) γ—ァミノプロピルトリメトキシシラン (東レ 'ダウコーユング 'シリコ ーン製、 Α— 1120) 3重量部、および(Β)成分のチタニウムジイソプロボキシドビス( ェチルァセトアセテート)(松本交商製、オルガチックス TC— 750)、または、ジルコ- ゥム η ブトキシド(ァセチノレアセトネート)ビス(ェチノレアセトアセテート) [36wt% 1 ブタノール含有] (マツモト交商製、オルガチックス ZC- 570) 14. 3重量部、または、ァ ルミ-ゥムジイソプロポキシド(ェチルァセトアセテート) [50wt%7号ソルベント(石油 系溶媒)含有] (川研ファインケミカル製、 ALCH— 50F) 11重量部、もしくは、(B)成 分の代わりに有機錫触媒であるジブチル錫ラウレート (三共有機合成製、 STANN BL) 0. 1重量部を表 2に示す処方にしたがって添加し、脱水条件下にて実質的に水 分の存在しない状態で混練した後、防湿性の容器に密閉し、 1液型硬化性組成物を 得た。これらの組成物中の(B)成分のチタン原子、アルミニウム原子、ジルコニウム原 子の総モル数 (a)と、組成物中の(C)成分のケィ素原子の総モル数 (b)との比(aZb )の値を表 2に示す。
[0232] 作成した各 1液型硬化性組成物を用いて、以下の要領で各種物性を調べた。
[0233] (硬化性試験)
カートリッジ力 各硬化性組成物を押し出し、厚さ約 5mmの型枠にスパチュラを用 いて充填し、表面を平面状に整えた。この時間を硬化開始時間とし、表面をスパチュ ラで触り、スパチュラに配合物が付着しなくなった時間を皮張り時間として測定を行つ た。皮張り時間は、 23°C50%RHの条件下で測定した。結果を表 2に示す。
[0234] (接着性試験)
カートリッジから各硬化性組成物を各種被着体 (ポリカーボネートおよびアクリル)に 密着するように押し出し、サンプルを作製した。作製したサンプルを 23°C X 7日養生 した後、 90度ハンドピール試験により、接着性の評価を行った。破壊モードで判定し 、凝集破壊率が 90〜100%を A、 70〜90%を B、 0〜70%を Cとした。結果を表 2に 示す。
[表 2]
実施例 比較例 組成(重量部)
13 14 15 16 17 18 19 20 21 10
A— 1 100 100 100 100
0 ( A-2 100 100 100
(A)成分
A— 4 100 100
A— 6 100
充填剤 白艷華 CCR 120 120 120 120 120 120 120 120 120 120 可塑剤 DIDP 55 55 55 55 55 55 55 55 55 55 酸化チタン タイぺーク R— 820 20 20 20 20 20 20 20 20 20 20 チクソ性付与剤 ディスパロン 6500 2 2 2 2 2 2 2 2 2 2 紫外線吸収剤 スミソ一ブ 400 1 1 1 1 1 1 1 1 1 1 光安定剤 サノーノレ LS765 1 1 1 1 1 1 1 1 1 1 酸化防止剤 ィルガノックス 1010 1 1 1 1 1 1 1 1 1 1
TC-750 7.5 4 7.5 4 2 7.5 4
(B)成分 ZC-570 14.3
ALCH-50F 11
有機錫触媒 STANN BL 0.1
A-171 2 2 2 2 2 2 2 2 2 2
(C)成分
A-1120 3 3 3 3 3 3 3 3 3 3
0.66 0.35 0.66 0.35 0.17 0.66 0.35 0.74 0.74 ― 硬化性 皮張り時間(分) 22 101 14 23 178 53 80 103 134 258
ポリカーボネート A A A A A A A A A C 接着性 *
アクリル A A A A A A A A A C
[0236] 表 2に示すように、トリメトキシシリル基末端有機重合体に、 a/bの値が 0. 08を上 回るように(B)成分と(C)成分を添加した場合 (実施例 13〜21)には、皮張り時間は 実用的な硬化性を示した。また、各種基材 (ポリカーボネートおよびアクリル)に対し て 、ずれの場合も凝集破壊を示した。
[0237] 一方、(B)成分であるチタン触媒の代わりに有機錫触媒を用いた場合 (比較例 10) には、各種基材に対する接着性が悪力つた。

Claims

請求の範囲
[1] シロキサン結合を形成することにより架橋し得るケィ素含有基として、一般式(1):
-SiX (1)
3
(式中、 Xは水酸基または加水分解性基を示し、 3つの Xは相互に同一であっても、 異なって!/ヽてもよ ヽ)で表される反応性ケィ素基を有する有機重合体 (A)、チタン触 媒、アルミニウム触媒、ジルコニウム触媒力 選ばれる 1種以上 (B)、および加水分解 性ケィ素基を有する分子量 100〜 1000の低分子量化合物(C)を含有する硬化性 組成物であって、かつ、(B)成分のチタン原子とアルミニウム原子とジルコニウム原子 の総モル数 (a)と (C)成分のケィ素原子の総モル数 (b)との比(aZb) 1S 0. 08より も大き!ゝことを特徴とする硬化性組成物。
[2] (C)の低分子量ィ匕合物として、アミノ基を有するシランィ匕合物を含有することを特徴 とする請求項 1に記載の硬化性組成物。
[3] 有機重合体 (A) 100重量部に対して、チタン触媒、アルミニウム触媒、ジルコニウム 触媒力 選ばれる 1種以上 (B) 0. 1〜15重量部、低分子量化合物(C) 0. 1〜15重 量部を含有することを特徴とする請求項 1または 2に記載の硬化性組成物。
[4] 有機重合体 (A)の主鎖骨格が、ポリオキシアルキレン系重合体、飽和炭化水素系 重合体、(メタ)アクリル酸エステル系重合体力 なる群力 選択される少なくとも 1種 である請求項 1から 3のいずれかに記載の硬化性組成物。
[5] 有機重合体 (A)のガラス転移温度が、 20°C以下であることを特徴とする請求項 1か ら 4の ヽずれかに記載の硬化性組成物。
[6] 前記チタン触媒が、一般式 (2):
TKOR1) (2)
4
(式中、 R1は有機基であり、 4個の R1は相互に同一であっても、異なっていてもよい) で表されることを特徴とする請求項 1から 5のいずれかに記載の硬化性組成物。
[7] 前記チタン触媒が、前記一般式 (2)で表されるチタニウムキレートであることを特徴 とする請求項 6に記載の硬化性組成物。
[8] 前記チタニウムキレートが、一般式 (3):
[化 1]
Figure imgf000071_0001
[式中、
Figure imgf000071_0002
R3は水素原子または炭素原子数 1から 20の炭化水素基であり、 R2およ び R3は同一であっても、異なっていてもよい。 n個の R2は相互に同一であっても、異 なっていてもよぐ 4 n個の R3は相互に同一であっても、異なっていてもよい。 A A 2は— R4または— OR4力 選ばれる(ここで R4は炭素原子数 1から 20の炭化水素基で ある)。 A1および A2は同一であっても、異なっていてもよい。 4— n個の A1は相互に同 一であっても、異なっていてもよぐ 4— n個の A2は相互に同一であっても、異なって いてもよい。 nは 0、 1、 2、 3のいずれかである。 ]で表される化合物および Zまたは一 般式 (4) :
[化 2]
Figure imgf000071_0003
(式中、
Figure imgf000071_0004
A2は前記と同じ。 R5は、炭素原子数 1から 20の 2価の炭化水素基で ある。 )で表される化合物であることを特徴とする請求項 7に記載の硬化性組成物。
[9] 前記アルミニウム触媒が、一般式 (5):
Al(OR6) 3 (5)
(式中、 R6は有機基であり、 3個の R6は相互に同一であっても、異なっていてもよい) で表されることを特徴とする請求項 1から 8のいずれかに記載の硬化性組成物。
[10] 前記アルミニウム触媒力 前記一般式(5)で表されるアルミニウムキレートであること を特徴とする請求項 9に記載の硬化性組成物。 [11] 前記アルミニウムキレートが、一般式 (6)
[化 3]
Figure imgf000072_0001
[式中、
Figure imgf000072_0002
R8は水素原子または炭素原子数 1から 20の炭化水素基であり、 R7およ び R8は同一であっても、異なっていてもよい。 m個の R7は相互に同一であっても、異 なっていてもよく、 3— m個の R8は相互に同一であっても、異なっていてもよい。 A3、 A4は— R9または— OR9力も選ばれる(ここで R9は炭素原子数 1から 20の炭化水素基 である)。 A3および A4は同一であっても、異なっていてもよい。 3— m個の A3は相互に 同一であっても、異なっていてもよく、 3— m個の A4は相互に同一であっても、異なつ ていてもよい。 mは 0、 1、 2のいずれかである。 ]で表される化合物および Zまたは一 般式 (7) :
[化 4]
Figure imgf000072_0003
(式中、 R°、 A3、 A4は前記と同じ。 R1Qは、炭素原子数 1から 20の 2価の炭化水素基で ある。 )で表される化合物であることを特徴とする請求項 10に記載の硬化性組成物。 前記ジルコニウム触媒が、一般式 (8):
Zr (ORn) (8)
4
(式中、 R11は有機基であり、 4個の R11は相互に同一であっても、異なっていてもよい) で表されることを特徴とする請求項 1から 11のいずれかに記載の硬化性組成物。 [13] 前記ジルコニウム触媒力 前記一般式 (8)で表されるジルコニウムキレートであるこ とを特徴とする請求項 12に記載の硬化性組成物。
[14] 前記ジルコニウムキレートが、一般式(9) :
[化 5]
Figure imgf000073_0001
[式中、 R , R"は水素原子または炭素原子数 1から 20の炭化水素基であり、 およ び R13は同一であっても、異なっていてもよい。 1個の R12は相互に同一であっても、異 なっていてもよぐ 4—1個の R13は相互に同一であっても、異なっていてもよい。 A5、 A 6は— R14または— OR14から選ばれる(ここで R14は炭素原子数 1から 20の炭化水素基 である)。 A5および A6は同一であっても、異なっていてもよい。 4—1個の A5は相互に 同一であっても、異なっていてもよぐ 4—1個の A6は相互に同一であっても、異なって いてもよい。 1は 0、 1、 2、 3のいずれかである。 ]で表される化合物および Zまたは一 般式 (10) :
[化 6]
Figure imgf000073_0002
(式中、 R13、 A5、 A6は前記と同じ。 R15は、炭素原子数 1から 20の 2価の炭化水素基 である。 )で表される化合物であることを特徴とする請求項 13に記載の硬化性組成物
(B)成分力 チタン触媒であることを特徴とする請求項 1から 8のいずれかに記載の 硬化性組成物。
[16] 有機重合体 (A)が有する反応性ケィ素基の少なくとも一部が、一般式 (11):
-Si (OR16) (11)
3
(式中、 R16は置換あるいは非置換の炭化水素基であり、 3つの R16は相互に同一であ つても、異なっていてもよい)で表される加水分解性のトリアルコキシシリル基であるこ とを特徴とする請求項 1から 15のいずれかに記載の硬化性組成物。
[17] 有機重合体 (A)が有する反応性ケィ素基の少なくとも一部が、トリメトキシシリル基 であることを特徴とする請求項 1から 16のいずれかに記載の硬化性組成物。
[18] 請求項 1から 17のいずれかに記載の硬化性組成物を用いてなるシーリング材。
[19] 請求項 1から 17のいずれかに記載の硬化性組成物を用いてなる接着剤。
PCT/JP2005/007804 2004-05-07 2005-04-25 硬化性と接着性の改善された硬化性組成物 WO2005108499A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2005800145584A CN1950459B (zh) 2004-05-07 2005-04-25 改善了固化性和粘接性的固化性组合物
EP05734515.9A EP1746134B1 (en) 2004-05-07 2005-04-25 Curable composition with improved curability and adhesiveness
US11/579,551 US7893170B2 (en) 2004-05-07 2005-04-25 Curable composition having improved curability and adhesion
JP2006512951A JP5225581B2 (ja) 2004-05-07 2005-04-25 硬化性と接着性の改善された硬化性組成物

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2004139111 2004-05-07
JP2004-139110 2004-05-07
JP2004139110 2004-05-07
JP2004-139111 2004-05-07
JP2004146974 2004-05-17
JP2004146973 2004-05-17
JP2004146972 2004-05-17
JP2004-146974 2004-05-17
JP2004146977 2004-05-17
JP2004-146972 2004-05-17
JP2004-146973 2004-05-17
JP2004-146976 2004-05-17
JP2004146976 2004-05-17
JP2004-146977 2004-05-17

Publications (1)

Publication Number Publication Date
WO2005108499A1 true WO2005108499A1 (ja) 2005-11-17

Family

ID=35320211

Family Applications (7)

Application Number Title Priority Date Filing Date
PCT/JP2005/007802 WO2005108498A1 (ja) 2004-05-07 2005-04-25 硬化性組成物
PCT/JP2005/007805 WO2005108500A1 (ja) 2004-05-07 2005-04-25 接着性の改善された硬化性組成物
PCT/JP2005/007804 WO2005108499A1 (ja) 2004-05-07 2005-04-25 硬化性と接着性の改善された硬化性組成物
PCT/JP2005/007803 WO2005108494A1 (ja) 2004-05-07 2005-04-25 硬化性組成物
PCT/JP2005/007800 WO2005108493A1 (ja) 2004-05-07 2005-04-25 硬化性組成物
PCT/JP2005/007799 WO2005108492A1 (ja) 2004-05-07 2005-04-25 硬化性組成物
PCT/JP2005/007798 WO2005108491A1 (ja) 2004-05-07 2005-04-25 硬化性組成物

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2005/007802 WO2005108498A1 (ja) 2004-05-07 2005-04-25 硬化性組成物
PCT/JP2005/007805 WO2005108500A1 (ja) 2004-05-07 2005-04-25 接着性の改善された硬化性組成物

Family Applications After (4)

Application Number Title Priority Date Filing Date
PCT/JP2005/007803 WO2005108494A1 (ja) 2004-05-07 2005-04-25 硬化性組成物
PCT/JP2005/007800 WO2005108493A1 (ja) 2004-05-07 2005-04-25 硬化性組成物
PCT/JP2005/007799 WO2005108492A1 (ja) 2004-05-07 2005-04-25 硬化性組成物
PCT/JP2005/007798 WO2005108491A1 (ja) 2004-05-07 2005-04-25 硬化性組成物

Country Status (5)

Country Link
US (7) US7893170B2 (ja)
EP (7) EP1746133B1 (ja)
JP (7) JP5002262B2 (ja)
CN (1) CN1950459B (ja)
WO (7) WO2005108498A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014077A1 (ja) * 2007-07-24 2009-01-29 Kaneka Corporation 硬化性組成物
JP2010100839A (ja) * 2008-09-26 2010-05-06 Kaneka Corp 太陽電池モジュール用硬化性組成物および太陽電池モジュール
JP2013534548A (ja) * 2010-06-15 2013-09-05 ワッカー ケミー アクチエンゲゼルシャフト シラン架橋化合物
JP5465382B2 (ja) * 2005-12-02 2014-04-09 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 室温硬化性ケイ素基含有ポリマー組成物
EP3048141A1 (en) 2015-01-26 2016-07-27 Mactac Europe Sprl Self adhesive fouling release coating composition
US9551812B2 (en) 2011-05-30 2017-01-24 Cheil Industries, Inc. Adhesive composition, adhesive layer, optical member, and adhesive sheet
JP2017503037A (ja) * 2013-11-26 2017-01-26 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド 金属−アレーン錯体を有する湿気硬化型組成物
KR20190025723A (ko) * 2016-08-03 2019-03-11 다우 실리콘즈 코포레이션 탄성중합체 조성물 및 그의 응용
US10563015B2 (en) 2015-01-28 2020-02-18 Dow Silicones Corporation Elastomeric compositions and their applications
US10844177B2 (en) 2016-08-03 2020-11-24 Dow Silicones Corporation Elastomeric compositions and their applications
WO2021261383A1 (ja) * 2020-06-22 2021-12-30 株式会社カネカ 加熱硬化型の硬化性組成物及びその硬化物
US11254847B2 (en) 2017-05-09 2022-02-22 Dow Silicones Corporation Lamination adhesive compositions and their applications
US11479022B2 (en) 2017-05-09 2022-10-25 Dow Silicones Corporation Lamination process

Families Citing this family (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4101632B2 (ja) * 2002-11-01 2008-06-18 株式会社カネカ 硬化性組成物および復元性、クリープ性改善方法
JP5002262B2 (ja) * 2004-05-07 2012-08-15 株式会社カネカ 硬化性組成物
JP4480457B2 (ja) * 2004-05-17 2010-06-16 株式会社カネカ 硬化性組成物
DE102005042899A1 (de) * 2005-09-08 2007-03-15 Ewald Dörken Ag Schweißbares Korrosionsschutzmittel und Bindemittel hierfür
WO2007037483A1 (ja) * 2005-09-30 2007-04-05 Kaneka Corporation 硬化性組成物
JP5109147B2 (ja) * 2005-12-21 2012-12-26 旭硝子株式会社 伸び増強剤及びそれを含む硬化性組成物
JP5335178B2 (ja) * 2005-12-22 2013-11-06 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 室温硬化性ケイ素基含有ポリマー組成物の調製方法
DE102006006975A1 (de) * 2006-02-14 2007-08-30 Bostik Gmbh Einkomponentiger, lösemittelfreier Kontaktklebstoff
KR101369659B1 (ko) * 2006-07-03 2014-03-04 아사히 가라스 가부시키가이샤 옥시알킬렌 중합체의 제조 방법 및 경화성 조성물
JP2008019361A (ja) * 2006-07-14 2008-01-31 Momentive Performance Materials Japan Kk 反応性ケイ素基含有ポリマーの調製方法および室温硬化性ケイ素基含有ポリマー組成物
JP5040229B2 (ja) * 2006-09-20 2012-10-03 住友化学株式会社 紫外線カットフィルム
JP5188698B2 (ja) * 2006-11-06 2013-04-24 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 硬化性組成物
US9051501B2 (en) * 2006-11-22 2015-06-09 Kaneka Corporation Curable composition and catalyst composition
RU2009127797A (ru) * 2006-12-20 2011-01-27 Колопласт А/С (Dk) Композиция чувствительного к давлению клея, содержащая соль
DE102006061458B4 (de) 2006-12-23 2014-06-18 Bostik Gmbh Verwendung einer selbstverlaufenden, wasserfreien Beschichtungsmasse und Fußboden, mit Laminat- oder Parkettpaneelen
AU2008244255B2 (en) * 2007-05-01 2013-08-29 Akzo Nobel Coatings International B.V. Antifouling coating composition based on curable polyorganosiloxane polyoxyalkylene copolymers
JP5398975B2 (ja) * 2007-05-07 2014-01-29 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 硬化性組成物
JP5354511B2 (ja) * 2007-07-12 2013-11-27 日東化成株式会社 有機重合体用硬化触媒およびそれを含有する湿気硬化型有機重合体組成物
GB0714257D0 (en) * 2007-07-23 2007-08-29 Dow Corning Sealant for insulating glass unit
JP4460591B2 (ja) * 2007-07-30 2010-05-12 信越化学工業株式会社 液状シリコーンゴムコーティング剤組成物、カーテンエアーバッグ及びその製造方法
DE102007038030B4 (de) * 2007-08-10 2009-07-09 Henkel Ag & Co. Kgaa Härtbare Zusammensetzungen aus Dimethoxysilanen
DE102007038661A1 (de) * 2007-08-15 2009-02-19 Henkel Ag & Co. Kgaa Silanvernetzender Kleb- oder Dichtstoff mit N-Silylakylamiden und seine Verwendung
US8101039B2 (en) 2008-04-10 2012-01-24 Cardinal Ig Company Manufacturing of photovoltaic subassemblies
DK2098548T3 (da) 2008-03-05 2009-12-07 Sika Technology Ag Sammensætning med forbedret vedhæftning til poröse substrater
WO2009119589A1 (ja) * 2008-03-26 2009-10-01 アイカ工業株式会社 ホットメルト組成物、シール材、及び太陽電池
JP5424598B2 (ja) * 2008-09-09 2014-02-26 日東電工株式会社 光学フィルム用粘着剤組成物、光学フィルム用粘着剤層、粘着型光学フィルムおよび画像表示装置
DE102008047362A1 (de) 2008-09-15 2010-04-15 Henkel Ag & Co. Kgaa Zusammensetzung zur Hautaufhellung
JP2010111870A (ja) * 2008-11-07 2010-05-20 Kaneka Corp 硬化性組成物および複層ガラス用シーリング材
EP2199351A1 (de) * 2008-12-19 2010-06-23 Sika Technology AG Flüssigfolie auf Basis von silanterminierten Polymeren
US9640396B2 (en) * 2009-01-07 2017-05-02 Brewer Science Inc. Spin-on spacer materials for double- and triple-patterning lithography
JP5717320B2 (ja) * 2009-03-12 2015-05-13 リンテック株式会社 再剥離型粘着シート
DE102009026679A1 (de) * 2009-06-03 2010-12-16 Henkel Ag & Co. Kgaa Kleb- und Dichtstoffe auf Basis silanterminierter Bindemittel zum Verkleben und Abdichten von flexiblen Solarfolien / Photovoltaikmodulen
DE102009027357A1 (de) * 2009-06-30 2011-01-05 Wacker Chemie Ag Alkoxysilanterminierte Polymere enthaltende Kleb- oder Dichtstoffmassen
FR2948123B1 (fr) 2009-07-20 2011-12-16 Bostik Sa Colle de reparation ou de fixation sans organoetain
US8952188B2 (en) * 2009-10-23 2015-02-10 Air Products And Chemicals, Inc. Group 4 metal precursors for metal-containing films
WO2011072056A2 (en) 2009-12-08 2011-06-16 Dow Corning Coporation Cure rate control for alkoxysilyl-end-blocked polymers
EP2336210B1 (de) * 2009-12-17 2014-03-12 Sika Technology AG Silanfunktionelle Polymere, welche bei der Vernetzung kein Methanol abspalten
JP5789087B2 (ja) * 2010-04-23 2015-10-07 株式会社カネカ 内装用の非有機錫系接着剤組成物およびその硬化物
JP5975871B2 (ja) * 2010-06-03 2016-08-23 株式会社カネカ 湿気硬化型反応性ホットメルト接着剤組成物
DE102010041676A1 (de) * 2010-09-29 2012-03-29 Wacker Chemie Ag Vernetzbare Organopolysiloxanzusammensetzung
TWI540151B (zh) * 2010-10-20 2016-07-01 可隆股份有限公司 可光聚合的組成物及光學片
JP6161103B2 (ja) * 2010-10-27 2017-07-12 セメダイン株式会社 硬化性組成物の製造方法
JP5887786B2 (ja) * 2010-10-27 2016-03-16 セメダイン株式会社 硬化性組成物
DE102010062186A1 (de) * 2010-11-30 2012-05-31 Henkel Ag & Co. Kgaa Zweikomponentige härtbare Zusammensetzung
FR2969638B1 (fr) * 2010-12-22 2014-05-02 Bostik Sa Composition adhesive et procede correspondant de pose de parquet a stabilite dimensionnelle amelioree
EP2665857B1 (en) 2011-01-18 2017-11-08 Dow Corning Corporation Method for treating substrates with halosilanes
DE102011003425B4 (de) * 2011-02-01 2015-01-08 Henkel Ag & Co. Kgaa Verwendung einer härtbaren Zusammensetzung mit kombinierten Stabilisatoren
WO2012141281A1 (ja) * 2011-04-15 2012-10-18 株式会社カネカ 建築用外装材
KR101305438B1 (ko) 2011-05-13 2013-09-06 현대자동차주식회사 폴리우레탄과 알루미늄의 접착을 위한 접착제
CN102140268B (zh) * 2011-05-17 2013-04-10 欧美龙(南通)重防腐涂料有限公司 船舶压载舱防腐无溶剂环氧涂料改性添加剂及改性环氧涂料
JP2013032450A (ja) * 2011-08-02 2013-02-14 Kaneka Corp 粘着剤組成物
EP2753663B1 (en) 2011-09-07 2020-01-08 Dow Silicones Corporation Zirconium containing complex and condensation reaction catalysts, methods for preparing the catalysts, and compositions containing the catalysts
US9371422B2 (en) 2011-09-07 2016-06-21 Dow Corning Corporation Titanium containing complex and condensation reaction catalysts, methods for preparing the catalysts, and compositions containing the catalysts
JP2012036397A (ja) * 2011-09-30 2012-02-23 Matsumoto Fine Chemical Co Ltd 硬化性組成物
US9139699B2 (en) 2012-10-04 2015-09-22 Dow Corning Corporation Metal containing condensation reaction catalysts, methods for preparing the catalysts, and compositions containing the catalysts
KR101738602B1 (ko) 2011-10-17 2017-06-08 신에쓰 가가꾸 고교 가부시끼가이샤 축합반응 경화형 실리콘 박리 코팅 조성물
JP5834755B2 (ja) * 2011-10-17 2015-12-24 信越化学工業株式会社 剥離性硬化皮膜の形成方法
CN102505484B (zh) * 2011-11-04 2013-11-06 西安康本材料有限公司 一种用于复丝拉伸性能测试的胶液
JP5810865B2 (ja) * 2011-11-25 2015-11-11 信越化学工業株式会社 シリコーン粘着剤用縮合反応硬化型プライマー組成物
US8728568B2 (en) 2012-01-16 2014-05-20 Itron, Inc. Method for encapsulation of electronics received in water meter pits with an improved wax-based encapsulant/moisture barrier
US8481626B1 (en) 2012-01-16 2013-07-09 Itron, Inc. Wax-based encapsulant/moisture barrier for use with electronics received in water meter pits
DE102012201734A1 (de) 2012-02-06 2013-08-08 Wacker Chemie Ag Massen auf Basis von organyloxysilanterminierten Polymeren
EP2641935A1 (de) * 2012-03-19 2013-09-25 Sika Technology AG Zusammensetzung auf Basis von silanterminierten Polymeren
JP5480359B1 (ja) * 2012-12-25 2014-04-23 古河電気工業株式会社 有機エレクトロルミネッセンス素子封止用透明樹脂組成物、有機エレクトロルミネッセンス素子封止用樹脂シート、及び画像表示装置
DE102013101993A1 (de) * 2013-02-28 2014-08-28 Gerd Hoffmann Leckdichtung für einen insbesondere Öl oder eine ölhaltige Flüssigkeit enthaltenden Behälter
DE112014001220T5 (de) * 2013-03-11 2016-01-07 Panasonic Intellectual Property Management Co., Ltd. Beschichtung zum Verhindern des Verstreuens von Bruchstücken
CN105209425B (zh) * 2013-05-16 2017-12-12 信越化学工业株式会社 铝螯合化合物以及含有铝螯合化合物的室温固化性树脂组合物
CN105308145B (zh) * 2013-06-14 2018-11-30 积水富乐株式会社 粘接剂组合物
DE102013213655A1 (de) * 2013-07-12 2015-01-15 Evonik Industries Ag Härtbare Silylgruppen enthaltende Zusammensetzungen mit verbesserter Lagerstabilität
WO2015016010A1 (ja) * 2013-07-31 2015-02-05 スリーボンドファインケミカル株式会社 湿気硬化性組成物
DE102013216852A1 (de) * 2013-08-23 2015-02-26 Wacker Chemie Ag Vernetzbare Massen auf Basis von organyloxysilanterminierten Polymeren
WO2015120773A1 (en) 2014-02-13 2015-08-20 Honeywell International Inc. Compressible thermal interface materials
WO2015151788A1 (ja) * 2014-04-01 2015-10-08 日東化成株式会社 有機重合体又はオルガノポリシロキサン用硬化触媒、湿気硬化型組成物、硬化物及びその製造方法
WO2015151787A1 (ja) * 2014-04-01 2015-10-08 日東化成株式会社 有機重合体又はオルガノポリシロキサン用硬化触媒、湿気硬化型組成物、硬化物及びその製造方法
CN103923583A (zh) * 2014-04-11 2014-07-16 苏州之诺新材料科技有限公司 一种单组份端硅烷基聚丙烯酸酯胶粘剂及其制备方法
DE102014210309A1 (de) * 2014-05-30 2015-12-03 Wacker Chemie Ag Vernetzbare Massen auf Basis von organyloxysilanterminierten Polymeren
JP6377415B2 (ja) * 2014-06-03 2018-08-22 宇部興産建材株式会社 表面含浸材及び構造物
DE102014212291A1 (de) 2014-06-26 2015-12-31 Henkel Ag & Co. Kgaa Titankomplexe als Vulkanisationskatalysatoren
JP2016020407A (ja) * 2014-07-11 2016-02-04 信越化学工業株式会社 含フッ素有機ケイ素化合物の硬化方法、硬化皮膜の製造方法、含フッ素有機ケイ素化合物を含む組成物、及び該組成物の硬化物で表面処理された物品
EP3910039A1 (en) 2014-10-13 2021-11-17 Avery Dennison Corporation Weldable and vibration damping silicone adhesives
JP6509650B2 (ja) * 2015-04-02 2019-05-08 アイカ工業株式会社 透明性接着剤組成物
EP3181613B1 (en) * 2015-12-17 2018-06-27 Henkel AG & Co. KGaA Titanium complexes as vulcanization catalysts
JP6842469B2 (ja) 2016-03-08 2021-03-17 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. 相変化材料
GB201613397D0 (en) 2016-08-03 2016-09-14 Dow Corning Cosmetic composition comprising silicone materials
GB201613399D0 (en) 2016-08-03 2016-09-14 Dow Corning Cosmetic composition comprising silicone materials
EP3323844A1 (en) 2016-11-17 2018-05-23 Henkel AG & Co. KGaA Curable compositions based on silicon-containing polymers using phosphazenes as catalysts
JP7163319B2 (ja) 2017-06-26 2022-10-31 ダウ シリコーンズ コーポレーション イソシアナー官能性シリコーンポリエーテルコポリマー、それにより形成されるシリコーンポリエーテルウレタンコポリマー、それを含むシーラント、および関連する方法
KR20190013091A (ko) * 2017-07-31 2019-02-11 다우 실리콘즈 코포레이션 이중 경화성 수지 조성물, 그로부터 형성된 경화물, 및 그러한 경화물을 포함하는 전자 장치
CN107541170B (zh) * 2017-09-06 2021-07-13 广州集泰化工股份有限公司 一种建筑用单组分硅烷改性聚醚密封胶及其制备方法
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
CN108003804A (zh) * 2017-12-20 2018-05-08 烟台德邦科技有限公司 一种快速固化环保粘合剂的制备方法
CA3086263A1 (en) * 2017-12-29 2019-07-04 Henkel Ag & Co. Kgaa Acid resistant adhesive composition
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
JP6991891B2 (ja) 2018-02-26 2022-01-13 日東電工株式会社 両面粘着テープ
TW201938648A (zh) * 2018-03-12 2019-10-01 日商琳得科股份有限公司 硬化性組合物、硬化物、硬化物的製造方法及硬化性組合物的使用方法
CN108754861B (zh) * 2018-04-27 2021-02-09 安徽索亚装饰材料有限公司 一种皮雕用无纺布的生产工艺
KR20210106501A (ko) 2018-12-21 2021-08-30 다우 글로벌 테크놀로지스 엘엘씨 실리콘-유기 공중합체, 이를 포함하는 밀봉제 및 관련된 방법
US11760841B2 (en) 2018-12-21 2023-09-19 Dow Silicones Corporation Silicone-polycarbonate copolymer, sealants comprising same, and related methods
CN109943271A (zh) * 2019-04-10 2019-06-28 广东绿洲化工有限公司 一种无溶剂型免钉胶及其制备方法
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing
CN114667313B (zh) 2019-10-10 2023-09-01 美国陶氏有机硅公司 自密封轮胎
KR20220080117A (ko) 2019-10-10 2022-06-14 다우 실리콘즈 코포레이션 실리콘계 생성물 및 이의 응용
TW202118833A (zh) * 2019-11-13 2021-05-16 美商陶氏有機矽公司 室溫儲存穩定的uv/vis及濕氣可雙重固化聚矽氧烷組成物
EP4067337A4 (en) * 2019-11-29 2023-02-08 Nitto Kasei Co., Ltd. CURING CATALYST USED TO CURING A POLYMER, MOISTURE-CURRABLE COMPOSITION AND METHOD OF PRODUCING A CURED PRODUCT
CN110845989B (zh) * 2019-12-02 2021-09-03 苏州太湖电工新材料股份有限公司 一种双组份有机硅灌封胶及其应用方法
CN114144442B (zh) * 2019-12-19 2024-08-06 汉高股份有限及两合公司 可湿固化的聚丙烯酸酯组合物及其用途
JP6919010B1 (ja) * 2020-03-18 2021-08-11 旭化成ワッカーシリコーン株式会社 湿気硬化型組成物、および該湿気硬化型組成物の製造方法
EP3889222A1 (en) * 2020-03-30 2021-10-06 Henkel AG & Co. KGaA Curable potting composition free of substances of very high concern
WO2022004510A1 (ja) * 2020-06-29 2022-01-06 日東化成株式会社 重合体の硬化に用いる硬化触媒及びその製造方法、湿気硬化型組成物、硬化物の製造方法
CN112552703A (zh) * 2020-11-27 2021-03-26 山东奥斯登房车有限公司 一种不透光玻璃钢复合材料制品及应用
WO2022140672A1 (en) 2020-12-23 2022-06-30 Kintra Fibers, Inc. Polyester polymer nanocomposites
CN115991875B (zh) * 2023-02-15 2023-12-15 杭州之江有机硅化工有限公司 一种脱醇型室温硫化硅橡胶用钛酸酯催化剂及其制备方法
CN116786389B (zh) * 2023-08-23 2023-10-27 淄博大洋阻燃制品有限公司 阻燃隔热复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166810A (ja) * 1992-11-30 1994-06-14 Toray Dow Corning Silicone Co Ltd 室温硬化性組成物
JPH11209538A (ja) * 1998-01-26 1999-08-03 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JP2001011298A (ja) * 1991-03-11 2001-01-16 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JP2001254025A (ja) * 2000-01-06 2001-09-18 Dow Corning Asia Ltd 硬化性組成物

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439557A (en) * 1981-05-08 1984-03-27 Toray Industries, Incorporated Coating compositions
JPS62146959A (ja) * 1985-12-19 1987-06-30 Kanegafuchi Chem Ind Co Ltd 粘着剤組成物
JPS62252456A (ja) * 1986-04-24 1987-11-04 Toray Silicone Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2565333B2 (ja) * 1987-04-28 1996-12-18 東レ・ダウコーニング・シリコーン株式会社 電気・電子機器用室温硬化性オルガノポリシロキサン組成物
JP2557444B2 (ja) 1988-02-03 1996-11-27 鐘淵化学工業株式会社 アルキッド系塗料の乾燥性が改善された硬化性組成物
JP2835400B2 (ja) 1988-10-07 1998-12-14 鐘淵化学工業株式会社 硬化性組成物
JP2813801B2 (ja) * 1989-02-01 1998-10-22 鐘淵化学工業株式会社 接着方法
CA2056360C (en) * 1990-04-03 2000-07-25 Masayuki Fujita Curable blends of hydrolysable polyoxypropylenes and epoxy resins
DE4019074C1 (ja) * 1990-06-15 1991-07-18 Teroson Gmbh, 6900 Heidelberg, De
JP3725178B2 (ja) * 1991-03-22 2005-12-07 東レ・ダウコーニング株式会社 室温硬化性オルガノポリシロキサン組成物
DE4110796A1 (de) 1991-04-04 1992-10-08 Bayer Ag Provisorische befestigungsmaterialien
JP3112753B2 (ja) * 1991-09-12 2000-11-27 鐘淵化学工業株式会社 硬化性組成物
US5703146A (en) * 1991-09-12 1997-12-30 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Curable composition containing an oxypropylene polymer and calcium carbonate which has been surface treated with a fatty acid
JPH05311063A (ja) 1992-05-07 1993-11-22 Sekisui Chem Co Ltd シーリング材組成物
JPH05331063A (ja) * 1992-05-25 1993-12-14 Takeda Chem Ind Ltd エンドセリン受容体拮抗剤
US5719249A (en) * 1993-11-29 1998-02-17 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Reactive silicon group-containing polyoxyalkylene-polysiloxane copolymer
DE4329244A1 (de) * 1993-08-31 1995-03-02 Sandoz Ag Wässrige Wachs- und Silicon-Dispersionen, deren Herstellung und Verwendung
JP3080835B2 (ja) * 1994-04-05 2000-08-28 積水化学工業株式会社 室温硬化性組成物
TW325490B (en) * 1995-06-23 1998-01-21 Ciba Sc Holding Ag Polysiloxane light stabilizers
EP0856569B1 (en) * 1995-10-12 2002-06-12 Kaneka Corporation Process for fitting glass members onto vehicles
JPH09124921A (ja) * 1995-10-30 1997-05-13 Sekisui Chem Co Ltd 外壁用充填材
US5962074A (en) * 1996-06-05 1999-10-05 3M Innovative Properties Company Wax composition and method of use
AU3341297A (en) * 1996-07-02 1998-01-21 Ciba Specialty Chemicals Holding Inc. Process for curing a polymerizable composition
GB2327425B (en) * 1996-08-15 2000-03-15 Simson B V Adhesive composition
GB9721132D0 (en) * 1997-10-07 1997-12-03 Tioxide Specialties Ltd Polymeric sealant compositions
JP3903549B2 (ja) * 1997-10-21 2007-04-11 旭硝子株式会社 室温硬化性組成物
US6080816A (en) * 1997-11-10 2000-06-27 E. I. Du Pont De Nemours And Company Coatings that contain reactive silicon oligomers
GB9724055D0 (en) * 1997-11-15 1998-01-14 Dow Corning Sa Curable polysiloxane compositions
JP3636583B2 (ja) * 1998-01-29 2005-04-06 株式会社カネカ 複層ガラス用シーリング材
JP2000109676A (ja) 1998-10-08 2000-04-18 Asahi Glass Co Ltd 硬化性組成物
US6569980B1 (en) * 1999-03-23 2003-05-27 Kaneka Corporation Curable resin compositions
JP2001302934A (ja) 2000-04-20 2001-10-31 Dow Corning Asia Ltd 室温硬化性に優れた硬化性組成物
AU2473401A (en) 2000-01-06 2001-07-16 Dow Corning Asia Limited Organosiloxane compositions
JP4614499B2 (ja) * 2000-04-20 2011-01-19 ダウ コーニング コーポレーション 硬化性組成物
WO2001049789A2 (en) 2000-01-06 2001-07-12 Dow Corning S.A. Organosiloxane compositions
DE60112983T2 (de) * 2000-03-31 2006-05-18 Jsr Corp. Überzugsmittel und gehärtetes Produkt
JP4618843B2 (ja) 2000-04-20 2011-01-26 ダウ コーニング コーポレーション 硬化性組成物
US7176269B2 (en) * 2000-07-25 2007-02-13 Mitsui Chemicals, Inc. Curable composition and its use
AU2002224911A1 (en) * 2000-12-12 2002-06-24 Ciba Specialty Chemicals Holding Inc. Benzophenone uv-absorbers with heterocyclic substituents
JP3793031B2 (ja) * 2001-02-23 2006-07-05 日東化成株式会社 湿気硬化型組成物
JP4141198B2 (ja) * 2001-08-14 2008-08-27 株式会社カネカ 硬化性樹脂組成物
EP1285946B1 (en) * 2001-08-14 2005-05-04 Kaneka Corporation Curable resin composition
EP1445283B1 (en) * 2001-10-23 2007-09-05 Kaneka Corporation Curable resin composition
EP1454959B1 (en) * 2001-11-29 2006-12-20 Kaneka Corporation Curable composition
JP2004002757A (ja) * 2002-03-28 2004-01-08 Kanegafuchi Chem Ind Co Ltd 湿気硬化性組成物
JP3866154B2 (ja) 2002-05-16 2007-01-10 オート化学工業株式会社 硬化性組成物及びシーリング材組成物
JP2004083895A (ja) 2002-07-05 2004-03-18 Kanegafuchi Chem Ind Co Ltd 硬化性組成物の製造方法
JP3789867B2 (ja) 2002-07-31 2006-06-28 横浜ゴム株式会社 硬化性樹脂組成物
JP4699897B2 (ja) * 2002-10-02 2011-06-15 株式会社カネカ 1液型硬化性組成物
JP4101632B2 (ja) * 2002-11-01 2008-06-18 株式会社カネカ 硬化性組成物および復元性、クリープ性改善方法
CN100404613C (zh) * 2003-07-08 2008-07-23 株式会社钟化 固化性组合物
JP5002262B2 (ja) * 2004-05-07 2012-08-15 株式会社カネカ 硬化性組成物
JP4480457B2 (ja) * 2004-05-17 2010-06-16 株式会社カネカ 硬化性組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011298A (ja) * 1991-03-11 2001-01-16 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH06166810A (ja) * 1992-11-30 1994-06-14 Toray Dow Corning Silicone Co Ltd 室温硬化性組成物
JPH11209538A (ja) * 1998-01-26 1999-08-03 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JP2001254025A (ja) * 2000-01-06 2001-09-18 Dow Corning Asia Ltd 硬化性組成物

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5465382B2 (ja) * 2005-12-02 2014-04-09 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 室温硬化性ケイ素基含有ポリマー組成物
JP5421106B2 (ja) * 2007-07-24 2014-02-19 株式会社カネカ 硬化性組成物
WO2009014077A1 (ja) * 2007-07-24 2009-01-29 Kaneka Corporation 硬化性組成物
JP2010100839A (ja) * 2008-09-26 2010-05-06 Kaneka Corp 太陽電池モジュール用硬化性組成物および太陽電池モジュール
JP2013534548A (ja) * 2010-06-15 2013-09-05 ワッカー ケミー アクチエンゲゼルシャフト シラン架橋化合物
US8642708B2 (en) 2010-06-15 2014-02-04 Wacker Chemie Ag Silane-crosslinking compositions
US9551812B2 (en) 2011-05-30 2017-01-24 Cheil Industries, Inc. Adhesive composition, adhesive layer, optical member, and adhesive sheet
JP2017503037A (ja) * 2013-11-26 2017-01-26 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド 金属−アレーン錯体を有する湿気硬化型組成物
WO2016120255A1 (en) 2015-01-26 2016-08-04 Mactac Europe Sprl Self adhesive fouling release coating composition
EP3048141A1 (en) 2015-01-26 2016-07-27 Mactac Europe Sprl Self adhesive fouling release coating composition
EP3470476A1 (en) 2015-01-26 2019-04-17 Avery Dennison Corporation Self adhesive fouling release coating composition
US11339301B2 (en) 2015-01-26 2022-05-24 Avery Dennison Corporation Self adhesive fouling release coating composition
US11332581B2 (en) 2015-01-28 2022-05-17 Dow Silicones Corporation Elastomeric compositions and their applications
US10563015B2 (en) 2015-01-28 2020-02-18 Dow Silicones Corporation Elastomeric compositions and their applications
KR20190025723A (ko) * 2016-08-03 2019-03-11 다우 실리콘즈 코포레이션 탄성중합체 조성물 및 그의 응용
US10844177B2 (en) 2016-08-03 2020-11-24 Dow Silicones Corporation Elastomeric compositions and their applications
US10808154B2 (en) 2016-08-03 2020-10-20 Dow Silicones Corporation Elastomeric compositions and their applications
KR102124300B1 (ko) * 2016-08-03 2020-06-22 다우 실리콘즈 코포레이션 탄성중합체 조성물 및 그의 응용
US11254847B2 (en) 2017-05-09 2022-02-22 Dow Silicones Corporation Lamination adhesive compositions and their applications
US11479022B2 (en) 2017-05-09 2022-10-25 Dow Silicones Corporation Lamination process
WO2021261383A1 (ja) * 2020-06-22 2021-12-30 株式会社カネカ 加熱硬化型の硬化性組成物及びその硬化物

Also Published As

Publication number Publication date
EP1749859A1 (en) 2007-02-07
US20080076878A1 (en) 2008-03-27
US20080194773A1 (en) 2008-08-14
EP1749857A4 (en) 2007-08-01
JP4480719B2 (ja) 2010-06-16
US7973108B2 (en) 2011-07-05
JP4819675B2 (ja) 2011-11-24
JPWO2005108499A1 (ja) 2008-03-21
WO2005108500A1 (ja) 2005-11-17
EP1746133A4 (en) 2014-08-13
WO2005108498A1 (ja) 2005-11-17
EP1746134B1 (en) 2019-09-04
US7763673B2 (en) 2010-07-27
US7910681B2 (en) 2011-03-22
US20080319152A1 (en) 2008-12-25
WO2005108492A1 (ja) 2005-11-17
EP1749858B1 (en) 2019-04-03
CN1950459A (zh) 2007-04-18
WO2005108494A1 (ja) 2005-11-17
US20080033087A1 (en) 2008-02-07
JPWO2005108493A1 (ja) 2008-03-21
US20070219299A1 (en) 2007-09-20
EP1749857A1 (en) 2007-02-07
US7625990B2 (en) 2009-12-01
JP5225580B2 (ja) 2013-07-03
JP5225581B2 (ja) 2013-07-03
JPWO2005108491A1 (ja) 2008-03-21
US20070287780A1 (en) 2007-12-13
JP5002262B2 (ja) 2012-08-15
EP1749858A1 (en) 2007-02-07
US7893170B2 (en) 2011-02-22
EP1749859A4 (en) 2014-08-13
JPWO2005108492A1 (ja) 2008-03-21
JP5225582B2 (ja) 2013-07-03
WO2005108493A1 (ja) 2005-11-17
EP1749857B1 (en) 2019-03-27
JPWO2005108500A1 (ja) 2008-03-21
JPWO2005108494A1 (ja) 2008-03-21
EP1746134A4 (en) 2014-08-13
EP1752496A4 (en) 2014-08-06
US7446158B2 (en) 2008-11-04
EP1746133A1 (en) 2007-01-24
EP1752496A1 (en) 2007-02-14
JP4898430B2 (ja) 2012-03-14
EP1746135B1 (en) 2019-05-29
EP1746135A1 (en) 2007-01-24
CN1950459B (zh) 2011-05-25
JPWO2005108498A1 (ja) 2008-03-21
EP1746135A4 (en) 2014-08-13
EP1749858A4 (en) 2014-08-06
WO2005108491A1 (ja) 2005-11-17
EP1746133B1 (en) 2019-03-06
EP1746134A1 (en) 2007-01-24
US20080287636A1 (en) 2008-11-20
EP1749859B1 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
JP5225581B2 (ja) 硬化性と接着性の改善された硬化性組成物
JP5744759B2 (ja) 硬化性組成物
JP6356123B2 (ja) 硬化性組成物
WO2005121255A1 (ja) 硬化性組成物
JP6317672B2 (ja) 硬化性組成物
WO2008032539A1 (fr) POLYMÈRE DURCISSABLE À L&#39;HUMIDITÉ COMPORTANT UN GROUPE SiF ET COMPOSITION DURCISSABLE CONTENANT UN TEL POLYMÈRE
JP5161578B2 (ja) 1成分型硬化性組成物
JP4480457B2 (ja) 硬化性組成物
JP2007091931A (ja) オルガノシロキサン変性ポリオキシアルキレン系重合体、および、該重合体を含有するパネル用接着剤
JP5210685B2 (ja) 反応性ケイ素基含有有機重合体組成物の製造方法および流動性調整方法および該有機重合体組成物を用いた目地構造体
JP5028139B2 (ja) 硬化性組成物
JP2014001358A (ja) 硬化性組成物
JP4777732B2 (ja) オルガノシロキサン変性ポリオキシアルキレン系重合体および/または(メタ)アクリル酸エステル系重合体、および、該重合体を含有する硬化性組成物
JP2007091929A (ja) オルガノシロキサン変性ポリオキシアルキレン系重合体および/または(メタ)アクリル酸エステル系重合体、および、該重合体を含有する硬化性組成物
JP2006348209A (ja) 硬化性組成物
JP2014198791A (ja) 硬化性組成物
JP5564312B2 (ja) 硬化性組成物
JP5789087B2 (ja) 内装用の非有機錫系接着剤組成物およびその硬化物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512951

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580014558.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005734515

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005734515

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11579551

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11579551

Country of ref document: US